This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

On the Liouville Function in Short Intervals

Jake Chinis
Abstract.

Let λ\lambda denote the Liouville function. Assuming the Riemann Hypothesis, we prove that

X2X|xnx+hλ(n)|2dxXh(logX)6,\displaystyle\int_{X}^{2X}\Big{|}\sum_{x\leq n\leq x+h}\lambda(n)\Big{|}^{2}\mathrm{d}x\ll Xh(\log X)^{6},

as XX\rightarrow\infty, provided h=h(X)exp((12o(1))logXloglogX).h=h(X)\leq\exp\left(\sqrt{\left(\frac{1}{2}-o(1)\right)\log X\log\log X}\right). The proof uses a simple variation of the methods developed by Matomäki and Radziwiłł in their work on multiplicative functions in short intervals, as well as some standard results concerning smooth numbers.

1. Introduction

Let λ\lambda denote the Liouville function; that is, the completely multiplicative function defined by λ(p):=1\lambda(p):=-1, for all primes pp. It is well-known that the Prime Number Theorem (PNT) is equivalent to the fact that λ\lambda exhibits some cancellation in its partial sums; more precisely, that

nxλ(n)=o(x),\displaystyle\sum_{n\leq x}\lambda(n)=o(x),

as x.x\rightarrow\infty.

The Möbius Randomness Law (see page 338 of [IK04]) tells us that {λ(n)}n\{\lambda(n)\}_{n} should behave like a sequence of independent random variables, taking on the values ±1\pm 1 with equal probability. As a result, we expect “square-root cancellation” in the partial sums for the Liouville function; that is, for any ϵ>0\epsilon>0,

nxλ(n)x12+ϵ,\displaystyle\sum_{n\leq x}\lambda(n)\ll x^{\frac{1}{2}+\epsilon},

as x.x\rightarrow\infty. In fact, the above estimate is equivalent to the Riemann Hypothesis (RH); see Theorem 14.25(C) of [THB86]. Furthermore, it is possible to quantity ϵ\epsilon in terms of xx; see [Sou09].

The Liouville function also exhibits cancellation in short intervals, provided that the length of the interval is sufficiently large. Motohashi [Mot76] and Ramachandra [Ram76], independently, proved that

xnx+hλ(n)=o(h),\displaystyle\sum_{x\leq n\leq x+h}\lambda(n)=o(h),

provided h>x712+ϵh>x^{\frac{7}{12}+\epsilon}. Assuming RH, this can be improved to h>x12(logx)Ah>x^{\frac{1}{2}}(\log x)^{A}, for some suitable constant A>0A>0; see [MM09]. Recently, Matomäki and Teräväinen [MT19] improved Motohashi and Ramachandra’s results to include the larger range h>x1120+ϵ.h>x^{\frac{11}{20}+\epsilon}.

By relaxing the condition that our estimates hold for all short intervals, we can get results that hold for smaller values of hh. In unpublished work of Gao111Strictly speaking, Gao’s result, and those stated above his, were initially proven for the Möbius function, μ\mu, but the proofs extend to the Liouville function with little effort., it is shown that

X2X|xnx+hλ(n)|2dxXh(logX)A,\displaystyle\int_{X}^{2X}\Big{|}\sum_{x\leq n\leq x+h}\lambda(n)\Big{|}^{2}\mathrm{d}x\ll Xh(\log X)^{A},

assuming RH, for some large constant A>0A>0.

The preceding results should be compared with what is known for primes in short intervals. More precisely, an equivalent form of the PNT is given by

nxΛ(n)=x+o(x),\displaystyle\sum_{n\leq x}\Lambda(n)=x+o(x),

where Λ\Lambda denotes the von Mangoldt function (defined to be logp\log p if nn is a power of the prime pp and 0 otherwise). Furthermore, the Riemann Hypothesis is equivalent to the following estimate:

nxΛ(n)=x+O(x12(logx)2);\displaystyle\sum_{n\leq x}\Lambda(n)=x+O(x^{\frac{1}{2}}(\log x)^{2});

in particular, RH implies that

xnx+hΛ(n)=h+o(h),\displaystyle\sum_{x\leq n\leq x+h}\Lambda(n)=h+o(h),

provided h>x12(logx)2+ϵ.h>x^{\frac{1}{2}}(\log x)^{2+\epsilon}.

Again restricting ourselves to results that hold almost everywhere, Selberg [Sel43] proved that if RH holds, then

X2X|xnx+hΛ(n)h|2dxXh(logX)2,\displaystyle\int_{X}^{2X}\Big{|}\sum_{x\leq n\leq x+h}\Lambda(n)-h\Big{|}^{2}\mathrm{d}x\ll Xh(\log X)^{2},

so that almost all short intervals contain the correct number of primes.

It is important to note that both Gao and Selberg obtain square-root cancellation in their estimates. In each case, they relate the short sum to a contour integral of some Dirichlet series and then shift this contour to the edge of the critical strip, picking up any poles along the way. For Selberg, the corresponding Dirichlet series is ζ(s)/ζ(s)\zeta^{\prime}(s)/\zeta(s) and, assuming RH, the only pole will be at s=1s=1. Near the half-line, we still need to consider the contributions from the non-trivial zeros, ρ=1/2+iγ\rho=1/2+i\gamma, of ζ(s)\zeta(s), as ζ(s)/ζ(s)\zeta^{\prime}(s)/\zeta(s) is large for sρs\approx\rho. Fortunately, the behaviour of ζ(s)/ζ(s)\zeta^{\prime}(s)/\zeta(s) for sρs\approx\rho is well understood (it is even conjectured that the zeros of ζ(s)\zeta(s) are simple). For Gao, the corresponding Dirichlet series is ζ(2s)/ζ(s)\zeta(2s)/\zeta(s), which also has poles at s=ρs=\rho, but the residues in this case are equal to ζ(2ρ)/ζ(ρ)\zeta(2\rho)/\zeta^{\prime}(\rho). Since very little is known about 1/ζ(ρ)1/\zeta^{\prime}(\rho), we need to proceed in an indirect manner. The key idea is to use a sum over primes to approximate ζ(s)\zeta(s) and then avoid “clusters” of zeros of ζ(s)\zeta(s) on the half-line: near these regions, 1/ζ(s)1/\zeta(s) is large and the contour is chosen so that 1/ζ(s)1/\zeta(s) is not too large, at least in some sense; see [MM09], to get an idea of Gao’s proof.

We now turn our attention to the breakthrough work of Matomäki and Radziwiłł, where they relate the average value of 11-bounded multiplicative functions in short intervals to the corresponding average value in large intervals:

Theorem 1.1 ([MR16]).

Let f:[1,1]f:\operatorname{\mathbb{N}}\rightarrow[-1,1] be a multiplicative function and let h=h(X)h=h(X)\rightarrow\infty arbitrarily slowly as XX\rightarrow\infty. Then, for almost all x[X,2X]x\in[X,2X],

1hxnx+hf(n)=1XXn2Xf(n)+o(1),\displaystyle\frac{1}{h}\sum_{x\leq n\leq x+h}f(n)=\frac{1}{X}\sum_{X\leq n\leq 2X}f(n)+o(1),

with o(1)o(1) not depending on ff.

