This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

On the linear stability of polytropic fluid spheres in R2R^{2} gravity

Vladimir Dzhunushaliev [email protected] Department of Theoretical and Nuclear Physics, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan Institute of Experimental and Theoretical Physics, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan Academician J. Jeenbaev Institute of Physics of the NAS of the Kyrgyz Republic, 265 a, Chui Street, Bishkek 720071, Kyrgyzstan    Vladimir Folomeev [email protected] Institute of Experimental and Theoretical Physics, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan Academician J. Jeenbaev Institute of Physics of the NAS of the Kyrgyz Republic, 265 a, Chui Street, Bishkek 720071, Kyrgyzstan International Laboratory for Theoretical Cosmology, Tomsk State University of Control Systems and Radioelectronics (TUSUR), Tomsk 634050, Russia
Abstract

Within R2R^{2} gravity, we study the linear stability of strongly gravitating spherically symmetric configurations supported by a polytropic fluid. All calculations are carried out in the Jordan frame. It is demonstrated that, as in general relativity, the transition from stable to unstable systems occurs at the maximum of the curve mass-central density of the fluid.

modified gravity, polytropic fluid, linear stability
pacs:
04.50.Kd, 04.40.Dg, 04.40.–b

I Introduction

Einstein’s general relativity (GR) is a generally recognized theory of gravitation that is successfully applied on different spatial and time scales. In particular, it is used to model processes which took place in the early Universe. It is, however, obvious that to describe the very early stages of the evolution of the Universe, it is already needed to take into account quantum effects. To do this, it is necessary to have a full theory of quantum gravity, which is absent at present. For this reason, starting from 1960’s, it was being suggested to use some effective description of quantum effects in strong gravitational fields by a change of the classical Einstein gravitational Lagrangian R\sim R by various modified Lagrangians containing different curvature invariants. In the simplest case this can be some function f(R)f(R) of the scalar curvature RR. Such modified gravity theories (MGTs) have been widely applied to model various cosmological aspects of the early and present Universe (for a general review on the subject, see, e.g., Refs. Nojiri:2010wj ; Nojiri:2017ncd ).

On the other hand, in considering processes and objects on relatively small scales comparable to sizes of galaxies and even of stars, the effects of modification of gravity can also play a significant role. For example, within f(R)f(R) gravity, there have been constructed models of relativistic stars rel_star_f_R_1 ; rel_star_f_R_2 , wormholes wh_f_R_1 ; wh_f_R_2 , and neutron stars Cooney:2009rr ; Arapoglu:2010rz ; Orellana:2013gn ; Alavirad:2013paa ; Astashenok:2013vza ; Ganguly:2013taa . It was shown that the modification of gravity can affect, in particular, a number of important physical characteristics of neutron stars which may be verified observationally. One of the problems of interest is determining the mass-radius (or the mass-central density of matter) relations, which have been obtained, for example, in Refs. Astashenok:2014pua ; Astashenok:2014dja ; Capozziello:2015yza ; Bakirova:2016ffk ; Astashenok:2017dpo ; Folomeev:2018ioy ; Feola:2019zqg ; Astashenok:2020isy . It was shown there that, as in GR, in MGT, for some central density of neutron matter, the mass-central density curves possess maxima whose location depends on the physical properties of the specific matter. In GR, the presence of such a maximum indicates the fact that there is a transition from stable systems (located to the left of the maximum) to unstable configurations (located to the right of the maximum). This fact is established by studying the behavior of matter and metric perturbations using the variational approach Chandrasekhar:1964zz .

In MGTs, different types of perturbations have been repeatedly studied as well (see, e.g., Refs. Blazquez-Salcedo:2018pxo ; Blazquez-Salcedo:2020ibb and references therein). In considering these problems, a transition from f(R)f(R) gravity to a scalar-tensor theory is usually performed. Correspondingly, studies of the perturbations are carried out not in the Jordan frame but in the Einstein frame. However, the question of the physical equivalence between these two frames is still under discussion, and it cannot be regarded as completely solved Capozziello:2010sc ; Kamenshchik:2014waa ; Kamenshchik:2016gcy ; Bahamonde:2016wmz ; Ruf:2017xon . Here, the following potential difficulties may be noted: (i)  In performing the transition from f(R)f(R) gravity to a scalar-tensor theory, there may, in general, occur some undesirable consequences (singularities, fixed points, etc.); as a result, the equivalence between the frames can be violated. (ii) Objects that are stars in one frame may represent some other configurations in another. (iii) In constructing perturbation theory, the equivalence between the frames can be lost in view of the approximate nature of such a theory.

In this connection, it may be of some interest to study the stability directly in the Jordan frame, and this is the goal of the present paper. For the sake of simplicity, we will work within R2R^{2} gravity, where linear radial perturbations of a strongly gravitating system supported by a polytropic fluid will be investigated. For this purpose, in Sec. II, we first derive the general equations for f(R)f(R) gravity. Using these equations, in Sec. III, we numerically find static solutions describing equilibrium configurations, on the background of which the behavior of matter and spacetime perturbations is studied in Sec. IV.

II General equations

We consider modified gravity with the action [the metric signature is (+,,,)(+,-,-,-)]

S=c316πGd4xgf(R)+Sm,S=-\frac{c^{3}}{16\pi G}\int d^{4}x\sqrt{-g}f(R)+S_{m}, (1)

where GG is the Newtonian gravitational constant, f(R)f(R) is an arbitrary nonlinear function of RR, and SmS_{m} denotes the action of matter.

For our purposes, we represent the function f(R)f(R) in the form

f(R)=R+αh(R),f(R)=R+\alpha h(R), (2)

where h(R)h(R) is a new arbitrary function of RR and α\alpha is an arbitrary constant. When α=0\alpha=0, one recovers Einstein’s general relativity. The corresponding field equations can be derived by varying action (1) with respect to the metric, yielding

(1+αhR)Gik12α(hRhR)δik+α(δikgmnδimgkn)(hR);m;n=8πGc4Tik.\left(1+\alpha h_{R}\right)G_{i}^{k}-\frac{1}{2}\alpha\left(h-R\,h_{R}\right)\delta_{i}^{k}+\alpha\left(\delta_{i}^{k}g^{mn}-\delta_{i}^{m}g^{kn}\right)\left(h_{R}\right)_{;m;n}=\frac{8\pi G}{c^{4}}T_{i}^{k}. (3)

Here GikRik12δikRG_{i}^{k}\equiv R_{i}^{k}-\frac{1}{2}\delta_{i}^{k}R is the Einstein tensor, hRdh/dRh_{R}\equiv dh/dR, and the semicolon denotes the covariant derivative.

