This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

On the Iwasawa theory of elliptic curves at
Eisenstein primes

Francesc Castella Department of Mathematics, University of California, Santa Barbara, CA 93106, USA [email protected]
Abstract.

These are expanded notes for the mini-course given by the author at the 2022 ICTS workshop ‘Elliptic curves and the special values of LL-functions’.

Introduction

Let E/E/\mathbb{Q} be an elliptic curve and let L(E,s)L(E,s) be its Hasse–Weil LL-series. The latter is defined by an Euler product absolutely convergent for complex ss in the right-half plane Re(s)>3/2{\rm Re}(s)>3/2, but by modularity it can be analytically continued to all ss\in\mathbb{C}.

By the Mordell–Weil theorem, the group of rational points E()E(\mathbb{Q}) is finitely generated, so

E()rE()tors,E(\mathbb{Q})\simeq\mathbb{Z}^{r}\oplus E(\mathbb{Q})_{\rm tors},

for some r=rankE()0r={\rm rank}_{\mathbb{Z}}E(\mathbb{Q})\geq 0. The Birch–Swinnerton-Dyer conjecture (BSD) is the statement that

ords=1L(E,s)=?rankE().{\rm ord}_{s=1}L(E,s)\overset{?}{=}{\rm rank}_{\mathbb{Z}}E(\mathbb{Q}).

After the groundbreaking works of Coates–Wiles, Rubin, Gross–Zagier, and Kolyvagin in the 1970s and 1980s, the conjecture is known when either L(E,1)0L(E,1)\neq 0 or L(E,1)0L^{\prime}(E,1)\neq 0. In these cases, their results also establish finiteness of the Tate–Shafarevich group

(E/):=ker{H1(,E)vH1(v,E)},\Sha(E/\mathbb{Q}):={\rm ker}\biggl{\{}{\rm H}^{1}(\mathbb{Q},E)\rightarrow\prod_{v}{\rm H}^{1}(\mathbb{Q}_{v},E)\biggr{\}},

a statement that is also widely believed to hold in general.

More recently, further progress on the BSD conjecture, and on its refined form predicting an exact formula for the leading Taylor coefficient of L(E,s)L(E,s) around s=1s=1 in terms of arithmetic invariants of EE, has been obtained largely through the use of pp-adic methods; more specifically, through various incarnations of Iwasawa theory. More specifically, a large body of work has gone into the proof of the following three implications, which are expected to hold for any prime number pp:

  1. (1)

    pp-part of the BSD formula in analytic rank 0:

    L(E,1)0ordp(L(E,1)ΩE)=ordp(#(E/)Tam(E/)(#E()tors)2),L(E,1)\neq 0\quad\Longrightarrow\quad{\rm ord}_{p}\biggl{(}\frac{L(E,1)}{\Omega_{E}}\biggr{)}={\rm ord}_{p}\biggl{(}\frac{\#\Sha(E/\mathbb{Q})\cdot{\rm Tam}(E/\mathbb{Q})}{(\#E(\mathbb{Q})_{\rm tors})^{2}}\biggr{)},

    where ΩE\Omega_{E} is the positive Néron period of EE, and Tam(E/)=Nc(E/){\rm Tam}(E/\mathbb{Q})=\prod_{\ell\mid N}c_{\ell}(E/\mathbb{Q}) is the product of the Tamagawa factors of E/E/\mathbb{Q}.

  2. (2)

    pp-converse to the theorem of Gross–Zagier and Kolyvagin:

    corankpSelp(E/)=1ords=1L(E,s)=1,{\rm corank}_{\mathbb{Z}_{p}}{\rm Sel}_{p^{\infty}}(E/\mathbb{Q})=1\quad\Longrightarrow\quad{\rm ord}_{s=1}L(E,s)=1,

    where Selp(E/){\rm Sel}_{p^{\infty}}(E/\mathbb{Q}) is the pp^{\infty}-Selmer group fitting into the descent exact sequence

    0E()p/pSelp(E/)(E/)[p]0.0\rightarrow E(\mathbb{Q})\otimes\mathbb{Q}_{p}/\mathbb{Z}_{p}\rightarrow{\rm Sel}_{p^{\infty}}(E/\mathbb{Q})\rightarrow\Sha(E/\mathbb{Q})[p^{\infty}]\rightarrow 0.
  3. (3)

    pp-part of the BSD formula in analytic rank 11:

    ords=1L(E,s)=1ordp(L(E,1)ΩERegE)=ordp(#(E/)Tam(E/)(#E()tors)2),{\rm ord}_{s=1}L(E,s)=1\quad\Longrightarrow\quad{\rm ord}_{p}\biggl{(}\frac{L^{\prime}(E,1)}{\Omega_{E}\cdot{\rm Reg}_{E}}\biggr{)}={\rm ord}_{p}\biggl{(}\frac{\#\Sha(E/\mathbb{Q})\cdot{\rm Tam}(E/\mathbb{Q})}{(\#E(\mathbb{Q})_{\rm tors})^{2}}\biggr{)},

    where RegE{\rm Reg}_{E} is the regulator of the Néron–Tate canonical height pairing on E()E(\mathbb{Q})\otimes\mathbb{R}.

The goal of these lectures is to explain the proof of (1)–(3) for good ordinary primes, with a special emphasis in the case of (the most recently established) Eisenstein primes pp, i.e. primes pp for which EE admits a rational pp-isogeny, or equivalently, such that E[p]E[p] is reducible as a GG_{\mathbb{Q}}-module.

Acknowledgements. It is a pleasure to heartily thank the organizers of the 2022 ICTS workshop ‘Elliptic curves and the special values of LL-functions’—Ashay Burungale, Haruzo Hida, Somnath Jha, and Ye Tian—for their invitation to deliver these lectures, and the opportunity to contribute to these proceedings. The author was partially supported by the NSF grant DMS-2101458.

1. Lecture 1: Main conjectures and applications

The purpose of this lecture is to explain how, for any good ordinary prime (either Eisenstein or not) the implications (1), (2), and (3) from the Introduction follow from certain (three different, but not completely unrelated) “main conjectures” in Iwasawa theory.

1.1. Mazur’s main conjecture

Let p>2p>2 be a good ordinary prime for EE. Let (μp)\mathbb{Q}(\mu_{p^{\infty}}) be the field obtained by adjoining to \mathbb{Q} of pp-power roots of unity; then

Gal((μp)/)=Δ×Γ{\rm Gal}(\mathbb{Q}(\mu_{p^{\infty}})/\mathbb{Q})=\Delta\times\Gamma

with ΔGal((μp)/)\Delta\simeq{\rm Gal}(\mathbb{Q}(\mu_{p})/\mathbb{Q}) a cyclic group of order p1p-1, and Γp\Gamma\simeq\mathbb{Z}_{p}. Let /\mathbb{Q}_{\infty}/\mathbb{Q} be the cyclotomic p\mathbb{Z}_{p}-extension of \mathbb{Q}, defined as the fixed of (μp)\mathbb{Q}(\mu_{p^{\infty}}) by Δ\Delta.

For every n0n\geq 0, denote by n\mathbb{Q}_{n} the unique subfield of \mathbb{Q}_{\infty} with [n:]=pn[\mathbb{Q}_{n}:\mathbb{Q}]=p^{n}. Let Selp(E/n){\rm Sel}_{p^{\infty}}(E/\mathbb{Q}_{n}) be the usual pp^{\infty}-Selmer group, defined as

Selp(E/n)=ker{H1(n,E[p])vH1(v,E)},{\rm Sel}_{p^{\infty}}(E/\mathbb{Q}_{n})={\rm ker}\biggl{\{}{\rm H}^{1}(\mathbb{Q}_{n},E[p^{\infty}])\rightarrow\prod_{v}{\rm H}^{1}(\mathbb{Q}_{v},E)\biggr{\}},

where vv runs over all primes of \mathbb{Q}, and put Selp(E/)=limnSelp(E/n){\rm Sel}_{p^{\infty}}(E/\mathbb{Q}_{\infty})=\varinjlim_{n}{\rm Sel}_{p^{\infty}}(E/\mathbb{Q}_{n}).

The following is a special case of Mazur’s control theorem (which applies to abelian varieties defined over a number field FF more generally, and arbitrary p\mathbb{Z}_{p}-extensions F/FF_{\infty}/F).

Theorem 1.1 (Mazur).

The restriction maps

Selp(E/n)Selp(E/)Gal(/n){\rm Sel}_{p^{\infty}}(E/\mathbb{Q}_{n})\rightarrow{\rm Sel}_{p^{\infty}}(E/\mathbb{Q}_{\infty})^{{\rm Gal}(\mathbb{Q}_{\infty}/\mathbb{Q}_{n})}

have finite kernel and cokernel, of order bounded as nn\rightarrow\infty.

The original proof of Theorem 1.1 can be found in [Maz72]; an alternative and highly influential proof of the same result is given (for elliptic curves) in [Gre99].

Let Λ=p[[Γ]]\Lambda=\mathbb{Z}_{p}[[\Gamma]] be the cyclotomic Iwasawa algebra. It follows easily from Theorem 1.1 together with the weak Mordell–Weil theorem, that Selp(E/){\rm Sel}_{p^{\infty}}(E/\mathbb{Q}_{\infty}) is cofinitely generated over Λ\Lambda, i.e. the Pontryagin dual

X(E/):=Homp(Selp(E/),p/p)X(E/\mathbb{Q}_{\infty}):={\rm Hom}_{\mathbb{Z}_{p}}({\rm Sel}_{p^{\infty}}(E/\mathbb{Q}_{\infty}),\mathbb{Q}_{p}/\mathbb{Z}_{p})

is finitely generated over Λ\Lambda. Mazur further conjectured that X(E/)X(E/\mathbb{Q}_{\infty}) is Λ\Lambda-torsion (see Conjecture 1.2 below), a condition that can be easily verified (using a topological version of Nakayama’s lemma) when the classical Selmer group Selp(E/){\rm Sel}_{p^{\infty}}(E/\mathbb{Q}) is finite (so in particular, E()E(\mathbb{Q}) is finite), but which lies much deeper in general.

On the analytic side, using modular symbols (assuming EE is parametrized by modular functions) Mazur and Swinnerton-Dyer [MSD74] attached to EE a pp-adic LL-function pMSD(E/)Λp\mathcal{L}_{p}^{\rm MSD}(E/\mathbb{Q})\in\Lambda\otimes\mathbb{Q}_{p} characterized by the property that for every finite order character χ:Γμp\chi:\Gamma\rightarrow\mu_{p^{\infty}} :

(1) pMSD(E/)(χ)={(1αp1)2L(E,1)ΩEif χ=1,pnτ(χ¯)αpnL(E,χ¯,1)ΩEif cond(χ)=pn>1,\mathcal{L}_{p}^{\rm MSD}(E/\mathbb{Q})(\chi)=\begin{cases}(1-\alpha_{p}^{-1})^{2}\cdot\frac{L(E,1)}{\Omega_{E}}&\textrm{if $\chi=1$,}\\[1.99997pt] \frac{p^{n}}{\tau(\overline{\chi})\alpha_{p}^{n}}\cdot\frac{L(E,\overline{\chi},1)}{\Omega_{E}}&\textrm{if ${\rm cond}(\chi)=p^{n}>1$,}\end{cases}

where αp\alpha_{p} is the pp-adic unit root of x2ap(E)x+px^{2}-a_{p}(E)x+p and τ(χ¯)\tau(\overline{\chi}) is the Gauss sum.