In the case of the Liouville function, Theorem 1.1 implies that

xnx+hλ(n)=o(h),\displaystyle\sum_{x\leq n\leq x+h}\lambda(n)=o(h),

for almost all x[X,2X]x\in[X,2X]; in particular,

X2X|xnx+hλ(n)|2dx=o(Xh2),\displaystyle\int_{X}^{2X}\Big{|}\sum_{x\leq n\leq x+h}\lambda(n)\Big{|}^{2}\mathrm{d}x=o(Xh^{2}),

for any h=h(X)h=h(X)\rightarrow\infty as X.X\rightarrow\infty. Although Matomäki and Radziwiłł do not get square-root cancellation, their results are unconditional, hold for all hh going to infinity, and avoid the complex analytic approach used by both Gao and Selberg; instead, they employ a clever decomposition of the corresponding Dirichlet polynomials, which is done by restricting to integers which have prime factors from certain convenient ranges. For a detailed account of the work in [MR16] restricted to the Liouville function, see [Sou16].

In this paper, we apply a simple variation of the methods developed in [MR16] in order to prove the following:

Theorem 1.2.

Assume the Riemann Hypothesis. Then,

X2X|xnx+hλ(n)|2dxXh(logX)6,\displaystyle\int_{X}^{2X}\Big{|}\sum_{x\leq n\leq x+h}\lambda(n)\Big{|}^{2}\mathrm{d}x\ll Xh(\log X)^{6},

provided h=h(X)exp((12o(1))logXloglogX)h=h(X)\leq\exp\left(\sqrt{\left(\frac{1}{2}-o(1)\right)\log X\log\log X}\right).

Note that Theorem 1.2 shows square-root cancellation for the Liouville function in almost all short intervals, provided (logX)6+ϵhexp((12o(1))logXloglogX)(\log X)^{6+\epsilon}\leq h\leq\exp\left(\sqrt{\left(\frac{1}{2}-o(1)\right)\log X\log\log X}\right). Of course, Theorem 1.2 gives an upper bound on the exceptional set of x[X,2X]x\in[X,2X] for which square-root cancellation does not hold (via Chebyshev’s Inequality). By splitting the short sum into shorter intervals, Theorem 1.2 can also be used to obtain some cancellation for larger hh; namely,

Corollary 1.1.

Assume RH and suppose hX.h\leq X. Then,

X2X|xnx+hλ(n)|2dxXh2(logX)6(1h+1H),\displaystyle\int_{X}^{2X}\Big{|}\sum_{x\leq n\leq x+h}\lambda(n)\Big{|}^{2}\mathrm{d}x\ll Xh^{2}(\log X)^{6}\left(\frac{1}{h}+\frac{1}{H}\right),

where H=H(X):=exp((12o(1))logXloglogX)H=H(X):=\exp\left(\sqrt{\left(\frac{1}{2}-o(1)\right)\log X\log\log X}\right).

2. Preliminaries

We present here a collection of standard results, which we use freely throughout our paper. The first result is a quantitative version of Perron’s Formula, which serves as an approximation to the indicator function on (1,)(1,\infty). The second result relates the mean-square of a Dirichlet polynomial to its sum of squares and this will be our main tool in proving Theorem 1.2.

Lemma 2.1 (Quantitative version of Perron’s Formula).

Fix κ>0\kappa>0. Then,

12πiκiTκ+iTyssds={1if y>112if y=10if y<1+𝒪(yκmax{1,T|logy|}),\displaystyle\frac{1}{2\pi i}\int_{\kappa-iT}^{\kappa+iT}\frac{y^{s}}{s}\mathrm{d}s=\left\{\begin{array}[]{@{}l@{\quad}l@{}}1&\mbox{if $y>1$}\\ \frac{1}{2}&\mbox{if $y=1$}\\ 0&\mbox{if $y<1$}\end{array}\right.+\mathcal{O}\Big{(}\frac{y^{\kappa}}{\max\{1,T|\log y|\}}\Big{)},

uniformly for both y>0y>0 and T>0.T>0.

Proof.

See [Ten15, Theorem II.2.3]. ∎

Lemma 2.2 (Mean Value Theorem).

For any sequence of complex numbers {an}n\{a_{n}\}_{n}, we have that

0T|1nNannit|2dt=(T+𝒪(N))1nN|an|2.\displaystyle\int_{0}^{T}\Big{|}\sum_{1\leq n\leq N}a_{n}n^{it}\Big{|}^{2}\mathrm{d}t=(T+\mathcal{O}(N))\sum_{1\leq n\leq N}|a_{n}|^{2}.
Proof.

See [IK04, Theorem 9.1]

Remark 2.1.

Notice that the main term in Lemma 2.2 corresponds to the contribution from the diagonal terms (as seen by expanding the square and integrating). Notice further that the Mean Value Theorem (MVT) is exceptionally powerful when N=o(T)N=o(T): in this case, the integral is bounded above by the contribution from the diagonal terms and this is best possible.

In their work on multiplicative functions in short intervals, Matomäki and Radziwiłł use the MVT in the range T=o(N)T=o(N), which, together with the decomposition of their Dirichlet polynomials, provides a small saving in most cases; see Section 2.1 of [MR16]. In this paper, we are interested in the opposite range and decompose our Dirichlet polynomials into two sums, one of which has length N=o(T)N=o(T) and another which can be handled trivially (at least for small hh).

We need two more preliminary results. The first is a pointwise bound on Xn2Xλ(n)/n12+it,\sum_{X\leq n\leq 2X}\lambda(n)/n^{\frac{1}{2}+it}, which allows us to remove the contribution from the small values of tt in our average value (this can be thought of as the analogous result to Lemma 1 in [MR15]). The second is an analogue of Lemma 2 in [MR16]: we need a pointwise bound on sums of the form Pp2P1/p12+1logX+it,\sum_{P\leq p\leq 2P}1/p^{\frac{1}{2}+\frac{1}{\log X}+it}, for large values of tt.

Lemma 2.3.

Assume RH. Then,

Xn2Xλ(n)n12+itϵ(1+|t|)ϵXϵ,\displaystyle\sum_{X\leq n\leq 2X}\frac{\lambda(n)}{n^{\frac{1}{2}+it}}\ll_{\epsilon}(1+|t|)^{\epsilon}X^{\epsilon},

for all ϵ>0\epsilon>0 and all tt\in\operatorname{\mathbb{R}}.

Proof.

By Lemma 3.12 of [THB86], we have that

Xn2Xλ(n)n12+it\displaystyle\sum_{X\leq n\leq 2X}\frac{\lambda(n)}{n^{\frac{1}{2}+it}} =12πi2iT2+iTζ(2s+1+2it)ζ(s+12+it)(2X)sXssds+𝒪(X2T).\displaystyle=\frac{1}{2\pi i}\int_{2-iT}^{2+iT}\frac{\zeta(2s+1+2it)}{\zeta(s+\frac{1}{2}+it)}\frac{(2X)^{s}-X^{s}}{s}\mathrm{d}s+\mathcal{O}\Big{(}\frac{X^{2}}{T}\Big{)}.

Given ϵ>0\epsilon>0 and assuming RH, the function ζ(2(s+12+it))/ζ(s+12+it)\zeta(2(s+\frac{1}{2}+it))/\zeta(s+\frac{1}{2}+it) is analytic for (s)ϵ.\Re(s)\geq\epsilon. Shifting the contour to the edge of this region, we get that

Xn2Xλ(n)n12+it\displaystyle\sum_{X\leq n\leq 2X}\frac{\lambda(n)}{n^{\frac{1}{2}+it}} =12πi(2+iTϵ+iT+ϵ+iTϵiT+ϵiT2iT)(ζ(2s+1+2it)ζ(s+12+it)(2X)sXssds)+𝒪(X2T).\displaystyle=\frac{-1}{2\pi i}\Biggr{(}\int_{2+iT}^{\epsilon+iT}+\int_{\epsilon+iT}^{\epsilon-iT}+\int_{\epsilon-iT}^{2-iT}\Biggr{)}\Big{(}\frac{\zeta(2s+1+2it)}{\zeta(s+\frac{1}{2}+it)}\frac{(2X)^{s}-X^{s}}{s}\mathrm{d}s\Big{)}+\mathcal{O}\Biggr{(}\frac{X^{2}}{T}\Biggr{)}.