To obtain the modified Einstein equations and the equation for the fluid, we choose the spherically symmetric metric in the form

ds2=eν(dx0)2eλdr2r2(dΘ2+sin2Θdϕ2),ds^{2}=e^{\nu}(dx^{0})^{2}-e^{\lambda}dr^{2}-r^{2}\left(d\Theta^{2}+\sin^{2}\Theta\,d\phi^{2}\right), (4)

where ν\nu and λ\lambda are in general functions of r,x0r,x^{0}, and x0=ctx^{0}=c\,t is the time coordinate.

As a matter source in the field equations, we take an isotropic fluid with the energy-momentum tensor

Tik=(ε+p)ukuiδikp,T_{i}^{k}=\left(\varepsilon+p\right)u^{k}u_{i}-\delta_{i}^{k}p, (5)

where ε\varepsilon is the fluid energy density and pp is the pressure.

The trace of Eq. (3) yields the equation for the scalar curvature

R+α[hRR2h+3(hR);i;i]=8πGc4T,-R+\alpha\left[h_{R}R-2h+3\left(h_{R}\right)^{;i}_{;i}\right]=\frac{8\pi G}{c^{4}}T, (6)

where TT is the trace of the energy-momentum tensor (5).

Using Eqs. (4) and (5), the (tt)(^{t}_{t}), (rr)(^{r}_{r}), (θθ)(^{\theta}_{\theta}), and (tr)(^{r}_{t}) components of Eq. (3) can be written as

(1+αhR)[eλ(1r2λr)+1r2]α2{hhRR+eλ[2hR′′(λ4r)hR]eνh˙Rλ˙}=8πGc4ε,\displaystyle\left(1+\alpha h_{R}\right)\left[-e^{-\lambda}\left(\frac{1}{r^{2}}-\frac{\lambda^{\prime}}{r}\right)+\frac{1}{r^{2}}\right]-\frac{\alpha}{2}\left\{h-h_{R}R+e^{-\lambda}\left[2h_{R}^{\prime\prime}-\left(\lambda^{\prime}-\frac{4}{r}\right)h_{R}^{\prime}\right]-e^{-\nu}\dot{h}_{R}\dot{\lambda}\right\}=\frac{8\pi G}{c^{4}}\varepsilon, (7)
(1+αhR)[eλ(1r2+νr)+1r2]α2[hhRReν(2h¨Rh˙Rν˙)+eλ(ν+4r)hR]=8πGc4p,\displaystyle\left(1+\alpha h_{R}\right)\left[-e^{-\lambda}\left(\frac{1}{r^{2}}+\frac{\nu^{\prime}}{r}\right)+\frac{1}{r^{2}}\right]-\frac{\alpha}{2}\left[h-h_{R}R-e^{-\nu}\left(2\ddot{h}_{R}-\dot{h}_{R}\dot{\nu}\right)+e^{-\lambda}\left(\nu^{\prime}+\frac{4}{r}\right)h_{R}^{\prime}\right]=-\frac{8\pi G}{c^{4}}p, (10)
(1+αhR){eλ2[1r(λν)+12λν12ν2ν′′]+eν2(λ¨+12λ˙212λ˙ν˙)}\displaystyle\left(1+\alpha h_{R}\right)\left\{\frac{e^{-\lambda}}{2}\left[\frac{1}{r}\left(\lambda^{\prime}-\nu^{\prime}\right)+\frac{1}{2}\lambda^{\prime}\nu^{\prime}-\frac{1}{2}\nu^{\prime 2}-\nu^{\prime\prime}\right]+\frac{e^{-\nu}}{2}\left(\ddot{\lambda}+\frac{1}{2}\dot{\lambda}^{2}-\frac{1}{2}\dot{\lambda}\dot{\nu}\right)\right\}
α2{hhRR+eλ[2hR′′(λν2r)hR]eν[2h¨R+(λ˙ν˙)h˙R]}=8πGc4p,\displaystyle-\frac{\alpha}{2}\left\{h-h_{R}R+e^{-\lambda}\left[2h_{R}^{\prime\prime}-\left(\lambda^{\prime}-\nu^{\prime}-\frac{2}{r}\right)h_{R}^{\prime}\right]-e^{-\nu}\left[2\ddot{h}_{R}+\left(\dot{\lambda}-\dot{\nu}\right)\dot{h}_{R}\right]\right\}=-\frac{8\pi G}{c^{4}}p,
(1+αhR)eλrλ˙αeλ[12(λ˙hR+νh˙R)h˙R]=8πGc4(ε+p)u0u1,\displaystyle-\left(1+\alpha h_{R}\right)\frac{e^{-\lambda}}{r}\dot{\lambda}-\alpha e^{-\lambda}\left[\frac{1}{2}\left(\dot{\lambda}h_{R}^{\prime}+\nu^{\prime}\dot{h}_{R}\right)-\dot{h}_{R}^{\prime}\right]=\frac{8\pi G}{c^{4}}\left(\varepsilon+p\right)u_{0}u^{1},

where the dot and prime denote differentiation with respect to x0x^{0} and rr, respectively. In turn, Eq. (6) yields

R+α{2h+hRR+32[eν{2h¨R+(λ˙ν˙)h˙R}eλ{2hR′′(λν4r)hR}]}=8πGc4(ε3p).-R+\alpha\left\{-2h+h_{R}R+\frac{3}{2}\left[e^{-\nu}\left\{2\ddot{h}_{R}+\left(\dot{\lambda}-\dot{\nu}\right)\dot{h}_{R}\right\}-e^{-\lambda}\left\{2h_{R}^{\prime\prime}-\left(\lambda^{\prime}-\nu^{\prime}-\frac{4}{r}\right)h_{R}^{\prime}\right\}\right]\right\}=\frac{8\pi G}{c^{4}}\left(\varepsilon-3p\right). (11)

Finally, the i=ri=r component of the law of conservation of energy and momentum, Ti;kk=0T^{k}_{i;k}=0, gives

