This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

On the geometric connected components of moduli spaces of pp-adic shtukas and local Shimura varieties.

Ian Gleason Mathematisches Institut der Universität Bonn, Endenicher Allee 60, Bonn, Germany [email protected]
Abstract.

We study connected components of local Shimura varieties. Given local shtuka datum (G,b,μ)(G,b,\mu), with GG unramified over p\mathbb{Q}_{p} and (b,μ)(b,\mu) HN-irreducible, we determine π0(ShtG,b,[μ],×p)\pi_{0}({\rm{Sht}}_{G,b,[\mu],\infty}\times\mathbb{C}_{p}) with its G(p)×Jb(p)×WEG({\mathbb{Q}_{p}})\times J_{b}({\mathbb{Q}_{p}})\times W_{E}-action. This confirms new cases of a conjecture of Rapoport and Viehmann. We construct and study the specialization map for moduli spaces of pp-adic shtukas at parahoric level whose target is an affine Deligne–Lusztig variety.

Introduction.

In [Vieh-Rap], Rapoport and Viehmann propose that there should be a theory of pp-adic local Shimura varieties. They conjectured the existence of towers of rigid-analytic spaces whose cohomology groups “understand” the local Langlands correspondence for general pp-adic reductive groups. In this way, these towers of rigid-analytic varieties would “interact” with the local Langlands correspondence in a similar fashion to how Shimura varieties “interact” with the global Langlands correspondence. Moreover, they conjectured many properties and compatibilities that these towers should satisfy.

In the last decade, the theory of local Shimura varieties went through a drastic transformation with Scholze’s introduction of perfectoid spaces and the theory of diamonds. In [Ber2], Scholze and Weinstein construct the sought for towers of rigid analytic spaces and generalized them to what are now known as moduli spaces of pp-adic shtukas. Moreover, since then, many of the expected properties and compatibilities for local Shimura varieties have been verified and generalized to moduli spaces of pp-adic shtukas. The study of the geometry and cohomology of local Shimura varieties and moduli spaces of pp-adic shtukas is still a very active area of research due to their connection to the local Langlands correspondence. The main aim of this article is to study the locally profinite space of connected components, and describe explicitly the continuous right action of the group G(p)×Jb(p)×WEG({\mathbb{Q}_{p}})\times J_{b}({\mathbb{Q}_{p}})\times W_{E} on this space. In particular, we prove and generalize [Vieh-Rap, Conjecture 4.26] for the case of unramified groups.

Let us recall the formalism of local Shimura varieties and moduli spaces of pp-adic shtukas. Local pp-adic shtuka datum over p{\mathbb{Q}_{p}} is a triple (G,[b],[μ])(G,[b],[\mu]) where GG is a reductive group over p{\mathbb{Q}_{p}}, [μ][\mu] is a conjugacy class of geometric cocharacters μ:𝔾mG\mu:\mathbb{G}_{m}\to G and [b][b] is an element of Kottwitz set B(G,[μ])B(G,[\mu]). Whenever [μ][\mu] is minuscule we say that (G,[b],[μ])(G,[b],[\mu]) is local Shimura datum. We let E/pE/{\mathbb{Q}_{p}} denote the reflex field of [μ][\mu] and E˘=E˘p\breve{E}=E\cdot\breve{\mathbb{Q}}_{p}. Associated to (G,[b],[μ])(G,[b],[\mu]) there is a tower of diamonds over Spd(E˘,OE˘){\mathrm{Spd}}(\breve{E},O_{\breve{E}}), denoted (ShtG,[b],[μ],𝒦)𝒦({\rm{Sht}}_{G,[b],[\mu],{{\mathcal{K}}}})_{{\mathcal{K}}}, where 𝒦G(p){{\mathcal{K}}}\subseteq G({\mathbb{Q}_{p}}) ranges over compact subgroup of G(p)G({\mathbb{Q}_{p}}). Moreover, whenever [μ][\mu] is minuscule and 𝒦{{\mathcal{K}}} is a compact open subgroup, then (ShtG,[b],[μ],𝒦)𝒦({\rm{Sht}}_{G,[b],[\mu],{{\mathcal{K}}}})_{{\mathcal{K}}} is represented by the diamond associated to a unique smooth rigid-analytic space 𝕄𝒦\mathbb{M}_{{\mathcal{K}}} over E˘\breve{E}. The tower (𝕄𝒦)𝒦(\mathbb{M}_{{\mathcal{K}}})_{{\mathcal{K}}} is the local Shimura variety.

Associated to [b]B(G,μ)[b]\in B(G,\mu) there is a reductive group JbJ_{b} over p{\mathbb{Q}_{p}}. After basechange to a completed algebraic closure, each individual space (ShtG,[b],[μ],𝒦×p)𝒦({\rm{Sht}}_{G,[b],[\mu],{{\mathcal{K}}}}\times\mathbb{C}_{p})_{{\mathcal{K}}} comes equipped with continuous and commuting right actions by Jb(p)J_{b}({\mathbb{Q}_{p}}) and the Weil group WEW_{E}. Moreover, the tower receives a right action by the group G(p)G({\mathbb{Q}_{p}}) by using correspondences. When we let 𝒦={e}{{\mathcal{K}}}=\{e\} we obtain the space at infinite level, denoted ShtG,[b],[μ],×p{\rm{Sht}}_{G,[b],[\mu],\infty}\times\mathbb{C}_{p}, which overall comes equipped with a continuous right action by G(p)×Jb(p)×WEG({\mathbb{Q}_{p}})\times J_{b}({\mathbb{Q}_{p}})\times W_{E}.

Since the actions are continuous the groups G(p)×Jb(p)×WEG({\mathbb{Q}_{p}})\times J_{b}({\mathbb{Q}_{p}})\times W_{E} act continuously on π0(ShtG,[b],[μ],×p)\pi_{0}({\rm{Sht}}_{G,[b],[\mu],\infty}\times\mathbb{C}_{p}) and our main theorem describes explicitly this action whenever GG is an unramified reductive group over p{\mathbb{Q}_{p}} and ([b],[μ])([b],[\mu]) is HN-irreducible. It is natural to expect that the methods of this paper combined with those of [Hans] and [gaisin] could be used to remove the HN-irreducible condition. We do not pursue this generality.

Before stating our main theorem we set some notation. Let (G,[b],[μ])(G,[b],[\mu]) be local pp-adic shtuka datum with GG an unramified reductive group over p{\mathbb{Q}_{p}}. Let GderG^{{\mathrm{der}}} denote the derived subgroup of GG and GscG^{{\mathrm{sc}}} denote the simply connected cover of GderG^{{\mathrm{der}}}, let NN denote the image of Gsc(p)G^{{\mathrm{sc}}}({\mathbb{Q}_{p}}) in G(p)G({\mathbb{Q}_{p}}) and let G=G(p)/NG^{\circ}=G({\mathbb{Q}_{p}})/N. This is a locally profinite topological group and it is the maximal abelian quotient of G(p)G({\mathbb{Q}_{p}}) when this later is considered as an abstract group. Let EpE\subseteq\mathbb{C}_{p} be the field of definition of [μ][\mu], let ArtE:WEE×{{\mathrm{Art}}}_{E}:W_{E}\to E^{\times} be Artin’s reciprocity character from local class field theory. In §4 we associate to [μ][\mu] a continuous map of topological groups Nm[μ]:E×G{{\mathrm{Nm}}}_{[\mu]}^{\circ}:E^{\times}\to G^{\circ} and we associate to [b][b] a map det:Jb(p)G{\mathrm{det}}^{\circ}:J_{b}({\mathbb{Q}_{p}})\to G^{\circ}.

The general construction of Nm[μ]{{\mathrm{Nm}}}_{[\mu]}^{\circ} and det{\mathrm{det}}^{\circ} uses z-extensions and we do not review it in this introduction. Nevertheless, whenever Gsc=GderG^{{\mathrm{sc}}}=G^{{\mathrm{der}}} we can construct them as follows. In this case, G=Gab(p)G^{\circ}=G^{{\mathrm{ab}}}({\mathbb{Q}_{p}}) with GabG^{{\mathrm{ab}}} is the co-center of GG. If we let det:GGab{\mathrm{det}}:G\to G^{{\mathrm{ab}}} be the quotient map we can consider the induced data μab=det[μ]\mu^{{\mathrm{ab}}}={\mathrm{det}}\circ[\mu] and [bab]=[det(b)][b^{{\mathrm{ab}}}]=[{\mathrm{det}}(b)]. Then Nm[μ]{{\mathrm{Nm}}}^{\circ}_{[\mu]} can be defined as:

E×μabGab(E)NmGabE/pGab(p)=G.E^{\times}\xrightarrow{\mu^{{\mathrm{ab}}}}G^{{\mathrm{ab}}}(E)\xrightarrow{{{\mathrm{Nm}}}^{G^{{\mathrm{ab}}}}_{E/{\mathbb{Q}_{p}}}}G^{{\mathrm{ab}}}({\mathbb{Q}_{p}})=G^{\circ}.

Here for a torus TT over p{\mathbb{Q}_{p}}, like GabG^{{\mathrm{ab}}}, we are letting NmTE/p:Tab(E)Tab(p){{\mathrm{Nm}}}^{T}_{E/{\mathbb{Q}_{p}}}:T^{{\mathrm{ab}}}(E)\to T^{{\mathrm{ab}}}({\mathbb{Q}_{p}}) denote the usual norm map

tγGal(E/p)γ(t).t\mapsto\prod_{\gamma\in{{\mathrm{Gal}}}(E/\mathbb{Q}_{p})}\gamma(t).

On the other hand, det:Jb(p)Gab(p){\mathrm{det}}^{\circ}:J_{b}({\mathbb{Q}_{p}})\to G^{{\mathrm{ab}}}({\mathbb{Q}_{p}}) is det=jbabdetb{\mathrm{det}}=j_{b^{{\mathrm{ab}}}}\circ{\mathrm{det}}_{b} where detb:Jb(p)Jbab(p){\mathrm{det}}_{b}:J_{b}({\mathbb{Q}_{p}})\to J_{b^{{\mathrm{ab}}}}({\mathbb{Q}_{p}}) is obtained from functoriality of the formation of JbJ_{b}, and jbab:Jbab(p)Gab(p)j_{b^{{\mathrm{ab}}}}:J_{b^{{\mathrm{ab}}}}({\mathbb{Q}_{p}})\xrightarrow{\cong}G^{{\mathrm{ab}}}({\mathbb{Q}_{p}}) is obtained from regarding Jbab(p)J_{b^{{\mathrm{ab}}}}({\mathbb{Q}_{p}}) and Gab(p)G^{{\mathrm{ab}}}({\mathbb{Q}_{p}}) as subgroups of Gab(K0)G^{{\mathrm{ab}}}(K_{0}) and exploiting that GabG^{{\mathrm{ab}}} is commutative. Our first main theorem is:

Theorem 1.

Let (G,[b],[μ])(G,[b],[\mu]) be local shtuka datum with GG an unramified reductive group over p{\mathbb{Q}_{p}} and ([b],[μ])([b],[\mu]) HN-irreducible. The following hold:

  1. (1)

    The right G(p)G({\mathbb{Q}_{p}}) action on π0(ShtG,b,[μ],×p)\pi_{0}({\rm{Sht}}_{G,b,[\mu],\infty}\times\mathbb{C}_{p}) is trivial on N=Im(Gsc(p))N={\mathrm{Im}}(G^{{\mathrm{sc}}}({\mathbb{Q}_{p}})) and the induced GG^{\circ}-action is simply-transitive.

  2. (2)

    If sπ0(ShtG,b,[μ],×p)s\in\pi_{0}({\rm{Sht}}_{G,b,[\mu],\infty}\times\mathbb{C}_{p}) and jJb(p)j\in J_{b}({\mathbb{Q}_{p}}) then

    sJb(p)j=sGdet(j1))s\cdot_{{}_{J_{b}({\mathbb{Q}_{p}})}}j=s\cdot_{{}_{G^{\circ}}}{\mathrm{det}}^{\circ}(j^{-1}))
  3. (3)

    If sπ0(ShtG,b,[μ],×p)s\in\pi_{0}({\rm{Sht}}_{G,b,[\mu],\infty}\times\mathbb{C}_{p}) and γWE\gamma\in W_{{E}} then

    sWEγ=sG[Nm[μ]ArtE(γ)].s\cdot_{{}_{W_{E}}}\gamma=s\cdot_{{}_{G^{\circ}}}[{{\mathrm{Nm}}}^{\circ}_{[\mu]}\circ{{\mathrm{Art}}}_{{E}}(\gamma)].

Let us comment on previous results in the literature. Before a full theory of local Shimura varieties was available the main examples of local Shimura varieties one could work with were the ones obtained as the generic fiber of a Rapoport–Zink space ([RZ]). The most celebrated examples of Rapoport–Zink spaces are of course the Lubin–Tate tower and the tower of covers of Drinfeld’s upper half space. In [deJong] de Jong, as an application of his theory of fundamental groups, computes the connected components of the Lubin–Tate tower for GLn(p){\mathrm{GL}}_{n}({\mathbb{Q}_{p}}). In [Strauch], Strauch computes by a different method the connected components of the Lubin–Tate tower for GLn(F){\mathrm{GL}}_{n}(F) and an arbitrary finite extension FF of p{\mathbb{Q}_{p}} (including ramification). In [ChenDet], M. Chen constructs 0-dimensional local Shimura varieties and studies their geometry. In a later paper [Chen], she constructs her “determinant” map and uses these 0-dimensional local Shimura varieties to describe connected components of Rapoport–Zink spaces of EL and PEL type associated to more general unramified reductive groups. Our result goes beyond the previous ones in that the only condition imposed on GG is unramifiedness. In this way, our result is the first to cover very general families of local Shimura varieties that can not be constructed from a Rapoport–Zink space. In particular, our result is new for local Shimura varieties associated to reductive groups of exceptional types.

The central strategy of Chen’s result builds on and heavily generalizes the central strategy used by de Jong. Two key inputs of Chen’s work to the strategy are the use of her “generic” crystalline representations and her collaboration with Kisin and Viehmann on computing the connected components of affine Deligne–Lusztig varieties [CKV]. Our strategy takes these two inputs as given.

We build on the central strategy employed by de Jong and Chen, but the versatility of Scholze’s theory of diamonds and the functorial construction of local Shimura varieties allow us to make simplifications and streamline the proof. Since our arguments take place in Scholze’s category of diamonds rather than the category of rigid analytic spaces, our argument works even for moduli spaces of pp-adic shtukas that are not a local Shimura variety. In these (non-representable) cases, the result is new even for G=GLnG={\mathrm{GL}}_{n}.

Our new main contribution to the central strategy is the use of specialization maps. To use these specialization maps in a rigorous way, we developed a formalism whose details were worked out in the separate paper [Specializ].

Let us sketch the central strategy to prove 1. Once one knows that π0(ShtG,b,[μ],×p)\pi_{0}({\rm{Sht}}_{G,b,[\mu],\infty}\times\mathbb{C}_{p}) is a right GG^{\circ}-torsor, computing the actions by WEW_{E} and Jb(p)J_{b}({\mathbb{Q}_{p}}) in terms of the GG^{\circ} action can be reduced to the tori case using functoriality, z-extensions and the determinant map. These uses mainly group theoretic methods and down to earth diagram chases. In the tori case, the Jb(p)J_{b}({\mathbb{Q}_{p}}) action is easy to compute and the WEW_{E} action can be bootstrapped to an easier case as follows. For tori TT, by the work of Kottwitz, we know that the set B(T,μ)B(T,\mu) has a unique element so that the data of bb is redundant. We can consider the category of pairs (T,μ)(T,\mu) where TT is a torus over p{\mathbb{Q}_{p}} and μ\mu is a geometric cocharacter whose field of definition is EE. The construction of moduli spaces of shtukas is functorial with respect to this category. Moreover, this category has an initial object given by (ResE/p(𝔾m),μu)({\mathrm{Res}}_{E/{\mathbb{Q}_{p}}}(\mathbb{G}_{m}),\mu_{u}) where

μu:𝔾mResE/p(𝔾m)E\mu_{u}:\mathbb{G}_{m}\to{\mathrm{Res}}_{E/{\mathbb{Q}_{p}}}(\mathbb{G}_{m})_{E}

is the unique map of tori that on EE-points is given by the formula

ffpf.f\mapsto f\otimes_{\mathbb{Q}_{p}}f.

After more diagram chasing one can again reduce the tori case to this “universal” case. Finally, this case can be done explicitly using the theory of Lubin–Tate groups and their relation to local class field theory. As we have mentioned, the tori case was already handled by M. Chen in [ChenDet], but for the convenience of the readers we recall part of the story in a different language.

Let us sketch how to prove that π0(ShtG,b,[μ],×p)\pi_{0}({\rm{Sht}}_{G,b,[\mu],\infty}\times\mathbb{C}_{p}) is a GG^{\circ} torsor in the simplest case. For this, let GG be semisimple and simply connected. Our theorem then says that ShtG,b,[μ],×p{\rm{Sht}}_{G,b,[\mu],\infty}\times\mathbb{C}_{p} is connected.

The first step is to prove that G(p)G({\mathbb{Q}_{p}}) acts transitively on π0(ShtG,b,[μ],×p)\pi_{0}({\rm{Sht}}_{G,b,[\mu],\infty}\times\mathbb{C}_{p}). Using the Grothendieck–Messing period map one realizes that this is equivalent to proving that the bb-admissible locus of Scholze’s BdRB_{\mathrm{dR}}-Grassmannian is connected. This fact is a result of Hansen and Weinstein to which we give an alternative proof.

For the next step, let xπ0(ShtG,b,[μ],×p)x\in\pi_{0}({\rm{Sht}}_{G,b,[\mu],\infty}\times\mathbb{C}_{p}) and let GxG(p)G_{x}\subseteq G({\mathbb{Q}_{p}}) denote the stabilizer of xx. Let 𝒦G(p){{\mathcal{K}}}\subseteq G({\mathbb{Q}_{p}}) be a hyperspecial subgroup of GG. We claim that it is enough to prove that GxG_{x} is open and that G(p)=𝒦GxG({\mathbb{Q}_{p}})={{\mathcal{K}}}\cdot G_{x}. Indeed, 𝒦{{\mathcal{K}}} surjects onto G(p)/GxG({\mathbb{Q}_{p}})/G_{x} so that this space is discrete and compact therefore finite. By a theorem of Margulis [Marg], since we assumed GG to be simply connected, the only open subgroup of finite index is the whole group so that Gx=G(p)G_{x}=G({\mathbb{Q}_{p}}). The proof that GxG_{x} is open relies heavily on M. Chen’s main result of [Chen] on “generic” crystalline representations. To be able to apply her result in our context one uses that for suitable pp-adic fields KK, every crystalline representation is realized as a Spd(K,OK){\mathrm{Spd}}(K,O_{K})-valued point in Scholze’s BdRB_{\mathrm{dR}}-Grassmannian. For the convenience of the reader, we include a discussion on how to think of crystalline representations as Spd(K,OK){\mathrm{Spd}}(K,O_{K})-valued points.

Finally, proving that G(p)=𝒦GxG({\mathbb{Q}_{p}})={{\mathcal{K}}}\cdot G_{x} is equivalent to proving that ShtG,b,[μ],𝒦×p{\rm{Sht}}_{G,b,[\mu],{{\mathcal{K}}}}\times\mathbb{C}_{p}, the 𝒦{{\mathcal{K}}}-level moduli space of shtukas, is connected. This is where our theory of specialization maps gets used, which leads to our second main theorem. Suppose GG general reductive group over p{\mathbb{Q}_{p}} (no longer assumed to be unramified) and assume that 𝒦G(p){{\mathcal{K}}}\subseteq G({\mathbb{Q}_{p}}) can be realized as the p{\mathbb{Z}_{p}}-points of a parahoric group scheme 𝒢\mathscr{G} over p{\mathbb{Z}_{p}}. In this circumstance, Scholze and Weinstein, construct a v-sheaf Sht𝒢b,μOE˘{{\mathrm{Sht}}^{\mathscr{G}_{b},\leq\mu}_{{O_{\breve{E}}}}} defined over Spd(OE˘){\mathrm{Spd}}(O_{\breve{E}}) and whose generic fiber is ShtG,[b],[μ],𝒦{\rm{Sht}}_{G,[b],[\mu],{{\mathcal{K}}}} ([Ber2, §25]).

Theorem 2.

Let (G,[b],[μ])(G,[b],[\mu]) be local shtuka datum (not necessarily HN-irreducible), let 𝒢\mathscr{G} be a parahoric model of GG and let 𝒦=𝒢(p){{\mathcal{K}}}=\mathscr{G}({\mathbb{Z}_{p}}).

  1. a)

    With terminology as in [Specializ, Definition 4.52, Definition 3.12], (Sht𝒢b,μOE˘,ShtG,b,[μ],𝒦)({{\mathrm{Sht}}^{\mathscr{G}_{b},\leq\mu}_{{O_{\breve{E}}}}},{\rm{Sht}}_{G,b,[\mu],{{\mathcal{K}}}}) is a rich smelted kimberlite and the reduced special fiber (Sht𝒢b,μOE˘)red({{\mathrm{Sht}}^{\mathscr{G}_{b},\leq\mu}_{{O_{\breve{E}}}}})^{\mathrm{red}} is equal to X𝒢μ(b){X_{\mathscr{G}}^{\leq\mu}(b)}, the affine Deligne–Lusztig variety associated to (𝒢,[b],μ)(\mathscr{G},[b],\mu).111We expect these v-sheaves to be rich kimberlites, but we have not proved this yet.

  2. b)

    There is a continuous, surjective and Jb(p)J_{b}({\mathbb{Q}_{p}})-equivariant specialization map

    Sp:|ShtG,b,[μ],𝒦×p||X𝒢μ(b)|.{\mathrm{Sp}}:|{\rm{Sht}}_{G,b,[\mu],{{\mathcal{K}}}}\times\mathbb{C}_{p}|\to|{X_{\mathscr{G}}^{\leq\mu}(b)}|.
  3. c)

    When 𝒢\mathscr{G} is hyperspecial, (Sht𝒢b,μOE˘,ShtG,b,[μ],𝒦)({{\mathrm{Sht}}^{\mathscr{G}_{b},\leq\mu}_{{O_{\breve{E}}}}},{\rm{Sht}}_{G,b,[\mu],{{\mathcal{K}}}}) is topologically normal and the specialization map induces a bijection of connected components

    π0(Sp):π0(ShtG,b,[μ],𝒦×p)π0(X𝒢μ(b)).\pi_{0}({\mathrm{Sp}}):\pi_{0}({\rm{Sht}}_{G,b,[\mu],{{\mathcal{K}}}}\times\mathbb{C}_{p})\xrightarrow{\cong}\pi_{0}({X_{\mathscr{G}}^{\leq\mu}(b)}).

Fortunately for us, the study of connected components of affine Deligne–Lusztig varieties has enough literature [CKV], [Nie] [Hu-Zhou]. In the HN-irreducible case, and GG unramified, they can be identified with certain subsets of π1(G)\pi_{1}(G). If we go back to the assumptions of 1 and assume again that GG is semi-simple and simply connected, we get π1(G)={e}\pi_{1}(G)=\{e\}, which finishes the (sketch of) the proof of 1 for this case. The central strategy used for general unramified groups GG is not very different in spirit and only requires more patience.