Then, using the facts that ζ(s)1/((s)1)\zeta(s)\ll 1/(\Re(s)-1), for (s)>1\Re(s)>1, and 1/ζ(s)|(s)|ϵ1/\zeta(s)\ll|\Im(s)|^{\epsilon}, for (s)12+ϵ,\Re(s)\geq\frac{1}{2}+\epsilon, (see 14.2.6 in [THB86]), we have that

Xn2Xλ(n)n12+it\displaystyle\sum_{X\leq n\leq 2X}\frac{\lambda(n)}{n^{\frac{1}{2}+it}} ϵ(|t|+T)ϵXϵTTdyϵ2+y2+(|t|+T)ϵX2T\displaystyle\ll_{\epsilon}(|t|+T)^{\epsilon}X^{\epsilon}\int_{-T}^{T}\frac{\mathrm{d}y}{\sqrt{\epsilon^{2}+y^{2}}}+(|t|+T)^{\epsilon}\frac{X^{2}}{T}
ϵ(|t|+T)ϵ(XϵlogT+X2T).\displaystyle\ll_{\epsilon}(|t|+T)^{\epsilon}(X^{\epsilon}\log T+\frac{X^{2}}{T}).

Taking T=X2T=X^{2}, this boils down to

Xn2Xλ(n)n12+itϵ(|t|+X2)ϵXϵϵ(1+|t|)ϵXϵ,\displaystyle\sum_{X\leq n\leq 2X}\frac{\lambda(n)}{n^{\frac{1}{2}+it}}\ll_{\epsilon}(|t|+X^{2})^{\epsilon}X^{\epsilon}\ll_{\epsilon}(1+|t|)^{\epsilon}X^{\epsilon},

as claimed. ∎

Lemma 2.4.

Assume RH and suppose PXP\leq X. Then,

Pp2P1p12+1logX+itlogX,\displaystyle\sum_{P\leq p\leq 2P}\frac{1}{p^{\frac{1}{2}+\frac{1}{\log X}+it}}\ll\log X,

uniformly for X12|t|X.X^{\frac{1}{2}}\leq|t|\leq X.

Proof.

Note that

(2.1) Pp2P1p12+1logX+it\displaystyle\sum_{P\leq p\leq 2P}\frac{1}{p^{\frac{1}{2}+\frac{1}{\log X}+it}} =1/logX1/2Pn2PΛ(n)n12+α+itdα+𝒪(1).\displaystyle=\int_{1/\log X}^{1/2}\sum_{P\leq n\leq 2P}\frac{\Lambda(n)}{n^{\frac{1}{2}+\alpha+it}}\mathrm{d}\alpha+\mathcal{O}\left(1\right).

Applying Perron’s Formula (Lemma 2.1) to the integrand, with κ:=1/2α+1/logX>0\kappa:={1}/{2}-\alpha+1/\log X>0 and T:=P12/2T:=P^{\frac{1}{2}}/2, we have that

Pn2PΛ(n)n12+α+it\displaystyle\sum_{P\leq n\leq 2P}\frac{\Lambda(n)}{n^{\frac{1}{2}+\alpha+it}} =12πi1/2α+1/logXiT1/2α+1/logX+iTζζ(s+12+α+it)(2P)sPssds+𝒪(PαlogX).\displaystyle=\frac{1}{2\pi i}\int_{{1}/{2}-\alpha+1/\log X-iT}^{{1}/{2}-\alpha+1/\log X+iT}-\frac{\zeta^{\prime}}{\zeta}(s+\frac{1}{2}+\alpha+it)\frac{(2P)^{s}-P^{s}}{s}\mathrm{d}s+\mathcal{O}\left(P^{-\alpha}\log X\right).

A standard contour shift argument, using Chapters 12 and 13 of [MV06], shows that this last expression is Pα(logP)logX\ll P^{-\alpha}(\log P)\log X. Upon inserting this bound back into (2.1), and integrating over α\alpha, we get the desired result. Below, we provide some details for convenience to the reader.

Assuming RH and shifting the contour to the line (s)=3/2α=:σ0\Re(s)=-3/2-\alpha=:\sigma_{0}, we have that222Strictly speaking, we need to choose TT in such a way that the horizontal line segments in the contour (shifted by tt) are bounded away from ordinates γ\gamma of ζ\zeta; this can be done via Lemma 12.2 of [MV06].

Pn2PΛ(n)n12+α+it\displaystyle\sum_{P\leq n\leq 2P}\frac{\Lambda(n)}{n^{\frac{1}{2}+\alpha+it}} =12πi(κ+iTσ0+iT+σ0+iTσ0iT+σ0iTκiT)(ζζ(s+12+α+it)(2P)sPssds)\displaystyle=\frac{-1}{2\pi i}\left(\int_{\kappa+iT}^{\sigma_{0}+iT}+\int_{\sigma_{0}+iT}^{\sigma_{0}-iT}+\int_{\sigma_{0}-iT}^{\kappa-iT}\right)\left(-\frac{\zeta^{\prime}}{\zeta}(s+\frac{1}{2}+\alpha+it)\frac{(2P)^{s}-P^{s}}{s}\mathrm{d}s\right)
+ρ|γt|T(2P)αit+iγPαit+iγαit+iγ+𝒪(PαlogX),\displaystyle\qquad\qquad+\sum_{\begin{subarray}{c}{\rho}\\ {|\gamma-t|\leq T}\end{subarray}}\frac{(2P)^{-\alpha-it+i\gamma}-P^{-\alpha-it+i\gamma}}{-\alpha-it+i\gamma}+\mathcal{O}\left(P^{-\alpha}\log X\right),

where the sum is over the non-trivial zeros, ρ=1/2+iγ\rho={1}/{2}+i\gamma, of ζ\zeta (counted with multiplicity). Notice that the sum over ρ\rho corresponds to the residues of the integrand at s=ρ1/2αits=\rho-{1}/{2}-\alpha-it. Notice further that we do not pick up the pole of ζ\zeta at 11, as (s)+t\Im(s)+t is bounded away from 0 (recall that X12|t|XX^{\frac{1}{2}}\leq|t|\leq X with T=P12/2T=P^{\frac{1}{2}}/2 and PXP\leq X).

To deal with the vertical integral, we use the fact that ζ(s)/ζ(s)log(|s|+1){\zeta^{\prime}(s)}/{\zeta}(s)\ll\log(|s|+1) uniformly for (s)1\Re(s)\leq-1, provided ss is not close to an even integer (i.e., provided we are not close to a trivial zero of ζ\zeta); see Lemma 12.4 of [MV06]. Using the above and bounding the vertical integral trivially produces an admissible error.