T10x0+T11r+12(ν˙+λ˙)T10+12(T11T00)ν+2r[T1112(T22+T33)]=0.\frac{\partial T^{0}_{1}}{\partial x^{0}}+\frac{\partial T^{1}_{1}}{\partial r}+\frac{1}{2}\left(\dot{\nu}+\dot{\lambda}\right)T^{0}_{1}+\frac{1}{2}\left(T_{1}^{1}-T_{0}^{0}\right)\nu^{\prime}+\frac{2}{r}\left[T_{1}^{1}-\frac{1}{2}\left(T^{2}_{2}+T^{3}_{3}\right)\right]=0. (12)

III Equilibrium configurations

III.1 Static equations

General equations derived in the previous section can be employed to construct static solutions describing equilibrium configurations. For this purpose, it is sufficient to set that all functions entering these equations depend on the radial coordinate rr only. Also, bearing in mind the necessity of a physical interpretation of the results, it is convenient to introduce a new function M(r)M(r), defined as

eλ=12GM(r)c2r.e^{-\lambda}=1-\frac{2GM(r)}{c^{2}r}. (13)

Then Eq. (7) can be recast in the form

[1+α(hR+12rhR)]dMdr=4πc2r2ε+αc22Gr2[12(hhRR)+hR(2r3GMc2r2)+hR′′(12GMc2r)].\left[1+\alpha\left(h_{R}+\frac{1}{2}rh_{R}^{\prime}\right)\right]\frac{dM}{dr}=\frac{4\pi}{c^{2}}r^{2}\varepsilon+\alpha\frac{c^{2}}{2G}r^{2}\left[\frac{1}{2}\left(h-h_{R}R\right)+h_{R}^{\prime}\left(\frac{2}{r}-\frac{3GM}{c^{2}r^{2}}\right)+h_{R}^{\prime\prime}\left(1-\frac{2GM}{c^{2}r}\right)\right]. (14)

In GR (when α=0\alpha=0), the function M(r)M(r) plays the role of the current mass inside a sphere of radius rr. Then outside the fluid (i.e., when ε=0\varepsilon=0), M=const.M=\text{const.} is the total gravitational mass of the object. A different situation occurs in the MGT (when α0\alpha\neq 0): outside the fluid the scalar curvature is now nonzero (one can say that the star is surrounded by a gravitational sphere Astashenok:2017dpo ). This sphere gives an additional contribution to the total mass measured by a distant observer. Depending on the sign of α\alpha, the metric function λ\lambda [and correspondingly the scalar curvature RR and the mass function M(r)M(r)] either decays asymptotically or demonstrates an oscillating behavior. In the latter case M(r)M(r) cannot already be regarded as the mass function. Consistent with this, here, we use only such α\alpha’s that ensure a nonoscillating behavior of M(r)M(r); this enables us to interpret M(r)M(r\to\infty) as the total mass.

In turn, the conservation law given by Eq. (12) yields the equation

dpdr=12(ε+p)dνdr.\frac{dp}{dr}=-\frac{1}{2}\left(\varepsilon+p\right)\frac{d\nu}{dr}. (15)

For a complete description of the configuration under consideration, the above equations must be supplemented by an equation of state (EoS) for the fluid. Here, for the sake of simplicity, we consider a barotropic EoS where the pressure is a function of the mass density ρb\rho_{b}. For our purpose, we restrict ourselves to a simplified variant of the EoS, where a more or less realistic matter EoS is approximated in the form of the following polytropic EoS:

p=Kρb1+1/n,ε=ρbc2+np,p=K\rho_{b}^{1+1/n},\quad\varepsilon=\rho_{b}c^{2}+np, (16)

with the constant K=kc2(nb(ch)mb)1γK=kc^{2}(n_{b}^{(ch)}m_{b})^{1-\gamma}, the polytropic index n=1/(γ1)n=1/(\gamma-1), and ρb=nbmb\rho_{b}=n_{b}m_{b} denotes the rest-mass density of the fluid. Here, nbn_{b} is the baryon number density, nb(ch)n_{b}^{(ch)} is a characteristic value of nbn_{b}, mbm_{b} is the baryon mass, and kk and γ\gamma are parameters whose values depend on the properties of the matter.

Next, introducing the new variable θ\theta,

ρb=ρbcθn,\rho_{b}=\rho_{bc}\theta^{n},

where ρbc\rho_{bc} is the central density of the fluid, we may rewrite the pressure and the energy density, given by Eq. (16), in the form

p=Kρbc1+1/nθn+1,ε=(ρbcc2+nKρbc1+1/nθ)θn.p=K\rho_{bc}^{1+1/n}\theta^{n+1},\quad\varepsilon=\left(\rho_{bc}c^{2}+nK\rho_{bc}^{1+{1}/{n}}\theta\right)\theta^{n}.

Making use of these expressions, from Eq. (15), we obtain for the internal region with θ0\theta\neq 0,

2σ(n+1)dθdr=[1+σ(n+1)θ]dνdr,2\sigma(n+1)\frac{d\theta}{dr}=-\left[1+\sigma(n+1)\theta\right]\frac{d\nu}{dr}, (17)

where σ=Kρbc1/n/c2=pc/(ρbcc2)\sigma=K\rho_{bc}^{1/n}/c^{2}=p_{c}/(\rho_{bc}c^{2}) is a relativity parameter, related to the central pressure pcp_{c} of the fluid. This equation may be integrated to give the metric function eνe^{\nu} in terms of θ\theta,

eν=eνc[1+σ(n+1)1+σ(n+1)θ]2,e^{\nu}=e^{\nu_{c}}\left[\frac{1+\sigma(n+1)}{1+\sigma(n+1)\theta}\right]^{2},

and eνce^{\nu_{c}} is the value of eνe^{\nu} at the center where θ=1\theta=1. The integration constant νc\nu_{c} is fixed by the requirement of the asymptotical flatness of the spacetime, i.e., eν=1e^{\nu}=1 at infinity.

III.2 Numerical results

Thus, we have four unknown functions – R,θR,\theta, ν\nu, and MM – for which there are four equations, (10), (11), (14), and (17) whose solution will depend on the choice of the particular type of gravity theory, i.e., of the function hh.