Motivated by Iwasawa’s main conjecture for class groups of number fields, Mazur formulated the following (see [MSD74, §9.5, Conj. 3]). Note that implicit in the conjecture is the statement that pMSD(E/)\mathcal{L}_{p}^{\rm MSD}(E/\mathbb{Q}) is integral, i.e. lies in Λ\Lambda.

Conjecture 1.2 (Mazur’s main conjecture).

X(E/)X(E/\mathbb{Q}_{\infty}) is Λ\Lambda-torsion, with

charΛ(X(E/))=(pMSD(E/)).{\rm char}_{\Lambda}(X(E/\mathbb{Q}_{\infty}))=\bigl{(}\mathcal{L}_{p}^{\rm MSD}(E/\mathbb{Q})\bigr{)}.

As usual, we identify the Iwasawa algebra Λ\Lambda with the one-variable power series ring p[[T]]\mathbb{Z}_{p}[[T]] upon the choice of a topological generator γΓ\gamma\in\Gamma by setting T=γ1T=\gamma-1. Under this identification, the evaluation of an element Λ\mathcal{L}\in\Lambda at a character χ:Γp×\chi:\Gamma\rightarrow\mathbb{C}_{p}^{\times} corresponds to the specialization of the power series expression of \mathcal{L} at T=χ(γ)1T=\chi(\gamma)-1. In particular, evaluation at χ=1\chi=1 corresponds to specialization at T=0T=0.

Henceforth we shall use apba\sim_{p}b to denote the equality a=uba=ub with upu\in\mathbb{Z}_{p}.

Proposition 1.3.

Assume Conjecture 1.2. Then the pp-part of the BSD formula holds in analytic rank 0, i.e.

L(E,1)0ordp(L(E,1)ΩE)=ordp(#(E/)Tam(E/)(#E()tors)2).L(E,1)\neq 0\quad\Longrightarrow\quad{\rm ord}_{p}\biggl{(}\frac{L(E,1)}{\Omega_{E}}\biggr{)}={\rm ord}_{p}\biggl{(}\frac{\#\Sha(E/\mathbb{Q})\cdot{\rm Tam}(E/\mathbb{Q})}{(\#E(\mathbb{Q})_{\rm tors})^{2}}\biggr{)}.
Proof.

Suppose L(E,1)0L(E,1)\neq 0. Then pMSD(E/)(0)0\mathcal{L}_{p}^{\rm MSD}(E/\mathbb{Q})(0)\neq 0 by the interpolation property. By Mazur’s main conjecture, it follows that the Γ\Gamma-coinvariants X(E/)ΓX(E/\mathbb{Q}_{\infty})_{\Gamma} are finite, and so #Selp(E/)<\#{\rm Sel}_{p^{\infty}}(E/\mathbb{Q})<\infty by Pontryagin duality and Mazur’s control theorem. In particular, #Selp(E/)=#(E/)[p]\#{\rm Sel}_{p^{\infty}}(E/\mathbb{Q})=\#\Sha(E/\mathbb{Q})[p^{\infty}].

Let (E/)Λ\mathcal{F}(E/\mathbb{Q}_{\infty})\in\Lambda be a characteristic power series of X(E/)X(E/\mathbb{Q}_{\infty}), i.e. a generator of the principal ideal charΛ(X(E/)){\rm char}_{\Lambda}(X(E/\mathbb{Q}_{\infty})). Then by the work of Schneider [Sch85] and Perrin-Riou [PR92] one has

(2) (E/)(0)p(1αp1)2#Selp(E/)Tam(E/)(#E()tors)2.\mathcal{F}(E/\mathbb{Q}_{\infty})(0)\sim_{p}(1-\alpha_{p}^{-1})^{2}\cdot\#{\rm Sel}_{p^{\infty}}(E/\mathbb{Q})\cdot\frac{{\rm Tam}(E/\mathbb{Q})}{(\#E(\mathbb{Q})_{\rm tors})^{2}}.

Since by Conjecture 1.2 the left-hand side of (2) has the same pp-adic valuation as pMSD(E/)(0)\mathcal{L}_{p}^{\rm MSD}(E/\mathbb{Q})(0), the combination of (1) and (2) yields the result. ∎

1.2. Perrin-Riou’s main conjecture

We keep the assumption that pp is an odd prime of good ordinary reduction for EE. Let K/K/\mathbb{Q} be an imaginary quadratic field satisfying the following Heegner hypothesis:

(Heeg) every prime |N\ell|N splits in KK.

Let K/KK_{\infty}^{-}/K be the anticyclotomic p\mathbb{Z}_{p}-extension, characterized as the unique p\mathbb{Z}_{p}-extension of KK that is Galois over \mathbb{Q} with τστ=σ1\tau\sigma\tau=\sigma^{-1} for all σGal(K/K)\sigma\in{\rm Gal}(K_{\infty}^{-}/K), where τ\tau is the non-trivial automorphism of K/K/\mathbb{Q}. Let KnK_{n}^{-} be the unique subextension of KK_{\infty}^{-} with [Kn:K]=pn[K_{n}^{-}:K]=p^{n}.

Via a fixed modular parametrization

φ:X0(N)E,\varphi:X_{0}(N)\rightarrow E,

the Kummer images of Heegner points of pp-power conductor yield classes

xnSel(Kn,TpE):=limmSelpm(E/Kn),x_{n}\in{\rm Sel}(K_{n}^{-},T_{p}E):=\varprojlim_{m}{\rm Sel}_{p^{m}}(E/K_{n}^{-}),

where TpET_{p}E is the pp-adic Tate module of EE. Using the ordinary hypotheses on pp, these classes can be made compatible under the corestriction maps Sel(Kn+1,TpE)Sel(Kn,TpE){\rm Sel}(K_{n+1}^{-},T_{p}E)\rightarrow{\rm Sel}(K_{n}^{-},T_{p}E), hence yielding an element

κHgSˇ(E/K):=limnSel(Kn,TpE).\kappa_{\infty}^{\rm Hg}\in\check{S}(E/K_{\infty}^{-}):=\varprojlim_{n}{\rm Sel}(K_{n}^{-},T_{p}E).

Denote by X(E/K)X(E/K_{\infty}^{-}) the Pontryagin dual of Selp(E/K){\rm Sel}_{p^{\infty}}(E/K_{\infty}^{-}); this is a finitely generated module over the anticyclotomic Iwasawa algebra Λ=p[[Γ]]\Lambda^{-}=\mathbb{Z}_{p}[[\Gamma^{-}]], where we put Γ=Gal(K)/K)\Gamma^{-}={\rm Gal}(K_{\infty}^{-})/K).

Conjecture 1.4 (Perrin-Riou’s main conjecture).

X(E/K)X(E/K_{\infty}^{-}) has Λ\Lambda^{-}-rank 11, with

charΛ(X(E/K)tors)=charΛ(Sˇ(E/K)ΛκHg)21uK2c2,{\rm char}_{\Lambda^{-}}(X(E/K_{\infty}^{-})_{\rm tors})={\rm char}_{\Lambda^{-}}\biggl{(}\frac{\check{S}(E/K_{\infty}^{-})}{\Lambda^{-}\cdot\kappa_{\infty}^{\rm Hg}}\biggr{)}^{2}\cdot\frac{1}{u_{K}^{2}c^{2}},

where the subscript tors{\rm tors} denotes the maximal Λ\Lambda^{-}-torsion submodule, uK:=12#(𝒪K×)u_{K}:=\frac{1}{2}\#(\mathcal{O}_{K}^{\times}), and c×c\in\mathbb{Q}^{\times} is the Manin constant111Thus φωE=c2πif(z)dz\varphi^{*}\omega_{E}=c\cdot 2\pi if(z)dz for the Néron differential ωE\omega_{E} and the newform ff attached to EE. attached to φ\varphi.

Proposition 1.5.

Assume Conjecture 1.4. Then

corankpSelp(E/)=1ords=1L(E,s)=1,{\rm corank}_{\mathbb{Z}_{p}}{\rm Sel}_{p^{\infty}}(E/\mathbb{Q})=1\quad\Longrightarrow\quad{\rm ord}_{s=1}L(E,s)=1,

i.e. the pp-converse to the theorem of Gross–Zagier and Kolyvagin holds.

Proof.

Suppose corankpSelp(E/)=1{\rm corank}_{\mathbb{Z}_{p}}{\rm Sel}_{p^{\infty}}(E/\mathbb{Q})=1, and choose an imaginary quadratic field KK such that:

  • (i)

    Hypothesis (Heeg)\eqref{eq:heeg} holds;

  • (ii)

    L(EK,1)0L(E^{K},1)\neq 0,

where EK/E^{K}/\mathbb{Q} is the twist of EE by the quadratic character corresponding to KK. By Kato’s work [Kat04], condition (ii) implies that #Selp(EK/)<\#{\rm Sel}_{p^{\infty}}(E^{K}/\mathbb{Q})<\infty, and so

corankpSelp(E/K)=corankpSelp(E/)=1.{\rm corank}_{\mathbb{Z}_{p}}{\rm Sel}_{p^{\infty}}(E/K)={\rm corank}_{\mathbb{Z}_{p}}{\rm Sel}_{p^{\infty}}(E/\mathbb{Q})=1.

By a variant of Theorem 1.1 for the extension K/KK_{\infty}^{-}/K, it follows that the corankp(X(E/K)Γ)=1{\rm corank}_{\mathbb{Z}_{p}}(X(E/K_{\infty}^{-})_{\Gamma^{-}})=1. By Conjecture 1.4, this implies that

(γ1)charΛ(Sˇ(E/K)ΛκHg),(\gamma-1)\nmid{\rm char}_{\Lambda^{-}}\biggl{(}\frac{\check{S}(E/K_{\infty}^{-})}{\Lambda^{-}\cdot\kappa_{\infty}^{\rm Hg}}\biggr{)},

where γΓ\gamma\in\Gamma^{-} is any topological generator (otherwise one would get corankp(X(E/K)Γ)3{\rm corank}_{\mathbb{Z}_{p}}(X(E/K_{\infty}^{-})_{\Gamma^{-}})\geq 3), and so κHg\kappa_{\infty}^{\rm Hg} has non-torsion image κ0Hg\kappa_{0}^{\rm Hg} under the natural map

Sˇ(E/K)Sˇ(E/K)ΓSel(K,TpE).\check{S}(E/K_{\infty}^{-})\twoheadrightarrow\check{S}(E/K_{\infty}^{-})_{\Gamma^{-}}\hookrightarrow{\rm Sel}(K,T_{p}E).