The proof of 2 uses the machinery from integral pp-adic Hodge theory as discussed in [Ber2], the formalism developed in [Specializ], and for general parahoric our recent collaboration [AGLR22]. The key inputs to prove that Sht𝒢b,μOE˘{{\mathrm{Sht}}^{\mathscr{G}_{b},\leq\mu}_{{O_{\breve{E}}}}} has a specialization map are Kedlaya’s work [KedAinf] and Anschütz’ work [Ans2, Theorem 1.1] on extending vector bundles and 𝒢\mathscr{G}-torsors over the punctured spectrum of AinfA_{\mathrm{inf}}. Recall that Sht𝒢b,μOE˘{{\mathrm{Sht}}^{\mathscr{G}_{b},\leq\mu}_{{O_{\breve{E}}}}} parametrizes triples (𝒯,Φ,ρ)({{\mathcal{T}}},\Phi,\rho) where (𝒯,Φ)({{\mathcal{T}}},\Phi) is a shtuka with 𝒢\mathscr{G} structure and ρ:𝒯𝒢b\rho:{{\mathcal{T}}}\to\mathscr{G}_{b} is φ\varphi-equivariant trivialization over 𝒴[r,]{\mathcal{Y}}_{[r,\infty]} for large enough rr. A key observation is that (Sht𝒢b,μOE˘)red({{\mathrm{Sht}}^{\mathscr{G}_{b},\leq\mu}_{{O_{\breve{E}}}}})^{{\mathrm{red}}} is roughly speaking the locus in which ρ\rho is meromorphic. With this in mind we prove (Sht𝒢b,μOE˘)red=X𝒢μ(b)({{\mathrm{Sht}}^{\mathscr{G}_{b},\leq\mu}_{{O_{\breve{E}}}}})^{\mathrm{red}}={X_{\mathscr{G}}^{\leq\mu}(b)}. The finiteness properties (being rich), are known facts coming from the Grothendieck–Messing period morphism and general results on affine Deligne–Lusztig varieties. Finally, to prove surjectivity of the specialization map and relate the connected components of the generic fiber with the connected components of the reduced special fiber, one is led to study the tubular neighborhoods of (Sht𝒢b,μOE˘,ShtG,b,[μ],𝒦)({{\mathrm{Sht}}^{\mathscr{G}_{b},\leq\mu}_{{O_{\breve{E}}}}},{\rm{Sht}}_{G,b,[\mu],{{\mathcal{K}}}}) (as in [Specializ, Definition 4.18, Definition 4.38]). To do this, we construct a “local model diagram” for tubular neighborhoods. We clarify below.

Before stating our last main theorem we setup some terminology and formulate a conjectural statement that is philosophically aligned with Grothendieck–Messing theory. Let 𝒢,μOE{{\mathcal{M}}^{\mathscr{G},\leq\mu}_{O_{E}}} denote the local model studied in [AGLR22] and let 𝒜𝒢,μ=(𝒢,μOE)red{{\mathcal{A}}_{\mathscr{G},\mu}}=({{\mathcal{M}}^{\mathscr{G},\leq\mu}_{O_{E}}})^{\mathrm{red}} denote its reduced special fiber. This is the μ\mu-admissible locus in the Witt vector affine flag variety. We let FE˘F\supseteq\breve{E} be a nonarchimedean field extension with ring of integers OFO_{F} and algebraically closed residue field kFk_{F}.

Conjecture 1.

For every closed point x|(X𝒢μ(b))kF|x\in|({X_{\mathscr{G}}^{\leq\mu}(b)})_{{k_{F}}}| there exist a closed point y|(𝒜𝒢,μ)kF|y\in|({{\mathcal{A}}_{\mathscr{G},\mu}})_{k_{F}}| such that the formal neighborhoods Sht𝒢b,μOF^/x{\widehat{{{\mathrm{Sht}}^{\mathscr{G}_{b},\leq\mu}_{{O_{F}}}}}_{/x}} and 𝒢,μOF^/y{\widehat{{{\mathcal{M}}^{\mathscr{G},\leq\mu}_{O_{F}}}}_{/y}} are isomorphic v-sheaves.

The weaker version that we are able to prove at the moment is as follows.

Theorem 3.

With the notation as in 1 there is a connected v-sheaf in groups L+WG^\widehat{L^{+}_{W}G} such that for every xx there exists yy and a diagram

X{X}Sht𝒢b,μOF^/x{{\widehat{{{\mathrm{Sht}}^{\mathscr{G}_{b},\leq\mu}_{{O_{F}}}}}_{/x}}}𝒢,μOF^/y{{\widehat{{{\mathcal{M}}^{\mathscr{G},\leq\mu}_{O_{F}}}}_{/y}}}f\scriptstyle{f}g\scriptstyle{g}

where ff and gg are both L+WG^\widehat{L^{+}_{W}G}-bundles. In particular, Sht𝒢b,μOF^/x{\widehat{{{\mathrm{Sht}}^{\mathscr{G}_{b},\leq\mu}_{{O_{F}}}}}_{/x}} is non-empty and π0(Sht𝒢b,μOF^/x×F)=π0(𝒢,μOF^/y×F)\pi_{0}({\widehat{{{\mathrm{Sht}}^{\mathscr{G}_{b},\leq\mu}_{{O_{F}}}}}_{/x}}\times F)=\pi_{0}({\widehat{{{\mathcal{M}}^{\mathscr{G},\leq\mu}_{O_{F}}}}_{/y}}\times F).

Let us mention that this version of the local model diagram, although not completely satisfactory, has already found some applications in the recent representability results of Pappas and Rapoport [pappas2021padic].

Finally, to establish the identity π0(ShtG,b,[μ],𝒦×p)π0(X𝒢μ(b))\pi_{0}({\rm{Sht}}_{G,b,[\mu],{{\mathcal{K}}}}\times\mathbb{C}_{p})\cong\pi_{0}({X_{\mathscr{G}}^{\leq\mu}(b)}) one is reduced to proving that all the tubular neighborhoods of the local model 𝒢,μOp{{\mathcal{M}}^{\mathscr{G},\leq\mu}_{O_{\mathbb{C}_{p}}}} have connected generic fiber. As was observed in [AGLR22], the condition that these tubular neighborhoods are generically connected is a “kimberlite analogue” of normality. When 𝒢\mathscr{G} is hyperspecial, we prove this normality in [Specializ] using a Demazure resolution. Unfortunately, this part of the argument doesn’t generalize directly for general parahoric groups 𝒢\mathscr{G}, and the proof of normality will require more sophisticated tools.

Let us comment on the organization of this paper. The goal of the first chapter is to prove 1 using mainly generic fiber methods and taking as a black box some “integral method inputs”, which we justify in the second chapter. In the first two sections, we recall the relation between crystalline representations, Scholze’s theory of diamonds, Chen’s “generic” cyrstalline representations, and other geometric constructions that appear in modern rational pp-adic Hodge theory. This part of the paper is purely expository, but it is important for the rest of the argument to have these relations in mind. In the third section we discuss local Shimura varieties associated to tori and we review M. Chen’s results on this objects. In section four, the details of the proof of 1 are provided.

The goal of the second chapter is to prove 2 and 3. In the first section we collect some facts from integral pp-adic Hodge theory required for our argument to go through. In the second section, we recall the kimberlite structure of the local model. In the third section, we establish the main properties we need to construct a specialization map for moduli spaces of shtukas. In the final section, we prove 3 and finish the proof of 2.

Acknowledgements.

We thank the author’s PhD advisor, Sug Woo Shin, for his interest, his insightful questions and suggestions at every stage of the project, and for his generous constant encouragement and support during the PhD program. Laurent Fargues, David Hansen, Peter Scholze and Jared Weinstein for answering questions the author had on pp-adic Hodge theory and the theory of diamonds. Georgios Pappas and Michael Rapoport for bringing to our attention a serious flaw on an attempt we had to prove 1.

The author would also like to thank João Lourenço, Alexander Bertoloni, Rahul Dalal, Gabriel Dorfsman-Hopkins, Zixin Jiang, Dong Gyu Lim, Sander Mack-Crane, Gal Porat, Koji Shimizu for various degrees of help during the preparation of the manuscript.

This work was supported by the Doctoral Fellowship from the “University of California Institute for Mexico and the United States” (UC MEXUS) by the “Consejo Nacional de Ciencia y Tecnología” (CONACyT), and by Peter Scholze’s Leibniz price.

Notation.

When RR is a characteristic pp ring we let W(R)W(R) denote the ring of pp-typical Witt vectors of RR and we denote by φ:W(R)W(R)\varphi:W(R)\to W(R) the canonical lift of arithmetic Frobenius. For a Huber pair (R,R+)(R,R^{+}) we use the abbreviations Spd(R){\mathrm{Spd}}(R) and Spa(R){\mathrm{Spa}}(R) when the entry R+R^{+} is understood from the context. Whenever f:RRf:R\to R^{\prime} is a ring homomorphism (respectively morphism of Huber pairs), we let fop:Spec(R)Spec(R)f^{{\mathrm{op}}}:{\mathrm{Spec}}(R^{\prime})\to{\mathrm{Spec}}(R) (respectively fop:Spa(R)Spa(R)f^{{\mathrm{op}}}:{\mathrm{Spa}}({R^{\prime}})\to{\mathrm{Spa}}({R}) or fop:Spd(R)Spd(R)f^{{\mathrm{op}}}:{{\mathrm{Spd}}({R^{\prime}})}\to{{\mathrm{Spd}}({R})}) the morphism of spaces induced by ff.

We let kk be an algebraically closed field in characteristic pp. We let K0=W(k)[1p]K_{0}=W(k)[\frac{1}{p}]. We fix an algebraic closure K¯0{\overline{{K}}}_{0} of K0{K}_{0}, and we let Cp{C}_{p} denote the pp-adic completion of K¯0{\overline{{K}}}_{0}. We use KK to denote subfields of Cp{C}_{p} of finite degree over K0K_{0}. We let ΓK\Gamma_{K} denote the continuous automorphisms of Cp{C}_{p} that fix KK. If K¯0{\overline{K}}_{0} is the algebraic closure of K0K_{0} in Cp{C}_{p} then ΓK\Gamma_{K} is canonically isomorphic to Gal(K¯0/K){{\mathrm{Gal}}}({\overline{K}}_{0}/K), since K¯0{\overline{K}}_{0} is dense in Cp{C}_{p}. We denote by ΓKop\Gamma_{K}^{{\mathrm{op}}} the opposite group of ΓK\Gamma_{K} which we identify with the group of automorphisms of Spec(Cp){\mathrm{Spec}}({C}_{p}) over Spec(K0){\mathrm{Spec}}(K_{0}). We let WK0W_{{K}_{0}} denote the subset of continuous automorphisms of Aut(Cp){\mathrm{Aut}}({C}_{p}) that stabilize K0{K}_{0} and act as an integral power of φ\varphi on K0{K}_{0}. We topologize WK0W_{{K}_{0}} so that ΓK0\Gamma_{{K}_{0}} is an open subgroup. Suppose ECpE\subseteq{C}_{p} is a field of finite degree over p{\mathbb{Q}_{p}}, and let ps\mathbb{Q}_{p^{s}} be the maximal unramified extension of p{\mathbb{Q}_{p}} contained in EE. The extension E/psE/\mathbb{Q}_{p^{s}} is totally ramified and EpsK0E\otimes_{\mathbb{Q}_{p^{s}}}{K}_{0} is canonically isomorphic to the compositum E0:=EK0{E_{0}}:=E\cdot{K}_{0} inside of Cp{C}_{p}. We define an automorphism φ^Aut(E0)\hat{\varphi}\in{\mathrm{Aut}}({E_{0}}) as the automorphism that maps to Idφ{\mathrm{Id}}\otimes\varphi under this identification. We let WK0EW^{K_{0}}_{E} denote the continuous automorphisms of Cp{C}_{p} that stabilize E0{E_{0}} and act on E0{E_{0}} as φ^sn\hat{\varphi}^{s\cdot n} for some nn\in\mathbb{Z}. Notice that WK0EW^{K_{0}}_{E} fixes EE. The case of interest is when k=𝔽¯pk={\overline{\mathbb{F}}}_{p} but some of arguments require us to pass to larger fields. When k=𝔽¯pk={\overline{\mathbb{F}}}_{p} then K0=˘pK_{0}=\breve{\mathbb{Q}}_{p}, Cp=p{C}_{p}=\mathbb{C}_{p}, E0=E˘E_{0}=\breve{E} and WK0E=WEW^{K_{0}}_{E}=W_{E}.

Through out the text, GG will denote a connected reductive group over p{\mathbb{Q}_{p}}. In certain subsections we will add the additional assumptions that GG is quasi-split or even stronger that it is unramified over p{\mathbb{Q}_{p}}. We will point out when one of these two assumptions are taken. Whenever GG is quasi-split we will denote by AA a maximally split sub-torus of GG defined over p{\mathbb{Q}_{p}}, TT will denote the centralizer of AA which is also a torus and BB will denote a p{\mathbb{Q}_{p}}-rational Borel containing TT. We will denote by 𝒢\mathscr{G} a parahoric model of GG over p{\mathbb{Z}_{p}}. Sometimes we will assume 𝒢\mathscr{G} is hyperspecial in which case we will abuse notation and declare G=𝒢G=\mathscr{G}.

We will often work in the situation in which we are given an element bG(K0)b\in G(K_{0}) and/or a cocharacter μ:𝔾mGK\mu:\mathbb{G}_{m}\to G_{K}. In these circumstances [b][b] always denotes the φ\varphi-conjugacy class of bb in G(K0)G({K}_{0}) and [μ][\mu] denotes the unique geometric conjugacy class of cocharacters [μ]Hom(𝔾m,G¯p)[\mu]\in{\mathrm{Hom}}(\mathbb{G}_{m},G_{{{\overline{\mathbb{Q}}}_{p}}}) that is conjugate to μ\mu through the action of GCpG_{{C}_{p}}. Moreover, we let E/pE/{\mathbb{Q}_{p}} denote the field extension contained in Cp{C}_{p} over which [μ][\mu] is defined. We let E0E_{0} denote the compositum of EE and K0K_{0} in Cp{C}_{p}.

1. Geometric connected components.

1.1. The geometric perspective on crystalline representations.

1.1.1. Vector bundles, isocrystals and crystalline representations.

Let K0K_{0}, KK and Cp{C}_{p} be as above. With this setup, in [FF], Fargues and Fontaine construct a p{\mathbb{Q}_{p}}-scheme XFF,Cp{{\rm{X}}_{FF,{C}_{p}}}, known as “the Fargues–Fontaine curve”. Denote by Φ-ModK0\Phi{\text{-}\rm{Mod}}_{K_{0}} the category of isocrystals over K0K_{0}, this is a p\mathbb{Q}_{p}-linear Tannakian category. Fargues and Fontaine associate to (D,Φ)Φ-ModK0(D,\Phi)\in\Phi{\text{-}\rm{Mod}}_{K_{0}} a vector bundle (D,Φ){{\mathcal{E}}}(D,\Phi) that comes equipped with a ΓopK0\Gamma^{{\mathrm{op}}}_{K_{0}}-action that is compatible with the action on XFF,Cp{{\rm{X}}_{FF,{C}_{p}}} ([FF, Définition 10.2.1, Définition 9.1.1]).

The Beauville–Laszlo theorem ([Ber2, Lemma 5.2.9]), provides us with an equivalence from the category of vector bundles over XFF,Cp{{\rm{X}}_{FF,{C}_{p}}} to the category of triples (Me,M+dR,u)(M_{e},M^{+}_{\mathrm{dR}},u) where MeM_{e} is a free module over BeB_{e}, M+dRM^{+}_{\mathrm{dR}} is a free module over BdR+B_{\mathrm{dR}}^{+} and u:MeBeBdRM+dRB+dRBdRu:M_{e}\otimes_{B_{e}}B_{\mathrm{dR}}\to M^{+}_{\mathrm{dR}}\otimes_{B^{+}_{\mathrm{dR}}}B_{\mathrm{dR}} is an isomorphism. This is Berger’s category of BB-pairs. From this equivalence we get a recipe to construct vector bundles by replacing (or modifying) M+dRM^{+}_{\mathrm{dR}} by some other BdR+B_{\mathrm{dR}}^{+}-lattice Λ\Lambda contained in MdR:=M+dRB+dRBdRM_{\mathrm{dR}}:=M^{+}_{\mathrm{dR}}\otimes_{B^{+}_{\mathrm{dR}}}B_{\mathrm{dR}}. If we choose Λ\Lambda to be stable under the action of ΓK\Gamma_{K} on MdRM_{\mathrm{dR}}, then the new vector bundle produced in this way will have a ΓopK\Gamma^{{\mathrm{op}}}_{K}-action compatible with the one on XFF,Cp{{\rm{X}}_{FF,{C}_{p}}}. Fortunately, we can understand ΓK\Gamma_{K}-stable lattices in a concrete way as we recall below.

Given a finite dimensional KK vector space VV we can let FilV{\mathrm{Fil}}^{\bullet}V denote a decreasing filtration of KK vector spaces. If FilV{\mathrm{Fil}}^{\bullet}V satisfies FiliV=V{\mathrm{Fil}}^{i}V=V for i0i\ll 0 and Fili=0{\mathrm{Fil}}^{i}=0 for i0i\gg 0, we say that FilV{\mathrm{Fil}}^{\bullet}V is a bounded filtration. To such a filtration we can associate a BdR+B_{\mathrm{dR}}^{+}-lattice in VKBdRV\otimes_{K}B_{\mathrm{dR}} denoted Fil0(VKBdR){\mathrm{Fil}}^{0}(V\otimes_{K}B_{\mathrm{dR}}) and given by the formula:

Fil0(VKBdR)=i+j=0FiliVKFiljBdR.{\mathrm{Fil}}^{0}(V\otimes_{K}B_{\mathrm{dR}})=\sum_{i+j=0}{\mathrm{Fil}}^{i}V\otimes_{K}{\mathrm{Fil}}^{j}B_{\mathrm{dR}}.
Proposition 1.1.

([FF, Proposition 10.4.3]) Let VV be a finite dimensional vector space over KK. The map that assigns to a bounded filtration FilV{\mathrm{Fil}}^{\bullet}V the B+dRB^{+}_{\mathrm{dR}}-lattice Fil0(VKBdR){\mathrm{Fil}}^{0}(V\otimes_{K}B_{\mathrm{dR}}) in VKBdRV\otimes_{K}B_{\mathrm{dR}} gives a bijection between the set of bounded filtrations of VV and ΓK\Gamma_{K}-stable B+dRB^{+}_{\mathrm{dR}}-lattices Λ\Lambda in VKBdRV\otimes_{K}B_{\mathrm{dR}}. If we let ξ\xi denote a uniformizer of BdR+B_{\mathrm{dR}}^{+} then the inverse map is given by:

FiliΛ(V)=((ξiΛVKB+dR)/(ξiΛVKξB+dR))ΓK.{\mathrm{Fil}}^{i}_{\Lambda}(V)=\big{(}(\xi^{i}\cdot\Lambda\cap V\otimes_{K}B^{+}_{\mathrm{dR}})/(\xi^{i}\cdot\Lambda\cap V\otimes_{K}\xi\cdot B^{+}_{\mathrm{dR}})\big{)}^{\Gamma_{K}}.
Remark 1.2.

The careful reader may notice that the reference constructs FiliΛ(V){\mathrm{Fil}}^{i}_{\Lambda}(V) in a slightly different but equivalent way. We also point out the following. Let (a1,an)(a_{1},\dots a_{n}) denote a decreasing sequence of integers and let μ:𝔾mGLn\mu:\mathbb{G}_{m}\to{\mathrm{GL}}_{n} the character defined by μ(t)ei=taiei\mu(t)\cdot e_{i}=t^{a_{i}}e_{i}. We let Filμ(Kn){\mathrm{Fil}}^{\bullet}_{\mu}(K^{n}) denote the decreasing filtration associated μ\mu with ejFiliμe_{j}\in{\mathrm{Fil}}^{i}_{\mu} if ajia_{j}\geq i. Then the BdRB_{\mathrm{dR}} lattice associated to Filiμ{\mathrm{Fil}}^{i}_{\mu} is generated as a B+dRB^{+}_{\mathrm{dR}}-module by ξaiei\xi^{-a_{i}}e_{i}. Notice the change of signs! It will be important to keep track of this later in a computation.

Denote by ΦModFilK/K0\Phi{\rm{-ModFil}}_{K/K_{0}} the category of filtered Φ\Phi-modules that has as objects triples (D,Φ,FilDK)(D,\Phi,{\mathrm{Fil}}^{\bullet}D_{K}) where (D,Φ)(D,\Phi) is in Φ-ModK0\Phi{\text{-}\rm{Mod}}_{K_{0}} and FilDK{\mathrm{Fil}}^{\bullet}D_{K} is a bounded filtration on DK0KD\otimes_{K_{0}}K. To any triple as above Fargues and Fontaine associate a vector bundle (D,Φ,FilDK){{\mathcal{E}}}(D,\Phi,{\mathrm{Fil}}^{\bullet}D_{K}) equipped with a ΓopK\Gamma^{{\mathrm{op}}}_{K}-action compatible with the action on XFF,Cp{{\rm{X}}_{FF,{C}_{p}}}.

This induces an exact and fully-faithful functor

ΦModFilK/K0VecΓopKXFF,Cp\Phi{\rm{-ModFil}}_{K/K_{0}}\hookrightarrow{\mathrm{Vec}}^{\Gamma^{{\mathrm{op}}}_{K}}_{{{\rm{X}}_{FF,{C}_{p}}}}

from the category of filtered isocrystals to the category of ΓopK\Gamma^{{\mathrm{op}}}_{K}-equivariant vector bundles ([FF, Proposition 10.5.3]). Any object of VecΓopKXFF,Cp{\mathrm{Vec}}^{\Gamma^{{\mathrm{op}}}_{K}}_{{{\rm{X}}_{FF,{C}_{p}}}} in the essential image of this functor is called a crystalline vector bundle. Moreover, when the filtered isocrystal (D,Φ,FilDK)(D,\Phi,{\mathrm{Fil}}^{\bullet}D_{K}) is “weakly admissible” Fargues and Fontaine prove that (D,Φ,FilDK){{\mathcal{E}}}(D,\Phi,{\mathrm{Fil}}^{\bullet}D_{K}) is semi-stable of slope 0 ([FF, Définition 10.5.2, Proposition 10.5.6]). This implies that (D,Φ,FilDK){{\mathcal{E}}}(D,\Phi,{\mathrm{Fil}}^{\bullet}D_{K}) without the ΓopK\Gamma^{{\mathrm{op}}}_{K}-action is non-canonically isomorphic to 𝒪Xd{\mathcal{O}}_{X}^{d} for d=dimK(D)d=dim_{K}(D) so that H0(XFF,Cp,(D,Φ,FilDK)){\mathrm{H}}^{0}({{\rm{X}}_{FF,{C}_{p}}},{{\mathcal{E}}}(D,\Phi,{\mathrm{Fil}}^{\bullet}D_{K})) is a dd-dimensional p{\mathbb{Q}_{p}}-vector space endowed with a continuous ΓK\Gamma_{K}-action. This construction recovers the classical functor of Fontaine Vcris:ΦModFilK/K0w.a.RepΓK(p)V_{cris}:\Phi{\rm{-ModFil}}_{K/K_{0}}^{w.a.}\to{\mathrm{Rep}}_{\Gamma_{K}}({\mathbb{Q}_{p}}) that associates to a weakly admissible filtered isocrystals a crystalline representation.

1.1.2. Families of BdRB_{\mathrm{dR}}-lattices.

One can upgrade geometrically the situation using Scholze’s theory of diamonds, since this theory allows us to consider “families” of B+dRB^{+}_{\mathrm{dR}}-lattices as a geometric object. Recall that the Fargues-Fontaine curve XFF,Cp{{\rm{X}}_{FF,{C}_{p}}} has a counterpart 𝒳FF,Cp{{\mathcal{X}}_{FF,{C}_{p}^{\flat}}} in the category of adic spaces. Moreover it also has relative analogues. If SS be an affinoid perfectoid space in characteristic pp, Kedlaya and Liu ([Ked, §8.7]) associate to SS an adic space 𝒳FF,S{{\mathcal{X}}_{FF,S}} that they call the relative Fargues-Fontaine curve. This construction is functorial in Perf𝔽p{\rm{Perf}}_{\mathbb{F}_{p}}, the category of affinoid perfectoid spaces in characteristic pp. Moreover, if (D,Φ)(D,\Phi) is an isocrystal over K0K_{0} and SS is an affinoid perfectoid space over Spa(k,k){\mathrm{Spa}}(k,k) one can construct a vector bundle S(D,Φ){{\mathcal{E}}}_{S}(D,\Phi) over 𝒳FF,S{{\mathcal{X}}_{FF,S}}. This construction is also functorial in Perfk{\rm{Perf}}_{k} and recovers (D,Φ){{\mathcal{E}}}(D,\Phi) when S=Spa(Cp)S={{\rm{Spa}}({C}_{p}^{\flat})}. Now, given a perfectoid space SPerf𝔽pS\in{\rm{Perf}}_{\mathbb{F}_{p}} the data of a map SSpd(K0)S\to{{\rm{Spd}}({K_{0}})} induces a “section” at infinity :S𝒳FF,S\infty:S^{\sharp}\to{{\mathcal{X}}_{FF,S}}. This is a closed Cartier divisor as in [Ber2, Definition 5.3.7] and as such it has a good notion of meromorphic functions. We consider the moduli space of meromorphic modifications of S(D,Φ){{\mathcal{E}}}_{S}(D,\Phi) along \infty.