For the horizontal integrals, write s=σ±iTs=\sigma\pm iT and note that

|σ0±iTκ±iTζζ(σ+12+α+i(t±T))(2P)σ±iTPσ±iTσ±iTdσ|\displaystyle\left|\int_{\sigma_{0}\pm iT}^{\kappa\pm iT}\frac{\zeta^{\prime}}{\zeta}(\sigma+\frac{1}{2}+\alpha+i(t\pm T))\frac{(2P)^{\sigma\pm iT}-P^{\sigma\pm iT}}{\sigma\pm iT}\mathrm{d}\sigma\right| P12αT11+1/logX|ζζ(σ+i(t±T))|dσ\displaystyle\ll\frac{P^{\frac{1}{2}-\alpha}}{T}\int_{-1}^{1+1/\log X}\left|\frac{\zeta^{\prime}}{\zeta}(\sigma+i(t\pm T))\right|\mathrm{d}\sigma
Pα11+1/logX|ζζ(σ+i(t±T))|dσ\displaystyle\ll P^{-\alpha}\int_{-1}^{1+1/\log X}\left|\frac{\zeta^{\prime}}{\zeta}(\sigma+i(t\pm T))\right|\mathrm{d}\sigma

which follows by making the change of variables σσ1/2α\sigma\mapsto\sigma-{1}/{2}-\alpha, taking a pointwise bound on the integrand, and recalling that κ=1/2αit\kappa={1}/{2}-\alpha-it, σ0=3/2α\sigma_{0}=-3/2-\alpha, and T=P12/2T=P^{\frac{1}{2}}/2. From the functional equation, it suffices to consider the integral over σ[1/2,1+1/logX]\sigma\in[{1}/{2},1+1/\log X] alone, which we break into three intervals, according to the bounds one can get for ζ/ζ{\zeta^{\prime}}/{\zeta}:

  1. (1)

    By Lemma 12.2 of [MV06], we know that ζζ(σ+i(t±T))(logX)2,\frac{\zeta^{\prime}}{\zeta}(\sigma+i(t\pm T))\ll(\log X)^{2}, uniformly for 1σ2-1\leq\sigma\leq 2; in particular,

    Pα1/21/2+1/logX|ζζ(σ+i(t±T))|dσPαlogX.\displaystyle P^{-\alpha}\int_{{1}/{2}}^{{1}/{2}+{1}/{\log X}}\left|\frac{\zeta^{\prime}}{\zeta}(\sigma+i(t\pm T))\right|\mathrm{d}\sigma\ll P^{-\alpha}\log X.
  2. (2)

    By Lemma 13.20 of [MV06], we know that

    ζζ(σ+i(t±T))=ρ|γ(t±T)|1/loglog((|t±T|+4)1σ1/2+i(t±Tγ)+𝒪(logX),\displaystyle\frac{\zeta^{\prime}}{\zeta}(\sigma+i(t\pm T))=\sum_{\begin{subarray}{c}{\rho}\\ {|\gamma-(t\pm T)|\leq 1/\log\log((|t\pm T|+4)}\end{subarray}}\frac{1}{\sigma-1/2+i(t\pm T-\gamma)}+\mathcal{O}(\log X),

    uniformly for |σ1/2|1/loglog(|t±T|+4)|\sigma-1/2|\leq 1/\log\log(|t\pm T|+4). Using the trivial bound

    1|σ1/2+i(t±Tγ)|1|σ1/2|,\frac{1}{|{\sigma-1/2+i(t\pm T-\gamma)}|}\leq\frac{1}{|\sigma-1/2|},

    and integrating over σ\sigma, we then have that

    Pα1/2+1/logX1/2+1/loglog(|t±T|+4)|ζζ(σ+i(t±T))|dσ\displaystyle P^{-\alpha}\int_{{1}/{2}+1/\log X}^{{1}/{2}+1/{\log\log(|t\pm T|+4)}}\left|\frac{\zeta^{\prime}}{\zeta}(\sigma+i(t\pm T))\right|\mathrm{d}\sigma PαlogX,\displaystyle\ll P^{-\alpha}\log X,

    which follows from the fact that the integral over σ\sigma is bounded by loglogX\log\log X and from the fact that there are logX/loglogX\ll\log X/\log\log X zeros in each window of length 1/loglogX1/\log\log X (see Lemma 13.19 of [MV06]).

  3. (3)

    Finally, for 1/2+1/loglog(|t±T|+4)σ1+1/logX1/2+1/\log\log(|t\pm T|+4)\leq\sigma\leq 1+1/\log X, we use the fact that

    ζζ(σ+i(t±T))(logX)22σloglogX,\displaystyle\frac{\zeta^{\prime}}{\zeta}(\sigma+i(t\pm T))\ll(\log X)^{2-2\sigma}\log\log X,

    uniformly for σ\sigma in the desired range (see Corollary 13.14 of [MV06]), which yields:

    Pα1/2+1/loglog(|t±T|+4)1+1/logX|ζζ(σ+i(t±T))|dσ\displaystyle P^{-\alpha}\int_{1/2+1/\log\log(|t\pm T|+4)}^{1+1/\log X}\left|\frac{\zeta^{\prime}}{\zeta}(\sigma+i(t\pm T))\right|\mathrm{d}\sigma Pα(loglogX)1/2+1/loglog(|t±T|+4)1+1/logX(logX)22σdσ\displaystyle\ll P^{-\alpha}(\log\log X)\int_{1/2+1/\log\log(|t\pm T|+4)}^{1+1/\log X}(\log X)^{2-2\sigma}\mathrm{d}\sigma
    PαlogX.\displaystyle\ll P^{-\alpha}\log X.

In other words, a standard contour shift yields the following:

Pn2PΛ(n)n12+α+it\displaystyle\sum_{P\leq n\leq 2P}\frac{\Lambda(n)}{n^{\frac{1}{2}+\alpha+it}} Pαρ|γt|P12/2|2αit+iγ1αit+iγ|+PαlogX\displaystyle\ll P^{-\alpha}\sum_{\begin{subarray}{c}{\rho}\\ {|\gamma-t|\leq P^{\frac{1}{2}}/2}\end{subarray}}\left|\frac{2^{-\alpha-it+i\gamma}-1}{-\alpha-it+i\gamma}\right|+P^{-\alpha}\log X
Pαρ|γt|P12/211+|tγ|+PαlogX\displaystyle\ll P^{-\alpha}\sum_{\begin{subarray}{c}{\rho}\\ {|\gamma-t|\leq P^{\frac{1}{2}}/2}\end{subarray}}\frac{1}{1+|t-\gamma|}+P^{-\alpha}\log X
Pα(logP)logX,\displaystyle\ll P^{-\alpha}(\log P)\log X,

where the last line follows from the fact that there are logX\ll\log X zeros in each interval of length 11 (counted with multiplicity) and recalling that the sum over ρ\rho comes from the contribution of the residues in our contour integral. Upon substituting the last bound into (2.1), and integrating over α\alpha, we obtain the desired result. ∎

Remark 2.2.

The proof of Theorem 1.2 can easily be adapted to a more general setting. For an arbitrary multiplicative function ff, all we need is an analogue to Lemma 2.4. Essentially, we are looking for square-root cancellation in the corresponding sum over primes:

Pp2Pf(p)pitPϵ(Pp2P(f(p))2)12.\displaystyle\sum_{P\leq p\leq 2P}f(p)p^{it}\ll P^{\epsilon}\Big{(}\sum_{P\leq p\leq 2P}\big{(}f(p)\big{)}^{2}\Big{)}^{\frac{1}{2}}.

For example, the above estimate is known to hold, assuming RH, for coefficients of automorphic forms and for multiplicative functions of the form μ(n)λπ(n)\mu(n)\lambda_{\pi}(n) or λπ(n)\lambda_{\pi}(n), where μ\mu is the Möbius function and where the λπ(n)\lambda_{\pi}(n)’s are the coefficients of an automorphic representation π\pi.