But by construction κ0Hg\kappa_{0}^{\rm Hg} is the Kummer image of the classical Heegner point yKE(K)y_{K}\in E(K) in the Gross–Zagier formula [GZ86], and therefore L(E/K,1)0L^{\prime}(E/K,1)\neq 0. Finally, the factorization L(E/K,s)=L(E,s)L(EK,s)L(E/K,s)=L(E,s)L(E^{K},s) together with condition (ii) implies that ords=1L(E,s)=1{\rm ord}_{s=1}L(E,s)=1, as desired. ∎

Remark 1.6.

The first general pp-converse to the theorem of Gross–Zagier and Kolyvagin for good ordinary primes pp is due to Skinner [Ski20] and independently W. Zhang [Zha14]. The above proof of Proposition 1.5 is closely related to the approach in [Ski20] and is essentially contained in the work of X. Wan [Wan21a], which by using the Iwasawa theory of Heegner points (and their ensuing Λ\Lambda^{-}-adic extension of the BDP formula [CH18]) allows one to dispense with the assumption #(E/)[p]<\#\Sha(E/\mathbb{Q})[p^{\infty}]<\infty forces upon by the original approach.

1.3. BDP main conjecture

In this section we assume that, in addition to (Heeg), the imaginary quadratic field KK satisfies the condition that

(spl) (p)=vv¯ splits in K,\textrm{$(p)=v\overline{v}$ splits in $K$},

with vv the prime of KK above pp induced by our fixed embedding ¯¯p\overline{\mathbb{Q}}\hookrightarrow\overline{\mathbb{Q}}_{p}. On the other hand, the condition that pp is a prime of good ordinary reduction for EE is not necessary here.

Put Λur:=Λ^ppur\Lambda^{\rm ur}:=\Lambda^{-}\hat{\otimes}_{\mathbb{Z}_{p}}\mathbb{Z}_{p}^{\rm ur}, where pur\mathbb{Z}_{p}^{\rm ur} is the completion of the ring of integers of the maximal unramified extension of p\mathbb{Q}_{p}. By the work of Bertolini–Darmon–Prasanna [BDP13] and its Λ\Lambda^{-}-adic extension in [Bra11, CH18], there is a pp-adic LL-function vBDP(f/K)Λur\mathcal{L}_{v}^{\rm BDP}(f/K)\in\Lambda^{\rm ur} characterized by the property that for every character χ:Γp×\chi:\Gamma^{-}\rightarrow\mathbb{C}_{p}^{\times} crystalline at both vv and v¯\overline{v} of weights (n,n)(n,-n) with n>0n>0 we have

vBDP(f/K)2(χ)=C(f/K,χ)Lalg(f/K,χ,1),\mathcal{L}_{v}^{\rm BDP}(f/K)^{2}(\chi)=C(f/K,\chi)\cdot L^{\rm alg}(f/K,\chi,1),

where C(f/K,χ)C(f/K,\chi) is a nonzero term depending on f/Kf/K and χ\chi, and Lalg(f/K,χ,1)L^{\rm alg}(f/K,\chi,1) is the “algebraic part” of the central Rankin–Selberg LL-value L(f/K,χ,1)L(f/K,\chi,1).

On the algebraic side, define the BDP Selmer group by

SelvBDP(E/K):=ker{H1(K,E[p])wvH1(K,w,E[p])}.{\rm Sel}_{v}^{\rm BDP}(E/K_{\infty}^{-}):={\rm ker}\biggl{\{}{\rm H}^{1}(K_{\infty}^{-},E[p^{\infty}])\rightarrow\prod_{w\nmid v}{\rm H}^{1}(K_{\infty,w}^{-},E[p^{\infty}])\biggr{\}}.

In particular, classes in SelvBDP(E/K){\rm Sel}_{v}^{\rm BDP}(E/K_{\infty}^{-}) are trivial at the primes above v¯\overline{v}. Denote by XvBDP(E/K)X_{v}^{\rm BDP}(E/K_{\infty}^{-}) the Pontryagin dual of SelvBDP(E/K){\rm Sel}_{v}^{\rm BDP}(E/K_{\infty}^{-}).

The following can be viewed as a special case of Greenberg’s Iwasawa main conjectures [Gre94] for pp-adic deformations of motives.

Conjecture 1.7 (BDP main conjecture).

XvBDP(E/K)X_{v}^{\rm BDP}(E/K_{\infty}^{-}) is Λ\Lambda^{-}-torsion, with

charΛ(XvBDP(E/K))=(vBDP(f/K)2){\rm char}_{\Lambda^{-}}(X_{v}^{\rm BDP}(E/K_{\infty}^{-}))=\bigl{(}\mathcal{L}_{v}^{\rm BDP}(f/K)^{2}\bigr{)}

as ideals in Λur\Lambda^{\rm ur}.

Proposition 1.8.

Suppose the pp-part of the BSD formula holds in analytic rank 0. Then Conjecture 1.7 implies the pp-part of the BSD formula in analytic rank 11, i.e.

ords=1L(E,s)=1ordp(L(E,1)ΩERegE)=ordp(#(E/)Tam(E/)(#E()tors)2).{\rm ord}_{s=1}L(E,s)=1\quad\Longrightarrow\quad{\rm ord}_{p}\biggl{(}\frac{L^{\prime}(E,1)}{\Omega_{E}\cdot{\rm Reg}_{E}}\biggr{)}={\rm ord}_{p}\biggl{(}\frac{\#\Sha(E/\mathbb{Q})\cdot{\rm Tam}(E/\mathbb{Q})}{(\#E(\mathbb{Q})_{\rm tors})^{2}}\biggr{)}.
Proof.

Suppose ords=1L(E,s)=1{\rm ord}_{s=1}L(E,s)=1, and choose an imaginary quadratic field KK such that:

  • (i)

    Hypotheses (Heeg)\eqref{eq:heeg} and (spl)\eqref{eq:spl} hold;

  • (ii)

    L(EK,1)0L(E^{K},1)\neq 0.

Then ords=1L(E/K,s)=1{\rm ord}_{s=1}L(E/K,s)=1, which by the work of Gross–Zagier and Kolyvagin [Kol88] implies that the classical Heegner point yKE(K)y_{K}\in E(K) is non-torsion, and we have

(3) rankE(K)=1,#(E/K)<;{\rm rank}_{\mathbb{Z}}E(K)=1,\quad\#\Sha(E/K)<\infty;

in particular, the index [E(K):yK][E(K):\mathbb{Z}y_{K}] is finite. Let vBDP(E/K)Λ\mathcal{F}_{v}^{\rm BDP}(E/K_{\infty}^{-})\in\Lambda^{-} be a characteristic power series for XvBDP(E/K)X_{v}^{\rm BDP}(E/K_{\infty}^{-}). Then by the work of Jetchev–Skinner–Wan [JSW17] we have the equality up to a pp-adic unit

(4) vBDP(E/K)(0)p(1ap(E)+pp)2wNcw(E/K)#(E/K)logωE(yK)2[E(K):yK]2,\mathcal{F}_{v}^{\rm BDP}(E/K_{\infty}^{-})(0)\sim_{p}\biggl{(}\frac{1-a_{p}(E)+p}{p}\biggr{)}^{2}\cdot\prod_{w\mid N}c_{w}(E/K)\cdot\#\Sha(E/K)\cdot\frac{{\rm log}_{\omega_{E}}(y_{K})^{2}}{[E(K):\mathbb{Z}y_{K}]^{2}},

where ap(E)=p+1#E(𝔽p)a_{p}(E)=p+1-\#E(\mathbb{F}_{p}), cw(E/K)c_{w}(E/K) is the Tamagawa factor of EE at ww, and logωE:E(Kv)p{\rm log}_{\omega_{E}}:E(K_{v})\rightarrow\mathbb{Q}_{p} is the formal group logarithm. On the other hand, the formula of Bertolini–Darmon–Prasanna [BDP13] yields

(5) pBDP(f/K)2(0)p1uK2c2(1ap(E)+pp)2logωE(yK)2.\mathcal{L}_{p}^{\rm BDP}(f/K)^{2}(0)\sim_{p}\frac{1}{u_{K}^{2}c^{2}}\cdot\biggl{(}\frac{1-a_{p}(E)+p}{p}\biggr{)}^{2}\cdot{\rm log}_{\omega_{E}}(y_{K})^{2}.

Since Conjecture 1.7 implies that vBDP(f/K)(0)pvBDP(E/K)(0)\mathcal{L}_{v}^{\rm BDP}(f/K)(0)\sim_{p}\mathcal{F}_{v}^{\rm BDP}(E/K_{\infty}^{-})(0), combining (4) and (5) we arrive at

[E(K):yK]2p#(E/K)wNcw(E/K)uK2c2.[E(K):\mathbb{Z}y_{K}]^{2}\sim_{p}\#\Sha(E/K)\cdot\prod_{w\mid N}c_{w}(E/K)\cdot u_{K}^{2}c^{2}.

By Gross–Zagier formula [GZ86], this last relation is equivalent to the pp-part of the BSD formula when ords=1L(E/K)=1{\rm ord}_{s=1}L(E/K)=1. Thus using from the factorization

L(E/K,s)=L(E,s)L(EK,s)L(E/K,s)=L(E,s)L(E^{K},s)

and the assumption that the pp-part of the BSD formula holds for L(EK,1)L(E^{K},1), the result follows. ∎

2. Lecture 2: BDP main conjecture at Eisenstein primes

2.1. Main result

Let p2Np\nmid 2N be a prime of good ordinary reduction for EE. When the residual representation

ρE,p:GAut𝔽p(E[p])GL2(𝔽p)\rho_{E,p}:G_{\mathbb{Q}}\rightarrow{\rm Aut}_{\mathbb{F}_{p}}(E[p])\simeq{\rm GL}_{2}(\mathbb{F}_{p})

has “big image” (and satisfies some mild ramification hypotheses), Conjectures 1.4 and 1.7 are known by combining:

  • Euler/Kolyvagin system methods using Heegner points ([MR04], [How04]);

  • A vast generalization of Ribet’s methods ([SU14], [Wan20, Wan21b]).

Now we put ourselves in the opposite case where E[p]E[p] is reducible as a GG_{\mathbb{Q}}-module, say

(6) E[p]ss𝔽p(ϕ)𝔽p(ψ),E[p]^{ss}\simeq\mathbb{F}_{p}(\phi)\oplus\mathbb{F}_{p}(\psi),

where ϕ,ψ:G𝔽p×\phi,\psi:G_{\mathbb{Q}}\rightarrow\mathbb{F}_{p}^{\times} are characters. Note that ψ=ωϕ1\psi=\omega\phi^{-1} by the Weil pairing, where ω:G𝔽p×\omega:G_{\mathbb{Q}}\rightarrow\mathbb{F}_{p}^{\times} is the mod pp cyclotomic character. The goal of this lecture is to outline the proof of the following result from [CGLS22] (in the rank one case) and [CGS23].

Theorem 2.1.