Definition 1.3.
  1. (1)

    We let Gr((D,Φ)){\mathrm{Gr}}({{\mathcal{E}}}(D,\Phi)) denote the functor from PerfSpd(K0)Sets{\rm{Perf}}_{{{\rm{Spd}}({K_{0}})}}\to{\rm{Sets}} that assigns:

    (S,f){((S,f),𝒱,α)}/(S^{\sharp},f)\mapsto\{((S^{\sharp},f),{{\mathcal{V}}},\alpha)\}/\cong

    Where (S,f)(S^{\sharp},f) is an untilt of SS over Spa(K0){{\rm{Spa}}({K_{0}})}, 𝒱{{\mathcal{V}}} is a vector bundle over 𝒳FF,S{{\mathcal{X}}_{FF,S}} and α:𝒱S(D,Φ)\alpha:{{\mathcal{V}}}\dasharrow{{\mathcal{E}}}_{S}(D,\Phi) is an isomorphism defined over 𝒳FF,S{{\mathcal{X}}_{FF,S}}\setminus\infty and meromorphic along \infty.

  2. (2)

    Let GrGLn{\mathrm{Gr}}_{GL_{n}} denote the functor from PerfpSets{\rm{Perf}}_{{{\mathbb{Q}_{p}}}}\to{\rm{Sets}} that assigns:

    (S,f){((S,f),𝒱,α)}/(S^{\sharp},f)\mapsto\{((S^{\sharp},f),{{\mathcal{V}}},\alpha)\}/\cong

    Where (S,f)(S^{\sharp},f) is an untilt of SS over Spa(p){\mathrm{Spa}}({\mathbb{Q}_{p}}), 𝒱{{\mathcal{V}}} is a vector bundle over Spec(B+dR(S)){\rm{Spec}}(B^{+}_{\mathrm{dR}}(S^{\sharp})) and α:𝒱𝒪n\alpha:{{\mathcal{V}}}\dasharrow\mathcal{O}^{\oplus n} is an isomorphism defined over Spec(BdR(S)){\rm{Spec}}(B_{\mathrm{dR}}(S^{\sharp})).

These moduli spaces are ind-representable by proper spatial diamonds over Spd(K0){{\rm{Spd}}(K_{0})} (and Spd(p,p){\mathrm{Spd}}({\mathbb{Q}_{p}},{\mathbb{Z}_{p}}) respectively) and after fixing a basis of DD we get an identification

GrGLn×pSpd(K0)Gr((D,Φ)){\mathrm{Gr}}_{GL_{n}}\times_{{\mathbb{Q}_{p}}}{{\rm{Spd}}({K_{0}})}\cong{\mathrm{Gr}}({{\mathcal{E}}}(D,\Phi))

([Hans, Proposition 2.12]). The second space is the BdRB_{\mathrm{dR}}-Grassmannian of the Berkeley notes ([Ber2, Definition 20.2.1]).

We can re-interpret the canonical map Spa(Cp)Spa(K0){{\rm{Spa}}({C}_{p})}\to{{\rm{Spa}}({K_{0}})} that comes from thinking of K0K_{0} as a subfield of Cp{C}_{p} as a map m:Spd(Cp)Spd(K0)m:{{\rm{Spd}}({{C}_{p}^{\flat}})}\to{{\rm{Spd}}({K_{0}})}. The basechange

Gr(S(D,Φ))×Spd(K0),mSpd(Cp){\mathrm{Gr}}({{\mathcal{E}}}_{S}(D,\Phi))\times_{{{\rm{Spd}}({K_{0}})},m}{{\rm{Spd}}({{C}_{p}^{\flat}})}

gets identified through Beauville–Laszlo glueing with the moduli space that parametrizes B+dRB^{+}_{\mathrm{dR}}-lattices contained in DK0BdRD\otimes_{{K_{0}}}B_{\mathrm{dR}}. This basechange comes equipped with ΓopK0\Gamma^{{\mathrm{op}}}_{K_{0}}-action and the set of ΓK\Gamma_{K}-invariant BdR+B_{\mathrm{dR}}^{+}-lattices in DK0BdRD\otimes_{{K_{0}}}B_{\mathrm{dR}} are in bijection with natural transformations Spd(K)Gr(S(D,Φ)){{\rm{Spd}}(K)}\to{\mathrm{Gr}}({{\mathcal{E}}}_{S}(D,\Phi)).

One defines Gr((D,Φ))admGr((D,Φ)){\mathrm{Gr}}({{\mathcal{E}}}(D,\Phi))^{\mathrm{adm}}\subseteq{\mathrm{Gr}}({{\mathcal{E}}}(D,\Phi)) to be the subsheaf of tuples for which 𝒱{{\mathcal{V}}} is fiberwise semi-stable of slope 0. From Kedlaya-Liu’s semi-continuity theorem ([Ber2, Theorem 22.2.1]) we know that this defines an open subfunctor which is called the admissible locus. Additionally, a map Spd(K)Gr((D,Φ)){{\rm{Spd}}(K)}\to{\mathrm{Gr}}({{\mathcal{E}}}(D,\Phi)) factors through Gr((D,Φ))adm{\mathrm{Gr}}({{\mathcal{E}}}(D,\Phi))^{\mathrm{adm}} if and only if it is coming from a weakly admissible filtration. An aspect of the situation is that if n=dimK0(D)n=dim_{K_{0}}(D) then Gr((D,Φ))adm{\mathrm{Gr}}({{\mathcal{E}}}(D,\Phi))^{\mathrm{adm}} admits a pro-étale GLn(p)¯{\underline{{\mathrm{GL}}_{n}({\mathbb{Q}_{p}})}}-local system 𝕃\mathbb{L} that “interpolates” between the nn-dimensional crystalline representations associated to (D,Φ)(D,\Phi) ([Hans, Proposition 2.14]).

The precise claim that we will use is the following.

Proposition 1.4.

If FilDK{\mathrm{Fil}}^{\bullet}D_{K} is a weakly admissible filtration of (D,Φ)(D,\Phi) and

ι:Spd(K)Gr((D,Φ))adm\iota:{{\rm{Spd}}(K)}\to{\mathrm{Gr}}({{\mathcal{E}}}(D,\Phi))^{\mathrm{adm}}

is the map associated to FilDK{\mathrm{Fil}}^{\bullet}D_{K}, then ι𝕃\iota^{*}\mathbb{L} is isomorphic to Vcris(D,Φ,Fil)V_{cris}(D,\Phi,{\mathrm{Fil}}^{\bullet}) when we regard ι𝕃\iota^{*}\mathbb{L} as a continuous ΓK\Gamma_{K}-representation.

Proof.

We omit the details. ∎

1.1.3. Isocrystals with GG-structure.

We keep the notation as above, we let GG denote a connected reductive group over p{\mathbb{Q}_{p}} and RepG(p){\mathrm{Rep}}_{G}({\mathbb{Q}_{p}}) denote the Tannakian category of p{\mathbb{Q}_{p}}-linear algebraic representations of GG. Recall the following definition:

Definition 1.5.

([Kott, §3]) An isocrystal with GG-structure {{\mathcal{F}}}, is a \otimes-exact functor :RepG(p)Φ-ModK0{{\mathcal{F}}}:{\mathrm{Rep}}_{G}({\mathbb{Q}_{p}})\to\Phi{\text{-}\rm{Mod}}_{K_{0}}.

To an element bG(K0)b\in G(K_{0}) and a representation (V,ρ)RepG(p)(V,\rho)\in{\mathrm{Rep}}_{G}({\mathbb{Q}_{p}}) we associate the isocrystal

(Db,ρ,Φb,ρ):=(VK0,ρ(b)(Idφ)),(D_{b,\rho},\Phi_{b,\rho}):=(V\otimes K_{0},\rho(b)\cdot({\mathrm{Id}}\otimes\varphi)),

ranging this construction over (V,ρ)(V,\rho) defines an isocrystal with GG-structure

b:RepG(p)Φ-ModK0.{{\mathcal{F}}}_{b}:{\mathrm{Rep}}_{G}({\mathbb{Q}_{p}})\to\Phi{\text{-}\rm{Mod}}_{K_{0}}.

We say that two elements b1,b2G(K0)b_{1},b_{2}\in G(K_{0}) are φ\varphi-conjugate to each other if b1=g1b2φ(g)b_{1}=g^{-1}\cdot b_{2}\cdot\varphi(g) for some element gG(K0)g\in G(K_{0}). This defines an equivalence relation and b1b_{1} is φ\varphi-conjugate to b2b_{2} if and only if b1{{\mathcal{F}}}_{b_{1}} is isomorphic to b2{{\mathcal{F}}}_{b_{2}}.

Now, since k=k¯k={\overline{k}} the set of equivalence classes of φ\varphi-conjugacy is the set B(G)B(G) defined and studied by Kottwitz ([Kott, §1.4]). Every isocrystal with GG-structure is isomorphic b{{\mathcal{F}}}_{b} for some bG(K0)b\in G({K}_{0}) and consequently B(G)B(G) parametrizes isomorphism classes of isocrystals with GG-structure. The set B(G)B(G) has a very rich theory, we recall some of it below.

Recall that the category of isocrystals over K0K_{0} is semisimple and the simple objects can be parametrized by rational numbers λ\lambda\in\mathbb{Q}. In particular, every object (D,Φ)Φ-ModK0(D,\Phi)\in\Phi{\text{-}\rm{Mod}}_{K_{0}} admits a canonical “slope” decomposition

(D,Φ)=λ(Dλ,Φλ).(D,\Phi)=\bigoplus_{\lambda\in\mathbb{Q}}(D_{\lambda},\Phi_{\lambda}).

If we let ωb\omega_{b} denote the composition Forgb{\mathrm{Forg}}\circ{{\mathcal{F}}}_{b} where

Forg:Φ-ModK0Vec(K0){\mathrm{Forg}}:\Phi{\text{-}\rm{Mod}}_{K_{0}}\to{\mathrm{Vec}}(K_{0})

denotes the forgetful functor to the category of vector spaces over K0K_{0}, then the slope decomposition defines \otimes-exact \mathbb{Q}-grading of ωb\omega_{b}. In turn, this grading can be interpreted as a slope morphism νb:𝔻GK0\nu_{b}:\mathbb{D}\to G_{K_{0}} of pro-algebraic groups, where 𝔻\mathbb{D} is the pro-torus with character set X(𝔻)=X^{*}(\mathbb{D})=\mathbb{Q}.

Consider the abstract group defined as a semi-direct product G(K0)φG(K_{0})\rtimes\varphi\cdot\mathbb{Z} where φ\varphi has its natural action on G(K0)G(K_{0}).

Definition 1.6.

([RZ, Definition 1.8]) For an element bG(K0)=G(K0)b\in G(K_{0})=G({K}_{0}) with conjugacy class [b]B(G)[b]\in B(G) we say that:

  1. (1)

    bb is decent if there exists an integer ss such that (bφ)s=(sνb)(p)φs(b\varphi)^{s}=(s\cdot\nu_{b})(p)\varphi^{s} as elements of G(K0)φG(K_{0})\rtimes\varphi\cdot\mathbb{Z}.

  2. (2)

    We say that bb is basic if the map νb:𝔻GK0\nu_{b}:\mathbb{D}\to G_{K_{0}} factors through the center of GG.

  3. (3)

    We say that [b]B(G)[b]\in B(G) is basic if all (equivalently some) element of [b][b] is basic.

Since we are assuming k=k¯k={\overline{k}} and that GG is connected reductive, every φ\varphi-conjugacy class [b]B(G)[b]\in B(G) contains a decent element [RZ, 1.11].

Assume for the rest of the subsection that GG is quasi-split. For bG(K0)b\in G(K_{0}) we can let νbdom\nu_{b}^{{\mathrm{dom}}} denote the unique map νbdom:𝔻TK0\nu_{b}^{{\mathrm{dom}}}:\mathbb{D}\to T_{K_{0}} in the conjugacy class of νb\nu_{b} that is dominant with respect to BB. The map νbdom\nu_{b}^{{\mathrm{dom}}} factors through AA and is defined over p{\mathbb{Q}_{p}}, so we can write νbdomX+(A)=(X+(T))Γp\nu_{b}^{{\mathrm{dom}}}\in X^{+}_{*}(A)_{\mathbb{Q}}=(X^{+}_{*}(T)\otimes_{\mathbb{Z}}\mathbb{Q})^{\Gamma_{{\mathbb{Q}_{p}}}} ([SugWoo, §4], Introduction of [CKV]). This gives a well defined map 𝒩:B(G)X+(A){\mathcal{N}}:B(G)\to X^{+}_{*}(A)_{\mathbb{Q}} usually referred to as the Newton map.

Recall Borovoi’s algebraic fundamental group π1(G)\pi_{1}(G) which can be defined as the quotient of X(T)X_{*}(T) by the co-root lattice. This group comes equipped with Γp\Gamma_{\mathbb{Q}_{p}} action and Kottwitz constructs a map κG:B(G)(π1(G))Γp\kappa_{G}:B(G)\to(\pi_{1}(G))_{\Gamma_{{\mathbb{Q}_{p}}}} that is usually referred to as the Kottwitz map.

An important result of Kottwitz [Kott] states that the map of sets

(νbdom,κG):B(G)𝒩×π1(G)Γp(\nu_{b}^{{\mathrm{dom}}},\kappa_{G}):B(G)\to{\mathcal{N}}\times\pi_{1}(G)_{\Gamma_{{\mathbb{Q}_{p}}}}

is injective. Now, if we are given an element μX(T)\mu\in X_{*}(T) with reflex field EE we may define an element

μ¯X+(A)=X+(T)Γp{\overline{\mu}}\in X_{*}^{+}(A)_{\mathbb{Q}}=X_{*}^{+}(T)_{\mathbb{Q}}^{\Gamma_{\mathbb{Q}_{p}}}

by averaging over the dominant elements inside a conjugacy class in the Galois orbit of μ\mu:

μ¯=1[E:p]γGal(E/p)μγ{\overline{\mu}}=\frac{1}{[E:{\mathbb{Q}_{p}}]}\sum_{\gamma\in{{\mathrm{Gal}}}(E/{\mathbb{Q}_{p}})}\mu^{\gamma}

We can now recall Kottwitz’ definition of the set B(G,μ)B(G)B(G,\mu)\subseteq B(G).

Definition 1.7.

The set B(G,μ)B(G,\mu) consists of those conjugacy classes [b]B(G)[b]\in B(G) for which κG([b])=[μ]\kappa_{G}([b])=[\mu] in π1(G)Γp\pi_{1}(G)_{\Gamma_{\mathbb{Q}_{p}}} and for which μ¯νbdomX+(A){\overline{\mu}}-\nu_{b}^{{\mathrm{dom}}}\in X_{*}^{+}(A)_{\mathbb{Q}} is a non-negative \mathbb{Q}-linear combination of positive co-roots.

1.1.4. GG-bundles and GG-valued crystalline representations.

In this section we assume that GG is reductive over p{\mathbb{Q}_{p}}, but not necessarily quasi-split. Just as in the case of schemes, one has a theory of GG-bundles over the relative Fargues-Fontaine curve that uses a Tannakian approach ([Ber2, Appendix to lecture 19]). Given SPerfkS\in{\rm{Perf}}_{k} and :RepG(p)Φ-ModK0{{\mathcal{F}}}:{\mathrm{Rep}}_{G}({\mathbb{Q}_{p}})\to\Phi{\text{-}\rm{Mod}}_{K_{0}} an isocrystal with GG-structure we can define a \otimes-exact functor ,S:RepG(p)Vec(𝒳FF,S){{\mathcal{E}}}_{{{\mathcal{F}}},S}:{\mathrm{Rep}}_{G}({\mathbb{Q}_{p}})\to{\mathrm{Vec}}({{\mathcal{X}}_{FF,S}}) by letting

,S(V,ρ)=S((V,ρ)),{{\mathcal{E}}}_{{{\mathcal{F}}},S}(V,\rho)={{\mathcal{E}}}_{S}({{\mathcal{F}}}(V,\rho)),

this defines a GG-bundle over 𝒳FF,S{{\mathcal{X}}_{FF,S}}. When we are given bG(K0)b\in G(K_{0}) we write b,S{{\mathcal{E}}}_{b,S} instead of b,S{{\mathcal{E}}}_{{{\mathcal{F}}}_{b},S}. This allow us to extend Tannakianly 2.16.

Definition 1.8.
  1. (1)

    Given {{\mathcal{F}}} an isocrystal with GG-structure, we let Gr(){\mathrm{Gr}}({{\mathcal{F}}}) denote the functor from PerfSpd(K0)Sets{\rm{Perf}}_{{{\rm{Spd}}({K_{0}})}}\to{\rm{Sets}} that assigns:

    (S,f){((S,f),𝒢,α)}/(S^{\sharp},f)\mapsto\{((S^{\sharp},f),{{\mathcal{G}}},\alpha)\}/\cong

    Where (S,f)(S^{\sharp},f) is an untilt of SS over Spa(K0){{\rm{Spa}}({K_{0}})}, 𝒢{{\mathcal{G}}} is a GG-bundle over 𝒳FF,S{{\mathcal{X}}_{FF,S}} and α:𝒢,S\alpha:{{\mathcal{G}}}\dasharrow{{\mathcal{E}}}_{{{\mathcal{F}}},S} is an isomorphism defined over 𝒳FF,S{{\mathcal{X}}_{FF,S}}\setminus\infty and meromorphic along \infty. When bG(K0)b\in G(K_{0}) we write Gr(b){\mathrm{Gr}}({{\mathcal{E}}}_{b}) instead of Gr(b){\mathrm{Gr}}({{\mathcal{F}}}_{b}).

  2. (2)

    We let GrG{\mathrm{Gr}}_{G} denote the functor from PerfSpd(p)Sets{\rm{Perf}}_{{\mathrm{Spd}}({\mathbb{Q}_{p}})}\to{\rm{Sets}} that assigns:

    (S,f){((S,f),𝒢,α)}/(S^{\sharp},f)\mapsto\{((S^{\sharp},f),{{\mathcal{G}}},\alpha)\}/\cong

    Where (S,f)(S^{\sharp},f) is an untilt of SS over Spa(p){\mathrm{Spa}}({\mathbb{Q}_{p}}), 𝒢{{\mathcal{G}}} is a GG-bundle over Spec(B+dR(S)){\rm{Spec}}(B^{+}_{\mathrm{dR}}(S^{\sharp})) and α:𝒢G\alpha:{{\mathcal{G}}}\dasharrow G is a trivialization defined over Spec(BdR(S)){\rm{Spec}}(B_{\mathrm{dR}}(S^{\sharp})).

As with the GLn{\mathrm{GL}}_{n} case, the two moduli spaces become isomorphic after basechange to Spd(K0){{\rm{Spd}}(K_{0})}. Instead of fixing a basis one has to fix an isomorphism of the fiber functors:

(ωcanK0)ω(\omega_{\mathrm{can}}\otimes K_{0})\cong\omega_{{\mathcal{F}}}

Here ω:RepG(p)Φ-ModK0K0Vec\omega_{{\mathcal{F}}}:{\mathrm{Rep}}_{G}({\mathbb{Q}_{p}})\to\Phi{\text{-}\rm{Mod}}_{K_{0}}\to K_{0}-{\mathrm{Vec}} denotes Forg{\rm{Forg}}\circ{{\mathcal{F}}}, and if bG(K0)b\in G(K_{0}) we write ωb\omega_{b} instead of ωb\omega_{{{\mathcal{F}}}_{b}}. A careful inspection of the construction of ωb\omega_{b} shows that (in contrast with ω\omega_{{\mathcal{F}}}) there is a canonical choice of isomorphism ωbωcan\omega_{b}\cong\omega_{\mathrm{can}}.

As with the GLn{\mathrm{GL}}_{n} case we can define the admissible locus as the subsheaf Gr(b)admGr(b){\mathrm{Gr}}({{\mathcal{E}}}_{b})^{\mathrm{adm}}\subseteq{\mathrm{Gr}}({{\mathcal{E}}}_{b}) of those tuples ((S,f),𝒢,α)((S^{\sharp},f),{{\mathcal{G}}},\alpha) such that x𝒢x^{*}{{\mathcal{G}}} is the trivial GG-bundle for every geometric point x:Spa(C,C+)Sx:{{\rm{Spa}}(C^{\prime},C^{\prime+})}\to S. This is again an open subsheaf and it admits a pro-étale G(p)¯{\underline{G(\mathbb{Q}_{p})}}-torsor which we will also denote by 𝕃\mathbb{L} ([Ber2, Theorem 22.5.2]).

To make contact with crystalline representations we recall how the Tannakian formalism interacts with filtrations, we refer the reader to [Saavedra] for the details. Recall that given a fiber functor ω:RepG(p)Vec(S)\omega:{\mathrm{Rep}}_{G}({\mathbb{Q}_{p}})\to{\mathrm{Vec}}(S) one can consider \otimes-exact filtrations Fil(ω){\mathrm{Fil}}^{\bullet}(\omega) ([Saavedra, Chapitre IV §2.1.1], [DOR, Definition 4.2.6]). To such a filtration one can associate a \otimes-grading (gr(Fil(ω)))(gr({\mathrm{Fil}}^{\bullet}(\omega))) which produces a morphism of algebraic groups over SS, μFil(ω):𝔾mAut¯(ω)\mu_{{\mathrm{Fil}}^{\bullet}(\omega)}:\mathbb{G}_{m}\to{\underline{{\mathrm{Aut}}}}^{\otimes}(\omega^{\prime}) [Saavedra, Chapitre IV §1.3] [DOR, Corollary 4.2.3]. Here ω=(gr(Fil(ω)))\omega^{\prime}=(gr({\mathrm{Fil}}^{\bullet}(\omega))), denotes the \otimes-exact functor obtained from the grading after we forget the graded structure. If x=Spec(C)x={\mathrm{Spec}}(C) is a geometric point of SS, we may find an isomorphism ωxωx\omega^{\prime}_{x}\cong\omega_{x} and this defines a conjugacy class of cocharacters into Aut¯(ωx){\underline{{\mathrm{Aut}}}}^{\otimes}(\omega_{x}). This conjugacy class is independent of the isomorphism chosen and we can denote it [μFil(ω)(x)][\mu_{{\mathrm{Fil}}^{\bullet}(\omega)}(x)].

Now, fix an isomorphism ωbωcan\omega_{b}\cong\omega_{\mathrm{can}}, we get an isomorphism Aut¯(ωb)GK0{\underline{{\mathrm{Aut}}}}^{\otimes}(\omega_{b})\cong G_{K_{0}}. Furthermore, if we are given a conjugacy class [μ][\mu] of morphisms μ:𝔾m,K¯0GK¯0\mu:\mathbb{G}_{m,{\overline{K}}_{0}}\to G_{{\overline{K}}_{0}} with field of definition E0/K0E_{0}/K_{0} ([DOR, Definition 6.1.2]) contained in Cp{C}_{p}, then we can consider the moduli functor of filtrations of ωb\omega_{b} of type [μ][\mu]. We denote this moduli space by

lωbE0,[μ]:Sch/E0Sets,\mathscr{F}l^{\omega_{b}}_{{E_{0}},[\mu]}:{\rm{Sch}}_{/{E_{0}}}\to{\rm{Sets}},

This functor does not depend of our choice of isomorphism ωbωcan\omega_{b}\cong\omega_{\mathrm{can}}.

