This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

On the half-space or exterior problems of the 3D3D compressible elastic Navier-Stokes-Poisson equations

Wenpei Wu Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, China. [email protected]  and  Yong Wang South China Research Center for Applied Mathematics and Interdisciplinary Studies, School of Mathematical Sciences, South China Normal University, Guangzhou, 510631, China. [email protected]
Abstract.

We study the three-dimensional compressible elastic Navier-Stokes-Poisson equations induced by a new bipolar viscoelastic model derived here, which model the motion of the compressible electrically conducting fluids. The various boundary conditions for the electrostatic potential including the Dirichlet and Neumann boundary conditions are considered. By using a unified energy method, we obtain the unique global H2H^{2} solution near a constant equilibrium state in the half-space or exterior of an obstacle. The elasticity plays a crucial role in establishing the L2L^{2} estimate for the electrostatic field.

Key words and phrases:
Elastic Navier-Stokes-Poisson equations; Half-space problems; Exterior problems; Global solution.
2020 Mathematics Subject Classification:
76A10; 35Q35; 35G31.
Corresponding author: Yong Wang.

1. Introduction

In this paper, we focus on a half-space or an exterior problem, in which the considered domain is occupied by a compressible electrically conducting fluid. The half-space or exterior problems in fluid dynamics have attracted a lot of attention in mathematics and physics. In particular, the exterior problems are involved with two kinds of important physical flows: the motion of a rigid body through a fluid and the flow past an obstacle, cf. [1, 13]. The unboundedness could be seen as an idealization of large fluid domains in the real world. To raise issues that we care about, we propose a three-dimensional damped elastic Navier-Stokes-Poisson system derived in Appendix A. The derived system (see (1.1) and (A.15)) incorporates four features: viscosity, elasticity, electrostaticity and friction. The fixed physical boundary provides a friction which induces a damping effect. So a friction-based damping term αρu\alpha\rho u appears in the motion equation as below.

To be precise, we will study the half-space or exterior problems of the compressible damped elastic Navier-Stokes-Poisson equations:

{ρt+div(ρu)=0,(ρu)t+div(ρuu)+P(ρ)=μΔu+(μ+λ)divu+c2div(ρ𝔽𝔽T)+ρϕαρu,𝔽t+u𝔽=u𝔽,Δϕ=ρρ+,(x,t)Ω×+.\displaystyle\begin{cases}\rho_{t}+\operatorname{div}(\rho u)=0,\\ (\rho u)_{t}+\operatorname{div}(\rho u\otimes u)+\nabla P(\rho)=\mu\Delta u+(\mu+\lambda)\nabla\operatorname{div}u+c^{2}\operatorname{div}(\rho\mathbb{F}\mathbb{F}^{T})+\rho\nabla\phi-\alpha\rho u,\\ \mathbb{F}_{t}+u\cdot\nabla\mathbb{F}=\nabla u\mathbb{F},\\ \Delta\phi=\rho-\rho_{+},\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad(x,t)\in\Omega\times\mathbb{R}^{+}.\end{cases} (1.1)

Here, Ω3\Omega\subset\mathbb{R}^{3} is a half-space +3={x=(x1,x2,x3)3:x3>0}\mathbb{R}^{3}_{+}=\{x=(x_{1},x_{2},x_{3})\in\mathbb{R}^{3}:x_{3}>0\} or an exterior domain 3\D¯\mathbb{R}^{3}\backslash\overline{D} (D3D\subset\mathbb{R}^{3} is a bounded domain with boundary D\partial D and D¯=DD\overline{D}=D\cup\partial D). Then we denote the boundary of Ω\Omega by

Ω={x3=0}\displaystyle\partial\Omega=\{x_{3}=0\}

if Ω=+3\Omega=\mathbb{R}^{3}_{+} and

Ω=D\displaystyle\partial\Omega=\partial D

if Ω=3\D¯\Omega=\mathbb{R}^{3}\backslash\overline{D}. We supplement the system (1.1) with the initial and boundary conditions

(ρ,u,𝔽)(x,t)t=0=(ρ0,u0,𝔽0)(x),xΩ\displaystyle(\rho,u,\mathbb{F})(x,t)\mid_{t=0}=(\rho_{0},u_{0},\mathbb{F}_{0})(x),\quad x\in\Omega (1.2)

and

{no-slip boundary condition:uΩ=0,t>0;Dirichlet or Neumann condition:ϕΩ=0orϕνΩ=0,t>0;far-field behaviors:(ρ,u,𝔽,ϕ)(x,t)(1,0,𝕀,0)asx,t>0.\displaystyle\begin{cases}\mbox{no-slip\ boundary\ condition:}\qquad\quad u\mid_{\partial\Omega}=0,&t>0;\\ \mbox{Dirichlet\ or\ Neumann\ condition:}\quad\phi\mid_{\partial\Omega}=0\quad\mbox{or}\quad\nabla\phi\cdot\nu\mid_{\partial\Omega}=0,&t>0;\\ \mbox{far-field\ behaviors:}\quad(\rho,u,\mathbb{F},\phi)(x,t)\to(1,0,\mathbb{I},0)\quad as\quad x\to\infty,&t>0.\end{cases} (1.3)

where the symbol ν\nu denotes the unit outward normal to Ω\partial\Omega and 𝕀\mathbb{I} is the identity matrix. The unknown variables ρ=ρ(x,t)>0\rho=\rho(x,t)>0, u=u(x,t)3u=u(x,t)\in\mathbb{R}^{3}, 𝔽=𝔽(x,t)𝕄3×3\mathbb{F}=\mathbb{F}(x,t)\in\mathbb{M}^{3\times 3} (the set of 3×33\times 3 matrices with positive determinants) denote the density, the velocity and the deformation gradient of viscoelastic electrically conducting fluids, respectively. The variable 𝔽\mathbb{F} is also called the deformation tensor or deformation matrix in some references. The electrostatic potential ϕ=ϕ(x,t)\phi=\phi(x,t) is coupled with the density through the Poisson equation. The pressure P=P(ρ)P=P(\rho) is a smooth function satisfying P(ρ)>0P^{\prime}(\rho)>0 for ρ>0\rho>0. Two constant viscosity coefficients μ\mu and λ\lambda satisfy the usual physical constraints μ>0\mu>0 and 3λ+2μ03\lambda+2\mu\geqslant 0. The constant α>0\alpha>0 is the friction coefficient. In the motion of fluids, we use ρ+\rho_{+} to model a positive background charge distribution. In this paper, we shall consider two cases:

  1. (1)

    ρ+ρ¯>0\rho_{+}\equiv\bar{\rho}>0;

  2. (2)

    ρ+=eϕ\rho_{+}=e^{-\phi}.

The above case (2)(2) is known to be the Boltzmann distribution. For simplicity, we only deal with the case (1)(1) ρ+ρ¯\rho_{+}\equiv\bar{\rho} later. In fact, the case (2)(2) can be solved similarly and some comments or explanations about this will be given where appropriate. Without loss of generality, we assume ρ¯=1\bar{\rho}=1.

From a PDE point of view, the system (1.1) is closely related to two systems: one is called the compressible viscoelastic system (also called elastic Navier-Stokes system)

{ρt+div(ρu)=0,(ρu)t+div(ρuu)+P(ρ)=μΔu+(μ+λ)divu+c2div(ρ𝔽𝔽T),𝔽t+u𝔽=u𝔽;\displaystyle\begin{cases}\rho_{t}+\operatorname{div}(\rho u)=0,\\ (\rho u)_{t}+\operatorname{div}(\rho u\otimes u)+\nabla P(\rho)=\mu\Delta u+(\mu+\lambda)\nabla\operatorname{div}u+c^{2}\operatorname{div}(\rho\mathbb{F}\mathbb{F}^{T}),\\ \mathbb{F}_{t}+u\cdot\nabla\mathbb{F}=\nabla u\mathbb{F};\end{cases} (1.4)

the other is called the compressible Navier-Stokes-Poisson system

{ρt+div(ρu)=0,(ρu)t+div(ρuu)+P(ρ)=μΔu+(μ+λ)divu+ρϕαρu,Δϕ=ρρ¯.\displaystyle\begin{cases}\rho_{t}+\operatorname{div}(\rho u)=0,\\ (\rho u)_{t}+\operatorname{div}(\rho u\otimes u)+\nabla P(\rho)=\mu\Delta u+(\mu+\lambda)\nabla\operatorname{div}u+\rho\nabla\phi-\alpha\rho u,\\ \Delta\phi=\rho-\bar{\rho}.\end{cases} (1.5)

In the following, we will review the research status about the above two systems.

The viscoelastic system (1.4) is used to describe the macroscopic dynamics of a kind of Oldroyd-B type non-Newtonian fluids. The incompressible version of (1.4) was first introduced in [39] and then the compressible model (1.4) was considered in [51]. Unlike other kinds of Oldroyd-B type models investigated in [47, 5, 10, 32, 25, 9], the characteristic of this model (1.4) is that it uses the deformation gradient 𝔽\mathbb{F} to characterize the internal elasticity of fluids. Since then, a lot of works on the well-posedness or asymptotics of solutions to that model were made by many researchers. As for the compressible system (1.4), Hu and Wang [21] proved the existence and uniqueness of the local-in-time large strong solution to the Cauchy problem. Later, Hu and Wu [22] obtained the unique global-in-time small strong solution by constructing the suitable a priori estimates, meanwhile, they showed the optimal time-decay rates of the solution and its lower-order derivatives by using semigroup methods developed in [49, 18], where the initial data belong to L1(3)L^{1}(\mathbb{R}^{3}). Under the weaker assumption that the initial data lie in B˙2,3/2(3)\dot{B}^{-3/2}_{2,\infty}(\mathbb{R}^{3}) (noting that L1(3)B˙2,3/2(3)L^{1}(\mathbb{R}^{3})\subset\dot{B}^{-3/2}_{2,\infty}(\mathbb{R}^{3})), Wu et al. [63] used a pure energy method firstly introduced in [16] to show the optimal time-decay rates of arbitrary spatial derivatives but the highest-order. It should be noted that the optimal time-decay rate of the highest-order spatial derivatives can be obtained by using a time-weighted argument as in [14]. Recently, Hu and Zhao [23, 24] proved the global existence of classical solutions to the system (1.4) with zero shear viscosity but positive volume viscosity (namely, μ=0\mu=0 and λ>0\lambda>0). For the initial-boundary value problem of the compressible system (1.4), Qian [50] obtained the unique global-in-time small strong solution and then Chen and Wu [6] showed the exponential decay rates. About more related results, readers can refer to [51, 38, 26, 28, 17] and the literature therein. As for the incompressible case of the system (1.4), we refer the readers to [39, 7, 40, 34, 36, 33, 19, 64, 29, 27, 35, 4] and the references cited therein. As mentioned above, many research developments have been achieved, however, the global existence of the large strong (or smooth) solution even in two dimensions is still open whether for the incompressible or compressible case, see open problems listed in [20].

For the Navier-Stokes-Poisson system (1.5) with α=0\alpha=0, there are a wealth of research results on the Cauchy problem, cf. [37, 57, 61, 55, 62, 2] and the references therein. Compared with the Navier-Stokes equations [43], it is proved that the electrostatic field plays a good role in the global well-posedness and large-time behaviors of solutions, see [61]. However, for its initial-boundary value problem on a bounded domain, the situation is totally different since the Poisson term ρϕ\rho\nabla\phi brings essential difficulties when making energy estimates. The unmanageable boundary integrals will appear when integrating by parts. In fact, the energy estimates depend on the type of the boundary condition of the electrostatic potential, say Dirichlet, Neumann, or other else. Recently, based on the method introduced in [45] together with a new Stokes-type estimate, the Neumann problem on a bounded domain for the system (1.5) with α=0\alpha=0 has been solved by Liu and Zhong [42], while, the Dirichlet problem is still open. Mathematically, the main difficulty in the case of the Dirichlet boundary condition is the lack of a priori estimates on ϕ\nabla\phi, which in turn is due to the lack of the control for the boundary integral terms involving the electrostatic potential. When introducing the elasticity in system (1.5) with α=0\alpha=0, things changed as stated in comments below.

Comments on the elasticity. The elasticity indeed brings a good effect. When the Navier-Stokes-Poisson system (1.5) with α=0\alpha=0 is coupled with the transport equations for the deformation gradient 𝔽\mathbb{F}, it becomes the elastic Navier-Stokes-Poisson system. Then the elasticity is proved to be helpful for solving the initial-boundary value problems on bounded domains regardless of that the electrostatic potential possesses Dirichlet-type, Neumann-type or mixed Dirichlet-Neumann boundary conditions. With the help of the elastic variable, that is, the deformation φ=X(x,t)x\varphi=X(x,t)-x not the deformation gradient 𝔽\mathbb{F} itself, the authors [60, 59] established the effective dissipation estimates of ϕ\nabla\phi by making good use of a reduction for the original system and a relation between the electrostatic potential and the deformation. Hence, they showed the global well-posedness and exponential stability of the initial-boundary value problems on a 3D3D bounded domain. By the way, the stabilizing effect of the elasticity in the Rayleigh-Taylor instability was verified in [27, 29].

Comments on the friction-based damping term αρu\alpha\rho u in (1.1). From a modeling point of view, as derived in Appendix A, the damping effect induced by the friction shall occur in fluid dynamics due to the relative motion to the fixed physical boundary. Thus the friction-based damping term αρu\alpha\rho u in (1.1) has its physical significance in the motion of a fluid across the surface of a body, cf. [48]. From a technical point of view, the damping term together with the viscous terms provide a strong dissipation mechanism so that the global well-posedness of the system (1.1) is available in this paper. So, is it possible to remove the damping term? So far it is open even for the exterior or half-space problem of the three-dimensional Navier-Stokes-Poisson equations, which can be seen in [41]. The main obstacle arises from the electrostatic field E=ϕE=-\nabla\phi. It is key to derive the L2L^{2} dissipation estimate for EE or ϕ\nabla\phi. For this purpose, one needs to establish the L2L^{2} dissipation estimate for utu_{t}, which cannot be realized for the exterior or half-space problem without the damping term. Note that the damping term can be removed for the problem on a bounded domain, cf. [42, 60, 59]. The point in the case of bounded domains is that the viscous terms additionally possess a damping effect with the help of Poincaré inequality, that is, uL2uL2\|u\|_{L^{2}}\lesssim\|\nabla u\|_{L^{2}}.

Our main contributions in this paper. We develop energetic variational approaches to derive a bipolar viscoelastic system in Appendix A which induces the unipolar system (1.1) mainly considered in this paper. It is natural to see that the positive background charge distribution ρ+\rho_{+} has two states: the constant distribution ρ+=ρ¯\rho_{+}=\bar{\rho} and the Boltzmann distribution ρ+=eϕ\rho_{+}=e^{-\phi}. We develop a unified energy method to solve the 3D3D initial-boundary value problem of the hyperbolic-parabolic-elliptic system (say (1.1)) on a half-space or an exterior domain under various boundary conditions including the Dirichlet-type, Neumann-type and the mixed type. Our methods used in this paper are clean and effective, which will shed light on the problems for complex systems of partial differential equations under a variety of physical boundary conditions.

In short, the electrostatic field together with the elasticity bring a good effect for the Cauchy problem (cf. [54]) or the initial-boundary problem (cf. [60, 59]) on bounded domains but not for the exterior or half-space problem. To overcome the bad effects mainly from the electrostatic field, the damping term αρu\alpha\rho u in the system (1.1) is needed for now. How to solve the exterior or half-space problem (1.1)–(1.3) with α=0\alpha=0? It will be a challenging problem in mathematics. To clarify these related results mentioned above, we make a comparative analysis in the following Table 11.

Table 1. Comparative Analysis
Equations Cauchy problems Problems on bounded domains Problems on exterior domains
(1.4) cf. [51, 21, 22] cf. [6] cf. [50]
(1.5)(α>0\alpha>0) cf. [41]
(1.5)(α=0\alpha=0) cf. [37] cf. [42] Unsolved
(1.1)(α>0\alpha>0) Solved in this paper
(1.1)(α=0\alpha=0) cf. [54] cf. [60, 59] Unsolved

Note that all the results for α=0\alpha=0 in the above table still hold for α>0\alpha>0.

In this paper, we shall study the initial-boundary value problem (1.1)–(1.3) with constraints

{ρdet𝔽=1,𝔽lkl𝔽ij=𝔽ljl𝔽ik.\displaystyle\begin{cases}\rho\det\mathbb{F}=1,\vskip 3.0pt plus 1.0pt minus 1.0pt\\ \mathbb{F}^{lk}\nabla_{l}\mathbb{F}^{ij}=\mathbb{F}^{lj}\nabla_{l}\mathbb{F}^{ik}.\end{cases} (1.6)

These constrains in (1.6) are very natural for viscoelastic fluid models. In fact, the constraints in (1.6) hold for all t>0t>0 by Lemma 2.3 if they are valid initially. Moreover, noting Lemma 2.4, (1.6) infers for all t0t\geqslant 0,

div(ρ𝔽T)=j(ρ𝔽jk)=0.\displaystyle\operatorname{div}(\rho\mathbb{F}^{T})=\nabla_{j}(\rho\mathbb{F}^{jk})=0. (1.7)

In the sequel, we state the main results on the existence and uniqueness of the global solution. Note that the deformation gradient 𝔽\mathbb{F} and the deformation φ\varphi satisfy the relation φ=Δ1div𝔽1\varphi=\Delta^{-1}\operatorname{div}\mathbb{F}^{-1} as (2.4).

Theorem 1.1.

Let Ω3\Omega\subset\mathbb{R}^{3} be a half-space or an exterior domain with a compact boundary Ω𝒞3\partial\Omega\in\mathcal{C}^{3}. Assume that the initial data (ρ01,u0,𝔽0𝕀)H2(Ω)(\rho_{0}-1,u_{0},\mathbb{F}_{0}-\mathbb{I})\in H^{2}(\Omega) and φ0:=Δ1div𝔽01L2(Ω)\varphi_{0}:=\Delta^{-1}\operatorname{div}\mathbb{F}_{0}^{-1}\in L^{2}(\Omega) satisfying

{ρ0det𝔽0=1,𝔽0lkl𝔽0ij=𝔽0ljl𝔽0ik,𝔽0=(𝕀+φ0)1\displaystyle\begin{cases}\rho_{0}\det\mathbb{F}_{0}=1,\vskip 3.0pt plus 1.0pt minus 1.0pt\\ \mathbb{F}_{0}^{lk}\nabla_{l}\mathbb{F}_{0}^{ij}=\mathbb{F}_{0}^{lj}\nabla_{l}\mathbb{F}_{0}^{ik},\vskip 3.0pt plus 1.0pt minus 1.0pt\\ \mathbb{F}_{0}=(\mathbb{I}+\nabla\varphi_{0})^{-1}\end{cases} (1.8)

and for some small constant δ0>0\delta_{0}>0,

(ρ01,u0,𝔽0𝕀)H2+φ0L2<δ0.\displaystyle\|(\rho_{0}-1,u_{0},\mathbb{F}_{0}-\mathbb{I})\|_{H^{2}}+\|\varphi_{0}\|_{L^{2}}<\delta_{0}.

(i) Then the problem (1.1)–(1.3) with ρ+=1\rho_{+}=1 admits a unique global solution (ρ,u,𝔽,ϕ)(\rho,u,\mathbb{F},\nabla\phi) satisfying

{ρ𝒞([0,+);H2(Ω)),ρt𝒞([0,+);H1(Ω)),u𝒞([0,+);H2(Ω)H01(Ω))L2([0,+);H3(Ω)),ut𝒞([0,+);L2(Ω))L2([0,+);H01(Ω)),𝔽𝒞([0,+);H2(Ω)),𝔽t𝒞([0,+);H1(Ω)),\displaystyle\begin{cases}\rho\in\mathcal{C}([0,+\infty);H^{2}(\Omega)),\quad\rho_{t}\in\mathcal{C}([0,+\infty);H^{1}(\Omega)),\\ u\in\mathcal{C}([0,+\infty);H^{2}(\Omega)\cap H^{1}_{0}(\Omega))\cap L^{2}([0,+\infty);H^{3}(\Omega)),\\ u_{t}\in\mathcal{C}([0,+\infty);L^{2}(\Omega))\cap L^{2}([0,+\infty);H^{1}_{0}(\Omega)),\\ \mathbb{F}\in\mathcal{C}([0,+\infty);H^{2}(\Omega)),\quad\mathbb{F}_{t}\in\mathcal{C}([0,+\infty);H^{1}(\Omega)),\end{cases} (1.9)

and

ϕ𝒞([0,+);H3(Ω)),ϕt𝒞([0,+);H2(Ω)).\displaystyle\nabla\phi\in\mathcal{C}([0,+\infty);H^{3}(\Omega)),\quad\nabla\phi_{t}\in\mathcal{C}([0,+\infty);H^{2}(\Omega)).

Moreover, it holds that for all t0t\geqslant 0,

(ρ1,u,𝔽𝕀)(t)H2+ϕ(t)H3+(ρt,ut,𝔽t,ϕt)(t)L2+φ(t)L2C0.\displaystyle\|(\rho-1,u,\mathbb{F}-\mathbb{I})(t)\|_{H^{2}}+\|\nabla\phi(t)\|_{H^{3}}+\|(\rho_{t},u_{t},\mathbb{F}_{t},\nabla\phi_{t})(t)\|_{L^{2}}+\|\varphi(t)\|_{L^{2}}\leqslant C_{0}.

(ii) Then the problem (1.1)–(1.3) with ρ+=eϕ\rho_{+}=e^{-\phi} admits a unique global solution (ρ,u,𝔽,ϕ)(\rho,u,\mathbb{F},\phi) satisfying the same regularity (1.9) and

ϕ𝒞([0,+);H4(Ω)),ϕt𝒞([0,+);H3(Ω)).\displaystyle\phi\in\mathcal{C}([0,+\infty);H^{4}(\Omega)),\quad\phi_{t}\in\mathcal{C}([0,+\infty);H^{3}(\Omega)).

Moreover, it holds that for all t0t\geqslant 0,

(ρ1,u,𝔽𝕀)(t)H2+ϕ(t)H4+(ρt,ut,𝔽t,ϕt,ϕt)(t)L2+φ(t)L2C0.\displaystyle\|(\rho-1,u,\mathbb{F}-\mathbb{I})(t)\|_{H^{2}}+\|\phi(t)\|_{H^{4}}+\|(\rho_{t},u_{t},\mathbb{F}_{t},\phi_{t},\nabla\phi_{t})(t)\|_{L^{2}}+\|\varphi(t)\|_{L^{2}}\leqslant C_{0}.

The above C0>0C_{0}>0 depends only on the initial data.

We give some remarks in the following.

Remark 1.1.

We only prove (i)(i) of Theorem 1.1 in this paper. Then (ii)(ii) of Theorem 1.1 can be obtained by making some obvious modifications in light of (2.11).

Remark 1.2.

Compared with the initial-boundary value problem (1.1)–(1.3) on a bounded domain [60], the case of the half-space or exterior domain is much more complicated. This is because we cannot directly use Poincaré’s inequality to get the dissipation estimate of the velocity field uu itself.

Remark 1.3.

Theorem 1.1 still holds if the boundary condition for the electrostatic potential ϕ\phi in (1.3) is replaced by the Dirichlet-Neumann mixed boundary condition

ϕS1=0,ϕνS2=0,t>0,\displaystyle\phi\mid_{S_{1}}=0,\quad\nabla\phi\cdot\nu\mid_{S_{2}}=0,\quad t>0,

where S1S2=ΩS_{1}\cup S_{2}=\partial\Omega and S1S2=S_{1}\cap S_{2}=\emptyset. Thus Theorem 1.1 still holds for an annulus with different conditions for ϕ\phi on inner and outer boundaries with the help of Poincaré’s inequality. Moreover, the exterior domain Ω\Omega in Theorem 1.1 can be more general:

Ω=3\(i=1NDi¯),Di3,i=1,2,,N,\displaystyle\Omega=\mathbb{R}^{3}\backslash(\cup_{i=1}^{N}\overline{D_{i}}),\quad D_{i}\subset\mathbb{R}^{3},\quad i=1,2,\dots,N,

where DiD_{i} (i=1,2,,N)(i=1,2,\dots,N) are bounded domains with C3C^{3}-smooth boundary Di\partial D_{i}, respectively. Note that Ω=i=1NDi\partial\Omega=\cup_{i=1}^{N}\partial D_{i} consists of NN disjoint components.

Remark 1.4.

The viscoelastic two-fluid system (A.15) will be studied in a forthcoming paper.

Notation. In this paper, we use aba\lesssim b if aCba\leqslant Cb for a generic constant C>0C>0. The relation aba\sim b represents that aba\lesssim b and bab\lesssim a. We denote the gradient operator =x=(x1,x2,x3)T\nabla=\partial_{x}=(\partial_{x_{1}},\partial_{x_{2}},\partial_{x_{3}})^{T} and j:=xj\nabla_{j}:=\partial_{x_{j}} (j=1,2,3)(j=1,2,3). We denote the Frobenius inner product of two matrices 𝔸,𝔹3×3\mathbb{A},\ \mathbb{B}\in\mathbb{R}^{3\times 3} by 𝔸:𝔹:=i,j=13𝔸ij𝔹ij\mathbb{A}:\mathbb{B}:=\sum_{i,j=1}^{3}\mathbb{A}^{ij}\mathbb{B}^{ij}. Particularly, |𝔸|2=𝔸:𝔸|\mathbb{A}|^{2}=\mathbb{A}:\mathbb{A}. The usual Lebesgue spaces are represented by LpL^{p} (1p1\leqslant p\leqslant\infty) equipped with the norm Lp\|\cdot\|_{L^{p}}. The usual Sobolev spaces are denoted by Wk,p={uLloc1:DαuLpfor all|α|k}W^{k,p}=\{u\in L_{\rm loc}^{1}:D^{\alpha}u\in L^{p}\ \mbox{for\ all}\ |\alpha|\leqslant k\}, with the norm Wk,p\|\cdot\|_{W^{k,p}}. When p=2p=2, we simply write Hk=Wk,2(k=1,2,)H^{k}=W^{k,2}\ (k=1,2,...) equipped with the norm Hk\|\cdot\|_{H^{k}}. And we denote W^k,p={uLloc1:DαuLp,|α|=k}\widehat{W}^{k,p}=\{u\in L_{\rm loc}^{1}:D^{\alpha}u\in L^{p},\ |\alpha|=k\}. The spaces involving time Lp([0,T];Z)L^{p}([0,T];Z) represent all the measurable functions f:[0,T]Zf:[0,T]\to Z with the norm fLp([0,T];Z):=(0Tf(t)Zp𝑑t)1/p<\|f\|_{L^{p}([0,T];Z)}:=(\int_{0}^{T}\|f(t)\|_{Z}^{p}\,dt)^{1/p}<\infty for 1p<.1\leqslant p<\infty. The spaces involving time 𝒞([0,T];Z)\mathcal{C}([0,T];Z) represent all the continuous functions f:[0,T]Zf:[0,T]\to Z with the norm f𝒞([0,T];Z):=max0tTf(t)Z<.\|f\|_{\mathcal{C}([0,T];Z)}:=\max\limits_{0\leqslant t\leqslant T}\|f(t)\|_{Z}<\infty.

The outline of this paper is as follows. In Section 2, we will make a reformulation for the original problem (1.1)–(1.3) and list some auxiliary lemmas needed in the following sections. In Section 3, we will derive the unified lower-order energy estimates of solutions for the linearized system in the half-space and the exterior domain with a compact boundary. Then the higher-order energy estimates of solutions for the linearized system in the half-space and the exterior domain are established in Section 4 and Section 5, respectively. In Section 6, we use the energy estimates obtained in Sections 3-5 to establish the a priori estimates and then finish the proof of Theorem 1.1. In Appendix A, a new bipolar viscoelastic system, which describes the dynamics of two kinds of viscoelastic electrically conducting fluids, is derived by using an energetic variational approach, which further infers the unipolar system (1.1) considered in this paper.

2. Preliminaries

In the section, we first make a reformulation of the original problem and then list some auxiliary lemmas frequently used in the next sections.

2.1. Reformulation

For a given velocity field u(x(X,t),t)u(x(X,t),t), the flow map x(X,t)x(X,t) can be determined by the initial value problem:

{ddtx(X,t)=u(x(X,t),t),t>0,x(X,0)=X,\displaystyle\begin{cases}\displaystyle\frac{d}{dt}x(X,t)=u(x(X,t),t),\quad t>0,\vskip 3.0pt plus 1.0pt minus 1.0pt\\ x(X,0)=X,\end{cases}

where x,Xx,X are the current spatial (Eulerian) coordinate and the material (Lagrangian) coordinate for fluid particles, respectively. The deformation gradient 𝔽~\widetilde{\mathbb{F}} can be defined as

𝔽~(X,t)=xX(X,t)\displaystyle\widetilde{\mathbb{F}}(X,t)=\frac{\partial x}{\partial X}(X,t)

in the Lagrangian coordinate, while in the Eulerian coordinate, the deformation gradient 𝔽(x,t)\mathbb{F}(x,t) can be written as

𝔽(x(X,t),t)=𝔽~(X,t).\displaystyle\mathbb{F}(x(X,t),t)=\widetilde{\mathbb{F}}(X,t).

Moreover, we can prove that 𝔽(x,t)\mathbb{F}(x,t) satisfies the following transport equations:

𝔽t+u𝔽=u𝔽\displaystyle\mathbb{F}_{t}+u\cdot\nabla\mathbb{F}=\nabla u\mathbb{F}

by using the chain rule directly (see [52] for instance).

In order to study its well-posedness effectively, we need to reformulate the system (1.1). For this purpose, we introduce the inverse of 𝔽\mathbb{F} denoted by

𝔼:=Xx=𝔽1,\displaystyle\mathbb{E}:=\frac{\partial X}{\partial x}=\mathbb{F}^{-1}, (2.1)

where X=X(x,t)X=X(x,t) is the inverse mapping of x(X,t)x(X,t). We define the quantity

𝕂:=𝔼𝕀,\displaystyle\mathbb{K}:=\mathbb{E}-\mathbb{I}, (2.2)

which was first proposed by Sideris and Thomases [53]. Note that the matrix 𝕂=(𝕂ij)\mathbb{K}=(\mathbb{K}^{ij}) is curl free (cf. [40]), so there exists a vector valued function φ=(φ1,φ2,φ3)T\varphi=(\varphi^{1},\varphi^{2},\varphi^{3})^{T} such that (𝕂i1,𝕂i2,𝕂i3)T=φi(\mathbb{K}^{i1},\mathbb{K}^{i2},\mathbb{K}^{i3})^{T}=\nabla\varphi^{i} (i=1,2,3i=1,2,3). In fact, the function φ\varphi can be selected as φ(x,t)=X(x,t)x\varphi(x,t)=X(x,t)-x, which implies

φt+uφ+u=0.\displaystyle\varphi_{t}+u\cdot\nabla\varphi+u=0. (2.3)

The benefit of introducing φ\varphi lies in that we can easily deduce φΩ=0\varphi\mid_{\partial\Omega}=0 from uΩ=0u\mid_{\partial\Omega}=0. By (2.1)–(2.2) and the Taylor’s expansion, we have

φ=Δ1div𝔽1\displaystyle\varphi=\Delta^{-1}\operatorname{div}\mathbb{F}^{-1} (2.4)

and

𝔽=(𝕀+𝕂)1=i=0(1)i𝕂i=𝕀𝕂+O(|𝕂|2)=𝕀φ+O(|φ|2),\displaystyle\mathbb{F}=(\mathbb{I}+\mathbb{K})^{-1}=\sum_{i=0}^{\infty}(-1)^{i}\mathbb{K}^{i}=\mathbb{I}-\mathbb{K}+O(|\mathbb{K}|^{2})=\mathbb{I}-\mathbb{\nabla\varphi}+O(|\mathbb{\nabla\varphi}|^{2}), (2.5)

where the absolute convergence of the matrix series can be guaranteed according to the fact φH21\|\nabla\varphi\|_{H^{2}}\ll 1 in the a priori estimates. By (1.7), the term div(ρ𝔽𝔽T)\operatorname{div}(\rho\mathbb{F}\mathbb{F}^{T}) can be decomposed as

j(ρ𝔽ik𝔽jk)\displaystyle\nabla_{j}(\rho\mathbb{F}^{ik}\mathbb{F}^{jk}) =𝔽ikj(ρ𝔽jk)+ρ𝔽jkj𝔽ik=ρ𝔽jkj𝔽ik\displaystyle=\mathbb{F}^{ik}\nabla_{j}(\rho\mathbb{F}^{jk})+\rho\mathbb{F}^{jk}\nabla_{j}\mathbb{F}^{ik}=\rho\mathbb{F}^{jk}\nabla_{j}\mathbb{F}^{ik}
=ρ(δjk𝕂jk+O(|𝕂|2))j(δik𝕂ik+O(|𝕂|2))\displaystyle=\rho(\delta^{jk}-\mathbb{K}^{jk}+O(|\mathbb{K}|^{2}))\nabla_{j}(\delta^{ik}-\mathbb{K}^{ik}+O(|\mathbb{K}|^{2}))
=ρj𝕂ij+ρO(|𝕂|)O(|𝕂|)\displaystyle=-\rho\nabla_{j}\mathbb{K}^{ij}+\rho O(|\mathbb{K}|)\nabla O(|\mathbb{K}|)
=ρΔφi+ρO(|φ|)O(|φ|).\displaystyle=-\rho\Delta\varphi^{i}+\rho O(|\nabla\varphi|)\nabla O(|\nabla\varphi|). (2.6)

Next, combining the fact ρdet𝔽=1\rho\det\mathbb{F}=1 for all t0t\geqslant 0 in Lemma 2.3 and the determinant expansion theorem, we have

ρ=det𝔽1=det(𝕀+φ)=1+divφ+12{(divφ)2tr[(φ)2]}+det(φ),\displaystyle\rho=\det\mathbb{F}^{-1}=\det(\mathbb{I}+\nabla\varphi)=1+\operatorname{div}\varphi+\frac{1}{2}\{(\operatorname{div}\varphi)^{2}-\operatorname{tr}[(\nabla\varphi)^{2}]\}+\det(\nabla\varphi),

which implies

ρ1=divφ+O(|φ|2).\displaystyle\rho-1=\operatorname{div}\varphi+O(|\nabla\varphi|^{2}). (2.7)

For the sake of simplicity, let us take α=P(1)=1.\alpha=P^{\prime}(1)=1. Thus, together with (2.3) and (2.5)–(2.7), we reduce (1.1)–(1.3) with ρ+1\rho_{+}\equiv 1 to the following problem

{L1:=utμΔu(μ+λ)divu+Δφ+divφϕ+u=R1,L2:=φt+u=R2,Δϕ=divφ+O(|φ|2),\displaystyle\begin{cases}L_{1}:=u_{t}-\mu\Delta u-(\mu+\lambda)\nabla\operatorname{div}u+\Delta\varphi+\nabla\operatorname{div}\varphi-\nabla\phi+u=R_{1},\\ L_{2}:=\varphi_{t}+u=R_{2},\\ \Delta\phi=\operatorname{div}\varphi+O(|\nabla\varphi|^{2}),\end{cases} (2.8)

which is subject to the initial and boundary conditions

{(u,φ,ϕ)(x,t)t=0=(u0,φ0,ϕ0)(x),xΩ,uΩ=φΩ=0,t>0,ϕΩ=0orϕνΩ=0,t>0,(u,φ,ϕ)(0,0,0)asx.\displaystyle\begin{cases}(u,\varphi,\nabla\phi)(x,t)\mid_{t=0}=(u_{0},\varphi_{0},\nabla\phi_{0})(x),&x\in\Omega,\\ u\mid_{\partial\Omega}=\varphi\mid_{\partial\Omega}=0,&t>0,\\ \phi\mid_{\partial\Omega}=0\quad\mbox{or}\quad\nabla\phi\cdot\nu\mid_{\partial\Omega}=0,&t>0,\\ (u,\varphi,\phi)\to(0,0,0)\quad\mbox{as}\quad x\to\infty.\end{cases} (2.9)

The above terms R1R_{1} and R2R_{2} are defined by

{R1:=uu(11ρ)[μΔu+(μ+λ)divu](P(ρ)ρ1)[divφ+O(|φ|2)]+O(|φ|)O(|φ|),R2:=uφ.\displaystyle\begin{cases}R_{1}:=-u\cdot\nabla u-(1-\tfrac{1}{\rho})[\mu\Delta u+(\mu+\lambda)\nabla\operatorname{div}u]\\ \qquad\ -(\tfrac{P^{\prime}(\rho)}{\rho}-1)\nabla[\operatorname{div}\varphi+O(|\nabla\varphi|^{2})]+O(|\nabla\varphi|)\nabla O(|\nabla\varphi|),\\ R_{2}:=-u\cdot\nabla\varphi.\end{cases} (2.10)

If ρ+=eϕ\rho_{+}=e^{-\phi}, then we can replace Eq. (2.8)3\eqref{2.8}_{3} with

Δϕϕ=divφ+O(|φ|2)+O(ϕ2),\displaystyle\Delta\phi-\phi=\operatorname{div}\varphi+O(|\nabla\varphi|^{2})+O(\phi^{2}), (2.11)

where used Taylor’s formula:

eϕ=1ϕ+O(ϕ2).\displaystyle e^{-\phi}=1-\phi+O(\phi^{2}).
Remark 2.1.

Since we assume that φH21\|\nabla\varphi\|_{H^{2}}\ll 1 in the following a priori estimates, by (2.7), we have 12ρ32.\frac{1}{2}\leqslant\rho\leqslant\frac{3}{2}. By the Taylor’s expansion, we get 11ρ,P(ρ)ρ1ρ1=divφ+O(|φ|2).1-\frac{1}{\rho},\ \frac{P^{\prime}(\rho)}{\rho}-1\sim\rho-1=\operatorname{div}\varphi+O(|\nabla\varphi|^{2}).

2.2. Auxiliary Lemmas

In the following, we list some useful lemmas which are frequently used in later sections. First, we recall the classical Gagliardo-Nirenberg-Sobolev inequality in a half-space or an exterior domain with a compact boundary.

Lemma 2.1.

Let mm be a positive integer, p,q,r[1,+]p,q,r\in[1,+\infty], and Ωn\Omega\subset\mathbb{R}^{n} be a half-space or an exterior domain with a CmC^{m} compact boundary Ω\partial\Omega. If uLq(Ω)W^m,p(Ω)u\in L^{q}(\Omega)\cap\widehat{W}^{m,p}(\Omega), then for any integer k[0,m]k\in[0,m],

kuLr(Ω)CmuLp(Ω)αuLq(Ω)1α,\displaystyle\|\nabla^{k}u\|_{L^{r}(\Omega)}\leqslant C\|\nabla^{m}u\|_{L^{p}(\Omega)}^{\alpha}\|u\|_{L^{q}(\Omega)}^{1-\alpha},

where

1rkn=α(1pmn)+(1α)1q,\displaystyle\frac{1}{r}-\frac{k}{n}=\alpha(\frac{1}{p}-\frac{m}{n})+(1-\alpha)\frac{1}{q},

with

{α[km,1),ifp(1,+)andmknp{0},α[km,1],otherwise.\displaystyle\begin{cases}\alpha\in[\frac{k}{m},1),&\mbox{if}\ p\in(1,+\infty)\ \mbox{and}\ m-k-\frac{n}{p}\in\mathbb{N}\cup\{0\},\vskip 3.0pt plus 1.0pt minus 1.0pt\\ \alpha\in[\frac{k}{m},1],&\mbox{otherwise}.\end{cases}

Moreover, when k=0k=0 and mp<nmp<n, the additional condition is needed: u(x)0u(x)\to 0, as xx\to\infty or uLγ(Ω)u\in L^{\gamma}(\Omega) for some finite γ1\gamma\geqslant 1. The above positive constant CC depends only on nn, mm, kk, pp, qq, α\alpha and Ω\Omega.

As a special case often used in this paper, it holds that for n=3n=3, k=0k=0, m=1m=1, α=1\alpha=1, p=2p=2,

uL6CuL2.\displaystyle\|u\|_{L^{6}}\leqslant C\|\nabla u\|_{L^{2}}.
Proof.

One refers to [46] for the half-space and to [12] for the exterior domain with a compact boundary. ∎

We can use Lemma 2.1 to prove the following commutator and product estimates in the case of a half-space or an exterior domain.

Lemma 2.2.

Let l1l\geqslant 1 be an integer and define the commutator

[l,g]h=l(gh)glh.\displaystyle[\nabla^{l},g]h=\nabla^{l}(gh)-g\nabla^{l}h.

Then we have

[l,g]hLp0gLp1l1hLp2+lgLp3hLp4.\displaystyle\|[\nabla^{l},g]h\|_{L^{p_{0}}}\lesssim\|\nabla g\|_{L^{p_{1}}}\|\nabla^{l-1}h\|_{L^{p_{2}}}+\|\nabla^{l}g\|_{L^{p_{3}}}\|h\|_{L^{p_{4}}}.

In addition, we have that for l0l\geqslant 0,

l(gh)Lp0gLp1lhLp2+lgLp3hLp4.\displaystyle\|\nabla^{l}(gh)\|_{L^{p_{0}}}\lesssim\|g\|_{L^{p_{1}}}\|\nabla^{l}h\|_{L^{p_{2}}}+\|\nabla^{l}g\|_{L^{p_{3}}}\|h\|_{L^{p_{4}}}.

In the above, p0,p1,p2,p3,p4[1,+]p_{0},p_{1},p_{2},p_{3},p_{4}\in[1,+\infty] such that

1p0=1p1+1p2=1p3+1p4.\displaystyle\frac{1}{p_{0}}=\frac{1}{p_{1}}+\frac{1}{p_{2}}=\frac{1}{p_{3}}+\frac{1}{p_{4}}.
Proof.

The detailed proof is similar to [30, Lemma 3.1] or [58, Lemma A.4]. ∎

Next, we give some important time-invariant identities for the density ρ\rho and the deformation gradient 𝔽\mathbb{F} which can be seen in [51].

Lemma 2.3.