Let KK be an imaginary quadratic field of odd discriminant DK3-D_{K}\neq-3, and satisfying hypotheses (Heeg) and (spl). Suppose p>2p>2 is a good Eisenstein prime for EE with

ϕ|Gp1,ω,\phi|_{G_{p}}\neq 1,\omega,

where GpGG_{p}\subset G_{\mathbb{Q}} is a decomposition group at pp. Then the BDP main conjecture (Conjecture 1.7) and Perrin-Riou’s main conjecture (Conjecture 1.4) both hold.

Recall that Λ\Lambda^{-} denotes the anticyclotomic Iwasawa algebra. From the structure theorem for finitely generated Λ\Lambda^{-}-modules and the Weierstrass preparation theorem, one has Iwasawa λ\lambda- and μ\mu-invariants attached to XvBDP(E/K)X_{v}^{\rm BDP}(E/K_{\infty}^{-}) and vBDP(E/K)\mathcal{L}_{v}^{\rm BDP}(E/K). An understanding of these invariants is a key in Theorem 2.1, whose proof is naturally divided into 2 steps:

  • Step 1: Exploit the congruence (6) to show that

    μ(XvBDP(E/K))\displaystyle\mu(X_{v}^{\rm BDP}(E/K_{\infty}^{-})) =μ(vBDP(E/K))=0,\displaystyle=\mu(\mathcal{L}_{v}^{\rm BDP}(E/K))=0,
    λ(XvBDP(E/K))\displaystyle\lambda(X_{v}^{\rm BDP}(E/K_{\infty}^{-})) =λ(vBDP(E/K)2).\displaystyle=\lambda(\mathcal{L}_{v}^{\rm BDP}(E/K)^{2}).
  • Step 2: Show that XvBDP(E/K)X_{v}^{\rm BDP}(E/K_{\infty}^{-}) is Λ\Lambda^{-}-torsion, with

    charΛ(XvBDP(E/K))(vBDP(f/K)2){\rm char}_{\Lambda^{-}}(X_{v}^{\rm BDP}(E/K_{\infty}^{-}))\supset\bigl{(}\mathcal{L}_{v}^{\rm BDP}(f/K)^{2}\bigr{)}

    as ideals in Λur[1/p]\Lambda^{\rm ur}[1/p].

Clearly the combination of these two imply the equality

charΛ(XvBDP(E/K))=(vBDP(f/K)2){\rm char}_{\Lambda^{-}}(X_{v}^{\rm BDP}(E/K_{\infty}^{-}))=\bigl{(}\mathcal{L}_{v}^{\rm BDP}(f/K)^{2}\bigr{)}

in Λur\Lambda^{\rm ur} predicted by Conjecture 1.7. That they also imply Conjecture 1.4 follows from the equivalence between the two conjectures, a consequence of the Λ\Lambda^{-}-adic analogue of the BDP formula [BDP13] obtained in [CH18].

Remark 2.2.

In a recent work [KY24], T. Keller and M. Yin have removed the hypothesis on ϕ\phi in Theorem 2.1. They have also extended the result to higher weight modular forms, and (using Hida theory in the style of Skinner [Ski16]) even to the case of multiplicative Eisenstein primes.

In the next two subsections we outline the main ideas that go into the proofs of the above Step 1 and Step 2, respectively.

2.2. Anticyclotomic Greenberg–Vatsal method

Denote by SS the set of primes of KK dividing NN, and by ΣS\Sigma\supset S the set of primes of KK dividing NpNp\infty. Let KΣK^{\Sigma} be the Galois group of the maximal extension of KK unramified outside Σ\Sigma, and consider the SS-imprimitive BDP Selmer group

(7) Selv,SBDP(E/K):=ker{H1(KΣ/K,E[p])wv¯H1(K,w,E[p])}.{\rm Sel}_{v,S}^{\rm BDP}(E/K_{\infty}^{-}):={\rm ker}\biggl{\{}{\rm H}^{1}(K^{\Sigma}/K_{\infty}^{-},E[p^{\infty}])\rightarrow\prod_{w\mid\overline{v}}{\rm H}^{1}(K_{\infty,w}^{-},E[p^{\infty}])\biggr{\}}.

Let Xv,SBDP(E/K)X^{\rm BDP}_{v,S}(E/K_{\infty}^{-}) be the Pontryagin dual of Selv,SBDP(E/K){\rm Sel}_{v,S}^{\rm BDP}(E/K_{\infty}^{-}). Multiplying vBDP(f/K)\mathcal{L}_{v}^{\rm BDP}(f/K) by certain elements in Λ\Lambda^{-} interpolating the local Euler factors of L(f/K,χ,s)L(f/K,\chi,s) at s=1s=1 at primes vSv\in S over characters χ\chi of Γ\Gamma^{-}, one can define an SS-imprimitive v,SBDP(f/K)Λur\mathcal{L}_{v,S}^{\rm BDP}(f/K)\in\Lambda^{\rm ur} interpolating the central LL-values of L(f/K,χ,s)L(f/K,\chi,s) at s=1s=1 with the Euler factors at the primes in SS stripped out.

The principle to be exploited is that Conjecture 1.7 should be equivalent to its SS-imprimitive counterpart, so in particular

charΛ(Xv,SBDP(E/K))=?(v,SBDP(f/K)2),{\rm char}_{\Lambda^{-}}(X_{v,S}^{\rm BDP}(E/K_{\infty}))\overset{?}{=}\bigl{(}\mathcal{L}_{v,S}^{\rm BDP}(f/K)^{2}\bigr{)},

with the latter having the advantage (first noticed by Greenberg in the context of classical Iwasawa theory [Gre77]) that the objects involved are better-behaved with respect to congruences.

Let Φ,Ψ:Gp×\Phi,\Psi:G_{\mathbb{Q}}\rightarrow\mathbb{Z}_{p}^{\times} be the Teichmüller lifts of ϕ,ψ\phi,\psi, respectively. Attached to Φ,Ψ\Phi,\Psi one has Λ\Lambda^{-}-cotorsion Selmer groups Selv,S(Φ/K),Selv,S(Ψ/K){\rm Sel}_{v,S}(\Phi/K_{\infty}^{-}),{\rm Sel}_{v,S}(\Psi/K_{\infty}^{-}) (whose definition is recalled in the proof of Proposition 2.3 below) with associated Iwasawa λ\lambda-invariants denoted λϕS,λψS\lambda_{\phi}^{S},\lambda_{\psi}^{S}, respectively.

Proposition 2.3.

Suppose p2Np\nmid 2N is such that E[p]ss𝔽(ϕ)𝔽(ψ)E[p]^{ss}\simeq\mathbb{F}(\phi)\oplus\mathbb{F}(\psi) as GG_{\mathbb{Q}}-modules with ϕ|Gp1,ω\phi|_{G_{p}}\neq 1,\omega. Then Xv,SBDP(E/K)X_{v,S}^{\rm BDP}(E/K_{\infty}^{-}) is Λ\Lambda^{-}-torsion, with

μ(Xv,SBDP(E/K))=0,λ(Xv,SBDP(E/K))=λϕS+λψS.\mu(X_{v,S}^{\rm BDP}(E/K_{\infty}^{-}))=0,\quad\quad\lambda(X_{v,S}^{\rm BDP}(E/K_{\infty}^{-}))=\lambda_{\phi}^{S}+\lambda_{\psi}^{S}.
Proof.

Let KϕK_{\phi} is the fixed field of ker(ϕ|GK){\rm ker}(\phi|_{G_{K}}), and let MM_{\infty} be the maximal abelian pro-pp extension of KKϕK_{\infty}^{-}K_{\phi} unramfied outside vv and SS. By standard arguments, the Selmer group

(8) Selv,S(Φ/K)\displaystyle{\rm Sel}_{v,S}(\Phi/K_{\infty}^{-}) :=ker{H1(KΣ/K,p/p(Φ))wv¯H1(K,w,p/p(Φ))}\displaystyle:={\rm ker}\biggl{\{}{\rm H}^{1}(K^{\Sigma}/K_{\infty}^{-},\mathbb{Q}_{p}/\mathbb{Z}_{p}(\Phi))\rightarrow\prod_{w\mid\overline{v}}{\rm H}^{1}(K_{\infty,w}^{-},\mathbb{Q}_{p}/\mathbb{Z}_{p}(\Phi))\biggr{\}}
Homcts(Gal(M/KKϕ),p/p)\displaystyle\,\simeq{\rm Hom}_{\rm cts}({\rm Gal}(M_{\infty}/K_{\infty}^{-}K_{\phi}),\mathbb{Q}_{p}/\mathbb{Z}_{p})

is Λ\Lambda^{-}-cotorsion and with no proper Λ\Lambda^{-}-submodules of finite index. On the other hand, by Hida’s result on the vanishing of the μ\mu-invariant of anticyclotomic Katz pp-adic LL-functions [Hid10] together with Rubin’s proof of the Iwasawa main conjecture for KK [Rub91], we have μ(Selv,S(Φ/K))=0\mu({\rm Sel}_{v,S}(\Phi/K_{\infty}^{-})^{\vee})=0. Thus we see that Selv,S(Φ/K){\rm Sel}_{v,S}(\Phi/K_{\infty}^{-}) is pp-divisible, and therefore the λ\lambda-invariant of its Pontryagin dual Selv,S(Φ/K){\rm Sel}_{v,S}(\Phi/K_{\infty}^{-})^{\vee} is given by

(9) λϕS=dim𝔽p(Selv,S(Φ/K)[p]).\lambda_{\phi}^{S}={\rm dim}_{\mathbb{F}_{p}}\bigl{(}{\rm Sel}_{v,S}(\Phi/K_{\infty}^{-})[p]\bigr{)}.

From our conditions on ϕ\phi, it is easy to see that the natural map

H1(K,p/p(ϕ))H1(K,p/p(Φ))[p]{\rm H}^{1}(K_{\infty}^{-},\mathbb{Q}_{p}/\mathbb{Z}_{p}(\phi))\rightarrow{\rm H}^{1}(K_{\infty}^{-},\mathbb{Q}_{p}/\mathbb{Z}_{p}(\Phi))[p]

gives Selv,S(ϕ/K)Selv,S(Φ/K)[p]{\rm Sel}_{v,S}(\phi/K_{\infty}^{-})\simeq{\rm Sel}_{v,S}(\Phi/K_{\infty}^{-})[p], where Selv,S(ϕ/K){\rm Sel}_{v,S}(\phi/K_{\infty}^{-}) is the residual Selmer group defined as in (8) with 𝔽p(ϕ)\mathbb{F}_{p}(\phi) in place of p/p(Φ)\mathbb{Q}_{p}/\mathbb{Z}_{p}(\Phi). Of course, the same results apply with ψ=ωϕ1\psi=\omega\phi^{-1} in place of ϕ\phi.