3. Initial Reductions

In this section, we reduce our problem to that of bounding the mean square of a Dirichlet polynomial. We begin with the following standard lemma, which essentially follows from Perron’s Formula (together with a few other tricks):

Lemma 3.1 (Plancherel).

For 1hX,1\leq h\leq X,

1XX2X|1hxnx+hλ(n)|2dx\displaystyle\frac{1}{X}\int_{X}^{2X}\Big{|}\frac{1}{h}\sum_{x\leq n\leq x+h}\lambda(n)\Big{|}^{2}\mathrm{d}x 1X0X/h|Xn4Xλ(n)n12+it|2dt+maxT>X/h1hTT2T|Xn4Xλ(n)n12+it|2dt.\displaystyle\ll\frac{1}{X}\int_{0}^{X/h}\Big{|}\sum_{X\leq n\leq 4X}\frac{\lambda(n)}{n^{\frac{1}{2}+it}}\Big{|}^{2}\mathrm{d}t+\max_{T>X/h}\frac{1}{hT}\int_{T}^{2T}\Big{|}\sum_{X\leq n\leq 4X}\frac{\lambda(n)}{n^{\frac{1}{2}+it}}\Big{|}^{2}\mathrm{d}t.
Proof.

See [MR16, Lemma 14] (equivalently, [MR15, Lemma 4]). ∎

Using Lemma 2.3, we can remove the contribution from the small values of tt in the RHS of Lemma 3.1: for any ϵ>0\epsilon>0,

1X0X12|Xn4Xλ(n)n12+it|2dtϵXϵ12,\displaystyle\frac{1}{X}\int_{0}^{X^{\frac{1}{2}}}\Big{|}\sum_{X\leq n\leq 4X}\frac{\lambda(n)}{n^{\frac{1}{2}+it}}\Big{|}^{2}\mathrm{d}t\ll_{\epsilon}X^{\epsilon-\frac{1}{2}},

which follows by bounding the integrand pointwise. Thus, Theorem 1.2 follows from Lemma 3.1 once we show that

(3.1) 1hTX12T|Xn4Xλ(n)n12+it|2dt(logX)6h,\displaystyle\frac{1}{hT}\int_{X^{\frac{1}{2}}}^{T}\Big{|}\sum_{X\leq n\leq 4X}\frac{\lambda(n)}{n^{\frac{1}{2}+it}}\Big{|}^{2}\mathrm{d}t\ll\frac{(\log X)^{6}}{h},

for TX/hT\geq X/h, where we have assumed, w.l.o.g., that hX12h\leq X^{\frac{1}{2}} (this is done to avoid the degenerate case when T=X/hX1/2T=X/h\leq X^{1/2}).

For T>XT>X, the Mean Value Theorem (Lemma 2.2) immediately gives the desired bound:

1hTX12T|Xn4Xλ(n)n12+it|2dt1hT(T+X)Xn4X1n1h.\displaystyle\frac{1}{hT}\int_{X^{\frac{1}{2}}}^{T}\Big{|}\sum_{X\leq n\leq 4X}\frac{\lambda(n)}{n^{\frac{1}{2}+it}}\Big{|}^{2}\mathrm{d}t\ll\frac{1}{hT}(T+X)\sum_{X\leq n\leq 4X}\frac{1}{n}\ll\frac{1}{h}.

It remains to prove that (3.1) holds for X/hTXX/h\leq T\leq X. Our main tool is still the Mean Value Theorem, but this is only winning if we can shorten the length our sum: we should think of TX/hT\approx X/h and recall that the MVT is best possible if the length of the corresponding Dirichlet polynomial is of size NTN\approx T; see Remark 2.1. Since our Dirichlet polynomial has length XX, our goal is to split the sum over Xn4XX\leq n\leq 4X into two sums, one of which has length X/h\approx X/h and another which can be handled separately. This is done by considering the integers Xn4XX\leq n\leq 4X which have a prime factor p>hp>h: by writing such integers as n=pmn=pm, and then factoring out the sum over pp, the sum over mX/pm\approx X/p that remains has length X/h\ll X/h; using the MVT on the sum over mm is now winning. In Section 5, we deal with the remaining integers, all of whose primes factors are h\leq h. Fortunately for us, there are few of these so-called hh-smooth integers, at least for small hh, so that the MVT can be applied directly to give us what we want. Getting square-root cancellation for larger hh will require some new ideas; this is ongoing work.

4. Integers with large prime factors

For the integers Xn4XX\leq n\leq 4X which have at least one prime factor p>hp>h, we have the following:

Proposition 4.1.

Assume RH. If X/hTXX/h\leq T\leq X, then

1hTX12T|Xn4Xp>h:p|nλ(n)n12+it|2dt(logX)6h.\displaystyle\frac{1}{hT}\int_{X^{\frac{1}{2}}}^{T}\Big{|}\sum_{\begin{subarray}{c}{X\leq n\leq 4X}\\ {\exists p>h:p|n}\end{subarray}}\frac{\lambda(n)}{n^{\frac{1}{2}+it}}\Big{|}^{2}\mathrm{d}t\ll\frac{(\log X)^{6}}{h}.
Proof.

Note that

Xn4Xp|n:p>hλ(n)n12+it\displaystyle\sum_{\begin{subarray}{c}{X\leq n\leq 4X}\\ {\exists p|n:p>h}\end{subarray}}\frac{\lambda(n)}{n^{\frac{1}{2}+it}} =h<p4Xλ(p)p12+itX/pm4X/p1m12+itλ(m)#{q prime:q>h,q|m}+𝟙pm,\displaystyle=\sum_{h<p\leq 4X}\frac{\lambda(p)}{p^{\frac{1}{2}+it}}\sum_{X/p\leq m\leq 4X/p}\frac{1}{m^{\frac{1}{2}+it}}\frac{\lambda(m)}{\#\{\text{$q$ prime}:q>h,q|m\}+\operatorname{\mathds{1}}_{p\nmid m}},

where #{q prime:q>h,q|m}+𝟙pm\#\{\text{$q$ prime}:q>h,q|m\}+\operatorname{\mathds{1}}_{p\nmid m} counts333In the published version of [MR16], the term 𝟙pm\operatorname{\mathds{1}}_{p\nmid m} appears as the constant 11, but this was corrected in later versions of their paper. In any case, we will see that this misprint does not affect their argument. the number of ways Xn4XX\leq n\leq 4X can be factored as n=mpn=mp with p>hp>h. As Matomäki and Radziwiłł remark in [MR16], this decomposition is analogous to Buchstab’s identity, which is a variant of Ramaré’s identity; see Section 17.3 of [FI10].