In the present paper, we consider the simplest case of quadratic gravity when h=R2h=R^{2}, which is often discussed in the literature as a viable alternative cosmological model describing the accelerated expansion of the early and present Universe Nojiri:2010wj ; Nojiri:2017ncd . For such gravity theory, the value of the free parameter α\alpha appearing in (2) is constrained from observations as follows: (i) in the weak-field limit, it is constrained by binary pulsar data as |α|5×1015cm2|\alpha|\lesssim 5\times 10^{15}\text{cm}^{2} Naf:2010zy ; (ii) in the strong gravity regime, the constraint is |α|1010cm2|\alpha|\lesssim 10^{10}\text{cm}^{2} Arapoglu:2010rz . Consistent with this, for the calculations presented below, we take α=1010cm2\alpha=-10^{10}\text{cm}^{2} (notice that we take an opposite sign for α\alpha as compared with that used in Ref. Astashenok:2017dpo since here we employ another metric signature). If one takes another sign of α\alpha, it can result in the appearance of ghost modes and instabilities in the cosmological context Barrow:1983rx ; also, in this case, the scalar curvature RR demonstrates an oscillating behavior outside the star, which appears to be unacceptable if one intends to construct realistic models of compact configurations (for a detailed discussion, see Ref. Astashenok:2017dpo ).

For numerical calculations, it is convenient to rewrite the equations in terms of the dimensionless variables

x=r/L,v(x)=M(r)4πρbcL3,Σ=RL2,α¯=α/L2,whereL=c8πGρbc.x=r/L,\quad v(x)=\frac{M(r)}{4\pi\rho_{bc}L^{3}},\quad\Sigma=RL^{2},\quad\bar{\alpha}=\alpha/L^{2},\quad\text{where}\quad L=\frac{c}{\sqrt{8\pi G\rho_{bc}}}. (18)

As a result, we get the static equations

v=x21+α¯(2Σ+xΣ){(1+σnθ)θn+α¯2[Σ2+2Σx(43vx)+4Σ′′(1vx)]},\displaystyle v^{\prime}=\frac{x^{2}}{1+\bar{\alpha}\left(2\Sigma+x\Sigma^{\prime}\right)}\left\{\left(1+\sigma n\theta\right)\theta^{n}+\frac{\bar{\alpha}}{2}\left[-\Sigma^{2}+2\frac{\Sigma^{\prime}}{x}\left(4-3\frac{v}{x}\right)+4\Sigma^{\prime\prime}\left(1-\frac{v}{x}\right)\right]\right\}, (19)
(1vx)(ν′′+ν22)+vx2+(v+vx2)ν2xvx3+2σθn+1\displaystyle-\left(1-\frac{v}{x}\right)\left(\nu^{\prime\prime}+\frac{\nu^{\prime 2}}{2}\right)+\frac{v^{\prime}}{x^{2}}+\left(v^{\prime}+\frac{v}{x}-2\right)\frac{\nu^{\prime}}{2x}-\frac{v}{x^{3}}+2\sigma\theta^{n+1}
+α¯{Σ2+2Σ[2x+vx2+vxν(1vx)]4(1vx)Σ′′+vΣx[2ν′′+ν2+νx2x2]\displaystyle+\bar{\alpha}\Big{\{}\Sigma^{2}+2\Sigma^{\prime}\left[-\frac{2}{x}+\frac{v}{x^{2}}+\frac{v^{\prime}}{x}-\nu^{\prime}\left(1-\frac{v}{x}\right)\right]-4\left(1-\frac{v}{x}\right)\Sigma^{\prime\prime}+\frac{v\Sigma}{x}\left[2\nu^{\prime\prime}+\nu^{\prime 2}+\frac{\nu^{\prime}}{x}-\frac{2}{x^{2}}\right]
+Σ[v(νx+2x2)2νx2ν′′ν2]}=0,\displaystyle+\Sigma\left[v^{\prime}\left(\frac{\nu^{\prime}}{x}+\frac{2}{x^{2}}\right)-2\frac{\nu^{\prime}}{x}-2\nu^{\prime\prime}-\nu^{\prime 2}\right]\Big{\}}=0, (20)
2σ(n+1)θ=[1+σ(n+1)θ]ν,\displaystyle 2\sigma(n+1)\theta^{\prime}=-\left[1+\sigma\left(n+1\right)\theta\right]\nu^{\prime}, (21)
Σ+[1+σ(n3)θ]θn+α¯{6(1vx)Σ′′+3Σx[vx(3+xν)+4v+xν]}=0,\displaystyle\Sigma+\left[1+\sigma(n-3)\theta\right]\theta^{n}+\bar{\alpha}\Big{\{}6\left(1-\frac{v}{x}\right)\Sigma^{\prime\prime}+3\frac{\Sigma^{\prime}}{x}\left[-\frac{v}{x}\left(3+x\nu^{\prime}\right)+4-v^{\prime}+x\nu^{\prime}\right]\Big{\}}=0, (22)

which follow from Eqs. (14), (10), (17), and (11), respectively. When α¯=0\bar{\alpha}=0, one recovers the general-relativity equations.

It is also convenient to recast the mass and radius of the configuration in terms of the parameters K,nK,n, and σ\sigma Tooper2 . By eliminating ρbc\rho_{bc} from the expressions for xx and vv in Eq. (18), we obtain

r=rσn/2x,M(r)=Mσn/2v(x),α=ασnα¯,r=r^{*}\sigma^{-n/2}x,\quad M(r)=M^{*}\sigma^{-n/2}v(x),\quad\alpha=\alpha^{*}\sigma^{-n}\bar{\alpha},

where r=(8πG)1/2Kn/2c1n,M=(1/4)(2π)1/2G3/2Kn/2c3nr^{*}=(8\pi G)^{-1/2}K^{n/2}c^{1-n},M^{*}=(1/4)(2\pi)^{-1/2}G^{-3/2}K^{n/2}c^{3-n}, and α=(8πG)1Knc2(1n)\alpha^{*}=(8\pi G)^{-1}K^{n}c^{2(1-n)}. The quantities rr^{*} and MM^{*} define the scales of the radius and mass.

Equations (19)-(22) are to be solved subject to the boundary conditions given in the neighborhood of the center by the expansions

θ1+12θ2x2,ννc+12ν2x2,v16v3x3,ΣΣc+12Σ2x2,\theta\approx 1+\frac{1}{2}\theta_{2}x^{2},\quad\nu\approx\nu_{c}+\frac{1}{2}\nu_{2}x^{2},\quad v\approx\frac{1}{6}v_{3}x^{3},\quad\Sigma\approx\Sigma_{c}+\frac{1}{2}\Sigma_{2}x^{2}, (23)

where the expansion coefficients θ2,ν2,v3,\theta_{2},\nu_{2},v_{3}, and Σ2\Sigma_{2} are determined from Eqs. (19)-(22). The central value of the scalar curvature Σc\Sigma_{c} is an eigenparameter of the problem, and it is chosen so that asymptotically Σ(x)0\Sigma(x\to\infty)\to 0.