Letting Selv,SBDP(E[p]/K){\rm Sel}_{v,S}^{\rm BDP}(E[p]/K_{\infty}^{-}) be the Selmer group defined as in (7) with E[p]E[p^{\infty}] replaced by E[p]E[p], from the short exact sequence

(10) 0𝔽p(ϕ)E[p]𝔽p(ψ)00\rightarrow\mathbb{F}_{p}(\phi)\rightarrow E[p]\rightarrow\mathbb{F}_{p}(\psi)\rightarrow 0

we immediately arrive at the short exact sequence

(11) 0Selv,S(ϕ/K)Selv,SBDP(E[p]/K)Selv,S(ψ/K)0.0\rightarrow{\rm Sel}_{v,S}(\phi/K_{\infty}^{-})\rightarrow{\rm Sel}_{v,S}^{\rm BDP}(E[p]/K_{\infty}^{-})\rightarrow{\rm Sel}_{v,S}(\psi/K_{\infty}^{-})\rightarrow 0.

The above thus shows that Selv,S(E[p]/K)Selv,SBDP(E/K)[p]{\rm Sel}_{v,S}(E[p]/K_{\infty}^{-})\simeq{\rm Sel}_{v,S}^{\rm BDP}(E/K_{\infty}^{-})[p] is finite, and so Xv,SBDP(E/K)X_{v,S}^{\rm BDP}(E/K_{\infty}^{-}) is Λ\Lambda^{-}-torsion with μ=0\mu=0. Since similarly as before the λ\lambda-invariant of Selv,SBDP(Φ/K){\rm Sel}_{v,S}^{\rm BDP}(\Phi/K_{\infty}^{-})^{\vee} can be computed as dim𝔽p(Selv,SBDP(E/K)[p]){\rm dim}_{\mathbb{F}_{p}}({\rm Sel}_{v,S}^{\rm BDP}(E/K_{\infty}^{-})[p]), the last claim in the proposition follows from (11) and (9). ∎

On the analytic side, (10) implies a congruence

fEϕ,ψ(modp)f\equiv E_{\phi,\psi}\pmod{p}

between the newform ff attached to EE and a weight 22 Eisenstein series Eϕ,ψE_{\phi,\psi} attached to the Dirichlet characters Φ,Ψ\Phi,\Psi. From the constructions of v,SBDP(f/K)\mathcal{L}_{v,S}^{\rm BDP}(f/K) and of the Katz pp-adic LL-function for characters of KK [Kat78, HT93], building on work of Kriz [Kri16] one then deduces a congruence

v,SBDP(E/K)2v,SKatz(Φ)v,SKatz(Ψ)(modpΛur),\mathcal{L}_{v,S}^{\rm BDP}(E/K)^{2}\equiv\mathcal{L}_{v,S}^{\rm Katz}(\Phi)\cdot\mathcal{L}_{v,S}^{\rm Katz}(\Psi)\pmod{p\Lambda^{\rm ur}},

which together with the aforementioned vanishing result of Hida yields the equalities

μ(v,SBDP(E/K))=0,λ(v,SBDP(E/K)2)=λ(v,SKatz(Φ))+λ(v,SKatz(Ψ)).\mu(\mathcal{L}_{v,S}^{\rm BDP}(E/K))=0,\quad\quad\lambda(\mathcal{L}_{v,S}^{\rm BDP}(E/K)^{2})=\lambda(\mathcal{L}^{\rm Katz}_{v,S}(\Phi))+\lambda(\mathcal{L}^{\rm Katz}_{v,S}(\Psi)).

By Rubin’s proof of the Iwasawa main conjecture for KK, these last two equalities and Proposition 2.3 yield the proof of Step 1.

2.3. Kolyvagin system argument with “error terms”

As noted in §2.1\S\ref{subsec:lec3-main}, the proof of Theorem 2.1 exploits the following interplay between Conjectures 1.7 and Conjecture 1.4.

Proposition 2.4.

Suppose E(K)[p]=0E(K)[p]=0. Then the following are equivalent:

  1. (1)

    XvBDP(E/K)X_{v}^{\rm BDP}(E/K_{\infty}^{-}) is Λ\Lambda^{-}-torsion, vBDP(f/K)\mathcal{L}_{v}^{\rm BDP}(f/K) is nonzero, and

    charΛ(XvBDP(E/K))(vBDP(f/K)2){\rm char}_{\Lambda^{-}}(X_{v}^{\rm BDP}(E/K_{\infty}^{-}))\supset\bigl{(}\mathcal{L}_{v}^{\rm BDP}(f/K)^{2}\bigr{)}

    in Λur[1/p]\Lambda^{\rm ur}[1/p].

  2. (2)

    X(E/K)X(E/K_{\infty}^{-}) has Λ\Lambda^{-}-rank one, κHg\kappa_{\infty}^{\rm Hg} is not Λ\Lambda^{-}-torsion, and

    charΛ(X(E/K)tors)charΛ(Sˇ(E/K)ΛκHg)2{\rm char}_{\Lambda^{-}}(X(E/K_{\infty}^{-})_{\rm tors})\supset{\rm char}_{\Lambda^{-}}\biggl{(}\frac{\check{S}(E/K_{\infty}^{-})}{\Lambda^{-}\cdot\kappa_{\infty}^{\rm Hg}}\biggr{)}^{2}

    in Λ[1/p]\Lambda^{-}[1/p].

The same result holds for the opposite divisibilities, and without inverting pp.

Sketch of proof.

By pp-ordinarity, there is a unique quotient TpEpT_{p}^{-}E\simeq\mathbb{Z}_{p} of TpET_{p}E where the GpG_{p}-action is unramified. From the two-variable extension (due to Loeffler–Zerbes [LZ14]) of the cyclotomic Perrin-Riou big logarithm map [PR94] one can deduce the existence of an injective generalized Coleman power series map with pseudo-null cokernel

Colv:limnH1(Kn,v,TpE)Λur,{\rm Col}_{v}:\varprojlim_{n}{\rm H}^{1}(K_{n,v}^{-},T_{p}^{-}E)\hookrightarrow\Lambda^{\rm ur},

which by virtue of a Λ\Lambda^{-}-adic extension of the BDP formula (see [CH18]) sends the natural image of resv(κHg){\rm res}_{v}(\kappa_{\infty}^{\rm Hg}) to vBDP(f/K)\mathcal{L}_{v}^{\rm BDP}(f/K). The result then follows from a double application (one involving resv{\rm res}_{v} and another involving resv¯{\rm res}_{\overline{v}}) of Poitou–Tate duality. ∎

Since the fact that κHg\kappa_{\infty}^{\rm Hg} is not Λ\Lambda^{-}-torsion follows from the work of Cornut–Vatsal [Cor02, Vat03]222Alternatively, it also follows from the Λ\Lambda^{-}-adic BDP formula and the nonvanishing of vBDP(f/K)\mathcal{L}_{v}^{\rm BDP}(f/K) (see [Hsi14]) via Hida’s methods., the proof of Step 2, and hence of Theorem 2.1, is thus reduced to the following.

Proposition 2.5.

Suppose E(K)[p]=0E(K)[p]=0. Then X(E/K)X(E/K_{\infty}^{-}) has Λ\Lambda^{-}-rank one, and we have

charΛ(X(E/K)tors)charΛ(Sˇ(E/K)ΛκHg)2{\rm char}_{\Lambda^{-}}(X(E/K_{\infty}^{-})_{\rm tors})\supset{\rm char}_{\Lambda^{-}}\biggl{(}\frac{\check{S}(E/K_{\infty}^{-})}{\Lambda^{-}\cdot\kappa_{\infty}^{\rm Hg}}\biggr{)}^{2}

in Λ[1/p]\Lambda^{-}[1/p].

Proof.

This follows from a refinement of Kolyvagin’s methods building on some of the techniques developed by Howard and Nekovář (see [How04, Nek07]) in related settings. The difficulty in the present case lies in the fact that no “big image” hypotheses on TpET_{p}E is being made.

By standard arguments, the non-triviality of κHg\kappa_{\infty}^{\rm Hg} and a generalized Cassels–Tate pairing implies the existence of a Λ\Lambda^{-}-module pseudo-isomorphism

X(E/K)ΛMMX(E/K_{\infty}^{-})\sim\Lambda^{-}\oplus M\oplus M

with MM a finitely generated torsion Λ\Lambda^{-}-module. Thus the task is to compare the characteristic ideal of MM with that of Sˇ(E/K)/ΛκHg{\check{S}(E/K_{\infty}^{-})}/\Lambda^{-}\cdot\kappa_{\infty}^{\rm Hg}. Let 𝔓\mathfrak{P} be a height one prime of Λ\Lambda^{-} with 𝔓(p)\mathfrak{P}\neq(p), and take a sequence 𝔓m\mathfrak{P}_{m} of height one primes of Λ\Lambda^{-} with 𝔓m𝔓\mathfrak{P}_{m}\to\mathfrak{P} as mm\to\infty. Note that each such 𝔓m\mathfrak{P}_{m} corresponds to a character αm:ΓRm×\alpha_{m}:\Gamma^{-}\rightarrow R_{m}^{\times} with RmR_{m} a finite extension of p\mathbb{Z}_{p}. By inductively choosing a sequence of Kolyvagin primes (of “depth kk” for k0k\gg 0) using Cebotarev, one arrives at the inequality

lengthRm(M𝔓m)lengthRm(Sˇ(E/K)𝔓m/Rmκ,𝔓mHg)+Em,{\rm length}_{R_{m}}(M_{\mathfrak{P}_{m}})\leq{\rm length}_{R_{m}}\bigl{(}\check{S}(E/K_{\infty})_{\mathfrak{P}_{m}}/R_{m}\cdot\kappa_{\infty,\mathfrak{P}_{m}}^{\rm Hg}\bigr{)}+E_{m},

where EmE_{m} is an “error term” behaving asymptotically like ordp(αm(γ)αm1(γ)){\rm ord}_{p}(\alpha_{m}(\gamma)-\alpha_{m}^{-1}(\gamma)) as mm\to\infty. Thus Em=O(1)E_{m}=O(1) as long as 𝔓(γ1)\mathfrak{P}\neq(\gamma-1), and hence by a control theorem in the style of Mazur–Rubin [MR04], letting 𝔓\mathfrak{P} vary we deduce that the claimed divisibility holds in Λ[1/p,1/(γ1)]\Lambda^{-}[1/p,1/(\gamma-1)]. To handle the prime 𝔓=(γ1)\mathfrak{P}=(\gamma-1), one takes a sequence 𝔓m\mathfrak{P}_{m} with αm1(modpm)\alpha_{m}\equiv 1\pmod{p^{m}}, and choosing a sequence of Kolyvagin primes as above, but this time exploiting the action of complex conjugation on (TpEαm)/pm(T_{p}E\otimes\alpha_{m})/p^{m}, a different induction argument yields the inequality

lengthRm(M𝔓m)lengthRm(Sˇ(E/K)𝔓m/Rmκ,𝔓mHg)+Em,{\rm length}_{R_{m}}(M_{\mathfrak{P}_{m}})\leq{\rm length}_{R_{m}}\bigl{(}\check{S}(E/K_{\infty})_{\mathfrak{P}_{m}}/R_{m}\cdot\kappa_{\infty,\mathfrak{P}_{m}}^{\rm Hg}\bigr{)}+E_{m},

with an error term EmE_{m} now bounded independently of mm, which by a control theorem yields the desired divisibility also at the augmentation ideal (γ1)(\gamma-1).∎

Remark 2.6.