If the initial data (ρ0,𝔽0)(\rho_{0},\mathbb{F}_{0}) satisfy three constraints

div(ρ0𝔽0T)=0,𝔽0lkl𝔽0ij=𝔽0ljl𝔽0ik,ρ0det𝔽0=1,\displaystyle\operatorname{div}(\rho_{0}\mathbb{F}_{0}^{T})=0,\quad\mathbb{F}_{0}^{lk}\nabla_{l}\mathbb{F}_{0}^{ij}=\mathbb{F}_{0}^{lj}\nabla_{l}\mathbb{F}_{0}^{ik},\quad\rho_{0}\det\mathbb{F}_{0}=1,

then the solution (ρ,𝔽)(\rho,\mathbb{F}) of (1.1) satisfies for all t>0t>0,

div(ρ𝔽T)=0,𝔽lkl𝔽ij=𝔽ljl𝔽ik,ρdet𝔽=1.\displaystyle\operatorname{div}(\rho\mathbb{F}^{T})=0,\quad\mathbb{F}^{lk}\nabla_{l}\mathbb{F}^{ij}=\mathbb{F}^{lj}\nabla_{l}\mathbb{F}^{ik},\quad\rho\det\mathbb{F}=1.

In addition, we have the following relationships for the above three constraints.

Lemma 2.4.

Let Ω3\Omega\subset\mathbb{R}^{3} be a half-space or an exterior domain with a compact boundary Ω\partial\Omega. If (ρ1,𝔽𝕀)H2(Ω)(\rho-1,\mathbb{F}-\mathbb{I})\in H^{2}(\Omega) with (ρ,𝔽)(1,𝕀)(\rho,\mathbb{F})\to(1,\mathbb{I}) as xx\to\infty, then

div(ρ𝔽T)=0,𝔽lkl𝔽ij=𝔽ljl𝔽ik}ρdet𝔽=1\displaystyle\left.\begin{array}[]{ll}\operatorname{div}(\rho\mathbb{F}^{T})=0,\vskip 3.0pt plus 1.0pt minus 1.0pt\\ \mathbb{F}^{lk}\nabla_{l}\mathbb{F}^{ij}=\mathbb{F}^{lj}\nabla_{l}\mathbb{F}^{ik}\end{array}\right\}\Rightarrow\rho\det\mathbb{F}=1

and

ρdet𝔽=1,𝔽lkl𝔽ij=𝔽ljl𝔽ik}div(ρ𝔽T)=0.\displaystyle\left.\begin{array}[]{ll}\rho\det\mathbb{F}=1,\vskip 3.0pt plus 1.0pt minus 1.0pt\\ \mathbb{F}^{lk}\nabla_{l}\mathbb{F}^{ij}=\mathbb{F}^{lj}\nabla_{l}\mathbb{F}^{ik}\end{array}\right\}\Rightarrow\operatorname{div}(\rho\mathbb{F}^{T})=0.
Proof.

Referring to [23, 24], the details are omitted. ∎

Finally, we will state some useful regularity estimates.

Lemma 2.5.

Let k=0,1k=0,1. Let Ωn\Omega\subset\mathbb{R}^{n} be a half-space or an exterior domain with a C3C^{3} compact boundary Ω\partial\Omega. For the Stokes problem

{divv=h,inΩ,Δv+q=g,inΩ,vΩ=a,\displaystyle\begin{cases}\operatorname{div}v=h,&\mbox{in}\ \Omega,\\ -\Delta v+\nabla q=g,&\mbox{in}\ \Omega,\\ v\mid_{\partial\Omega}=a,\end{cases}

it holds that

k+2vL2(Ω)+k+1qL2(Ω)C(hHk+1(Ω)+gHk(Ω)+aHk+32(Ω)+vL2(Ω)).\displaystyle\|\nabla^{k+2}v\|_{L^{2}(\Omega)}+\|\nabla^{k+1}q\|_{L^{2}(\Omega)}\leqslant C(\|h\|_{H^{k+1}(\Omega)}+\|g\|_{H^{k}(\Omega)}+\|a\|_{H^{k+\frac{3}{2}}(\partial\Omega)}+\|\nabla v\|_{L^{2}(\Omega)}).
Proof.

Refer to [56, 45]. ∎

Lemma 2.6.

Let k=0,1k=0,1. Let Ωn\Omega\subset\mathbb{R}^{n} be a half-space or an exterior domain with a C3C^{3} compact boundary Ω\partial\Omega. The symbol ν\nu is the unit outward normal to Ω\partial\Omega. Given an fHk(Ω)f\in H^{k}(\Omega), there exists a ϕHk+2(Ω)\phi\in H^{k+2}(\Omega) satisfying

{Δϕ=f,inΩ,ϕΩ=0orϕνΩ=0\displaystyle\begin{cases}\Delta\phi=f,&\mbox{in}\ \Omega,\\ \phi\mid_{\partial\Omega}=0\quad\mbox{or}\quad\nabla\phi\cdot\nu\mid_{\partial\Omega}=0\end{cases}

and

k+2ϕL2C(fHk+ϕL2).\displaystyle\|\nabla^{k+2}\phi\|_{L^{2}}\leqslant C(\|f\|_{H^{k}}+\|\nabla\phi\|_{L^{2}}).
Remark 2.2.

For the case ϕνΩ=0\nabla\phi\cdot\nu\mid_{\partial\Omega}=0, we additionally assume

Ωf𝑑x=0.\displaystyle\int_{\Omega}f\,dx=0.
Proof.

Refer to [3, 45]. ∎

3. Lower-order Energy Estimates

Note that the relations (2.5) and (2.7)

{𝔽𝕀=φ+O(|φ|2),ρ1=divφ+O(|φ|2).\displaystyle\begin{cases}\mathbb{F}-\mathbb{I}=-\nabla\varphi+O(|\nabla\varphi|^{2}),\\ \rho-1=\operatorname{div}\varphi+O(|\nabla\varphi|^{2}).\end{cases} (3.1)

It suffices to derive the energy estimates of the solution (u,φ,ϕ)(u,\varphi,\nabla\phi) to the linearized system (2.8). Meanwhile, we assume that for some sufficiently small δ>0\delta>0 and some T>0T>0,

sup0tT[(ρ1,u,𝔽𝕀)(t)H2+Δ1div𝔽1(t)L2]<δ,\displaystyle\sup_{0\leqslant t\leqslant T}\big{[}\|(\rho-1,u,\mathbb{F}-\mathbb{I})(t)\|_{H^{2}}+\|\Delta^{-1}\operatorname{div}\mathbb{F}^{-1}(t)\|_{L^{2}}\big{]}<\delta,

which implies

sup0tT[u(t)H2+(ϕ,φ)(t)H3]<δ.\displaystyle\sup_{0\leqslant t\leqslant T}\big{[}\|u(t)\|_{H^{2}}+\|(\nabla\phi,\varphi)(t)\|_{H^{3}}\big{]}<\delta. (3.2)

In this section, we shall give the lower-order energy estimates of solution in the half-space or the exterior domain with a compact boundary. For the sake of convenience, we give some estimates for R1R_{1} defined in (2.10). By the a priori assumptions, we have

R1uu+φ2u+φ2φ+|φ|22u+|φ|22φ,\displaystyle R_{1}\approx u\nabla u+\nabla\varphi\nabla^{2}u+\nabla\varphi\nabla^{2}\varphi+|\nabla\varphi|^{2}\nabla^{2}u+|\nabla\varphi|^{2}\nabla^{2}\varphi, (3.3)

which implies

R1\displaystyle\nabla R_{1} uu+u2u+2φ2u+φ3u+2φ2φ+φ3φ\displaystyle\approx\nabla u\nabla u+u\nabla^{2}u+\nabla^{2}\varphi\nabla^{2}u+\nabla\varphi\nabla^{3}u+\nabla^{2}\varphi\nabla^{2}\varphi+\nabla\varphi\nabla^{3}\varphi
+φ2φ2u+|φ|23u+φ2φ2φ+|φ|23φ.\displaystyle\quad+\nabla\varphi\nabla^{2}\varphi\nabla^{2}u+|\nabla\varphi|^{2}\nabla^{3}u+\nabla\varphi\nabla^{2}\varphi\nabla^{2}\varphi+|\nabla\varphi|^{2}\nabla^{3}\varphi.

Then, we have

R1L2\displaystyle\|R_{1}\|_{L^{2}} uL6uL3+φL2uL2+φL2φL2+φL22uL2+φL22φL2\displaystyle\lesssim\|u\|_{L^{6}}\|\nabla u\|_{L^{3}}+\|\nabla\varphi\|_{L^{\infty}}\|\nabla^{2}u\|_{L^{2}}+\|\nabla\varphi\|_{L^{\infty}}\|\nabla^{2}\varphi\|_{L^{2}}+\|\nabla\varphi\|_{L^{\infty}}^{2}\|\nabla^{2}u\|_{L^{2}}+\|\nabla\varphi\|_{L^{\infty}}^{2}\|\nabla^{2}\varphi\|_{L^{2}}
δ(uH1+2φL2).\displaystyle\lesssim\delta(\|\nabla u\|_{H^{1}}+\|\nabla^{2}\varphi\|_{L^{2}}). (3.4)

Similarly, we have

R1L6/5δ(uL2+φH1)\displaystyle\|R_{1}\|_{L^{6/5}}\lesssim\delta(\|\nabla u\|_{L^{2}}+\|\nabla\varphi\|_{H^{1}}) (3.5)

and

R1L2δ(uH2+2φH1).\displaystyle\|\nabla R_{1}\|_{L^{2}}\lesssim\delta(\|\nabla u\|_{H^{2}}+\|\nabla^{2}\varphi\|_{H^{1}}). (3.6)

First, we shall construct the dissipation estimate for u,uu,\nabla u.

Lemma 3.1.

Let Ω3\Omega\subset\mathbb{R}^{3} be a half-space or an exterior domain with a compact boundary Ω𝒞3\partial\Omega\in\mathcal{C}^{3}. It holds that

ddt(u,divφ,φ,ϕ)L22+(u,u)L22δφH12.\displaystyle\frac{d}{dt}\|(u,\operatorname{div}\varphi,\nabla\varphi,\nabla\phi)\|_{L^{2}}^{2}+\|(u,\nabla u)\|_{L^{2}}^{2}\lesssim\delta\|\nabla\varphi\|_{H^{1}}^{2}. (3.7)
Proof.

From Eq. (2.8)3\eqref{2.8}_{3}, we have

divφt=ΔϕtO(|φ|2)t.\displaystyle\operatorname{div}\varphi_{t}=\Delta\phi_{t}-O(|\nabla\varphi|^{2})_{t}. (3.8)

Taking div\operatorname{div} to Eq. (2.8)2\eqref{2.8}_{2}, we have

divu=divφtdiv(uφ),\displaystyle\operatorname{div}u=-\operatorname{div}\varphi_{t}-\operatorname{div}(u\cdot\nabla\varphi), (3.9)

together with (1.1)1(\ref{1.1})_{1} and (2.7)\eqref{2.6}, which infers

O(|φ|2)t=div[(divφ+O(|φ|2))u]+div(uφ).\displaystyle O(|\nabla\varphi|^{2})_{t}=-\operatorname{div}[(\operatorname{div}\varphi+O(|\nabla\varphi|^{2}))u]+\operatorname{div}(u\cdot\nabla\varphi). (3.10)

Integrating the resulting identity u(L1R1)Δφ(L2R2)=0u\cdot(L_{1}-R_{1})-\Delta\varphi\cdot(L_{2}-R_{2})=0 over Ω\Omega by parts and using the boundary conditions for (u,φ,ϕ)(u,\varphi,\phi) in (2.9), by (3.8)–(3.10), we obtain

12\displaystyle\frac{1}{2} ddtΩ(|u|2+|divφ|2+|φ|2+|ϕ|2)𝑑x+Ω[μ|u|2+(μ+λ)|divu|2+|u|2]𝑑x\displaystyle\frac{d}{dt}\int_{\Omega}(|u|^{2}+|\operatorname{div}\varphi|^{2}+|\nabla\varphi|^{2}+|\nabla\phi|^{2})\,dx+\int_{\Omega}[\mu|\nabla u|^{2}+(\mu+\lambda)|\operatorname{div}u|^{2}+|u|^{2}]\,dx
=Ω[R1uR2Δφdiv(uφ)divφ]𝑑xΩ[divφ+O(|φ|2)]ϕudx\displaystyle=\int_{\Omega}[R_{1}\cdot u-R_{2}\cdot\Delta\varphi-\operatorname{div}(u\cdot\nabla\varphi)\operatorname{div}\varphi]\,dx-\int_{\Omega}[\operatorname{div}\varphi+O(|\nabla\varphi|^{2})]\nabla\phi\cdot u\,dx
:=I1+I2+I3+I4,\displaystyle:=I_{1}+I_{2}+I_{3}+I_{4}, (3.11)

where we have used the facts

Ωudivφdx\displaystyle\int_{\Omega}u\cdot\nabla\operatorname{div}\varphi\,dx =Ωdivudivφdx=Ω[divφt+div(uφ)]divφdx\displaystyle=-\int_{\Omega}\operatorname{div}u\operatorname{div}\varphi\,dx=\int_{\Omega}[\operatorname{div}\varphi_{t}+\operatorname{div}(u\cdot\nabla\varphi)]\operatorname{div}\varphi\,dx
=12ddtΩ|divφ|2𝑑x+Ωdiv(uφ)divφdx\displaystyle=\frac{1}{2}\frac{d}{dt}\int_{\Omega}|\operatorname{div}\varphi|^{2}\,dx+\int_{\Omega}\operatorname{div}(u\cdot\nabla\varphi)\operatorname{div}\varphi\,dx

and

Ωuϕdx\displaystyle-\int_{\Omega}u\cdot\nabla\phi\,dx =Ωdivuϕdx=Ω[divφtdiv(uφ)]ϕ𝑑x\displaystyle=\int_{\Omega}\operatorname{div}u\phi\,dx=\int_{\Omega}[-\operatorname{div}\varphi_{t}-\operatorname{div}(u\cdot\nabla\varphi)]\phi\,dx
=ΩΔϕtϕ𝑑x+Ω[O(|φ|2)tϕ+(uφ)ϕ]𝑑x\displaystyle=-\int_{\Omega}\Delta\phi_{t}\phi\,dx+\int_{\Omega}[O(|\nabla\varphi|^{2})_{t}\phi+(u\cdot\nabla\varphi)\cdot\nabla\phi]\,dx
=12ddtΩ|ϕ|2𝑑x+Ω[O(|φ|2)tϕ+(uφ)ϕ]𝑑x\displaystyle=\frac{1}{2}\frac{d}{dt}\int_{\Omega}|\nabla\phi|^{2}\,dx+\int_{\Omega}[O(|\nabla\varphi|^{2})_{t}\phi+(u\cdot\nabla\varphi)\cdot\nabla\phi]\,dx
=12ddtΩ|ϕ|2𝑑x+Ω[divφ+O(|φ|2)]ϕudx.\displaystyle=\frac{1}{2}\frac{d}{dt}\int_{\Omega}|\nabla\phi|^{2}\,dx+\int_{\Omega}[\operatorname{div}\varphi+O(|\nabla\varphi|^{2})]\nabla\phi\cdot u\,dx.

Then, we need to estimate the right-hand side of (3). By (3.2), (3.5), Hölder’s inequality and Lemma 2.1, we have

I1\displaystyle I_{1} =ΩR1u𝑑xR1L6/5uL6δ(φH12+uL22);\displaystyle=\int_{\Omega}R_{1}\cdot u\,dx\lesssim\|R_{1}\|_{L^{6/5}}\|u\|_{L^{6}}\lesssim\delta(\|\nabla\varphi\|_{H^{1}}^{2}+\|\nabla u\|_{L^{2}}^{2});
I2\displaystyle I_{2} =ΩR2Δφdx=ΩuφΔφdxuL6φL32φL2δ(φH12+uL22);\displaystyle=\int_{\Omega}-R_{2}\cdot\Delta\varphi\,dx=\int_{\Omega}u\cdot\nabla\varphi\cdot\Delta\varphi\,dx\lesssim\|u\|_{L^{6}}\|\nabla\varphi\|_{L^{3}}\|\nabla^{2}\varphi\|_{L^{2}}\lesssim\delta(\|\nabla\varphi\|_{H^{1}}^{2}+\|\nabla u\|_{L^{2}}^{2});
I3\displaystyle I_{3} =Ωdiv(uφ)divφdxuL3φL6φL2+uL62φL2φL3δφH12;\displaystyle=\int_{\Omega}-\operatorname{div}(u\cdot\nabla\varphi)\operatorname{div}\varphi\,dx\lesssim\|\nabla u\|_{L^{3}}\|\nabla\varphi\|_{L^{6}}\|\nabla\varphi\|_{L^{2}}+\|u\|_{L^{6}}\|\nabla^{2}\varphi\|_{L^{2}}\|\nabla\varphi\|_{L^{3}}\lesssim\delta\|\nabla\varphi\|_{H^{1}}^{2};
I4\displaystyle I_{4} =Ω[divφ+O(|φ|2)]ϕudxφL3ϕL2uL6δ(φH12+uL22).\displaystyle=-\int_{\Omega}[\operatorname{div}\varphi+O(|\nabla\varphi|^{2})]\nabla\phi\cdot u\,dx\lesssim\|\nabla\varphi\|_{L^{3}}\|\nabla\phi\|_{L^{2}}\|u\|_{L^{6}}\lesssim\delta(\|\nabla\varphi\|_{H^{1}}^{2}+\|\nabla u\|_{L^{2}}^{2}).

Plugging the above four estimates I1I4I_{1}-I_{4} into (3), we can obtain (3.7). ∎

Next, we construct the dissipation estimate for ut,utu_{t},\nabla u_{t}.

Lemma 3.2.

Let Ω3\Omega\subset\mathbb{R}^{3} be a half-space or an exterior domain with a compact boundary Ω𝒞3\partial\Omega\in\mathcal{C}^{3}. It holds that

ddt(ut,divφt,φt,ϕt)L22+(ut,ut)L22δ(u,φ)H12.\displaystyle\frac{d}{dt}\|(u_{t},\operatorname{div}\varphi_{t},\nabla\varphi_{t},\nabla\phi_{t})\|_{L^{2}}^{2}+\|(u_{t},\nabla u_{t})\|_{L^{2}}^{2}\lesssim\delta\|\nabla(u,\varphi)\|_{H^{1}}^{2}. (3.12)
Proof.

From (3.8)–(3.10), we obtain

{divφtt=ΔϕttO(|φ|2)tt,divut=divφttdiv(uφ)t,O(|φ|2)tt=div[(divφ+O(|φ|2))u]t+div(uφ)t.\displaystyle\begin{cases}\operatorname{div}\varphi_{tt}=\Delta\phi_{tt}-O(|\nabla\varphi|^{2})_{tt},\\ \operatorname{div}u_{t}=-\operatorname{div}\varphi_{tt}-\operatorname{div}(u\cdot\nabla\varphi)_{t},\\ O(|\nabla\varphi|^{2})_{tt}=-\operatorname{div}[(\operatorname{div}\varphi+O(|\nabla\varphi|^{2}))u]_{t}+\operatorname{div}(u\cdot\nabla\varphi)_{t}.\end{cases} (3.13)

From the boundary conditions for (u,φ,ϕ)(u,\varphi,\phi) in (2.9), we have

{utΩ=φtΩ=0,ϕtΩ=0orϕttνΩ=0.\displaystyle\begin{cases}u_{t}\mid_{\partial\Omega}=\varphi_{t}\mid_{\partial\Omega}=0,\\ \phi_{t}\mid_{\partial\Omega}=0\quad\mbox{or}\quad\nabla\phi_{tt}\cdot\nu\mid_{\partial\Omega}=0.\end{cases} (3.14)

By (3.13)–(3.14), we can integrate the identity ut(tL1tR1)Δφt(tL2tR2)=0u_{t}\cdot(\partial_{t}L_{1}-\partial_{t}R_{1})-\Delta\varphi_{t}\cdot(\partial_{t}L_{2}-\partial_{t}R_{2})=0 over Ω\Omega by parts to obtain

12\displaystyle\frac{1}{2} ddtΩ(|ut|2+|divφt|2+|φt|2+|ϕt|2)𝑑x+Ω[μ|ut|2+(μ+λ)|divut|2+|ut|2]𝑑x\displaystyle\frac{d}{dt}\int_{\Omega}(|u_{t}|^{2}+|\operatorname{div}\varphi_{t}|^{2}+|\nabla\varphi_{t}|^{2}+|\nabla\phi_{t}|^{2})\,dx+\int_{\Omega}[\mu|\nabla u_{t}|^{2}+(\mu+\lambda)|\operatorname{div}u_{t}|^{2}+|u_{t}|^{2}]\,dx
=Ω[tR1uttR2Δφtdiv(uφ)tdivφt]dxΩϕt[(divφ+O(|φ|2))u]tdx\displaystyle=\int_{\Omega}[\partial_{t}R_{1}\cdot u_{t}-\partial_{t}R_{2}\cdot\Delta\varphi_{t}-\operatorname{div}(u\cdot\nabla\varphi)_{t}\operatorname{div}\varphi_{t}]\,dx-\int_{\Omega}\nabla\phi_{t}\cdot[(\operatorname{div}\varphi+O(|\nabla\varphi|^{2}))u]_{t}\,dx
:=J1+J2+J3+J4,\displaystyle:=J_{1}+J_{2}+J_{3}+J_{4}, (3.15)

where we have used the facts

Ωutdivφtdx\displaystyle\int_{\Omega}u_{t}\cdot\nabla\operatorname{div}\varphi_{t}\,dx =Ωdivutdivφtdx=Ω[divφtt+div(uφ)t]divφtdx\displaystyle=-\int_{\Omega}\operatorname{div}u_{t}\operatorname{div}\varphi_{t}\,dx=\int_{\Omega}[\operatorname{div}\varphi_{tt}+\operatorname{div}(u\cdot\nabla\varphi)_{t}]\operatorname{div}\varphi_{t}\,dx
=12ddtΩ|divφt|2dx+Ωdiv(uφ)tdivφtdx\displaystyle=\frac{1}{2}\frac{d}{dt}\int_{\Omega}|\operatorname{div}\varphi_{t}|^{2}\,dx+\int_{\Omega}\operatorname{div}(u\cdot\nabla\varphi)_{t}\operatorname{div}\varphi_{t}\,dx

and

Ωutϕtdx\displaystyle-\int_{\Omega}u_{t}\cdot\nabla\phi_{t}\,dx =Ωdivutϕtdx=Ω[divφttdiv(uφ)t]ϕtdx\displaystyle=\int_{\Omega}\operatorname{div}u_{t}\phi_{t}\,dx=\int_{\Omega}[-\operatorname{div}\varphi_{tt}-\operatorname{div}(u\cdot\nabla\varphi)_{t}]\phi_{t}\,dx
=ΩΔϕttϕt𝑑x+ΩO(|φ|2)ttϕt𝑑x+Ω(uφ)tϕtdx\displaystyle=-\int_{\Omega}\Delta\phi_{tt}\phi_{t}\,dx+\int_{\Omega}O(|\nabla\varphi|^{2})_{tt}\phi_{t}\,dx+\int_{\Omega}(u\cdot\nabla\varphi)_{t}\cdot\nabla\phi_{t}\,dx
=12ddtΩ|ϕt|2𝑑x+Ω[O(|φ|2)ttϕt+(uφ)tϕt]𝑑x\displaystyle=\frac{1}{2}\frac{d}{dt}\int_{\Omega}|\nabla\phi_{t}|^{2}\,dx+\int_{\Omega}[O(|\nabla\varphi|^{2})_{tt}\phi_{t}+(u\cdot\nabla\varphi)_{t}\cdot\nabla\phi_{t}]\,dx
=12ddtΩ|ϕt|2𝑑x+Ωϕt[(divφ+O(|φ|2))u]t𝑑x.\displaystyle=\frac{1}{2}\frac{d}{dt}\int_{\Omega}|\nabla\phi_{t}|^{2}\,dx+\int_{\Omega}\nabla\phi_{t}\cdot[(\operatorname{div}\varphi+O(|\nabla\varphi|^{2}))u]_{t}\,dx.

Before estimating the above terms J1J4J_{1}-J_{4}, we derive some auxiliary estimates. Multiplying (3.8) by ϕt-\phi_{t}, and integrating the identity over Ω\Omega, by (3.10), (3.14) and Lemma 2.1, we obtain

ϕtL22=Ω|ϕt|2𝑑x\displaystyle\|\nabla\phi_{t}\|_{L^{2}}^{2}=\int_{\Omega}|\nabla\phi_{t}|^{2}\,dx =Ω[divφt+O(|φ|2)t]ϕt𝑑x\displaystyle=-\int_{\Omega}[\operatorname{div}\varphi_{t}+O(|\nabla\varphi|^{2})_{t}]\phi_{t}\,dx
=Ω{divφtdiv[(divφ+O(|φ|2))u]+div(uφ)}ϕt𝑑x\displaystyle=-\int_{\Omega}\{\operatorname{div}\varphi_{t}-\operatorname{div}[(\operatorname{div}\varphi+O(|\nabla\varphi|^{2}))u]+\operatorname{div}(u\cdot\nabla\varphi)\}\phi_{t}\,dx
=Ω[φt(divφ+O(|φ|2))u+uφ]ϕtdx\displaystyle=\int_{\Omega}[\varphi_{t}-(\operatorname{div}\varphi+O(|\nabla\varphi|^{2}))u+u\cdot\nabla\varphi]\cdot\nabla\phi_{t}\,dx
φtL2ϕtL2+φL3uL6ϕtL2+φL62uL6ϕtL2\displaystyle\lesssim\|\varphi_{t}\|_{L^{2}}\|\nabla\phi_{t}\|_{L^{2}}+\|\nabla\varphi\|_{L^{3}}\|u\|_{L^{6}}\|\nabla\phi_{t}\|_{L^{2}}+\|\nabla\varphi\|_{L^{6}}^{2}\|u\|_{L^{6}}\|\nabla\phi_{t}\|_{L^{2}}
φtL2ϕtL2+φL3uL2ϕtL2+φL62uL2ϕtL2,\displaystyle\lesssim\|\varphi_{t}\|_{L^{2}}\|\nabla\phi_{t}\|_{L^{2}}+\|\nabla\varphi\|_{L^{3}}\|\nabla u\|_{L^{2}}\|\nabla\phi_{t}\|_{L^{2}}+\|\nabla\varphi\|_{L^{6}}^{2}\|\nabla u\|_{L^{2}}\|\nabla\phi_{t}\|_{L^{2}},

which, together with Cauchy’s inequality and φtL2uL2+φLuL2uL2\|\varphi_{t}\|_{L^{2}}\lesssim\|u\|_{L^{2}}+\|\nabla\varphi\|_{L^{\infty}}\|u\|_{L^{2}}\lesssim\|u\|_{L^{2}}, infers

ϕtL2uL2+δuL2.\displaystyle\|\nabla\phi_{t}\|_{L^{2}}\lesssim\|u\|_{L^{2}}+\delta\|\nabla u\|_{L^{2}}. (3.16)

By (2.8)2\eqref{2.8}_{2}, Hölder’s inequality and Lemma 2.1, we easily obtain

{φtL2uL2,2φtL22uL2+δuH1,φttL2utL2+δuH1.\displaystyle\begin{cases}\|\nabla\varphi_{t}\|_{L^{2}}\lesssim\|\nabla u\|_{L^{2}},\\ \|\nabla^{2}\varphi_{t}\|_{L^{2}}\lesssim\|\nabla^{2}u\|_{L^{2}}+\delta\|\nabla u\|_{H^{1}},\\ \|\nabla\varphi_{tt}\|_{L^{2}}\lesssim\|\nabla u_{t}\|_{L^{2}}+\delta\|\nabla u\|_{H^{1}}.\end{cases} (3.17)

By Lemmas 2.52.6, (3.8), (3.16) and (3.17)1\eqref{e1}_{1}, we can deduce

2ϕtL2\displaystyle\|\nabla^{2}\phi_{t}\|_{L^{2}} ΔϕtL2+ϕtL2\displaystyle\lesssim\|\Delta\phi_{t}\|_{L^{2}}+\|\nabla\phi_{t}\|_{L^{2}}
φtL2+φLφtL2+ϕtL2\displaystyle\lesssim\|\nabla\varphi_{t}\|_{L^{2}}+\|\nabla\varphi\|_{L^{\infty}}\|\nabla\varphi_{t}\|_{L^{2}}+\|\nabla\phi_{t}\|_{L^{2}}
φtL2+ϕtL2\displaystyle\lesssim\|\nabla\varphi_{t}\|_{L^{2}}+\|\nabla\phi_{t}\|_{L^{2}}
uL2+uL2+δuL2uH1.\displaystyle\lesssim\|\nabla u\|_{L^{2}}+\|u\|_{L^{2}}+\delta\|\nabla u\|_{L^{2}}\lesssim\|u\|_{H^{1}}. (3.18)

Note that from (2.10) and (3.3)

{tR1utu+uut+φt2u+φ2ut+φt2φ+φ2φt+(|φ|2)t2u+(|φ|2)2ut+(|φ|2)t2φ+(|φ|2)2φt,tR2=utφuφt.\displaystyle\begin{cases}\partial_{t}R_{1}\approx u_{t}\cdot\nabla u+u\cdot\nabla u_{t}+\nabla\varphi_{t}\nabla^{2}u+\nabla\varphi\nabla^{2}u_{t}+\nabla\varphi_{t}\nabla^{2}\varphi+\nabla\varphi\nabla^{2}\varphi_{t}+(|\nabla\varphi|^{2})_{t}\nabla^{2}u\\ \qquad\quad+(|\nabla\varphi|^{2})\nabla^{2}u_{t}+(|\nabla\varphi|^{2})_{t}\nabla^{2}\varphi+(|\nabla\varphi|^{2})\nabla^{2}\varphi_{t},\\ \partial_{t}R_{2}=-u_{t}\cdot\nabla\varphi-u\cdot\nabla\varphi_{t}.\end{cases} (3.19)

Then, by (3.16)–(3.19) and integrating by parts, we can use Hölder’s inequality and Lemma 2.1 to bound the terms J1J4J_{1}-J_{4}:

J1\displaystyle J_{1} =ΩtR1utdxutL6utL2uL3+utL6uL3utL2+utL6φtL32uL2\displaystyle=\int_{\Omega}\partial_{t}R_{1}\cdot u_{t}\,dx\lesssim\|u_{t}\|_{L^{6}}\|u_{t}\|_{L^{2}}\|\nabla u\|_{L^{3}}+\|u_{t}\|_{L^{6}}\|u\|_{L^{3}}\|\nabla u_{t}\|_{L^{2}}+\|u_{t}\|_{L^{6}}\|\nabla\varphi_{t}\|_{L^{3}}\|\nabla^{2}u\|_{L^{2}}
+utL62φL3utL2+utL22φL+utL6φtL22φL3+utL6φL32φtL2\displaystyle\quad+\|u_{t}\|_{L^{6}}\|\nabla^{2}\varphi\|_{L^{3}}\|\nabla u_{t}\|_{L^{2}}+\|\nabla u_{t}\|_{L^{2}}^{2}\|\nabla\varphi\|_{L^{\infty}}+\|u_{t}\|_{L^{6}}\|\nabla\varphi_{t}\|_{L^{2}}\|\nabla^{2}\varphi\|_{L^{3}}+\|u_{t}\|_{L^{6}}\|\nabla\varphi\|_{L^{3}}\|\nabla^{2}\varphi_{t}\|_{L^{2}}
+φLφtL32uL2utL6+φL2φL3utL2utL6+φL2utL22\displaystyle\quad+\|\nabla\varphi\|_{L^{\infty}}\|\nabla\varphi_{t}\|_{L^{3}}\|\nabla^{2}u\|_{L^{2}}\|u_{t}\|_{L^{6}}+\|\nabla\varphi\|_{L^{\infty}}\|\nabla^{2}\varphi\|_{L^{3}}\|\nabla u_{t}\|_{L^{2}}\|u_{t}\|_{L^{6}}+\|\nabla\varphi\|_{L^{\infty}}^{2}\|\nabla u_{t}\|_{L^{2}}^{2}
+φLφtL22φL3utL6+φLφL3utL62φtL2\displaystyle\quad+\|\nabla\varphi\|_{L^{\infty}}\|\nabla\varphi_{t}\|_{L^{2}}\|\nabla^{2}\varphi\|_{L^{3}}\|u_{t}\|_{L^{6}}+\|\nabla\varphi\|_{L^{\infty}}\|\nabla\varphi\|_{L^{3}}\|u_{t}\|_{L^{6}}\|\nabla^{2}\varphi_{t}\|_{L^{2}}
δ(uH12+utL22);\displaystyle\lesssim\delta(\|\nabla u\|_{H^{1}}^{2}+\|\nabla u_{t}\|_{L^{2}}^{2});
J2\displaystyle J_{2} =ΩtR2ΔφtdxutL6φL32φtL2+φtL22φtL2uLδ(uH12+utL22);\displaystyle=-\int_{\Omega}\partial_{t}R_{2}\cdot\Delta\varphi_{t}\,dx\lesssim\|u_{t}\|_{L^{6}}\|\nabla\varphi\|_{L^{3}}\|\nabla^{2}\varphi_{t}\|_{L^{2}}+\|\nabla\varphi_{t}\|_{L^{2}}\|\nabla^{2}\varphi_{t}\|_{L^{2}}\|u\|_{L^{\infty}}\lesssim\delta(\|\nabla u\|_{H^{1}}^{2}+\|\nabla u_{t}\|_{L^{2}}^{2});
J3\displaystyle J_{3} =Ωdiv(uφ)tdivφtdxδ(uH12+utL22);\displaystyle=\int_{\Omega}-\operatorname{div}(u\cdot\nabla\varphi)_{t}\operatorname{div}\varphi_{t}\,dx\lesssim\delta(\|\nabla u\|_{H^{1}}^{2}+\|\nabla u_{t}\|_{L^{2}}^{2});
J4\displaystyle J_{4} =Ωϕt[(divφ+O(|φ|2))u]t𝑑xδ((u,φ)H12+utL22).\displaystyle=-\int_{\Omega}\nabla\phi_{t}\cdot[(\operatorname{div}\varphi+O(|\nabla\varphi|^{2}))u]_{t}\,dx\lesssim\delta(\|\nabla(u,\varphi)\|_{H^{1}}^{2}+\|\nabla u_{t}\|_{L^{2}}^{2}).

Plugging the estimates for J1J4J_{1}-J_{4} into (3), since δ\delta is small, we get (3.12). ∎

Next, we give a crucial lemma about the dissipation estimate for ϕ,φ\nabla\phi,\nabla\varphi.

Lemma 3.3.

Let Ω3\Omega\subset\mathbb{R}^{3} be a half-space or an exterior domain with a compact boundary Ω𝒞3\partial\Omega\in\mathcal{C}^{3}. It holds that

ddtΩ(12|φ|2uφ)𝑑x+(φ,ϕ)L22uH12+δ2(u,φ)L22.\displaystyle\frac{d}{dt}\int_{\Omega}(\frac{1}{2}|\varphi|^{2}-u\cdot\varphi)\,dx+\|\nabla(\varphi,\phi)\|_{L^{2}}^{2}\lesssim\|u\|_{H^{1}}^{2}+\delta\|\nabla^{2}(u,\varphi)\|_{L^{2}}^{2}. (3.20)
Proof.

Multiplying Eq. (2.8)1\eqref{2.8}_{1}, Eq. (2.8)2\eqref{2.8}_{2} by φ-\varphi, φu\varphi-u, respectively, summing them up and integrating the resulting identity over Ω\Omega by parts, by the boundary conditions in (2.9), (3.5), Hölder’s and Cauchy’s inequalities and Lemma 2.1, we obtain for any ε>0\varepsilon>0,

ddtΩ(12|φ|2uφ)𝑑x+Ω(|φ|2+|divφ|2+|ϕ|2)𝑑x\displaystyle\frac{d}{dt}\int_{\Omega}(\frac{1}{2}|\varphi|^{2}-u\cdot\varphi)\,dx+\int_{\Omega}(|\nabla\varphi|^{2}+|\operatorname{div}\varphi|^{2}+|\nabla\phi|^{2})\,dx
=Ωu2𝑑xΩϕO(|φ|2)𝑑xΩ[μΔu+(μ+λ)divu]φ𝑑x\displaystyle=\int_{\Omega}u^{2}\,dx-\int_{\Omega}\phi O(|\nabla\varphi|^{2})\,dx-\int_{\Omega}[\mu\Delta u+(\mu+\lambda)\nabla\operatorname{div}u]\cdot\varphi\,dx
ΩR1φ𝑑x+ΩR2(φu)𝑑x\displaystyle\quad-\int_{\Omega}R_{1}\cdot\varphi\,dx+\int_{\Omega}R_{2}\cdot(\varphi-u)\,dx
uL22+ϕL6φL3φL2+uL2φL2+R1L6/5φL6+R2L6/5φuL6\displaystyle\lesssim\|u\|_{L^{2}}^{2}+\|\phi\|_{L^{6}}\|\nabla\varphi\|_{L^{3}}\|\nabla\varphi\|_{L^{2}}+\|\nabla u\|_{L^{2}}\|\nabla\varphi\|_{L^{2}}+\|R_{1}\|_{L^{6/5}}\|\varphi\|_{L^{6}}+\|R_{2}\|_{L^{6/5}}\|\varphi-u\|_{L^{6}}
uL22+CεuL22+εφL22+δ(u,φ)H12.\displaystyle\lesssim\|u\|_{L^{2}}^{2}+C_{\varepsilon}\|\nabla u\|_{L^{2}}^{2}+\varepsilon\|\nabla\varphi\|_{L^{2}}^{2}+\delta\|\nabla(u,\varphi)\|_{H^{1}}^{2}. (3.21)

Here, using the boundary conditions for ϕ\phi in (2.9), by (2.8)3\eqref{2.8}_{3}, we have calculated

Ωϕφdx\displaystyle\int_{\Omega}\nabla\phi\cdot\varphi\,dx =Ωϕdivφdx\displaystyle=-\int_{\Omega}\phi\operatorname{div}\varphi\,dx
=ΩϕΔϕ𝑑x+ΩϕO(|φ|2)𝑑x\displaystyle=-\int_{\Omega}\phi\Delta\phi\,dx+\int_{\Omega}\phi O(|\nabla\varphi|^{2})\,dx
=Ω|ϕ|2𝑑x+ΩϕO(|φ|2)𝑑x.\displaystyle=\int_{\Omega}|\nabla\phi|^{2}\,dx+\int_{\Omega}\phi O(|\nabla\varphi|^{2})\,dx.

Thus, taking ε>0\varepsilon>0 to be small enough, since δ\delta is small, we deduce (3.20) from (3). ∎

4. Higher-order Energy Estimates in Half-spaces

In this section, we focus on the higher-order energy estimates for (u,φ,ϕ)(u,\varphi,\phi) in the half-space Ω=+3={x3:x3>0}\Omega=\mathbb{R}^{3}_{+}=\{x\in\mathbb{R}^{3}:x_{3}>0\}. Note that the tangential derivatives of a function still vanish on the boundary Ω={x3=0}\partial\Omega=\{x_{3}=0\} if the function values zero on Ω\partial\Omega. So, we divide the energy estimates into the tangential derivatives estimates and the normal derivatives estimates. We denote the tangential derivatives =(x1,x2)\partial=(\partial_{x_{1}},\partial_{x_{2}}). We first establish the higher-order tangential derivatives estimates for (u,φ,ϕ)(u,\varphi,\phi) in the half-space Ω=+3\Omega=\mathbb{R}^{3}_{+}.

Lemma 4.1.

Let Ω=+3\Omega=\mathbb{R}^{3}_{+}. It holds that

ddt(u,divφ,φ,ϕ)L22+uL22+(u,φ,ϕ)L22(u,φ,ut)L22+δ(ϕL22+(u,φ)H12);\displaystyle\frac{d}{dt}\|\partial(u,\operatorname{div}\varphi,\nabla\varphi,\nabla\phi)\|_{L^{2}}^{2}+\|\partial u\|_{L^{2}}^{2}+\|\partial\nabla(u,\varphi,\phi)\|_{L^{2}}^{2}\lesssim\|\nabla(u,\varphi,u_{t})\|_{L^{2}}^{2}+\delta(\|\nabla\phi\|_{L^{2}}^{2}+\|\nabla(u,\varphi)\|_{H^{1}}^{2}); (4.1)
ddt2(u,divφ,φ,ϕ)L22+2uL22+2(u,φ,ϕ)L22(u,ut)L22+δ(u,φ)H22.\displaystyle\frac{d}{dt}\|\partial^{2}(u,\operatorname{div}\varphi,\nabla\varphi,\nabla\phi)\|_{L^{2}}^{2}+\|\partial^{2}u\|_{L^{2}}^{2}+\|\partial^{2}\nabla(u,\varphi,\phi)\|_{L^{2}}^{2}\lesssim\|\nabla(u,u_{t})\|_{L^{2}}^{2}+\delta\|\nabla(u,\varphi)\|_{H^{2}}^{2}. (4.2)
Proof.