The integration of Eqs. (19)-(22) is performed numerically from the center (i.e., from x0x\approx 0) to the point x=xbx=x_{b}, where the fluid density goes to zero. We take this point to be a boundary of the star. In turn, for x>xbx>x_{b} the matter is absent, i.e., ρb=p=0\rho_{b}=p=0. In GR, this corresponds to the fact that the scalar curvature Σ=0\Sigma=0. But in the MGT this is not the case: there is an external gravitational sphere around the star where Σ0\Sigma\neq 0. Consistent with this, the internal solutions should be matched with the external ones at the edge of the fluid. This is done by equating the corresponding values of both the scalar curvature and the metric functions.

For negative α\alpha’s employed here, the scalar curvature is damped exponentially fast outside the fluid as Σexp(x/6|α¯|)/x.\Sigma\sim\exp{\left(-x/\sqrt{6|\bar{\alpha}|}\right)}/x. This enables us to introduce a well-defined notion for the Arnowitt-Desser-Misner mass through Eq. (13), unlike the case of positive α\alpha’s for which Σ\Sigma demonstrates an oscillating behavior Astashenok:2017dpo .

The results of numerical calculations are shown in Fig. 1, where the dependence of the total mass on the relativity parameter σ\sigma (or the central density ρbc\rho_{bc}) is plotted. It is seen that both in GR and in the MGT the curves have a maximum. In GR, such a maximum corresponds to the transition from stable to unstable systems, and this is confirmed by the linear stability analysis Tooper2 . In the next section, we will study this problem for the case of R2R^{2} gravity under consideration.

Refer to caption
Figure 1: The dimensionless total mass versus the relativity parameter σ\sigma. The numbers near the curves denote the values of the square of the lowest eigenfrequency ω¯2\bar{\omega}^{2} corresponding to the configuration at a given point of the curve. The segments of the curves corresponding to stable configurations are shown as solid lines, whereas the unstable segments are shown dashed.

IV Linear stability analysis

Consider that the equilibrium systems described above are perturbed in such a way that spherical symmetry is maintained. In obtaining the equations for the perturbations, we will neglect all quantities which are of the second and higher order. The components of the four-velocity in the metric (4) are given by Chandrasekhar:1964zz

u0=eν0/2,u0=eν0/2,u1=eν0/2𝓋,𝓊1=λ0ν0/2𝓋,u^{0}=e^{-\nu_{0}/2},\quad u_{0}=e^{\nu_{0}/2},\quad u^{1}=e^{-\nu_{0}/2}\mathpzc{v},\quad u_{1}=-e^{\lambda_{0}-\nu_{0}/2}\mathpzc{v},

with the three-velocity 𝓋=𝒹𝓇/𝒹𝓍01\mathpzc{v}=dr/dx^{0}\ll 1. The index 0 in the metric functions indicates the static, zeroth order solution of the gravitational equations.

Now we consider perturbations of the static solutions of the form

y=y0+yp,y=y_{0}+y_{p}~{}, (24)

where the index 0 refers to the static solutions, the index pp indicates the perturbation, and yy denotes one of the functions λ,ν,ε,p\lambda,\nu,\varepsilon,p or the scalar curvature RR. We will use the variational approach of Ref. Chandrasekhar:1964zz when one introduces a “Lagrangian displacement” ζ\zeta with respect to x0x^{0}, 𝓋=ζ/𝓍0\mathpzc{v}=\partial\zeta/\partial x^{0}. Then, substituting the expansions (24) in Eqs. (7)-(12) and seeking solutions in a harmonic form

yp(x0,r)=y~p(r)eiωx0y_{p}(x^{0},r)=\tilde{y}_{p}(r)e^{i\omega x^{0}}

[for convenience, we hereafter drop the tilde sign on y~p(r)\tilde{y}_{p}(r)], one can obtain the following set of equations for the perturbations θp,Σp\theta_{p},\Sigma_{p}, and λp\lambda_{p}:

σ(n+1)s1θ0nθp+12θ0n{σ(n+1)xθ0neλ0[1+σ(n+1)θ0]+s1[σ(n+1)2ν0+nθ0(2σ(n+1)θ0+ν0)]}θp\displaystyle\sigma(n+1)s_{1}\theta_{0}^{n}\theta_{p}^{\prime}+\frac{1}{2}\theta_{0}^{n}\Big{\{}\sigma(n+1)x\theta_{0}^{n}e^{\lambda_{0}}\left[1+\sigma(n+1)\theta_{0}\right]+s_{1}\left[\sigma(n+1)^{2}\nu_{0}^{\prime}+\frac{n}{\theta_{0}}\Big{(}2\sigma(n+1)\theta_{0}^{\prime}+\nu_{0}^{\prime}\Big{)}\right]\Big{\}}\theta_{p}
+λp2xeν0{8α¯2ω¯2Σ02+2ω¯2(1+α¯xΣ0)2+2α¯Σ0[4ω¯2(1+α¯xΣ0)+eν0θ0n(1+xν0)s2]\displaystyle+\frac{\lambda_{p}}{2x}e^{-\nu_{0}}\Big{\{}8\bar{\alpha}^{2}\bar{\omega}^{2}\Sigma_{0}^{2}+2\bar{\omega}^{2}\left(1+\bar{\alpha}x\Sigma_{0}^{\prime}\right)^{2}+2\bar{\alpha}\Sigma_{0}\left[4\bar{\omega}^{2}\left(1+\bar{\alpha}x\Sigma_{0}^{\prime}\right)+e^{\nu_{0}}\theta_{0}^{n}\left(1+x\nu_{0}^{\prime}\right)s_{2}\right]
+eν0θ0n[1+xν0+α¯xΣ0(4+xν0)]s2}α¯2eν0[8α¯ω¯2Σ0+4ω¯2(1+α¯xΣ0)+eν0θ0n(4+xν0)s2]Σp\displaystyle+e^{\nu_{0}}\theta_{0}^{n}\left[1+x\nu_{0}^{\prime}+\bar{\alpha}x\Sigma_{0}^{\prime}\left(4+x\nu_{0}^{\prime}\right)\right]s_{2}\Big{\}}-\frac{\bar{\alpha}}{2}e^{-\nu_{0}}\left[8\bar{\alpha}\bar{\omega}^{2}\Sigma_{0}+4\bar{\omega}^{2}\left(1+\bar{\alpha}x\Sigma_{0}^{\prime}\right)+e^{\nu_{0}}\theta_{0}^{n}\left(4+x\nu_{0}^{\prime}\right)s_{2}\right]\Sigma_{p}^{\prime}
+α¯2xeν0{2ω¯2xs1ν0+2s2eν0θ0n[eλ0(1ω¯2x2eν0+12x2Σ0)xν01]}Σp=0,\displaystyle+\frac{\bar{\alpha}}{2x}e^{-\nu_{0}}\left\{2\bar{\omega}^{2}xs_{1}\nu_{0}^{\prime}+2s_{2}e^{\nu_{0}}\theta_{0}^{n}\left[e^{\lambda_{0}}\left(1-\bar{\omega}^{2}x^{2}e^{-\nu_{0}}+\frac{1}{2}x^{2}\Sigma_{0}\right)-x\nu_{0}^{\prime}-1\right]\right\}\Sigma_{p}=0, (25)
α¯s1Σp′′α¯2x{x(1+α¯xΣ0)λ0xν0+2α¯Σ0[x(λ0ν0)4]4}Σpα¯2Σ0s1λp\displaystyle\bar{\alpha}s_{1}\Sigma_{p}^{\prime\prime}-\frac{\bar{\alpha}}{2x}\left\{x\left(1+\bar{\alpha}x\Sigma_{0}^{\prime}\right)\lambda_{0}^{\prime}-x\nu_{0}^{\prime}+2\bar{\alpha}\Sigma_{0}\left[x\left(\lambda_{0}^{\prime}-\nu_{0}^{\prime}\right)-4\right]-4\right\}\Sigma_{p}^{\prime}-\frac{\bar{\alpha}}{2}\Sigma_{0}^{\prime}s_{1}\lambda_{p}^{\prime}
+eν06x{xeλ0(eν0+6α¯ω¯2)+α¯xeλ0Σ0[2(eν0+6α¯ω¯2)+3α¯xeν0Σ0]+α¯eν0Σ0[6α¯(1+xν0)+eλ0(x2+6α¯)]}Σp\displaystyle+\frac{e^{-\nu_{0}}}{6x}\left\{xe^{\lambda_{0}}\left(e^{\nu_{0}}+6\bar{\alpha}\bar{\omega}^{2}\right)+\bar{\alpha}xe^{\lambda_{0}}\Sigma_{0}\left[2\left(e^{\nu_{0}}+6\bar{\alpha}\bar{\omega}^{2}\right)+3\bar{\alpha}xe^{\nu_{0}}\Sigma_{0}^{\prime}\right]+\bar{\alpha}e^{\nu_{0}}\Sigma_{0}^{\prime}\left[-6\bar{\alpha}\left(1+x\nu_{0}^{\prime}\right)+e^{\lambda_{0}}\left(x^{2}+6\bar{\alpha}\right)\right]\right\}\Sigma_{p}
+eλ06θ0n1{n(1+α¯xΣ0)+2α¯[n+σ(n22n3)θ0]Σ0+σ(n+1)θ0[n3+α¯nxΣ0]}θp\displaystyle+\frac{e^{\lambda_{0}}}{6}\theta_{0}^{n-1}\left\{n\left(1+\bar{\alpha}x\Sigma_{0}^{\prime}\right)+2\bar{\alpha}\left[n+\sigma\left(n^{2}-2n-3\right)\theta_{0}\right]\Sigma_{0}+\sigma(n+1)\theta_{0}\left[n-3+\bar{\alpha}nx\Sigma_{0}^{\prime}\right]\right\}\theta_{p}
+α¯2x{α¯x2Σ02λ02x(1+2α¯Σ0)Σ0′′+Σ0[(xλ03)(1+2α¯Σ0)2α¯x2Σ0′′]}λp=0,\displaystyle+\frac{\bar{\alpha}}{2x}\left\{\bar{\alpha}x^{2}\Sigma_{0}^{\prime 2}\lambda_{0}^{\prime}-2x\left(1+2\bar{\alpha}\Sigma_{0}\right)\Sigma_{0}^{\prime\prime}+\Sigma_{0}^{\prime}\left[\left(x\lambda_{0}^{\prime}-3\right)\left(1+2\bar{\alpha}\Sigma_{0}\right)-2\bar{\alpha}x^{2}\Sigma_{0}^{\prime\prime}\right]\right\}\lambda_{p}=0, (26)
α¯Σp′′+α¯x(212xλ0)Σpα¯(12eλ0Σ0+xλ0+eλ01x2)Σps12xλp\displaystyle\bar{\alpha}\Sigma_{p}^{\prime\prime}+\frac{\bar{\alpha}}{x}\left(2-\frac{1}{2}x\lambda_{0}^{\prime}\right)\Sigma_{p}^{\prime}-\bar{\alpha}\left(\frac{1}{2}e^{\lambda_{0}}\Sigma_{0}+\frac{x\lambda_{0}^{\prime}+e^{\lambda_{0}}-1}{x^{2}}\right)\Sigma_{p}-\frac{s_{1}}{2x}\lambda_{p}^{\prime}
+12x2[(xλ01)(1+2α¯Σ0)+α¯xΣ0(xλ04)2α¯x2Σ0′′]λp+n2eλ0θ0n1s2θp=0,\displaystyle+\frac{1}{2x^{2}}\left[\left(x\lambda_{0}^{\prime}-1\right)\left(1+2\bar{\alpha}\Sigma_{0}\right)+\bar{\alpha}x\Sigma_{0}^{\prime}\left(x\lambda_{0}^{\prime}-4\right)-2\bar{\alpha}x^{2}\Sigma_{0}^{\prime\prime}\right]\lambda_{p}+\frac{n}{2}e^{\lambda_{0}}\theta_{0}^{n-1}s_{2}\theta_{p}=0, (27)

where s1=1+α(2Σ0+xΣ0),s2=1+σ(n+1)θ0s_{1}=1+\alpha\left(2\Sigma_{0}+x\Sigma_{0}^{\prime}\right),s_{2}=1+\sigma(n+1)\theta_{0}, and the dimensionless frequency ω¯=Lω\bar{\omega}=L\omega. Here, Eq. (IV) follows from the conservation law (12), Eq. (IV) follows from the equation for the scalar curvature (11), Eq. (IV) is the (tt)(^{t}_{t}) component (7). In deriving Eq. (IV), we have used the expression (here ψ=ζ/L\psi=\zeta/L is the dimensionless Lagrangian displacement)

λp=x1+α¯(2Σ0+xΣ0){eλ0θ0n[1+σ(n+1)θ0]ψ+α¯(Σpν02Σp)}\lambda_{p}=-\frac{x}{1+\bar{\alpha}\left(2\Sigma_{0}+x\Sigma_{0}^{\prime}\right)}\left\{e^{\lambda_{0}}\theta_{0}^{n}\left[1+\sigma(n+1)\theta_{0}\right]\psi+\bar{\alpha}\left(\Sigma_{p}\nu_{0}^{\prime}-2\Sigma_{p}^{\prime}\right)\right\}

[which follows from the (tr)(^{r}_{t}) component (10)], expressing from it ψ\psi and eliminating it from (IV).