For the application to the pp-converse to the theorem of Gross–Zagier and Kolyvagin, it suffices to have the divisibility “\subset” in Theorem 2.1 (rather than the equality of characteristic ideals) after inverting (γ1)(\gamma-1) and (p)(p); similarly, an ambiguity by powers of (γ1)(\gamma-1) is harmless for the application to the pp-part of the BSD formula in analytic rank one. However, the final from of the result of Theorem 2.1 obtained in [CGS23] is essential to the proof of Mazur’s main conjecture at Eisenstein primes explained in the next lecture.

3. Lecture 3: Mazur’s main conjecture at Eisenstein primes

3.1. Main result

In this lecture we explain the proof of the following result from [CGS23].

Theorem 3.1.

Let E/E/\mathbb{Q} be an elliptic curve of conductor NN, and let p2Np\nmid 2N be a good Eisenstein prime for EE, i.e. such that

E[p]ss𝔽p(ϕ)𝔽p(ψ)E[p]^{ss}\simeq\mathbb{F}_{p}(\phi)\oplus\mathbb{F}_{p}(\psi)

for characters ϕ,ψ=ωϕ1:G𝔽p×\phi,\psi=\omega\phi^{-1}:G_{\mathbb{Q}}\rightarrow\mathbb{F}_{p}^{\times}. Assume that ϕ|Gp1,ω\phi|_{G_{p}}\neq 1,\omega. Then Mazur’s main conjecture (Conjecture 1.2) holds for EE.

Previously, the following results were known towards Conjecture 1.2 for good Eisenstein primes pp:

  • Rubin [Rub91]: proof in the CM case.

  • Kato [Kat99]: X(E/)X(E/\mathbb{Q}_{\infty}) is Λ\Lambda-torsion, with

    charΛ(X(E/))=(pMSD(E/)){\rm char}_{\Lambda}(X(E/\mathbb{Q}_{\infty}))=\bigl{(}\mathcal{L}_{p}^{\rm MSD}(E/\mathbb{Q})\bigr{)}

    in Λ[1/p]\Lambda[1/p].

  • Wüthrich [Wut14]: pMSD(E/)\mathcal{L}_{p}^{\rm MSD}(E/\mathbb{Q}) is integral, and Kato’s divisibility holds in Λ\Lambda.

  • Greenberg–Vatsal [GV00]: proof in “half” of the cases; more precisely, when

    (GV) ϕ={unramified at p and odd, orramified at p and even;\displaystyle\phi=\begin{cases}\textrm{unramified at $p$ and odd, or}\\[1.99997pt] \textrm{ramified at $p$ and even;}\end{cases}

    in other words, when E[p]E[p^{\infty}] contains no cyclic subgroups of multiplicative type.

The condition on ϕ\phi in the Greenberg–Vatsal result is needed to ensure the vanishing of μ(X(E/))\mu(X(E/\mathbb{Q}_{\infty})) building on the work of Ferrero–Washington [FW79] and Mazur–Wiles [MW84]. Without this restriction on ϕ\phi, it was shown by Greenberg [Gre99] that μ(X(E/))\mu(X(E/\mathbb{Q}_{\infty})) is positive, and by work of Stevens [Ste89] one similarly knows that μ(pMSD(E/))>0\mu(\mathcal{L}_{p}^{\rm MSD}(E/\mathbb{Q}))>0 when ϕ\phi doesn’t satisfy (GV).

Thus to extend the Greenberg–Vatsal method beyond the cases covered by (GV) one is faced with the challenge of determining the exact value of the algebraic and analytic invariants, which seems to be a very difficult problem (but see [BP19] and [PW24] for interesting recent works in this direction).

The proof of Theorem 3.1 is based on a different method to compare Iwasawa invariants. The method is insensitive to the value of μ\mu, and in particular gives a new proof of the Greenberg–Vatsal result in the cases they considered.

3.2. Comparing Iwasawa invariants

In this section we explain the strategy from [CGS23] to arrive at the equalities

(12) μ(X(E/))=μ(pMSD(E/)),λ(X(E/))=λ(pMSD(E/)),\mu(X(E/\mathbb{Q}_{\infty}))=\mu(\mathcal{L}_{p}^{\rm MSD}(E/\mathbb{Q})),\quad\lambda(X(E/\mathbb{Q}_{\infty}))=\lambda(\mathcal{L}_{p}^{\rm MSD}(E/\mathbb{Q})),

which combined with Kato’s divisibility (as integrally refined by Wüthrich [Wut14]) yields Theorem 3.1. Some of the details on how the strategy is carried out are given in the next subsection.

The following discussion applies to any prime p2Np\nmid 2N of good ordinary reduction for EE. Let KK be an imaginary quadratic field satisfying (spl), and let K+K_{\infty}^{+} be the cyclotomic p\mathbb{Z}_{p}-extension of KK. Following Greenberg [Gre89], we define the ordinary Selmer group of EE over K+K_{\infty}^{+} by

Selp(E/K+):=ker{H1(K+,E[p])wpH1(K,w+,E[p])Aw×wpH1(Iw,E[p])},{\rm Sel}_{p^{\infty}}(E/K_{\infty}^{+}):=\ker\biggr{\{}{\rm H}^{1}(K_{\infty}^{+},E[p^{\infty}])\rightarrow\prod_{w\mid p}\frac{{\rm H}^{1}(K_{\infty,w}^{+},E[p^{\infty}])}{A_{w}}\times\prod_{w\nmid p}{\rm H}^{1}(I_{w},E[p^{\infty}])\biggr{\}},

where Aw:=im{E+[p]E[p]}divA_{w}:={\rm im}\{E^{+}[p^{\infty}]\rightarrow E[p^{\infty}]\}_{\rm div}, with E+[p]E^{+}[p^{\infty}] the kernel of the reduction map at pp, and IwGK,w+I_{w}\subset G_{K_{\infty,w}^{+}} the inertia subgroup at ww. On the analytic side, Hida’s pp-adic Rankin method [Hid85] (as studied by Perrin-Riou [PR88] in detail in the case of Rankin–Selberg convolution of ff with theta series of KK) yields the construction of a 22-variable pp-adic LL-function

pPR(E/K)ΛK:=p[[Gal(K/K)]],\mathcal{L}_{p}^{\rm PR}(E/K)\in\Lambda_{K}:=\mathbb{Z}_{p}[[{\rm Gal}(K_{\infty}/K)]],

where K/KK_{\infty}/K is the p2\mathbb{Z}_{p}^{2}-extension of KK, interpolating the algebraic part of the central LL-values L(f/K,χ,1)L(f/K,\chi,1) (with a normalized period depending on EE), as χ\chi runs over the finite orders characters of ΓK\Gamma_{K}.

The action of complex conjugation yields a decomposition ΓKΓ+×Γ\Gamma_{K}\simeq\Gamma^{+}\times\Gamma^{-} into ±\pm-eigenspaces, with Γ+\Gamma^{+} (resp. Γ\Gamma^{-}) idenfitied with the Galois group of the cyclotomite (resp. anticyclotomic) p\mathbb{Z}_{p}-extension of KK. Denoting by pPR(E/K)+\mathcal{L}_{p}^{\rm PR}(E/K)^{+} the image of pPR(E/K)\mathcal{L}_{p}^{\rm PR}(E/K) under the natural projection

ΛKΛ+:=p[[Gal(K+/K)]]Λ,\Lambda_{K}\rightarrow\Lambda^{+}:=\mathbb{Z}_{p}[[{\rm Gal}(K_{\infty}^{+}/K)]]\simeq\Lambda,

Greenberg’s Iwasawa Main Conjecture for general pp-ordinary representations [Gre89] predicts that for {+,}\star\in\{+,\emptyset\}, the Pontryagin dual X(E/K)=Homp(Selp(E/K),p/p)X(E/K_{\infty}^{\star})={\rm Hom}_{\mathbb{Z}_{p}}({\rm Sel}_{p^{\infty}}(E/K_{\infty}^{\star}),\mathbb{Q}_{p}/\mathbb{Z}_{p}) is Λ\Lambda^{\star}-torsion, with

(13) charΛ(X(E/K))=?(pPR(E/K)).{\rm char}_{\Lambda^{\star}}(X(E/K_{\infty}^{\star}))\overset{?}{=}\bigl{(}\mathcal{L}_{p}^{\rm PR}(E/K)^{\star}\bigr{)}.

As a motivation for the general argument, we note that the aforementioned results, together with Theorem 2.1, already imply a proof of this conjecture in some cases. Indeed, denote by EKE^{K} the twist of EE by the quadratic character corresponding to KK. Kato’s integral divisibility towards Conjecture 1.2 for EE and EKE^{K} yields the divisibility

(14) charΛ+(X(E/K+))(pPR(E/K)+),{\rm char}_{\Lambda^{+}}(X(E/K_{\infty}^{+}))\supset\bigl{(}\mathcal{L}_{p}^{\rm PR}(E/K)^{+}\bigr{)},

while from Theorem 2.1 and the fact that KK+=KK_{\infty}^{-}\cap K_{\infty}^{+}=K one can show the equality up to a pp-adic unit

(15) (E/K+)(0)ppPR(E/K)+(0),\mathcal{F}(E/K_{\infty}^{+})(0)\sim_{p}\mathcal{L}_{p}^{\rm PR}(E/K)^{+}(0),

where (E/K+)Λ+\mathcal{F}(E/K_{\infty}^{+})\in\Lambda^{+} is any characteristic power series for X(E/K+)X(E/K_{\infty}^{+}). It is easy to see that the combination of (14) and (15) implies (13), and hence Conjecture 1.2, provided pPR(E/K)+(0)0\mathcal{L}_{p}^{\rm PR}(E/K)^{+}(0)\neq 0. Unfortunately, hypothesis (Heeg) forces this value to vanish for sign reasons. Using Beilinson–Flach classes and their explicit reciprocity laws (as described in more detail in the next subsection), the same conclusion applies provided vBDP(E/K)(0)0\mathcal{L}_{v}^{\rm BDP}(E/K)(0)\neq 0, which by the main result of [BDP13] amounts to the requirement that the Heegner point yKE(K)y_{K}\in E(K) is non-torsion.

To treat the general case, the idea is to take an anticyclotomic character

α:Γp×\alpha:\Gamma^{-}\rightarrow\mathbb{Z}_{p}^{\times}

with α1(modpM)\alpha\equiv 1\pmod{p^{M}}, for some M0M\gg 0 to stay away from any problematic zeroes; in particular, so that vBDP(E/K)(α)0\mathcal{L}_{v}^{\rm BDP}(E/K)(\alpha)\neq 0. From a refinement [BSTW23] of the Beilinson–Flach classes constructed by Lei–Loeffler–Zerbes [LLZ14, LLZ15] and Kings–Loeffler–Zerbes [KLZ20, KLZ17] (in particular allowing one of the forms used in the construction to be a residually reducible and pp-indistinguished Hida family with CM by KK), and their explicit reciprocity laws, one can deduce from Theorem 2.1 a proof of the α\alpha-twisted variant of conjecture (13) for K+/KK_{\infty}^{+}/K:

(16) charΛ+(X(E(α)/K+))=?(pPR(E(α)/K)+).{\rm char}_{\Lambda^{+}}(X(E(\alpha)/K_{\infty}^{+}))\overset{?}{=}\bigl{(}\mathcal{L}_{p}^{\rm PR}(E(\alpha)/K)^{+}\bigr{)}.