Step 1. For the case of the half-space Ω=+3\Omega=\mathbb{R}^{3}_{+}, we deduce from the boundary conditions in (2.9) that for k=1,2k=1,2,

{kuΩ=kφΩ=0,kϕΩ=0orkϕνΩ=0.\displaystyle\begin{cases}\partial^{k}u\mid_{\partial\Omega}=\partial^{k}\varphi\mid_{\partial\Omega}=0,\\ \partial^{k}\phi\mid_{\partial\Omega}=0\quad\mbox{or}\quad\partial^{k}\nabla\phi\cdot\nu\mid_{\partial\Omega}=0.\end{cases} (4.3)

Integrating the identity (L1R1)u+(L2R2)(Δφ)=0\partial(L_{1}-R_{1})\cdot\partial u+\partial(L_{2}-R_{2})\cdot(-\partial\Delta\varphi)=0 over Ω\Omega by parts, by (3.8), (3.9) and (4.3), we obtain

12\displaystyle\frac{1}{2} ddtΩ(|u|2+|divφ|2+|φ|2+|ϕ|2)𝑑x+Ω[μ|u|2+(μ+λ)|divu|2+|u|2]𝑑x\displaystyle\frac{d}{dt}\int_{\Omega}(|\partial u|^{2}+|\partial\operatorname{div}\varphi|^{2}+|\partial\nabla\varphi|^{2}+|\partial\nabla\phi|^{2})\,dx+\int_{\Omega}[\mu|\partial\nabla u|^{2}+(\mu+\lambda)|\partial\operatorname{div}u|^{2}+|\partial u|^{2}]\,dx
=Ωdivφdiv(uφ)dxΩ[O(|φ|2)tdiv(uφ)]ϕdx\displaystyle=-\int_{\Omega}\partial\operatorname{div}\varphi\cdot\partial\operatorname{div}(u\cdot\nabla\varphi)\,dx-\int_{\Omega}\partial[O(|\nabla\varphi|^{2})_{t}-\operatorname{div}(u\cdot\nabla\varphi)]\cdot\partial\phi\,dx
+ΩR1udxΩR2Δφdx\displaystyle\quad+\int_{\Omega}\partial R_{1}\cdot\partial u\,dx-\int_{\Omega}\partial R_{2}\cdot\partial\Delta\varphi\,dx
:=H1+H2+H3+H4,\displaystyle:=H_{1}+H_{2}+H_{3}+H_{4}, (4.4)

where we have computed

Ω\displaystyle\int_{\Omega} divφudx=Ωdivφdivudx\displaystyle\partial\nabla\operatorname{div}\varphi\cdot\partial u\,dx=-\int_{\Omega}\partial\operatorname{div}\varphi\cdot\partial\operatorname{div}u\,dx
=Ωdivφ[divφt+div(uφ)]dx\displaystyle=\int_{\Omega}\partial\operatorname{div}\varphi\cdot\partial[\operatorname{div}\varphi_{t}+\operatorname{div}(u\cdot\nabla\varphi)]\,dx
=12ddtΩ|divφ|2𝑑x+Ωdivφdiv(uφ)dx\displaystyle=\frac{1}{2}\frac{d}{dt}\int_{\Omega}|\partial\operatorname{div}\varphi|^{2}\,dx+\int_{\Omega}\partial\operatorname{div}\varphi\cdot\partial\operatorname{div}(u\cdot\nabla\varphi)\,dx

and

\displaystyle- Ωϕudx=Ωϕdivudx\displaystyle\int_{\Omega}\partial\nabla\phi\cdot\partial u\,dx=\int_{\Omega}\partial\phi\cdot\partial\operatorname{div}u\,dx
=Ω[ΔϕtO(|φ|2)t+div(uφ)]ϕdx\displaystyle=-\int_{\Omega}\partial[\Delta\phi_{t}-O(|\nabla\varphi|^{2})_{t}+\operatorname{div}(u\cdot\nabla\varphi)]\cdot\partial\phi\,dx
=12ddtΩ|ϕ|2𝑑x+Ω[O(|φ|2)tdiv(uφ)]ϕdx.\displaystyle=\frac{1}{2}\frac{d}{dt}\int_{\Omega}|\partial\nabla\phi|^{2}\,dx+\int_{\Omega}\partial[O(|\nabla\varphi|^{2})_{t}-\operatorname{div}(u\cdot\nabla\varphi)]\cdot\partial\phi\,dx.

Then, by integrating by parts, (3), (3.17), Hölder’s and Cauchy’s inequalities and Lemma 2.1, we can bound the right-hand side of (4):

H1=Ωdivφdiv(uφ)dx2φL2(φL2uL2+uL32φL6+uL3φL2)\displaystyle H_{1}=-\int_{\Omega}\partial\operatorname{div}\varphi\cdot\partial\operatorname{div}(u\cdot\nabla\varphi)\,dx\lesssim\|\nabla^{2}\varphi\|_{L^{2}}(\|\nabla\varphi\|_{L^{\infty}}\|\nabla^{2}u\|_{L^{2}}+\|\nabla u\|_{L^{3}}\|\nabla^{2}\varphi\|_{L^{6}}+\|u\|_{L^{\infty}}\|\nabla^{3}\varphi\|_{L^{2}})
δ(uH12+2φL22);\displaystyle\quad\lesssim\delta(\|\nabla u\|_{H^{1}}^{2}+\|\nabla^{2}\varphi\|_{L^{2}}^{2});
H2=Ω[O(|φ|2)tdiv(uφ)]ϕdx\displaystyle H_{2}=-\int_{\Omega}\partial[O(|\nabla\varphi|^{2})_{t}-\operatorname{div}(u\cdot\nabla\varphi)]\cdot\partial\phi\,dx
ϕL2(2φL6φtL3+φL2φtL2+2φL6uL3+φL2uL2+uL3φL2)\displaystyle\quad\lesssim\|\nabla\phi\|_{L^{2}}(\|\nabla^{2}\varphi\|_{L^{6}}\|\nabla\varphi_{t}\|_{L^{3}}+\|\nabla\varphi\|_{L^{\infty}}\|\nabla^{2}\varphi_{t}\|_{L^{2}}+\|\nabla^{2}\varphi\|_{L^{6}}\|\nabla u\|_{L^{3}}+\|\nabla\varphi\|_{L^{\infty}}\|\nabla^{2}u\|_{L^{2}}+\|u\|_{L^{\infty}}\|\nabla^{3}\varphi\|_{L^{2}})
δ(uH12+ϕL22);\displaystyle\quad\lesssim\delta(\|\nabla u\|_{H^{1}}^{2}+\|\nabla\phi\|_{L^{2}}^{2});
H3=ΩR1udx=ΩR12udxΩ|R1||2u|𝑑x\displaystyle H_{3}=\int_{\Omega}\partial R_{1}\cdot\partial u\,dx=-\int_{\Omega}R_{1}\cdot\partial^{2}u\,dx\lesssim\int_{\Omega}|R_{1}|\cdot|\nabla^{2}u|\,dx
R1L22uL2δ(uH1+2φL2)2uL2δ(uH12+2φL22);\displaystyle\quad\lesssim\|R_{1}\|_{L^{2}}\|\nabla^{2}u\|_{L^{2}}\lesssim\delta(\|\nabla u\|_{H^{1}}+\|\nabla^{2}\varphi\|_{L^{2}})\|\nabla^{2}u\|_{L^{2}}\lesssim\delta(\|\nabla u\|_{H^{1}}^{2}+\|\nabla^{2}\varphi\|_{L^{2}}^{2});
H4=ΩR2ΔφdxuL6φL33φL2+uL2φL23φL2δ(uH12+φH12).\displaystyle H_{4}=-\int_{\Omega}\partial R_{2}\cdot\partial\Delta\varphi\,dx\lesssim\|\nabla u\|_{L^{6}}\|\nabla\varphi\|_{L^{3}}\|\nabla^{3}\varphi\|_{L^{2}}+\|u\|_{L^{\infty}}\|\nabla^{2}\varphi\|_{L^{2}}\|\nabla^{3}\varphi\|_{L^{2}}\lesssim\delta(\|\nabla u\|_{H^{1}}^{2}+\|\nabla\varphi\|_{H^{1}}^{2}).

Putting the above estimates for H1,H2,H3,H4H_{1},H_{2},H_{3},H_{4} into (4), we have

ddt(u,divφ,φ,ϕ)L22+(u,u)L22δ(ϕL22+(u,φ)H12).\displaystyle\frac{d}{dt}\|(\partial u,\partial\operatorname{div}\varphi,\partial\nabla\varphi,\partial\nabla\phi)\|_{L^{2}}^{2}+\|(\partial u,\partial\nabla u)\|_{L^{2}}^{2}\lesssim\delta(\|\nabla\phi\|_{L^{2}}^{2}+\|\nabla(u,\varphi)\|_{H^{1}}^{2}). (4.5)

Integrating the identity 2(L1R1)2u+2(L2R2)(2Δφ)=0\partial^{2}(L_{1}-R_{1})\cdot\partial^{2}u+\partial^{2}(L_{2}-R_{2})\cdot(-\partial^{2}\Delta\varphi)=0 over Ω\Omega, like (4.5), we have

ddt(2u,2divφ,2φ,2ϕ)L22+(2u,2u)L22δ(uH22+φH22).\displaystyle\frac{d}{dt}\|(\partial^{2}u,\partial^{2}\operatorname{div}\varphi,\partial^{2}\nabla\varphi,\partial^{2}\nabla\phi)\|_{L^{2}}^{2}+\|(\partial^{2}u,\partial^{2}\nabla u)\|_{L^{2}}^{2}\lesssim\delta(\|\nabla u\|_{H^{2}}^{2}+\|\nabla\varphi\|_{H^{2}}^{2}). (4.6)

Step 2. Integrating the identity (L1R1)φ=0\partial(L_{1}-R_{1})\cdot\partial\varphi=0 over Ω\Omega by parts, by (2.8)3\eqref{2.8}_{3}, (3), (3.8), (3.9), (4.3), Hölder’s and Cauchy’s inequalities and Lemma 2.1, we obtain for any ε>0\varepsilon>0,

Ω\displaystyle\int_{\Omega} (|φ|2+|divφ|2+|ϕ|2)dx\displaystyle(|\partial\nabla\varphi|^{2}+|\partial\operatorname{div}\varphi|^{2}+|\partial\nabla\phi|^{2})\,dx
=ΩϕO(|φ|2)dx+Ω(ut+u)φdx+μΩuφdx\displaystyle=-\int_{\Omega}\partial\phi\cdot\partial O(|\nabla\varphi|^{2})\,dx+\int_{\Omega}\partial(u_{t}+u)\cdot\partial\varphi\,dx+\mu\int_{\Omega}\partial\nabla u\cdot\partial\nabla\varphi\,dx
+(μ+λ)Ωdivudivφdx+ΩR12φdx\displaystyle\quad+(\mu+\lambda)\int_{\Omega}\partial\operatorname{div}u\cdot\partial\operatorname{div}\varphi\,dx+\int_{\Omega}R_{1}\cdot\partial^{2}\varphi\,dx
Ω|ϕ||φ||2φ|𝑑x+Ω(|ut|+|u|)|φ|𝑑x+Ω|u||φ|𝑑x+Ω|R1||φ|𝑑x\displaystyle\lesssim\int_{\Omega}|\nabla\phi|\cdot|\nabla\varphi|\cdot|\nabla^{2}\varphi|\,dx+\int_{\Omega}(|\nabla u_{t}|+|\nabla u|)\cdot|\nabla\varphi|\,dx+\int_{\Omega}|\partial\nabla u|\cdot|\partial\nabla\varphi|\,dx+\int_{\Omega}|R_{1}|\cdot|\partial\nabla\varphi|\,dx
ϕL6φL32φL2+utL2φL2+uL2φL2+uL2φL2+R1L2φL2\displaystyle\lesssim\|\nabla\phi\|_{L^{6}}\|\nabla\varphi\|_{L^{3}}\|\nabla^{2}\varphi\|_{L^{2}}+\|\nabla u_{t}\|_{L^{2}}\|\nabla\varphi\|_{L^{2}}+\|\nabla u\|_{L^{2}}\|\nabla\varphi\|_{L^{2}}+\|\partial\nabla u\|_{L^{2}}\|\partial\nabla\varphi\|_{L^{2}}+\|R_{1}\|_{L^{2}}\|\partial\nabla\varphi\|_{L^{2}}
(φ,ut,u)L22+CεuL22+εφL22+δ(φL22+(u,φ)H12),\displaystyle\lesssim\|(\nabla\varphi,\nabla u_{t},\nabla u)\|_{L^{2}}^{2}+C_{\varepsilon}\|\partial\nabla u\|_{L^{2}}^{2}+\varepsilon\|\partial\nabla\varphi\|_{L^{2}}^{2}+\delta(\|\partial\nabla\varphi\|_{L^{2}}^{2}+\|\nabla(u,\varphi)\|_{H^{1}}^{2}), (4.7)

where we have computed

\displaystyle- Ωϕφdx=Ωϕdivφdx\displaystyle\int_{\Omega}\partial\nabla\phi\cdot\partial\varphi\,dx=\int_{\Omega}\partial\phi\cdot\partial\operatorname{div}\varphi\,dx
=ΩϕΔϕdxΩϕO(|φ|2)dx\displaystyle=\int_{\Omega}\partial\phi\cdot\partial\Delta\phi\,dx-\int_{\Omega}\partial\phi\cdot\partial O(|\nabla\varphi|^{2})\,dx
=Ω|ϕ|2𝑑xΩϕO(|φ|2)dx.\displaystyle=-\int_{\Omega}|\partial\nabla\phi|^{2}\,dx-\int_{\Omega}\partial\phi\cdot\partial O(|\nabla\varphi|^{2})\,dx.

So, letting ε>0\varepsilon>0 be small enough, since δ\delta is small, we deduce from (4) that

(φ,ϕ)L22(φ,ut,u,u)L22+δ2(u,φ)L22.\displaystyle\|(\partial\nabla\varphi,\partial\nabla\phi)\|_{L^{2}}^{2}\lesssim\|(\nabla\varphi,\nabla u_{t},\nabla u,\partial\nabla u)\|_{L^{2}}^{2}+\delta\|\nabla^{2}(u,\varphi)\|_{L^{2}}^{2}. (4.8)

Integrating the identity 2(L1R1)2φ=0\partial^{2}(L_{1}-R_{1})\cdot\partial^{2}\varphi=0 over Ω\Omega, similar to the proof of (4.8), we can obtain

(2φ,2ϕ)L22(ut,u,2u)L22+δ(u,φ)H22.\displaystyle\|(\partial^{2}\nabla\varphi,\partial^{2}\nabla\phi)\|_{L^{2}}^{2}\lesssim\|(\nabla u_{t},\nabla u,\partial^{2}\nabla u)\|_{L^{2}}^{2}+\delta\|\nabla(u,\varphi)\|_{H^{2}}^{2}. (4.9)

Step 3. Let η>0\eta>0 be a small but fixed constant. Computing (4.8)×η+(4.5)\eqref{7-15-3}\times\eta+\eqref{7-15-1} and (4.9)×η+(4.6)\eqref{7-15-4}\times\eta+\eqref{7-15-2}, respectively, we deduce (4.1) and (4.2). ∎

Next, we derive the estimates of the normal derivatives of divφ\operatorname{div}\varphi in the half-space.

Lemma 4.2.

Let Ω=+3\Omega=\mathbb{R}^{3}_{+}. It holds that

ddtx3divφL22+x3(DdivφDt,divφ)L22(ut,u,ϕ)L22+(u,φ)L22+δ(u,2φ)H12\displaystyle\frac{d}{dt}\|\partial_{x_{3}}\operatorname{div}\varphi\|_{L^{2}}^{2}+\|\partial_{x_{3}}(\tfrac{D\operatorname{div}\varphi}{Dt},\operatorname{div}\varphi)\|_{L^{2}}^{2}\lesssim\|(u_{t},u,\nabla\phi)\|_{L^{2}}^{2}+\|\partial\nabla(u,\varphi)\|_{L^{2}}^{2}+\delta\|(\nabla u,\nabla^{2}\varphi)\|_{H^{1}}^{2} (4.10)

and

ddtκx3ι+1divφL22+κx3ι+1(DdivφDt,divφ)L22(u,ut,ϕ)L22+κ+1x3ι(u,φ)L22+δ(u,φ)H22,\displaystyle\frac{d}{dt}\|\partial^{\kappa}\partial_{x_{3}}^{\iota+1}\operatorname{div}\varphi\|_{L^{2}}^{2}+\|\partial^{\kappa}\partial_{x_{3}}^{\iota+1}(\tfrac{D\operatorname{div}\varphi}{Dt},\operatorname{div}\varphi)\|_{L^{2}}^{2}\lesssim\|\nabla(u,u_{t},\nabla\phi)\|_{L^{2}}^{2}+\|\partial^{\kappa+1}\partial_{x_{3}}^{\iota}\nabla(u,\varphi)\|_{L^{2}}^{2}+\delta\|\nabla(u,\varphi)\|_{H^{2}}^{2}, (4.11)

where κ+ι=1\kappa+\iota=1.

Proof.

Denote the material derivative

DfDt:=tf+uf.\displaystyle\tfrac{Df}{Dt}:=\partial_{t}f+u\cdot\nabla f.

Applying the divergence operator div\operatorname{div} to both sides of (2.3)\eqref{2.3}, we have

divu=DdivφDt(u)T:φ.\displaystyle\operatorname{div}u=-\tfrac{D\operatorname{div}\varphi}{Dt}-(\nabla u)^{T}:\nabla\varphi. (4.12)

Plugging (4.12) into Eq. (2.8)1\eqref{2.8}_{1}, we obtain

utμΔ(uφμ)+μdiv(uφμ)+(2μ+λ)[DdivφDt+(u)T:φ]+2divφϕ+u=R1.\displaystyle u_{t}-\mu\Delta(u-\tfrac{\varphi}{\mu})+\mu\nabla\operatorname{div}(u-\tfrac{\varphi}{\mu})+(2\mu+\lambda)\nabla[\tfrac{D\operatorname{div}\varphi}{Dt}+(\nabla u)^{T}:\nabla\varphi]+2\nabla\operatorname{div}\varphi-\nabla\phi+u=R_{1}.

Choosing the third component of the above identity, we have

(2μ+λ)x3(DdivφDt)+2x3divφ=,\displaystyle(2\mu+\lambda)\partial_{x_{3}}(\tfrac{D\operatorname{div}\varphi}{Dt})+2\partial_{x_{3}}\operatorname{div}\varphi=\mathcal{R}, (4.13)

where

\displaystyle\mathcal{R} :=tu3+μ[x1x1(uφμ)3+x2x2(uφμ)3x1x3(uφμ)1x2x3(uφμ)2]\displaystyle:=-\partial_{t}u_{3}+\mu[\partial_{x_{1}x_{1}}(u-\frac{\varphi}{\mu})_{3}+\partial_{x_{2}x_{2}}(u-\frac{\varphi}{\mu})_{3}-\partial_{x_{1}x_{3}}(u-\frac{\varphi}{\mu})_{1}-\partial_{x_{2}x_{3}}(u-\frac{\varphi}{\mu})_{2}]
(2μ+λ)x3[(u)T:φ]+x3ϕu3+(R1)3.\displaystyle\quad-(2\mu+\lambda)\partial_{x_{3}}[(\nabla u)^{T}:\nabla\varphi]+\partial_{x_{3}}\phi-u_{3}+(R_{1})_{3}.

Multiplying (4.13) by x3(DdivφDt+divφ)\partial_{x_{3}}(\tfrac{D\operatorname{div}\varphi}{Dt}+\operatorname{div}\varphi) and then integrating it over Ω\Omega, we obtain

2+2μ+λ2ddtx3divφL22+(2μ+λ)x3(DdivφDt)L22+2x3divφL22\displaystyle\frac{2+2\mu+\lambda}{2}\frac{d}{dt}\|\partial_{x_{3}}\operatorname{div}\varphi\|_{L^{2}}^{2}+(2\mu+\lambda)\|\partial_{x_{3}}(\tfrac{D\operatorname{div}\varphi}{Dt})\|_{L^{2}}^{2}+2\|\partial_{x_{3}}\operatorname{div}\varphi\|_{L^{2}}^{2}
=(2+2μ+λ)Ω(udivφ)x3divφx3dx+Ωx3(DdivφDt+divφ)dx\displaystyle\quad=-(2+2\mu+\lambda)\int_{\Omega}(u\cdot\nabla\operatorname{div}\varphi)_{x_{3}}\operatorname{div}\varphi_{x_{3}}\,dx+\int_{\Omega}\partial_{x_{3}}(\tfrac{D\operatorname{div}\varphi}{Dt}+\operatorname{div}\varphi)\mathcal{R}\,dx
:=N1+N2.\displaystyle\quad:=N_{1}+N_{2}. (4.14)

Then, we can easily estimate the right-hand side of (4) as follows:

N1\displaystyle N_{1} Ω|ux3||divφ||divφx3|𝑑x+Ω|divu|divφx32dx\displaystyle\lesssim\int_{\Omega}|u_{x_{3}}|\cdot|\nabla\operatorname{div}\varphi|\cdot|\operatorname{div}\varphi_{x_{3}}|\,dx+\int_{\Omega}|\operatorname{div}u|\operatorname{div}\varphi_{x_{3}}^{2}\,dx
uH1divφH12δdivφH12\displaystyle\lesssim\|\nabla u\|_{H^{1}}\|\nabla\operatorname{div}\varphi\|_{H^{1}}^{2}\lesssim\delta\|\nabla\operatorname{div}\varphi\|_{H^{1}}^{2} (4.15)

and

N2\displaystyle N_{2} 2μ+λ2x3(DdivφDt)L22+x3divφL22+CL22\displaystyle\leqslant\frac{2\mu+\lambda}{2}\|\partial_{x_{3}}(\tfrac{D\operatorname{div}\varphi}{Dt})\|_{L^{2}}^{2}+\|\partial_{x_{3}}\operatorname{div}\varphi\|_{L^{2}}^{2}+C\|\mathcal{R}\|_{L^{2}}^{2}
2μ+λ2x3(DdivφDt)L22+x3divφL22\displaystyle\leqslant\frac{2\mu+\lambda}{2}\|\partial_{x_{3}}(\tfrac{D\operatorname{div}\varphi}{Dt})\|_{L^{2}}^{2}+\|\partial_{x_{3}}\operatorname{div}\varphi\|_{L^{2}}^{2}
+C(ut,u,ϕ)L22+C(uφμ)L22+CuL622φL32\displaystyle\quad+C\|(u_{t},u,\nabla\phi)\|_{L^{2}}^{2}+C\|\partial\nabla(u-\frac{\varphi}{\mu})\|_{L^{2}}^{2}+C\|\nabla u\|_{L^{6}}^{2}\|\nabla^{2}\varphi\|_{L^{3}}^{2}
+CφL22uL22+CR1L22\displaystyle\quad+C\|\nabla\varphi\|_{L^{\infty}}^{2}\|\nabla^{2}u\|_{L^{2}}^{2}+C\|R_{1}\|_{L^{2}}^{2}
2μ+λ2x3(DdivφDt)L22+x3divφL22\displaystyle\leqslant\frac{2\mu+\lambda}{2}\|\partial_{x_{3}}(\tfrac{D\operatorname{div}\varphi}{Dt})\|_{L^{2}}^{2}+\|\partial_{x_{3}}\operatorname{div}\varphi\|_{L^{2}}^{2}
+C(ut,u,ϕ)L22+C(u,φ)L22+Cδ(u,2φ)H12.\displaystyle\quad+C\|(u_{t},u,\nabla\phi)\|_{L^{2}}^{2}+C\|\partial\nabla(u,\varphi)\|_{L^{2}}^{2}+C\delta\|(\nabla u,\nabla^{2}\varphi)\|_{H^{1}}^{2}. (4.16)

Substituting (4)–(4) into (4), we obtain (4.10).

Next, applying kx3ι(k+ι=1)\partial^{k}\partial^{\iota}_{x_{3}}(k+\iota=1) to (4.13), multiplying the identity by kx3ι+1(DdivφDt+divφ),\partial^{k}\partial^{\iota+1}_{x_{3}}(\frac{D\operatorname{div}\varphi}{Dt}+\operatorname{div}\varphi), integrating over Ω\Omega by parts, as in the proof of (4.10), we can obtain (4.11). ∎

Then, we shall give the energy estimate about u\partial\nabla u in the half-space.

Lemma 4.3.

Let Ω=+3\Omega=\mathbb{R}^{3}_{+}. It holds that

ddt(u,u,divu)L22+utL22(2ϕ,3φ)L22+δ(uH22+2φH12).\displaystyle\frac{d}{dt}\|\partial(u,\nabla u,\operatorname{div}u)\|_{L^{2}}^{2}+\|\partial u_{t}\|_{L^{2}}^{2}\lesssim\|(\nabla^{2}\phi,\nabla^{3}\varphi)\|_{L^{2}}^{2}+\delta(\|\nabla u\|_{H^{2}}^{2}+\|\nabla^{2}\varphi\|_{H^{1}}^{2}). (4.17)
Proof.

Applying \partial to Eq. (2.8)1\eqref{2.8}_{1}, multiplying the resulting identity by ut\partial u_{t}, and then integrating it over Ω\Omega by parts, by (3.6), Hölder’s and Cauchy’s inequalities and Lemma 2.1, we have for any ε>0\varepsilon>0,

12\displaystyle\frac{1}{2} ddtΩ[μ|u|2+(μ+λ)|divu|2+|u|2]𝑑x+Ω|ut|2𝑑x\displaystyle\frac{d}{dt}\int_{\Omega}[\mu|\partial\nabla u|^{2}+(\mu+\lambda)|\partial\operatorname{div}u|^{2}+|\partial u|^{2}]\,dx+\int_{\Omega}|\partial u_{t}|^{2}\,dx
=Ωut[Δφ+divφϕ]dx+ΩutR1dx\displaystyle=-\int_{\Omega}\partial u_{t}\cdot\partial[\Delta\varphi+\nabla\operatorname{div}\varphi-\nabla\phi]\,dx+\int_{\Omega}\partial u_{t}\cdot\partial R_{1}\,dx
utL2(3φL2+2ϕL2)+utL2R1L2\displaystyle\lesssim\|\partial u_{t}\|_{L^{2}}(\|\nabla^{3}\varphi\|_{L^{2}}+\|\nabla^{2}\phi\|_{L^{2}})+\|\partial u_{t}\|_{L^{2}}\|\nabla R_{1}\|_{L^{2}}
(δ+ε)utL22+(2ϕ,3φ)L22+δ(uH22+2φH12),\displaystyle\lesssim(\delta+\varepsilon)\|\partial u_{t}\|_{L^{2}}^{2}+\|(\nabla^{2}\phi,\nabla^{3}\varphi)\|_{L^{2}}^{2}+\delta(\|\nabla u\|_{H^{2}}^{2}+\|\nabla^{2}\varphi\|_{H^{1}}^{2}),

which, by letting ε>0\varepsilon>0 be small enough, since δ\delta is small, infers (4.17). ∎

Now, we can derive the desired higher-order dissipation estimates for (u,φ)(u,\varphi) in the half-space.

Lemma 4.4.

Let Ω=+3\Omega=\mathbb{R}^{3}_{+}. It holds that

ddt2φL22+2(u,φ)L22(ut,u,u,φ,u,φ)L22+x3(DdivφDt,divφ)L22;\displaystyle\frac{d}{dt}\|\nabla^{2}\varphi\|_{L^{2}}^{2}+\|\nabla^{2}(u,\varphi)\|_{L^{2}}^{2}\lesssim\|(u_{t},u,\nabla u,\nabla\varphi,\partial\nabla u,\partial\nabla\varphi)\|_{L^{2}}^{2}+\|\partial_{x_{3}}(\tfrac{D\operatorname{div}\varphi}{Dt},\operatorname{div}\varphi)\|_{L^{2}}^{2}; (4.18)
ddt3φL22+3(u,φ)L22(ut,u,u,φ)H12+2(u,φ)L22+x3(DdivφDt,divφ)L22;\displaystyle\frac{d}{dt}\|\nabla^{3}\varphi\|_{L^{2}}^{2}+\|\nabla^{3}(u,\varphi)\|_{L^{2}}^{2}\lesssim\|(u_{t},u,\nabla u,\nabla\varphi)\|_{H^{1}}^{2}+\|\partial\nabla^{2}(u,\varphi)\|_{L^{2}}^{2}+\|\partial_{x_{3}}\nabla(\tfrac{D\operatorname{div}\varphi}{Dt},\operatorname{div}\varphi)\|_{L^{2}}^{2}; (4.19)
ddt2φL22+2(u,φ)L22(ut,u,φ)H12+(ϕ,2u,x3(DdivφDt),divφ)L22+δ3(u,φ)L22.\displaystyle\frac{d}{dt}\|\partial\nabla^{2}\varphi\|_{L^{2}}^{2}+\|\partial\nabla^{2}(u,\varphi)\|_{L^{2}}^{2}\lesssim\|(u_{t},\nabla u,\nabla\varphi)\|_{H^{1}}^{2}+\|(\nabla\phi,\partial^{2}\nabla u,\partial\partial_{x_{3}}(\tfrac{D\operatorname{div}\varphi}{Dt}),\partial\nabla\operatorname{div}\varphi)\|_{L^{2}}^{2}+\delta\|\nabla^{3}(u,\varphi)\|_{L^{2}}^{2}. (4.20)
Proof.

Firstly, we can construct the following high-order dissipation estimates of φ\varphi:

ddt2φL22+2φL222(uφμ)L22+δuH12;\displaystyle\frac{d}{dt}\|\nabla^{2}\varphi\|_{L^{2}}^{2}+\|\nabla^{2}\varphi\|_{L^{2}}^{2}\lesssim\|\nabla^{2}(u-\frac{\varphi}{\mu})\|_{L^{2}}^{2}+\delta\|\nabla u\|_{H^{1}}^{2}; (4.21)
ddt3φL22+3φL223(uφμ)L22+δuH22;\displaystyle\frac{d}{dt}\|\nabla^{3}\varphi\|_{L^{2}}^{2}+\|\nabla^{3}\varphi\|_{L^{2}}^{2}\lesssim\|\nabla^{3}(u-\frac{\varphi}{\mu})\|_{L^{2}}^{2}+\delta\|\nabla u\|_{H^{2}}^{2}; (4.22)
ddt2φL22+2φL222(uφμ)L22+δuH22.\displaystyle\frac{d}{dt}\|\partial\nabla^{2}\varphi\|_{L^{2}}^{2}+\|\partial\nabla^{2}\varphi\|_{L^{2}}^{2}\lesssim\|\partial\nabla^{2}(u-\frac{\varphi}{\mu})\|_{L^{2}}^{2}+\delta\|\nabla u\|_{H^{2}}^{2}. (4.23)

In fact, applying 2\nabla^{2} to Eq. (2.8)2\eqref{2.8}_{2}, multiplying the resulting identity by 2φ\nabla^{2}\varphi and integrating it over Ω\Omega, by Hölder’s and Cauchy’s inequalities and Lemma 2.2, we obtain for any ε>0\varepsilon>0,

12\displaystyle\frac{1}{2} ddtΩ|2φ|2𝑑x+1μΩ|2φ|2𝑑x\displaystyle\frac{d}{dt}\int_{\Omega}|\nabla^{2}\varphi|^{2}\,dx+\frac{1}{\mu}\int_{\Omega}|\nabla^{2}\varphi|^{2}\,dx
=Ω2(uφμ)2φdxΩ2(uφ)2φdx\displaystyle=-\int_{\Omega}\nabla^{2}(u-\frac{\varphi}{\mu})\cdot\nabla^{2}\varphi\,dx-\int_{\Omega}\nabla^{2}(u\cdot\nabla\varphi)\cdot\nabla^{2}\varphi\,dx
2(uφμ)L22φL2+2(uφ)L22φL2\displaystyle\lesssim\|\nabla^{2}(u-\frac{\varphi}{\mu})\|_{L^{2}}\|\nabla^{2}\varphi\|_{L^{2}}+\|\nabla^{2}(u\cdot\nabla\varphi)\|_{L^{2}}\|\nabla^{2}\varphi\|_{L^{2}}
2(uφμ)L22φL2+(2uL2φL+uL3φL2)2φL2\displaystyle\lesssim\|\nabla^{2}(u-\frac{\varphi}{\mu})\|_{L^{2}}\|\nabla^{2}\varphi\|_{L^{2}}+(\|\nabla^{2}u\|_{L^{2}}\|\nabla\varphi\|_{L^{\infty}}+\|u\|_{L^{\infty}}\|\nabla^{3}\varphi\|_{L^{2}})\|\nabla^{2}\varphi\|_{L^{2}}
(δ+ε)2φL22+2(uφμ)L22+δuH12,\displaystyle\lesssim(\delta+\varepsilon)\|\nabla^{2}\varphi\|_{L^{2}}^{2}+\|\nabla^{2}(u-\frac{\varphi}{\mu})\|_{L^{2}}^{2}+\delta\|\nabla u\|_{H^{1}}^{2},

which, by letting ε>0\varepsilon>0 be small enough, infers (4.21). Similarly, we can prove (4.22)–(4.23).

Secondly, we can construct the following high-order dissipation estimates of (uφμ)(u-\frac{\varphi}{\mu}):

2(uφμ)L22(ut,u,u,φ,u,x3(DdivφDt))L22+divφH12+δ2(u,φ)L22;\displaystyle\|\nabla^{2}(u-\frac{\varphi}{\mu})\|_{L^{2}}^{2}\lesssim\|(u_{t},u,\nabla u,\nabla\varphi,\partial\nabla u,\partial_{x_{3}}(\tfrac{D\operatorname{div}\varphi}{Dt}))\|_{L^{2}}^{2}+\|\operatorname{div}\varphi\|_{H^{1}}^{2}+\delta\|\nabla^{2}(u,\varphi)\|_{L^{2}}^{2}; (4.24)
3(uφμ)L22(ut,u,u)H12+(φ,2u,x3(DdivφDt))L22+divφH22+δ(3uL22+2φH12);\displaystyle\|\nabla^{3}(u-\frac{\varphi}{\mu})\|_{L^{2}}^{2}\lesssim\|(u_{t},u,\nabla u)\|_{H^{1}}^{2}+\|(\nabla\varphi,\partial\nabla^{2}u,\partial_{x_{3}}\nabla(\tfrac{D\operatorname{div}\varphi}{Dt}))\|_{L^{2}}^{2}+\|\operatorname{div}\varphi\|_{H^{2}}^{2}+\delta(\|\nabla^{3}u\|_{L^{2}}^{2}+\|\nabla^{2}\varphi\|_{H^{1}}^{2}); (4.25)
2(uφμ)L22(ut,u,φ)H12+(ϕ,2u,x3(DdivφDt),divφ)L22+δ3(u,φ)L22.\displaystyle\|\partial\nabla^{2}(u-\frac{\varphi}{\mu})\|_{L^{2}}^{2}\lesssim\|(u_{t},\nabla u,\nabla\varphi)\|_{H^{1}}^{2}+\|(\nabla\phi,\partial^{2}\nabla u,\partial\partial_{x_{3}}(\tfrac{D\operatorname{div}\varphi}{Dt}),\partial\nabla\operatorname{div}\varphi)\|_{L^{2}}^{2}+\delta\|\nabla^{3}(u,\varphi)\|_{L^{2}}^{2}. (4.26)

In fact, by collecting (4.12)\eqref{ncu} and Eq. (2.8)1\eqref{2.8}_{1}, we get

{div(uφμ)=DdivφDt1μdivφ(u)T:φ,μΔ(uφμ)ϕ=utu+(μ+λ)divudivφ+R1,(uφμ)Ω=0.\displaystyle\begin{cases}\operatorname{div}(u-\frac{\varphi}{\mu})=-\frac{D\operatorname{div}\varphi}{Dt}-\frac{1}{\mu}\operatorname{div}\varphi-(\nabla u)^{T}:\nabla\varphi,\\ -\mu\Delta(u-\frac{\varphi}{\mu})-\nabla\phi=-u_{t}-u+(\mu+\lambda)\nabla\operatorname{div}u-\nabla\operatorname{div}\varphi+R_{1},\\ (u-\frac{\varphi}{\mu})\mid_{\partial\Omega}=0.\end{cases} (4.27)

Applying Lemma 2.5 to the boundary-value problem (4.27), we obtain

2(uφμ)L2(ut,u,R1)L2+DdivφDtH1+divφH1+(u)T:φH1+(u,φ)L2,\displaystyle\|\nabla^{2}(u-\tfrac{\varphi}{\mu})\|_{L^{2}}\lesssim\|(u_{t},u,R_{1})\|_{L^{2}}+\|\tfrac{D\operatorname{div}\varphi}{Dt}\|_{H^{1}}+\|\operatorname{div}\varphi\|_{H^{1}}+\|(\nabla u)^{T}:\nabla\varphi\|_{H^{1}}+\|(\nabla u,\nabla\varphi)\|_{L^{2}}, (4.28)

where we have used

divuL2(DdivφDt)L2+[(u)T:φ]L2.\displaystyle\|\nabla\operatorname{div}u\|_{L^{2}}\leqslant\|\nabla(\tfrac{D\operatorname{div}\varphi}{Dt})\|_{L^{2}}+\|\nabla[(\nabla u)^{T}:\nabla\varphi]\|_{L^{2}}.

By (4.12) and Hölder’s inequality, we have

DdivφDtL2divuL2+(u)T:φL2uL2;\displaystyle\|\tfrac{D\operatorname{div}\varphi}{Dt}\|_{L^{2}}\leqslant\|\operatorname{div}u\|_{L^{2}}+\|(\nabla u)^{T}:\nabla\varphi\|_{L^{2}}\lesssim\|\nabla u\|_{L^{2}}; (4.29)
(DdivφDt)L2(DdivφDt)L2+x3(DdivφDt)L2\displaystyle\|\nabla(\tfrac{D\operatorname{div}\varphi}{Dt})\|_{L^{2}}\lesssim\|\partial(\tfrac{D\operatorname{div}\varphi}{Dt})\|_{L^{2}}+\|\partial_{x_{3}}(\tfrac{D\operatorname{div}\varphi}{Dt})\|_{L^{2}}
uL2+[(u)T:φ]L2+x3(DdivφDt)L2\displaystyle\qquad\qquad\quad\ \lesssim\|\partial\nabla u\|_{L^{2}}+\|\partial[(\nabla u)^{T}:\nabla\varphi]\|_{L^{2}}+\|\partial_{x_{3}}(\tfrac{D\operatorname{div}\varphi}{Dt})\|_{L^{2}}
uL2+2uL2φL+uL32φL6+x3(DdivφDt)L2\displaystyle\qquad\qquad\quad\ \lesssim\|\partial\nabla u\|_{L^{2}}+\|\nabla^{2}u\|_{L^{2}}\|\nabla\varphi\|_{L^{\infty}}+\|\nabla u\|_{L^{3}}\|\nabla^{2}\varphi\|_{L^{6}}+\|\partial_{x_{3}}(\tfrac{D\operatorname{div}\varphi}{Dt})\|_{L^{2}}
uL2+x3(DdivφDt)L2+δuH1;\displaystyle\qquad\qquad\quad\ \lesssim\|\partial\nabla u\|_{L^{2}}+\|\partial_{x_{3}}(\tfrac{D\operatorname{div}\varphi}{Dt})\|_{L^{2}}+\delta\|\nabla u\|_{H^{1}}; (4.30)
(u)T:φH1uL6φL3+2uL2φL+uL32φL6δuH1.\displaystyle\|(\nabla u)^{T}:\nabla\varphi\|_{H^{1}}\lesssim\|\nabla u\|_{L^{6}}\|\nabla\varphi\|_{L^{3}}+\|\nabla^{2}u\|_{L^{2}}\|\nabla\varphi\|_{L^{\infty}}+\|\nabla u\|_{L^{3}}\|\nabla^{2}\varphi\|_{L^{6}}\lesssim\delta\|\nabla u\|_{H^{1}}. (4.31)

Plugging the estimates (4.29)–(4.31) and (3) into (4.28), we obtain

2(uφμ)L2(ut,u,u,φ,u,x3(DdivφDt))L2+divφH1+δ2(u,φ)L2,\displaystyle\|\nabla^{2}(u-\tfrac{\varphi}{\mu})\|_{L^{2}}\lesssim\|(u_{t},u,\nabla u,\nabla\varphi,\partial\nabla u,\partial_{x_{3}}(\tfrac{D\operatorname{div}\varphi}{Dt}))\|_{L^{2}}+\|\operatorname{div}\varphi\|_{H^{1}}+\delta\|\nabla^{2}(u,\varphi)\|_{L^{2}},

which infers (4.24).

Similarly, we have

3(uφμ)L2(ut,u,R1)H1+DdivφDtH2+divφH2+(u)T:φH2+(u,φ)L2,\displaystyle\|\nabla^{3}(u-\tfrac{\varphi}{\mu})\|_{L^{2}}\lesssim\|(u_{t},u,R_{1})\|_{H^{1}}+\|\tfrac{D\operatorname{div}\varphi}{Dt}\|_{H^{2}}+\|\operatorname{div}\varphi\|_{H^{2}}+\|(\nabla u)^{T}:\nabla\varphi\|_{H^{2}}+\|(\nabla u,\nabla\varphi)\|_{L^{2}}, (4.32)

where we have used

divuH1(DdivφDt)H1+[(u)T:φ]H1.\displaystyle\|\nabla\operatorname{div}u\|_{H^{1}}\leqslant\|\nabla(\tfrac{D\operatorname{div}\varphi}{Dt})\|_{H^{1}}+\|\nabla[(\nabla u)^{T}:\nabla\varphi]\|_{H^{1}}.