For this set of equations, we choose the following boundary conditions near the center x=0x=0:

θpθpc+12θp2x2,ΣpΣpc+12Σp2x2,λp12λp2x2,\theta_{p}\approx\theta_{pc}+\frac{1}{2}\theta_{p2}x^{2},\quad\Sigma_{p}\approx\Sigma_{pc}+\frac{1}{2}\Sigma_{p2}x^{2},\quad\lambda_{p}\approx\frac{1}{2}\lambda_{p2}x^{2}, (28)

where the expansion coefficients θpc\theta_{pc} and Σpc\Sigma_{pc} are arbitrary and θp2,λp2\theta_{p2},\lambda_{p2}, and Σp2\Sigma_{p2} can be found from Eqs. (IV)-(IV).

The set of equations (IV)-(IV) together with the boundary conditions (28) defines an eigenvalue problem for ω¯2\bar{\omega}^{2}. The question of stability is therefore reduced to a study of the possible values of ω¯2\bar{\omega}^{2}. If any of the values of ω¯2\bar{\omega}^{2} are found to be negative, then the perturbations will increase and the configurations in question will be unstable against radial oscillations.

The choice of eigenvalues of ω¯2\bar{\omega}^{2} is carried out such that we have asymptotically decaying solutions for the perturbations Σp\Sigma_{p} and λp\lambda_{p}. In doing so, it is necessary to ensure the following properties of the solutions: (i) The function θp\theta_{p} must be finite (though not necessarily zero) at the boundary of the star. This is sufficient to ensure that the perturbation of the fluid pressure ppθ0nθpp_{p}\sim\theta_{0}^{n}\theta_{p} meets the condition pp=0p_{p}=0 at the edge of the star where θ0=0\theta_{0}=0 [see, e.g., Eq. (60) in Ref. Chandrasekhar:1964zz ]. (ii) The function λp\lambda_{p} must be nodeless; this corresponds to a zero mode of the solution (on this point, see, e.g., Ref. Gleiser:1988ih ).

In this connection, it is useful to write out the asymptotic behavior of the solutions.

(A) Static solutions:

vvCΣ02|α¯|3xexp(x/6|α¯|),Σ0CΣ0exp(x/6|α¯|)/x,eν01v/x.v\to v_{\infty}-C_{\Sigma_{0}}\sqrt{\frac{2|\bar{\alpha}|}{3}}\,x\exp{\left(-x/\sqrt{6|\bar{\alpha}|}\right)},\quad\Sigma_{0}\to-C_{\Sigma_{0}}\exp{\left(-x/\sqrt{6|\bar{\alpha}|}\right)}\Big{/}x,\quad e^{\nu_{0}}\to 1-v_{\infty}/x.

(B) Perturbations:

ΣpCΣpexp(1+6|α¯|ω¯26|α¯|x)/x,λpv/x.\Sigma_{p}\to C_{\Sigma_{p}}\exp{\left(-\sqrt{\frac{1+6|\bar{\alpha}|\bar{\omega}^{2}}{6|\bar{\alpha}|}}\,x\right)}\Big{/}x,\quad\lambda_{p}\to v_{\infty}/x.

Here, vv_{\infty} is an asymptotic value of the mass function vv, CΣ0>0C_{\Sigma_{0}}>0 and CΣpC_{\Sigma_{p}} are integration constants.

Refer to caption
Figure 2: The typical behavior of the perturbations within GR (solid curves) and R2R^{2} gravity (dashed curves). The graphs are plotted for the case of σ0.151\sigma\approx 0.151 (GR) and of σ=0.17\sigma=0.17 (R2R^{2} gravity) that correspond to the maxima of the mass curves (cf. Fig. 1). The thin vertical lines denote the boundaries of the fluid x=xbx=x_{b}.
Table 1: The computed values of the square of the lowest eigenfrequency ω¯2\bar{\omega}^{2} and of the eigenparameter θpc\theta_{pc} for the configurations within R2R^{2} gravity. For all the cases Σpc=104\Sigma_{pc}=-10^{-4}. The eigenparameter Σc\Sigma_{c} is the central value of the scalar curvature from Eq. (23).
σ\sigma Σc\Sigma_{c} ω¯2\bar{\omega}^{2} θpc\theta_{pc}
0.1 -0.494418253625 0.0185 0.00020166833
0.17 -0.3646950715 0\approx 0 0.00034320286
0.25 -0.26573801601 -0.0118 0.000644452
0.3 -0.2202699654 -0.0175 0.000993096

Examples of solutions for the perturbations θp,Σp\theta_{p},\Sigma_{p}, and λp\lambda_{p} are shown in Fig. 2. The procedure for determining the eigenvalues of ω¯2\bar{\omega}^{2} is as follows:

  1. (1)

    In the case of GR (when α¯=0\bar{\alpha}=0), there are only two equations (IV) and (IV) for the functions θp\theta_{p} and λp\lambda_{p}. Considering that these equations are linear, the rescaling of the central θpcβθpc\theta_{pc}\to\beta\theta_{pc} results in the corresponding rescaling of the metric perturbation λpβλp\lambda_{p}\to\beta\lambda_{p}, but the qualitative behavior of the solutions remains unchanged. That is, it is possible to take any central θpc1\theta_{pc}\ll 1, and the eigenfrequency ω¯2\bar{\omega}^{2} will not change.