Establishing (16) for a suitable choice of α\alpha as above is the key to the proof of Theorem 3.1, since from the easy congruences

charΛ+(X(E(α)/K+))\displaystyle{\rm char}_{\Lambda^{+}}(X(E(\alpha)/K_{\infty}^{+})) charΛ+(X(E/K+))(modpM),\displaystyle\equiv{\rm char}_{\Lambda^{+}}(X(E/K_{\infty}^{+}))\pmod{p^{M}},
pPR(E(α)/K)+\displaystyle\mathcal{L}_{p}^{\rm PR}(E(\alpha)/K)^{+} pPR(E/K)+(modpM),\displaystyle\equiv\mathcal{L}_{p}^{\rm PR}(E/K)^{+}\pmod{p^{M}},

it implies the equalities

μ(X(E/K+))=μ(pPR(E/K)+),λ(X(E/K+))=λ(pPR(E/K)+)\mu(X(E/K_{\infty}^{+}))=\mu(\mathcal{L}_{p}^{\rm PR}(E/K)^{+}),\quad\lambda(X(E/K_{\infty}^{+}))=\lambda(\mathcal{L}_{p}^{\rm PR}(E/K)^{+})

(in particular, without knowing the specific value of the μ\mu-invariants!). Together with the integral divisibility (14), these equalities yield the proof of conjecture (13) for K+/KK_{\infty}^{+}/K, from where the proof of Theorem 3.1 can be deduced from Kato’s work.

3.3. From anticyclotomic to cyclotomic

It remains to outline the proof of (16).

Since Conjecture 1.2 is known to be isogeny invariant, we replace EE by the elliptic curve E/E_{\bullet}/\mathbb{Q} is the same isogeny class constructed by Wüthrich [Wut14]. This can be characterized as the elliptic curve whose pp-adic Tate module TpET_{p}E_{\bullet} agrees with the geometric lattice in the pp-adic representation VfV_{f} realized as the maximal quotient of Het1(Y1(N)¯,p(1)){\rm H}^{1}_{\rm et}(Y_{1}(N)_{\overline{\mathbb{Q}}},\mathbb{Q}_{p}(1)) on which the Hecke operators acts with the same eigenvalues as ff.

Let HIw1(K,TpE){\rm H}^{1}_{\rm Iw}(K_{\infty},T_{p}E_{\bullet}) be the Iwasawa cohomology for the p2\mathbb{Z}_{p}^{2}-extension K/KK_{\infty}/K, which by Shapiro’s lemma can be identified with H1(K,TpE^pΛK){\rm H}^{1}(K,T_{p}E_{\bullet}\hat{\otimes}_{\mathbb{Z}_{p}}\Lambda_{K}). By the work of Lei–Loeffler–Zerbes and Kings–Loeffler–Zerbes, as refined in the case of interest in recent work of Burungale–Skinner–Tian–Wan, there exists a class

BFαHIw1(K,TpE(α)){\rm BF}_{\alpha}\in{\rm H}_{\rm Iw}^{1}(K_{\infty},T_{p}E_{\bullet}(\alpha))

together with two explicit reciprocity laws:

  • (1)

    At the prime vv, the class BFα{\rm BF}_{\alpha} naturally lands in the subspace H1(Kv,Tp+E(α)){\rm H}^{1}(K_{v},T_{p}^{+}E_{\bullet}(\alpha)) and there is a generalized Coleman power series map

    Colv:HIw1(K,v,Tp+E(α))pur^pΛK{\rm Col}_{v}:{\rm H}^{1}_{\rm Iw}(K_{\infty,v},T_{p}^{+}E_{\bullet}(\alpha))\hookrightarrow\mathbb{Z}_{p}^{\rm ur}\hat{\otimes}_{\mathbb{Z}_{p}}\Lambda_{K}

    sending resv(BFα){\rm res}_{v}({\rm BF}_{\alpha}) to vGr(f(α)/K)\mathcal{L}_{v}^{\rm Gr}(f(\alpha)/K), where vGr(f(α)/K)\mathcal{L}_{v}^{\rm Gr}(f(\alpha)/K) is a two-variable Rankin–Selberg pp-adic LL-function with the property that its natural image vGr(f(α)/K)\mathcal{L}_{v}^{\rm Gr}(f(\alpha)/K)^{-} in Λur\Lambda^{\rm ur} satisfies (as can be checked by comparing their respective interpolation properties)

    (vGr(f(α)/K))=(vBDP(f(α)/K)2),\bigl{(}\mathcal{L}_{v}^{\rm Gr}(f(\alpha)/K)^{-}\bigr{)}=\bigl{(}\mathcal{L}_{v}^{\rm BDP}(f(\alpha)/K)^{2}\bigr{)},

    where vBDP(f(α)/K)\mathcal{L}_{v}^{\rm BDP}(f(\alpha)/K) is the twist of vBDP(f(α)/K)\mathcal{L}_{v}^{\rm BDP}(f(\alpha)/K) by the anticyclotomic character α\alpha.

  • (2)

    At the prime v¯\overline{v}, there is a generalized Coleman power series map

    Colv¯:HIw1(K,v¯,TpE(α))ΛK,{\rm Col}_{\overline{v}}:{\rm H}_{\rm Iw}^{1}(K_{\infty,\overline{v}},T_{p}^{-}E_{\bullet}(\alpha))\hookrightarrow\Lambda_{K},

    where TpE(α):=TpE(α)/Tp+E(α)T_{p}^{-}E_{\bullet}(\alpha):=T_{p}E_{\bullet}(\alpha)/T_{p}^{+}E_{\bullet}(\alpha), sending the natural image of BFα{\rm BF}_{\alpha} to pPR(E(α)/K)\mathcal{L}_{p}^{\rm PR}(E(\alpha)/K).

The cyclotomic projection BFα+HIw1(K+,TpE(α)){\rm BF}_{\alpha}^{+}\in{\rm H}^{1}_{\rm Iw}(K_{\infty}^{+},T_{p}E_{\bullet}(\alpha)) is the base class of a cyclotomic Euler system for TpE(α)T_{p}E_{\bullet}(\alpha), and for a suitable choice of α\alpha it can be shown to be nonzero as a consequence of Rohrlich’s nonvanishing results [Roh84] and the second of the above explicit reciprocity laws. By the Euler system machinery [Rub00], one thus obtains that a certain dual Selmer group Xord,str(E(α)/K+)X_{{\rm ord},{\rm str}}(E_{\bullet}(\alpha)/K_{\infty}^{+}) (dual to the compact Selmer group Selord,rel(K+,TpE(α)){\rm Sel}_{{\rm ord},{\rm rel}}(K_{\infty}^{+},T_{p}E_{\bullet}(\alpha)) on which the class BFα+{\rm BF}_{\alpha}^{+} lives) is Λ+\Lambda^{+}-torsion, with characteristic ideal satisfying the divisibility

charΛ+(Xord,str(E(α)/K+))charΛ+(Selord,rel(K+,TpE(α))Λ+BFα+){\rm char}_{\Lambda^{+}}\bigl{(}X_{{\rm ord},{\rm str}}(E_{\bullet}(\alpha)/K_{\infty}^{+})\bigr{)}\supset{\rm char}_{\Lambda^{+}}\biggl{(}\frac{{\rm Sel}_{{\rm ord},{\rm rel}}(K_{\infty}^{+},T_{p}E_{\bullet}(\alpha))}{\Lambda^{+}\cdot{\rm BF}_{\alpha}^{+}}\biggr{)}

in Λ+[1/p]\Lambda^{+}[1/p]. By the commutative hexagon deduced from Poitou–Tate duality:

HIw1(K,v¯+,TpE(α))Λ+resv¯(BFα+){\frac{{\rm H}^{1}_{\rm Iw}(K_{\infty,\overline{v}}^{+},T_{p}^{-}E_{\bullet}(\alpha))}{\Lambda^{+}\cdot{\rm res}_{\overline{v}}({\rm BF}_{\alpha}^{+})}}X(E(α)/K+){X(E_{\bullet}(\alpha)/K_{\infty}^{+})}Selord,rel(K+,TpE(α))Λ+BFα+{\frac{{\rm Sel}_{{\rm ord},{\rm rel}}(K_{\infty}^{+},T_{p}^{-}E_{\bullet}(\alpha))}{\Lambda^{+}\cdot{\rm BF}_{\alpha}^{+}}}Xord,str(E(α)/K+){X_{{\rm ord},{\rm str}}(E_{\bullet}(\alpha)/K_{\infty}^{+})}HIw1(K,v+,Tp+E(α))Λ+resv(BFα+){\frac{{\rm H}^{1}_{\rm Iw}(K_{\infty,v}^{+},T_{p}^{+}E_{\bullet}(\alpha))}{\Lambda^{+}\cdot{\rm res}_{v}({\rm BF}_{\alpha}^{+})}}Xv(E(α)/K+){X_{v}(E_{\bullet}(\alpha)/K_{\infty}^{+})}resv¯\scriptstyle{{\rm res}_{\overline{v}}}resv\scriptstyle{{\rm res}_{{v}}}

this translates into the divisibilities

(17) charΛ+(X(E(α)/K+))charΛ+(HIw1(K,v¯+,TpE(α))Λ+resv¯(BFα+))=(pPR(E(α)/K)+){\rm char}_{\Lambda^{+}}(X(E_{\bullet}(\alpha)/K_{\infty}^{+}))\supset{\rm char}_{\Lambda^{+}}\biggl{(}\frac{{\rm H}^{1}_{\rm Iw}(K_{\infty,\overline{v}}^{+},T_{p}^{-}E_{\bullet}(\alpha))}{\Lambda^{+}\cdot{\rm res}_{\overline{v}}({\rm BF}_{\alpha}^{+})}\biggr{)}=\bigl{(}\mathcal{L}_{p}^{\rm PR}(E_{\bullet}(\alpha)/K)^{+}\bigr{)}

with the equality following from the explicit reciprocity law at v¯\overline{v} (using that Colv¯{\rm Col}_{\overline{v}} has pseudo-null cokernel), and

(18) charΛ+(Xv(E(α)/K+))Λ~+charΛ+(HIw1(K,v+,Tp+E(α))Λ+resv(BFα+))Λ~+=(vGr(E(α)/K)+),{\rm char}_{\Lambda^{+}}(X_{v}(E_{\bullet}(\alpha)/K_{\infty}^{+}))\tilde{\Lambda}^{+}\supset{\rm char}_{\Lambda^{+}}\biggl{(}\frac{{\rm H}^{1}_{\rm Iw}(K_{\infty,{v}}^{+},T_{p}^{+}E_{\bullet}(\alpha))}{\Lambda^{+}\cdot{\rm res}_{{v}}({\rm BF}_{\alpha}^{+})}\biggr{)}\tilde{\Lambda}^{+}=\bigl{(}\mathcal{L}_{v}^{\rm Gr}(E_{\bullet}(\alpha)/K)^{+}\bigr{)},

similarly using the explicit reciprocity law at vv. Further choosing α\alpha so that vBDP(f/K)(0)0\mathcal{L}_{v}^{\rm BDP}(f/K)(0)\neq 0 (as is possible by the nonvanishing of vBDP(f/K)\mathcal{L}_{v}^{\rm BDP}(f/K) as an element in Λur\Lambda^{\rm ur}), we deduce from Theorem 3.1 that both sides of the divisibility (18) agree at T=0T=0 and are nonzero, hence they are equal. From the commutative hexagon, it follows that the divisibility in (17) is also an equality, concluding the proof of (16).