Since GG is defined over p{\mathbb{Q}_{p}} the conjugacy class [μ][\mu] will be defined over a finite extension EE of p{\mathbb{Q}_{p}} contained in Cp{C}_{p} and lωbE0,[μ]\mathscr{F}l^{\omega_{b}}_{{{E_{0}}},[\mu]} is isomorphic to the basechange of a similarly defined moduli functor lωcanE,[μ]\mathscr{F}l^{\omega_{\mathrm{can}}}_{{E},[\mu]}. If F/EF/E is a finite extension and μ[μ]\mu\in[\mu] is a representative defined over FF then μ\mu defines a parabolic subgroup PμGFP_{\mu}\subseteq G_{F} and lωcanF,[μ]\mathscr{F}l^{\omega_{\mathrm{can}}}_{{F},[\mu]} is isomorphic to the generalized flag variety G/PμG/P_{\mu}. In particular, lωcanE,[μ]\mathscr{F}l^{\omega_{\mathrm{can}}}_{{E},[\mu]} and lωbE0,[μ]\mathscr{F}l^{\omega_{b}}_{{{E_{0}}},[\mu]} are represented by geometrically connected smooth projective schemes over Spec(E){\rm{Spec}}(E) and Spec(E0){\rm{Spec}}(E_{0}) respectively [DOR, Theorem 6.1.4]. The associated adic space (lωbE0,[μ])ad(\mathscr{F}l^{\omega_{b}}_{{{E_{0}}},[\mu]})^{{\mathrm{ad}}} evaluates on a complete sheafy Huber pair (R,R+)(R,R^{+}) over Spa(E0){{\rm{Spa}}(E_{0})} to the set:

(lωbE0,[μ])ad(R,R+)={Fil(ωb,R)[μFil(ω)(x)]=[μ]forallxSpa(R,R+)}(\mathscr{F}l^{\omega_{b}}_{{{E_{0}}},[\mu]})^{{\mathrm{ad}}}(R,R^{+})=\left\{{\mathrm{Fil}}^{\bullet}(\omega_{b,R})\mid[\mu_{{\mathrm{Fil}}^{\bullet}(\omega)}(x)]=[\mu]\,for\,all\,x\in{{\rm{Spa}}(R,R^{+})}\right\}

In particular, if K/K0K/K_{0} is a complete nonarchimedean field extension then

(lωbE0,[μ])ad(K,OK)=lωbE0,[μ](K).(\mathscr{F}l^{\omega_{b}}_{{{E_{0}}},[\mu]})^{{\mathrm{ad}}}(K,O_{K})=\mathscr{F}l^{\omega_{b}}_{{{E_{0}}},[\mu]}(K).

Just as [μ][\mu] allows us to define lωbE0,[μ]\mathscr{F}l^{\omega_{b}}_{{{E_{0}}},[\mu]} it also allows us to discuss boundedness conditions on affine BdRB_{\mathrm{dR}}-Grassmannians.

We can define subsheaves

Gr[μ]G,EGr[μ]G,EGrG×Spd(E),{\mathrm{Gr}}^{[\mu]}_{G,E}\subseteq{\mathrm{Gr}}^{\leq[\mu]}_{G,E}\subseteq{\mathrm{Gr}}_{G}\times{{\rm{Spd}}(E)},

given by the condition that for every geometric point, the pullback xmx^{*}m has relative position [μ][\mu] (bounded by [μ][\mu] respectively). The space Gr[μ]G,E{\mathrm{Gr}}^{\leq[\mu]}_{G,E} is spatial diamond that is proper over Spd(E){{\rm{Spd}}(E)} and Gr[μ]G,EGr[μ]G,E{\mathrm{Gr}}^{[\mu]}_{G,E}\subseteq{\mathrm{Gr}}^{\leq[\mu]}_{G,E} is an open subdiamond.

We can now compare the affine BdRB_{\mathrm{dR}}-Grassmannian to the flag variety. Recall that there is a Tannakianly defined Białynicki-Birula map [Ber2, Proposition 19.4.2],

π[μ]BB:Gr[μ]G,E(lωcanE,[μ]).\pi^{[\mu]}_{BB}:{\mathrm{Gr}}^{[\mu]}_{G,E}\to(\mathscr{F}l^{\omega_{\mathrm{can}}}_{{E},[-\mu]})^{\diamond}.

We emphasize that there is a change of signs which is a consequence of the change of signs that appeared in 1.2 and of our convention on filtrations.

One can also construct the following variation of the Białynicki-Birula map

π[μ]BB:GrE0[μ](b)lωbE0,[μ].\pi^{[\mu]}_{BB}:{\mathrm{Gr}}_{{E_{0}}}^{[\mu]}({{\mathcal{E}}}_{b})\to\mathscr{F}l^{\omega_{b}}_{{{E_{0}}},[-\mu]}.

This allows the following group-theoretically enhanced rephrasing of 1.1.

Proposition 1.9.

With notation as above and letting K/E0K/{E_{0}} be a finite field extension. Then, the Białynicki-Birula map induces a bijection

πBB[μ]:Gr[μ](b)(K,OK)(lωbE0,[μ])(K,OK),\pi_{BB}^{[\mu]}:{\mathrm{Gr}}^{[\mu]}({{\mathcal{E}}}_{b})(K,O_{K})\cong(\mathscr{F}l^{\omega_{b}}_{{{E_{0}}},[-\mu]})^{\diamond}(K,O_{K}),

of Spd(K){{\rm{Spd}}(K)}-valued points.

Proof.

We omit the details. ∎

Let RepcontΓK(p){\mathrm{Rep}}^{\mathrm{cont}}_{\Gamma_{K}}({\mathbb{Q}_{p}}) denote the category of continuous Galois representations. It is a neutral Tannakian category with canonical fiber functor ωΓKcan(W,τ)=W\omega^{\Gamma_{K}}_{\mathrm{can}}(W,\tau)=W. Recall that by the Tannakian formalism to specify a continuous representation ρ:ΓKG(p)\rho:\Gamma_{K}\to G({\mathbb{Q}_{p}}) (up to G(p)G({\mathbb{Q}_{p}})-conjugation) it is sufficient to specify a \otimes-exact functor :RepG(p)RepcontΓK(p){{\mathcal{F}}}:{\mathrm{Rep_{G}}}({\mathbb{Q}_{p}})\to{\mathrm{Rep}}^{\mathrm{cont}}_{\Gamma_{K}}({\mathbb{Q}_{p}}) for which ωΓKcan\omega^{\Gamma_{K}}_{\mathrm{can}}\circ{{\mathcal{F}}} is isomorphic to ωcan\omega_{\mathrm{can}}. Now, the full subcategory RepcrysΓK(p){\mathrm{Rep}}^{\mathrm{crys}}_{\Gamma_{K}}({\mathbb{Q}_{p}}) of crystalline representations is Tannakian and we can define crystalline representations with GG-structure as those \otimes-exact functors :RepG(p)RepcontΓK(p){{\mathcal{F}}}:{{\mathrm{Rep}}_{G}}({\mathbb{Q}_{p}})\to{\mathrm{Rep}}^{\mathrm{cont}}_{\Gamma_{K}}({\mathbb{Q}_{p}}) such that (V,ρ){{\mathcal{F}}}(V,\rho) is crystalline for all (V,ρ)RepG(p)(V,\rho)\in{\mathrm{Rep}}_{G}({\mathbb{Q}_{p}}).

Given a pair (b,μ)(b,\mu) with bG(K0)b\in G(K_{0}) and μ:𝔾m,KGK\mu:\mathbb{G}_{m,K}\to G_{K} we can construct a filtered isocrystal with GG-structure by defining a functor

b,μ:RepG(p)ΦModFilK/K0{{\mathcal{F}}}_{b,\mu}:{{\mathrm{Rep}}_{G}}({\mathbb{Q}_{p}})\to\Phi{\rm{-ModFil}}_{K/K_{0}}

such that

b,μ(V,ρ)=(Db,ρ,Φb,ρ,Filμ){{\mathcal{F}}}_{b,\mu}(V,\rho)=(D_{b,\rho},\Phi_{b,\rho},{\mathrm{Fil}}^{\bullet}_{\mu})

with

Filiμ(Db,ρK)=in(VK)(ρμ(t)v=tnv).{\mathrm{Fil}}^{i}_{\mu}(D_{b,\rho}\otimes K)=\oplus_{i\leq n}(V\otimes K)^{(\rho\circ\mu(t)\cdot v=t^{n}\cdot v)}.
Definition 1.10.

([RZ, Definition 1.18]). We say that a pair (b,μ)(b,\mu) with bG(K0)b\in G(K_{0}) and μ:𝔾mGK\mu:\mathbb{G}_{m}\to G_{K} is admissible if the functor b,μ{{\mathcal{F}}}_{b,\mu} only takes values on weakly admissible filtered isocrystals.

In general, even if (b,μ)(b,\mu) is admissible the functor Vcrisb,μV_{cris}\circ{{\mathcal{F}}}_{b,\mu} might not define a crystalline representation with GG-structure. Indeed, the composition ωΓKcanVcrisb,μ\omega^{\Gamma_{K}}_{\mathrm{can}}\circ V_{cris}\circ{{\mathcal{F}}}_{b,\mu} might fail to be isomorphic to ωcan\omega_{\mathrm{can}}. Nevertheless, this issue goes away if we impose that [b][b], the φ\varphi-conjugacy class of bb in G(K0)G({K}_{0}), lies on the Kottwitz set B(G,μ)B(G,\mu) [DOR, Proposition 11.4.3].

Associated to the admissible pair (b,μ)(b,\mu) there is a map yb,μ:Spd(K)lωbE0,[μ]y_{b,\mu}:{{\rm{Spd}}(K)}\to\mathscr{F}l^{\omega_{b}}_{{{E_{0}}},[-\mu]} defined by the filtration Filμ{\mathrm{Fil}}^{\bullet}_{\mu} on ωb\omega_{b}, and we can let xb,μ:Spd(K)Gr[μ]E0μ(b)x_{b,\mu}:{{\rm{Spd}}(K)}\to{\mathrm{Gr}}^{[\mu]}_{{E_{0}}_{\mu}}({{\mathcal{E}}}_{b}) denote the unique lift of yb,μy_{b,\mu} of 1.9. The following is a group-theoretic refinement of 1.4 and it is one of the key inputs from modern pp-adic Hodge theory that we will need later on.

Proposition 1.11.

Suppose that (b,μ)(b,\mu) is an admissible pair with [b]B(G,μ)[b]\in B(G,\mu), then the map xb,μ:Spd(K)Gr[μ]E0(b)x_{b,\mu}:{{\rm{Spd}}(K)}\to{\mathrm{Gr}}^{[\mu]}_{{E_{0}}}({{\mathcal{E}}}_{b}) factors through the admissible locus Gr[μ]E0(b)adm{\mathrm{Gr}}^{[\mu]}_{{E_{0}}}({{\mathcal{E}}}_{b})^{\mathrm{adm}}. Moreover, if 𝕃\mathbb{L} denotes the pro-étale G(p)¯{\underline{G({\mathbb{Q}_{p}})}}-torsor on Gr(b)adm{\mathrm{Gr}}({{\mathcal{E}}}_{b})^{\mathrm{adm}} then xb,μ𝕃x_{b,\mu}^{*}\mathbb{L} agrees with the crystalline representation with GG-structure defined by the functor Vcrisb,μV_{cris}\circ{{\mathcal{F}}}_{b,\mu}.

Proof.

We omit the details. ∎

1.1.5. M. Chen’s result on pp-adic Hodge Theory.

In this subsection, we assume that GG is an unramified reductive group over p{\mathbb{Q}_{p}}, this implies the group is quasi-split.

Definition 1.12.

([Chen, Définition 5.0.4], [CKV, Theorem 2.5.6]) Recall the notation of 1.7. We say that a pair ([b],[μ])([b],[\mu]) with [b]B(G,μ)[b]\in B(G,\mu) and μX(T)\mu\in X_{*}(T) is HN-irreducible if all the coefficients of μ¯νbdom{\overline{\mu}}-\nu_{b}^{{\mathrm{dom}}} as a \mathbb{Q}-linear combination of simple coroots are strictly positive.

The following result of M. Chen is a key ingredient to our computation.

Theorem 1.13.

([Chen, Théorème 5.0.6])

Let μ:𝔾mGK\mu:\mathbb{G}_{m}\to G_{K} be a morphism and let bG(K0)b\in G(K_{0}) be a decent element such that [b]B(G,μ)[b]\in B(G,\mu) and [μ][\mu] has reflex field EE. Suppose that the map Spec(K)lωbE0,[μ]{\rm{Spec}}(K)\to\mathscr{F}l^{\omega_{b}}_{{{{E}_{0}}},[-\mu]} induced by the filtration defined by μ\mu maps to the generic point of |lωcanE,[μ]||\mathscr{F}l^{\omega_{\mathrm{can}}}_{{E},[-\mu]}| under the map

lωbE0,[μ]=lωcanE,[μ]×EE0lωcanE,[μ],\mathscr{F}l^{\omega_{b}}_{{{{E}_{0}}},[-\mu]}=\mathscr{F}l^{\omega_{\mathrm{can}}}_{{E},[-\mu]}\times_{E}{{E}_{0}}\to\mathscr{F}l^{\omega_{\mathrm{can}}}_{{E},[-\mu]},

induced from the canonical isomorphism ωcanpsK0ωb\omega_{\mathrm{can}}\otimes_{\mathbb{Q}_{p^{s}}}K_{0}\cong\omega_{b}. Assume further that the pair ([b],[μ])([b],[\mu]) is HN-irreducible, then the following hold:

  1. (1)

    The pair (b,μ)(b,\mu) is admissible and defines a crystalline representation ξb,μ:ΓKG(p)\xi_{b,\mu}:\Gamma_{K}\to G({\mathbb{Q}_{p}}), well-defined up to conjugation.

  2. (2)

    The Zariski closure of ξb,μ(ΓK)G\xi_{b,\mu}(\Gamma_{K})\subseteq G contains GderG^{{\mathrm{der}}} and ξb,μ(ΓK)\xi_{b,\mu}(\Gamma_{K}) contains an open subgroup of Gder(p)G^{{\mathrm{der}}}({\mathbb{Q}_{p}}).

Remark 1.14.

M. Chen’s result is slightly stronger, but this is the formulation that we will use below. Observe that KK has infinite transcendence degree over EE, so it makes sense for a KK-point to lie topologically over the generic point of lωcanE,[μ]\mathscr{F}l^{\omega_{\mathrm{can}}}_{{E},[-\mu]}.

Combining 1.11 with Chen’s 1.13 and using the fact that every element bG(K0)b\in G(K_{0}) is φ\varphi-conjugate to a decent one we can deduce the following statement.

Corollary 1.15.

Let bG(K0)b\in G(K_{0}) and μX+(T)\mu\in X^{+}_{*}(T). Suppose that [b]B(G,μ)[b]\in B(G,\mu) and that ([b],[μ])([b],[\mu]) is HN-irreducible. For every finite extension K/K0K/K_{0} there is a map x:Spd(K)GrE[μ](b)admx:{{\rm{Spd}}(K)}\to{\mathrm{Gr}}_{E}^{[\mu]}({{\mathcal{E}}}_{b})^{\mathrm{adm}} such that if ρx:ΓKG(p)\rho_{x}:\Gamma_{K}\to G({\mathbb{Q}_{p}}) denotes the Galois representation associated to x𝕃x^{*}\mathbb{L}, then ρx(ΓK)Gder(p)\rho_{x}(\Gamma_{K})\cap G^{{\mathrm{der}}}({\mathbb{Q}_{p}}) is open in Gder(p)G^{{\mathrm{der}}}({\mathbb{Q}_{p}}).

1.2. The three actions.

1.2.1. The action of G(p)G({\mathbb{Q}_{p}}).

We fix bG(K0)b\in G(K_{0}), [μ]Hom(𝔾m,G¯p)[\mu]\in{\mathrm{Hom}}(\mathbb{G}_{m},G_{{\overline{\mathbb{Q}}}_{p}}) and we let E0=K0EE_{0}=K_{0}\cdot E denote the field of definition of [μ][\mu] over K0K_{0}. Let 𝒦G(p){{\mathcal{K}}}\subseteq G({\mathbb{Q}_{p}}) denote an open compact subgroup, recall the moduli space of pp-adic shtukas that appears in the Berkeley notes.

Definition 1.16.

([Ber2, Proposition 23.3.1]) We define ShtG,b,[μ],𝒦:PerfkSets{\rm{Sht}}_{G,b,[\mu],{{\mathcal{K}}}}:{\rm{Perf}}_{k}\to{\rm{Sets}} as the presheaf that assigns to SPerfkS\in{\rm{Perf}}_{k} isomorphism classes of tuples

((S,f),,α,𝒦,ι)((S^{\sharp},f),{{\mathcal{E}}},\alpha,\mathbb{P}_{{\mathcal{K}}},\iota)

such that:

  1. (1)

    (S,f)(S^{\sharp},f) is an untilt of SS over E0E_{0}.

  2. (2)

    {{\mathcal{E}}} is a GG-bundle on the relative Fargues-Fontaine 𝒳FF,S{{\mathcal{X}}_{FF,S}} curve whose fibers on geometric points of SS are isomorphic to the trivial GG-torsor.

  3. (3)

    α:b\alpha:{{\mathcal{E}}}\dasharrow{{\mathcal{E}}}_{b} is a modification of GG-bundles defined over 𝒳FF,SS{{\mathcal{X}}_{FF,S}}\setminus S^{\sharp} meromorphic along SS^{\sharp} and whose type is bounded by [μ][\mu] on geometric points.

  4. (4)

    𝒦\mathbb{P}_{{\mathcal{K}}} is a pro-étale 𝒦¯{\underline{{{\mathcal{K}}}}}-torsor and ι\iota is an identification of 𝒦×𝒦G(p)¯\mathbb{P}_{{\mathcal{K}}}{\times^{{{{\mathcal{K}}}}}}{{\underline{G({\mathbb{Q}}_{p})}}} with the pro-étale G(p)¯{\underline{G({\mathbb{Q}}_{p})}}-torsor that {{\mathcal{E}}} defines under the equivalence of [Ber2, Theorem 22.5.2].

It is proven in [Ber2] that the presheaves ShtG,b,[μ],𝒦{\rm{Sht}}_{G,b,[\mu],{{\mathcal{K}}}} are locally spatial diamonds over Spd(E0){{\rm{Spd}}(E_{0})}, and that whenever μ\mu is a minuscule conjugacy class of cocharacters then ShtG,b,[μ],𝒦{{\mathrm{Sht}}}_{G,b,[\mu],{{\mathcal{K}}}} is represented by the diamond associated to a smooth rigid-analytic space over Spa(E0){{\rm{Spa}}(E_{0})}.

Scholze and Weinstein construct a family of “Grothendieck–Messing” period morphisms

πGM,𝒦:ShtG,b,[μ],𝒦GrE0[μ](b)adm\pi_{GM,{{\mathcal{K}}}}:{\rm{Sht}}_{G,b,[\mu],{{\mathcal{K}}}}\to{\mathrm{Gr}}_{E_{0}}^{\leq[\mu]}({{\mathcal{E}}}_{b})^{\mathrm{adm}}

given by the formula:

((S,f),,α,𝒦,ι)((S,f),,α)((S^{\sharp},f),{{\mathcal{E}}},\alpha,\mathbb{P}_{{\mathcal{K}}},\iota)\mapsto((S^{\sharp},f),{{\mathcal{E}}},\alpha)

For every 𝒦{{\mathcal{K}}} this gives a surjective étale morphism of locally spatial diamonds. Moreover, this family is functorial on 𝒦{{\mathcal{K}}}. That is, if 𝒦1𝒦2{{\mathcal{K}}}_{1}\subseteq{{\mathcal{K}}}_{2} are two compact and open subsets then we get a commutative diagram of étale maps,

ShtG,b,[μ],𝒦1{{\rm{Sht}}_{G,b,[\mu],{{\mathcal{K}}}_{1}}}ShtG,b,[μ],𝒦2{{\rm{Sht}}_{G,b,[\mu],{{\mathcal{K}}}_{2}}}GrE0[μ](b)adm{{\mathrm{Gr}}_{E_{0}}^{\leq[\mu]}({{\mathcal{E}}}_{b})^{\mathrm{adm}}}π𝒦1,𝒦2\scriptstyle{\pi_{{{\mathcal{K}}}_{1},{{\mathcal{K}}}_{2}}}πGM,𝒦1\scriptstyle{\pi_{GM,{{\mathcal{K}}}_{1}}}πGM,𝒦2\scriptstyle{\pi_{GM,{{\mathcal{K}}}_{2}}}

where the transition map π𝒦1,𝒦2\pi_{{{\mathcal{K}}}_{1},{{\mathcal{K}}}_{2}} is the one deduced from assigning to 𝒦1\mathbb{P}_{{{\mathcal{K}}}_{1}} the corresponding 𝒦2¯{\underline{{{\mathcal{K}}}_{2}}}-torsor 𝒦1×𝒦1𝒦2\mathbb{P}_{{{\mathcal{K}}}_{1}}\times^{{{\mathcal{K}}}_{1}}{{\mathcal{K}}}_{2}. Also, if 𝒦1𝒦2{{\mathcal{K}}}_{1}\subseteq{{\mathcal{K}}}_{2} is normal of finite index then the transition maps π𝒦1,𝒦2\pi_{{{\mathcal{K}}}_{1},{{\mathcal{K}}}_{2}} are surjective and finite étale.

The flexibility of the category of diamonds allows us to define moduli spaces of pp-adic shtukas associated to an arbitrary compact subgroup 𝒦G(p){{\mathcal{K}}}^{\prime}\subseteq G({\mathbb{Q}_{p}}) including the case 𝒦={e}{{\mathcal{K}}}^{\prime}=\{e\} (which is usually referred to as the infinite level). Indeed, the set of compact open subgroups 𝒦G(p){{\mathcal{K}}}\subseteq G({\mathbb{Q}_{p}}) containing 𝒦{{\mathcal{K}}}^{\prime} is co-filtered and has intersection equal to 𝒦{{\mathcal{K}}}^{\prime}. We may define the limit of diamonds ShtG,b,[μ],𝒦=lim𝒦𝒦ShtG,b,[μ],𝒦{\rm{Sht}}_{G,b,[\mu],{{\mathcal{K}}}^{\prime}}=\varprojlim_{{{\mathcal{K}}}^{\prime}\subseteq{{\mathcal{K}}}}{\rm{Sht}}_{G,b,[\mu],{{\mathcal{K}}}}, together with a period map

πGM,𝒦:ShtG,b,[μ],𝒦GrE0[μ](b)adm.\pi_{GM,{{\mathcal{K}}}^{\prime}}:{\rm{Sht}}_{G,b,[\mu],{{\mathcal{K}}}^{\prime}}\to{\mathrm{Gr}}_{E_{0}}^{\leq[\mu]}({{\mathcal{E}}}_{b})^{\mathrm{adm}}.

This sheaf has the structure of a locally spatial diamond. Moreover, although the period map in general might not be étale it is always a quasi-proétale map [Et, Definition 10.1].

Moduli spaces of shtukas at infinite level (K={e})K^{\prime}=\{e\}) have the following pleasant description,

ShtG,b,[μ],(S)={(S,f),α:Gb}{\rm{Sht}}_{G,b,[\mu],\infty}(S)=\{(S^{\sharp},f),\alpha:G\dasharrow{{\mathcal{E}}}_{b}\}

where (S,f)(S^{\sharp},f) denotes an untilt of SS over E0E_{0}, GG denotes the trivial GG-bundle over 𝒳FF,S{{\mathcal{X}}_{FF,S}} and α\alpha is a modification of GG-bundles over 𝒳FF,SS{{\mathcal{X}}_{FF,S}}\setminus S^{\sharp}, meromorphic along SS^{\sharp} and whose type is bounded by [μ][\mu] on geometric points. The natural action of G(p)G(\mathbb{Q}_{p}) on the trivial torsor GG induces a right action of G(p)¯{\underline{G(\mathbb{Q}_{p})}} on ShtG,b,[μ],{\rm{Sht}}_{G,b,[\mu],\infty}.

1.2.2. Weil descent.

Recall that we defined WK0EW^{K_{0}}_{E} as the subset of continuous automorphisms of Cp{C}_{p} that act as φ^:=IdEφns\hat{\varphi}:={\mathrm{Id}}_{E}\otimes\varphi^{n\cdot s} on E0=EK0{{E}_{0}}=E\cdot K_{0}. It evidently contains ΓE0\Gamma_{{{E}_{0}}} and we may topologize WK0EW^{K_{0}}_{E} so that ΓE0WK0E\Gamma_{{{E}_{0}}}\hookrightarrow W^{K_{0}}_{E} is a topological immersion and an open map. We get a strict exact sequence of topological groups

eΓE0WK0Eφ^e.e\to\Gamma_{{{E}_{0}}}\to W^{K_{0}}_{E}\to\hat{\varphi}^{\mathbb{Z}}\to e.
Definition 1.17.