  2. (2)

    In the case of R2R^{2} gravity (when α¯0\bar{\alpha}\neq 0), all three equations (IV)-(IV) need to be solved. In doing so, there are two arbitrary central values θpc\theta_{pc} and Σpc\Sigma_{pc}. Numerical calculations indicate that to ensure regular asymptotically decaying solutions for the perturbations Σp\Sigma_{p} and λp\lambda_{p} one has to adjust the values both of the eigenfrequency ω¯2\bar{\omega}^{2} and of one of these two arbitrary parameters. That is, either θpc\theta_{pc} or Σpc\Sigma_{pc} is an eigenparameter of the problem. The corresponding numerical values of these parameters are given in Table 1 for several values of σ\sigma. It is seen from the table and Fig. 1 that the square of the lowest eigenfrequency ω¯2\bar{\omega}^{2} is positive to the left of the maximum and negative to the right of it. That is, as in GR, in R2R^{2} gravity under consideration the transition from stable to unstable systems occurs strictly at the maximum of the mass.

Summarizing the results obtained, within R2R^{2} gravity, we have examined the question of stability of compact configurations supported by a polytropic fluid against linear radial perturbations. In contrast to the studies performed earlier in the literature, here the calculations have been carried out in the Jordan frame to avoid the potential difficulties related to the conformal transformation to the Einstein frame (see Introduction). In doing so, we regard the scalar curvature as a dynamical variable for which the behavior of the corresponding perturbation modes is studied as well. As a result, it is shown that, as in GR, within the framework of R2R^{2} gravity the transition from stable to unstable configurations takes place at the point of the maximum of the curve mass-central density of the fluid. One may expect that similar results will also be obtained for another, more realistic EoSs of matter, including those that are used in constructing models of neutron stars (see, e.g., Refs. Astashenok:2017dpo ; Folomeev:2018ioy ; Astashenok:2020isy ).

Acknowledgements

The authors are very grateful to S. Odintsov for fruitful discussions and comments. We gratefully acknowledge support provided by Grant No. BR05236322 in Fundamental Research in Natural Sciences by the Ministry of Education and Science of the Republic of Kazakhstan. We are also grateful to the Research Group Linkage Programme of the Alexander von Humboldt Foundation for the support of this research.

References

  • (1) S. Nojiri and S. D. Odintsov, Phys. Rep.  505, 59 (2011).
  • (2) S. Nojiri, S. D. Odintsov, and V. K. Oikonomou, Phys. Rep.  692, 1 (2017).
  • (3) A. Upadhye and W. Hu, Phys. Rev. D 80, 064002 (2009).
  • (4) E. Babichev and D. Langlois, Phys. Rev. D 81, 124051 (2010).
  • (5) K. A. Bronnikov, M. V. Skvortsova, and A. A. Starobinsky, Gravitation Cosmol.  16, 216 (2010).
  • (6) A. DeBenedictis and D. Horvat, Gen. Relativ. Gravit.  44, 2711 (2012).
  • (7) A. Cooney, S. DeDeo, and D. Psaltis, Phys. Rev. D 82, 064033 (2010).
  • (8) A. S. Arapoglu, C. Deliduman, and K. Y. Eksi, J. Cosmol. Astropart. Phys. 07 (2011) 020.
  • (9) M. Orellana, F. Garcia, F. A. Teppa Pannia, and G. E. Romero, Gen. Relativ. Gravit.  45, 771 (2013).
  • (10) H. Alavirad and J. M. Weller, Phys. Rev. D 88, 124034 (2013).
  • (11) A. V. Astashenok, S. Capozziello, and S. D. Odintsov, J. Cosmol. Astropart. Phys. 12 (2013) 040.
  • (12) A. Ganguly, R. Gannouji, R. Goswami, and S. Ray, Phys. Rev. D 89, 064019 (2014).
  • (13) A. V. Astashenok, S. Capozziello, and S. D. Odintsov, Phys. Rev. D 89, 103509 (2014).
  • (14) A. V. Astashenok, S. Capozziello, and S. D. Odintsov, Phys. Lett. B 742, 160 (2015).
  • (15) S. Capozziello, M. De Laurentis, R. Farinelli, and S. D. Odintsov, Phys. Rev. D 93, 023501 (2016).
  • (16) E. Bakirova and V. Folomeev, Gen. Rel. Grav.  48, no. 10, 135 (2016) Erratum: [Gen. Rel. Grav.  48, no. 12, 164 (2016)].
  • (17) A. V. Astashenok, S. D. Odintsov, and A. de la Cruz-Dombriz, Classical Quantum Gravity  34, 205008 (2017).
  • (18) V. Folomeev, Phys. Rev. D 97, no. 12, 124009 (2018).
  • (19) P. Feola, X. J. Forteza, S. Capozziello, R. Cianci, and S. Vignolo, Phys. Rev. D 101, no. 4, 044037 (2020).
  • (20) A. V. Astashenok and S. D. Odintsov, Particles 3, 532 (2020).
  • (21) S. Chandrasekhar, Astrophys. J.  140, 417 (1964).
  • (22) J. L. Blázquez-Salcedo, Z. Altaha Motahar, D. D. Doneva, F. S. Khoo, J. Kunz, S. Mojica, K. V. Staykov, and S. S. Yazadjiev, Eur. Phys. J. Plus 134, no. 1, 46 (2019).
  • (23) J. L. Blázquez-Salcedo, F. S. Khoo, and J. Kunz, EPL 130, no. 5, 50002 (2020).
  • (24) S. Capozziello, P. Martin-Moruno, and C. Rubano, Phys. Lett. B 689, 117 (2010).
  • (25) A. Y. Kamenshchik and C. F. Steinwachs, Phys. Rev. D 91, no. 8, 084033 (2015).
  • (26) A. Y. Kamenshchik, E. O. Pozdeeva, S. Y. Vernov, A. Tronconi, and G. Venturi, Phys. Rev. D 94, no. 6, 063510 (2016).
  • (27) S. Bahamonde, S. D. Odintsov, V. K. Oikonomou, and M. Wright, Annals Phys.  373, 96 (2016).
  • (28) M. S. Ruf and C. F. Steinwachs, Phys. Rev. D 97, no. 4, 044050 (2018).
  • (29) J. Naf and P. Jetzer, Phys. Rev. D 81, 104003 (2010).
  • (30) J. D. Barrow and A. C. Ottewill, J. Phys. A 16, 2757 (1983).
  • (31) R. Tooper, Astrophys. J.  142, 1541 (1965).
  • (32) M. Gleiser and R. Watkins, Nucl. Phys. B 319, 733 (1989).