Similar to (4.29)–(4.31), by Lemma 2.2, we have

DdivφDtH1divuH1+(u)T:φH1divuH1+δuH1uH1;\displaystyle\|\tfrac{D\operatorname{div}\varphi}{Dt}\|_{H^{1}}\lesssim\|\operatorname{div}u\|_{H^{1}}+\|(\nabla u)^{T}:\nabla\varphi\|_{H^{1}}\lesssim\|\operatorname{div}u\|_{H^{1}}+\delta\|\nabla u\|_{H^{1}}\lesssim\|\nabla u\|_{H^{1}}; (4.33)
2[(u)T:φ]L23uL2φL+uL3φL2δuH2;\displaystyle\|\nabla^{2}[(\nabla u)^{T}:\nabla\varphi]\|_{L^{2}}\lesssim\|\nabla^{3}u\|_{L^{2}}\|\nabla\varphi\|_{L^{\infty}}+\|\nabla u\|_{L^{\infty}}\|\nabla^{3}\varphi\|_{L^{2}}\lesssim\delta\|\nabla u\|_{H^{2}}; (4.34)
2(DdivφDt)L2(DdivφDt)L2+x3(DdivφDt)L2\displaystyle\|\nabla^{2}(\tfrac{D\operatorname{div}\varphi}{Dt})\|_{L^{2}}\lesssim\|\partial\nabla(\tfrac{D\operatorname{div}\varphi}{Dt})\|_{L^{2}}+\|\partial_{x_{3}}\nabla(\tfrac{D\operatorname{div}\varphi}{Dt})\|_{L^{2}}
divuL2+[(u)T:φ]L2+x3(DdivφDt)L2\displaystyle\qquad\qquad\quad\ \ \lesssim\|\partial\nabla\operatorname{div}u\|_{L^{2}}+\|\partial\nabla[(\nabla u)^{T}:\nabla\varphi]\|_{L^{2}}+\|\partial_{x_{3}}\nabla(\tfrac{D\operatorname{div}\varphi}{Dt})\|_{L^{2}}
2uL2+2[(u)T:φ]L2+x3(DdivφDt)L2\displaystyle\qquad\qquad\quad\ \ \lesssim\|\partial\nabla^{2}u\|_{L^{2}}+\|\nabla^{2}[(\nabla u)^{T}:\nabla\varphi]\|_{L^{2}}+\|\partial_{x_{3}}\nabla(\tfrac{D\operatorname{div}\varphi}{Dt})\|_{L^{2}}
2uL2+x3(DdivφDt)L2+δuH2.\displaystyle\qquad\qquad\quad\ \ \lesssim\|\partial\nabla^{2}u\|_{L^{2}}+\|\partial_{x_{3}}\nabla(\tfrac{D\operatorname{div}\varphi}{Dt})\|_{L^{2}}+\delta\|\nabla u\|_{H^{2}}. (4.35)

Plugging the estimates (3), (3.6), (4.31) and (4.33)–(4.35) into (4.32), we obtain

3(uφμ)L2(ut,u,u)H1+(φ,2u,x3(DdivφDt))L2+divφH2+δ(3uL2+2φH1),\displaystyle\|\nabla^{3}(u-\tfrac{\varphi}{\mu})\|_{L^{2}}\lesssim\|(u_{t},u,\nabla u)\|_{H^{1}}+\|(\nabla\varphi,\partial\nabla^{2}u,\partial_{x_{3}}\nabla(\tfrac{D\operatorname{div}\varphi}{Dt}))\|_{L^{2}}+\|\operatorname{div}\varphi\|_{H^{2}}+\delta(\|\nabla^{3}u\|_{L^{2}}+\|\nabla^{2}\varphi\|_{H^{1}}),

which infers (4.25).

To estimate the term 2u\partial\nabla^{2}u on the right-hand side of (4.25), by applying \partial to Eq. (4.27)2\eqref{3.75'}_{2}, we study

{μΔ[(uφμ)]=[utu+(μ+λ)divudivφ+ϕ+R1],(uφμ)Ω=0.\displaystyle\begin{cases}-\mu\Delta[\partial(u-\frac{\varphi}{\mu})]=\partial[-u_{t}-u+(\mu+\lambda)\nabla\operatorname{div}u-\nabla\operatorname{div}\varphi+\nabla\phi+R_{1}],\\ \partial(u-\frac{\varphi}{\mu})\mid_{\partial\Omega}=0.\end{cases}

By Lemma 2.6, we have

2(uφμ)L2\displaystyle\|\partial\nabla^{2}(u-\frac{\varphi}{\mu})\|_{L^{2}} =2(uφμ)L2\displaystyle=\|\nabla^{2}\partial(u-\frac{\varphi}{\mu})\|_{L^{2}}
(ut,u,ϕ,R1)L2+divuL2+divφL2+(uφμ)L2\displaystyle\lesssim\|(\partial u_{t},\partial u,\partial\nabla\phi,\partial R_{1})\|_{L^{2}}+\|\partial\nabla\operatorname{div}u\|_{L^{2}}+\|\partial\nabla\operatorname{div}\varphi\|_{L^{2}}+\|\nabla\partial(u-\frac{\varphi}{\mu})\|_{L^{2}}
(ut,u,2ϕ,R1)L2+(DdivφDt)L2+2[(u)T:φ]L2\displaystyle\lesssim\|(\nabla u_{t},\nabla u,\nabla^{2}\phi,\nabla R_{1})\|_{L^{2}}+\|\partial\nabla(\tfrac{D\operatorname{div}\varphi}{Dt})\|_{L^{2}}+\|\nabla^{2}[(\nabla u)^{T}:\nabla\varphi]\|_{L^{2}}
+divφL2+2(u,φ)L2.\displaystyle\quad+\|\partial\nabla\operatorname{div}\varphi\|_{L^{2}}+\|\nabla^{2}(u,\varphi)\|_{L^{2}}. (4.36)

By (2.8)3\eqref{2.8}_{3}, (4.12) and (4.34), we estimate

(DdivφDt)L2\displaystyle\|\partial\nabla(\tfrac{D\operatorname{div}\varphi}{Dt})\|_{L^{2}} 2(DdivφDt)L2+x3(DdivφDt)L2\displaystyle\lesssim\|\partial^{2}(\tfrac{D\operatorname{div}\varphi}{Dt})\|_{L^{2}}+\|\partial\partial_{x_{3}}(\tfrac{D\operatorname{div}\varphi}{Dt})\|_{L^{2}}
2divuL2+2[(u)T:φ]L2+x3(DdivφDt)L2\displaystyle\lesssim\|\partial^{2}\operatorname{div}u\|_{L^{2}}+\|\partial^{2}[(\nabla u)^{T}:\nabla\varphi]\|_{L^{2}}+\|\partial\partial_{x_{3}}(\tfrac{D\operatorname{div}\varphi}{Dt})\|_{L^{2}}
2uL2+x3(DdivφDt)L2+δuH2\displaystyle\lesssim\|\partial^{2}\nabla u\|_{L^{2}}+\|\partial\partial_{x_{3}}(\tfrac{D\operatorname{div}\varphi}{Dt})\|_{L^{2}}+\delta\|\nabla u\|_{H^{2}} (4.37)

and

2ϕL2ΔϕL2+ϕL2φL2+φLφL2+ϕL2φL2+ϕL2.\displaystyle\|\nabla^{2}\phi\|_{L^{2}}\lesssim\|\Delta\phi\|_{L^{2}}+\|\nabla\phi\|_{L^{2}}\lesssim\|\nabla\varphi\|_{L^{2}}+\|\nabla\varphi\|_{L^{\infty}}\|\nabla\varphi\|_{L^{2}}+\|\nabla\phi\|_{L^{2}}\lesssim\|\nabla\varphi\|_{L^{2}}+\|\nabla\phi\|_{L^{2}}. (4.38)

Plugging (3.6), (4.34) and (4)–(4.38) into (4), we have

2(uφμ)L2(ut,u,φ)H1+(ϕ,2u,x3(DdivφDt),divφ)L2+δ3(u,φ)L2,\displaystyle\|\partial\nabla^{2}(u-\frac{\varphi}{\mu})\|_{L^{2}}\lesssim\|(u_{t},\nabla u,\nabla\varphi)\|_{H^{1}}+\|(\nabla\phi,\partial^{2}\nabla u,\partial\partial_{x_{3}}(\tfrac{D\operatorname{div}\varphi}{Dt}),\partial\nabla\operatorname{div}\varphi)\|_{L^{2}}+\delta\|\nabla^{3}(u,\varphi)\|_{L^{2}},

which implies (4.26).

Finally, combining (4.21)–(4.23) with (4.24)–(4.26), we can deduce the estimates (4.18)–(4.20). ∎

5. Higher-order Energy Estimates in Exterior Domains

In this section, we shall derive the higher-order interior and boundary estimates in an exterior domain with a compact boundary, cf. [45]. First, we establish the higher-order interior estimates for (u,φ,ϕ)(u,\varphi,\phi).

Lemma 5.1.

Let Ω3\Omega\subset\mathbb{R}^{3} be an exterior domain with a compact boundary and χ0C0(Ω)\chi_{\scriptscriptstyle 0}\in C_{0}^{\infty}(\Omega) be any fixed function. It holds that

ddt\displaystyle\frac{d}{dt} χ0(u,divφ,Δφ,Δϕ)L22+χ0uL22+χ02(u,φ,ϕ)L22\displaystyle\|\chi_{\scriptscriptstyle 0}(\nabla u,\nabla\operatorname{div}\varphi,\Delta\varphi,\Delta\phi)\|_{L^{2}}^{2}+\|\chi_{\scriptscriptstyle 0}\nabla u\|_{L^{2}}^{2}+\|\chi_{\scriptscriptstyle 0}\nabla^{2}(u,\varphi,\phi)\|_{L^{2}}^{2}
(u,φ,ϕ,ut)L22+δ(u,φ)H12\displaystyle\lesssim\|\nabla(u,\varphi,\phi,u_{t})\|_{L^{2}}^{2}+\delta\|\nabla(u,\varphi)\|_{H^{1}}^{2} (5.1)

and

ddt\displaystyle\frac{d}{dt} χ0(u,divφ,Δφ,Δϕ)L22+χ02uL22+χ03(u,φ,ϕ)L22\displaystyle\|\chi_{\scriptscriptstyle 0}\nabla(\nabla u,\nabla\operatorname{div}\varphi,\Delta\varphi,\Delta\phi)\|_{L^{2}}^{2}+\|\chi_{\scriptscriptstyle 0}\nabla^{2}u\|_{L^{2}}^{2}+\|\chi_{\scriptscriptstyle 0}\nabla^{3}(u,\varphi,\phi)\|_{L^{2}}^{2}
(u,ut)L22+2(u,φ,ϕ)L22+δ(φH22+3uL22).\displaystyle\lesssim\|\nabla(u,u_{t})\|_{L^{2}}^{2}+\|\nabla^{2}(u,\varphi,\phi)\|_{L^{2}}^{2}+\delta(\|\nabla\varphi\|_{H^{2}}^{2}+\|\nabla^{3}u\|_{L^{2}}^{2}). (5.2)
Proof.

Step 1. For the first two equations in (2.8), we integrate the identity (L1R1):uχ02+(L2R2):(Δφχ02)=0\nabla(L_{1}-R_{1}):\nabla u\chi_{\scriptscriptstyle 0}^{2}+\nabla(L_{2}-R_{2}):(-\nabla\Delta\varphi\chi_{\scriptscriptstyle 0}^{2})=0 over Ω\Omega by parts to obtain

12\displaystyle\frac{1}{2} ddtχ0(u,divφ,Δφ,Δϕ)L22+χ0uL22+μχ0ΔuL22+(μ+λ)χ0divuL22\displaystyle\frac{d}{dt}\|\chi_{\scriptscriptstyle 0}(\nabla u,\nabla\operatorname{div}\varphi,\Delta\varphi,\Delta\phi)\|_{L^{2}}^{2}+\|\chi_{\scriptscriptstyle 0}\nabla u\|_{L^{2}}^{2}+\mu\|\chi_{\scriptscriptstyle 0}\Delta u\|_{L^{2}}^{2}+(\mu+\lambda)\|\chi_{\scriptscriptstyle 0}\nabla\operatorname{div}u\|_{L^{2}}^{2}
=μΩ2χ0Δuuχ0dx(μ+λ)Ω2χ0[divuuχ0curlu(divu×χ0)]𝑑x\displaystyle=-\mu\int_{\Omega}2\chi_{\scriptscriptstyle 0}\Delta u\cdot\nabla u\cdot\nabla\chi_{\scriptscriptstyle 0}\,dx-(\mu+\lambda)\int_{\Omega}2\chi_{\scriptscriptstyle 0}\left[\nabla\operatorname{div}u\cdot\nabla u\cdot\nabla\chi_{\scriptscriptstyle 0}-\operatorname{curl}u\cdot(\nabla\operatorname{div}u\times\nabla\chi_{\scriptscriptstyle 0})\right]\,dx
Ωdivφdiv(uφ)χ02𝑑x+Ω2χ0[divφuχ0curlu(divφ×χ0)]𝑑x\displaystyle\quad-\int_{\Omega}\nabla\operatorname{div}\varphi\cdot\nabla\operatorname{div}(u\cdot\nabla\varphi)\chi_{\scriptscriptstyle 0}^{2}\,dx+\int_{\Omega}2\chi_{\scriptscriptstyle 0}\left[\nabla\operatorname{div}\varphi\cdot\nabla u\cdot\nabla\chi_{\scriptscriptstyle 0}-\operatorname{curl}u\cdot(\nabla\operatorname{div}\varphi\times\nabla\chi_{\scriptscriptstyle 0})\right]\,dx
Ω2χ0[ϕuχ0curlu(ϕ×χ0)]𝑑xΩ2χ0Δϕtϕχ0dx\displaystyle\quad-\int_{\Omega}2\chi_{\scriptscriptstyle 0}\left[\nabla\phi\cdot\nabla u\cdot\nabla\chi_{\scriptscriptstyle 0}-\operatorname{curl}u\cdot(\nabla\phi\times\nabla\chi_{\scriptscriptstyle 0})\right]\,dx-\int_{\Omega}2\chi_{\scriptscriptstyle 0}\Delta\phi_{t}\nabla\phi\cdot\nabla\chi_{\scriptscriptstyle 0}\,dx
Ωχ02[O(|φ|2)tdiv(uφ)]ϕdxΩ2χ0φtΔφχ0dx\displaystyle\quad-\int_{\Omega}\chi_{\scriptscriptstyle 0}^{2}\nabla[O(|\nabla\varphi|^{2})_{t}-\operatorname{div}(u\cdot\nabla\varphi)]\cdot\nabla\phi\,dx-\int_{\Omega}2\chi_{\scriptscriptstyle 0}\nabla\varphi_{t}\cdot\Delta\varphi\cdot\nabla\chi_{\scriptscriptstyle 0}\,dx
+Ωχ02R1:udxΩχ02R2:Δφdx\displaystyle\quad+\int_{\Omega}\chi_{\scriptscriptstyle 0}^{2}\nabla R_{1}:\nabla u\,dx-\int_{\Omega}\chi_{\scriptscriptstyle 0}^{2}\nabla R_{2}:\nabla\Delta\varphi\,dx
:=i=110Ei.\displaystyle:=\sum_{i=1}^{10}E_{i}. (5.3)

Now we estimate the terms E1E_{1}E10E_{10}. By (3), (3.17), Hölder’s and Cauchy’s inequalities and Lemma 2.1, we have

E1=μΩ2χ0Δuuχ0dxuL2χ0ΔuL2;\displaystyle E_{1}=-\mu\int_{\Omega}2\chi_{\scriptscriptstyle 0}\Delta u\cdot\nabla u\cdot\nabla\chi_{\scriptscriptstyle 0}\,dx\lesssim\|\nabla u\|_{L^{2}}\|\chi_{\scriptscriptstyle 0}\Delta u\|_{L^{2}};
E2=(μ+λ)Ω2χ0[divuuχ0curlu(divu×χ0)]𝑑xuL2χ0divuL2;\displaystyle E_{2}=-(\mu+\lambda)\int_{\Omega}2\chi_{\scriptscriptstyle 0}\left[\nabla\operatorname{div}u\cdot\nabla u\cdot\nabla\chi_{\scriptscriptstyle 0}-\operatorname{curl}u\cdot(\nabla\operatorname{div}u\times\nabla\chi_{\scriptscriptstyle 0})\right]\,dx\lesssim\|\nabla u\|_{L^{2}}\|\chi_{\scriptscriptstyle 0}\nabla\operatorname{div}u\|_{L^{2}};
E3=Ωdivφdiv(uφ)χ02𝑑x=Ωdivφ[(u)T:φ+udivφ]χ02𝑑x\displaystyle E_{3}=-\int_{\Omega}\nabla\operatorname{div}\varphi\cdot\nabla\operatorname{div}(u\cdot\nabla\varphi)\chi_{\scriptscriptstyle 0}^{2}\,dx=-\int_{\Omega}\nabla\operatorname{div}\varphi\cdot\nabla[(\nabla u)^{T}:\nabla\varphi+u\cdot\nabla\operatorname{div}\varphi]\chi_{\scriptscriptstyle 0}^{2}\,dx
=Ωdivφ[(u)T:φ]χ02𝑑xΩdivφudivφχ02dx\displaystyle\quad=-\int_{\Omega}\nabla\operatorname{div}\varphi\cdot\nabla[(\nabla u)^{T}:\nabla\varphi]\chi_{\scriptscriptstyle 0}^{2}\,dx-\int_{\Omega}\nabla\operatorname{div}\varphi\cdot\nabla u\cdot\nabla\operatorname{div}\varphi\chi_{\scriptscriptstyle 0}^{2}\,dx
12Ωχ02u|divφ|2dx\displaystyle\qquad-\frac{1}{2}\int_{\Omega}\chi_{\scriptscriptstyle 0}^{2}u\cdot\nabla|\nabla\operatorname{div}\varphi|^{2}\,dx
=Ωdivφ[(u)T:φ]χ02𝑑xΩdivφudivφχ02dx\displaystyle\quad=-\int_{\Omega}\nabla\operatorname{div}\varphi\cdot\nabla[(\nabla u)^{T}:\nabla\varphi]\chi_{\scriptscriptstyle 0}^{2}\,dx-\int_{\Omega}\nabla\operatorname{div}\varphi\cdot\nabla u\cdot\nabla\operatorname{div}\varphi\chi_{\scriptscriptstyle 0}^{2}\,dx
+12Ωdiv(χ02u)|divφ|2𝑑x\displaystyle\qquad+\frac{1}{2}\int_{\Omega}\operatorname{div}(\chi_{\scriptscriptstyle 0}^{2}u)|\nabla\operatorname{div}\varphi|^{2}\,dx
divφL2[(u)T:φ]L2+divφL2uL6divφL3\displaystyle\quad\lesssim\|\nabla\operatorname{div}\varphi\|_{L^{2}}\|\nabla[(\nabla u)^{T}:\nabla\varphi]\|_{L^{2}}+\|\nabla\operatorname{div}\varphi\|_{L^{2}}\|\nabla u\|_{L^{6}}\|\nabla\operatorname{div}\varphi\|_{L^{3}}
+uLdivφL22+divuL3divφL6divφL2\displaystyle\qquad+\|u\|_{L^{\infty}}\|\nabla\operatorname{div}\varphi\|_{L^{2}}^{2}+\|\operatorname{div}u\|_{L^{3}}\|\nabla\operatorname{div}\varphi\|_{L^{6}}\|\nabla\operatorname{div}\varphi\|_{L^{2}}
δ(2φL22+uH12);\displaystyle\quad\lesssim\delta(\|\nabla^{2}\varphi\|_{L^{2}}^{2}+\|\nabla u\|_{H^{1}}^{2});
E4=Ω2χ0[divφuχ0curlu(divφ×χ0)]𝑑xuL22φL2;\displaystyle E_{4}=\int_{\Omega}2\chi_{\scriptscriptstyle 0}\left[\nabla\operatorname{div}\varphi\cdot\nabla u\cdot\nabla\chi_{\scriptscriptstyle 0}-\operatorname{curl}u\cdot(\nabla\operatorname{div}\varphi\times\nabla\chi_{\scriptscriptstyle 0})\right]\,dx\lesssim\|\nabla u\|_{L^{2}}\|\nabla^{2}\varphi\|_{L^{2}};
E5=Ω2χ0[ϕuχ0curlu(ϕ×χ0)]𝑑xuL2ϕL2;\displaystyle E_{5}=-\int_{\Omega}2\chi_{\scriptscriptstyle 0}\left[\nabla\phi\cdot\nabla u\cdot\nabla\chi_{\scriptscriptstyle 0}-\operatorname{curl}u\cdot(\nabla\phi\times\nabla\chi_{\scriptscriptstyle 0})\right]\,dx\lesssim\|\nabla u\|_{L^{2}}\|\nabla\phi\|_{L^{2}};
E6=Ω2χ0Δϕtϕχ0dxΔϕtL2ϕL2uL2ϕL2;\displaystyle E_{6}=-\int_{\Omega}2\chi_{\scriptscriptstyle 0}\Delta\phi_{t}\nabla\phi\cdot\nabla\chi_{\scriptscriptstyle 0}\,dx\lesssim\|\Delta\phi_{t}\|_{L^{2}}\|\nabla\phi\|_{L^{2}}\lesssim\|\nabla u\|_{L^{2}}\|\nabla\phi\|_{L^{2}};
E7=Ωχ02[O(|φ|2)tdiv(uφ)]ϕdxδ(uH12+ϕL22);\displaystyle E_{7}=-\int_{\Omega}\chi_{\scriptscriptstyle 0}^{2}\nabla[O(|\nabla\varphi|^{2})_{t}-\operatorname{div}(u\cdot\nabla\varphi)]\cdot\nabla\phi\,dx\lesssim\delta(\|\nabla u\|_{H^{1}}^{2}+\|\nabla\phi\|_{L^{2}}^{2});
E8=Ω2χ0φtΔφχ0dxφtL22φL2uL22φL2;\displaystyle E_{8}=-\int_{\Omega}2\chi_{\scriptscriptstyle 0}\nabla\varphi_{t}\cdot\Delta\varphi\cdot\nabla\chi_{\scriptscriptstyle 0}\,dx\lesssim\|\nabla\varphi_{t}\|_{L^{2}}\|\nabla^{2}\varphi\|_{L^{2}}\lesssim\|\nabla u\|_{L^{2}}\|\nabla^{2}\varphi\|_{L^{2}};
E9=Ωχ02R1:udx=ΩR1div(χ02u)𝑑xR1L2div(χ02u)L2\displaystyle E_{9}=\int_{\Omega}\chi_{\scriptscriptstyle 0}^{2}\nabla R_{1}:\nabla u\,dx=-\int_{\Omega}R_{1}\cdot\operatorname{div}(\chi_{\scriptscriptstyle 0}^{2}\nabla u)\,dx\lesssim\|R_{1}\|_{L^{2}}\|\operatorname{div}(\chi_{\scriptscriptstyle 0}^{2}\nabla u)\|_{L^{2}}
δ(uH1+2φL2)uH1δ(uH12+2φL22);\displaystyle\quad\lesssim\delta(\|\nabla u\|_{H^{1}}+\|\nabla^{2}\varphi\|_{L^{2}})\|\nabla u\|_{H^{1}}\lesssim\delta(\|\nabla u\|_{H^{1}}^{2}+\|\nabla^{2}\varphi\|_{L^{2}}^{2});
E10=Ωχ02R2:Δφdx=Ωχ02(uφ):Δφdx(uφ)L23φL2\displaystyle E_{10}=-\int_{\Omega}\chi_{\scriptscriptstyle 0}^{2}\nabla R_{2}:\nabla\Delta\varphi\,dx=\int_{\Omega}\chi_{\scriptscriptstyle 0}^{2}\nabla(u\cdot\nabla\varphi):\nabla\Delta\varphi\,dx\lesssim\|\nabla(u\cdot\nabla\varphi)\|_{L^{2}}\|\nabla^{3}\varphi\|_{L^{2}}
δ(uL3φL6+uL2φL2)δ(u,φ)H12.\displaystyle\quad\ \lesssim\delta(\|\nabla u\|_{L^{3}}\|\nabla\varphi\|_{L^{6}}+\|u\|_{L^{\infty}}\|\nabla^{2}\varphi\|_{L^{2}})\lesssim\delta\|\nabla(u,\varphi)\|_{H^{1}}^{2}.

From the above estimates for E1E_{1}E10E_{10}, we obtain

i=110Eiδ((u,φ)H12+ϕL22)+uL2(ϕ,2φ,χ0Δu,χ0divu)L2.\displaystyle\sum_{i=1}^{10}E_{i}\lesssim\delta(\|\nabla(u,\varphi)\|_{H^{1}}^{2}+\|\nabla\phi\|_{L^{2}}^{2})+\|\nabla u\|_{L^{2}}\|(\nabla\phi,\nabla^{2}\varphi,\chi_{\scriptscriptstyle 0}\Delta u,\chi_{\scriptscriptstyle 0}\nabla\operatorname{div}u)\|_{L^{2}}. (5.4)

Note that

χ02uL22\displaystyle\|\chi_{\scriptscriptstyle 0}\nabla^{2}u\|_{L^{2}}^{2} =Ω2u:2uχ02dx=Ωu:div(2uχ02)dx\displaystyle=\int_{\Omega}\nabla^{2}u:\nabla^{2}u\chi_{\scriptscriptstyle 0}^{2}\,dx=-\int_{\Omega}\nabla u:\operatorname{div}(\nabla^{2}u\chi_{\scriptscriptstyle 0}^{2})\,dx
=Ωu:Δuχ02dxΩ2χ0u:2uχ0dx\displaystyle=-\int_{\Omega}\nabla u:\nabla\Delta u\chi_{\scriptscriptstyle 0}^{2}\,dx-\int_{\Omega}2\chi_{\scriptscriptstyle 0}\nabla u:\nabla^{2}u\cdot\nabla\chi_{\scriptscriptstyle 0}\,dx
=χ0Δu2+Ω2χ0uΔuχ0dxΩ2χ0u:2uχ0dx\displaystyle=\|\chi_{\scriptscriptstyle 0}\Delta u\|^{2}+\int_{\Omega}2\chi_{\scriptscriptstyle 0}\nabla u\cdot\Delta u\cdot\nabla\chi_{\scriptscriptstyle 0}\,dx-\int_{\Omega}2\chi_{\scriptscriptstyle 0}\nabla u:\nabla^{2}u\cdot\nabla\chi_{\scriptscriptstyle 0}\,dx
χ0ΔuL22+χ0ΔuL2uL2+χ02uL2uL2,\displaystyle\lesssim\|\chi_{\scriptscriptstyle 0}\Delta u\|_{L^{2}}^{2}+\|\chi_{\scriptscriptstyle 0}\Delta u\|_{L^{2}}\|\nabla u\|_{L^{2}}+\|\chi_{\scriptscriptstyle 0}\nabla^{2}u\|_{L^{2}}\|\nabla u\|_{L^{2}},

which, by Cauchy’s inequality, infers

χ02uL22uL22χ0ΔuL22.\displaystyle\|\chi_{\scriptscriptstyle 0}\nabla^{2}u\|_{L^{2}}^{2}-\|\nabla u\|_{L^{2}}^{2}\lesssim\|\chi_{\scriptscriptstyle 0}\Delta u\|_{L^{2}}^{2}. (5.5)

Plugging (5.4)–(5.5) into (5), by Cauchy’s inequality, we deduce for any ϵ>0\epsilon>0,

ddt\displaystyle\frac{d}{dt} χ0(u,divφ,Δφ,Δϕ)L22+χ0(u,2u)L22\displaystyle\|\chi_{\scriptscriptstyle 0}(\nabla u,\nabla\operatorname{div}\varphi,\Delta\varphi,\Delta\phi)\|_{L^{2}}^{2}+\|\chi_{\scriptscriptstyle 0}(\nabla u,\nabla^{2}u)\|_{L^{2}}^{2}
uL22+δ((u,φ)H12+ϕL22)+ϵ(ϕ,2φ)L22.\displaystyle\lesssim\|\nabla u\|_{L^{2}}^{2}+\delta(\|\nabla(u,\varphi)\|_{H^{1}}^{2}+\|\nabla\phi\|_{L^{2}}^{2})+\epsilon\|(\nabla\phi,\nabla^{2}\varphi)\|_{L^{2}}^{2}. (5.6)

Integrating the identity 2(L1R1):2uχ02+2(L2R2):(2Δφχ02)=0\nabla^{2}(L_{1}-R_{1}):\nabla^{2}u\chi_{\scriptscriptstyle 0}^{2}+\nabla^{2}(L_{2}-R_{2}):(-\nabla^{2}\Delta\varphi\chi_{\scriptscriptstyle 0}^{2})=0 over Ω\Omega, by the similar arguments as above, we obtain

ddt\displaystyle\frac{d}{dt} χ0(u,divφ,Δφ,Δϕ)L22+χ0(2u,3u)L22\displaystyle\|\chi_{\scriptscriptstyle 0}\nabla(\nabla u,\nabla\operatorname{div}\varphi,\Delta\varphi,\Delta\phi)\|_{L^{2}}^{2}+\|\chi_{\scriptscriptstyle 0}(\nabla^{2}u,\nabla^{3}u)\|_{L^{2}}^{2}
uH12+δ(φH22+3uL22+2ϕL22)+ϵ(2ϕ,3φ)L22.\displaystyle\lesssim\|\nabla u\|_{H^{1}}^{2}+\delta(\|\nabla\varphi\|_{H^{2}}^{2}+\|\nabla^{3}u\|_{L^{2}}^{2}+\|\nabla^{2}\phi\|_{L^{2}}^{2})+\epsilon\|(\nabla^{2}\phi,\nabla^{3}\varphi)\|_{L^{2}}^{2}. (5.7)

Step 2. Applying \nabla to (2.8)1\eqref{2.8}_{1}, multiplying the identity by φχ02\nabla\varphi\chi_{\scriptscriptstyle 0}^{2} and integrating it over Ω\Omega by parts, through Hölder’s and Cauchy’s inequalities and Lemma 2.1, we obtain for any ϵ>0\epsilon>0,

χ0(Δφ,divφ,Δϕ)L22\displaystyle\|\chi_{\scriptscriptstyle 0}(\Delta\varphi,\nabla\operatorname{div}\varphi,\Delta\phi)\|_{L^{2}}^{2}
=Ω2χ0Δφφχ0dxΩ2χ0divφ(φχ0curlφ×χ0)𝑑x\displaystyle\quad=-\int_{\Omega}2\chi_{\scriptscriptstyle 0}\Delta\varphi\cdot\nabla\varphi\cdot\nabla\chi_{\scriptscriptstyle 0}\,dx-\int_{\Omega}2\chi_{\scriptscriptstyle 0}\nabla\operatorname{div}\varphi\cdot(\nabla\varphi\cdot\nabla\chi_{\scriptscriptstyle 0}-\operatorname{curl}\varphi\times\nabla\chi_{\scriptscriptstyle 0})\,dx
+ΩΔϕO(|φ|2)χ02𝑑x+Ω2χ0[ϕφχ0divφϕχ0ϕ(curlφ×χ0)]𝑑x\displaystyle\qquad+\int_{\Omega}\Delta\phi O(|\nabla\varphi|^{2})\chi_{\scriptscriptstyle 0}^{2}\,dx+\int_{\Omega}2\chi_{\scriptscriptstyle 0}\left[\nabla\phi\cdot\nabla\varphi\cdot\nabla\chi_{\scriptscriptstyle 0}-\operatorname{div}\varphi\nabla\phi\cdot\nabla\chi_{\scriptscriptstyle 0}-\nabla\phi\cdot(\operatorname{curl}\varphi\times\nabla\chi_{\scriptscriptstyle 0})\right]\,dx
+Ωχ02(utu):φdx+Ωχ0[μΔu+(μ+λ)divu+R1](χ0Δφ+2φχ0)𝑑x\displaystyle\qquad+\int_{\Omega}\chi_{\scriptscriptstyle 0}^{2}(\nabla u_{t}-\nabla u):\nabla\varphi\,dx+\int_{\Omega}\chi_{\scriptscriptstyle 0}[\mu\Delta u+(\mu+\lambda)\nabla\operatorname{div}u+R_{1}]\cdot(\chi_{\scriptscriptstyle 0}\Delta\varphi+2\nabla\varphi\cdot\nabla\chi_{\scriptscriptstyle 0})\,dx
φL2χ0ΔφL2+φL2χ0divφL2+χ0ΔϕL2φL2φL+(ϕ,ut,u)L2φL2\displaystyle\quad\lesssim\|\nabla\varphi\|_{L^{2}}\|\chi_{\scriptscriptstyle 0}\Delta\varphi\|_{L^{2}}+\|\nabla\varphi\|_{L^{2}}\|\chi_{\scriptscriptstyle 0}\nabla\operatorname{div}\varphi\|_{L^{2}}+\|\chi_{\scriptscriptstyle 0}\Delta\phi\|_{L^{2}}\|\nabla\varphi\|_{L^{2}}\|\nabla\varphi\|_{L^{\infty}}+\|(\nabla\phi,\nabla u_{t},\nabla u)\|_{L^{2}}\|\nabla\varphi\|_{L^{2}}
+(χ0ΔuL2+χ0divuL2+χ0R1L2)(χ0ΔφL2+φL2)\displaystyle\qquad+(\|\chi_{\scriptscriptstyle 0}\Delta u\|_{L^{2}}+\|\chi_{\scriptscriptstyle 0}\nabla\operatorname{div}u\|_{L^{2}}+\|\chi_{\scriptscriptstyle 0}R_{1}\|_{L^{2}})(\|\chi_{\scriptscriptstyle 0}\Delta\varphi\|_{L^{2}}+\|\nabla\varphi\|_{L^{2}})
(φ,ϕ,ut,u,χ0Δu,χ0divu)L22+(δ+ϵ)(χ0Δφ,χ0divφ)L22+δχ0ΔϕL22,\displaystyle\quad\lesssim\|(\nabla\varphi,\nabla\phi,\nabla u_{t},\nabla u,\chi_{\scriptscriptstyle 0}\Delta u,\chi_{\scriptscriptstyle 0}\nabla\operatorname{div}u)\|_{L^{2}}^{2}+(\delta+\epsilon)\|(\chi_{\scriptscriptstyle 0}\Delta\varphi,\chi_{\scriptscriptstyle 0}\nabla\operatorname{div}\varphi)\|_{L^{2}}^{2}+\delta\|\chi_{\scriptscriptstyle 0}\Delta\phi\|_{L^{2}}^{2}, (5.8)

where we have made the following calculations:

Ω\displaystyle\int_{\Omega} Δφ:φχ02dx=ΩΔφdiv(φχ02)𝑑x=χ0ΔφL22Ω2χ0Δφφχ0dx;\displaystyle\nabla\Delta\varphi:\nabla\varphi\chi_{\scriptscriptstyle 0}^{2}\,dx=-\int_{\Omega}\Delta\varphi\cdot\operatorname{div}(\nabla\varphi\chi_{\scriptscriptstyle 0}^{2})\,dx=-\|\chi_{\scriptscriptstyle 0}\Delta\varphi\|_{L^{2}}^{2}-\int_{\Omega}2\chi_{\scriptscriptstyle 0}\Delta\varphi\cdot\nabla\varphi\cdot\nabla\chi_{\scriptscriptstyle 0}\,dx;
Ω\displaystyle\int_{\Omega} 2divφ:φχ02dx=Ωdivφdiv(φχ02)dx\displaystyle\nabla^{2}\operatorname{div}\varphi:\nabla\varphi\chi_{\scriptscriptstyle 0}^{2}\,dx=-\int_{\Omega}\nabla\operatorname{div}\varphi\cdot\operatorname{div}(\nabla\varphi\chi_{\scriptscriptstyle 0}^{2})\,dx
=ΩdivφΔφχ02dxΩ2χ0divφφχ0dx\displaystyle\qquad\qquad\qquad\quad\ \ =-\int_{\Omega}\nabla\operatorname{div}\varphi\cdot\Delta\varphi\chi_{\scriptscriptstyle 0}^{2}\,dx-\int_{\Omega}2\chi_{\scriptscriptstyle 0}\nabla\operatorname{div}\varphi\cdot\nabla\varphi\cdot\nabla\chi_{\scriptscriptstyle 0}\,dx
=Ωdivφ(divφcurlcurlφ)χ02𝑑xΩ2χ0divφφχ0dx\displaystyle\qquad\qquad\qquad\quad\ \ =-\int_{\Omega}\nabla\operatorname{div}\varphi\cdot(\nabla\operatorname{div}\varphi-\operatorname{curl}\operatorname{curl}\varphi)\chi_{\scriptscriptstyle 0}^{2}\,dx-\int_{\Omega}2\chi_{\scriptscriptstyle 0}\nabla\operatorname{div}\varphi\cdot\nabla\varphi\cdot\nabla\chi_{\scriptscriptstyle 0}\,dx
=χ0divφL22Ω2χ0divφ(φχ0curlφ×χ0)𝑑x;\displaystyle\qquad\qquad\qquad\quad\ \ =-\|\chi_{\scriptscriptstyle 0}\nabla\operatorname{div}\varphi\|_{L^{2}}^{2}-\int_{\Omega}2\chi_{\scriptscriptstyle 0}\nabla\operatorname{div}\varphi\cdot(\nabla\varphi\cdot\nabla\chi_{\scriptscriptstyle 0}-\operatorname{curl}\varphi\times\nabla\chi_{\scriptscriptstyle 0})\,dx;
\displaystyle- Ω2ϕ:φχ02dx=Ωϕdiv(φχ02)dx\displaystyle\int_{\Omega}\nabla^{2}\phi:\nabla\varphi\chi_{\scriptscriptstyle 0}^{2}\,dx=\int_{\Omega}\nabla\phi\cdot\operatorname{div}(\nabla\varphi\chi_{\scriptscriptstyle 0}^{2})\,dx
=Ω2χ0ϕφχ0dx+ΩϕΔφχ02dx\displaystyle\qquad\qquad\qquad\quad\ \ =\int_{\Omega}2\chi_{\scriptscriptstyle 0}\nabla\phi\cdot\nabla\varphi\cdot\nabla\chi_{\scriptscriptstyle 0}\,dx+\int_{\Omega}\nabla\phi\cdot\Delta\varphi\chi_{\scriptscriptstyle 0}^{2}\,dx
=Ω2χ0ϕφχ0dx+Ωϕ(divφcurlcurlφ)χ02𝑑x\displaystyle\qquad\qquad\qquad\quad\ \ =\int_{\Omega}2\chi_{\scriptscriptstyle 0}\nabla\phi\cdot\nabla\varphi\cdot\nabla\chi_{\scriptscriptstyle 0}\,dx+\int_{\Omega}\nabla\phi\cdot(\nabla\operatorname{div}\varphi-\operatorname{curl}\operatorname{curl}\varphi)\chi_{\scriptscriptstyle 0}^{2}\,dx
=χ0ΔϕL22+ΩΔϕO(|φ|2)χ02𝑑x\displaystyle\qquad\qquad\qquad\quad\ \ =-\|\chi_{\scriptscriptstyle 0}\Delta\phi\|_{L^{2}}^{2}+\int_{\Omega}\Delta\phi O(|\nabla\varphi|^{2})\chi_{\scriptscriptstyle 0}^{2}\,dx
+Ω2χ0[ϕφχ0divφϕχ0ϕ(curlφ×χ0)]𝑑x.\displaystyle\qquad\qquad\qquad\quad\ \ \quad+\int_{\Omega}2\chi_{\scriptscriptstyle 0}\left[\nabla\phi\cdot\nabla\varphi\cdot\nabla\chi_{\scriptscriptstyle 0}-\operatorname{div}\varphi\nabla\phi\cdot\nabla\chi_{\scriptscriptstyle 0}-\nabla\phi\cdot(\operatorname{curl}\varphi\times\nabla\chi_{\scriptscriptstyle 0})\right]\,dx.

Taking ϵ>0\epsilon>0 to be small enough in (5), since δ\delta is small, we deduce

χ0(2φ,2ϕ)L22\displaystyle\|\chi_{\scriptscriptstyle 0}(\nabla^{2}\varphi,\nabla^{2}\phi)\|_{L^{2}}^{2} (u,φ,ϕ,ut,χ02u)L22.\displaystyle\lesssim\|(\nabla u,\nabla\varphi,\nabla\phi,\nabla u_{t},\chi_{\scriptscriptstyle 0}\nabla^{2}u)\|_{L^{2}}^{2}. (5.9)

Similar to (5.9), we can deduce

χ0(3φ,3ϕ)L22(2φ,2ϕ,ut,u,χ03u)L22+δ(2uH12+3φL22).\displaystyle\|\chi_{\scriptscriptstyle 0}(\nabla^{3}\varphi,\nabla^{3}\phi)\|_{L^{2}}^{2}\lesssim\|(\nabla^{2}\varphi,\nabla^{2}\phi,\nabla u_{t},\nabla u,\chi_{\scriptscriptstyle 0}\nabla^{3}u)\|_{L^{2}}^{2}+\delta(\|\nabla^{2}u\|_{H^{1}}^{2}+\|\nabla^{3}\varphi\|_{L^{2}}^{2}). (5.10)

Step 3. Let η>0\eta>0 be a small but fixed constant and ϵ>0\epsilon>0 be small enough. Computing (5.9)×η+(5)\eqref{san-in-2}\times\eta+\eqref{5-23-3} and (5.10)×η+(5)\eqref{20210714-2}\times\eta+\eqref{6-02-3}, respectively, we deduce (5.1) and (5.1). ∎

Unlike the half-space case, we need to split the boundary and then flatten it locally by introducing a suitable coordinate transformation. By the finite covering theorem, there exist finitely many bounded open domains {Θj}j=1N3\{\Theta_{j}\}_{j=1}^{N}\subset\mathbb{R}^{3}, such that Ωj=1NΘj.\partial\Omega\subset\cup_{j=1}^{N}\Theta_{j}. The local coordinates y=(y1,y2,y3)y=(y_{1},y_{2},y_{3}) in each open set Θj\Theta_{j} will satisfy the conditions as below:

(1) The surface ΘjΩ\Theta_{j}\cap\partial\Omega is the image of a smooth vector function zj(y1,y2)=(z1j,z2j,z3j)(y1,y2)z^{j}(y_{1},y_{2})=(z_{1}^{j},z_{2}^{j},z_{3}^{j})(y_{1},y_{2}) (eg. take the local geodesic polar coordinate), satisfying

|zy1j|=1,zy1jzy2j=0and|zy2j|c,\displaystyle|z_{y_{1}}^{j}|=1,\ z_{y_{1}}^{j}\cdot z_{y_{2}}^{j}=0\quad\mbox{and}\quad|z_{y_{2}}^{j}|\geqslant c,

where c>0c>0 is a constant independent of jj (j=1,2,,N)(j=1,2,\dots,N).

(2) Any x=(x1,x2,x3)TΘjx=(x_{1},x_{2},x_{3})^{T}\in\Theta_{j} can be expressed as

xi:=Υi(y)=y3𝒩ij(y1,y2)+zij(y1,y2)fori=1,2,3,\displaystyle x_{i}:=\Upsilon_{i}(y)=y_{3}\mathcal{N}_{i}^{j}(y_{1},y_{2})+z_{i}^{j}(y_{1},y_{2})\quad\mbox{for}\quad i=1,2,3, (5.11)

where 𝒩ij(y1,y2)\mathcal{N}_{i}^{j}(y_{1},y_{2}) denotes the unit outward normal vector at the boundary point (y1,y2,0)(y_{1},y_{2},0).