Let 𝒢{{\mathcal{G}}} be a v-sheaf over Spd(E0){{\rm{Spd}}({{E}_{0}})}, a Weil descent datum for 𝒢{{\mathcal{G}}} is an isomorphism τ:𝒢φ^op,𝒢\tau:{{\mathcal{G}}}\to\hat{\varphi}^{{\mathrm{op}},*}{{\mathcal{G}}} over Spd(E0){{\rm{Spd}}({{E}_{0}})}.

Weil descent datum provide us with actions by WopE0W^{{\mathrm{op}}}_{{{E}_{0}}} instead of only ΓopE0\Gamma^{{\mathrm{op}}}_{{{E}_{0}}}. But we need to endow our spaces with continuous actions rather than plain actions by an abstract group. An efficient way to endow a v-sheaf with a continuous action is to endow it with the action of the group sheaf WopE0¯{\underline{W^{{\mathrm{op}}}_{{{E}_{0}}}}} that parametrizes continuous maps |Spa(R,R+)|WopE0|{{\rm{Spa}}(R,R^{+})}|\to W^{{\mathrm{op}}}_{{{E}_{0}}}.

Lemma 1.18.

Suppose we are given a right ΓE0¯{\underline{\Gamma_{{{E}_{0}}}}}-action on a v-sheaf,

m:×ΓE0¯,m:{{\mathcal{F}}}\times{\underline{\Gamma_{{{E}_{0}}}}}\to{{\mathcal{F}}},

and suppose we are given a group homomorphism θ:WopE0Aut()\theta:W^{{\mathrm{op}}}_{{{E}_{0}}}\to{\mathrm{{\mathrm{Aut}}}}({{\mathcal{F}}}) such that θ(γop)=m(,γ)\theta(\gamma^{{\mathrm{op}}})=m(-,\gamma) for all constant elements γΓE0ΓE0¯\gamma\in\Gamma_{{{E}_{0}}}\subseteq{\underline{\Gamma_{{{E}_{0}}}}}. Then there is a unique right WK0E¯{\underline{W^{K_{0}}_{E}}}-action m:×WK0E¯m^{\prime}:{{\mathcal{F}}}\times{\underline{W^{K_{0}}_{E}}}\to{{\mathcal{F}}} with m|ΓE0¯=mm^{\prime}_{|{\underline{\Gamma_{{{E}_{0}}}}}}=m and θ(γop)=m(,γ)\theta(\gamma^{{\mathrm{op}}})=m^{\prime}(-,\gamma) for all constant elements γWK0E\gamma\in W^{K_{0}}_{E}.

Proof.

We omit the details. ∎

Proposition 1.19.

If (𝒢,τ)({{\mathcal{G}}},\tau) is a v-sheaf over Spd(E0){{\rm{Spd}}({{E}_{0}})} equipped with a Weil-descent datum then 𝒢×E0Spd(Cp){{\mathcal{G}}}\times_{{{E}_{0}}}{{\rm{Spd}}({C}_{p})} comes equipped with a right action by WK0E¯{\underline{W^{K_{0}}_{E}}}.

Given two diamonds with Weil descent datum (𝒢i,τi)({{\mathcal{G}}}_{i},\tau_{i}) over Spd(E0){{\rm{Spd}}({{E}_{0}})} and a map f:𝒢1𝒢2f:{{\mathcal{G}}}_{1}\to{{\mathcal{G}}}_{2} compatible with τi\tau_{i}, then the corresponding map f:𝒢1×E0Spd(Cp)𝒢2×E0Spd(Cp)f:{{\mathcal{G}}}_{1}\times_{{{E}_{0}}}{{\rm{Spd}}({C}_{p})}\to{{\mathcal{G}}}_{2}\times_{{{E}_{0}}}{{\rm{Spd}}({C}_{p})} is WK0E¯{\underline{W^{K_{0}}_{E}}}-equivariant.

Proposition 1.20.

There are canonical isomorphisms of v-sheaves over Spd(E0){{\rm{Spd}}({{E}_{0}})} compatible with the inclusion and the period morphism.

  1. (1)

    φ^op,Gr[μ]E0(b)=Gr[μ]E0(φs(b))\hat{\varphi}^{{\mathrm{op}},*}{\mathrm{Gr}}^{\leq[\mu]}_{{{E}_{0}}}({{\mathcal{E}}}_{b})={\mathrm{Gr}}^{\leq[\mu]}_{{{E}_{0}}}({{\mathcal{E}}}_{\varphi^{s}(b)}).

  2. (2)

    φ^op,Gr[μ]E0(b)adm=Gr[μ]E0(φs(b))adm\hat{\varphi}^{{\mathrm{op}},*}{\mathrm{Gr}}^{\leq[\mu]}_{{{E}_{0}}}({{\mathcal{E}}}_{b})^{\mathrm{adm}}={\mathrm{Gr}}^{\leq[\mu]}_{{{E}_{0}}}({{\mathcal{E}}}_{\varphi^{s}(b)})^{\mathrm{adm}}.

  3. (3)

    φ^op,ShtG,b,[μ],=ShtG,φs(b),[μ],\hat{\varphi}^{{\mathrm{op}},*}{\rm{Sht}}_{G,b,[\mu],\infty}={\rm{Sht}}_{G,\varphi^{s}(b),[\mu],\infty}

Proof.

We omit the details. ∎

Observe that bb and φ(b)\varphi(b) are φ\varphi-conjugate by bb. This induces an isomorphism of GG-bundles Φb:φ(b)b\Phi_{b}:{{\mathcal{E}}}_{\varphi(b)}\to{{\mathcal{E}}}_{b} and allows us to endow our moduli of interest with Weil descent datum. Using 1.19 we can endow ShtG,b,[μ],×Spd(Cp){\rm{Sht}}_{G,b,[\mu],\infty}\times{{\rm{Spd}}({C}_{p})} with a right WK0E¯{\underline{W^{K_{0}}_{E}}}-action. Moreover, the space ShtG,b,[μ],×Spd(Cp){\rm{Sht}}_{G,b,[\mu],\infty}\times{{\rm{Spd}}({C}_{p})} with its right WK0E¯{\underline{W^{K_{0}}_{E}}}-action is independent of the choice of b[b]b\in[b].

1.2.3. The action of Jb(p)J_{b}({\mathbb{Q}_{p}}).

In ([Kott, A.2]) Kottwitz shows how to associate to the \otimes-functor b:RepG(p)Φ-ModK0{{\mathcal{F}}}_{b}:{\mathrm{Rep}}_{G}({\mathbb{Q}_{p}})\to\Phi{\text{-}\rm{Mod}}_{K_{0}} a connected reductive group JbJ_{b} over p{\mathbb{Q}_{p}} whose group of p{\mathbb{Q}_{p}}-valued points is the φ\varphi-centralizer of bb,

Jb(p)={gG(K0)g1bφ(g)=b}.J_{b}({\mathbb{Q}_{p}})=\left\{g\in G(K_{0})\mid g^{-1}\cdot b\cdot\varphi(g)=b\right\}.

Let us recall this construction. For any p{\mathbb{Q}_{p}}-algebra RR we let Φ-ModK0pR\Phi{\text{-}\rm{Mod}}_{K_{0}}\otimes_{{\mathbb{Q}_{p}}}R denote the category whose objects are the same as in Φ-ModK0\Phi{\text{-}\rm{Mod}}_{K_{0}} and morphisms are

HomR((D1,Φ1),(D2,Φ2)):=HomΦ-ModK0((D1,Φ1),(D2,Φ2))pR{\mathrm{Hom}}_{R}((D_{1},\Phi_{1}),(D_{2},\Phi_{2})):={\mathrm{Hom}}_{\Phi{\text{-}\rm{Mod}}_{K_{0}}}((D_{1},\Phi_{1}),(D_{2},\Phi_{2}))\otimes_{\mathbb{Q}_{p}}R

There is a natural \otimes-functor βR:Φ-ModK0Φ-ModK0pR\beta_{R}:\Phi{\text{-}\rm{Mod}}_{K_{0}}\to\Phi{\text{-}\rm{Mod}}_{K_{0}}\otimes_{\mathbb{Q}_{p}}R and Jb(R)J_{b}(R) is defined as Aut(βRb){\mathrm{Aut}}^{\otimes}(\beta_{R}\circ{{\mathcal{F}}}_{b}). With JbJ_{b} defined in this way we have

Jb(p)=Aut(b)Aut(Forgb)=G(K0).J_{b}({\mathbb{Q}_{p}})={\mathrm{Aut}}^{\otimes}({{\mathcal{F}}}_{b})\subseteq{\mathrm{Aut}}^{\otimes}({\mathrm{Forg}}\circ{{\mathcal{F}}}_{b})=G(K_{0}).

Moreover, recall that the slope decomposition produces a map νb:𝔻GK0\nu_{b}:\mathbb{D}\to G_{K_{0}}, if we denote MbM_{b} the centralizer of νb\nu_{b} in GK0G_{K_{0}} then (Jb)K0(J_{b})_{K_{0}} is isomorphic to MbM_{b}. Since the elements of Jb(p)J_{b}({\mathbb{Q}_{p}}) act on b{{\mathcal{F}}}_{b} then we get a homomorphism of abstract groups Jb(p)Aut(b,S)J_{b}({\mathbb{Q}_{p}})\to{\mathrm{Aut}}({{\mathcal{E}}}_{b,S}) this already gives an action of Jb(p)J_{b}({\mathbb{Q}_{p}}) on ShtG,b,[μ],×Spd(Cp){\rm{Sht}}_{G,b,[\mu],\infty}\times{{\rm{Spd}}({C}_{p})}, but from this description it is not clear, for example, if this action is continuous with respect to the pp-adic topology on Jb(p)J_{b}({\mathbb{Q}_{p}}). A better approach is to endow our moduli spaces with an action of Jb(p)¯{\underline{J_{b}({\mathbb{Q}_{p}})}}. This can be done following [FS, Proposition III.4.7].

1.2.4. Group functoriality.

As we have discussed ShtG,b,[μ],×Spd(Cp){\rm{Sht}}_{G,b,[\mu],\infty}\times{{\rm{Spd}}({C}_{p})} comes equipped naturally with a left action by Jb(p)¯{\underline{J_{b}({\mathbb{Q}_{p}})}} and right actions by G(p)¯{\underline{G({\mathbb{Q}_{p}})}} and WK0E¯{\underline{W^{K_{0}}_{E}}}. Moreover, these three actions commute. Replacing the left Jb(p)¯{\underline{J_{b}({\mathbb{Q}_{p}})}}-action by a right Jb(p)¯{\underline{J_{b}({\mathbb{Q}_{p}})}}-action, we can say that ShtG,b,[μ],×Spd(Cp){\rm{Sht}}_{G,b,[\mu],\infty}\times{{\rm{Spd}}({C}_{p})} comes equipped with a right action by G(p)¯×Jb(p)¯×WK0E¯{\underline{G({\mathbb{Q}_{p}})}}\times{\underline{J_{b}({\mathbb{Q}_{p}})}}\times{\underline{W^{K_{0}}_{E}}}.

Fix a morphism f:GHf:G\to H of reductive groups over p{\mathbb{Q}_{p}}. Let bH=f(b)H(L)b_{H}=f(b)\in H(L) and let [μH]=[fμ][\mu_{H}]=[f\circ\mu]. This defines a morphism f,:ShtG,b,[μ],ShtH,bH,[μH],×E(μH)E(μ)f_{\infty,\infty}:{\rm{Sht}}_{G,b,[\mu],\infty}\to{\rm{Sht}}_{H,b_{H},[\mu_{H}],\infty}\times_{E(\mu_{H})}E(\mu) with [α:Gb][fα:HbH][\alpha:G\dashrightarrow{{\mathcal{E}}}_{b}]\mapsto[f_{*}\alpha:H\dashrightarrow{{\mathcal{E}}}_{b_{H}}].

Associated to bHb_{H} we can form JbH=Aut(bH)J_{b_{H}}={\mathrm{Aut}}^{\otimes}({{\mathcal{F}}}_{b_{H}}) and we get a morphism of algebraic groups f:JbJbHf:J_{b}\to J_{b_{H}}. Now, if we endow ShtH,bH,[μH],{\rm{Sht}}_{H,b_{H},[\mu_{H}],\infty} with the action induced by f:G(p)¯×Jb(p)¯H(p)¯×JbH(p)¯f:{\underline{G({\mathbb{Q}_{p}})}}\times{\underline{J_{b}({\mathbb{Q}_{p}})}}\to{\underline{H({\mathbb{Q}_{p}})}}\times{\underline{J_{b_{H}}({\mathbb{Q}_{p}})}} then f,×Cpf_{\infty,\infty}\times{C}_{p} is equivariant with respect to the G(p)¯×Jb(p)¯×WK0E¯{\underline{G({\mathbb{Q}_{p}})}}\times{\underline{J_{b}({\mathbb{Q}_{p}})}}\times{\underline{W^{K_{0}}_{E}}}-action.

We may also impose a level structure 𝒦G(p){{\mathcal{K}}}\subseteq G({\mathbb{Q}_{p}}) to get a family of morphisms f𝒦,f(𝒦):ShtG,b,[μ],𝒦ShtH,bH,[μH],f(𝒦)×E(μH)E(μ)f_{{{\mathcal{K}}},f({{\mathcal{K}}})}:{\rm{Sht}}_{G,b,[\mu],{{\mathcal{K}}}}\to{\rm{Sht}}_{H,b_{H},[\mu_{H}],f({{\mathcal{K}}})}\times_{E(\mu_{H})}E(\mu).

1.3. Geometric connected components in the case of tori.

In this section we study the case in which GG is a torus, we change our notation and let G=TG=T. We remark that this case was tackled by M. Chen in [ChenDet] and it is also discussed in [FarGeom]. We recall the story in a different language.

By the work of Kottwitz we know that every element of B(T)B(T) is basic and that the Kottwitz map κT:B(T)π1(T)Γp=X(T¯p)Γp\kappa_{T}:B({T})\to\pi_{1}({T})_{\Gamma_{\mathbb{Q}_{p}}}=X_{*}({T}_{{{\overline{\mathbb{Q}}}_{p}}})_{\Gamma_{\mathbb{Q}_{p}}} is a bijection. The sets B(T,μ)B({T},\mu) are singletons and are determined by the image of μ\mu in π1(T)Γp\pi_{1}({T})_{\Gamma_{\mathbb{Q}_{p}}}. In this case, moduli spaces of pp-adic shtukas are 0-dimensional.

Proposition 1.21.

If bB(T,μ)b\in B(T,\mu) then all the maps in the following diagram are isomorphisms:

GrE0[μ](b)adm{{\mathrm{Gr}}_{{{E}_{0}}}^{[\mu]}({{\mathcal{E}}}_{b})^{\mathrm{adm}}}GrE0[μ](b){{\mathrm{Gr}}_{{{E}_{0}}}^{[\mu]}({{\mathcal{E}}}_{b})}GrE0[μ](b){{\mathrm{Gr}}_{{{E}_{0}}}^{\leq[\mu]}({{\mathcal{E}}}_{b})}(lωbE0,[μ]){(\mathscr{F}l^{\omega_{b}}_{{{{E}_{0}}},[-\mu]})^{\diamond}}Spd(E0){{{\rm{Spd}}({{E}_{0}})}}πBB\scriptstyle{\pi_{BB}}
Proof.

We omit the details. ∎

In particular, on geometric points the situation is very simple. Indeed, the structure map GrCpμ(b)admSpd(Cp){\mathrm{Gr}}_{{C}_{p}}^{\leq{\mu}}({{\mathcal{E}}}_{b})^{\mathrm{adm}}\to{{\rm{Spd}}({C}_{p})} is an isomorphism and

ShtT,b,[μ],×CpT(p)¯×Spd(Cp),{\rm{Sht}}_{T,b,[\mu],\infty}\times{C}_{p}\cong{\underline{T({\mathbb{Q}_{p}})}}\times{{\rm{Spd}}({C}_{p})},

since every right T(p)¯{\underline{T({\mathbb{Q}_{p}})}}-torsor is trivial on Spd(Cp){\mathrm{Spd}}({C}_{p}). It becomes more interesting when we compare the action of Jb(p)¯{\underline{J_{b}({\mathbb{Q}_{p}})}} and WK0E¯{\underline{W^{K_{0}}_{E}}} to that of T(p)¯{\underline{T({\mathbb{Q}_{p}})}}.

We begin by discussing the action of Jb(p)¯{\underline{J_{b}({\mathbb{Q}_{p}})}}. Recall that if bb is basic then JbJ_{b} is an inner form of T{T}, and that since T{T} is commutative we must have T=Jb{T}=J_{b}. More precisely we have a canonical inclusion Jb(p)T(K0)J_{b}({\mathbb{Q}_{p}})\subseteq T(K_{0}) that induces an isomorphism onto T(p)T({\mathbb{Q}_{p}}), we denote by jbj_{b} this identification.

Proposition 1.22.

The action of T(p)¯{\underline{T({\mathbb{Q}_{p}})}} and Jb(p)¯{\underline{J_{b}({\mathbb{Q}_{p}})}} are inverse to each other. In other words, if SPerfCpS\in{\rm{Perf}}_{{C}_{p}}, f:|S|Jb(p)f:|S|\to J_{b}({\mathbb{Q}_{p}}) is a continuous map, and αShtT,b,[μ],×Cp\alpha\in{\rm{Sht}}_{T,b,[\mu],\infty}\times{C}_{p} then

αJb(p)f=αT(p)jb(f1).\alpha\cdot_{J_{b}({\mathbb{Q}_{p}})}f=\alpha\cdot_{T({\mathbb{Q}_{p}})}j_{b}(f^{-1}).
Proof.

We omit the details. ∎

Let us study the Weil group action. In contrast to the actions of Jb(p)J_{b}({\mathbb{Q}_{p}}) and T(p)T({\mathbb{Q}_{p}}) the action of WK0EW^{K_{0}}_{E} on ShtT,b,[μ],×Cp{\rm{Sht}}_{T,b,[\mu],\infty}\times{C}_{p} is not Cp{C}_{p}-linear. In particular, we can only compare the actions of WK0EW^{K_{0}}_{E} and T(p)T({\mathbb{Q}_{p}}) on those invariants of ShtT,b,[μ],×Cp{\rm{Sht}}_{T,b,[\mu],\infty}\times{C}_{p} that do not depend on the structure morphism to Spd(Cp){{\rm{Spd}}({C}_{p})}. In our case we compare the continuous actions on the topological space of connected components. As we have seen above this topological space is a topological right T(p)T({\mathbb{Q}_{p}})-torsor. Let xπ0(ShtT,b,[μ],×Cp)x\in\pi_{0}({\rm{Sht}}_{T,b,[\mu],\infty}\times{C}_{p}) and γWK0E\gamma\in W^{K_{0}}_{E}. We have

xWK0Eγ=xG(p)gγ,xx\cdot_{W^{K_{0}}_{E}}\gamma=x\cdot_{G({\mathbb{Q}_{p}})}g_{\gamma,x}

for a unique element gγ,xT(p)g_{\gamma,x}\in T({\mathbb{Q}_{p}}). Since the actions of WK0EW^{K_{0}}_{E} and T(p)T({\mathbb{Q}_{p}}) commute we get a group homomorphism g,x:WopE0/ET(p)g_{-,x}:W^{{\mathrm{op}}}_{{{E}_{0}}/E}\to T({\mathbb{Q}_{p}}). Since T(p)T({\mathbb{Q}_{p}}) is commutative this morphism is independent of xx. Moreover, the naive map of sets γgγ,x\gamma\mapsto g_{\gamma,x} which would usually not be a group homomorphism is a group homomorphism again by the commutativity of T(p)T({\mathbb{Q}_{p}}). We denote this later group homomorphism by

mT,μ:WK0ET(p).m_{T,\mu}:W^{K_{0}}_{E}\to T({\mathbb{Q}_{p}}).

The following line of reasoning is taken from [RZ, Lemma 1.22], which in turn is an elaboration of an argument in [KottwitzPointsonShimura, page 413/41]. Let EE denote a finite field extension of p{\mathbb{Q}_{p}} let {Torip}\{{\mathrm{Tori}}_{\mathbb{Q}_{p}}\} denote the category of tori defined over p{\mathbb{Q}_{p}}. Recall the functor X():{Torip}SetsX_{*}(-):\{{\mathrm{Tori}}_{\mathbb{Q}_{p}}\}\to{\mathrm{Sets}} given by the set of maps 𝔾mT¯p\mathbb{G}_{m}\to T_{{{\overline{\mathbb{Q}}}_{p}}}. Consider the subfunctor XEXX_{*}^{E}\subseteq X_{*} given by the subset of maps 𝔾mTE\mathbb{G}_{m}\to T_{E} that are already defined over EE. This functor is representable by ResE/p𝔾m{\mathrm{Res}}_{E/{\mathbb{Q}_{p}}}\mathbb{G}_{m} and comes equipped with a universal cocharacter μuXE(ResE/p𝔾m)\mu_{u}\in X_{*}^{E}({\mathrm{Res}}_{E/{\mathbb{Q}_{p}}}\mathbb{G}_{m}). In other words, given a torus T{Torip}T\in\{{\mathrm{Tori}}_{\mathbb{Q}_{p}}\} and μXE(T)\mu\in X^{E}_{*}(T) there is a unique map Nmμ:ResE/p𝔾mT{{\mathrm{Nm}}}_{\mu}:{\mathrm{Res}}_{E/{\mathbb{Q}_{p}}}\mathbb{G}_{m}\to T of algebraic groups over p{\mathbb{Q}_{p}} such that Nmμμu=μ{{\mathrm{Nm}}}_{\mu}\circ\mu_{u}=\mu in X(T)X_{*}(T). The universal cocharacter can be expressed on EE-points as follows:

E×eee(EE)×.E^{\times}\xrightarrow{e\mapsto e\otimes e}(E\otimes E)^{\times}.

Associated to μu\mu_{u} there is a unique element of [bu]B(ResE/p𝔾m,μu)[b_{u}]\in B({\mathrm{Res}}_{E/{\mathbb{Q}_{p}}}\mathbb{G}_{m},\mu_{u}). We fix a representative buResE/p𝔾m(˘p)b_{u}\in{\mathrm{Res}}_{E/{\mathbb{Q}_{p}}}\mathbb{G}_{m}(\breve{\mathbb{Q}}_{p}) and we abbreviate by mE,μum_{E,\mu_{u}} the map m(ResE/p𝔾m,μu)m_{({\mathrm{Res}}_{E/{\mathbb{Q}_{p}}}\mathbb{G}_{m},\mu_{u})} previously constructed.

We compute the WK0EW^{K_{0}}_{E}-action on |ShtT,b,[μ],×Cp||{\rm{Sht}}_{T,b,[\mu],\infty}\times{C}_{p}| by reduction to the universal case. Suppose we are given μXE(T)\mu\in X_{*}^{E}(T) and bT(K0)b\in T(K_{0}) with [b]B(T,μ)[b]\in B(T,\mu), then automatically (b,μ)(b,\mu) is admissible as in 1.10 and from the functoriality of the Kottwitz map we have that [Nmμ(bu)]=[b][{{\mathrm{Nm}}}_{\mu}(b_{{u}})]=[b] in B(T)B(T). We may replace bb by Nmμ(bu){{\mathrm{Nm}}}_{\mu}(b_{{u}}) and we get a norm morphism

Nmμ:ShtResE/p(𝔾m),bu,[μu],×CpShtT,b,[μ],×Cp.{{\mathrm{Nm}}}_{\mu}:{\rm{Sht}}_{{\mathrm{Res}}_{E/{\mathbb{Q}_{p}}}(\mathbb{G}_{m}),b_{u},[\mu_{u}],\infty}\times{C}_{p}\to{\rm{Sht}}_{T,b,[\mu],\infty}\times{C}_{p}.

This map is E××WK0EE^{\times}\times W^{K_{0}}_{E}-equivariant when the right space is endowed with the action induced from the map Nmμ:ResE/p(𝔾m)(p)=E×T(p){{\mathrm{Nm}}}_{\mu}:{\mathrm{Res}}_{E/{\mathbb{Q}_{p}}}(\mathbb{G}_{m})({\mathbb{Q}_{p}})=E^{\times}\to T({\mathbb{Q}_{p}}). We can deduce the following.

Proposition 1.23.

Let the notation be as above, for all T{Torip}T\in\{{\mathrm{Tori}}_{\mathbb{Q}_{p}}\} and μXE(T)\mu\in X_{*}^{E}(T) we have

mT,μ=NmμmE,μum_{T,\mu}={{\mathrm{Nm}}}_{\mu}\circ m_{E,\mu_{u}}

as maps WK0ET(p)W^{K_{0}}_{E}\to T({\mathbb{Q}_{p}}).