Our goal now is to remove the dependence on 𝟙pm,\operatorname{\mathds{1}}_{p\nmid m}, which is done by splitting the inner sum into those mm for which pmp\nmid m and p|mp|m, respectively:

h<p4Xλ(p)p12+itX/pm4X/pλ(m)m12+it1#{q>h:q|m}+𝟙pm\displaystyle\sum_{h<p\leq 4X}\frac{\lambda(p)}{p^{\frac{1}{2}+it}}\sum_{X/p\leq m\leq 4X/p}\frac{\lambda(m)}{m^{\frac{1}{2}+it}}\frac{1}{\#\{q>h:q|m\}+\operatorname{\mathds{1}}_{p\nmid m}}
=h<p4Xλ(p)p12+itX/pm4X/ppm1m12+itλ(m)#{q>h:q|m}+1+h<p4Xλ(p)p12+itX/pm4X/pp|m1m12+itλ(m)#{q>h:q|m},\displaystyle\qquad\qquad=\sum_{h<p\leq 4X}\frac{\lambda(p)}{p^{\frac{1}{2}+it}}\sum_{\begin{subarray}{c}{X/p\leq m\leq 4X/p}\\ {p\nmid m}\end{subarray}}\frac{1}{m^{\frac{1}{2}+it}}\frac{\lambda(m)}{\#\{q>h:q|m\}+1}+\sum_{h<p\leq 4X}\frac{\lambda(p)}{p^{\frac{1}{2}+it}}\sum_{\begin{subarray}{c}{X/p\leq m\leq 4X/p}\\ {p|m}\end{subarray}}\frac{1}{m^{\frac{1}{2}+it}}\frac{\lambda(m)}{\#\{q>h:q|m\}},

with qq varying over the set of primes. This can be simplified further by adding and subtracting all mm for which p|mp|m to the first term and setting

am:=λ(m)#{q>h:q|m}+1,bm:=λ(m)#{q>h:q|m}(#{q>h:q|m}+1),\displaystyle a_{m}:=\frac{-\lambda(m)}{\#\{q>h:q|m\}+1},\;b_{m}:=\frac{-\lambda(m)}{\#\{q>h:q|m\}(\#\{q>h:q|m\}+1)},

which yields

h<p4X1p12+it\displaystyle\sum_{h<p\leq 4X}\frac{-1}{p^{\frac{1}{2}+it}} X/pm4X/pλ(m)m12+it1#{q>h:q|m}+𝟙pm\displaystyle\sum_{X/p\leq m\leq 4X/p}\frac{\lambda(m)}{m^{\frac{1}{2}+it}}\frac{1}{\#\{q>h:q|m\}+\operatorname{\mathds{1}}_{p\nmid m}}
=h<p4X1p12+itX/pm4X/pamm12+it+h<p4X1p12+itX/pm4X/pp|mbmm12+it\displaystyle\qquad\qquad=\sum_{h<p\leq 4X}\frac{1}{p^{\frac{1}{2}+it}}\sum_{X/p\leq m\leq 4X/p}\frac{a_{m}}{m^{\frac{1}{2}+it}}+\sum_{h<p\leq 4X}\frac{1}{p^{\frac{1}{2}+it}}\sum_{\begin{subarray}{c}{X/p\leq m\leq 4X/p}\\ {p|m}\end{subarray}}\frac{b_{m}}{m^{\frac{1}{2}+it}}
=h<p4X1p12+itX/pm4X/pamm12+it+h<p4X1p1+2itX/p2m4X/p2bmpm12+it,\displaystyle\qquad\qquad=\sum_{h<p\leq 4X}\frac{1}{p^{\frac{1}{2}+it}}\sum_{X/p\leq m\leq 4X/p}\frac{a_{m}}{m^{\frac{1}{2}+it}}+\sum_{h<p\leq 4X}\frac{1}{p^{1+2it}}\sum_{X/p^{2}\leq m\leq 4X/p^{2}}\frac{b_{mp}}{m^{\frac{1}{2}+it}},

and where the last line follows by writing m=mpm=mp in the second double sum. Thus,

1hTX12T|Xn4Xp|n:p>hλ(n)n12+it|2dt\displaystyle\frac{1}{hT}\int_{X^{\frac{1}{2}}}^{T}\Big{|}\sum_{\begin{subarray}{c}{X\leq n\leq 4X}\\ {\exists p|n:p>h}\end{subarray}}\frac{\lambda(n)}{n^{\frac{1}{2}+it}}\Big{|}^{2}\mathrm{d}t 1hTX12T|h<p4X1p12+itX/pm4X/pamm12+it|2dt\displaystyle\ll\frac{1}{hT}\int_{X^{\frac{1}{2}}}^{T}\Big{|}\sum_{h<p\leq 4X}\frac{1}{p^{\frac{1}{2}+it}}\sum_{X/p\leq m\leq 4X/p}\frac{a_{m}}{m^{\frac{1}{2}+it}}\Big{|}^{2}\mathrm{d}t
+1hTX12T|h<p4X1p1+2itX/p2m4X/p2bmpm12+it|2dt.\displaystyle\qquad\qquad+\frac{1}{hT}\int_{X^{\frac{1}{2}}}^{T}\Big{|}\sum_{h<p\leq 4X}\frac{1}{p^{1+2it}}\sum_{X/p^{2}\leq m\leq 4X/p^{2}}\frac{b_{mp}}{m^{\frac{1}{2}+it}}\Big{|}^{2}\mathrm{d}t.

Applying the Mean Value Theorem (Lemma 2.2) to the second integral, we see that

1hTX12T|\displaystyle\frac{1}{hT}\int_{X^{\frac{1}{2}}}^{T}\Big{|} h<p<4X1p1+2itX/p2m4X/p2bmpm12+it|2dt\displaystyle\sum_{h<p<4X}\frac{1}{p^{1+2it}}\sum_{X/p^{2}\leq m\leq 4X/p^{2}}\frac{b_{mp}}{m^{\frac{1}{2}+it}}\Big{|}^{2}\mathrm{d}t
1hT(T+X)h<p<4X1p2X/p2m4X/p21m1h,\displaystyle\qquad\qquad\ll\frac{1}{hT}(T+X)\sum_{h<p<4X}\frac{1}{p^{2}}\sum_{X/p^{2}\leq m\leq 4X/p^{2}}\frac{1}{m}\ll\frac{1}{h},

recalling that X/hTXX/h\leq T\leq X.

For the remaining integral, we wish to separate the variables pp and mm, so that we may apply a pointwise bound to the sum over pp. We begin by splitting the sum over pp into dyadic intervals:

1hTX12T|h<p4X\displaystyle\frac{1}{hT}\int_{X^{\frac{1}{2}}}^{T}\Big{|}\sum_{h<p\leq 4X} 1p12+itX/pm4X/pamm12+it|2dt\displaystyle\frac{1}{p^{\frac{1}{2}+it}}\sum_{X/p\leq m\leq 4X/p}\frac{a_{m}}{m^{\frac{1}{2}+it}}\Big{|}^{2}\mathrm{d}t
=1hTX12T|j=log2hlog24X12j<p2j+11p12+itX/2j+1mX/2j1X/pm4X/pamm12+it|2dt\displaystyle=\frac{1}{hT}\int_{X^{\frac{1}{2}}}^{T}\Big{|}\sum_{j=\lfloor\log_{2}h\rfloor}^{\lfloor\log_{2}4X\rfloor-1}\sum_{2^{j}<p\leq 2^{j+1}}\frac{1}{p^{\frac{1}{2}+it}}\sum_{\begin{subarray}{c}{X/2^{j+1}\leq m\leq X/2^{j-1}}\\ {X/p\leq m\leq 4X/p}\end{subarray}}\frac{a_{m}}{m^{\frac{1}{2}+it}}\Big{|}^{2}\mathrm{d}t
(logX)2hTmaxlog2hjlog2(4X)X12T|2j<p2j+11p12+itX/2j+1mX/2j1X/pm4X/pamm12+it|2dt,\displaystyle\ll\frac{(\log X)^{2}}{hT}\max_{\log_{2}h\leq j\leq\log_{2}(4X)}\int_{X^{\frac{1}{2}}}^{T}\Big{|}\sum_{2^{j}<p\leq 2^{j+1}}\frac{1}{p^{\frac{1}{2}+it}}\sum_{\begin{subarray}{c}{X/2^{j+1}\leq m\leq X/2^{j-1}}\\ {X/p\leq m\leq 4X/p}\end{subarray}}\frac{a_{m}}{m^{\frac{1}{2}+it}}\Big{|}^{2}\mathrm{d}t,

where log2\log_{2} denotes the base 22 logarithm function and where the last line follows by taking the absolute value inside the sum over jj, noting that there are logX/hlogX\ll\log X/h\leq\log X such dyadic intervals.