Without causing any misunderstanding, we shall omit the superscript jj below. We define a set of orthonormal basis as follow:

e1=zy1,e2=zy2|zy2|,and𝒩=e1×e2,e^{1}=z_{y_{1}},\quad e^{2}=\frac{z_{y_{2}}}{|z_{y_{2}}|},\quad\mbox{and}\quad\mathcal{N}=e^{1}\times e^{2},

with e1=(ei1)e^{1}=(e^{1}_{i}), e2=(ei2)e^{2}=(e^{2}_{i}), and 𝒩=(𝒩i)\mathcal{N}=(\mathcal{N}_{i}), i=1,2,3i=1,2,3.

Using the Frenet-Serret’s formula (cf. [8]), there exist smooth functions (α1,β1,γ1,α2,β2,γ2)(\alpha_{1},\beta_{1},\gamma_{1},\alpha_{2},\beta_{2},\gamma_{2}) of (y1,y2)(y_{1},y_{2}) satisfying

y1[ei1ei2𝒩i]=[0γ1α1γ10β1α1β10][ei1ei2𝒩i],\frac{\partial}{\partial y_{1}}\left[\begin{array}[]{ccc}e^{1}_{i}\vskip 3.0pt plus 1.0pt minus 1.0pt\\ e^{2}_{i}\vskip 3.0pt plus 1.0pt minus 1.0pt\\ \mathcal{N}_{i}\\ \end{array}\right]=\left[\begin{array}[]{ccc}0&-\gamma_{1}&-\alpha_{1}\vskip 3.0pt plus 1.0pt minus 1.0pt\\ \gamma_{1}&0&-\beta_{1}\vskip 3.0pt plus 1.0pt minus 1.0pt\\ \alpha_{1}&\beta_{1}&0\\ \end{array}\right]\left[\begin{array}[]{ccc}e^{1}_{i}\vskip 3.0pt plus 1.0pt minus 1.0pt\\ e^{2}_{i}\vskip 3.0pt plus 1.0pt minus 1.0pt\\ \mathcal{N}_{i}\\ \end{array}\right],
y2[ei1ei2𝒩i]=[0γ2α2γ20β2α2β20][ei1ei2𝒩i].\frac{\partial}{\partial y_{2}}\left[\begin{array}[]{ccc}e^{1}_{i}\vskip 3.0pt plus 1.0pt minus 1.0pt\\ e^{2}_{i}\vskip 3.0pt plus 1.0pt minus 1.0pt\\ \mathcal{N}_{i}\\ \end{array}\right]=\left[\begin{array}[]{ccc}0&-\gamma_{2}&-\alpha_{2}\vskip 3.0pt plus 1.0pt minus 1.0pt\\ \gamma_{2}&0&-\beta_{2}\vskip 3.0pt plus 1.0pt minus 1.0pt\\ \alpha_{2}&\beta_{2}&0\\ \end{array}\right]\left[\begin{array}[]{ccc}e^{1}_{i}\vskip 3.0pt plus 1.0pt minus 1.0pt\\ e^{2}_{i}\vskip 3.0pt plus 1.0pt minus 1.0pt\\ \mathcal{N}_{i}\\ \end{array}\right].

And the Jacobian JJ of the transform (5.11) can be written as

J=Υy1×Υy2𝒩=|zy2|+(α1|zy2|+β2)y3+(α1β2β1α2)y32.\displaystyle J=\Upsilon_{y_{1}}\times\Upsilon_{y_{2}}\cdot\mathcal{N}=|z_{y_{2}}|+(\alpha_{1}|z_{y_{2}}|+\beta_{2})y_{3}+(\alpha_{1}\beta_{2}-\beta_{1}\alpha_{2})y_{3}^{2}. (5.12)

Letting y3y_{3} to be small enough so that Jc/2J\geqslant c/2 in (5.12), thus the transform (5.11) is regular. In other words, the vector-valued function Υ(y):=(Υ1,Υ2,Υ3)T(y)\Upsilon(y):=(\Upsilon_{1},\Upsilon_{2},\Upsilon_{3})^{T}(y) is invertible. So the partial derivatives (y1,y2,y3)xi(x)(y_{1},y_{2},y_{3})_{x_{i}}(x) make sense and can be represented by

{xiy1=1J(Υy2×Υy3)i=1J(𝒜ei1+ei2)=:a1i,xiy2=1J(Υy3×Υy1)i=1J(𝒞ei1+𝒟ei2)=:a2i,xiy3=1J(Υy1×Υy2)i=𝒩i=:a3i,\displaystyle\begin{cases}\partial_{x_{i}}y_{1}=\frac{1}{J}(\Upsilon_{y_{2}}\times\Upsilon_{y_{3}})_{i}=\frac{1}{J}(\mathcal{A}e_{i}^{1}+\mathcal{B}e_{i}^{2})=:a_{1i},\vskip 3.0pt plus 1.0pt minus 1.0pt\\ \partial_{x_{i}}y_{2}=\frac{1}{J}(\Upsilon_{y_{3}}\times\Upsilon_{y_{1}})_{i}=\frac{1}{J}(\mathcal{C}e_{i}^{1}+\mathcal{D}e_{i}^{2})=:a_{2i},\vskip 3.0pt plus 1.0pt minus 1.0pt\\ \partial_{x_{i}}y_{3}=\frac{1}{J}(\Upsilon_{y_{1}}\times\Upsilon_{y_{2}})_{i}=\mathcal{N}_{i}=:a_{3i},\end{cases} (5.13)

where 𝒜=|zy2|+β2y3\mathcal{A}=|z_{y_{2}}|+\beta_{2}y_{3}, =y3α2\mathcal{B}=-y_{3}\alpha_{2}, 𝒞=β1y3\mathcal{C}=-\beta_{1}y_{3}, 𝒟=1+α1y3\mathcal{D}=1+\alpha_{1}y_{3}, and J=𝒜𝒟𝒞c/2J=\mathcal{A}\mathcal{D}-\mathcal{B}\mathcal{C}\geqslant c/2.

By direct calculations, we deduce from (5.13) that

i=13a1ia3i=i=13a2ia3i=0,i=13a3i2=|𝒩|2=1\displaystyle\sum_{i=1}^{3}a_{1i}a_{3i}=\sum_{i=1}^{3}a_{2i}a_{3i}=0,\quad\sum_{i=1}^{3}a_{3i}^{2}=|\mathcal{N}|^{2}=1

and

xi=a1iy1+a2iy2+a3iy3=1J(𝒜ei1+ei2)y1+1J(𝒞ei1+𝒟ei2)y2+𝒩iy3.\displaystyle\partial_{x_{i}}=a_{1i}\partial_{y_{1}}+a_{2i}\partial_{y_{2}}+a_{3i}\partial_{y_{3}}=\frac{1}{J}(\mathcal{A}e_{i}^{1}+\mathcal{B}e_{i}^{2})\partial_{y_{1}}+\frac{1}{J}(\mathcal{C}e_{i}^{1}+\mathcal{D}e_{i}^{2})\partial_{y_{2}}+\mathcal{N}_{i}\partial_{y_{3}}.

Define the material derivative

DDt:=t+u.\displaystyle\frac{D}{Dt}:=\partial_{t}+u\cdot\nabla.

Taking the divergence operator div\operatorname{div} to both sides of (2.3)\eqref{2.3}, we have

DdivφDt+divu=tr(uφ)=(u)T:φ.\displaystyle\frac{D\operatorname{div}\varphi}{Dt}+\operatorname{div}u=-\operatorname{tr}(\nabla u\nabla\varphi)=-(\nabla u)^{T}:\nabla\varphi. (5.14)

Therefore, in each Θj\Theta_{j}, we can reformulate (5.14), Eq. (2.8)1\eqref{2.8}_{1} and divφ\operatorname{div}\varphi in the local coordinates (y1,y2,y3)(y_{1},y_{2},y_{3}) as below:

1:=DdivφDt+1J[(𝒜e1+e2)uy1+(𝒞e1+𝒟e2)uy2+J𝒩uy3]=1,\displaystyle\mathcal{L}_{1}:=\frac{D\operatorname{div}\varphi}{Dt}+\frac{1}{J}[(\mathcal{A}e^{1}+\mathcal{B}e^{2})\cdot u_{y_{1}}+(\mathcal{C}e^{1}+\mathcal{D}e^{2})\cdot u_{y_{2}}+J\mathcal{N}\cdot u_{y_{3}}]=\mathcal{R}_{1},
2:=ut+uμJ2[(𝒜2+2)uy1y1+2(𝒜𝒞+𝒟)uy1y2+(𝒞2+𝒟2)uy2y2+J2uy3y3]\displaystyle\mathcal{L}_{2}:=u_{t}+u-\frac{\mu}{J^{2}}[(\mathcal{A}^{2}+\mathcal{B}^{2})u_{y_{1}y_{1}}+2(\mathcal{A}\mathcal{C}+\mathcal{B}\mathcal{D})u_{y_{1}y_{2}}+(\mathcal{C}^{2}+\mathcal{D}^{2})u_{y_{2}y_{2}}+J^{2}u_{y_{3}y_{3}}]
+(first order terms ofu)+1J(𝒜e1+e2)[(μ+λ)DdivφDt+divφϕ]y1\displaystyle\qquad\quad+(\mbox{first\ order\ terms\ of}\ u)+\frac{1}{J}(\mathcal{A}e^{1}+\mathcal{B}e^{2})\left[(\mu+\lambda)\frac{D\operatorname{div}\varphi}{Dt}+\operatorname{div}\varphi-\phi\right]_{y_{1}}
+1J(𝒞e1+𝒟e2)[(μ+λ)DdivφDt+divφϕ]y2+𝒩[(μ+λ)DdivφDt+divφϕ]y3\displaystyle\qquad\quad+\frac{1}{J}(\mathcal{C}e^{1}+\mathcal{D}e^{2})\left[(\mu+\lambda)\frac{D\operatorname{div}\varphi}{Dt}+\operatorname{div}\varphi-\phi\right]_{y_{2}}+\mathcal{N}\left[(\mu+\lambda)\frac{D\operatorname{div}\varphi}{Dt}+\operatorname{div}\varphi-\phi\right]_{y_{3}}
+1J2[(𝒜2+2)φy1y1+2(𝒜𝒞+𝒟)φy1y2+(𝒞2+𝒟2)φy2y2+J2φy3y3]\displaystyle\qquad\quad+\frac{1}{J^{2}}[(\mathcal{A}^{2}+\mathcal{B}^{2})\varphi_{y_{1}y_{1}}+2(\mathcal{A}\mathcal{C}+\mathcal{B}\mathcal{D})\varphi_{y_{1}y_{2}}+(\mathcal{C}^{2}+\mathcal{D}^{2})\varphi_{y_{2}y_{2}}+J^{2}\varphi_{y_{3}y_{3}}]
+(first order terms ofφ)=2,\displaystyle\qquad\quad+(\mbox{first\ order\ terms\ of}\ \varphi)=\mathcal{R}_{2},
divφ1J[(𝒜e1+e2)φy1+(𝒞e1+𝒟e2)φy2+J𝒩φy3]=0,\displaystyle\operatorname{div}\varphi-\frac{1}{J}[(\mathcal{A}e^{1}+\mathcal{B}e^{2})\cdot\varphi_{y_{1}}+(\mathcal{C}e^{1}+\mathcal{D}e^{2})\cdot\varphi_{y_{2}}+J\mathcal{N}\cdot\varphi_{y_{3}}]=0, (5.15)

where

1:=(u)T:φ,\displaystyle\mathcal{R}_{1}:=-(\nabla u)^{T}:\nabla\varphi,
2\displaystyle\mathcal{R}_{2} :=uu(11ρ)[μΔu+(μ+λ)divu](P(ρ)ρ1)[divφ+O(|φ|2)]\displaystyle:=-u\cdot\nabla u-(1-\tfrac{1}{\rho})[\mu\Delta u+(\mu+\lambda)\nabla\operatorname{div}u]-(\tfrac{P^{\prime}(\rho)}{\rho}-1)\nabla[\operatorname{div}\varphi+O(|\nabla\varphi|^{2})]
+O(|φ|)O(|φ|)+(μ+λ)1.\displaystyle\quad+O(|\nabla\varphi|)\nabla O(|\nabla\varphi|)+(\mu+\lambda)\nabla\mathcal{R}_{1}.

We denote the tangential derivatives by =(y1,y2)\partial=(\partial_{y_{1}},\partial_{y_{2}}) and assume χjC0(Θj)\chi_{\scriptscriptstyle j}\in C_{0}^{\infty}(\Theta_{j}) be any fixed function. Then

{χjkuΩj1=χjkφΩj1=0,χjkϕΩj1=0orχjkϕνΩj1=0,\displaystyle\begin{cases}\chi_{\scriptscriptstyle j}\partial^{k}u\mid_{\partial\Omega_{j}^{-1}}=\chi_{\scriptscriptstyle j}\partial^{k}\varphi\mid_{\partial\Omega_{j}^{-1}}=0,\\ \chi_{\scriptscriptstyle j}\partial^{k}\phi\mid_{\partial\Omega_{j}^{-1}}=0\quad\mbox{or}\quad\chi_{\scriptscriptstyle j}\partial^{k}\nabla\phi\cdot\nu\mid_{\partial\Omega_{j}^{-1}}=0,\end{cases}

where 0k20\leqslant k\leqslant 2 and Ωj1:={y|y=Υ1(x),xΩj=ΘjΩ}.\Omega_{j}^{-1}:=\{y|y=\Upsilon^{-1}(x),x\in\Omega_{j}=\Theta_{j}\cap\Omega\}.

Hereafter, the higher-order estimates near the boundary for (u,φ,ϕ)(u,\varphi,\phi) in an exterior domain with a compact boundary can be constructed as below.

Lemma 5.2.

Let χjC0(Θj)\chi_{\scriptscriptstyle j}\in C_{0}^{\infty}(\Theta_{j}) (j=1,2,,N)(j=1,2,\dots,N) be any fixed function. It holds that

ddt\displaystyle\frac{d}{dt} χj(u,divφ,φ,ϕ)L22+χjuL22+χj(u,φ,ϕ)L22\displaystyle\|\chi_{\scriptscriptstyle j}\partial(u,\operatorname{div}\varphi,\nabla\varphi,\nabla\phi)\|_{L^{2}}^{2}+\|\chi_{\scriptscriptstyle j}\partial u\|_{L^{2}}^{2}+\|\chi_{\scriptscriptstyle j}\partial\nabla(u,\varphi,\phi)\|_{L^{2}}^{2}
(u,φ,ϕ,ut)L22+δ(u,φ)H12\displaystyle\lesssim\|\nabla(u,\varphi,\phi,u_{t})\|_{L^{2}}^{2}+\delta\|\nabla(u,\varphi)\|_{H^{1}}^{2} (5.16)

and

ddt\displaystyle\frac{d}{dt} χj2(u,divφ,φ,ϕ)L22+χj2uL22+χj2(u,φ,ϕ)L22\displaystyle\|\chi_{\scriptscriptstyle j}\partial^{2}(u,\operatorname{div}\varphi,\nabla\varphi,\nabla\phi)\|_{L^{2}}^{2}+\|\chi_{\scriptscriptstyle j}\partial^{2}u\|_{L^{2}}^{2}+\|\chi_{\scriptscriptstyle j}\partial^{2}\nabla(u,\varphi,\phi)\|_{L^{2}}^{2}
(u,ut)L22+2(u,φ,ϕ)L22+δ(φH22+3uL22).\displaystyle\lesssim\|\nabla(u,u_{t})\|_{L^{2}}^{2}+\|\nabla^{2}(u,\varphi,\phi)\|_{L^{2}}^{2}+\delta(\|\nabla\varphi\|_{H^{2}}^{2}+\|\nabla^{3}u\|_{L^{2}}^{2}). (5.17)
Proof.

Similar to the proof of Lemma 5.1, we omit the details.

Lemma 5.3.

Let χjC0(Θj)\chi_{\scriptscriptstyle j}\in C_{0}^{\infty}(\Theta_{j}) (j=1,2,,N)(j=1,2,\dots,N) be any fixed function. It holds that

ddt\displaystyle\frac{d}{dt} χjy3divφL22+χjy3(DdivφDt,divφ)L22\displaystyle\|\chi_{\scriptscriptstyle j}\partial_{y_{3}}\operatorname{div}\varphi\|_{L^{2}}^{2}+\|\chi_{\scriptscriptstyle j}\partial_{y_{3}}(\tfrac{D\operatorname{div}\varphi}{Dt},\operatorname{div}\varphi)\|_{L^{2}}^{2}
(u,u,φ,ϕ,ut)L22+χj(u,φ)L22+δ(u,2φ)H12\displaystyle\lesssim\|(u,\nabla u,\nabla\varphi,\nabla\phi,u_{t})\|_{L^{2}}^{2}+\|\chi_{\scriptscriptstyle j}\partial\nabla(u,\varphi)\|_{L^{2}}^{2}+\delta\|(\nabla u,\nabla^{2}\varphi)\|_{H^{1}}^{2} (5.18)

and

ddt\displaystyle\frac{d}{dt} χjκy3ι+1divφL22+χjκy3ι+1(DdivφDt,divφ)L22\displaystyle\|\chi_{\scriptscriptstyle j}\partial^{\kappa}\partial_{y_{3}}^{\iota+1}\operatorname{div}\varphi\|_{L^{2}}^{2}+\|\chi_{\scriptscriptstyle j}\partial^{\kappa}\partial_{y_{3}}^{\iota+1}(\tfrac{D\operatorname{div}\varphi}{Dt},\operatorname{div}\varphi)\|_{L^{2}}^{2}
(u,u,φ,ϕ,ut)H12+χjκ+1y3ι(u,φ)L22+δ(u,φ)H22,\displaystyle\lesssim\|(u,\nabla u,\nabla\varphi,\nabla\phi,u_{t})\|_{H^{1}}^{2}+\|\chi_{\scriptscriptstyle j}\partial^{\kappa+1}\partial_{y_{3}}^{\iota}\nabla(u,\varphi)\|_{L^{2}}^{2}+\delta\|\nabla(u,\varphi)\|_{H^{2}}^{2}, (5.19)

where κ+ι=1\kappa+\iota=1.

Proof.

Taking y3\partial_{y_{3}} to 11=0\mathcal{L}_{1}-\mathcal{R}_{1}=0 and y3\partial_{y_{3}} to (5.15), respectively, and multiplying 22=0\mathcal{L}_{2}-\mathcal{R}_{2}=0 by 𝒩\mathcal{N}, we shall obtain

y3(DdivφDt)+1J[(𝒜e1+e2)uy1y3+(𝒞e1+𝒟e2)uy2y3+J𝒩uy3y3]+O(u)=(1)y3;\displaystyle\partial_{y_{3}}(\tfrac{D\operatorname{div}\varphi}{Dt})+\tfrac{1}{J}[(\mathcal{A}e^{1}+\mathcal{B}e^{2})\cdot u_{y_{1}y_{3}}+(\mathcal{C}e^{1}+\mathcal{D}e^{2})\cdot u_{y_{2}y_{3}}+J\mathcal{N}\cdot u_{y_{3}y_{3}}]+O(\nabla u)=(\mathcal{R}_{1})_{y_{3}};\vskip 3.0pt plus 1.0pt minus 1.0pt (5.20)
𝒩ut+𝒩uμJ2[(𝒜2+2)𝒩uy1y1+2(𝒜𝒞+𝒟)𝒩uy1y2+(𝒞2+𝒟2)𝒩uy2y2+J2𝒩uy3y3]\displaystyle\mathcal{N}\cdot u_{t}+\mathcal{N}\cdot u-\tfrac{\mu}{J^{2}}[(\mathcal{A}^{2}+\mathcal{B}^{2})\mathcal{N}\cdot u_{y_{1}y_{1}}+2(\mathcal{A}\mathcal{C}+\mathcal{B}\mathcal{D})\mathcal{N}\cdot u_{y_{1}y_{2}}+(\mathcal{C}^{2}+\mathcal{D}^{2})\mathcal{N}\cdot u_{y_{2}y_{2}}+J^{2}\mathcal{N}\cdot u_{y_{3}y_{3}}]
+1J2[(𝒜2+2)𝒩φy1y1+2(𝒜𝒞+𝒟)𝒩φy1y2+(𝒞2+𝒟2)𝒩φy2y2+J2𝒩φy3y3]\displaystyle\qquad+\tfrac{1}{J^{2}}[(\mathcal{A}^{2}+\mathcal{B}^{2})\mathcal{N}\cdot\varphi_{y_{1}y_{1}}+2(\mathcal{A}\mathcal{C}+\mathcal{B}\mathcal{D})\mathcal{N}\cdot\varphi_{y_{1}y_{2}}+(\mathcal{C}^{2}+\mathcal{D}^{2})\mathcal{N}\cdot\varphi_{y_{2}y_{2}}+J^{2}\mathcal{N}\cdot\varphi_{y_{3}y_{3}}]
+[(μ+λ)DdivφDt+divφϕ]y3+O(u)+O(φ)=𝒩2;\displaystyle\qquad+[(\mu+\lambda)\tfrac{D\operatorname{div}\varphi}{Dt}+\operatorname{div}\varphi-\phi]_{y_{3}}+O(\nabla u)+O(\nabla\varphi)=\mathcal{N}\cdot\mathcal{R}_{2};\vskip 3.0pt plus 1.0pt minus 1.0pt (5.21)
1J[(𝒜e1+e2)φy1y3+(𝒞e1+𝒟e2)φy2y3+J𝒩φy3y3]divφy3+O(φ)=0.\displaystyle\tfrac{1}{J}[(\mathcal{A}e^{1}+\mathcal{B}e^{2})\cdot\varphi_{y_{1}y_{3}}+(\mathcal{C}e^{1}+\mathcal{D}e^{2})\varphi_{y_{2}y_{3}}+J\mathcal{N}\cdot\varphi_{y_{3}y_{3}}]-\operatorname{div}\varphi_{y_{3}}+O(\nabla\varphi)=0. (5.22)

To cancel the terms 𝒩uy3y3\mathcal{N}\cdot u_{y_{3}y_{3}} and 𝒩φy3y3\mathcal{N}\cdot\varphi_{y_{3}y_{3}} in (5.21), we calculate μ×(5.20)+(5.21)(5.22)\mu\times\eqref{3.60}+\eqref{3.61}-\eqref{3.62} to obtain

(2μ+λ)y3(DdivφDt)+2y3divφ\displaystyle(2\mu+\lambda)\partial_{y_{3}}(\tfrac{D\operatorname{div}\varphi}{Dt})+2\partial_{y_{3}}\operatorname{div}\varphi
=μJ2[(𝒜2+2)𝒩uy1y1+2(𝒜𝒞+𝒟)𝒩uy1y2+(𝒞2+𝒟2)𝒩uy2y2]\displaystyle\quad=\tfrac{\mu}{J^{2}}[(\mathcal{A}^{2}+\mathcal{B}^{2})\mathcal{N}\cdot u_{y_{1}y_{1}}+2(\mathcal{A}\mathcal{C}+\mathcal{B}\mathcal{D})\mathcal{N}\cdot u_{y_{1}y_{2}}+(\mathcal{C}^{2}+\mathcal{D}^{2})\mathcal{N}\cdot u_{y_{2}y_{2}}]
𝒩ut𝒩u+ϕy3μJ[(𝒜e1+e2)uy1y3+(𝒞e1+𝒟e2)uy2y3]\displaystyle\qquad-\mathcal{N}\cdot u_{t}-\mathcal{N}\cdot u+\phi_{y_{3}}-\tfrac{\mu}{J}[(\mathcal{A}e^{1}+\mathcal{B}e^{2})\cdot u_{y_{1}y_{3}}+(\mathcal{C}e^{1}+\mathcal{D}e^{2})\cdot u_{y_{2}y_{3}}]
+O(u)1J2[(𝒜2+2)𝒩φy1y1+2(𝒜𝒞+𝒟)𝒩φy1y2+(𝒞2+𝒟2)𝒩φy2y2]\displaystyle\qquad+O(\nabla u)-\tfrac{1}{J^{2}}[(\mathcal{A}^{2}+\mathcal{B}^{2})\mathcal{N}\cdot\varphi_{y_{1}y_{1}}+2(\mathcal{A}\mathcal{C}+\mathcal{B}\mathcal{D})\mathcal{N}\cdot\varphi_{y_{1}y_{2}}+(\mathcal{C}^{2}+\mathcal{D}^{2})\mathcal{N}\cdot\varphi_{y_{2}y_{2}}]
+1J[(𝒜e1+e2)φy1y3+(𝒞e1+𝒟e2)φy2y3]\displaystyle\qquad+\tfrac{1}{J}[(\mathcal{A}e^{1}+\mathcal{B}e^{2})\cdot\varphi_{y_{1}y_{3}}+(\mathcal{C}e^{1}+\mathcal{D}e^{2})\cdot\varphi_{y_{2}y_{3}}]
+O(φ)+μ(1)y3+𝒩2:=.\displaystyle\qquad+O(\nabla\varphi)+\mu(\mathcal{R}_{1})_{y_{3}}+\mathcal{N}\mathcal{R}_{2}:=\mathcal{R}. (5.23)

Multiplying (5) by χj2y3(DdivφDt+divφ)\chi_{\scriptscriptstyle j}^{2}\partial_{y_{3}}(\tfrac{D\operatorname{div}\varphi}{Dt}+\operatorname{div}\varphi) and then integrating it over Ωj1\Omega_{j}^{-1}, we obtain

2+2μ+λ2ddtχjy3divφL22+(2μ+λ)χjy3(DdivφDt)L22+2χjy3divφL22\displaystyle\frac{2+2\mu+\lambda}{2}\frac{d}{dt}\|\chi_{\scriptscriptstyle j}\partial_{y_{3}}\operatorname{div}\varphi\|_{L^{2}}^{2}+(2\mu+\lambda)\|\chi_{\scriptscriptstyle j}\partial_{y_{3}}(\tfrac{D\operatorname{div}\varphi}{Dt})\|_{L^{2}}^{2}+2\|\chi_{\scriptscriptstyle j}\partial_{y_{3}}\operatorname{div}\varphi\|_{L^{2}}^{2}
=(2+2μ+λ)Ωj1(udivφ)y3divφy3χj2dy+Ωj1χj2y3(DdivφDt+divφ)dy\displaystyle\quad=-(2+2\mu+\lambda)\int_{\Omega_{j}^{-1}}(u\cdot\nabla\operatorname{div}\varphi)_{y_{3}}\operatorname{div}\varphi_{y_{3}}\chi_{\scriptscriptstyle j}^{2}\,dy+\int_{\Omega_{j}^{-1}}\chi_{\scriptscriptstyle j}^{2}\partial_{y_{3}}(\tfrac{D\operatorname{div}\varphi}{Dt}+\operatorname{div}\varphi)\mathcal{R}\,dy
:=K1+K2.\displaystyle\quad:=K_{1}+K_{2}. (5.24)

Then, the right-hand side of (5) can be easily estimated as follows:

K1\displaystyle K_{1} Ωj1χj2|uy3divφdivφy3|𝑑y+Ωj1|divφy32div(uχj2)|𝑑y\displaystyle\lesssim\int_{\Omega_{j}^{-1}}\chi_{\scriptscriptstyle j}^{2}\big{|}u_{y_{3}}\cdot\nabla\operatorname{div}\varphi\operatorname{div}\varphi_{y_{3}}\big{|}\,dy+\int_{\Omega_{j}^{-1}}\big{|}\operatorname{div}\varphi_{y_{3}}^{2}\operatorname{div}(u\chi_{\scriptscriptstyle j}^{2})\big{|}\,dy
uH2divφH12δdivφH12\displaystyle\lesssim\|u\|_{H^{2}}\|\nabla\operatorname{div}\varphi\|_{H^{1}}^{2}\lesssim\delta\|\nabla\operatorname{div}\varphi\|_{H^{1}}^{2} (5.25)

and

K2\displaystyle K_{2} 2μ+λ2χjy3(DdivφDt)L22+χjy3divφL22+CχjL22\displaystyle\leqslant\frac{2\mu+\lambda}{2}\|\chi_{\scriptscriptstyle j}\partial_{y_{3}}(\tfrac{D\operatorname{div}\varphi}{Dt})\|_{L^{2}}^{2}+\|\chi_{\scriptscriptstyle j}\partial_{y_{3}}\operatorname{div}\varphi\|_{L^{2}}^{2}+C\|\chi_{\scriptscriptstyle j}\mathcal{R}\|_{L^{2}}^{2}
2μ+λ2χjy3(DdivφDt)L22+χjy3divφL22+C(u,u,φ,ϕ,ut)L22+Cχj(u,φ)L22\displaystyle\leqslant\frac{2\mu+\lambda}{2}\|\chi_{\scriptscriptstyle j}\partial_{y_{3}}(\tfrac{D\operatorname{div}\varphi}{Dt})\|_{L^{2}}^{2}+\|\chi_{\scriptscriptstyle j}\partial_{y_{3}}\operatorname{div}\varphi\|_{L^{2}}^{2}+C\|(u,\nabla u,\nabla\varphi,\nabla\phi,u_{t})\|_{L^{2}}^{2}+C\|\chi_{\scriptscriptstyle j}(\partial\nabla u,\partial\nabla\varphi)\|_{L^{2}}^{2}
+φL22uL22+uL622φL32+uL62uL32+φL22φL22\displaystyle\quad+\|\nabla\varphi\|_{L^{\infty}}^{2}\|\nabla^{2}u\|_{L^{2}}^{2}+\|\nabla u\|_{L^{6}}^{2}\|\nabla^{2}\varphi\|_{L^{3}}^{2}+\|u\|_{L^{6}}^{2}\|\nabla u\|_{L^{3}}^{2}+\|\nabla\varphi\|_{L^{\infty}}^{2}\|\nabla^{2}\varphi\|_{L^{2}}^{2}
2μ+λ2χjy3(DdivφDt)L22+χjy3divφL22+C(u,u,φ,ϕ,ut)L22+Cχj(u,φ)L22\displaystyle\leqslant\frac{2\mu+\lambda}{2}\|\chi_{\scriptscriptstyle j}\partial_{y_{3}}(\tfrac{D\operatorname{div}\varphi}{Dt})\|_{L^{2}}^{2}+\|\chi_{\scriptscriptstyle j}\partial_{y_{3}}\operatorname{div}\varphi\|_{L^{2}}^{2}+C\|(u,\nabla u,\nabla\varphi,\nabla\phi,u_{t})\|_{L^{2}}^{2}+C\|\chi_{\scriptscriptstyle j}(\partial\nabla u,\partial\nabla\varphi)\|_{L^{2}}^{2}
+δ(u,2φ)H12.\displaystyle\quad+\delta\|(\nabla u,\nabla^{2}\varphi)\|_{H^{1}}^{2}. (5.26)

Substituting (5)–(5) into (5), we get (5.3).

Applying ky3ι(k+ι=1)\partial^{k}\partial^{\iota}_{y_{3}}(k+\iota=1) to (5), multiplying the identity by ky3ι+1(DdivφDt+divφ)χj2,\partial^{k}\partial^{\iota+1}_{y_{3}}(\frac{D\operatorname{div}\varphi}{Dt}+\operatorname{div}\varphi)\chi_{\scriptscriptstyle j}^{2}, integrating over Ωj1\Omega_{j}^{-1} by parts and as in the proof of (5.3), we can obtain (5.3). ∎

Lemma 5.4.

Let χjC0(Θj)\chi_{\scriptscriptstyle j}\in C_{0}^{\infty}(\Theta_{j}) (j=1,2,,N)(j=1,2,\dots,N) be any fixed function. It holds that

ddtχj(u,u,divu)L22+χjutL22(2u,3φ,2ϕ)L22+δ(uH22+2φH12).\displaystyle\frac{d}{dt}\|\chi_{\scriptscriptstyle j}(\partial u,\partial\nabla u,\partial\operatorname{div}u)\|_{L^{2}}^{2}+\|\chi_{\scriptscriptstyle j}\partial u_{t}\|_{L^{2}}^{2}\lesssim\|(\nabla^{2}u,\nabla^{3}\varphi,\nabla^{2}\phi)\|_{L^{2}}^{2}+\delta(\|\nabla u\|_{H^{2}}^{2}+\|\nabla^{2}\varphi\|_{H^{1}}^{2}). (5.27)
Proof.

Taking the operator \partial on Eq. (2.8)1,\eqref{2.8}_{1}, multiplying it with utχj2\partial u_{t}\chi_{\scriptscriptstyle j}^{2}, and then integrating the identity (L1R1):utχj2=0\partial(L_{1}-R_{1}):\partial u_{t}\chi_{\scriptscriptstyle j}^{2}=0 over Ωj1\Omega_{j}^{-1}, by Hölder’s and Cauchy’s inequalities and Lemma 2.1, we get

12\displaystyle\frac{1}{2} ddtΩj1χj2[μ|u|2+(μ+λ)|divu|2+|u|2]𝑑y+Ωj1|χjut|2𝑑y\displaystyle\frac{d}{dt}\int_{\Omega_{j}^{-1}}\chi_{\scriptscriptstyle j}^{2}[\mu|\partial\nabla u|^{2}+(\mu+\lambda)|\partial\operatorname{div}u|^{2}+|\partial u|^{2}]\,dy+\int_{\Omega_{j}^{-1}}|\chi_{\scriptscriptstyle j}\partial u_{t}|^{2}\,dy
=Ωj1χj2ut:(divφ+Δφϕ)dy+Ωj1χj2ut:R1dy\displaystyle=-\int_{\Omega_{j}^{-1}}\chi_{\scriptscriptstyle j}^{2}\partial u_{t}:\partial(\nabla\operatorname{div}\varphi+\Delta\varphi-\nabla\phi)\,dy+\int_{\Omega_{j}^{-1}}\chi_{\scriptscriptstyle j}^{2}\partial u_{t}:\partial R_{1}\,dy
μΩj12χjuutχjdy(μ+λ)Ωj12χjdivuutχjdy\displaystyle\quad-\mu\int_{\Omega_{j}^{-1}}2\chi_{\scriptscriptstyle j}\partial\nabla u\cdot\partial u_{t}\cdot\nabla\chi_{\scriptscriptstyle j}\,dy-(\mu+\lambda)\int_{\Omega_{j}^{-1}}2\chi_{\scriptscriptstyle j}\partial\operatorname{div}u\cdot\partial u_{t}\cdot\nabla\chi_{\scriptscriptstyle j}\,dy
χjutL2(2ϕL2+3φL2+2uL2)+χjutL2R1L2\displaystyle\lesssim\|\chi_{\scriptscriptstyle j}\partial u_{t}\|_{L^{2}}\big{(}\|\nabla^{2}\phi\|_{L^{2}}+\|\nabla^{3}\varphi\|_{L^{2}}+\|\nabla^{2}u\|_{L^{2}}\big{)}+\|\chi_{\scriptscriptstyle j}\partial u_{t}\|_{L^{2}}\|\nabla R_{1}\|_{L^{2}}
δ(χjutL22+uH22+2φH12)+2ϕL22+3φL22+2uL22.\displaystyle\lesssim\delta(\|\chi_{\scriptscriptstyle j}\partial u_{t}\|_{L^{2}}^{2}+\|\nabla u\|_{H^{2}}^{2}+\|\nabla^{2}\varphi\|_{H^{1}}^{2})+\|\nabla^{2}\phi\|_{L^{2}}^{2}+\|\nabla^{3}\varphi\|_{L^{2}}^{2}+\|\nabla^{2}u\|_{L^{2}}^{2}.

Thus, we immediately deduce (5.27) from the above inequality. ∎

Similar to the Lemma 4.4, we shall obtain the higher-order dissipation estimates for (u,φ)(u,\varphi) in an exterior domain with a compact boundary.

Lemma 5.5.

Let χjC0(Θj)\chi_{\scriptscriptstyle j}\in C_{0}^{\infty}(\Theta_{j}) (j=1,2,,N)(j=1,2,\dots,N) be any fixed function. It holds that

ddt2φL22+2(u,φ)L22\displaystyle\frac{d}{dt}\|\nabla^{2}\varphi\|_{L^{2}}^{2}+\|\nabla^{2}(u,\varphi)\|_{L^{2}}^{2} (ut,u,u,φ,ϕ)L22+χ02(u,φ)L22+χj(u,φ)L22\displaystyle\lesssim\|(u_{t},u,\nabla u,\nabla\varphi,\nabla\phi)\|_{L^{2}}^{2}+\|\chi_{\scriptscriptstyle 0}\nabla^{2}(u,\varphi)\|_{L^{2}}^{2}+\|\chi_{\scriptscriptstyle j}\partial\nabla(u,\varphi)\|_{L^{2}}^{2}
+χjy3(DdivφDt,divφ)L22;\displaystyle\quad+\|\chi_{\scriptscriptstyle j}\partial_{y_{3}}(\tfrac{D\operatorname{div}\varphi}{Dt},\operatorname{div}\varphi)\|_{L^{2}}^{2}; (5.28)
ddt3φL22+3(u,φ)L22\displaystyle\frac{d}{dt}\|\nabla^{3}\varphi\|_{L^{2}}^{2}+\|\nabla^{3}(u,\varphi)\|_{L^{2}}^{2} (ut,u,u,φ,ϕ)H12+χ03(u,φ)L22+χj2(u,φ)L22\displaystyle\lesssim\|(u_{t},u,\nabla u,\nabla\varphi,\nabla\phi)\|_{H^{1}}^{2}+\|\chi_{\scriptscriptstyle 0}\nabla^{3}(u,\varphi)\|_{L^{2}}^{2}+\|\chi_{\scriptscriptstyle j}\partial\nabla^{2}(u,\varphi)\|_{L^{2}}^{2}
+χjy3(DdivφDt,divφ)L22;\displaystyle\quad+\|\chi_{\scriptscriptstyle j}\partial_{y_{3}}\nabla(\tfrac{D\operatorname{div}\varphi}{Dt},\operatorname{div}\varphi)\|_{L^{2}}^{2}; (5.29)
ddtχj2φL22+χj2(u,φ)L22\displaystyle\frac{d}{dt}\|\chi_{\scriptscriptstyle j}\partial\nabla^{2}\varphi\|_{L^{2}}^{2}+\|\chi_{\scriptscriptstyle j}\partial\nabla^{2}(u,\varphi)\|_{L^{2}}^{2} (ut,u,φ)H12+χj(2u,y3(DdivφDt),divφ)L22\displaystyle\lesssim\|(u_{t},\nabla u,\nabla\varphi)\|_{H^{1}}^{2}+\|\chi_{\scriptscriptstyle j}(\partial^{2}\nabla u,\partial\partial_{y_{3}}(\tfrac{D\operatorname{div}\varphi}{Dt}),\partial\nabla\operatorname{div}\varphi)\|_{L^{2}}^{2}
+ϕL22+δ3(u,φ)L22.\displaystyle\quad+\|\nabla\phi\|_{L^{2}}^{2}+\delta\|\nabla^{3}(u,\varphi)\|_{L^{2}}^{2}. (5.30)
Proof.

First, we shall prove the higher-order dissipation estimates of φ\varphi:

ddt2φL22+2φL222(uφμ)L22+δuH22;\displaystyle\frac{d}{dt}\|\nabla^{2}\varphi\|_{L^{2}}^{2}+\|\nabla^{2}\varphi\|_{L^{2}}^{2}\lesssim\|\nabla^{2}(u-\frac{\varphi}{\mu})\|_{L^{2}}^{2}+\delta\|u\|_{H^{2}}^{2}; (5.31)
ddt3φL22+3φL223(uφμ)L22+δuH32;\displaystyle\frac{d}{dt}\|\nabla^{3}\varphi\|_{L^{2}}^{2}+\|\nabla^{3}\varphi\|_{L^{2}}^{2}\lesssim\|\nabla^{3}(u-\frac{\varphi}{\mu})\|_{L^{2}}^{2}+\delta\|u\|_{H^{3}}^{2}; (5.32)
ddtχj2φL22+χj2φL22χj2(uφμ)L22+δuH32.\displaystyle\frac{d}{dt}\|\chi_{\scriptscriptstyle j}\partial\nabla^{2}\varphi\|_{L^{2}}^{2}+\|\chi_{\scriptscriptstyle j}\partial\nabla^{2}\varphi\|_{L^{2}}^{2}\lesssim\|\chi_{\scriptscriptstyle j}\partial\nabla^{2}(u-\frac{\varphi}{\mu})\|_{L^{2}}^{2}+\delta\|u\|_{H^{3}}^{2}. (5.33)

The proofs of these are similar, we only prove one of them here. In fact, applying 2\partial\nabla^{2} to Eq. (2.8)2\eqref{2.8}_{2}, multiplying it by 2φχj2\partial\nabla^{2}\varphi\chi_{\scriptscriptstyle j}^{2} and integrating over Ωj1\Omega_{j}^{-1}, we have for any ϵ>0\epsilon>0,

12\displaystyle\frac{1}{2} ddtΩj1|2φχj|2𝑑y+1μΩj1|2φχj|2𝑑y\displaystyle\frac{d}{dt}\int_{\Omega_{j}^{-1}}|\partial\nabla^{2}\varphi\chi_{\scriptscriptstyle j}|^{2}\,dy+\frac{1}{\mu}\int_{\Omega_{j}^{-1}}|\partial\nabla^{2}\varphi\chi_{\scriptscriptstyle j}|^{2}\,dy
=Ωj12(uφμ)2φχj2dyΩj12(uφ)2φχj2dy\displaystyle=-\int_{\Omega_{j}^{-1}}\partial\nabla^{2}(u-\frac{\varphi}{\mu})\cdot\partial\nabla^{2}\varphi\chi_{\scriptscriptstyle j}^{2}\,dy-\int_{\Omega_{j}^{-1}}\partial\nabla^{2}(u\cdot\nabla\varphi)\cdot\partial\nabla^{2}\varphi\chi_{\scriptscriptstyle j}^{2}\,dy
χj2(uφμ)L2χj2φL2+φL3uL2χj2φL2\displaystyle\lesssim\|\chi_{\scriptscriptstyle j}\partial\nabla^{2}(u-\frac{\varphi}{\mu})\|_{L^{2}}\|\chi_{\scriptscriptstyle j}\partial\nabla^{2}\varphi\|_{L^{2}}+\|\nabla\varphi\|_{L^{\infty}}\|\nabla^{3}u\|_{L^{2}}\|\chi_{\scriptscriptstyle j}\partial\nabla^{2}\varphi\|_{L^{2}}
+2φL62uL3χj2φL2+(uL+uL)3φL2χj2φL2\displaystyle\quad+\|\nabla^{2}\varphi\|_{L^{6}}\|\nabla^{2}u\|_{L^{3}}\|\chi_{\scriptscriptstyle j}\partial\nabla^{2}\varphi\|_{L^{2}}+(\|u\|_{L^{\infty}}+\|\nabla u\|_{L^{\infty}})\|\nabla^{3}\varphi\|_{L^{2}}\|\chi_{\scriptscriptstyle j}\partial\nabla^{2}\varphi\|_{L^{2}}
δ(χj2φL22+uH32)+ϵχj2φL22+χj2(uφμ)L22.\displaystyle\lesssim\delta(\|\chi_{\scriptscriptstyle j}\partial\nabla^{2}\varphi\|_{L^{2}}^{2}+\|u\|_{H^{3}}^{2})+\epsilon\|\chi_{\scriptscriptstyle j}\partial\nabla^{2}\varphi\|_{L^{2}}^{2}+\|\chi_{\scriptscriptstyle j}\partial\nabla^{2}(u-\frac{\varphi}{\mu})\|_{L^{2}}^{2}.