Proof.

Fix xπ0(ShtResE/p(𝔾m),bu,[μu],×Cp)x\in\pi_{0}({\rm{Sht}}_{{\mathrm{Res}}_{E/{\mathbb{Q}_{p}}}(\mathbb{G}_{m}),b_{u},[\mu_{u}],\infty}\times{C}_{p}) with image yπ0(ShtT,b,[μ],×Cp)y\in\pi_{0}({\rm{Sht}}_{T,b,[\mu],\infty}\times{C}_{p}) and γWK0E\gamma\in W^{K_{0}}_{E}. The equivariance of the norm map with respect to E×E^{\times} and WK0EW^{K_{0}}_{E} allow us to compute:

yT(p)mT,μ(γ)=yWK0Eγ=Nmμ(xWK0Eγ)=Nmμ(xE×mE,μu(γ))=yT(p)Nmμ(mE,μu(γ))\begin{split}y\cdot_{T({\mathbb{Q}_{p}})}m_{T,\mu}(\gamma)&=y\cdot_{W^{K_{0}}_{E}}\gamma\\ &={{\mathrm{Nm}}}_{\mu}(x\cdot_{W^{K_{0}}_{E}}\gamma)\\ &={{\mathrm{Nm}}}_{\mu}(x\cdot_{E^{\times}}m_{E,\mu_{u}}(\gamma))\\ &=y\cdot_{T({\mathbb{Q}_{p}})}{{\mathrm{Nm}}}_{\mu}(m_{E,\mu_{u}}(\gamma))\\ \end{split}

In turn, one can do an intricate but explicit computation using local class field theory to show mE,μu=ArtEm_{E,\mu_{u}}={{{\mathrm{Art}}}_{E}} the Artin reciprocity character.

The following statement summarizes the results discussed on this section:

Theorem 1.24.

(Compare with [ChenDet, Proposition 4.1]) Let TT be a torus over p{\mathbb{Q}_{p}}, bT(K0)b\in T(K_{0}), μX(T)\mu\in X_{*}(T) with [b]B(T,μ)[b]\in B(T,\mu). Let ECpE\subseteq{C}_{p} be the field of definition of μ\mu, let ArtE:WEE×{{\mathrm{Art}}}_{E}:W_{E}\to E^{\times} be Artin’s reciprocity character of local class field theory, let Nmμ:ResE/p(𝔾m)T{{\mathrm{Nm}}}_{\mu}:{\mathrm{Res}}_{E/{\mathbb{Q}_{p}}}(\mathbb{G}_{m})\to T be as above and let ArtK0,E{{\mathrm{Art}}}_{K_{0},E} denote the composition ArtK0,E:WK0EWEArtEE×,{{\mathrm{Art}}}_{K_{0},E}:W^{K_{0}}_{E}\to W_{E}\xrightarrow{{{\mathrm{Art}}}_{E}}E^{\times}, induced by the inclusion of fields EE0CpE\subseteq{E_{0}}\subseteq{C}_{p}. Then the following hold:

  1. (1)

    ShtT,b,[μ],×Cp{\rm{Sht}}_{T,b,[\mu],\infty}\times{C}_{p} is a trivial right T(p)¯{\underline{T({\mathbb{Q}_{p}})}}-torsor over Spd(Cp){{\rm{Spd}}({C}_{p})}.

  2. (2)

    If sπ0(ShtT,b,[μ],×Cp)s\in\pi_{0}({\rm{Sht}}_{T,b,[\mu],\infty}\times{C}_{p}) and (g,j,γ)T(p)×Jb(p)×WK0E(g,j,\gamma)\in T({\mathbb{Q}_{p}})\times J_{b}({\mathbb{Q}_{p}})\times W^{K_{0}}_{E} then

    s(g,j,γ)=s(gjb(j1)(NmμArtK0,E(γ)))s\cdot(g,j,\gamma)=s\cdot(g\cdot j_{b}(j^{-1})\cdot({{\mathrm{Nm}}}_{\mu}\circ{{\mathrm{Art}}}_{K_{0},E}(\gamma)))

    where jb:Jb(p)T(p)j_{b}:J_{b}({\mathbb{Q}_{p}})\to T({\mathbb{Q}_{p}}) is the isomorphism specified by regarding Jb(p)J_{b}({\mathbb{Q}_{p}}) as a subgroup of T(K0)T(K_{0}).

Since we have a full description of the Galois action we can easily compute from 1.24 the connected components of ShtT,b,[μ],{\rm{Sht}}_{T,b,[\mu],\infty} as a space over Spd(E0){{\rm{Spd}}({E_{0}})}. The computation is easier to explain with the following lemma:

Lemma 1.25.

Let 𝒦{{\mathcal{K}}} be a locally profinite group, let LL a pp-adic field with Galois group ΓL\Gamma_{L} and 𝕃𝒦\mathbb{L}_{{\mathcal{K}}} a pro-étale 𝒦¯{\underline{{{\mathcal{K}}}}}-torsor over Spd(L){{\rm{Spd}}(L)}. Define Triv(𝕃𝒦){{{\mathrm{Triv}}}}(\mathbb{L}_{{\mathcal{K}}}) as the moduli of trivializations of 𝕃𝒦\mathbb{L}_{{\mathcal{K}}}. Then:

  1. (1)

    If CC is the pp-adic completion of an algebraic closure of LL, then the choice of a map α:Spd(C)Triv(𝕃K)\alpha:{{\rm{Spd}}(C)}\to{{{\mathrm{Triv}}}}(\mathbb{L}_{K}) determines a group homomorphism ρα:ΓopL𝒦\rho_{\alpha}:\Gamma^{{\mathrm{op}}}_{L}\to{{\mathcal{K}}}.

  2. (2)

    For any k𝒦k\in{{\mathcal{K}}} we have ραk=k1ραk\rho_{\alpha\cdot k}=k^{-1}\cdot\rho_{\alpha}\cdot k.

  3. (3)

    The right action of 𝒦{{\mathcal{K}}} on π0(Triv(𝕃𝒦))\pi_{0}({{{\mathrm{Triv}}}}(\mathbb{L}_{{\mathcal{K}}})) is transitive.

  4. (4)

    If π0(α)\pi_{0}(\alpha) denotes the unique connected component to which |α||\alpha| maps to, then the stabilizer subgroup is given by the formula 𝒦π0(α)=ρα(ΓopL){{\mathcal{K}}}_{\pi_{0}(\alpha)}=\rho_{\alpha}(\Gamma^{{\mathrm{op}}}_{L}).

Proof.

We omit the details. ∎

Proposition 1.26.

Let 𝒦T(p){{\mathcal{K}}}\subseteq T({\mathbb{Q}_{p}}) denote the largest compact subgroup, the following statements hold.

  1. (1)

    π0(ShtT,b,[μ],)\pi_{0}({\rm{Sht}}_{T,b,[\mu],\infty}) is a free right T(p)/Nmμ(ArtK0,E(ΓE0))T({\mathbb{Q}_{p}})/{{\mathrm{Nm}}}_{\mu}({{\mathrm{Art}}}_{K_{0},E}(\Gamma_{{{E}_{0}}}))-torsor.

  2. (2)

    π0(ShtT,b,[μ],𝒦)=π0(ShtT,b,[μ],𝒦×Cp)\pi_{0}({\rm{Sht}}_{T,b,[\mu],{{\mathcal{K}}}})=\pi_{0}({\rm{Sht}}_{T,b,[\mu],{{\mathcal{K}}}}\times{C}_{p}) and it is a free right T(p)/𝒦T({\mathbb{Q}_{p}})/{{\mathcal{K}}}-torsor.

Proof.

The first statement follow directly from 1.25 and 1.24. The second statement follows from the fact that the action of ΓE0\Gamma_{{{E}_{0}}} is continuous so the action of this compact group factors through the maximal compact subgroup. ∎

1.4. Geometric connected components in the case of unramified groups.

In this section we compute π0(ShtG,b,[μ],×Cp)\pi_{0}({\rm{Sht}}_{G,b,[\mu],\infty}\times{C}_{p}) together with its right action by G(p)¯×Jb(p)¯×WK0E¯{\underline{G({\mathbb{Q}_{p}})}}\times{\underline{J_{b}({\mathbb{Q}_{p}})}}\times{\underline{W^{K_{0}}_{E}}}-action under the assumption that GG is an unramified reductive group and that (b,μ)(b,\mu) is HN-irreducible (1.12). Recall that in this case the reflex field is of the form E=psE=\mathbb{Q}_{p^{s}} for some ss\in\mathbb{N} and consequently E0=K0{{E}_{0}}=K_{0}. Nevertheless, with the notation we have chosen, WK0EW^{K_{0}}_{E} is the subgroup of WK0W_{K_{0}} of those automorphisms of Cp{C}_{p} that lift a power of φs:K0K0\varphi^{s}:K_{0}\to K_{0}. Recall that if GG is an unramified group then there is a connected reductive group over p{\mathbb{Z}_{p}} whose generic fiber is isomorphic to GG. We let 𝒢\mathscr{G} be such a model, and by abuse of notation we let G=𝒢G=\mathscr{G}. We let 𝒦=G(p){{\mathcal{K}}}=G({\mathbb{Z}_{p}}) and we let 𝒦˘=G(W(k))\breve{{{\mathcal{K}}}}=G(W(k)).

1.4.1. Connected components of affine Deligne–Lusztig Varieties.

As we prove in the second chapter the moduli spaces of pp-adic shtukas at parahoric level are closely related to a corresponding affine Deligne–Lusztig variety of the same level. In this section we recall what is known about the connected components of the later when GG is unramified and 𝒢=G\mathscr{G}=G is hyperspecial.

Since we are assuming k=k¯k={\overline{k}}, the group GK0G_{K_{0}} is split over K0K_{0} and we have by the Cartan decomposition a bijection 𝒦˘\G(K0)/𝒦˘=X+(T)\breve{{{\mathcal{K}}}}\backslash G(K_{0})/\breve{{{\mathcal{K}}}}=X^{+}_{*}(T) given by μpμ:=μ(p)T(K0).\mu\mapsto p^{\mu}:=\mu(p)\in T(K_{0}). There is a map κG:G(K0)π1(G)Γp\kappa_{G}:G(K_{0})\to\pi_{1}(G)_{\Gamma_{\mathbb{Q}_{p}}} constructed as follows. For an element bG(K0)b\in G(K_{0}) there is a unique μX+(T)\mu^{\prime}\in X^{+}_{*}(T) with b𝒦˘\pμ/𝒦˘b\in\breve{{{\mathcal{K}}}}\backslash p^{\mu^{\prime}}/\breve{{{\mathcal{K}}}}. Then κG(b)\kappa_{G}(b) is defined to be [μ][\mu^{\prime}], the induced class of μ\mu^{\prime} in π1(G)Γp\pi_{1}(G)_{\Gamma_{\mathbb{Q}_{p}}}. This map is a group homomorphism that is well-defined on φ\varphi-conjugacy classes. Moreover, the map constructed in this way descends to the Kottwitz map κG:B(G)π1(G)Γp\kappa_{G}:B(G)\to\pi_{1}(G)_{\Gamma_{\mathbb{Q}_{p}}} that we discussed above.

Recall that associated to a pair (b,μ)(b,\mu) one can associate an affine Deligne–Lusztig variety XGμ(b){X_{G}^{\leq\mu}(b)}. This is a perfect scheme ([Witt]) over Spec(k){\rm{Spec}}(k) whose kk-valued points can be described as:

XGμ(b)(k)={g𝒦˘G(K0)/𝒦˘g1bφ(g)𝒦˘\pμ/𝒦˘withμμ}{X_{G}^{\leq\mu}(b)}(k)=\left\{g\cdot\breve{{{\mathcal{K}}}}\in G(K_{0})/\breve{{{\mathcal{K}}}}\mid g^{-1}\cdot b\cdot\varphi(g)\in\breve{{{\mathcal{K}}}}\backslash p^{\mu^{\prime}}/\breve{{{\mathcal{K}}}}\;with\;\mu^{\prime}\leq\mu\right\}

In [CKV], [Nie] [Hu-Zhou], the problem of determining connected components of affine Deligne–Lusztig varieties is thoroughly discussed. Although the description in full generality is complicated, in our situation (𝒢\mathscr{G} reductive and 𝒦˘\breve{{{\mathcal{K}}}} hyperspecial) the problem is completely settled. In the references provided above, the connected components are described in three steps. The first step is to pass to the case of a simple adjoint group and it is done as follows:

Theorem 1.27.

([CKV, Corollary 2.4.2]) Let GadG^{{\mathrm{ad}}} denote the adjoint quotient of GG, then there are natural maps wGw_{G} and wGadw_{G^{{\mathrm{ad}}}} and elements cb,μπ1(G)c_{b,\mu}\in\pi_{1}(G) (cbad,μadπ1(Gad)c_{b_{{\mathrm{ad}}},\mu_{{\mathrm{ad}}}}\in\pi_{1}(G^{{\mathrm{ad}}}) respectively) well-defined up to multiplication by π1(G)Γp\pi_{1}(G)^{\Gamma_{{\mathbb{Q}_{p}}}} (respectively π1(Gad)Γp\pi_{1}(G^{{\mathrm{ad}}})^{\Gamma_{{\mathbb{Q}_{p}}}}) making the following diagram commutative and Cartesian:

XGμ(b){{X_{G}^{\leq\mu}(b)}}XGadμad(bad){{X_{G^{{\mathrm{ad}}}}^{\leq\mu_{{\mathrm{ad}}}}(b_{{\mathrm{ad}}})}}cb,μπ1(G)Γp¯×Spec(k){{\underline{c_{b,\mu}\pi_{1}(G)^{\Gamma_{{\mathbb{Q}_{p}}}}}}\times{\mathrm{Spec}}(k)}cbad,μadπ1(Gad)Γp¯×Spec(k){{\underline{c_{b_{{\mathrm{ad}}},\mu_{{\mathrm{ad}}}}\pi_{1}(G^{{\mathrm{ad}}})^{\Gamma_{{\mathbb{Q}_{p}}}}}}\times{\mathrm{Spec}}(k)}wG\scriptstyle{w_{G}}wGad\scriptstyle{w_{G^{{\mathrm{ad}}}}}

In the statement above the two sets that appear on the lower horizontal arrow should be interpreted as discrete topological groups so that the product is a disjoint union of copies of Spec(k){\rm{Spec}}(k). Once one reduces the problem to the adjoint case, one can further simplify to the simple adjoint case by observing that if G=G1×G2G=G_{1}\times G_{2} then we get a decomposition XGμ(b)=XG1μ1(b1)×kXG2μ2(b2){X_{G}^{\leq\mu}(b)}={{X_{G_{1}}^{\leq\mu_{1}}(b_{1})}}\times_{k}{{X_{G_{2}}^{\leq\mu_{2}}(b_{2})}}. This is how the first step is completed in the references.

The second step of the strategy is to reduce the general simple adjoint group case to the case in which (b,μ)(b,\mu) is HN-indecomposable. In this work we only consider the case in which (b,μ)(b,\mu) is already HN-irreducible which is a stronger condition to being indecomposable. For this reason we do not review this step.

The third and final step is the determination of π0(XGμ(b))\pi_{0}({X_{G}^{\leq\mu}(b)}) when GG is simple adjoint and (b,μ)(b,\mu) is HN-irreducible or when it is HN-indecomposable, but not HN-irreducible. Again, we only review the HN-irreducible case.

Theorem 1.28.

([Nie, Theorem 1.1], [CKV, Theorem 1.1], [Hu-Zhou, Theorem 8.1]) If (b,μ)(b,\mu) is HN-irreducible and G=GadG=G^{{\mathrm{ad}}} is simple and adjoint then wG:π0(XGμ(b))cb,μπ1(Gad)Γpw_{G}:\pi_{0}({X_{G}^{\leq\mu}(b)})\to c_{b,\mu}\pi_{1}(G^{{\mathrm{ad}}})^{\Gamma_{{\mathbb{Q}_{p}}}} is a bijection.

We can rephrase these results on connected components in a more geometric form. Let GderG^{{\mathrm{der}}} denote the derived subgroup of GG, let Gab:=G/GderG^{{\mathrm{ab}}}:=G/G^{{\mathrm{der}}} the maximal abelian quotient and denote by det:GG/Gder{\mathrm{det}}:G\to G/G^{{\mathrm{der}}} the quotient map.

Corollary 1.29.

If GderG^{{\mathrm{der}}} is simply connected and (b,μ)(b,\mu) is HN-irreducible, the natural map det:XGμ(b)XGabμab(bab){\mathrm{det}}:{X_{G}^{\leq\mu}(b)}\to{X_{G^{{\mathrm{ab}}}}^{\leq\mu_{{\mathrm{ab}}}}(b_{{\mathrm{ab}}})} induced from det:GGab{\mathrm{det}}:G\to G^{{\mathrm{ab}}} induces a bijection of connected components π0(XGμ(b))π0(XGabμab(bab))\pi_{0}({X_{G}^{\leq\mu}(b)})\cong\pi_{0}({X_{G^{{\mathrm{ab}}}}^{\leq\mu_{{\mathrm{ab}}}}(b_{{\mathrm{ab}}})}).

Remark 1.30.

Since XGabμab(bab){X_{G^{{\mathrm{ab}}}}^{\leq\mu_{{\mathrm{ab}}}}(b_{{\mathrm{ab}}})} is a disjoint union of copies of Spec(k){\rm{Spec}}(k) and kk is algebraically closed, we could say instead that the map XGμ(b)XGabμab(bab){X_{G}^{\leq\mu}(b)}\to{X_{G^{{\mathrm{ab}}}}^{\leq\mu_{{\mathrm{ab}}}}(b_{{\mathrm{ab}}})} has geometrically connected fibers.

1.4.2. The case Gder=GscG^{{\mathrm{der}}}=G^{{\mathrm{sc}}}.

In this subsection, we compute π0(ShtG,b,[μ],)\pi_{0}({\rm{Sht}}_{G,b,[\mu],\infty}) under the assumption that GG is unramified, GderG^{{\mathrm{der}}} is simply connected and (b,μ)(b,\mu) is HN-irreducible.

Proposition 1.31.

Let GG be as above, the determinant map induces a surjective map of locally spatial diamonds

det:ShtG,b,[μ],ShtGab,bab,[μab],{\mathrm{det}}:{\rm{Sht}}_{G,b,[\mu],\infty}\to{\rm{Sht}}_{G^{{\mathrm{ab}}},b^{{\mathrm{ab}}},[\mu^{{\mathrm{ab}}}],\infty}
Proof.

The key point is that since GderG^{{\mathrm{der}}} is simply connected by Kneser’s theorem [Kne] the map of groups G(p)Gab(p)G({\mathbb{Q}_{p}})\to G^{{\mathrm{ab}}}({\mathbb{Q}_{p}}) is surjective. We omit the details. ∎

Lemma 1.32.

Let GG and (b,μ)(b,\mu) be as above, let 𝒦G(p){{\mathcal{K}}}\subseteq G(\mathbb{Q}_{p}) be a hyperspecial subgroup. Then

det:ShtG,b,[μ],𝒦ShtGab,bab,[μab],det(𝒦){\mathrm{det}}:{\rm{Sht}}_{G,b,[\mu],{{\mathcal{K}}}}\to{\rm{Sht}}_{G^{{\mathrm{ab}}},b^{{\mathrm{ab}}},[\mu^{{\mathrm{ab}}}],{\mathrm{det}}({{\mathcal{K}}})}

has geometrically connected fibers.

Proof.

We can construct an exact sequence

e𝒢der𝒢det𝒢abee\to{{\mathcal{G}}}^{{\mathrm{der}}}\to{{\mathcal{G}}}\xrightarrow{{\mathrm{det}}}{{\mathcal{G}}}^{{\mathrm{ab}}}\to e

of reductive groups over p{\mathbb{Z}_{p}}. An application of Lang’s theorem proves that det(𝒦)=𝒢ab(p){\mathrm{det}}({{\mathcal{K}}})={{\mathcal{G}}}^{{\mathrm{ab}}}({\mathbb{Z}_{p}}) which is the maximal bounded subgroup of GabG^{{\mathrm{ab}}}. By functoriality of the specialization map, see [Specializ], we have a commutative diagram:

ShtG,b,[μ],𝒦×Cp{\mid{\rm{Sht}}_{G,b,[\mu],{{\mathcal{K}}}}\times{C}_{p}\mid}ShtGab,bab,[μab],det(𝒦)×Cp{\mid{\rm{Sht}}_{G^{{\mathrm{ab}}},b^{{\mathrm{ab}}},[\mu^{{\mathrm{ab}}}],{\mathrm{det}}({{\mathcal{K}}})}\times{C}_{p}\mid}XGμ(b){\mid{X_{G}^{\leq\mu}(b)}\mid}XGabμab(bab){\mid{X_{G^{{\mathrm{ab}}}}^{\leq\mu_{{\mathrm{ab}}}}(b_{{\mathrm{ab}}})}\mid}det\scriptstyle{{\mathrm{det}}}Sp𝒢\scriptstyle{{\mathrm{Sp}}_{{{\mathcal{G}}}}}Sp𝒢ab\scriptstyle{{\mathrm{Sp}}_{{{\mathcal{G}}}^{{\mathrm{ab}}}}}det\scriptstyle{{\mathrm{det}}}

The vertical maps give bijections of connected components by LABEL:thm:specializtheorem and the lower horizontal map induces a bijection of connected components by 1.29. ∎

The following proposition is a particular case of an unpublished result of Hansen and Weinstein that follows from the work done in [Hans]. We provide an alternative proof that follows the steps of the analogous statement in [Chen, Lemme 6.1.3].

Proposition 1.33.

Let GG be as above and let (b,μ)(b,\mu) be HN-irreducible. Then GrK0[μ](b)adm{\mathrm{Gr}}_{K_{0}}^{\leq[\mu]}({{\mathcal{E}}}_{b})^{\mathrm{adm}} is geometrically connected over Spd(K0){{\rm{Spd}}(K_{0})}.

Proof.

Let XX denote a geometric connected component of ShtG,b,[μ],𝒦{\rm{Sht}}_{G,b,[\mu],{{\mathcal{K}}}} for 𝒦=G(p){{\mathcal{K}}}=G({\mathbb{Z}_{p}}). By étaleness of πGM,𝒦\pi_{GM,{{\mathcal{K}}}} the set U:=πGM,𝒦(X)U:=\pi_{GM,{{\mathcal{K}}}}(X) is a connected open subset of GrCp[μ](b)adm{\mathrm{Gr}}_{{C}_{p}}^{\leq[\mu]}({{\mathcal{E}}}_{b})^{\mathrm{adm}}. We claim, this open subset doesn’t depend on the choice of XX. This immediately implies GrCp[μ](b)adm=πGM,𝒦(X){\mathrm{Gr}}_{{C}_{p}}^{\leq[\mu]}({{\mathcal{E}}}_{b})^{\mathrm{adm}}=\pi_{GM,{{\mathcal{K}}}}(X) and in particular that it is connected.