References

  • [BDP13] Massimo Bertolini, Henri Darmon, and Kartik Prasanna. Generalized Heegner cycles and pp-adic Rankin LL-series. Duke Math. J., 162(6):1033–1148, 2013. With an appendix by Brian Conrad.
  • [BP19] Joël Bellaïche and Robert Pollack. Congruences with Eisenstein series and μ\mu-invariants. Compos. Math., 155(5):863–901, 2019.
  • [Bra11] Miljan Brakočević. Anticyclotomic pp-adic LL-function of central critical Rankin-Selberg LL-value. Int. Math. Res. Not. IMRN, (21):4967–5018, 2011.
  • [BSTW23] Ashay Burungale, Christopher Skinner, Ye Tian, and Xin Wan. Zeta elements for elliptic curves and applications. 2023. preprint.
  • [CGLS22] Francesc Castella, Giada Grossi, Jaehoon Lee, and Christopher Skinner. On the anticyclotomic Iwasawa theory of rational elliptic curves at Eisenstein primes. Invent. Math., 227:517–580, 2022.
  • [CGS23] Francesc Castella, Giada Grossi, and Christopher Skinner. Mazur’s main conjecture at Eisenstein primes. 2023. preprint, arXiv:2303.04373.
  • [CH18] Francesc Castella and Ming-Lun Hsieh. Heegner cycles and pp-adic LL-functions. Math. Ann., 370(1-2):567–628, 2018.
  • [Cor02] Christophe Cornut. Mazur’s conjecture on higher Heegner points. Invent. Math., 148(3):495–523, 2002.
  • [FW79] Bruce Ferrero and Lawrence C. Washington. The Iwasawa invariant μp\mu_{p} vanishes for abelian number fields. Ann. of Math. (2), 109(2):377–395, 1979.
  • [Gre77] Ralph Greenberg. On pp-adic LL-functions and cyclotomic fields. II. Nagoya Math. J., 67:139–158, 1977.
  • [Gre89] Ralph Greenberg. Iwasawa theory for pp-adic representations. In Algebraic number theory, volume 17 of Adv. Stud. Pure Math., pages 97–137. Academic Press, Boston, MA, 1989.
  • [Gre94] Ralph Greenberg. Iwasawa theory and pp-adic deformations of motives. In Motives (Seattle, WA, 1991), volume 55 of Proc. Sympos. Pure Math., pages 193–223. Amer. Math. Soc., Providence, RI, 1994.
  • [Gre99] Ralph Greenberg. Iwasawa theory for elliptic curves. In Arithmetic theory of elliptic curves (Cetraro, 1997), volume 1716 of Lecture Notes in Math., pages 51–144. Springer, Berlin, 1999.
  • [GV00] Ralph Greenberg and Vinayak Vatsal. On the Iwasawa invariants of elliptic curves. Invent. Math., 142(1):17–63, 2000.
  • [GZ86] Benedict H. Gross and Don B. Zagier. Heegner points and derivatives of LL-series. Invent. Math., 84(2):225–320, 1986.
  • [Hid85] Haruzo Hida. A pp-adic measure attached to the zeta functions associated with two elliptic modular forms. I. Invent. Math., 79(1):159–195, 1985.
  • [Hid10] Haruzo Hida. The Iwasawa μ\mu-invariant of pp-adic Hecke LL-functions. Ann. of Math. (2), 172(1):41–137, 2010.
  • [How04] Benjamin Howard. The Heegner point Kolyvagin system. Compos. Math., 140(6):1439–1472, 2004.
  • [Hsi14] Ming-Lun Hsieh. Special values of anticyclotomic Rankin-Selberg LL-functions. Doc. Math., 19:709–767, 2014.
  • [HT93] H. Hida and J. Tilouine. Anti-cyclotomic Katz pp-adic LL-functions and congruence modules. Ann. Sci. École Norm. Sup. (4), 26(2):189–259, 1993.
  • [JSW17] Dimitar Jetchev, Christopher Skinner, and Xin Wan. The Birch and Swinnerton-Dyer formula for elliptic curves of analytic rank one. Camb. J. Math., 5(3):369–434, 2017.
  • [Kat78] Nicholas M. Katz. pp-adic LL-functions for CM fields. Invent. Math., 49(3):199–297, 1978.
  • [Kat99] Kazuya Kato. Euler systems, Iwasawa theory, and Selmer groups. Kodai Math. J., 22(3):313–372, 1999.
  • [Kat04] Kazuya Kato. pp-adic Hodge theory and values of zeta functions of modular forms. Astérisque, 295:117–290, 2004.
  • [KLZ17] Guido Kings, David Loeffler, and Sarah Livia Zerbes. Rankin-Eisenstein classes and explicit reciprocity laws. Camb. J. Math., 5(1):1–122, 2017.
  • [KLZ20] Guido Kings, David Loeffler, and Sarah Livia Zerbes. Rankin-Eisenstein classes for modular forms. Amer. J. Math., 142(1):79–138, 2020.
  • [Kol88] Victor Kolyvagin. The Mordell-Weil and Shafarevich-Tate groups for Weil elliptic curves (Russian). Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya, 52(6):1154–1180, 1327, 1988. translation in Mathematics of the USSR-Izvestiya 33 (1989), no. 3, 473–499.
  • [Kri16] Daniel Kriz. Generalized Heegner cycles at Eisenstein primes and the Katz pp-adic LL-function. Algebra Number Theory, 10(2):309–374, 2016.
  • [KY24] Timo Keller and Mulun Yin. On the anticyclotomic Iwasawa theory of newforms at Eisenstein primes of semistable reduction. 2024. preprint, arXiv:2402.12781.
  • [LLZ14] Antonio Lei, David Loeffler, and Sarah Livia Zerbes. Euler systems for Rankin-Selberg convolutions of modular forms. Ann. of Math. (2), 180(2):653–771, 2014.
  • [LLZ15] Antonio Lei, David Loeffler, and Sarah Livia Zerbes. Euler systems for modular forms over imaginary quadratic fields. Compos. Math., 151(9):1585–1625, 2015.
  • [LZ14] David Loeffler and Sarah Livia Zerbes. Iwasawa theory and pp-adic LL-functions over p2\mathbb{Z}_{p}^{2}-extensions. Int. J. Number Theory, 10(8):2045–2095, 2014.
  • [Maz72] Barry Mazur. Rational points of abelian varieties with values in towers of number fields. Invent. Math., 18:183–266, 1972.
  • [MR04] Barry Mazur and Karl Rubin. Kolyvagin systems. Mem. Amer. Math. Soc., 168(799):viii+96, 2004.
  • [MSD74] Barry Mazur and Peter Swinnerton-Dyer. Arithmetic of Weil curves. Invent. Math., 25:1–61, 1974.
  • [MW84] B. Mazur and A. Wiles. Class fields of abelian extensions of 𝐐{\bf Q}. Invent. Math., 76(2):179–330, 1984.
  • [Nek07] Jan Nekovář. The Euler system method for CM points on Shimura curves. In LL-functions and Galois representations, volume 320 of London Math. Soc. Lecture Note Ser., pages 471–547. Cambridge Univ. Press, Cambridge, 2007.
  • [PR88] Bernadette Perrin-Riou. Fonctions LL pp-adiques associées à une forme modulaire et à un corps quadratique imaginaire. J. London Math. Soc. (2), 38(1):1–32, 1988.
  • [PR92] Bernadette Perrin-Riou. Théorie d’Iwasawa et hauteurs pp-adiques. Invent. Math., 109(1):137–185, 1992.
  • [PR94] Bernadette Perrin-Riou. Théorie d’Iwasawa des représentations pp-adiques sur un corps local. Invent. Math., 115(1):81–161, 1994. With an appendix by Jean-Marc Fontaine.
  • [PW24] Robert Pollack and Preston Wake. Iwasawa invariants in residually reducible Hida families. 2024. preprint, arXiv:2401.14518.
  • [Roh84] David E. Rohrlich. On LL-functions of elliptic curves and anticyclotomic towers. Invent. Math., 75(3):383–408, 1984.
  • [Rub91] Karl Rubin. The “main conjectures” of Iwasawa theory for imaginary quadratic fields. Invent. Math., 103(1):25–68, 1991.
  • [Rub00] Karl Rubin. Euler systems, volume 147 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 2000. Hermann Weyl Lectures. The Institute for Advanced Study.
  • [Sch85] Peter Schneider. pp-adic height pairings. II. Invent. Math., 79(2):329–374, 1985.
  • [Ski16] Christopher Skinner. Multiplicative reduction and the cyclotomic main conjecture for GL2{\rm GL}_{2}. Pacific J. Math., 283(1):171–200, 2016.
  • [Ski20] Christopher Skinner. A converse to a theorem of Gross, Zagier, and Kolyvagin. Ann. of Math. (2), 191(2):329–354, 2020.
  • [Ste89] Glenn Stevens. Stickelberger elements and modular parametrizations of elliptic curves. Invent. Math., 98(1):75–106, 1989.
  • [SU14] Christopher Skinner and Eric Urban. The Iwasawa main conjectures for GL2\rm GL_{2}. Invent. Math., 195(1):1–277, 2014.
  • [Vat03] Vinayak Vatsal. Special values of anticyclotomic LL-functions. Duke Math. J., 116(2):219–261, 2003.
  • [Wan20] Xin Wan. Iwasawa main conjecture for Rankin-Selberg pp-adic LL-functions. Algebra Number Theory, 14(2):383–483, 2020.
  • [Wan21a] Xin Wan. Heegner Point Kolyvagin System and Iwasawa Main Conjecture. Acta Math. Sin. (Engl. Ser.), 37(1):104–120, 2021.
  • [Wan21b] Xin Wan. Heegner point Kolyvagin system and Iwasawa main conjecture. Acta Math. Sin. (Engl. Ser.), 37(1):104–120, 2021.
  • [Wut14] Christian Wuthrich. On the integrality of modular symbols and Kato’s Euler system for elliptic curves. Doc. Math., 19:381–402, 2014.
  • [Zha14] Wei Zhang. Selmer groups and the indivisibility of Heegner points. Camb. J. Math., 2(2):191–253, 2014.