Using Lemma 2.1 with κ=1/logX\kappa=1/\log X, we can remove the condition that Xmp4XX\leq mp\leq 4X:

𝟙Xmp4X=12πiκiYκ+iY(4X)sXs(mp)sdss+𝒪(1/(mp)κmax{1,Y|logX/mp|}),\displaystyle\operatorname{\mathds{1}}_{X\leq mp\leq 4X}=\frac{1}{2\pi i}\int_{\kappa-iY}^{\kappa+iY}\frac{(4X)^{s}-X^{s}}{(mp)^{s}}\frac{\mathrm{d}s}{s}+\mathcal{O}\Big{(}\frac{1/(mp)^{\kappa}}{\max\{1,Y|\log X/mp|\}}\Big{)},

which yields:

1hTX12T|\displaystyle\frac{1}{hT}\int_{X^{\frac{1}{2}}}^{T}\Big{|} h<p4X1p12+itX/pm4X/pamm12+it|2dt\displaystyle\sum_{h<p\leq 4X}\frac{1}{p^{\frac{1}{2}+it}}\sum_{X/p\leq m\leq 4X/p}\frac{a_{m}}{m^{\frac{1}{2}+it}}\Big{|}^{2}\mathrm{d}t
(logX)2hTX12T|κiYκ+iY(4X)sXss2j<p2j+11ps+12+itX/2j+1mX/2j1amms+12+itds|2dt\displaystyle\qquad\qquad\ll\frac{(\log X)^{2}}{hT}\int_{X^{\frac{1}{2}}}^{T}\Big{|}\int_{\kappa-iY}^{\kappa+iY}\frac{(4X)^{s}-X^{s}}{s}\sum_{2^{j}<p\leq 2^{j+1}}\frac{1}{p^{s+\frac{1}{2}+it}}\sum_{X/2^{j+1}\leq m\leq X/2^{j-1}}\frac{a_{m}}{m^{s+\frac{1}{2}+it}}\mathrm{d}s\Big{|}^{2}\mathrm{d}t
+(logX)2h(X12logXY)2,\displaystyle\qquad\qquad\qquad\qquad+\frac{(\log X)^{2}}{h}\Big{(}\frac{X^{\frac{1}{2}}\log X}{Y}\Big{)}^{2},

for some log2hjlog2(4X){\log_{2}h\leq j\leq\log_{2}(4X)}

We can now use Minkowski’s Inequality for integrals (see Section A.1 of [Ste70]) to change the order of integration:

X12T|κiYκ+iY(4X)sXss2j<p2j+11ps+12+itX/2j+1mX/2j1amms+12+itds|2dt\displaystyle\int_{X^{\frac{1}{2}}}^{T}\Big{|}\int_{\kappa-iY}^{\kappa+iY}\frac{(4X)^{s}-X^{s}}{s}\sum_{2^{j}<p\leq 2^{j+1}}\frac{1}{p^{s+\frac{1}{2}+it}}\sum_{X/2^{j+1}\leq m\leq X/2^{j-1}}\frac{a_{m}}{m^{s+\frac{1}{2}+it}}\mathrm{d}s\Big{|}^{2}\mathrm{d}t
(κiYκ+iY(X12T|(4X)sXss2j<p2j+11ps+12+itX/2j+1mX/2j1amms+12+it|2dt)12ds)2.\displaystyle\qquad\qquad\ll\Biggr{(}\int_{\kappa-iY}^{\kappa+iY}\Biggr{(}\int_{X^{\frac{1}{2}}}^{T}\Big{|}\frac{(4X)^{s}-X^{s}}{s}\sum_{2^{j}<p\leq 2^{j+1}}\frac{1}{p^{s+\frac{1}{2}+it}}\sum_{X/2^{j+1}\leq m\leq X/2^{j-1}}\frac{a_{m}}{m^{s+\frac{1}{2}+it}}\Big{|}^{2}\mathrm{d}t\Biggr{)}^{\frac{1}{2}}\mathrm{d}s\Biggr{)}^{2}.

Then, by taking Y=X12/2Y=X^{\frac{1}{2}}/2, we can apply Lemma 2.4 to bound the sum over pp; this yields the upper bound

(logX)2(κiYκ+iY1|s|(X12T|X/2j+1mX/2j1amms+12+it|2dt)12ds)2\displaystyle\ll(\log X)^{2}\Biggr{(}\int_{\kappa-iY}^{\kappa+iY}\frac{1}{|s|}\Biggr{(}\int_{X^{\frac{1}{2}}}^{T}\Big{|}\sum_{X/2^{j+1}\leq m\leq X/2^{j-1}}\frac{a_{m}}{m^{s+\frac{1}{2}+it}}\Big{|}^{2}\mathrm{d}t\Biggr{)}^{\frac{1}{2}}\mathrm{d}s\Biggr{)}^{2}
(logX)4(T+X/h)X/2j+1mX/2j11m\displaystyle\ll(\log X)^{4}(T+X/h)\sum_{X/2^{j+1}\leq m\leq X/2^{j-1}}\frac{1}{m}
(logX)4(T+X/h),\displaystyle\ll(\log X)^{4}(T+X/h),

where the second to last line follows from the Mean Value Theorem, recalling that jlogh/log2j\geq\log h/\log 2, and where the additional powers of logX\log X come from the bound

κiYκ+iY1|s|dslogX,\displaystyle\int_{\kappa-iY}^{\kappa+iY}\frac{1}{|s|}\mathrm{d}s\ll\log X,

recalling that κ=1/logX\kappa=1/\log X and Y=X12/2.Y=X^{\frac{1}{2}}/2.

Therefore,

1hTX12T|Xn4Xp>h:p|nλ(n)n12+it|2dt\displaystyle\frac{1}{hT}\int_{X^{\frac{1}{2}}}^{T}\Big{|}\sum_{\begin{subarray}{c}{X\leq n\leq 4X}\\ {\exists p>h:p|n}\end{subarray}}\frac{\lambda(n)}{n^{\frac{1}{2}+it}}\Big{|}^{2}\mathrm{d}t (logX)6h,\displaystyle\ll\frac{(\log X)^{6}}{h},

provided that X/hTXX/h\leq T\leq X, which is the desired result. ∎

Remark 4.1.

In the proof of Proposition 4.1, we used a contour integral to separate the variables pp and mm, which lost two factors of logX\log X. As the referee remarked, introducing a smoothing at the beginning of our argument makes the separation of variables loss-less: after Lemma 3.1 (Plancherel), we are working with smooth sums and we can use the rapid decay of the Mellin Transform to ensure that the integral of 1/|s|1/|s|, which produced the original factors of logX\log X, converges. This would yield the upper bound Xh(logX)4\ll Xh(\log X)^{4} in Theorem 1.2. If we truly wish to be pedantic, our current methods yield the upper bound Xh((logX)(logX/h))2,\ll Xh((\log X)(\log X/h))^{2}, where the logX\log X factors come from the bound on the sum over primes (Lemma 2.4) and where the logX/h\log X/h factors come from splitting the sum over primes h<p4Xh<p\leq 4X into dyadic intervals.