Taking the above ϵ>0\epsilon>0 to be small, since δ\delta is small, we deduce (5.33). Similarly we can prove (5.31)–(5.32).

Then, we shall prove the higher-order dissipation estimates of (uφμ)(u-\frac{\varphi}{\mu}):

2(uφμ)L22\displaystyle\|\nabla^{2}(u-\frac{\varphi}{\mu})\|_{L^{2}}^{2} (ut,ϕ,u,u,φ,χ02u,χju,χjy3(DdivφDt))L22\displaystyle\lesssim\|(u_{t},\nabla\phi,u,\nabla u,\nabla\varphi,\chi_{\scriptscriptstyle 0}\nabla^{2}u,\chi_{\scriptscriptstyle j}\partial\nabla u,\chi_{\scriptscriptstyle j}\partial_{y_{3}}(\tfrac{D\operatorname{div}\varphi}{Dt}))\|_{L^{2}}^{2}
+(χ02φ,χjφ,χjy3divφ)L22+δ2(u,φ)L22;\displaystyle\quad+\|(\chi_{\scriptscriptstyle 0}\nabla^{2}\varphi,\chi_{\scriptscriptstyle j}\partial\nabla\varphi,\chi_{\scriptscriptstyle j}\partial_{y_{3}}\operatorname{div}\varphi)\|_{L^{2}}^{2}+\delta\|\nabla^{2}(u,\varphi)\|_{L^{2}}^{2}; (5.34)
3(uφμ)L22(ut,ϕ,u,u,φ)H12+(χ03u,χj2u,χjy3(DdivφDt))L22\displaystyle\|\nabla^{3}(u-\frac{\varphi}{\mu})\|_{L^{2}}^{2}\lesssim\|(u_{t},\nabla\phi,u,\nabla u,\nabla\varphi)\|_{H^{1}}^{2}+\|(\chi_{\scriptscriptstyle 0}\nabla^{3}u,\chi_{\scriptscriptstyle j}\partial\nabla^{2}u,\chi_{\scriptscriptstyle j}\partial_{y_{3}}\nabla(\tfrac{D\operatorname{div}\varphi}{Dt}))\|_{L^{2}}^{2}
+(χ03φ,χj2φ,χjy3divφ)L22+δ(3uL22+2φH12);\displaystyle\qquad\qquad\qquad+\|(\chi_{\scriptscriptstyle 0}\nabla^{3}\varphi,\chi_{\scriptscriptstyle j}\partial\nabla^{2}\varphi,\chi_{\scriptscriptstyle j}\partial_{y_{3}}\nabla\operatorname{div}\varphi)\|_{L^{2}}^{2}+\delta(\|\nabla^{3}u\|_{L^{2}}^{2}+\|\nabla^{2}\varphi\|_{H^{1}}^{2}); (5.35)
χj2(uφμ)L22(ut,u,φ)H12+ϕL22+χj(2u,y3(DdivφDt),divφ)L22+δ3(u,φ)L22.\displaystyle\|\chi_{\scriptscriptstyle j}\partial\nabla^{2}(u-\frac{\varphi}{\mu})\|_{L^{2}}^{2}\lesssim\|(u_{t},\nabla u,\nabla\varphi)\|_{H^{1}}^{2}+\|\nabla\phi\|_{L^{2}}^{2}+\|\chi_{\scriptscriptstyle j}(\partial^{2}\nabla u,\partial\partial_{y_{3}}(\tfrac{D\operatorname{div}\varphi}{Dt}),\partial\nabla\operatorname{div}\varphi)\|_{L^{2}}^{2}+\delta\|\nabla^{3}(u,\varphi)\|_{L^{2}}^{2}. (5.36)

In fact, together Eq. (2.8)1\eqref{2.8}_{1} with (5.14)\eqref{2.7}, we have

{div(uφμ)=DdivφDt(u)T:φ1μdivφ,μΔ(uφμ)=utu+(μ+λ)divudivφ+ϕ+R1,(uφμ)Ω=0.\displaystyle\begin{cases}\operatorname{div}(u-\frac{\varphi}{\mu})=-\frac{D\operatorname{div}\varphi}{Dt}-(\nabla u)^{T}:\nabla\varphi-\frac{1}{\mu}\operatorname{div}\varphi,\\ -\mu\Delta(u-\frac{\varphi}{\mu})=-u_{t}-u+(\mu+\lambda)\nabla\operatorname{div}u-\nabla\operatorname{div}\varphi+\nabla\phi+R_{1},\\ (u-\frac{\varphi}{\mu})\mid_{\partial\Omega}=0.\end{cases} (5.37)

Applying Lemma 2.5 to the boundary-value problem (5.37), we obtain

2(uφμ)L22\displaystyle\|\nabla^{2}(u-\frac{\varphi}{\mu})\|_{L^{2}}^{2} (ut,u,ϕ,R1)L22+DdivφDtH12+divφH12+(u)T:φH12+(u,φ)L22\displaystyle\lesssim\|(u_{t},u,\nabla\phi,R_{1})\|_{L^{2}}^{2}+\|\tfrac{D\operatorname{div}\varphi}{Dt}\|_{H^{1}}^{2}+\|\operatorname{div}\varphi\|_{H^{1}}^{2}+\|(\nabla u)^{T}:\nabla\varphi\|_{H^{1}}^{2}+\|(\nabla u,\nabla\varphi)\|_{L^{2}}^{2}
(ut,u,ϕ,u,φ)L22+DdivφDtH12+divφH12+δ(2uL22+φH12),\displaystyle\lesssim\|(u_{t},u,\nabla\phi,\nabla u,\nabla\varphi)\|_{L^{2}}^{2}+\|\tfrac{D\operatorname{div}\varphi}{Dt}\|_{H^{1}}^{2}+\|\operatorname{div}\varphi\|_{H^{1}}^{2}+\delta(\|\nabla^{2}u\|_{L^{2}}^{2}+\|\nabla\varphi\|_{H^{1}}^{2}), (5.38)

with the fact

divuL2(DdivφDt)L2+[(u)T:φ]L2.\displaystyle\|\nabla\operatorname{div}u\|_{L^{2}}\leqslant\|\nabla(\tfrac{D\operatorname{div}\varphi}{Dt})\|_{L^{2}}+\|\nabla[(\nabla u)^{T}:\nabla\varphi]\|_{L^{2}}.

Note that

DdivφDtL2divuL2+(u)T:φL2uL2;\displaystyle\|\tfrac{D\operatorname{div}\varphi}{Dt}\|_{L^{2}}\leqslant\|\operatorname{div}u\|_{L^{2}}+\|(\nabla u)^{T}:\nabla\varphi\|_{L^{2}}\lesssim\|\nabla u\|_{L^{2}}; (5.39)
(DdivφDt)L2\displaystyle\|\nabla(\tfrac{D\operatorname{div}\varphi}{Dt})\|_{L^{2}} χ0(DdivφDt)L2+χj(DdivφDt)L2+χjy3(DdivφDt)L2\displaystyle\lesssim\|\chi_{\scriptscriptstyle 0}\nabla(\tfrac{D\operatorname{div}\varphi}{Dt})\|_{L^{2}}+\|\chi_{\scriptscriptstyle j}\partial(\tfrac{D\operatorname{div}\varphi}{Dt})\|_{L^{2}}+\|\chi_{\scriptscriptstyle j}\partial_{y_{3}}(\tfrac{D\operatorname{div}\varphi}{Dt})\|_{L^{2}}
χ02uL2+χjuL2+uH12φH1+χjy3(DdivφDt)L2;\displaystyle\lesssim\|\chi_{\scriptscriptstyle 0}\nabla^{2}u\|_{L^{2}}+\|\chi_{\scriptscriptstyle j}\partial\nabla u\|_{L^{2}}+\|\nabla u\|_{H^{1}}\|\nabla^{2}\varphi\|_{H^{1}}+\|\chi_{\scriptscriptstyle j}\partial_{y_{3}}(\tfrac{D\operatorname{div}\varphi}{Dt})\|_{L^{2}}; (5.40)
divφL2(χ02φ,χjφ,χjy3divφ)L2.\displaystyle\|\nabla\operatorname{div}\varphi\|_{L^{2}}\lesssim\|(\chi_{\scriptscriptstyle 0}\nabla^{2}\varphi,\chi_{\scriptscriptstyle j}\partial\nabla\varphi,\chi_{\scriptscriptstyle j}\partial_{y_{3}}\operatorname{div}\varphi)\|_{L^{2}}. (5.41)

Hence, by the estimates (5)–(5.41), we can get (5). Similarly, we can obtain (5) as follows:

3(uφμ)L22\displaystyle\|\nabla^{3}(u-\frac{\varphi}{\mu})\|_{L^{2}}^{2} (ut,u,ϕ,R1)H12+DdivφDtH22+divφH22+(u,φ)L22+δ(uH22+2φH12)\displaystyle\lesssim\|(u_{t},u,\nabla\phi,R_{1})\|_{H^{1}}^{2}+\|\tfrac{D\operatorname{div}\varphi}{Dt}\|_{H^{2}}^{2}+\|\operatorname{div}\varphi\|_{H^{2}}^{2}+\|(\nabla u,\nabla\varphi)\|_{L^{2}}^{2}+\delta(\|\nabla u\|_{H^{2}}^{2}+\|\nabla^{2}\varphi\|_{H^{1}}^{2})
(ut,ϕ,u,u,φ)H12+(χ03u,χj2u,χjy3(DdivφDt))L22\displaystyle\lesssim\|(u_{t},\nabla\phi,u,\nabla u,\nabla\varphi)\|_{H^{1}}^{2}+\|(\chi_{\scriptscriptstyle 0}\nabla^{3}u,\chi_{\scriptscriptstyle j}\partial\nabla^{2}u,\chi_{\scriptscriptstyle j}\partial_{y_{3}}\nabla(\tfrac{D\operatorname{div}\varphi}{Dt}))\|_{L^{2}}^{2}
+(χ03φ,χj2φ,χjy3divφ)L22+δ(3uL22+2φH12),\displaystyle\quad+\|(\chi_{\scriptscriptstyle 0}\nabla^{3}\varphi,\chi_{\scriptscriptstyle j}\partial\nabla^{2}\varphi,\chi_{\scriptscriptstyle j}\partial_{y_{3}}\nabla\operatorname{div}\varphi)\|_{L^{2}}^{2}+\delta(\|\nabla^{3}u\|_{L^{2}}^{2}+\|\nabla^{2}\varphi\|_{H^{1}}^{2}), (5.42)

where we have estimated

2divφL2(χ03φ,χj2φ,χjy3divφ)L2.\displaystyle\|\nabla^{2}\operatorname{div}\varphi\|_{L^{2}}\lesssim\|(\chi_{\scriptscriptstyle 0}\nabla^{3}\varphi,\chi_{\scriptscriptstyle j}\partial\nabla^{2}\varphi,\chi_{\scriptscriptstyle j}\partial_{y_{3}}\nabla\operatorname{div}\varphi)\|_{L^{2}}.

In order to estimate the term χj2u2\|\chi_{\scriptscriptstyle j}\partial\nabla^{2}u\|^{2} on the right-hand side of (5), we shall take χj\chi_{\scriptscriptstyle j}\partial on (5.37) to obtain

{div[χj(uφμ)]=χj(DdivφDt)+χjuχj[(u)T:φ]1μdiv(χjφ),μΔ[χj(uφμ)]=2μχj[(uφμ)]μΔχj(uφμ)+χj[utu+(μ+λ)divudivφ+ϕ+R1],χj(uφμ)Ωj1=0.\displaystyle\begin{cases}\operatorname{div}[\chi_{\scriptscriptstyle j}\partial(u-\frac{\varphi}{\mu})]=-\chi_{\scriptscriptstyle j}\partial(\tfrac{D\operatorname{div}\varphi}{Dt})+\nabla\chi_{\scriptscriptstyle j}\cdot\partial u-\chi_{\scriptscriptstyle j}\partial[(\nabla u)^{T}:\nabla\varphi]-\frac{1}{\mu}\operatorname{div}(\chi_{\scriptscriptstyle j}\partial\varphi),\\ -\mu\Delta[\chi_{\scriptscriptstyle j}\partial(u-\frac{\varphi}{\mu})]=-2\mu\nabla\chi_{\scriptscriptstyle j}\cdot\nabla[\partial(u-\frac{\varphi}{\mu})]-\mu\Delta\chi_{\scriptscriptstyle j}\partial(u-\frac{\varphi}{\mu})\\ \qquad\qquad\qquad\qquad+\chi_{\scriptscriptstyle j}\partial[-u_{t}-u+(\mu+\lambda)\nabla\operatorname{div}u-\nabla\operatorname{div}\varphi+\nabla\phi+R_{1}],\\ \chi_{\scriptscriptstyle j}\partial(u-\frac{\varphi}{\mu})\mid_{\partial\Omega_{j}^{-1}}=0.\end{cases} (5.43)

Then applying Lemma 2.5 to the boundary-value problem (5.43), we obtain

χj2(uφμ)L22\displaystyle\|\chi_{\scriptscriptstyle j}\partial\nabla^{2}(u-\frac{\varphi}{\mu})\|_{L^{2}}^{2} χj(ut,u,ϕ,R1)L22+χj(DdivφDt)H12+χjuH12+χj[(u)T:φ]H12\displaystyle\lesssim\|\chi_{\scriptscriptstyle j}\partial(u_{t},u,\nabla\phi,R_{1})\|_{L^{2}}^{2}+\|\chi_{\scriptscriptstyle j}\partial(\tfrac{D\operatorname{div}\varphi}{Dt})\|_{H^{1}}^{2}+\|\nabla\chi_{\scriptscriptstyle j}\cdot\partial u\|_{H^{1}}^{2}+\|\chi_{\scriptscriptstyle j}\partial[(\nabla u)^{T}:\nabla\varphi]\|_{H^{1}}^{2}
+(uφμ)L22+(uφμ)L22+div(χjφ)H12+χj(u,φ)L22\displaystyle\quad+\|\partial\nabla(u-\frac{\varphi}{\mu})\|_{L^{2}}^{2}+\|\partial(u-\frac{\varphi}{\mu})\|_{L^{2}}^{2}+\|\operatorname{div}(\chi_{\scriptscriptstyle j}\partial\varphi)\|_{H^{1}}^{2}+\|\chi_{\scriptscriptstyle j}\partial\nabla(u,\varphi)\|_{L^{2}}^{2}
(ut,u,φ)H12+ϕL22+χj2uL22+χjy3(DdivφDt)L22+χjdivφL22\displaystyle\lesssim\|(u_{t},\nabla u,\nabla\varphi)\|_{H^{1}}^{2}+\|\nabla\phi\|_{L^{2}}^{2}+\|\chi_{\scriptscriptstyle j}\partial^{2}\nabla u\|_{L^{2}}^{2}+\|\chi_{\scriptscriptstyle j}\partial\partial_{y_{3}}(\tfrac{D\operatorname{div}\varphi}{Dt})\|_{L^{2}}^{2}+\|\chi_{\scriptscriptstyle j}\partial\nabla\operatorname{div}\varphi\|_{L^{2}}^{2}
+δ(uH22+2φH12),\displaystyle\quad+\delta(\|\nabla u\|_{H^{2}}^{2}+\|\nabla^{2}\varphi\|_{H^{1}}^{2}), (5.44)

with the facts

χj(DdivφDt)L2\displaystyle\|\chi_{\scriptscriptstyle j}\partial\nabla(\tfrac{D\operatorname{div}\varphi}{Dt})\|_{L^{2}} χj2(DdivφDt)L2+χjy3(DdivφDt)L2\displaystyle\lesssim\|\chi_{\scriptscriptstyle j}\partial^{2}(\tfrac{D\operatorname{div}\varphi}{Dt})\|_{L^{2}}+\|\chi_{\scriptscriptstyle j}\partial\partial_{y_{3}}(\tfrac{D\operatorname{div}\varphi}{Dt})\|_{L^{2}}
χj2uL2+χj2[(u)T:φ]L2+χjy3(DdivφDt)L2\displaystyle\lesssim\|\chi_{\scriptscriptstyle j}\partial^{2}\nabla u\|_{L^{2}}+\|\chi_{\scriptscriptstyle j}\partial^{2}[(\nabla u)^{T}:\nabla\varphi]\|_{L^{2}}+\|\chi_{\scriptscriptstyle j}\partial\partial_{y_{3}}(\tfrac{D\operatorname{div}\varphi}{Dt})\|_{L^{2}}

and

χjϕL22ϕL2ΔϕL2+ϕL2φL2+φLφL2+ϕL2φL2+ϕL2.\displaystyle\|\chi_{\scriptscriptstyle j}\partial\nabla\phi\|_{L^{2}}\leqslant\|\nabla^{2}\phi\|_{L^{2}}\lesssim\|\Delta\phi\|_{L^{2}}+\|\nabla\phi\|_{L^{2}}\lesssim\|\nabla\varphi\|_{L^{2}}+\|\nabla\varphi\|_{L^{\infty}}\|\nabla\varphi\|_{L^{2}}+\|\nabla\phi\|_{L^{2}}\lesssim\|\nabla\varphi\|_{L^{2}}+\|\nabla\phi\|_{L^{2}}.

Thus we deduce (5.36) from (5).

Finally, let η>0\eta>0 be a small but fixed constant. Computing (5.31)×η+(5)\eqref{3.18}\times\eta+\eqref{3.72}, (5.32)×η+(5)\eqref{3.19}\times\eta+\eqref{3.73} and (5.33)×η+(5.36)\eqref{3.19'}\times\eta+\eqref{3.74'}, respectively, we deduce (5.5)–(5.5). ∎

6. Proof of Theorem 1.1

In this section, we will establish the a priori estimates and then complete the proof of Theorem 1.1. For clarity, we use two tables below to illustrate the energy estimates for the half-space and the exterior domain with a compact boundary.

Table 2. Energy Estimates in Half-spaces
Lemma Energy (t)\mathcal{E}(t) Dissipation 𝒟(t)\mathcal{D}(t) Key terms in (t)\mathcal{B}(t)
3.1 u,φ,ϕu,\nabla\varphi,\nabla\phi u,uu,\nabla u
3.2 ut,φt,ϕtu_{t},\nabla\varphi_{t},\nabla\phi_{t} ut,utu_{t},\nabla u_{t}
3.3 φ\varphi (φ,ϕ)\nabla(\varphi,\phi) u,uu,\nabla u
4.1 (u,φ,ϕ)\partial(u,\nabla\varphi,\nabla\phi) u,(u,φ,ϕ)\partial u,\partial\nabla(u,\varphi,\phi) (u,φ,ut)\nabla(u,\varphi,u_{t})
2(u,φ,ϕ)\partial^{2}(u,\nabla\varphi,\nabla\phi) 2u,2(u,φ,ϕ)\partial^{2}u,\partial^{2}\nabla(u,\varphi,\phi) (u,ut)\nabla(u,u_{t})
4.2 x3divφ\partial_{x_{3}}\operatorname{div}\varphi x3(DdivφDt,divφ)\partial_{x_{3}}(\tfrac{D\operatorname{div}\varphi}{Dt},\operatorname{div}\varphi) (u,φ)\partial\nabla(u,\varphi)
x3divφ\partial\partial_{x_{3}}\operatorname{div}\varphi x3(DdivφDt,divφ)\partial\partial_{x_{3}}(\tfrac{D\operatorname{div}\varphi}{Dt},\operatorname{div}\varphi) 2(u,φ)\partial^{2}\nabla(u,\varphi)
x32divφ\partial_{x_{3}}^{2}\operatorname{div}\varphi x32(DdivφDt,divφ)\partial_{x_{3}}^{2}(\tfrac{D\operatorname{div}\varphi}{Dt},\operatorname{div}\varphi) x3(u,φ)\partial\partial_{x_{3}}\nabla(u,\varphi)
4.3 (u,u)\partial(u,\nabla u) ut\partial u_{t} 2ϕ,3φ\nabla^{2}\phi,\nabla^{3}\varphi
4.4 2φ\nabla^{2}\varphi 2(u,φ)\nabla^{2}(u,\varphi) x3(DdivφDt,divφ),(u,φ)\partial_{x_{3}}(\tfrac{D\operatorname{div}\varphi}{Dt},\operatorname{div}\varphi),\partial\nabla(u,\varphi)
2φ\partial\nabla^{2}\varphi 2(u,φ)\partial\nabla^{2}(u,\varphi) (x3(DdivφDt),divφ)\partial(\partial_{x_{3}}(\tfrac{D\operatorname{div}\varphi}{Dt}),\nabla\operatorname{div}\varphi)
3φ\nabla^{3}\varphi 3(u,φ)\nabla^{3}(u,\varphi) x3(DdivφDt,divφ),2(u,φ)\partial_{x_{3}}\nabla(\tfrac{D\operatorname{div}\varphi}{Dt},\operatorname{div}\varphi),\partial\nabla^{2}(u,\varphi)
Table 3. Energy Estimates in Exterior Domains
Lemma Energy (t)\mathcal{E}(t) Dissipation 𝒟(t)\mathcal{D}(t) Key terms in (t)\mathcal{B}(t)
3.1 u,φ,ϕu,\nabla\varphi,\nabla\phi u,uu,\nabla u
3.2 ut,φt,ϕtu_{t},\nabla\varphi_{t},\nabla\phi_{t} ut,utu_{t},\nabla u_{t}
3.3 φ\varphi (φ,ϕ)\nabla(\varphi,\phi) u,uu,\nabla u
5.1 χ0(u,Δφ,Δϕ)\chi_{\scriptscriptstyle 0}(\nabla u,\Delta\varphi,\Delta\phi) χ0u,χ02(u,φ,ϕ)\chi_{\scriptscriptstyle 0}\nabla u,\chi_{\scriptscriptstyle 0}\nabla^{2}(u,\varphi,\phi) (u,φ,ϕ,ut)\nabla(u,\varphi,\phi,u_{t})
χ0(2u,Δφ,Δϕ)\chi_{\scriptscriptstyle 0}(\nabla^{2}u,\nabla\Delta\varphi,\nabla\Delta\phi) χ02u,χ03(u,φ,ϕ)\chi_{\scriptscriptstyle 0}\nabla^{2}u,\chi_{\scriptscriptstyle 0}\nabla^{3}(u,\varphi,\phi) (u,ut),2(u,φ,ϕ)\nabla(u,u_{t}),\nabla^{2}(u,\varphi,\phi)
5.2 χj(u,φ,ϕ)\chi_{\scriptscriptstyle j}\partial(u,\nabla\varphi,\nabla\phi) χju,χj(u,φ,ϕ)\chi_{\scriptscriptstyle j}\partial u,\chi_{\scriptscriptstyle j}\partial\nabla(u,\varphi,\phi) (u,φ,ϕ,ut)\nabla(u,\varphi,\phi,u_{t})
χj2(u,φ,ϕ)\chi_{\scriptscriptstyle j}\partial^{2}(u,\nabla\varphi,\nabla\phi) χj2u,χj2(u,φ,ϕ)\chi_{\scriptscriptstyle j}\partial^{2}u,\chi_{\scriptscriptstyle j}\partial^{2}\nabla(u,\varphi,\phi) (u,ut),2(u,φ,ϕ)\nabla(u,u_{t}),\nabla^{2}(u,\varphi,\phi)
5.3 χjy3divφ\chi_{\scriptscriptstyle j}\partial_{y_{3}}\operatorname{div}\varphi χjy3(DdivφDt,divφ)\chi_{\scriptscriptstyle j}\partial_{y_{3}}(\tfrac{D\operatorname{div}\varphi}{Dt},\operatorname{div}\varphi) χj(u,φ)\chi_{\scriptscriptstyle j}\partial\nabla(u,\varphi)
χjy3divφ\chi_{\scriptscriptstyle j}\partial\partial_{y_{3}}\operatorname{div}\varphi χjy3(DdivφDt,divφ)\chi_{\scriptscriptstyle j}\partial\partial_{y_{3}}(\tfrac{D\operatorname{div}\varphi}{Dt},\operatorname{div}\varphi) χj2(u,φ),2(u,φ)\chi_{\scriptscriptstyle j}\partial^{2}\nabla(u,\varphi),\nabla^{2}(u,\varphi)
χjy32divφ\chi_{\scriptscriptstyle j}\partial_{y_{3}}^{2}\operatorname{div}\varphi χjy32(DdivφDt,divφ)\chi_{\scriptscriptstyle j}\partial_{y_{3}}^{2}(\tfrac{D\operatorname{div}\varphi}{Dt},\operatorname{div}\varphi) χjy3(u,φ),2(u,φ)\chi_{\scriptscriptstyle j}\partial\partial_{y_{3}}\nabla(u,\varphi),\nabla^{2}(u,\varphi)
5.4 χj(u,u)\chi_{\scriptscriptstyle j}\partial(u,\nabla u) χjut\chi_{\scriptscriptstyle j}\partial u_{t} 2(u,ϕ),3φ\nabla^{2}(u,\phi),\nabla^{3}\varphi
5.5 2φ\nabla^{2}\varphi 2(u,φ)\nabla^{2}(u,\varphi) χjy3(DdivφDt,divφ),χj(u,φ)\chi_{\scriptscriptstyle j}\partial_{y_{3}}(\tfrac{D\operatorname{div}\varphi}{Dt},\operatorname{div}\varphi),\chi_{\scriptscriptstyle j}\partial\nabla(u,\varphi)
χj2φ\chi_{\scriptscriptstyle j}\partial\nabla^{2}\varphi χj2(u,φ)\chi_{\scriptscriptstyle j}\partial\nabla^{2}(u,\varphi) χj(y3(DdivφDt),divφ)\chi_{\scriptscriptstyle j}\partial(\partial_{y_{3}}(\tfrac{D\operatorname{div}\varphi}{Dt}),\nabla\operatorname{div}\varphi)
3φ\nabla^{3}\varphi 3(u,φ)\nabla^{3}(u,\varphi) χjy3(DdivφDt,divφ),χj2(u,φ)\chi_{\scriptscriptstyle j}\partial_{y_{3}}\nabla(\tfrac{D\operatorname{div}\varphi}{Dt},\operatorname{div}\varphi),\chi_{\scriptscriptstyle j}\partial\nabla^{2}(u,\varphi)

It is not difficult to see that the energy estimates in Sections 3-5 can be expressed as the following form

ddt(t)+𝒟(t)(t)+δ𝒮(t),δ1,\displaystyle\frac{d}{dt}\mathcal{E}(t)+\mathcal{D}(t)\lesssim\mathcal{B}(t)+\delta\mathcal{S}(t),\quad\delta\ll 1,

where (t)\mathcal{B}(t) includes some bad large terms. However, we observe from the table that the bad terms (t)\mathcal{B}(t) appeared in some row can be absorbed by the dissipation 𝒟(t)\mathcal{D}(t) located in other rows after multiplying them by a small constant. Because of the equivalence in norms between xx-domain and yy-domain, we omit the transformation of the domains of integration without causing confusion in an exterior domain with a compact boundary.

Let γ>0\gamma>0 be a suitably small constant in the below, which may vary from line to line.

Step 1: Establish the lower-order energy estimates for (u,φ,ϕ)(u,\nabla\varphi,\nabla\phi).

Multiplying (3.20) of Lemma 3.3 by γ\gamma, and then adding it to (3.7) of Lemma 3.1, together with (3.12) of Lemma 3.2, since δ\delta is small, we have

ddt\displaystyle\frac{d}{dt} [(u,divφ,φ,ϕ,ut,divφt,φt,ϕt)L22+γΩ(12|φ|2uφ)𝑑x]\displaystyle\Big{[}\|(u,\operatorname{div}\varphi,\nabla\varphi,\nabla\phi,u_{t},\operatorname{div}\varphi_{t},\nabla\varphi_{t},\nabla\phi_{t})\|_{L^{2}}^{2}+\gamma\int_{\Omega}(\frac{1}{2}|\varphi|^{2}-u\cdot\varphi)\,dx\Big{]}
+(u,u,φ,ϕ,ut,ut)L22δ2(u,φ)L22.\displaystyle+\|(u,\nabla u,\nabla\varphi,\nabla\phi,u_{t},\nabla u_{t})\|_{L^{2}}^{2}\lesssim\delta\|\nabla^{2}(u,\varphi)\|_{L^{2}}^{2}. (6.1)

Step 2: Construct the complete energy estimates for (u,φ,ϕ)(u,\nabla\varphi,\nabla\phi) including the estimates for the higher-order derivatives.

Here, we need to consider the half-space case and the exterior domain case separately.

(I) The half-space case.

Computing γ×[(4.1)+(4.2)]+(6)\gamma\times[\eqref{3.26'}+\eqref{3.27'}]+\eqref{zong2}, since δ\delta is small, we obtain

ddt(u,ut,u,2u)L22+ddt(divφ,φ,divφt,φt,divφ,φ,2divφ,2φ)L22\displaystyle\frac{d}{dt}\|(u,u_{t},\partial u,\partial^{2}u)\|_{L^{2}}^{2}+\frac{d}{dt}\|(\operatorname{div}\varphi,\nabla\varphi,\operatorname{div}\varphi_{t},\nabla\varphi_{t},\partial\operatorname{div}\varphi,\partial\nabla\varphi,\partial^{2}\operatorname{div}\varphi,\partial^{2}\nabla\varphi)\|_{L^{2}}^{2}
+ddt[(ϕ,ϕt,ϕ,2ϕ)L22+γΩ(12|φ|2uφ)𝑑x]\displaystyle\quad+\frac{d}{dt}\Big{[}\|(\nabla\phi,\nabla\phi_{t},\partial\nabla\phi,\partial^{2}\nabla\phi)\|_{L^{2}}^{2}+\gamma\int_{\Omega}(\frac{1}{2}|\varphi|^{2}-u\cdot\varphi)\,dx\Big{]}
+(u,u,φ,ϕ,ut,ut)L22+(u,2u,u,2u,φ,2φ,ϕ,2ϕ)L22\displaystyle\qquad+\|(u,\nabla u,\nabla\varphi,\nabla\phi,u_{t},\nabla u_{t})\|_{L^{2}}^{2}+\|(\partial u,\partial^{2}u,\partial\nabla u,\partial^{2}\nabla u,\partial\nabla\varphi,\partial^{2}\nabla\varphi,\partial\nabla\phi,\partial^{2}\nabla\phi)\|_{L^{2}}^{2}
δ2(u,φ)H12.\displaystyle\qquad\quad\lesssim\delta\|\nabla^{2}(u,\varphi)\|_{H^{1}}^{2}. (6.2)

Computing γ2×(4.18)+γ×(4.10)+(6)\gamma^{2}\times\eqref{3.80'}+\gamma\times\eqref{3.56'}+\eqref{'zong3}, we have

ddt(u,ut,u,2u)L22+ddt(divφ,φ,divφt,φt,divφ,φ,2divφ,2φ)L22\displaystyle\frac{d}{dt}\|(u,u_{t},\partial u,\partial^{2}u)\|_{L^{2}}^{2}+\frac{d}{dt}\|(\operatorname{div}\varphi,\nabla\varphi,\operatorname{div}\varphi_{t},\nabla\varphi_{t},\partial\operatorname{div}\varphi,\partial\nabla\varphi,\partial^{2}\operatorname{div}\varphi,\partial^{2}\nabla\varphi)\|_{L^{2}}^{2}
+ddt[(ϕ,ϕt,ϕ,2ϕ)L22+γΩ(12|φ|2uφ)𝑑x+x3divφL22+2φL22]\displaystyle\quad+\frac{d}{dt}\Big{[}\|(\nabla\phi,\nabla\phi_{t},\partial\nabla\phi,\partial^{2}\nabla\phi)\|_{L^{2}}^{2}+\gamma\int_{\Omega}(\frac{1}{2}|\varphi|^{2}-u\cdot\varphi)\,dx+\|\partial_{x_{3}}\operatorname{div}\varphi\|_{L^{2}}^{2}+\|\nabla^{2}\varphi\|_{L^{2}}^{2}\Big{]}
+(u,u,φ,ϕ,ut,ut)L22+(u,2u,u,2u,φ,2φ,ϕ,2ϕ)L22\displaystyle\qquad+\|(u,\nabla u,\nabla\varphi,\nabla\phi,u_{t},\nabla u_{t})\|_{L^{2}}^{2}+\|(\partial u,\partial^{2}u,\partial\nabla u,\partial^{2}\nabla u,\partial\nabla\varphi,\partial^{2}\nabla\varphi,\partial\nabla\phi,\partial^{2}\nabla\phi)\|_{L^{2}}^{2}
+x3(DdivφDt)L22+x3divφL22+2(u,φ)L22δ3(u,φ)L22.\displaystyle\qquad+\|\partial_{x_{3}}(\tfrac{D\operatorname{div}\varphi}{Dt})\|_{L^{2}}^{2}+\|\partial_{x_{3}}\operatorname{div}\varphi\|_{L^{2}}^{2}+\|\nabla^{2}(u,\varphi)\|_{L^{2}}^{2}\lesssim\delta\|\nabla^{3}(u,\varphi)\|_{L^{2}}^{2}. (6.3)

In order that the terms x3(u,φ)L22\|\partial\partial_{x_{3}}\nabla(u,\varphi)\|_{L^{2}}^{2} on the right-hand side of (4.11)κ=0\eqref{3.57'}_{\kappa=0} can be absorbed by the left-hand side of (4.20), the terms (2u,x3(DdivφDt),divφ)L22\|(\partial^{2}\nabla u,\partial\partial_{x_{3}}(\tfrac{D\operatorname{div}\varphi}{Dt}),\partial\nabla\operatorname{div}\varphi)\|_{L^{2}}^{2} on the right-hand side of (4.20) can be absorbed by the left-hand side of (4.11)κ=1\eqref{3.57'}_{\kappa=1}, the terms 2(u,φ)L22\|\partial^{2}\nabla(u,\varphi)\|_{L^{2}}^{2} on the right-hand side of (4.11)κ=1\eqref{3.57'}_{\kappa=1} can be absorbed by the left-hand side of (6), we compute γ3×(4.11)κ=0+γ2×(4.20)+γ×(4.11)κ=1+(6)\gamma^{3}\times\eqref{3.57'}_{\kappa=0}+\gamma^{2}\times\eqref{3.81'''}+\gamma\times\eqref{3.57'}_{\kappa=1}+\eqref{''zong3} to obtain

ddt(u,ut,u,2u)L22+ddt(divφ,φ,divφt,φt,divφ,φ,2divφ,2φ)L22\displaystyle\frac{d}{dt}\|(u,u_{t},\partial u,\partial^{2}u)\|_{L^{2}}^{2}+\frac{d}{dt}\|(\operatorname{div}\varphi,\nabla\varphi,\operatorname{div}\varphi_{t},\nabla\varphi_{t},\partial\operatorname{div}\varphi,\partial\nabla\varphi,\partial^{2}\operatorname{div}\varphi,\partial^{2}\nabla\varphi)\|_{L^{2}}^{2}
+ddt[(ϕ,ϕt,ϕ,2ϕ)L22+γΩ(12|φ|2uφ)𝑑x+x3divφL22+2φL22]\displaystyle+\frac{d}{dt}\Big{[}\|(\nabla\phi,\nabla\phi_{t},\partial\nabla\phi,\partial^{2}\nabla\phi)\|_{L^{2}}^{2}+\gamma\int_{\Omega}(\frac{1}{2}|\varphi|^{2}-u\cdot\varphi)\,dx+\|\partial_{x_{3}}\operatorname{div}\varphi\|_{L^{2}}^{2}+\|\nabla^{2}\varphi\|_{L^{2}}^{2}\Big{]}
+ddt(2φ,x3divφ,x32divφ)L22\displaystyle+\frac{d}{dt}\|(\partial\nabla^{2}\varphi,\partial\partial_{x_{3}}\operatorname{div}\varphi,\partial_{x_{3}}^{2}\operatorname{div}\varphi)\|_{L^{2}}^{2}
+(u,u,φ,ϕ,ut,ut)L22+(u,2u,u,2u,φ,2φ,ϕ,2ϕ)L22\displaystyle\quad+\|(u,\nabla u,\nabla\varphi,\nabla\phi,u_{t},\nabla u_{t})\|_{L^{2}}^{2}+\|(\partial u,\partial^{2}u,\partial\nabla u,\partial^{2}\nabla u,\partial\nabla\varphi,\partial^{2}\nabla\varphi,\partial\nabla\phi,\partial^{2}\nabla\phi)\|_{L^{2}}^{2}
+x3(DdivφDt)L22+x3divφL22+2(u,φ)L22+2(u,φ)L22\displaystyle\quad+\|\partial_{x_{3}}(\tfrac{D\operatorname{div}\varphi}{Dt})\|_{L^{2}}^{2}+\|\partial_{x_{3}}\operatorname{div}\varphi\|_{L^{2}}^{2}+\|\nabla^{2}(u,\varphi)\|_{L^{2}}^{2}+\|\partial\nabla^{2}(u,\varphi)\|_{L^{2}}^{2}
+(x3(DdivφDt),x32(DdivφDt),x3divφ,x32divφ)L22δ3(u,φ)L22.\displaystyle\quad+\|(\partial\partial_{x_{3}}(\tfrac{D\operatorname{div}\varphi}{Dt}),\partial_{x_{3}}^{2}(\tfrac{D\operatorname{div}\varphi}{Dt}),\partial\partial_{x_{3}}\operatorname{div}\varphi,\partial_{x_{3}}^{2}\operatorname{div}\varphi)\|_{L^{2}}^{2}\lesssim\delta\|\nabla^{3}(u,\varphi)\|_{L^{2}}^{2}. (6.4)

Multiplying (4.19) of Lemma 4.4 by γ\gamma, and adding it to (6) so that the terms

(2u,2φ,x3(DdivφDt),x3divφ)L22\displaystyle\|(\partial\nabla^{2}u,\partial\nabla^{2}\varphi,\partial_{x_{3}}\nabla(\tfrac{D\operatorname{div}\varphi}{Dt}),\partial_{x_{3}}\nabla\operatorname{div}\varphi)\|_{L^{2}}^{2}

on the right-hand side of (4.19) can be absorbed by the left-hand side of (6), thus, we have

ddt(u,ut,u,2u)L22+ddt(divφ,φ,divφt,φt,divφ,φ,2divφ,2φ)L22\displaystyle\frac{d}{dt}\|(u,u_{t},\partial u,\partial^{2}u)\|_{L^{2}}^{2}+\frac{d}{dt}\|(\operatorname{div}\varphi,\nabla\varphi,\operatorname{div}\varphi_{t},\nabla\varphi_{t},\partial\operatorname{div}\varphi,\partial\nabla\varphi,\partial^{2}\operatorname{div}\varphi,\partial^{2}\nabla\varphi)\|_{L^{2}}^{2}
+ddt[(ϕ,ϕt,ϕ,2ϕ)L22+γΩ(12|φ|2uφ)𝑑x+x3divφL22+2φL22]\displaystyle\quad+\frac{d}{dt}\Big{[}\|(\nabla\phi,\nabla\phi_{t},\partial\nabla\phi,\partial^{2}\nabla\phi)\|_{L^{2}}^{2}+\gamma\int_{\Omega}(\frac{1}{2}|\varphi|^{2}-u\cdot\varphi)\,dx+\|\partial_{x_{3}}\operatorname{div}\varphi\|_{L^{2}}^{2}+\|\nabla^{2}\varphi\|_{L^{2}}^{2}\Big{]}
+ddt(2φ,x3divφ,x32divφ,3φ)L22\displaystyle\quad+\frac{d}{dt}\|(\partial\nabla^{2}\varphi,\partial\partial_{x_{3}}\operatorname{div}\varphi,\partial_{x_{3}}^{2}\operatorname{div}\varphi,\nabla^{3}\varphi)\|_{L^{2}}^{2}
+(u,u,φ,ϕ,ut,ut)L22+(u,2u,u,2u,φ,2φ,ϕ,2ϕ)L22\displaystyle\qquad+\|(u,\nabla u,\nabla\varphi,\nabla\phi,u_{t},\nabla u_{t})\|_{L^{2}}^{2}+\|(\partial u,\partial^{2}u,\partial\nabla u,\partial^{2}\nabla u,\partial\nabla\varphi,\partial^{2}\nabla\varphi,\partial\nabla\phi,\partial^{2}\nabla\phi)\|_{L^{2}}^{2}
+x3(DdivφDt)L22+x3divφL22+2(u,φ)H12+2(u,φ)L22\displaystyle\qquad+\|\partial_{x_{3}}(\tfrac{D\operatorname{div}\varphi}{Dt})\|_{L^{2}}^{2}+\|\partial_{x_{3}}\operatorname{div}\varphi\|_{L^{2}}^{2}+\|\nabla^{2}(u,\varphi)\|_{H^{1}}^{2}+\|\partial\nabla^{2}(u,\varphi)\|_{L^{2}}^{2}
+(x3(DdivφDt),x32(DdivφDt),x3divφ,x32divφ)L220.\displaystyle\qquad+\|(\partial\partial_{x_{3}}(\tfrac{D\operatorname{div}\varphi}{Dt}),\partial_{x_{3}}^{2}(\tfrac{D\operatorname{div}\varphi}{Dt}),\partial\partial_{x_{3}}\operatorname{div}\varphi,\partial_{x_{3}}^{2}\operatorname{div}\varphi)\|_{L^{2}}^{2}\leqslant 0. (6.5)

Computing γ×(4.17)+(6)\gamma\times\eqref{3.53'}+\eqref{''''zong3}, we obtain

ddt(u,ut,u,u,2u,divu)L22+ddt(divφ,φ,divφt,φt,divφ,φ,2divφ,2φ)L22\displaystyle\frac{d}{dt}\|(u,u_{t},\partial u,\partial\nabla u,\partial^{2}u,\partial\operatorname{div}u)\|_{L^{2}}^{2}+\frac{d}{dt}\|(\operatorname{div}\varphi,\nabla\varphi,\operatorname{div}\varphi_{t},\nabla\varphi_{t},\partial\operatorname{div}\varphi,\partial\nabla\varphi,\partial^{2}\operatorname{div}\varphi,\partial^{2}\nabla\varphi)\|_{L^{2}}^{2}
+ddt[(ϕ,ϕt,ϕ,2ϕ)L22+γΩ(12|φ|2uφ)𝑑x+x3divφL22+2φL22]\displaystyle+\frac{d}{dt}\Big{[}\|(\nabla\phi,\nabla\phi_{t},\partial\nabla\phi,\partial^{2}\nabla\phi)\|_{L^{2}}^{2}+\gamma\int_{\Omega}(\frac{1}{2}|\varphi|^{2}-u\cdot\varphi)\,dx+\|\partial_{x_{3}}\operatorname{div}\varphi\|_{L^{2}}^{2}+\|\nabla^{2}\varphi\|_{L^{2}}^{2}\Big{]}
+ddt(2φ,x3divφ,x32divφ,3φ)L22\displaystyle+\frac{d}{dt}\|(\partial\nabla^{2}\varphi,\partial\partial_{x_{3}}\operatorname{div}\varphi,\partial_{x_{3}}^{2}\operatorname{div}\varphi,\nabla^{3}\varphi)\|_{L^{2}}^{2}
+(u,u,φ,ϕ,ut,ut,ut)L22+(u,2u,u,2u,φ,2φ,ϕ,2ϕ)L22\displaystyle\quad+\|(u,\nabla u,\nabla\varphi,\nabla\phi,u_{t},\partial u_{t},\nabla u_{t})\|_{L^{2}}^{2}+\|(\partial u,\partial^{2}u,\partial\nabla u,\partial^{2}\nabla u,\partial\nabla\varphi,\partial^{2}\nabla\varphi,\partial\nabla\phi,\partial^{2}\nabla\phi)\|_{L^{2}}^{2}
+x3(DdivφDt)L22+x3divφL22+2(u,φ)H12+2(u,φ)L22\displaystyle\quad+\|\partial_{x_{3}}(\tfrac{D\operatorname{div}\varphi}{Dt})\|_{L^{2}}^{2}+\|\partial_{x_{3}}\operatorname{div}\varphi\|_{L^{2}}^{2}+\|\nabla^{2}(u,\varphi)\|_{H^{1}}^{2}+\|\partial\nabla^{2}(u,\varphi)\|_{L^{2}}^{2}
+(x3(DdivφDt),x32(DdivφDt),x3divφ,x32divφ)L220.\displaystyle\quad+\|(\partial\partial_{x_{3}}(\tfrac{D\operatorname{div}\varphi}{Dt}),\partial_{x_{3}}^{2}(\tfrac{D\operatorname{div}\varphi}{Dt}),\partial\partial_{x_{3}}\operatorname{div}\varphi,\partial_{x_{3}}^{2}\operatorname{div}\varphi)\|_{L^{2}}^{2}\leqslant 0. (6.6)

We define

𝒲(t):=(u,ut,u)(t)L22+(φ,φt,2φ,3φ)(t)L22+(ϕ,ϕt)(t)L22.\displaystyle\mathcal{W}(t):=\|(u,u_{t},\partial\nabla u)(t)\|_{L^{2}}^{2}+\|(\nabla\varphi,\nabla\varphi_{t},\nabla^{2}\varphi,\nabla^{3}\varphi)(t)\|_{L^{2}}^{2}+\|\nabla(\phi,\phi_{t})(t)\|_{L^{2}}^{2}.