To prove the claim, take a connected component XX_{\infty} of ShtG,b,[μ],×Spd(Cp){\rm{Sht}}_{G,b,[\mu],\infty}\times{{\mathrm{Spd}}({{C}_{p}})} mapping to XX. Note that π,𝒦(X)=X\pi_{\infty,{{\mathcal{K}}}}(X_{\infty})=X since for groups 𝒦𝒦{{\mathcal{K}}}^{\prime}\subseteq{{\mathcal{K}}} of finite index the transition maps ShtG,b,[μ],𝒦×Spd(Cp)ShtG,b,[μ],𝒦×Spd(Cp){\rm{Sht}}_{G,b,[\mu],{{\mathcal{K}}}^{\prime}}\times{{\mathrm{Spd}}({{C}_{p}})}\to{\rm{Sht}}_{G,b,[\mu],{{\mathcal{K}}}}\times{{\mathrm{Spd}}({{C}_{p}})} are finite étale and surjective. This implies U=πGM,(X)U=\pi_{GM,\infty}(X_{\infty}). By 1.32 π0(ShtG,b,[μ],𝒦×Spd(Cp))π0(ShtGab,bab,[μab],det(𝒦)×Cp)\pi_{0}({\rm{Sht}}_{G,b,[\mu],{{\mathcal{K}}}}\times{{\mathrm{Spd}}({{C}_{p}})})\to\pi_{0}({\rm{Sht}}_{G^{{\mathrm{ab}}},b^{{\mathrm{ab}}},[\mu^{{\mathrm{ab}}}],{\mathrm{det}}({{\mathcal{K}}})}\times{C}_{p}) is a bijection. Let XX^{\prime} denote some other connected component, and let zz and zz^{\prime} denote the elements defined by XX and XX^{\prime} in π0(ShtG,b,[μ],𝒦×Spd(Cp))\pi_{0}({\rm{Sht}}_{G,b,[\mu],{{\mathcal{K}}}}\times{{\mathrm{Spd}}({{C}_{p}})}). Now, Gab(p)G^{{\mathrm{ab}}}(\mathbb{Q}_{p}) and Gab(p)/det(𝒦)G^{{\mathrm{ab}}}({\mathbb{Q}_{p}})/{\mathrm{det}}({{\mathcal{K}}}) act transitively on π0(ShtGab,bab,[μab],×Spd(Cp))\pi_{0}({\rm{Sht}}_{G^{{\mathrm{ab}}},b^{{\mathrm{ab}}},[\mu^{{\mathrm{ab}}}],\infty}\times{{\mathrm{Spd}}({{C}_{p}})}) and π0(ShtGab,bab,[μab],det(𝒦)×Spd(Cp))\pi_{0}({\rm{Sht}}_{G^{{\mathrm{ab}}},b^{{\mathrm{ab}}},[\mu^{{\mathrm{ab}}}],{\mathrm{det}}({{\mathcal{K}}})}\times{{\mathrm{Spd}}({{C}_{p}})}) respectively. This allow us to find an element gG(p)g\in G(\mathbb{Q}_{p}) with det(z)det(g)=det(z){\mathrm{det}}(z)\cdot{\mathrm{det}}(g)={\mathrm{det}}(z^{\prime}). Now π,𝒦(Xg)=X\pi_{\infty,{{\mathcal{K}}}}(X_{\infty}\cdot g)=X^{\prime}, which proves πGM,𝒦(X)=πGM,𝒦(X)\pi_{GM,{{\mathcal{K}}}}(X)=\pi_{GM,{{\mathcal{K}}}}(X^{\prime}) by equivariance of πGM,\pi_{GM,\infty}. ∎

Lemma 1.34.

Let 𝒦{{\mathcal{K}}} be a hyperspecial subgroup of G(p)G(\mathbb{Q}_{p}) and let 𝒦der=𝒦Gder(p){{\mathcal{K}}}^{{\mathrm{der}}}={{\mathcal{K}}}\cap G^{{\mathrm{der}}}(\mathbb{Q}_{p}). Let mπ0(ShtGab,bab,[μab],×Spd(Cp))m\in\pi_{0}({\rm{Sht}}_{G^{{\mathrm{ab}}},b^{{\mathrm{ab}}},[\mu^{{\mathrm{ab}}}],\infty}\times{{\mathrm{Spd}}({{C}_{p}})}) and let Xm=det1(m)X_{m}={\mathrm{det}}^{-1}(m). Then 𝒦der{{\mathcal{K}}}^{{\mathrm{der}}} acts transitively on π0(Xm)\pi_{0}(X_{m}).

Proof.

Since ShtGab,bab,[μab],×Spd(Cp){\rm{Sht}}_{G^{{\mathrm{ab}}},b^{{\mathrm{ab}}},[\mu^{{\mathrm{ab}}}],\infty}\times{{\rm{Spd}}({C}_{p})} is 0-dimensional, the space XmX_{m} is the collection of connected components of ShtG,b,[μ],×Spd(Cp){\rm{Sht}}_{G,b,[\mu],\infty}\times{{\rm{Spd}}({C}_{p})} that map to mm. Let x,yπ0(Xm)x,y\in\pi_{0}(X_{m}), using 1.32 we see that π,𝒦(x)=π,𝒦(y)\pi_{\infty,{{\mathcal{K}}}}(x)=\pi_{\infty,{{\mathcal{K}}}}(y), we let zz denote this connected component. Since ShtG,b,[μ],×Spd(Cp){\rm{Sht}}_{G,b,[\mu],\infty}\times{{\rm{Spd}}({C}_{p})} is a 𝒦¯{\underline{{{\mathcal{K}}}}}-torsor over ShtG,b,[μ],𝒦×Spd(Cp){\rm{Sht}}_{G,b,[\mu],{{\mathcal{K}}}}\times{{\rm{Spd}}({C}_{p})}, 𝒦{{\mathcal{K}}} acts transitively on the set of connected components of ShtG,b,[μ],×Spd(Cp){\rm{Sht}}_{G,b,[\mu],\infty}\times{{\rm{Spd}}({C}_{p})} over zz. In particular, there is an element g𝒦g\in{{\mathcal{K}}} with xg=yx\cdot g=y. Since det(x)=det(y){\mathrm{det}}(x)={\mathrm{det}}(y) we must have that mdet(g)=mm\cdot{\mathrm{det}}(g)=m, but the action of Gab(p)G^{{\mathrm{ab}}}(\mathbb{Q}_{p}) on π0(ShtG,b,[μ],×Spd(Cp))\pi_{0}({\rm{Sht}}_{G,b,[\mu],\infty}\times{{\rm{Spd}}({C}_{p})}) is simple so det(g)=e{\mathrm{det}}(g)=e and gGder(p)g\in G^{{\mathrm{der}}}(\mathbb{Q}_{p}) as we wanted to show. ∎

We can now describe connected components at infinite level.

Theorem 1.35.

Suppose GG is an unramified group over p{\mathbb{Q}_{p}}, that GderG^{{\mathrm{der}}} is simply connected and that (b,μ)(b,\mu) is HN-irreducible, then the determinant map

det,:ShtG,b,[μ],ShtGab,bab,[μab],{\mathrm{det}}_{\infty,\infty}:{\rm{Sht}}_{G,b,[\mu],\infty}\to{\rm{Sht}}_{G^{{\mathrm{ab}}},b^{{\mathrm{ab}}},[\mu^{{\mathrm{ab}}}],\infty}

has connected geometric fibers.

Proof.

Since ShtGab,bab,[μab],×Spd(Cp){\rm{Sht}}_{G^{{\mathrm{ab}}},b^{{\mathrm{ab}}},[\mu^{{\mathrm{ab}}}],\infty}\times{{\rm{Spd}}({C}_{p})} is isomorphic to Gab(p)¯×Spd(Cp){\underline{G^{{\mathrm{ab}}}({\mathbb{Q}_{p}})}}\times{{\rm{Spd}}({C}_{p})}, we may prove instead that the determinant map induces a bijection

π0(det):π0(ShtG,b,[μ],×Spd(Cp))π0(ShtGab,bab,[μab],×Spd(Cp)).\pi_{0}({\mathrm{det}}):\pi_{0}({\rm{Sht}}_{G,b,[\mu],\infty}\times{{\rm{Spd}}({C}_{p})})\to\pi_{0}({\rm{Sht}}_{G^{{\mathrm{ab}}},b^{{\mathrm{ab}}},[\mu^{{\mathrm{ab}}}],\infty}\times{{\rm{Spd}}({C}_{p})}).

Let xπ0(ShtG,b,[μ],×Spd(Cp))x\in\pi_{0}({\rm{Sht}}_{G,b,[\mu],\infty}\times{{\rm{Spd}}({C}_{p})}). Given KK a finite extension of K0K_{0} we let xKx_{K} denote the image of xx on π0(ShtG,b,[μ],×Spd(K))\pi_{0}({\rm{Sht}}_{G,b,[\mu],\infty}\times{{\rm{Spd}}(K)}) and let f:Spd(K)Gr[μ](b)admf:{{\rm{Spd}}(K)}\to{\mathrm{Gr}}^{\leq[\mu]}({{\mathcal{E}}}_{b})^{\mathrm{adm}} be a point whose associated crystalline representation is as in 1.15. Let Sf:=Triv(f(𝕃))S_{f}:={{\mathrm{Triv}}}(f^{*}(\mathbb{L})) the geometric realization of f𝕃f^{*}\mathbb{L}. This space is also the fiber over ff of the infinite level Grothendieck–Messing period map. Let sπ0(Sf)s\in\pi_{0}(S_{f}) be an element mapping to xKx_{K}. In summary we have taken a commutative diagram as follows:

{*}π0(ShtG,b,[μ],×Spd(Cp)){\pi_{0}({\rm{Sht}}_{G,b,[\mu],\infty}\times{{\rm{Spd}}({C}_{p})})}π0(Sf){\pi_{0}(S_{f})}π0(ShtG,b,[μ],×Spd(K)){\pi_{0}({\rm{Sht}}_{G,b,[\mu],\infty}\times{{\rm{Spd}}(K)})}x\scriptstyle{x}s\scriptstyle{s}xK\scriptstyle{x_{K}}f\scriptstyle{f}

We let GderxG^{{\mathrm{der}}}_{x} (respectively GderxKG^{{\mathrm{der}}}_{x_{K}} and GdersG^{{\mathrm{der}}}_{s}) denote the stabilizer in Gder(p)G^{{\mathrm{der}}}(\mathbb{Q}_{p}) of its action on π0(ShtG,b,[μ],×Spd(Cp))\pi_{0}({\rm{Sht}}_{G,b,[\mu],\infty}\times{{\rm{Spd}}({C}_{p})}) (respectively π0(ShtG,b,[μ],×Spd(K))\pi_{0}({\rm{Sht}}_{G,b,[\mu],\infty}\times{{\rm{Spd}}(K)}) and π0(Sf)\pi_{0}(S_{f})).

We have inclusions Gderx,GdersGderxKG^{{\mathrm{der}}}_{x},G^{{\mathrm{der}}}_{s}\subseteq G^{{\mathrm{der}}}_{x_{K}} and by Chen’s 1.13 (1.25) GdersG^{{\mathrm{der}}}_{s} is an open subgroup of Gder(p)G^{{\mathrm{der}}}(\mathbb{Q}_{p}). By 1.34, Gderx𝒦der=Gder(p)G^{{\mathrm{der}}}_{x}\cdot{{\mathcal{K}}}^{{\mathrm{der}}}=G^{{\mathrm{der}}}(\mathbb{Q}_{p}) which implies that GderxK𝒦der=Gder(p)G^{{\mathrm{der}}}_{x_{K}}\cdot{{\mathcal{K}}}^{{\mathrm{der}}}=G^{{\mathrm{der}}}(\mathbb{Q}_{p}) as well. In particular, the projection map 𝒦derGder(p)/GderxK{{\mathcal{K}}}^{{\mathrm{der}}}\to G^{{\mathrm{der}}}(\mathbb{Q}_{p})/G^{{\mathrm{der}}}_{x_{K}} is surjective. Since Gder(p)/GderxKG^{{\mathrm{der}}}(\mathbb{Q}_{p})/G^{{\mathrm{der}}}_{x_{K}} has the discrete topology and 𝒦der{{\mathcal{K}}}^{{\mathrm{der}}} is compact, we get that GderxKG^{{\mathrm{der}}}_{x_{K}} is closed and of finite index within Gder(p)G^{{\mathrm{der}}}(\mathbb{Q}_{p}). Moreover, since GderG^{{\mathrm{der}}} is quasi-split (even unramified) all of the simple factors of GderG^{{\mathrm{der}}} are isotropic. By Margulis theorem [Marg, Chapter II, Theorem 5.1] we can conclude that GderxK=Gder(p)G^{{\mathrm{der}}}_{x_{K}}=G^{{\mathrm{der}}}({\mathbb{Q}_{p}}). Since the argument doesn’t depend on the choice of xx the action of Gder(p)G^{{\mathrm{der}}}(\mathbb{Q}_{p}) on π0(ShtG,b,[μ],×Spd(K))\pi_{0}({\rm{Sht}}_{G,b,[\mu],\infty}\times{{\rm{Spd}}(K)}) is trivial.

Now, Spd(Cp)=limSpd(K){{\rm{Spd}}({C}_{p})}=\varprojlim{{\rm{Spd}}(K)} and we may use [Et, Lemma 11.22] to compute the action map

|ShtG,b,[μ],×Spd(Cp)|×Gder(p)|ShtG,b,[μ],×Spd(Cp)||{\rm{Sht}}_{G,b,[\mu],\infty}\times{{\rm{Spd}}({C}_{p})}|\times G^{{\mathrm{der}}}({\mathbb{Q}_{p}})\to|{\rm{Sht}}_{G,b,[\mu],\infty}\times{{\rm{Spd}}({C}_{p})}|

as the limit of the action maps

limKCp[|ShtG,b,[μ],×Spd(K)|×Gder(p)|ShtG,b,[μ],×Spd(K)|].\varprojlim_{K\subseteq{C}_{p}}[|{\rm{Sht}}_{G,b,[\mu],\infty}\times{{\rm{Spd}}(K)}|\times G^{{\mathrm{der}}}({\mathbb{Q}_{p}})\to|{\rm{Sht}}_{G,b,[\mu],\infty}\times{{\rm{Spd}}(K)}|].

Since in the transition maps |ShtG,b,[μ],×Spd(K1)||ShtG,b,[μ],×Spd(K2)||{\rm{Sht}}_{G,b,[\mu],\infty}\times{{\rm{Spd}}(K_{1})}|\to|{\rm{Sht}}_{G,b,[\mu],\infty}\times{{\rm{Spd}}(K_{2})}| every connected component on the source surjects onto a connected component on the target we get π0(ShtG,b,[μ],×Spd(Cp))=limπ0(ShtG,b,[μ],×Spd(K))\pi_{0}({\rm{Sht}}_{G,b,[\mu],\infty}\times{{\rm{Spd}}({C}_{p})})=\varprojlim\pi_{0}({\rm{Sht}}_{G,b,[\mu],\infty}\times{{\rm{Spd}}(K)}). This proves that Gder(p)G^{{\mathrm{der}}}(\mathbb{Q}_{p}) acts trivially on the set of connected components and defines a transitive action of Gab(p)G^{{\mathrm{ab}}}(\mathbb{Q}_{p}) on π0(ShtG,b,[μ],×Spd(Cp))\pi_{0}({\rm{Sht}}_{G,b,[\mu],\infty}\times{{\rm{Spd}}({C}_{p})}). In turn this proves π0(det)\pi_{0}({\mathrm{det}}) is bijective.

Corollary 1.36.

For GG, bb and μ\mu as in 1.35 and any compact subgroup 𝒦G(p){{\mathcal{K}}}\subseteq G(\mathbb{Q}_{p}) the map

ShtG,b,[μ],𝒦ShtGab,bab,[μab],det(𝒦){\rm{Sht}}_{G,b,[\mu],{{\mathcal{K}}}}\to{\rm{Sht}}_{G^{{\mathrm{ab}}},b^{{\mathrm{ab}}},[\mu^{{\mathrm{ab}}}],{\mathrm{det}}({{\mathcal{K}}})}

has non-empty connected geometric fibers.

Proof.

This follows from the identity ShtG,b,[μ],𝒦=ShtG,b,[μ],/𝒦¯{\rm{Sht}}_{G,b,[\mu],{{\mathcal{K}}}}={\rm{Sht}}_{G,b,[\mu],\infty}/{\underline{{{\mathcal{K}}}}} and that π0\pi_{0} is a left adjoint. ∎

Using functoriality and equivariance for the three actions we can describe the actions by the three groups on π0(ShtG,b,[μ],×Cp)\pi_{0}({\rm{Sht}}_{G,b,[\mu],\infty}\times{C}_{p}) in the spirit of 1.24.

Theorem 1.37.

(Compare with [ChenDet, Proposition 4.1]) Let GG, bb and μ\mu as in 1.35. Let ECpE\subseteq{C}_{p} be the field of definition of [μ][\mu], let ArtK0,E:WK0EE×{{{\mathrm{Art}}}}_{K_{0},E}:W^{K_{0}}_{E}\to E^{\times} be as in 1.24, let Nmμab:ResE/p(𝔾m)Gab{{\mathrm{Nm}}}_{\mu^{{\mathrm{ab}}}}:{\mathrm{Res}}_{E/{\mathbb{Q}_{p}}}(\mathbb{G}_{m})\to G^{{\mathrm{ab}}} be the norm map associated to μab\mu^{{\mathrm{ab}}} then:

  1. (1)

    The G(p)G({\mathbb{Q}_{p}}) right action on π0(ShtG,b,[μ],×Cp)\pi_{0}({\rm{Sht}}_{G,b,[\mu],\infty}\times{C}_{p}) makes it a trivial right Gab(p)G^{{\mathrm{ab}}}({\mathbb{Q}_{p}})-torsor.

  2. (2)

    If sπ0(ShtG,b,[μ],×Cp)s\in\pi_{0}({\rm{Sht}}_{G,b,[\mu],\infty}\times{C}_{p}) and jJb(p)j\in J_{b}({\mathbb{Q}_{p}}) then

    sJb(p)j=sGab(p)det(j1))s\cdot_{J_{b}({\mathbb{Q}_{p}})}j=s\cdot_{G^{{\mathrm{ab}}}({\mathbb{Q}_{p}})}{\mathrm{det}}(j^{-1}))

    where det=jbabdetb{\mathrm{det}}=j_{b^{{\mathrm{ab}}}}\circ{\mathrm{det}}_{b} with detb:Jb(p)Jbab(p){\mathrm{det}}_{b}:J_{b}({\mathbb{Q}_{p}})\to J_{b^{{\mathrm{ab}}}}({\mathbb{Q}_{p}}) the map obtained from functoriality of the formation of JbJ_{b}, respectively JbabJ_{b^{{\mathrm{ab}}}}, and where the map jbabj_{b^{{\mathrm{ab}}}} is the isomorphism jbab:Jbab(p)Gab(p)j_{b^{{\mathrm{ab}}}}:J_{b^{{\mathrm{ab}}}}({\mathbb{Q}_{p}})\cong G^{{\mathrm{ab}}}({\mathbb{Q}_{p}}) obtained from regarding Jbab(p)J_{b^{{\mathrm{ab}}}}({\mathbb{Q}_{p}}) as a subgroup of Gab(K0)G^{{\mathrm{ab}}}(K_{0}).

  3. (3)

    If sπ0(ShtG,b,[μ],×Cp)s\in\pi_{0}({\rm{Sht}}_{G,b,[\mu],\infty}\times{C}_{p}) and γWK0E\gamma\in W^{K_{0}}_{E} then

    sWK0Eγ=sGab(p)[NmμabArtK0,E(γ)].s\cdot_{W^{K_{0}}_{E}}\gamma=s\cdot_{G^{{\mathrm{ab}}}({\mathbb{Q}_{p}})}[{{\mathrm{Nm}}}_{\mu^{{\mathrm{ab}}}}\circ{{\mathrm{Art}}}_{K_{0},E}(\gamma)].

1.4.3. z-extensions.

In this subsection, we extend 1.35 to the case in which GderG^{{\mathrm{der}}} is not necessarily simply connected, but we still assume that GG is unramified and (b,μ)(b,\mu) is HN-irreducible. In what follows, we will denote by GscG^{{\mathrm{sc}}} the central simply connected cover of GderG^{{\mathrm{der}}} and we denote by G=G(p)/Im(Gsc(p))G^{\circ}=G({\mathbb{Q}_{p}})/{\mathrm{Im}}(G^{{\mathrm{sc}}}({\mathbb{Q}_{p}})). Notice that when GderG^{{\mathrm{der}}} is simply connected G=Gab(p)G^{\circ}=G^{{\mathrm{ab}}}({\mathbb{Q}_{p}}). In general, GG^{\circ} surjects onto Gab(p)G^{{\mathrm{ab}}}({\mathbb{Q}_{p}}) and the kernel is a finite group.

Recall the following definition used extensively by Kottwitz:

Definition 1.38.

A map of connected reductive groups f:GGf:G^{\prime}\to G is a z-extension if: ff is surjective, Z=ker(f)Z=ker(f) is central in GG^{\prime}, ZZ is isomorphic to a product of tori of the form ResFi/p𝔾m{\mathrm{Res}}_{F_{i}/{\mathbb{Q}_{p}}}\mathbb{G}_{m} for some finite extensions Fi¯pF_{i}\subseteq{\overline{\mathbb{Q}}}_{p} and GG^{\prime} has simply connected derived subgroup.

By [RationalConj, Lemma 1.1] whenever GG is an unramified group over p{\mathbb{Q}_{p}} that splits over ps\mathbb{Q}_{p^{s}}, there exists a zz-extension GGG^{\prime}\to G with ZZ isomorphic to a product of tori of the form Resps/p𝔾m{\mathrm{Res}}_{\mathbb{Q}_{p^{s}}/{\mathbb{Q}_{p}}}\mathbb{G}_{m}. In particular, it is unramified as well.

In [Kott] Kottwitz proves that for any reductive group GG and cocharacter μ\mu the natural morphism B(G)B(Gad)B(G)\to B(G^{{\mathrm{ad}}}) induces a bijection B(G,μ)B(Gad,μad)B(G,\mu)\cong B(G^{{\mathrm{ad}}},\mu^{{\mathrm{ad}}}). From here one can deduce the following statement.

Lemma 1.39.

Let ATBGA\subseteq T\subseteq B\subseteq G as in the notation section. Assume that ps\mathbb{Q}_{p^{s}} is a splitting field for GG. Let μX+(T)\mu\in X_{*}^{+}(T), [b]B(G,μ)[b]\in B(G,\mu), and f:GGf:G^{\prime}\to G a zz-extension with Z=ker(f)Z=ker(f) isomorphic to a finite product of copies of Resps/p𝔾m{\mathrm{Res}}_{\mathbb{Q}_{p^{s}}/{\mathbb{Q}_{p}}}\mathbb{G}_{m}. Let T=f1(T)T^{\prime}=f^{-1}(T) denote the maximal torus of GG^{\prime} projecting onto TT. Then:

  1. (1)

    For any choice of μX(T)+\mu^{\prime}\in X_{*}(T^{\prime})^{+} lifting μ\mu there is a unique lift [b]B(G)[b^{\prime}]\in B(G^{\prime}) lifting [b][b] with [b]B(G,μ)[b^{\prime}]\in B(G^{\prime},\mu^{\prime}).

  2. (2)

    For bb^{\prime} and μ\mu^{\prime} as in the previous claim (b,μ)(b,\mu) is HN-irreducible if and only if (b,μ)(b^{\prime},\mu^{\prime}) is HN-irreducible.

  3. (3)

    If EE is the field of definition of μ\mu with pEps{\mathbb{Q}_{p}}\subseteq E\subseteq\mathbb{Q}_{p^{s}} then there is a lift μX(T)+\mu^{\prime}\in X_{*}(T^{\prime})^{+} with field of definition EE.

Proof.

The first claim follows directly from the identifications B(G,μ)=B(Gad,μad)=B(G,μ)B(G,\mu)=B(G^{{\mathrm{ad}}},\mu^{{\mathrm{ad}}})=B(G^{\prime},\mu^{\prime}). The second claim follows from the first claim, from the fact that Z:=ker(f)Z:=ker(f) is central and from the fact that HN-irreducibility can be checked on the adjoint quotient. For the third claim consider the exact sequence of Γp\Gamma_{\mathbb{Q}_{p}}-modules:

eX(Z)X(T)X(T)ee\to X_{*}(Z)\to X_{*}(T^{\prime})\to X_{*}(T)\to e

One can use Shapiro’s lemma to prove X(T)ΓEX(T)ΓEX_{*}(T^{\prime})^{\Gamma_{E}}\to X_{*}(T)^{\Gamma_{E}} is surjective.

Proposition 1.40.

Suppose that GG^{\prime} is an unramified group, (b,μ)(b^{\prime},\mu^{\prime}) a pair with [b]B(G,μ)[b^{\prime}]\in B(G^{\prime},\mu^{\prime}), suppose that ZGZ\subseteq G^{\prime} is a central torus, and let G=G/ZG=G^{\prime}/Z with projection map f:GGf:G^{\prime}\to G. Let b=f(b)b=f(b^{\prime}) and μ=fμ\mu^{\prime}=f\circ\mu the following hold:

  1. (1)

    Gr[μ](b)Gr[μ](b){\mathrm{Gr}}^{\leq[\mu^{\prime}]}({{\mathcal{E}}}_{b^{\prime}})\to{\mathrm{Gr}}^{\leq[\mu]}({{\mathcal{E}}}_{b}) is an isomorphism.