To complete the proof of Theorem 1.2, it remains to consider the hh-smooth integers. The next section is dedicated to this task.

5. Smooth integers

For the integers Xn4XX\leq n\leq 4X all of whose prime factors are h\leq h, our goal is to obtain the following estimate:

1hTX12T|Xn4Xp|nphλ(n)n12+it|2dt1h,\displaystyle\frac{1}{hT}\int_{X^{\frac{1}{2}}}^{T}\Big{|}\sum_{\begin{subarray}{c}{X\leq n\leq 4X}\\ {p|n\Rightarrow p\leq h}\end{subarray}}\frac{\lambda(n)}{n^{\frac{1}{2}+it}}\Big{|}^{2}\mathrm{d}t\ll\frac{1}{h},

for X/hTXX/h\leq T\leq X and hh as large as possible. This will be accomplished using the MVT (Lemma 2.2), together with some standard results concerning smooth numbers.

To begin, fix ϵ>0\epsilon>0 and let Ψ(x,y)\Psi(x,y) denote the number of yy-smooth integers up to xx. By writing x=yux=y^{u}, we have that

Ψ(x,y)=xu(1+o(1)),\Psi(x,y)=xu^{-(1+o(1))},

uniformly in the range uy1ϵu\leq y^{1-\epsilon}, as both yy and uu tend to infinity; see Corollary 1.3 [HT93], for example. In particular,

Ψ(x,y)xy,\Psi(x,y)\ll\frac{x}{y},

provided yexp((12o(1))logxloglogx)y\leq\exp\left(\sqrt{\left(\frac{1}{2}-o(1)\right)\log x\log\log x}\right). Using the above, together with the MVT, we then have that

1hTX12T|Xn4Xp|nphλ(n)n12+it|2dt\displaystyle\frac{1}{hT}\int_{X^{\frac{1}{2}}}^{T}\Big{|}\sum_{\begin{subarray}{c}{X\leq n\leq 4X}\\ {p|n\Rightarrow p\leq h}\end{subarray}}\frac{\lambda(n)}{n^{\frac{1}{2}+it}}\Big{|}^{2}\mathrm{d}t 1hT(T+X)Xn4Xp|nph1n\displaystyle\ll\frac{1}{hT}(T+X)\sum_{\begin{subarray}{c}{X\leq n\leq 4X}\\ {p|n\Rightarrow p\leq h}\end{subarray}}\frac{1}{n}
1hT(T+X)Ψ(4X,h)X\displaystyle\ll\frac{1}{hT}(T+X)\frac{\Psi(4X,h)}{X}
1h,\displaystyle\ll\frac{1}{h},

for hexp((12o(1))logXloglogX)h\leq\exp\left(\sqrt{\left(\frac{1}{2}-o(1)\right)\log X\log\log X}\right), recalling that X/hTXX/h\leq T\leq X. In other words,

Proposition 5.1.

Suppose h=h(X)h=h(X)\rightarrow\infty as XX\rightarrow\infty, then

1hTX12T|Xn4Xp|nphλ(n)n12+it|2dt1h,\displaystyle\frac{1}{hT}\int_{X^{\frac{1}{2}}}^{T}\Big{|}\sum_{\begin{subarray}{c}{X\leq n\leq 4X}\\ {p|n\Rightarrow p\leq h}\end{subarray}}\frac{\lambda(n)}{n^{\frac{1}{2}+it}}\Big{|}^{2}\mathrm{d}t\ll\frac{1}{h},

provided hexp((12o(1))logXloglogX)h\leq\exp\left(\sqrt{\left(\frac{1}{2}-o(1)\right)\log X\log\log X}\right).

Combining Propositions 4.1 and 5.1 yields (3.1), which, together with the initial reductions from Section 3, yields Theorem 1.2.

6. Acknowledgements

The author would like to thank Maksym Radziwiłł for suggesting this problem and for his continuous support throughout the research phase of this paper, Andrew Granville for simplifying the argument originally presented in Section 5, and the anonymous referee for carefully reviewing this manuscript and whose comments have not only improved the overall exposition of this paper, but which have also strengthened the main theorem. In addition to this, the author thanks Renaud Alie, Alison Inglis, Oleksiy Klurman, Jiajun Mai, Sacha Mangerel, Kaisa Matomäki, Andrei Shubin, Joni Teräväinen, and Peter Zenz for many helpful discussions and comments. Finally, some of this work was conducted while the author was visiting CalTech; he is grateful for their hospitality.

References

  • [FI10] John Friedlander and Henryk Iwaniec. Opera de cribro, volume 57 of American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI, 2010.
  • [HT93] Adolf Hildebrand and Gérald Tenenbaum. Integers without large prime factors. Journal de Théorie des Nombres de Bordeaux, 5(2):197–211, 1993.
  • [IK04] Henryk Iwaniec and Emmanuel Kowalski. Analytic number theory, volume 53 of American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI, 2004.
  • [MM09] Helmut Maier and Hugh L. Montgomery. The sum of the Möbius function. Bulletin of the London Mathematical Society, 41(2):213–226, 2009.
  • [Mot76] Yoichi Motohashi. On the sum of the Möbius function in a short segment. Proc. Japan Acad., 52(9):477–479, 1976.
  • [MR15] Kaisa Matomäki and Maksym Radziwiłł. A note on the Liouville function in short intervals. arXiv e-prints, page arXiv:1502.02374, 2015.
  • [MR16] Kaisa Matomäki and Maksym Radziwiłł. Multiplicative functions in short intervals. Annals of Mathematics, 183(3):1015–1056, 2016.
  • [MT19] Kaisa Matomäki and Joni Teräväinen. On the Möbius function in all short intervals. arXiv e-prints, page arXiv:1911.09076, 2019.
  • [MV06] Hugh L. Montgomery and Robert C. Vaughan. Multiplicative Number Theory I: Classical Theory. Cambridge Studies in Advanced Mathematics. Cambridge University Press, 2006.
  • [Ram76] Kanakanahalli Ramachandra. Some problems of analytic number theory. Acta Arithmetica, 31(4):313–324, 1976.
  • [Sel43] Atle Selberg. On the normal density of primes in small intervals, and the difference between consecutive primes. Arch. Math. Naturvid., 47(6):87–105, 1943.
  • [Sou09] Kannan Soundararajan. Partial sums of the Möbius function. Journal Fur Die Reine Und Angewandte Mathematik - J REINE ANGEW MATH, 2009:141–152, 06 2009.
  • [Sou16] Kannan Soundararajan. The Liouville function in short intervals [after Matomäki and Radziwiłł]. arXiv e-prints, page arXiv:1606.08021, 2016.
  • [Ste70] Elias M. Stein. Singular Integrals and Differentiability Properties of Functions (PMS-30). Princeton University Press, 1970.
  • [Ten15] Gérald Tenenbaum. Introduction to analytic and probabilistic number theory, volume 163 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2015.
  • [THB86] Edward C. Titchmarsh and David R. Heath-Brown. The theory of the Riemann zeta-function. Clarendon Press, Oxford, 1986.

Department of Mathematics and Statistics, McGill University, 805 Sherbrooke St. W., Montreal, QC H3A 2K6, Canada

Email address: \hrefmailto:[email protected][email protected]