Then (6) implies

𝒲(t)+φL22+C0t(𝒲(τ)+x32uL22+3uL22)𝑑τ𝒲(0)+φ0L22.\displaystyle\mathcal{W}(t)+\|\varphi\|_{L^{2}}^{2}+C\int_{0}^{t}(\mathcal{W}(\tau)+\|\partial_{x_{3}}^{2}u\|_{L^{2}}^{2}+\|\nabla^{3}u\|_{L^{2}}^{2})\,d\tau\lesssim\mathcal{W}(0)+\|\varphi_{0}\|_{L^{2}}^{2}. (6.7)

Thus, we easily check that

𝒲(t)uL22+uL22+φH22+ϕH22+(ut,φt,ϕt)L22.\displaystyle\mathcal{W}(t)\sim\|u\|_{L^{2}}^{2}+\|\partial\nabla u\|_{L^{2}}^{2}+\|\nabla\varphi\|_{H^{2}}^{2}+\|\nabla\phi\|_{H^{2}}^{2}+\|(u_{t},\nabla\varphi_{t},\nabla\phi_{t})\|_{L^{2}}^{2}. (6.8)

By Eq. (2.8)1\eqref{2.8}_{1}, we easily estimate

x32uL22(u,ut,u,divφ,Δφ,ϕ,R1)L22𝒲(t).\displaystyle\|\partial_{x_{3}}^{2}u\|_{L^{2}}^{2}\lesssim\|(\partial\nabla u,u_{t},u,\nabla\operatorname{div}\varphi,\Delta\varphi,\nabla\phi,R_{1})\|_{L^{2}}^{2}\lesssim\mathcal{W}(t). (6.9)

Combining (6.7)–(6.9) with (3.1) and Eq. (2.8)3\eqref{2.8}_{3}, by Lemma 2.1, there exists a functional (t)\mathcal{H}(t) satisfying

(t)(ρ1,u,𝔽𝕀)H22+ϕH32+(ρt,ut,𝔽t,ϕt)L22\displaystyle\mathcal{H}(t)\sim\|(\rho-1,u,\mathbb{F}-\mathbb{I})\|_{H^{2}}^{2}+\|\nabla\phi\|_{H^{3}}^{2}+\|(\rho_{t},u_{t},\mathbb{F}_{t},\nabla\phi_{t})\|_{L^{2}}^{2}

such that

(t)+φL22+C0t((τ)+3uL22)𝑑τ(0)(ρ01,u0,𝔽0𝕀)H22+φ0L22.\displaystyle\mathcal{H}(t)+\|\varphi\|_{L^{2}}^{2}+C\int_{0}^{t}(\mathcal{H}(\tau)+\|\nabla^{3}u\|_{L^{2}}^{2})\,d\tau\lesssim\mathcal{H}(0)\lesssim\|(\rho_{0}-1,u_{0},\mathbb{F}_{0}-\mathbb{I})\|_{H^{2}}^{2}+\|\varphi_{0}\|_{L^{2}}^{2}.

(II) The exterior domain case.

Computing γ×[(5.1)+(5.1)]+(6)\gamma\times[\eqref{3.26}+\eqref{3.27}]+\eqref{zong2}, since δ\delta is small, we obtain

ddt(u,ut,χ0u,χ02u)L22+ddt(divφ,φ,divφt,φt,χ0divφ,χ0Δφ,χ02divφ,χ0Δφ)L22\displaystyle\frac{d}{dt}\|(u,u_{t},\chi_{\scriptscriptstyle 0}\nabla u,\chi_{\scriptscriptstyle 0}\nabla^{2}u)\|_{L^{2}}^{2}+\frac{d}{dt}\|(\operatorname{div}\varphi,\nabla\varphi,\operatorname{div}\varphi_{t},\nabla\varphi_{t},\chi_{\scriptscriptstyle 0}\nabla\operatorname{div}\varphi,\chi_{\scriptscriptstyle 0}\Delta\varphi,\chi_{\scriptscriptstyle 0}\nabla^{2}\operatorname{div}\varphi,\chi_{\scriptscriptstyle 0}\nabla\Delta\varphi)\|_{L^{2}}^{2}
+ddt[(ϕ,ϕt,χ0Δϕ,χ0Δϕ)L22+γΩ(12|φ|2uφ)𝑑x]\displaystyle\quad+\frac{d}{dt}\Big{[}\|(\nabla\phi,\nabla\phi_{t},\chi_{\scriptscriptstyle 0}\Delta\phi,\chi_{\scriptscriptstyle 0}\nabla\Delta\phi)\|_{L^{2}}^{2}+\gamma\int_{\Omega}(\frac{1}{2}|\varphi|^{2}-u\cdot\varphi)\,dx\Big{]}
+(u,u,φ,ϕ,ut,ut)L22+χ0(u,2u,3u,2φ,2ϕ,3φ,3ϕ)L22\displaystyle\qquad+\|(u,\nabla u,\nabla\varphi,\nabla\phi,u_{t},\nabla u_{t})\|_{L^{2}}^{2}+\|\chi_{\scriptscriptstyle 0}(\nabla u,\nabla^{2}u,\nabla^{3}u,\nabla^{2}\varphi,\nabla^{2}\phi,\nabla^{3}\varphi,\nabla^{3}\phi)\|_{L^{2}}^{2}
γ2(u,φ)L22+δ3(u,φ)L22.\displaystyle\qquad\quad\lesssim\gamma\|\nabla^{2}(u,\varphi)\|_{L^{2}}^{2}+\delta\|\nabla^{3}(u,\varphi)\|_{L^{2}}^{2}. (6.10)

Computing γ×[(5.2)+(5.2)]+(6)\gamma\times[\eqref{3.49}+\eqref{3.50}]+\eqref{zong3}, we obtain

ddt(u,ut,χ0u,χ02u)L22+ddt(divφ,φ,divφt,φt,χ0divφ,χ0Δφ,χ02divφ,χ0Δφ)L22\displaystyle\frac{d}{dt}\|(u,u_{t},\chi_{\scriptscriptstyle 0}\nabla u,\chi_{\scriptscriptstyle 0}\nabla^{2}u)\|_{L^{2}}^{2}+\frac{d}{dt}\|(\operatorname{div}\varphi,\nabla\varphi,\operatorname{div}\varphi_{t},\nabla\varphi_{t},\chi_{\scriptscriptstyle 0}\nabla\operatorname{div}\varphi,\chi_{\scriptscriptstyle 0}\Delta\varphi,\chi_{\scriptscriptstyle 0}\nabla^{2}\operatorname{div}\varphi,\chi_{\scriptscriptstyle 0}\nabla\Delta\varphi)\|_{L^{2}}^{2}
+ddt[(ϕ,ϕt,χ0Δϕ,χ0Δϕ)L22+γΩ(12|φ|2uφ)𝑑x]\displaystyle\quad+\frac{d}{dt}\Big{[}\|(\nabla\phi,\nabla\phi_{t},\chi_{\scriptscriptstyle 0}\Delta\phi,\chi_{\scriptscriptstyle 0}\nabla\Delta\phi)\|_{L^{2}}^{2}+\gamma\int_{\Omega}(\frac{1}{2}|\varphi|^{2}-u\cdot\varphi)\,dx\Big{]}
+ddtχj(u,2u,divφ,2divφ,φ,2φ,ϕ,2ϕ)L22\displaystyle\quad+\frac{d}{dt}\|\chi_{\scriptscriptstyle j}(\partial u,\partial^{2}u,\partial\operatorname{div}\varphi,\partial^{2}\operatorname{div}\varphi,\partial\nabla\varphi,\partial^{2}\nabla\varphi,\partial\nabla\phi,\partial^{2}\nabla\phi)\|_{L^{2}}^{2}
+(u,u,φ,ϕ,ut,ut)L22+χ0(u,2u,3u,2φ,2ϕ,3φ,3ϕ)L22\displaystyle\qquad+\|(u,\nabla u,\nabla\varphi,\nabla\phi,u_{t},\nabla u_{t})\|_{L^{2}}^{2}+\|\chi_{\scriptscriptstyle 0}(\nabla u,\nabla^{2}u,\nabla^{3}u,\nabla^{2}\varphi,\nabla^{2}\phi,\nabla^{3}\varphi,\nabla^{3}\phi)\|_{L^{2}}^{2}
+χj(u,u,2u,2u,φ,2φ,ϕ,2ϕ)L22\displaystyle\qquad+\|\chi_{\scriptscriptstyle j}(\partial u,\partial\nabla u,\partial^{2}u,\partial^{2}\nabla u,\partial\nabla\varphi,\partial^{2}\nabla\varphi,\partial\nabla\phi,\partial^{2}\nabla\phi)\|_{L^{2}}^{2}
γ2(u,φ)L22+δ3(u,φ)L22.\displaystyle\qquad\quad\lesssim\gamma\|\nabla^{2}(u,\varphi)\|_{L^{2}}^{2}+\delta\|\nabla^{3}(u,\varphi)\|_{L^{2}}^{2}. (6.11)

Computing γ12×(5.5)+γ14×(5.3)+(6)\gamma^{\frac{1}{2}}\times\eqref{3.80}+\gamma^{\frac{1}{4}}\times\eqref{3.56}+\eqref{zong4}, we obtain

ddt(u,ut,χ0u,χ02u)L22+ddt(divφ,φ,divφt,φt,χ0divφ,χ0Δφ,χ02divφ,χ0Δφ,2φ)L22\displaystyle\frac{d}{dt}\|(u,u_{t},\chi_{\scriptscriptstyle 0}\nabla u,\chi_{\scriptscriptstyle 0}\nabla^{2}u)\|_{L^{2}}^{2}+\frac{d}{dt}\|(\operatorname{div}\varphi,\nabla\varphi,\operatorname{div}\varphi_{t},\nabla\varphi_{t},\chi_{\scriptscriptstyle 0}\nabla\operatorname{div}\varphi,\chi_{\scriptscriptstyle 0}\Delta\varphi,\chi_{\scriptscriptstyle 0}\nabla^{2}\operatorname{div}\varphi,\chi_{\scriptscriptstyle 0}\nabla\Delta\varphi,\nabla^{2}\varphi)\|_{L^{2}}^{2}
+ddt[(ϕ,ϕt,χ0Δϕ,χ0Δϕ)L22+γΩ(12|φ|2uφ)𝑑x]\displaystyle\quad+\frac{d}{dt}\Big{[}\|(\nabla\phi,\nabla\phi_{t},\chi_{\scriptscriptstyle 0}\Delta\phi,\chi_{\scriptscriptstyle 0}\nabla\Delta\phi)\|_{L^{2}}^{2}+\gamma\int_{\Omega}(\frac{1}{2}|\varphi|^{2}-u\cdot\varphi)\,dx\Big{]}
+ddtχj(u,2u,divφ,2divφ,φ,2φ,ϕ,2ϕ)L22+ddtχjy3divφL22\displaystyle\quad+\frac{d}{dt}\|\chi_{\scriptscriptstyle j}(\partial u,\partial^{2}u,\partial\operatorname{div}\varphi,\partial^{2}\operatorname{div}\varphi,\partial\nabla\varphi,\partial^{2}\nabla\varphi,\partial\nabla\phi,\partial^{2}\nabla\phi)\|_{L^{2}}^{2}+\frac{d}{dt}\|\chi_{\scriptscriptstyle j}\partial_{y_{3}}\operatorname{div}\varphi\|_{L^{2}}^{2}
+(u,u,φ,ϕ,ut,ut)L22+χ0(u,2u,3u,2φ,2ϕ,3φ,3ϕ)L22\displaystyle\qquad+\|(u,\nabla u,\nabla\varphi,\nabla\phi,u_{t},\nabla u_{t})\|_{L^{2}}^{2}+\|\chi_{\scriptscriptstyle 0}(\nabla u,\nabla^{2}u,\nabla^{3}u,\nabla^{2}\varphi,\nabla^{2}\phi,\nabla^{3}\varphi,\nabla^{3}\phi)\|_{L^{2}}^{2}
+χj(u,u,2u,2u,φ,2φ,ϕ,2ϕ)L22\displaystyle\qquad+\|\chi_{\scriptscriptstyle j}(\partial u,\partial\nabla u,\partial^{2}u,\partial^{2}\nabla u,\partial\nabla\varphi,\partial^{2}\nabla\varphi,\partial\nabla\phi,\partial^{2}\nabla\phi)\|_{L^{2}}^{2}
+χjy3(DdivφDt)L22+χjy3divφL22+2(u,φ)L22δ3(u,φ)L22.\displaystyle\qquad+\|\chi_{\scriptscriptstyle j}\partial_{y_{3}}(\tfrac{D\operatorname{div}\varphi}{Dt})\|_{L^{2}}^{2}+\|\chi_{\scriptscriptstyle j}\partial_{y_{3}}\operatorname{div}\varphi\|_{L^{2}}^{2}+\|\nabla^{2}(u,\varphi)\|_{L^{2}}^{2}\lesssim\delta\|\nabla^{3}(u,\varphi)\|_{L^{2}}^{2}. (6.12)

In order that the terms χjy3(u,φ)L22\|\chi_{\scriptscriptstyle j}\partial\partial_{y_{3}}\nabla(u,\varphi)\|_{L^{2}}^{2} on the right-hand side of (5.3)κ=0\eqref{3.57}_{\kappa=0} can be absorbed by the left-hand side of (5.5), the terms χj(y3(DdivφDt),divφ)L22\|\chi_{\scriptscriptstyle j}\partial(\partial_{y_{3}}(\tfrac{D\operatorname{div}\varphi}{Dt}),\nabla\operatorname{div}\varphi)\|_{L^{2}}^{2} on the right-hand side of (5.5) can be absorbed by the left-hand side of (5.3)κ=1\eqref{3.57}_{\kappa=1}, the terms χj2(u,φ)L22\|\chi_{\scriptscriptstyle j}\partial^{2}\nabla(u,\varphi)\|_{L^{2}}^{2} on the right-hand side of (5.3)κ=1\eqref{3.57}_{\kappa=1} can be absorbed by the left-hand side of (6), we compute γ3×(5.3)κ=0+γ2×(5.5)+γ×(5.3)κ=1+(6)\gamma^{3}\times\eqref{3.57}_{\kappa=0}+\gamma^{2}\times\eqref{3.81'}+\gamma\times\eqref{3.57}_{\kappa=1}+\eqref{zong5} to have

ddt(u,ut,χ0u,χ02u)L22+ddt(divφ,φ,divφt,φt,χ0divφ,χ0Δφ,χ02divφ,χ0Δφ,2φ)L22\displaystyle\frac{d}{dt}\|(u,u_{t},\chi_{\scriptscriptstyle 0}\nabla u,\chi_{\scriptscriptstyle 0}\nabla^{2}u)\|_{L^{2}}^{2}+\frac{d}{dt}\|(\operatorname{div}\varphi,\nabla\varphi,\operatorname{div}\varphi_{t},\nabla\varphi_{t},\chi_{\scriptscriptstyle 0}\nabla\operatorname{div}\varphi,\chi_{\scriptscriptstyle 0}\Delta\varphi,\chi_{\scriptscriptstyle 0}\nabla^{2}\operatorname{div}\varphi,\chi_{\scriptscriptstyle 0}\nabla\Delta\varphi,\nabla^{2}\varphi)\|_{L^{2}}^{2}
+ddt[(ϕ,ϕt,χ0Δϕ,χ0Δϕ)L22+γΩ(12|φ|2uφ)𝑑x]\displaystyle\quad+\frac{d}{dt}\Big{[}\|(\nabla\phi,\nabla\phi_{t},\chi_{\scriptscriptstyle 0}\Delta\phi,\chi_{\scriptscriptstyle 0}\nabla\Delta\phi)\|_{L^{2}}^{2}+\gamma\int_{\Omega}(\frac{1}{2}|\varphi|^{2}-u\cdot\varphi)\,dx\Big{]}
+ddtχj(u,2u,divφ,2divφ,φ,2φ,ϕ,2ϕ)L22\displaystyle\quad+\frac{d}{dt}\|\chi_{\scriptscriptstyle j}(\partial u,\partial^{2}u,\partial\operatorname{div}\varphi,\partial^{2}\operatorname{div}\varphi,\partial\nabla\varphi,\partial^{2}\nabla\varphi,\partial\nabla\phi,\partial^{2}\nabla\phi)\|_{L^{2}}^{2}
+ddtχj[y3divφ,y3divφ,y32divφ,2φ]L22\displaystyle\quad+\frac{d}{dt}\|\chi_{\scriptscriptstyle j}[\partial_{y_{3}}\operatorname{div}\varphi,\partial\partial_{y_{3}}\operatorname{div}\varphi,\partial_{y_{3}}^{2}\operatorname{div}\varphi,\partial\nabla^{2}\varphi]\|_{L^{2}}^{2}
+(u,u,φ,ϕ,ut,ut)L22+χ0(u,2u,3u,2φ,2ϕ,3φ,3ϕ)L22\displaystyle\qquad+\|(u,\nabla u,\nabla\varphi,\nabla\phi,u_{t},\nabla u_{t})\|_{L^{2}}^{2}+\|\chi_{\scriptscriptstyle 0}(\nabla u,\nabla^{2}u,\nabla^{3}u,\nabla^{2}\varphi,\nabla^{2}\phi,\nabla^{3}\varphi,\nabla^{3}\phi)\|_{L^{2}}^{2}
+χj(u,u,2u,2u,φ,2φ,ϕ,2ϕ)L22\displaystyle\qquad+\|\chi_{\scriptscriptstyle j}(\partial u,\partial\nabla u,\partial^{2}u,\partial^{2}\nabla u,\partial\nabla\varphi,\partial^{2}\nabla\varphi,\partial\nabla\phi,\partial^{2}\nabla\phi)\|_{L^{2}}^{2}
+χjy3(DdivφDt)L22+χjy3divφL22+2(u,φ)L22\displaystyle\qquad+\|\chi_{\scriptscriptstyle j}\partial_{y_{3}}(\tfrac{D\operatorname{div}\varphi}{Dt})\|_{L^{2}}^{2}+\|\chi_{\scriptscriptstyle j}\partial_{y_{3}}\operatorname{div}\varphi\|_{L^{2}}^{2}+\|\nabla^{2}(u,\varphi)\|_{L^{2}}^{2}
+χjy3(DdivφDt)L22+χjy3divφL22+χj2(u,φ)L22\displaystyle\qquad+\|\chi_{\scriptscriptstyle j}\partial\partial_{y_{3}}(\tfrac{D\operatorname{div}\varphi}{Dt})\|_{L^{2}}^{2}+\|\chi_{\scriptscriptstyle j}\partial\partial_{y_{3}}\operatorname{div}\varphi\|_{L^{2}}^{2}+\|\chi_{\scriptscriptstyle j}\partial\nabla^{2}(u,\varphi)\|_{L^{2}}^{2}
+χjy32(DdivφDt)L22+χjy32divφL22δ3(u,φ)L22.\displaystyle\qquad+\|\chi_{\scriptscriptstyle j}\partial_{y_{3}}^{2}(\tfrac{D\operatorname{div}\varphi}{Dt})\|_{L^{2}}^{2}+\|\chi_{\scriptscriptstyle j}\partial_{y_{3}}^{2}\operatorname{div}\varphi\|_{L^{2}}^{2}\lesssim\delta\|\nabla^{3}(u,\varphi)\|_{L^{2}}^{2}. (6.13)

Computing γ×(5.5)+(6)\gamma\times\eqref{3.81}+\eqref{zong6}, since δ\delta is small, we obtain

ddt(u,ut,χ0u,χ02u)L22+ddt(divφ,φ,divφt,φt,χ0divφ,χ0Δφ,χ02divφ,χ0Δφ,2φ,3φ)L22\displaystyle\frac{d}{dt}\|(u,u_{t},\chi_{\scriptscriptstyle 0}\nabla u,\chi_{\scriptscriptstyle 0}\nabla^{2}u)\|_{L^{2}}^{2}+\frac{d}{dt}\|(\operatorname{div}\varphi,\nabla\varphi,\operatorname{div}\varphi_{t},\nabla\varphi_{t},\chi_{\scriptscriptstyle 0}\nabla\operatorname{div}\varphi,\chi_{\scriptscriptstyle 0}\Delta\varphi,\chi_{\scriptscriptstyle 0}\nabla^{2}\operatorname{div}\varphi,\chi_{\scriptscriptstyle 0}\nabla\Delta\varphi,\nabla^{2}\varphi,\nabla^{3}\varphi)\|_{L^{2}}^{2}
+ddt[(ϕ,ϕt,χ0Δϕ,χ0Δϕ)L22+γΩ(12|φ|2uφ)𝑑x]\displaystyle\quad+\frac{d}{dt}\Big{[}\|(\nabla\phi,\nabla\phi_{t},\chi_{\scriptscriptstyle 0}\Delta\phi,\chi_{\scriptscriptstyle 0}\nabla\Delta\phi)\|_{L^{2}}^{2}+\gamma\int_{\Omega}(\frac{1}{2}|\varphi|^{2}-u\cdot\varphi)\,dx\Big{]}
+ddtχj(u,2u,divφ,2divφ,φ,2φ,ϕ,2ϕ)L22\displaystyle\quad+\frac{d}{dt}\|\chi_{\scriptscriptstyle j}(\partial u,\partial^{2}u,\partial\operatorname{div}\varphi,\partial^{2}\operatorname{div}\varphi,\partial\nabla\varphi,\partial^{2}\nabla\varphi,\partial\nabla\phi,\partial^{2}\nabla\phi)\|_{L^{2}}^{2}
+ddtχj[y3divφ,y3divφ,y32divφ,2φ]L22\displaystyle\quad+\frac{d}{dt}\|\chi_{\scriptscriptstyle j}[\partial_{y_{3}}\operatorname{div}\varphi,\partial\partial_{y_{3}}\operatorname{div}\varphi,\partial_{y_{3}}^{2}\operatorname{div}\varphi,\partial\nabla^{2}\varphi]\|_{L^{2}}^{2}
+(u,u,φ,ϕ,ut,ut)L22+χ0(u,2u,3u,2φ,2ϕ,3φ,3ϕ)L22\displaystyle\qquad+\|(u,\nabla u,\nabla\varphi,\nabla\phi,u_{t},\nabla u_{t})\|_{L^{2}}^{2}+\|\chi_{\scriptscriptstyle 0}(\nabla u,\nabla^{2}u,\nabla^{3}u,\nabla^{2}\varphi,\nabla^{2}\phi,\nabla^{3}\varphi,\nabla^{3}\phi)\|_{L^{2}}^{2}
+χj(u,u,2u,2u,φ,2φ,ϕ,2ϕ)L22\displaystyle\qquad+\|\chi_{\scriptscriptstyle j}(\partial u,\partial\nabla u,\partial^{2}u,\partial^{2}\nabla u,\partial\nabla\varphi,\partial^{2}\nabla\varphi,\partial\nabla\phi,\partial^{2}\nabla\phi)\|_{L^{2}}^{2}
+χjy3(DdivφDt)L22+χjy3divφL22+2(u,φ)L22+3(u,φ)L22\displaystyle\qquad+\|\chi_{\scriptscriptstyle j}\partial_{y_{3}}(\tfrac{D\operatorname{div}\varphi}{Dt})\|_{L^{2}}^{2}+\|\chi_{\scriptscriptstyle j}\partial_{y_{3}}\operatorname{div}\varphi\|_{L^{2}}^{2}+\|\nabla^{2}(u,\varphi)\|_{L^{2}}^{2}+\|\nabla^{3}(u,\varphi)\|_{L^{2}}^{2}
+χjy3(DdivφDt)L22+χjy3divφL22+χj2(u,φ)L22\displaystyle\qquad+\|\chi_{\scriptscriptstyle j}\partial\partial_{y_{3}}(\tfrac{D\operatorname{div}\varphi}{Dt})\|_{L^{2}}^{2}+\|\chi_{\scriptscriptstyle j}\partial\partial_{y_{3}}\operatorname{div}\varphi\|_{L^{2}}^{2}+\|\chi_{\scriptscriptstyle j}\partial\nabla^{2}(u,\varphi)\|_{L^{2}}^{2}
+χjy32(DdivφDt)L22+χjy32divφL220.\displaystyle\qquad+\|\chi_{\scriptscriptstyle j}\partial_{y_{3}}^{2}(\tfrac{D\operatorname{div}\varphi}{Dt})\|_{L^{2}}^{2}+\|\chi_{\scriptscriptstyle j}\partial_{y_{3}}^{2}\operatorname{div}\varphi\|_{L^{2}}^{2}\leqslant 0. (6.14)

Computing γ×(5.27)+(6)\gamma\times\eqref{3.53}+\eqref{zong7}, we get

ddt\displaystyle\frac{d}{dt} (u,ut)L22+ddtχ0(u,2u)L22+ddtχj(u,2u,u,divu)L22\displaystyle\|(u,u_{t})\|_{L^{2}}^{2}+\frac{d}{dt}\|\chi_{\scriptscriptstyle 0}(\nabla u,\nabla^{2}u)\|_{L^{2}}^{2}+\frac{d}{dt}\|\chi_{\scriptscriptstyle j}(\partial u,\partial^{2}u,\partial\nabla u,\partial\operatorname{div}u)\|_{L^{2}}^{2}
+ddt(divφ,φ,2φ,3φ,divφt,φt)L22+ddtχ0(divφ,Δφ,2divφ,Δφ)L22\displaystyle+\frac{d}{dt}\|(\operatorname{div}\varphi,\nabla\varphi,\nabla^{2}\varphi,\nabla^{3}\varphi,\operatorname{div}\varphi_{t},\nabla\varphi_{t})\|_{L^{2}}^{2}+\frac{d}{dt}\|\chi_{\scriptscriptstyle 0}(\nabla\operatorname{div}\varphi,\Delta\varphi,\nabla^{2}\operatorname{div}\varphi,\nabla\Delta\varphi)\|_{L^{2}}^{2}
+ddtχj[y3divφ,divφ,φ,2divφ,2φ,2φ,y3divφ,y32divφ]L22\displaystyle+\frac{d}{dt}\|\chi_{\scriptscriptstyle j}[\partial_{y_{3}}\operatorname{div}\varphi,\partial\operatorname{div}\varphi,\partial\nabla\varphi,\partial^{2}\operatorname{div}\varphi,\partial^{2}\nabla\varphi,\partial\nabla^{2}\varphi,\partial\partial_{y_{3}}\operatorname{div}\varphi,\partial_{y_{3}}^{2}\operatorname{div}\varphi]\|_{L^{2}}^{2}
+ddt(ϕ,ϕt)L22+ddtχ0(Δϕ,Δϕ)L22+ddtχj(ϕ,2ϕ)L22+ddt[γΩ(12|φ|2uφ)𝑑x]\displaystyle+\frac{d}{dt}\|(\nabla\phi,\nabla\phi_{t})\|_{L^{2}}^{2}+\frac{d}{dt}\|\chi_{\scriptscriptstyle 0}(\Delta\phi,\nabla\Delta\phi)\|_{L^{2}}^{2}+\frac{d}{dt}\|\chi_{\scriptscriptstyle j}(\partial\nabla\phi,\partial^{2}\nabla\phi)\|_{L^{2}}^{2}+\frac{d}{dt}\Big{[}\gamma\int_{\Omega}(\frac{1}{2}|\varphi|^{2}-u\cdot\varphi)\,dx\Big{]}
+(u,u,2u,3u,ut,ut)L22+χ0(2u,3u)L22+χj(u,u,2u,2u,2u,ut)L22\displaystyle\quad+\|(u,\nabla u,\nabla^{2}u,\nabla^{3}u,u_{t},\nabla u_{t})\|_{L^{2}}^{2}+\|\chi_{\scriptscriptstyle 0}(\nabla^{2}u,\nabla^{3}u)\|_{L^{2}}^{2}+\|\chi_{\scriptscriptstyle j}(\partial u,\partial\nabla u,\partial^{2}u,\partial^{2}\nabla u,\partial\nabla^{2}u,\partial u_{t})\|_{L^{2}}^{2}
+(φ,2φ,3φ)L22+χ0(2φ,3φ)L22\displaystyle\quad+\|(\nabla\varphi,\nabla^{2}\varphi,\nabla^{3}\varphi)\|_{L^{2}}^{2}+\|\chi_{\scriptscriptstyle 0}(\nabla^{2}\varphi,\nabla^{3}\varphi)\|_{L^{2}}^{2}
+χj(φ,2φ,2φ,y3divφ,y3divφ,y32divφ)L22\displaystyle\quad+\|\chi_{\scriptscriptstyle j}(\partial\nabla\varphi,\partial^{2}\nabla\varphi,\partial\nabla^{2}\varphi,\partial_{y_{3}}\operatorname{div}\varphi,\partial\partial_{y_{3}}\operatorname{div}\varphi,\partial_{y_{3}}^{2}\operatorname{div}\varphi)\|_{L^{2}}^{2}
+ϕL22+χ0(2ϕ,3ϕ)L22+χj(ϕ,2ϕ)L22\displaystyle\quad+\|\nabla\phi\|_{L^{2}}^{2}+\|\chi_{\scriptscriptstyle 0}(\nabla^{2}\phi,\nabla^{3}\phi)\|_{L^{2}}^{2}+\|\chi_{\scriptscriptstyle j}(\partial\nabla\phi,\partial^{2}\nabla\phi)\|_{L^{2}}^{2}
+χj[y3(DdivφDt),y3(DdivφDt),y32(DdivφDt)]L220.\displaystyle\quad+\|\chi_{\scriptscriptstyle j}[\partial_{y_{3}}(\tfrac{D\operatorname{div}\varphi}{Dt}),\partial\partial_{y_{3}}(\tfrac{D\operatorname{div}\varphi}{Dt}),\partial_{y_{3}}^{2}(\tfrac{D\operatorname{div}\varphi}{Dt})]\|_{L^{2}}^{2}\leqslant 0. (6.15)

We define

𝒴(t):=(u,ut,χju,χ02u)(t)L22+(φ,φt,2φ,3φ)(t)L22+(ϕ,ϕt)(t)L22.\displaystyle\mathcal{Y}(t):=\|(u,u_{t},\chi_{\scriptscriptstyle j}\partial\nabla u,\chi_{\scriptscriptstyle 0}\nabla^{2}u)(t)\|_{L^{2}}^{2}+\|(\nabla\varphi,\nabla\varphi_{t},\nabla^{2}\varphi,\nabla^{3}\varphi)(t)\|_{L^{2}}^{2}+\|\nabla(\phi,\phi_{t})(t)\|_{L^{2}}^{2}.

Then (6) implies

𝒴(t)+φL22+C0t(𝒴(τ)+χjy32uL22+3uL22)𝑑τ𝒴(0)+φ0L22.\displaystyle\mathcal{Y}(t)+\|\varphi\|_{L^{2}}^{2}+C\int_{0}^{t}(\mathcal{Y}(\tau)+\|\chi_{\scriptscriptstyle j}\partial_{y_{3}}^{2}u\|_{L^{2}}^{2}+\|\nabla^{3}u\|_{L^{2}}^{2})\,d\tau\lesssim\mathcal{Y}(0)+\|\varphi_{0}\|_{L^{2}}^{2}. (6.16)

Next, we easily check that

𝒴(t)uL22+χ02uL22+χjuL22+φH22+ϕH22+(ut,φt,ϕt)L22.\displaystyle\mathcal{Y}(t)\sim\|u\|_{L^{2}}^{2}+\|\chi_{\scriptscriptstyle 0}\nabla^{2}u\|_{L^{2}}^{2}+\|\chi_{\scriptscriptstyle j}\partial\nabla u\|_{L^{2}}^{2}+\|\nabla\varphi\|_{H^{2}}^{2}+\|\nabla\phi\|_{H^{2}}^{2}+\|(u_{t},\nabla\varphi_{t},\nabla\phi_{t})\|_{L^{2}}^{2}. (6.17)

By Eq. (2.8)1\eqref{2.8}_{1}, we easily estimate

χjy32uL22(χju,χ02u,ut,u,divφ,Δφ,ϕ,R1)L22𝒴(t).\displaystyle\|\chi_{\scriptscriptstyle j}\partial_{y_{3}}^{2}u\|_{L^{2}}^{2}\lesssim\|(\chi_{\scriptscriptstyle j}\partial\nabla u,\chi_{\scriptscriptstyle 0}\nabla^{2}u,u_{t},u,\nabla\operatorname{div}\varphi,\Delta\varphi,\nabla\phi,R_{1})\|_{L^{2}}^{2}\lesssim\mathcal{Y}(t). (6.18)

Combining (6.16)–(6.18) with (3.1) and Eq. (2.8)3\eqref{2.8}_{3}, by Lemma 2.1, there exists a functional (t)\mathcal{H}(t) satisfying

(t)(ρ1,u,𝔽𝕀)H22+ϕH22+(ρt,ut,𝔽t,ϕt)L22\displaystyle\mathcal{H}(t)\sim\|(\rho-1,u,\mathbb{F}-\mathbb{I})\|_{H^{2}}^{2}+\|\nabla\phi\|_{H^{2}}^{2}+\|(\rho_{t},u_{t},\mathbb{F}_{t},\nabla\phi_{t})\|_{L^{2}}^{2}

such that

(t)+φL22+C0t((τ)+3uL22)𝑑τ(0)(ρ01,u0,𝔽0𝕀)H22+φ0L22.\displaystyle\mathcal{H}(t)+\|\varphi\|_{L^{2}}^{2}+C\int_{0}^{t}(\mathcal{H}(\tau)+\|\nabla^{3}u\|_{L^{2}}^{2})\,d\tau\lesssim\mathcal{H}(0)\lesssim\|(\rho_{0}-1,u_{0},\mathbb{F}_{0}-\mathbb{I})\|_{H^{2}}^{2}+\|\varphi_{0}\|_{L^{2}}^{2}.

Step 3: From the above two steps, we have proved the following a priori estimates:

Proposition 6.1 (A priori estimates).

Let Ω3\Omega\subset\mathbb{R}^{3} be a half-space or an exterior domain with a compact boundary Ω𝒞3\partial\Omega\in\mathcal{C}^{3}. Let T>0T>0. Assume that for sufficiently small δ>0\delta>0,

sup0tT[(ρ1,u,𝔽𝕀)(t)H2+Δ1div𝔽1(t)L2]<δ.\displaystyle\sup_{0\leqslant t\leqslant T}\big{[}\|(\rho-1,u,\mathbb{F}-\mathbb{I})(t)\|_{H^{2}}+\|\Delta^{-1}\operatorname{div}\mathbb{F}^{-1}(t)\|_{L^{2}}\big{]}<\delta.

Then we have for any t[0,T]t\in[0,T],

(ρ1,u,𝔽𝕀)(t)H2+ϕ(t)H3+(ρt,ut,𝔽t,ϕt)(t)L2+φ(t)L2\displaystyle\|(\rho-1,u,\mathbb{F}-\mathbb{I})(t)\|_{H^{2}}+\|\nabla\phi(t)\|_{H^{3}}+\|(\rho_{t},u_{t},\mathbb{F}_{t},\nabla\phi_{t})(t)\|_{L^{2}}+\|\varphi(t)\|_{L^{2}}
C1((ρ01,u0,𝔽0𝕀)H2+φ0L2)\displaystyle\quad\leqslant C_{1}(\|(\rho_{0}-1,u_{0},\mathbb{F}_{0}-\mathbb{I})\|_{H^{2}}+\|\varphi_{0}\|_{L^{2}})

if ρ+=1\rho_{+}=1 and

(ρ1,u,𝔽𝕀)(t)H2+ϕ(t)H4+(ρt,ut,𝔽t,ϕt,ϕt)(t)L2+φ(t)L2\displaystyle\|(\rho-1,u,\mathbb{F}-\mathbb{I})(t)\|_{H^{2}}+\|\phi(t)\|_{H^{4}}+\|(\rho_{t},u_{t},\mathbb{F}_{t},\phi_{t},\nabla\phi_{t})(t)\|_{L^{2}}+\|\varphi(t)\|_{L^{2}}
C1((ρ01,u0,𝔽0𝕀)H2+φ0L2)\displaystyle\quad\leqslant C_{1}(\|(\rho_{0}-1,u_{0},\mathbb{F}_{0}-\mathbb{I})\|_{H^{2}}+\|\varphi_{0}\|_{L^{2}})

if ρ+=eϕ\rho_{+}=e^{-\phi}. Here C1>1C_{1}>1 is some fixed constant.

Step 4: For completeness, we list the local existence and uniqueness of the strong solution of the problem (1.1)–(1.3) and omit its proof, cf. [31].

Proposition 6.2.

Let Ω3\Omega\subset\mathbb{R}^{3} be a half-space or an exterior domain with a compact boundary Ω𝒞3\partial\Omega\in\mathcal{C}^{3}. Assume that (ρ01,u0,𝔽0𝕀)H2(Ω)(\rho_{0}-1,u_{0},\mathbb{F}_{0}-\mathbb{I})\in H^{2}(\Omega) and φ0:=Δ1div𝔽01L2(Ω)\varphi_{0}:=\Delta^{-1}\operatorname{div}\mathbb{F}_{0}^{-1}\in L^{2}(\Omega) satisfying infxΩ¯{ρ0(x)}>0\inf_{x\in\overline{\Omega}}\{\rho_{0}(x)\}>0 and the compatible conditions given in (1.8).

(i) Then the problem (1.1)–(1.3) with ρ+=1\rho_{+}=1 admits a unique local solution (ρ,u,𝔽,ϕ)(\rho,u,\mathbb{F},\nabla\phi) satisfying for some T>0T>0,

{ρ𝒞([0,T];H2(Ω)),ρt𝒞([0,T];H1(Ω)),u𝒞([0,T];H2(Ω)H01(Ω))L2([0,T];H3(Ω)),ut𝒞([0,T];L2(Ω))L2([0,T];H01(Ω)),𝔽𝒞([0,T];H2(Ω)),𝔽t𝒞([0,T];H1(Ω)),inf(x,t)Ω¯×[0,T]ρ(x,t)12+12infxΩ¯{ρ0(x)}>0\displaystyle\begin{cases}\rho\in\mathcal{C}([0,T];H^{2}(\Omega)),\quad\rho_{t}\in\mathcal{C}([0,T];H^{1}(\Omega)),\\ u\in\mathcal{C}([0,T];H^{2}(\Omega)\cap H^{1}_{0}(\Omega))\cap L^{2}([0,T];H^{3}(\Omega)),\\ u_{t}\in\mathcal{C}([0,T];L^{2}(\Omega))\cap L^{2}([0,T];H^{1}_{0}(\Omega)),\\ \mathbb{F}\in\mathcal{C}([0,T];H^{2}(\Omega)),\quad\mathbb{F}_{t}\in\mathcal{C}([0,T];H^{1}(\Omega)),\\ \displaystyle\inf_{(x,t)\in\overline{\Omega}\times[0,T]}\rho(x,t)\geqslant\frac{1}{2}+\frac{1}{2}\inf_{x\in\overline{\Omega}}\{\rho_{0}(x)\}>0\end{cases} (6.19)

and

ϕ𝒞([0,T];H3(Ω)),ϕt𝒞([0,T];H2(Ω)).\displaystyle\nabla\phi\in\mathcal{C}([0,T];H^{3}(\Omega)),\quad\nabla\phi_{t}\in\mathcal{C}([0,T];H^{2}(\Omega)).

Moreover, it holds that

sup0tT((ρ1,u,𝔽𝕀)(t)H2+ϕ(t)H3+φ(t)L2)C2((ρ01,u0,𝔽0𝕀)H2+φ0L2).\displaystyle\sup_{0\leqslant t\leqslant T}\big{(}\|(\rho-1,u,\mathbb{F}-\mathbb{I})(t)\|_{H^{2}}+\|\nabla\phi(t)\|_{H^{3}}+\|\varphi(t)\|_{L^{2}}\big{)}\leqslant C_{2}\big{(}\|(\rho_{0}-1,u_{0},\mathbb{F}_{0}-\mathbb{I})\|_{H^{2}}+\|\varphi_{0}\|_{L^{2}}\big{)}.

(ii) Then the problem (1.1)–(1.3) with ρ+=eϕ\rho_{+}=e^{-\phi} admits a unique global solution (ρ,u,𝔽,ϕ)(\rho,u,\mathbb{F},\phi) satisfying (6.19) and

ϕ𝒞([0,T];H4(Ω)),ϕt𝒞([0,T];H3(Ω)).\displaystyle\phi\in\mathcal{C}([0,T];H^{4}(\Omega)),\quad\phi_{t}\in\mathcal{C}([0,T];H^{3}(\Omega)).

Moreover, it holds that

sup0tT((ρ1,u,𝔽𝕀)(t)H2+ϕ(t)H4+φ(t)L2)C2((ρ01,u0,𝔽0𝕀)H2+φ0L2).\displaystyle\sup_{0\leqslant t\leqslant T}\big{(}\|(\rho-1,u,\mathbb{F}-\mathbb{I})(t)\|_{H^{2}}+\|\phi(t)\|_{H^{4}}+\|\varphi(t)\|_{L^{2}}\big{)}\leqslant C_{2}\big{(}\|(\rho_{0}-1,u_{0},\mathbb{F}_{0}-\mathbb{I})\|_{H^{2}}+\|\varphi_{0}\|_{L^{2}}\big{)}.

Here the above C2>1C_{2}>1 is some fixed constant.

Then the local solution given in Proposition 6.2 can be extended to the global one by combining the a priori estimates given in Proposition 6.1 with a standard continuous argument, cf. [44]. Therefore, we complete the proof of Theorem 1.1.

Appendix A Derivation of Models

We consider the viscoelastic two-fluids: one is made up of negatively charged particles (called negative fluids for convenience) and the other is made up of positively charged particles (called positive fluids). We want to propose a PDE model to describe the dynamics of this kind of charged two-fluids under the self-consistent electrostatic field on a unbounded domain corresponding to the unbounded problems considered in this paper. We will adopt the so-called energetic variational approach developed in [11, 15], which is proved to be effectively to derive mathematical models for complex fluid dynamics.

The energetic variational approach is mainly based on energy dissipation laws, Maximum Dissipation Principle, Least Action Principle, and force balance laws. In order to apply the energetic variational approach, we need to calculate the variation of the action functional on the flow map and the variation of the dissipation functional on the velocity. For this reason, we first introduce the flow map x±(X,t)x_{\pm}(X,t) as follows.

For a given velocity field u±(x±(X,t),t)u_{\pm}(x_{\pm}(X,t),t), the flow map x±(X,t)x_{\pm}(X,t) is determined by the following initial value problem:

{ddtx±(X±,t)=u±(x±(X,t),t),t>0,x±(X±,0)=X,\displaystyle\begin{cases}\displaystyle\frac{d}{dt}x_{\pm}(X_{\pm},t)=u_{\pm}(x_{\pm}(X,t),t),\quad t>0,\\ x_{\pm}(X_{\pm},0)=X,\end{cases} (A.1)

where XX, x±Ω3x_{\pm}\in\Omega\subseteq\mathbb{R}^{3} denote the Lagrangian coordinate and Eulerian coordinate of the particle, respectively. Here the subscripts - and ++ represent the negative and positive particles, respectively. Note that we first have at hand two mass conservation equations

{tρ+div(ρu)=0,tρ++div(ρ+u+)=0\displaystyle\begin{cases}\partial_{t}\rho_{-}+\operatorname{div}(\rho_{-}u_{-})=0,\\ \partial_{t}\rho_{+}+\operatorname{div}(\rho_{+}u_{+})=0\end{cases} (A.2)

and the Poisson equation by Gauss’ law

Δϕ=ρρ+.\displaystyle\Delta\phi=\rho_{-}-\rho_{+}. (A.3)

For viscoelastic electrically conducting fluids occupying unbounded domains Ω\Omega, the total energy should contain the kinetic energy and the Helmholtz free energy. So, we start with the following energy dissipation law:

ddtEtotal=,\displaystyle\frac{d}{dt}E^{\mbox{total}}=-\triangle, (A.4)

where

Etotal:=Ω[12ρ+|u+|2+12ρ|u|2+ω+(ρ+)+ω(ρ)+12c+2ρ+|𝔽+|2+12c2ρ|𝔽|2+12|ϕ|2]𝑑x\displaystyle E^{\mbox{total}}:=\int_{\Omega}\Big{[}\frac{1}{2}\rho_{+}|u_{+}|^{2}+\frac{1}{2}\rho_{-}|u_{-}|^{2}+\omega_{+}(\rho_{+})+\omega_{-}(\rho_{-})+\frac{1}{2}c_{+}^{2}\rho_{+}|\mathbb{F}_{+}|^{2}+\frac{1}{2}c_{-}^{2}\rho_{-}|\mathbb{F}_{-}|^{2}+\frac{1}{2}|\nabla\phi|^{2}\Big{]}\,dx

and

:=Ω[μ+|u+|2+(μ++λ+)|divu+|2+α+ρ+|u+|2+μ|u|2+(μ+λ)|divu|2+αρ|u|2]𝑑x.\displaystyle\triangle:=\int_{\Omega}\Big{[}\mu_{+}|\nabla u_{+}|^{2}+(\mu_{+}+\lambda_{+})|\operatorname{div}u_{+}|^{2}+\alpha_{+}\rho_{+}|u_{+}|^{2}+\mu_{-}|\nabla u_{-}|^{2}+(\mu_{-}+\lambda_{-})|\operatorname{div}u_{-}|^{2}+\alpha_{-}\rho_{-}|u_{-}|^{2}\Big{]}\,dx.

The symbols EtotalE^{\mbox{total}} and \triangle denote the total energy and the entropy production, respectively. Note that the entropy production is generated by fluid viscosity and skin friction with the fixed boundary Ω\partial\Omega, where the terms α±ρ±|u±|2=α±ρ±|u±0|2\alpha_{\pm}\rho_{\pm}|u_{\pm}|^{2}=\alpha_{\pm}\rho_{\pm}|u_{\pm}-0|^{2} are well understood as the friction induced by the relative motion with the motionless physical boundary Ω\partial\Omega.

By the Maximum Dissipation Principle [11], taking the variation (for any smooth u~\tilde{u}_{-} with compact support) with respect to uu_{-} yields

0\displaystyle 0 =ddε|ε=012(u+εu~)\displaystyle=\left.\frac{d}{d\varepsilon}\right|_{\varepsilon=0}\frac{1}{2}\triangle(u_{-}+\varepsilon\tilde{u}_{-})
=ddε|ε=012Ω[μ|u+εu~|2+(μ+λ)|divu+εdivu~|2+αρ|u+εu~|2]𝑑x\displaystyle=\left.\frac{d}{d\varepsilon}\right|_{\varepsilon=0}\frac{1}{2}\int_{\Omega}\Big{[}\mu_{-}|\nabla u_{-}+\varepsilon\nabla\tilde{u}_{-}|^{2}+(\mu_{-}+\lambda_{-})|\operatorname{div}u_{-}+\varepsilon\operatorname{div}\tilde{u}_{-}|^{2}+\alpha_{-}\rho_{-}|u_{-}+\varepsilon\tilde{u}_{-}|^{2}\Big{]}\,dx
=Ω[μu:u~+(μ+λ)divudivu~+αρuu~]dx\displaystyle=\int_{\Omega}[\mu_{-}\nabla u_{-}:\nabla\tilde{u}_{-}+(\mu_{-}+\lambda_{-})\operatorname{div}u_{-}\operatorname{div}\tilde{u}+\alpha_{-}\rho_{-}u_{-}\cdot\tilde{u}_{-}]\,dx
=Ω[μΔu(μ+λ)divu+αρu]u~𝑑x.\displaystyle=\int_{\Omega}[-\mu_{-}\Delta u_{-}-(\mu_{-}+\lambda_{-})\nabla\operatorname{div}u_{-}+\alpha_{-}\rho_{-}u_{-}]\cdot\tilde{u}_{-}\,dx.

Since u~\tilde{u}_{-} is arbitrary, we obtain

μΔu(μ+λ)divu+αρu\displaystyle-\mu\Delta u_{-}-(\mu_{-}+\lambda_{-})\nabla\operatorname{div}u_{-}+\alpha_{-}\rho_{-}u_{-} =0,\displaystyle=0,
andFdissipative\displaystyle\mbox{and}\ F^{-}_{dissipative} =δ(12)δu=μΔu(μ+λ)divu+αρu,\displaystyle=\frac{\delta(\tfrac{1}{2}\triangle)}{\delta u_{-}}=-\mu_{-}\Delta u_{-}-(\mu_{-}+\lambda_{-})\nabla\operatorname{div}u_{-}+\alpha_{-}\rho_{-}u_{-}, (A.5)

where FdissipativeF^{-}_{dissipative} denotes the dissipative force for negative fluids.

Now, we need to find the conservative force from the total energy EtotalE^{\mbox{total}}. Solving the Poisson equation (A.3) in Ω\Omega, we obtain

ϕ(x)=ΩG(xy)(ρ+ρ)(y)𝑑y,\displaystyle\phi(x)=\int_{\Omega}G(x-y)(\rho_{+}-\rho_{-})(y)\,dy, (A.6)

where G()G(\cdot) is the Green’s kernel. So, by integrating by parts and (A.6), we have

Ω12|ϕ|2𝑑x=12Ω(ρρ+)(x)ΩG(xy)(ρρ+)(y)𝑑y𝑑x.\displaystyle\int_{\Omega}\frac{1}{2}|\nabla\phi|^{2}\,dx=\frac{1}{2}\int_{\Omega}(\rho_{-}-\rho_{+})(x)\int_{\Omega}G(x-y)(\rho_{-}-\rho_{+})(y)\,dydx. (A.7)

Note that the relation between Eulerian coordinates xx_{-} and Lagrangian coordinates XX, see [11], it holds that

ρ(x(X,t),t)=ρ0(X)det(𝔽~)and𝔽~(X,t)=𝔽(x(X,t),t)=x(X,t)X.\displaystyle\rho_{-}(x_{-}(X,t),t)=\frac{\rho_{-0}(X)}{\det(\widetilde{\mathbb{F}}_{-})}\quad\mbox{and}\quad\widetilde{\mathbb{F}}_{-}(X,t)=\mathbb{F}_{-}(x_{-}(X,t),t)=\frac{\partial x_{-}(X,t)}{\partial X}. (A.8)

Given the total energy EtotalE^{\mbox{total}} in (A.4), by (A.7) and (A.8), we can define the following action functionals:

𝒜(x(X,t)):=0tΩ[ρ2|u|2c2ρ2|𝔽|2]𝑑x𝑑t=0tΩ[12ρ0(X)|xt|2c22ρ0(X)|𝔽~|2]𝑑X𝑑t;\displaystyle\mathcal{A}_{-}(x_{-}(X,t)):=\int_{0}^{t^{\ast}}\int_{\Omega}\Big{[}\frac{\rho_{-}}{2}|u_{-}|^{2}-\frac{c_{-}^{2}\rho_{-}}{2}|\mathbb{F}_{-}|^{2}\Big{]}\,dx_{-}dt=\int_{0}^{t^{\ast}}\int_{\Omega}\Big{[}\frac{1}{2}\rho_{-0}(X)|x_{-t}|^{2}-\frac{c_{-}^{2}}{2}\rho_{-0}(X)|\widetilde{\mathbb{F}}_{-}|^{2}\Big{]}\,dXdt;
(ρ):=0tΩω(ρ)𝑑x𝑑t120tΩ×ΩG(xy)(ρρ+)(x)(ρρ+)(y)𝑑y𝑑x𝑑t.\displaystyle\mathcal{B}_{-}(\rho_{-}):=-\int_{0}^{t^{\ast}}\int_{\Omega}\omega_{-}(\rho_{-})\,dxdt-\frac{1}{2}\int_{0}^{t^{\ast}}\iint_{\Omega\times\Omega}G(x-y)(\rho_{-}-\rho_{+})(x)(\rho_{-}-\rho_{+})(y)\,dydxdt.

Then, the conservative force is

Fconservative=δ𝒜δx+ρδδρ,\displaystyle F^{-}_{conservative}=\frac{\delta\mathcal{A}_{-}}{\delta x_{-}}+\rho_{-}\nabla\frac{\delta\mathcal{B}_{-}}{\delta\rho_{-}}, (A.9)

where δδρ\frac{\delta\mathcal{B}_{-}}{\delta\rho_{-}} can be looked as a coupling potential induced by the pressure and the Coulomb force due to the fact δδx=ρδδρ\frac{\delta\mathcal{B}_{-}}{\delta x_{-}}=\rho_{-}\nabla\frac{\delta\mathcal{B}_{-}}{\delta\rho_{-}}.

By the Least Action Principle [11], taking the variation (for any smooth y(X,t)=y~(x(X,t),t)y_{-}(X,t)=\tilde{y}_{-}(x_{-}(X,t),t) with compact support) with respect to the flow map xx_{-} yields

0\displaystyle 0 =ddε|ε=0𝒜(x(X,t)+εy(X,t))\displaystyle=\left.\frac{d}{d\varepsilon}\right|_{\varepsilon=0}\mathcal{A}_{-}(x_{-}(X,t)+\varepsilon y_{-}(X,t))
=ddε|ε=00tΩ[12ρ0(X)|xt(X,t)+εyt(X,t)|2c22ρ0(X)|x(X,t)X+εy(X,t)X|2]𝑑X𝑑t\displaystyle=\left.\frac{d}{d\varepsilon}\right|_{\varepsilon=0}\int_{0}^{t^{\ast}}\int_{\Omega}\Big{[}\frac{1}{2}\rho_{-0}(X)|x_{-t}(X,t)+\varepsilon y_{-t}(X,t)|^{2}-\frac{c_{-}^{2}}{2}\rho_{-0}(X)\left|\frac{\partial x_{-}(X,t)}{\partial X}+\varepsilon\frac{\partial y_{-}(X,t)}{\partial X}\right|^{2}\Big{]}\,dXdt
=0tΩ[(ρu)tdiv(ρuu)+c2div(ρ𝔽𝔽T)]y~𝑑x𝑑t.\displaystyle=\int_{0}^{t^{\ast}}\int_{\Omega}\big{[}-(\rho_{-}u_{-})_{t}-\operatorname{div}(\rho_{-}u_{-}\otimes u_{-})+c_{-}^{2}\operatorname{div}(\rho_{-}\mathbb{F}_{-}\mathbb{F}_{-}^{T})\big{]}\tilde{y}_{-}\,dxdt.

Since y~\tilde{y}_{-} is arbitrary, we obtain

\displaystyle- (ρu)tdiv(ρuu)+c2div(ρ𝔽𝔽T)=0\displaystyle(\rho_{-}u_{-})_{t}-\operatorname{div}(\rho_{-}u_{-}\otimes u_{-})+c_{-}^{2}\operatorname{div}(\rho_{-}\mathbb{F}_{-}\mathbb{F}_{-}^{T})=0
δ𝒜δx=(ρu)tdiv(ρuu)+c2div(ρ𝔽𝔽T).\displaystyle\Rightarrow\frac{\delta\mathcal{A}}{\delta x_{-}}=-(\rho_{-}u_{-})_{t}-\operatorname{div}(\rho_{-}u_{-}\otimes u_{-})+c_{-}^{2}\operatorname{div}(\rho_{-}\mathbb{F}_{-}\mathbb{F}_{-}^{T}). (A.10)

By the Least Action Principle [11] again, taking the variation (for any smooth v~\tilde{v}_{-} with compact support) with respect to ρ\rho_{-} yields

0\displaystyle 0 =ddε|ε=0(ρ+εv~)\displaystyle=\left.\frac{d}{d\varepsilon}\right|_{\varepsilon=0}\mathcal{B}_{-}(\rho_{-}+\varepsilon\tilde{v}_{-})
=ddε|ε=0[0tΩω(ρ+εv~)dxdt]\displaystyle=\left.\frac{d}{d\varepsilon}\right|_{\varepsilon=0}\Big{[}\int_{0}^{t^{\ast}}\int_{\Omega}-\omega(\rho_{-}+\varepsilon\tilde{v}_{-})\,dxdt\Big{]}
ddε|ε=0[120tΩ×ΩG(xy)(ρ+εv~ρ+)(x)(ρ+εv~ρ+)(y)𝑑y𝑑x𝑑t]\displaystyle\quad-\left.\frac{d}{d\varepsilon}\right|_{\varepsilon=0}\Big{[}\frac{1}{2}\int_{0}^{t^{\ast}}\iint_{\Omega\times\Omega}G(x-y)(\rho_{-}+\varepsilon\tilde{v}_{-}-\rho_{+})(x)(\rho_{-}+\varepsilon\tilde{v}_{-}-\rho_{+})(y)\,dydxdt\Big{]}
=0tΩω(ρ)v~dxdt120tΩ×ΩG(xy)(ρρ+)(y)𝑑yv~(x)𝑑x𝑑t\displaystyle=\int_{0}^{t^{\ast}}\int_{\Omega}-\omega_{-}^{\prime}(\rho_{-})\tilde{v}_{-}\,dxdt-\frac{1}{2}\int_{0}^{t^{\ast}}\iint_{\Omega\times\Omega}G(x-y)(\rho_{-}-\rho_{+})(y)\,dy\tilde{v}_{-}(x)\,dxdt
120tΩ×ΩG(xy)(ρρ+)(x)v~(y)𝑑y𝑑x𝑑t\displaystyle\quad-\frac{1}{2}\int_{0}^{t^{\ast}}\iint_{\Omega\times\Omega}G(x-y)(\rho_{-}-\rho_{+})(x)\tilde{v}_{-}(y)\,dydxdt
=0tΩ(ω(ρ)+ϕ(x))v~(x)𝑑x𝑑t.\displaystyle=\int_{0}^{t^{\ast}}\int_{\Omega}\left(-\omega_{-}^{\prime}(\rho_{-})+\phi(x)\right)\tilde{v}_{-}(x)\,dxdt.

Since v~\tilde{v}_{-} is arbitrary, we obtain

ω(ρ)+ϕ(x)=0δδρ=ω(ρ)+ϕ(x)\displaystyle-\omega_{-}^{\prime}(\rho_{-})+\phi(x)=0\Rightarrow\frac{\delta\mathcal{B}_{-}}{\delta\rho_{-}}=-\omega_{-}^{\prime}(\rho_{-})+\phi(x)
ρδδρ=p+ρϕ,p:=ρωω.\displaystyle\Rightarrow\rho_{-}\nabla\frac{\delta\mathcal{B}_{-}}{\delta\rho_{-}}=-\nabla p_{-}+\rho_{-}\nabla\phi,\ p_{-}:=\rho_{-}\omega_{-}^{\prime}-\omega_{-}. (A.11)

So, by (A.9)–(A), we obtain

Fconservative=(ρu)tdiv(ρuu)+c2div(ρ𝔽𝔽T)p+ρϕ.\displaystyle F_{conservative}^{-}=-(\rho_{-}u_{-})_{t}-\operatorname{div}(\rho_{-}u_{-}\otimes u_{-})+c_{-}^{2}\operatorname{div}(\rho_{-}\mathbb{F}_{-}\mathbb{F}_{-}^{T})-\nabla p_{-}+\rho_{-}\nabla\phi. (A.12)

By (A) and (A.12), the total force balance gives

Fconservative=Fdissipative,\displaystyle F_{conservative}^{-}=F_{dissipative}^{-},

that is,

(ρu)t+div(ρuu)c2div(ρ𝔽𝔽T)+pρϕ\displaystyle(\rho_{-}u_{-})_{t}+\operatorname{div}(\rho_{-}u_{-}\otimes u_{-})-c_{-}^{2}\operatorname{div}(\rho_{-}\mathbb{F}_{-}\mathbb{F}_{-}^{T})+\nabla p_{-}-\rho_{-}\nabla\phi
=μΔu+(μ+λ)divuαρu,\displaystyle\quad=\mu_{-}\Delta u_{-}+(\mu_{-}+\lambda_{-})\nabla\operatorname{div}u_{-}-\alpha_{-}\rho_{-}u_{-}, (A.13)

where p:=ρωωp_{-}:=\rho_{-}\omega_{-}^{\prime}-\omega_{-}.

Similarly, we can derive

(ρ+u+)t+div(ρ+u+u+)c+2div(ρ+𝔽+𝔽+T)+p++ρ+ϕ\displaystyle(\rho_{+}u_{+})_{t}+\operatorname{div}(\rho_{+}u_{+}\otimes u_{+})-c_{+}^{2}\operatorname{div}(\rho_{+}\mathbb{F}_{+}\mathbb{F}_{+}^{T})+\nabla p_{+}+\rho_{+}\nabla\phi
=μ+Δu++(μ++λ+)divu+α+ρ+u+,\displaystyle\quad=\mu_{+}\Delta u_{+}+(\mu_{+}+\lambda_{+})\nabla\operatorname{div}u_{+}-\alpha_{+}\rho_{+}u_{+}, (A.14)

where p+:=ρ+ω+ω+p_{+}:=\rho_{+}\omega_{+}^{\prime}-\omega_{+}.

Now, we collect (A.2), (A.3), (A) and (A) to obtain a viscoelastic two-fluid system

{ρt+div(ρu)=0,(ρu)t+div(ρuu)+p=μΔu+(μ+λ)divu+c2div(ρ𝔽𝔽T)+ρϕαρu,𝔽t+u𝔽=u𝔽,ρ+t+div(ρ+u+)=0,(ρ+u+)t+div(ρ+u+u+)+p+=μ+Δu++(μ++λ+)divu++c+2div(ρ+𝔽+𝔽+T)ρ+ϕα+ρ+u+,𝔽+t+u+𝔽+=u+𝔽+,Δϕ=ρρ+.\displaystyle\begin{cases}\rho_{-t}+\operatorname{div}(\rho_{-}u_{-})=0,\\ (\rho_{-}u_{-})_{t}+\operatorname{div}(\rho_{-}u_{-}\otimes u_{-})+\nabla p_{-}\\ \quad=\mu_{-}\Delta u_{-}+(\mu_{-}+\lambda_{-})\nabla\operatorname{div}u_{-}+c_{-}^{2}\operatorname{div}(\rho_{-}\mathbb{F}_{-}\mathbb{F}_{-}^{T})+\rho_{-}\nabla\phi-\alpha_{-}\rho_{-}u_{-},\\ \mathbb{F}_{-t}+u_{-}\cdot\nabla\mathbb{F}_{-}=\nabla u_{-}\mathbb{F}_{-},\\ \rho_{+t}+\operatorname{div}(\rho_{+}u_{+})=0,\\ (\rho_{+}u_{+})_{t}+\operatorname{div}(\rho_{+}u_{+}\otimes u_{+})+\nabla p_{+}\\ \quad=\mu_{+}\Delta u_{+}+(\mu_{+}+\lambda_{+})\nabla\operatorname{div}u_{+}+c_{+}^{2}\operatorname{div}(\rho_{+}\mathbb{F}_{+}\mathbb{F}_{+}^{T})-\rho_{+}\nabla\phi-\alpha_{+}\rho_{+}u_{+},\\ \mathbb{F}_{+t}+u_{+}\cdot\nabla\mathbb{F}_{+}=\nabla u_{+}\mathbb{F}_{+},\\ \Delta\phi=\rho_{-}-\rho_{+}.\end{cases} (A.15)

In fact, we can go back the energy dissipation law (A.4) by multiplying the first six equations in (A.15) by ω(ρ),u,c2ρ𝔽,ω+(ρ+),u+,c+2ρ+𝔽+\omega_{-}^{\prime}(\rho_{-}),u_{-},c_{-}^{2}\rho_{-}\mathbb{F}_{-},\omega_{+}^{\prime}(\rho_{+}),u_{+},c_{+}^{2}\rho_{+}\mathbb{F}_{+}, respectively, summing them up and then integrating over Ω\Omega.

Next, we analyze the dynamics of the positive fluid. When the positive fluid becomes a steady state, the equations for the positive fluid become

{div(ρ+u+)=0,ρ+u+u+c+2div(ρ+𝔽+𝔽+T)+p++ρ+ϕ=μ+Δu++(μ++λ+)divu+α+ρ+u+,u+𝔽+=u+𝔽+.\displaystyle\begin{cases}\operatorname{div}(\rho_{+}u_{+})=0,\\ \rho_{+}u_{+}\cdot\nabla u_{+}-c_{+}^{2}\operatorname{div}(\rho_{+}\mathbb{F}_{+}\mathbb{F}_{+}^{T})+\nabla p_{+}+\rho_{+}\nabla\phi=\mu_{+}\Delta u_{+}+(\mu_{+}+\lambda_{+})\nabla\operatorname{div}u_{+}-\alpha_{+}\rho_{+}u_{+},\\ u_{+}\cdot\nabla\mathbb{F}_{+}=\nabla u_{+}\mathbb{F}_{+}.\end{cases} (A.16)

Multiplying Eq. (A.16)2\eqref{1-20220706}_{2}, Eq. (A.16)3\eqref{1-20220706}_{3} by u+u_{+}, c+2ρ+𝔽+c_{+}^{2}\rho_{+}\mathbb{F}_{+}, respectively, summing them up and integrating over Ω\Omega by parts, we deduce

Ω[μ+|u+|2+(μ++λ+)|divu+|2+α+ρ+|u+|2]𝑑x=0,\displaystyle\int_{\Omega}\Big{[}\mu_{+}|\nabla u_{+}|^{2}+(\mu_{+}+\lambda_{+})|\operatorname{div}u_{+}|^{2}+\alpha_{+}\rho_{+}|u_{+}|^{2}\Big{]}\,dx=0,

which together with (A.1) implies

u+=0,𝔽+=𝕀.\displaystyle u_{+}=0,\quad\mathbb{F}_{+}=\mathbb{I}.

Thus the stationary system (A.16) is reduced to a single equation

p+(ρ+)=ρ+ϕ.\displaystyle\nabla p_{+}(\rho_{+})=-\rho_{+}\nabla\phi. (A.17)

It is easy to check that the equation (A.17) has a constant solution ρ+ρ¯>0\rho_{+}\equiv\bar{\rho}>0 and ϕ+0\phi_{+}\equiv 0. Under certain conditions, the equation (A.17) also has a nonconstant solution. Under the simple case of p+(ρ+)=ρ+p_{+}(\rho_{+})=\rho_{+}, one can derive

ρ+=eϕ,\displaystyle\rho_{+}=e^{-\phi},

which gives a Boltzmann distribution for positive charged particles. Thus, the system (A.15) is reduced to

{ρt+div(ρu)=0,(ρu)t+div(ρuu)c2div(ρ𝔽𝔽T)+pρϕ=μΔu+(μ+λ)divuαρu,𝔽t+u𝔽=u𝔽,Δϕ=ρρ+,ρ+=ρ¯oreϕ,\displaystyle\begin{cases}\rho_{-t}+\operatorname{div}(\rho_{-}u_{-})=0,\\ (\rho_{-}u_{-})_{t}+\operatorname{div}(\rho_{-}u_{-}\otimes u_{-})-c_{-}^{2}\operatorname{div}(\rho_{-}\mathbb{F}_{-}\mathbb{F}_{-}^{T})+\nabla p_{-}-\rho_{-}\nabla\phi=\mu_{-}\Delta u_{-}+(\mu_{-}+\lambda_{-})\nabla\operatorname{div}u_{-}-\alpha_{-}\rho_{-}u_{-},\\ \mathbb{F}_{-t}+u_{-}\cdot\nabla\mathbb{F}_{-}=\nabla u_{-}\mathbb{F}_{-},\\ \Delta\phi=\rho_{-}-\rho_{+},\quad\rho_{+}=\bar{\rho}\ \mbox{or}\ e^{-\phi},\end{cases}

which is a closed system. This is exactly the system (1.1) by removing the subscript -.

Acknowledgements

This work was partially supported by National Key R&D Program of China (No. 2021YFA1002900), Guangdong Provincial Pearl River Talents Program (No. 2017GC010407), Guangdong Province Basic and Applied Basic Research Fund (No. 2021A1515010235), Guangzhou City Basic and Applied Basic Research Fund (No. 202102020436) and the NSF of China (Nos. 11701264 and 11971179).


Data Availability: The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • [1] V. I. Berdichevsky. Variational Principles of Continuum Mechanics. I. Fundamentals. Interaction of Mechanics and Mathematics. Springer-Verlag, Berlin, 2009.
  • [2] Q. Y. Bie, Q. R. Wang, and Z. A. Yao. Optimal decay rate for the compressible Navier-Stokes-Poisson system in the critical LpL^{p} framework. J. Differential Equations, 263(12):8391–8417, 2017.
  • [3] J. P. Bourguignon and H. Brezis. Remarks on the Euler equation. J. Functional Analysis, 15:341–363, 1974.
  • [4] Y. Cai, Z. Lei, F. H. Lin, and N. Masmoudi. Vanishing viscosity limit for incompressible viscoelasticity in two dimensions. Comm. Pure Appl. Math., 72(10):2063–2120, 2019.
  • [5] J. Y. Chemin and N. Masmoudi. About lifespan of regular solutions of equations related to viscoelastic fluids. SIAM J. Math. Anal., 33(1):84–112, 2001.
  • [6] Q. Chen and G. C. Wu. The 3D compressible viscoelastic fluid in a bounded domain. Commun. Math. Sci., 16(5):1303–1323, 2018.
  • [7] Y. M. Chen and P. Zhang. The global existence of small solutions to the incompressible viscoelastic fluid system in 2 and 3 space dimensions. Comm. Partial Differential Equations, 31(10-12):1793–1810, 2006.
  • [8] M. P. do Carmo. Differential Geometry of Curves &\& Surfaces. Dover Publications, Inc., Mineola, NY, 2016. Revised & updated second edition of [ MR0394451].
  • [9] T. M. Elgindi and N. Masmoudi. LL^{\infty} ill-posedness for a class of equations arising in hydrodynamics. Arch. Ration. Mech. Anal., 235(3):1979–2025, 2020.
  • [10] T. M. Elgindi and F. Rousset. Global regularity for some Oldroyd-B type models. Comm. Pure Appl. Math., 68(11):2005–2021, 2015.
  • [11] J. Forster. Mathematical Modeling of Complex Fluids. The University of Würzburg, Thesis, 2013.
  • [12] C. Francesca and M. Paolo. An interpolation inequality in exterior domains. Rend. Sem. Mat. Univ. Padova, 112:11–39, 2004.
  • [13] G. P. Galdi. An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Steady-state Problems. Springer Monographs in Mathematics. Springer, New York, second edition, 2011.
  • [14] Jincheng Gao, Minling Li, and Zhengan Yao. Optimal decay of compressible navier-stokes equations with or without potential force. arXiv:2108.02453, 2021.
  • [15] M. Giga, A. Kirshtein, and C. Liu. Variational modeling and complex fluids. In Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, pages 73–113. Springer, Cham, 2018.
  • [16] Y. Guo and Y. J. Wang. Decay of dissipative equations and negative Sobolev spaces. Comm. Partial Differential Equations, 37(12):2165–2208, 2012.
  • [17] B. Han and R. Z. Zi. Dispersive effect and global well-posedness of the compressible viscoelastic fluids. J. Differential Equations, 269(11):9254–9296, 2020.
  • [18] D. Hoff and K. Zumbrun. Multi-dimensional diffusion waves for the Navier-Stokes equations of compressible flow. Indiana Univ. Math. J., 44(2):603–676, 1995.
  • [19] X. P. Hu and F. H. Lin. Global solutions of two-dimensional incompressible viscoelastic flows with discontinuous initial data. Comm. Pure Appl. Math., 69(2):372–404, 2016.
  • [20] X. P. Hu, F. H. Lin, and C. Liu. Equations for viscoelastic fluids. In Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, pages 1045–1073. Springer, Cham, 2018.
  • [21] X. P. Hu and D. H. Wang. Local strong solution to the compressible viscoelastic flow with large data. J. Differential Equations, 249(5):1179–1198, 2010.
  • [22] X. P. Hu and G. C. Wu. Global existence and optimal decay rates for three-dimensional compressible viscoelastic flows. SIAM J. Math. Anal., 45(5):2815–2833, 2013.
  • [23] X. P. Hu and W. B. Zhao. Global existence for the compressible viscoelastic system with zero shear viscosity in three dimensions. J. Differential Equations, 268(4):1658–1685, 2020.
  • [24] X. P. Hu and W. B. Zhao. Global existence of compressible dissipative elastodynamics systems with zero shear viscosity in two dimensions. Arch. Ration. Mech. Anal., 235(2):1177–1243, 2020.
  • [25] E. Di Iorio, P. Marcati, and S. Spirito. Splash singularities for a general Oldroyd model with finite Weissenberg number. Arch. Ration. Mech. Anal., 235(3):1589–1660, 2020.
  • [26] F. Jiang and S. Jiang. Strong solutions of the equations for viscoelastic fluids in some classes of large data. J. Differential Equations, 282:148–183, 2021.
  • [27] F. Jiang, S. Jiang, and G. C. Wu. On stabilizing effect of elasticity in the Rayleigh-Taylor problem of stratified viscoelastic fluids. J. Funct. Anal., 272(9):3763–3824, 2017.
  • [28] F. Jiang, S. Jiang, and W. C. Zhan. Instability of the abstract Rayleigh-Taylor problem and applications. Math. Models Methods Appl. Sci., 30(12):2299–2388, 2020.
  • [29] F. Jiang, G. C. Wu, and X. Zhong. On exponential stability of gravity driven viscoelastic flows. J. Differential Equations, 260(10):7498–7534, 2016.
  • [30] N. Ju. Existence and uniqueness of the solution to the dissipative 2D quasi-geostrophic equations in the Sobolev space. Comm. Math. Phys., 251(2):365–376, 2004.
  • [31] Y. Kagei and S. Kawashima. Local solvability of an initial boundary value problem for a quasilinear hyperbolic-parabolic system. J. Hyperbolic Differ. Equ., 3(2):195–232, 2006.
  • [32] J. La. On diffusive 2D Fokker-Planck-Navier-Stokes systems. Arch. Ration. Mech. Anal., 235(3):1531–1588, 2020.
  • [33] Z. Lei. On 2D viscoelasticity with small strain. Arch. Ration. Mech. Anal., 198(1):13–37, 2010.
  • [34] Z. Lei, C. Liu, and Y. Zhou. Global existence for a 2D incompressible viscoelastic model with small strain. Commun. Math. Sci., 5(3):595–616, 2007.
  • [35] Z. Lei, C. Liu, and Y. Zhou. Global solutions for incompressible viscoelastic fluids. Arch. Ration. Mech. Anal., 188(3):371–398, 2008.
  • [36] Z. Lei and Y. Zhou. Global existence of classical solutions for the two-dimensional Oldroyd model via the incompressible limit. SIAM J. Math. Anal., 37(3):797–814, 2005.
  • [37] H. L. Li, A. Matsumura, and G. J. Zhang. Optimal decay rate of the compressible Navier-Stokes-Poisson system in 3\mathbb{R}^{3}. Arch. Ration. Mech. Anal., 196(2):681–713, 2010.
  • [38] Y. Li, R. Y. Wei, and Z. A. Yao. Optimal decay rates for the compressible viscoelastic flows. J. Math. Phys., 57(11):111506, 8, 2016.
  • [39] F. H. Lin, C. Liu, and P. Zhang. On hydrodynamics of viscoelastic fluids. Comm. Pure Appl. Math., 58(11):1437–1471, 2005.
  • [40] F. H. Lin and P. Zhang. On the initial-boundary value problem of the incompressible viscoelastic fluid system. Comm. Pure Appl. Math., 61(4):539–558, 2008.
  • [41] H. R. Liu, T. Luo, and H. Zhong. Global solutions to compressible Navier-Stokes-Poisson and Euler-Poisson equations of plasma on exterior domains. J. Differential Equations, 269:9936–10001, 2020.
  • [42] H. R. Liu and H. Zhong. Global solutions to the initial boundary problem of 3-D compressible Navier-Stokes-Poisson on bounded domains. Z. Angew. Math. Phys., 72(2):Paper No. 78, 30, 2021.
  • [43] A. Matsumura and T. Nishida. The initial value problem for the equations of motion of compressible viscous and heat-conductive fluids. Proc. Japan Acad. Ser. A Math. Sci., 55(9):337–342, 1979.
  • [44] A. Matsumura and T. Nishida. The initial value problem for the equations of motion of viscous and heat-conductive gases. J. Math. Kyoto Univ., 20(1):67–104, 1980.
  • [45] A. Matsumura and T. Nishida. Initial-boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids. Comm. Math. Phys., 89(4):445–464, 1983.
  • [46] L. Nirenberg. On elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa, 13:115–162, 1959.
  • [47] J. G. Oldroyd. On the formulation of rheological equations of state. Proc. Roy. Soc. London Ser. A, 200:523–541, 1950.
  • [48] Bo N. J. Persson. Sliding Friction: Physical Principles and Applications. Springer, 2000.
  • [49] G. Ponce. Global existence of small solutions to a class of nonlinear evolution equations. Nonlinear Anal., 9(5):399–418, 1985.
  • [50] J. Z. Qian. Initial boundary value problems for the compressible viscoelastic fluid. J. Differential Equations, 250(2):848–865, 2011.
  • [51] J. Z. Qian and Z. F. Zhang. Global well-posedness for compressible viscoelastic fluids near equilibrium. Arch. Ration. Mech. Anal., 198(3):835–868, 2010.
  • [52] M. Renardy, W. J. Hrusa, and J. A. Nohel. Mathematical Problems in Viscoelasticity, volume 35 of Pitman Monographs and Surveys in Pure and Applied Mathematics. Longman Scientific & Technical, Harlow; John Wiley & Sons, Inc., New York, 1987.
  • [53] T. C. Sideris and B. Thomases. Global existence for three-dimensional incompressible isotropic elastodynamics via the incompressible limit. Comm. Pure Appl. Math., 58(6):750–788, 2005.
  • [54] Z. Tan, Y. Wang, and W. P. Wu. Mathematical modeling and qualitative analysis of viscoelastic conductive fluids. Anal. Appl. (Singap.), 18(6):1077–1117, 2020.
  • [55] Z. Tan, T. Yang, H. J. Zhao, and Q. Y. Zou. Global solutions to the one-dimensional compressible Navier-Stokes-Poisson equations with large data. SIAM J. Math. Anal., 45(2):547–571, 2013.
  • [56] R. Temam. Navier-Stokes Equations. Theory and Numerical Analysis. North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. Studies in Mathematics and its Applications, Vol. 2.
  • [57] W. K. Wang and Z. G. Wu. Pointwise estimates of solution for the Navier-Stokes-Poisson equations in multi-dimensions. J. Differential Equations, 248(7):1617–1636, 2010.
  • [58] Y. Wang, C. Liu, and Z. Tan. A generalized Poisson-Nernst-Planck-Navier-Stokes model on the fluid with the crowded charged particles: derivation and its well-posedness. SIAM J. Math. Anal., 48(5):3191–3235, 2016.
  • [59] Y. Wang, R. Shen, W. P. Wu, and C. J. Zhang. On the initial-boundary value problem for the three-dimensional compressible viscoelastic fluids with the electrostatic effect. J. Differential Equations, 316:425–470, 2022.
  • [60] Y. Wang and W. P. Wu. Initial boundary value problems for the three-dimensional compressible elastic Navier-Stokes-Poisson equations. Adv. Nonlinear Anal., 10(1):1356–1383, 2021.
  • [61] Y. J. Wang. Decay of the Navier-Stokes-Poisson equations. J. Differential Equations, 253(1):273–297, 2012.
  • [62] Y. Z. Wang and K. Y. Wang. Asymptotic behavior of classical solutions to the compressible Navier-Stokes-Poisson equations in three and higher dimensions. J. Differential Equations, 259(1):25–47, 2015.
  • [63] G. C. Wu, Z. S. Gao, and Z. Tan. Time decay rates for the compressible viscoelastic flows. J. Math. Anal. Appl., 452(2):990–1004, 2017.
  • [64] T. Zhang and D. Y. Fang. Global existence of strong solution for equations related to the incompressible viscoelastic fluids in the critical LpL^{p} framework. SIAM J. Math. Anal., 44(4):2266–2288, 2012.