  2. (2)

    Gr[μ](b)admGr[μ](b)adm{\mathrm{Gr}}^{\leq[\mu^{\prime}]}({{\mathcal{E}}}_{b^{\prime}})^{\mathrm{adm}}\to{\mathrm{Gr}}^{\leq[\mu]}({{\mathcal{E}}}_{b})^{\mathrm{adm}} is an isomorphism.

  3. (3)

    If 𝕃G\mathbb{L}_{G^{\prime}} (respectively 𝕃G\mathbb{L}_{G}) denotes the pro-étale G(p)¯{\underline{G^{\prime}({\mathbb{Q}_{p}})}}-torsor (respectively G(p)¯{\underline{G({\mathbb{Q}_{p}})}}-torsor) then 𝕃G=f𝕃G\mathbb{L}_{G}=f_{*}\mathbb{L}_{G^{\prime}}.

Proof.

We omit the details. ∎

Proposition 1.41.

If (b,μ)(b,\mu) is HN-irreducible then the following hold:

  1. (1)

    Gr[μ](b)adm×Spd(Cp){\mathrm{Gr}}^{\leq[\mu]}({{\mathcal{E}}}_{b})^{\mathrm{adm}}\times{{\rm{Spd}}({C}_{p})} is connected

  2. (2)

    The right action of G(p)G({\mathbb{Q}_{p}}) on π0(ShtG,b,[μ],×Spd(Cp))\pi_{0}({\rm{Sht}}_{G,b,[\mu],\infty}\times{{\rm{Spd}}({C}_{p})}) makes this set into a GG^{\circ}-torsor.

Proof.

Using 1.39 we may find a z-extension f:GGf:G^{\prime}\to G and lift (b,μ)(b,\mu) to a pair (b,μ)(b^{\prime},\mu^{\prime}) over GG^{\prime} which is also HN-irreducible. The first claim now follows from 1.40 and by 1.33 applied to GG^{\prime}.

Let Z=Ker(f)Z=Ker(f), the map f:G(p)G(p)f:G^{\prime}({\mathbb{Q}_{p}})\to G({\mathbb{Q}_{p}}) is surjective. This together with 1.40 gives that f:ShtG,b,[μ],×Spd(Cp)ShtG,b,[μ],×Spd(Cp)f:{\rm{Sht}}_{G^{\prime},b^{\prime},[\mu^{\prime}],\infty}\times{{\rm{Spd}}({C}_{p})}\to{\rm{Sht}}_{G,b,[\mu],\infty}\times{{\rm{Spd}}({C}_{p})} is a Z(p)¯{\underline{Z({\mathbb{Q}_{p}})}}-torsor. In particular, the map of sets of connected components is also surjective. Since Gr[μ](b)adm{\mathrm{Gr}}^{\leq[\mu]}({{\mathcal{E}}}_{b})^{\mathrm{adm}} is connected the action of G(p)G({\mathbb{Q}_{p}}) on π0(ShtG,b,[μ],×Spd(Cp))\pi_{0}({\rm{Sht}}_{G,b,[\mu],\infty}\times{{\rm{Spd}}({C}_{p})}) is transitive. Let xπ0(ShtG,b,[μ],×Spd(Cp))x\in\pi_{0}({\rm{Sht}}_{G,b,[\mu],\infty}\times{{\rm{Spd}}({C}_{p})}) and denote by GxG_{x} the stabilizer of xx in G(p)G({\mathbb{Q}_{p}}). Let yπ0(ShtG,b,[μ],×Spd(Cp))y\in\pi_{0}({\rm{Sht}}_{G^{\prime},b^{\prime},[\mu^{\prime}],\infty}\times{{\rm{Spd}}({C}_{p})}) a lift of xx, we have Im(Gy)=Im(GyZ(p))=Gx{\mathrm{Im}}(G_{y})={\mathrm{Im}}(G_{y}\cdot Z({\mathbb{Q}_{p}}))=G_{x}.

By 1.35 the stabilizer of yy in G(p)G^{\prime}({\mathbb{Q}_{p}}) is (G)der(p)(G^{\prime})^{{\mathrm{der}}}({\mathbb{Q}_{p}}), so Gx=Im((G)der(p))=Im(Gsc(p))G_{x}={\mathrm{Im}}((G^{\prime})^{{\mathrm{der}}}({\mathbb{Q}_{p}}))={\mathrm{Im}}(G^{{\mathrm{sc}}}({\mathbb{Q}_{p}})). ∎

We describe the action of Jb(p)J_{b}({\mathbb{Q}_{p}}) and WK0EW^{K_{0}}_{E} on π0(ShtG,b,[μ],×Spd(Cp))\pi_{0}({\rm{Sht}}_{G,b,[\mu],\infty}\times{{\rm{Spd}}({C}_{p})}) in terms of the action of GG^{\circ}. We begin with Jb(p)J_{b}({\mathbb{Q}_{p}}). We first construct a map det:Jb(p)G{\mathrm{det}}^{\circ}:J_{b}({\mathbb{Q}_{p}})\to G^{\circ} generalizing the determinant map det:Jb(p)Gab(p){\mathrm{det}}:J_{b}({\mathbb{Q}_{p}})\to G^{{\mathrm{ab}}}({\mathbb{Q}_{p}}) of 1.37 as follows. Given GG and bG(K0)b\in G(K_{0}) we choose an unramified z-extension f:GGf:G^{\prime}\to G and a lift bG(K0)b^{\prime}\in G^{\prime}(K_{0}) with f(b)=bf(b^{\prime})=b. Let Z=Ker(f)Z=Ker(f). We get a sequence of maps of reductive groups

eZJbJbe.e\to Z\to J_{b^{\prime}}\to J_{b}\to e.

By Shapiro’s lemma Jb(p)Jb(p)J_{b^{\prime}}({\mathbb{Q}_{p}})\to J_{b}({\mathbb{Q}_{p}}) is surjective. We can construct the following commutative diagram of topological groups:

Z(p){Z({\mathbb{Q}_{p}})}G(p){G^{\prime}({\mathbb{Q}_{p}})}G(p){G({\mathbb{Q}_{p}})}Jb(p){J_{b^{\prime}}({\mathbb{Q}_{p}})}(G)ab(p){(G^{\prime})^{{\mathrm{ab}}}({\mathbb{Q}_{p}})}G{G^{\circ}}Jbab(p){J_{b^{\prime{\mathrm{ab}}}}({\mathbb{Q}_{p}})}Jb(p){J_{b}({\mathbb{Q}_{p}})}f\scriptstyle{f}det\scriptstyle{{\mathrm{det}}}f\scriptstyle{f}fab\scriptstyle{f^{{\mathrm{ab}}}}j\scriptstyle{\cong_{j}}det\scriptstyle{{\mathrm{det}}^{\circ}}

Now, det{\mathrm{det}}^{\circ} is defined as the unique morphism that could make this diagram commutative. More explicitly, if jJb(p)j\in J_{b}({\mathbb{Q}_{p}}) we pick a lift jJb(p)j^{\prime}\in J_{b^{\prime}}({\mathbb{Q}_{p}}), and we define det(j):=fab(det(j)){\mathrm{det}}^{\circ}(j):=f^{{\mathrm{ab}}}({\mathrm{det}}(j^{\prime})). One can verify this doesn’t depend on any of the choices made.

Let xπ0(ShtG,b,[μ],×Spd(Cp))x\in\pi_{0}({\rm{Sht}}_{G,b,[\mu],\infty}\times{{\rm{Spd}}({C}_{p})}) and let yπ0(ShtG,b,[μ],×Spd(Cp))y\in\pi_{0}({\rm{Sht}}_{G^{\prime},b^{\prime},[\mu^{\prime}],\infty}\times{{\rm{Spd}}({C}_{p})}) be a lift of xx. Let jJb(p)j\in J_{b}({\mathbb{Q}_{p}}), and let jJb(p)j^{\prime}\in J_{b^{\prime}}({\mathbb{Q}_{p}}) be an element lifting jj. We compute:

xJb(p)j=f(yJb(p)j)=f(yG(p)jb(detb(j1)))=xGdet(j1)\begin{split}x\cdot_{J_{b}({\mathbb{Q}_{p}})}j=f(y\cdot_{J_{b^{\prime}}({\mathbb{Q}_{p}})}j^{\prime})=f(y\cdot_{G^{\prime}({\mathbb{Q}_{p}})}j_{b^{\prime}}({\mathrm{det}}_{b^{\prime}}(j^{-1})))&=x\cdot_{G^{\circ}}{\mathrm{det}}^{\circ}(j^{-1})\end{split}

We now describe the action of WK0EW^{K_{0}}_{E}, we need a variant of the norm map discussed for tori. Given a connected reductive group GG and a conjugacy class of cocharacters [μ][\mu] with reflex field EE we define a norm map Nm[μ]:E×G{{\mathrm{Nm}}}^{\circ}_{[\mu]}:E^{\times}\to G^{\circ} as follows. Since is GG is quasi-split we may fix p{\mathbb{Q}_{p}}-rationally defined Borel a maximal torus TBGT\subseteq B\subseteq G and the unique dominant cocharacter μX+(T)\mu\in X_{*}^{+}(T) representing [μ][\mu] and defined over EE. We get a norm map Nmμ:E×T(p){{{\mathrm{Nm}}}}_{\mu}:E^{\times}\to T({\mathbb{Q}_{p}}) and we may define Nm[μ]{{\mathrm{Nm}}}^{\circ}_{[\mu]} as the composition:

Nm[μ]:E×NmμT(p)G(p)G.{{\mathrm{Nm}}}^{\circ}_{[\mu]}:E^{\times}\xrightarrow{{{\mathrm{Nm}}}_{\mu}}T({\mathbb{Q}_{p}})\to G({\mathbb{Q}_{p}})\to G^{\circ}.
Proposition 1.42.

With notation as in 1.41 the action of WK0EW^{K_{0}}_{E} on π0(ShtG,b,[μ],×Spd(Cp))\pi_{0}({\rm{Sht}}_{G,b,[\mu],\infty}\times{{\rm{Spd}}({C}_{p})}) is given by the map Nm[μ]ArtK0,E:WK0EG{{\mathrm{Nm}}}^{\circ}_{[\mu]}\circ{{\mathrm{Art}}}_{K_{0},E}:W^{K_{0}}_{E}\to G^{\circ}. More precisely, if xπ0(ShtG,b,[μ],×Spd(Cp))x\in\pi_{0}({\rm{Sht}}_{G,b,[\mu],\infty}\times{{\rm{Spd}}({C}_{p})}) and γWK0E\gamma\in W^{K_{0}}_{E} then:

xWK0Eγ=xGNm[μ](ArtK0,E(γ)).x\cdot_{W^{K_{0}}_{E}}\gamma=x\cdot_{G^{\circ}}{{\mathrm{Nm}}}^{\circ}_{[\mu]}({{\mathrm{Art}}}_{K_{0},E}(\gamma)).
Proof.

Let f:GGf:G^{\prime}\to G be a zz-extension, let (b,μ)(b^{\prime},\mu^{\prime}) be a pair lifting (b,μ)(b,\mu), and let Z=ker(f)Z=ker(f). By 1.39 we can choose GG^{\prime} and μ\mu^{\prime} so that μ\mu^{\prime} has the same field of definition as μ\mu. Choose ATBGA\subseteq T\subseteq B\subseteq G as above and let T=f1(T)T^{\prime}=f^{-1}(T). Consider the following commutative diagram of spaces.

ShtG,b,[μ],{{\rm{Sht}}_{G^{\prime},b^{\prime},[\mu^{\prime}],\infty}}Sht(G)ab,bab,[μ],{{\rm{Sht}}_{(G^{\prime})^{{\mathrm{ab}}},b^{\prime{\mathrm{ab}}},[\mu^{\prime}],\infty}}ShtT,bμ,[μ],{{\rm{Sht}}_{T^{\prime},b_{\mu^{\prime}},[\mu^{\prime}],\infty}}ShtG,b,[μ],{{\rm{Sht}}_{G,b,[\mu],\infty}}ShtT,bμ,[μ],{{\rm{Sht}}_{T,b_{\mu},[\mu],\infty}}

Since GG^{\prime} is simply connected we get an equivariant bijection of geometric connected components

π0(ShtG,b,[μ],×Spd(Cp))π0(Sht(G)ab,bab,[μab],×Spd(Cp)).\pi_{0}({\rm{Sht}}_{G^{\prime},b^{\prime},[\mu^{\prime}],\infty}\times{{\rm{Spd}}({C}_{p})})\to\pi_{0}({\rm{Sht}}_{(G^{\prime})^{{\mathrm{ab}}},b^{\prime{\mathrm{ab}}},[\mu^{\prime{\mathrm{ab}}}],\infty}\times{{\rm{Spd}}({C}_{p})}).

After forming geometric connected components and choosing a base point xπ0(ShtT,bμ,[μ],×Spd(Cp))x\in\pi_{0}({\rm{Sht}}_{T^{\prime},b_{\mu^{\prime}},[\mu^{\prime}],\infty}\times{{\rm{Spd}}({C}_{p})}) the above diagram looks like this:

xGab(p){x\cdot G^{\prime{\mathrm{ab}}}({\mathbb{Q}_{p}})}xGab(p){x\cdot G^{\prime{\mathrm{ab}}}({\mathbb{Q}_{p}})}xT(p){x\cdot T^{\prime}({\mathbb{Q}_{p}})}xG{x\cdot G^{\circ}}xT(p){x\cdot T({\mathbb{Q}_{p}})}\scriptstyle{\cong}

All of the maps are equivariant with respect to the groups involved. Since the map T(p)GT^{\prime}({\mathbb{Q}_{p}})\to G^{\circ} factors through the map T(p)T(p)T^{\prime}({\mathbb{Q}_{p}})\to T({\mathbb{Q}_{p}}), we get a canonical surjective and WK0EW^{K_{0}}_{E}-equivariant map

π0(ShtT,bμ,[μ],×Spd(Cp))π0(ShtG,b,[μ],×Spd(Cp)).\pi_{0}({\rm{Sht}}_{T,b_{\mu},[\mu],\infty}\times{{\rm{Spd}}({C}_{p})})\to\pi_{0}({\rm{Sht}}_{G,b,[\mu],\infty}\times{{\rm{Spd}}({C}_{p})}).

By 1.24, the action on π0(ShtT,bμ,[μ],)\pi_{0}({\rm{Sht}}_{T,b_{\mu},[\mu],\infty}) is through NmμArtK0,E{{\mathrm{Nm}}}_{\mu}\circ{{\mathrm{Art}}}_{K_{0},E}. By definition of Nm[μ]{{\mathrm{Nm}}}^{\circ}_{[\mu]} the action of WK0EW^{K_{0}}_{E} on π0(ShtG,b,[μ],×Spd(Cp))\pi_{0}({\rm{Sht}}_{G,b,[\mu],\infty}\times{{\rm{Spd}}({C}_{p})}) is through Nm[μ]ArtK0,E{{\mathrm{Nm}}}^{\circ}_{[\mu]}\circ{{\mathrm{Art}}}_{K_{0},E}. ∎

2. The specialization map for moduli spaces of pp-adic shtukas

For some background on specialization maps for v-sheaves we refer the reader to [Specializ]. We will freely use some of the terminology defined in that work.

2.1. GG-torsors, lattices and shtukas.

In this section we recall the integral theory of vector bundles over the Fargues-Fontaine curve, and point to the technical statements that allow us to discuss the specialization map for the pp-adic Beilinson–Drinfeld Grassmannians and moduli spaces of pp-adic shtukas. Nothing in this subsection is new and it is all written in some form in [Ber2], [Ked], [FF], [Ans2]. Nevertheless, we need specific formulations for some of these results that are not explicit in the literature.

2.1.1. Vector bundles on 𝒴{{\mathcal{Y}}}.

Definition 2.1.

Given a perfectoid Huber pair (R,R+)(R,R^{+}) and a pseudo-uniformizer ϖR+\varpi\in R^{+}, we define 𝒴R+[0,){{\mathcal{Y}}_{R^{+}}^{[0,\infty)}} as Spa(W(R+))V([ϖ]){\mathrm{Spa}}({W(R^{+})})\setminus V([\varpi]). Here [ϖ][\varpi] denotes a Teichmüller lift of ϖ\varpi, and W(R+)W(R^{+}) is given the (p,[ϖ])(p,[\varpi])-adic topology. We let 𝒴R+{{\mathcal{Y}}_{R^{+}}} denote Spa(W(R+))V(p,[ϖ]){\mathrm{Spa}}({W(R^{+})})\setminus V(p,[\varpi]).

We review the geometry of 𝒴R+{{\mathcal{Y}}_{R^{+}}}, fix a pseudo-uniformizer ϖR+\varpi\in R^{+}. One defines a continuous map κϖ:|𝒴R+|[0,]\kappa_{\varpi}:|{{\mathcal{Y}}_{R^{+}}}|\to[0,\infty] characterized by the property that κ(y)=r\kappa(y)=r if and only if for any positive rational number rmnr\leq\frac{m}{n} the inequality |p|ym|[ϖ]|yn|p|_{y}^{m}\leq|[\varpi]|_{y}^{n} holds and for any positive rational number mnr\frac{m}{n}\leq r the inequality |[ϖ]|yn|p|ym|[\varpi]|_{y}^{n}\leq|p|_{y}^{m} holds. Given an interval I[0,]I\subseteq[0,\infty] we denote by 𝒴IR+{{\mathcal{Y}}^{I}_{R^{+}}} the open subset corresponding to the interior of κϖ1(I)\kappa_{\varpi}^{-1}(I). For intervals of the form [0,hd][0,\frac{h}{d}] where hh and dd are integers the space 𝒴[0,hd]R+{{\mathcal{Y}}^{[0,\frac{h}{d}]}_{R^{+}}} is represented by Spa(R,R+){{\rm{Spa}}(R^{\prime},R^{\prime+})} corresponding to the rational localization, {xSpa(W(R+))|ph|x|[ϖ]d|x0}\{x\in{\mathrm{Spa}}({W(R^{+})})\mid|p^{h}|_{x}\leq|[\varpi]^{d}|_{x}\neq 0\}. In this case, we can compute R+R^{\prime+} explicitly as the [ϖ][\varpi]-adic completion of W(R+)[ph[ϖ]d]W(R^{+})[\frac{p^{h}}{[\varpi]^{d}}] and RR^{\prime} as R+[1[ϖ]]R^{\prime+}[\frac{1}{[\varpi]}]. A direct computation shows that RR^{\prime} does not depend of R+R^{+}. In particular, the exact category of vector bundles over 𝒴R+[0,){{\mathcal{Y}}_{R^{+}}^{[0,\infty)}} does not depend of the choice of R+R^{+} either.

Recall the algebraic version of 𝒴R+{{\mathcal{Y}}_{R^{+}}}, which we will denote YR+{{Y}_{R^{+}}} and define as Spec(W(R+))V(p,[ϖ]){\mathrm{Spec}}(W(R^{+}))\setminus V(p,[\varpi]). Since W(R+)𝒪𝒴R+W(R^{+})\subseteq{\mathcal{O}}_{{{\mathcal{Y}}_{R^{+}}}} and since pp, [ϖ][\varpi], do not vanish simultaneously on 𝒴R+{{\mathcal{Y}}_{R^{+}}} we get a map of locally ringed spaces f:𝒴R+YR+Spec(W(R+))f:{{\mathcal{Y}}_{R^{+}}}\to{{Y}_{R^{+}}}\subseteq{\mathrm{Spec}}(W(R^{+})).

Recall that given an untilt RR^{\sharp} of RR there is a canonical surjection W(R+)R+W(R^{+})\to R^{\sharp+} whose kernel is generated by an element ξW(R+)\xi\in W(R^{+}) primitive of degree 11 [Ber2, Lemma 6.2.8]. The element ξ\xi defines a closed Cartier divisor over 𝒴R+{{\mathcal{Y}}_{R^{+}}} and also defines a Cartier divisor on the scheme YR+{{Y}_{R^{+}}}.

Recall the GAGA-type theorem of Kedlaya and Liu:

Theorem 2.2.

([KedAinf, Theorem 3.8]) Suppose (R,R+)(R,R^{+}) is a perfectoid Huber pair in characteristic pp. The natural morphisms of locally ringed spaces f:𝒴R+YR+f:{{\mathcal{Y}}_{R^{+}}}\to{{Y}_{R^{+}}} gives, via the pullback functor f:VecYR+Vec𝒴R+f^{*}:{\mathrm{Vec}}_{{{Y}_{R^{+}}}}\to{\mathrm{Vec}}_{{{\mathcal{Y}}_{R^{+}}}}, an exact equivalence of exact categories.

Remark 2.3.

Although the reference does not explicitly claim that this equivalence is exact, one can simply follow the proof loc. cit. exchanging the word “equivalence” by “exact equivalence” since every arrow involved in the proof is an exact functor.

Corollary 2.4.

With the notation as above, the pullback ff^{*} induces an equivalence

f:(VecYR+ξ0)mer(Vec𝒴R+ξ0)merf^{*}:({\mathrm{Vec}}_{Y_{R^{+}}^{\xi\neq 0}})^{\mathrm{mer}}\to({\mathrm{Vec}}_{{\mathcal{Y}}_{R^{+}}^{\xi\neq 0}})^{\mathrm{mer}}

between the category whose objects are vector bundles over 𝒴R+{{\mathcal{Y}}_{R^{+}}} (respectively vector bundles over YR+{{Y}_{R^{+}}}) and morphisms are functions meromorphic along the ideal (ξ)(\xi) (respectively functions over YR+V(ξ){{Y}_{R^{+}}}\setminus V(\xi)).

Since one can define 𝒢\mathscr{G}-torsors Tannakianly these statements immediately generalize to those for 𝒢\mathscr{G}-torsors. Kedlaya proves another important statement.

Theorem 2.5.

([KedAinf, Lemma 2.3, Theorem 2.7, Remark 3.11]) With notation as above, and letting jj be the open embedding, j:YR+Spec(W(R+))j:{{Y}_{R^{+}}}\to{\mathrm{Spec}}(W(R^{+})) the following statements hold:

  1. (1)

    The pullback functor j:VecSpec(W(R+))VecYR+j^{*}:{\mathrm{Vec}}_{{\mathrm{Spec}}(W(R^{+}))}\to{\mathrm{Vec}}_{{{Y}_{R^{+}}}} is fully-faithful.

  2. (2)

    If R+R^{+} is a valuation ring then jj^{*} is an equivalence.

  3. (3)

    Taking categories of quasi-coherent sheaves the adjunction morphism jj𝒱𝒱j^{*}j_{*}{\mathcal{V}}\to{\mathcal{V}} is an isomorphism.

We will need a small modification of 2.5.

Definition 2.6.

Given a set II and a collection of tuples {(Ci,Ci+),ϖi}iI\{(C_{i},C_{i}^{+}),\varpi_{i}\}_{i\in I} we construct an adic space Spa(R,R+){{\rm{Spa}}(R,R^{+})}. Here each CiC_{i} is an algebraically closed nonarchimedean field, the Ci+C_{i}^{+} are open and bounded valuation subrings of CiC_{i}, and ϖi\varpi_{i} is a choice of pseudo-uniformizer. We let R+:=iIC+iR^{+}:=\prod_{i\in I}C^{+}_{i}, we let ϖ=(ϖi)iI\varpi=(\varpi_{i})_{i\in I}, we endow R+R^{+} with the ϖ\varpi-adic topology and we let R:=R+[1ϖ]R:=R^{+}[\frac{1}{\varpi}]. Any space constructed in this way will be called a product of points.

The following statement is implicitly used and proved in ([Ber2, Theorem 25.1.2]).

Proposition 2.7.

Let Spa(R,R+){{\rm{Spa}}(R,R^{+})} be the product of points associated to {(Ci,Ci+),ϖi}iI\{(C_{i},C_{i}^{+}),\varpi_{i}\}_{i\in I} as in 2.6. The pullback functor j:VecSpec(W(R+))YR+j^{*}:{\mathrm{Vec}}_{{\mathrm{Spec}}(W(R^{+}))}\to{{Y}_{R^{+}}} gives an equivalence of categories of vector bundles with fixed rank.

Given ξW(R+)\xi\in W(R^{+}) primitive of degree 11 as before, observe that since both Spec(W(R+)){\mathrm{Spec}}(W(R^{+})) and YR+{{Y}_{R^{+}}} are qcqs schemes the equivalence of vector bundles of 2.7 generalizes to the categories where the objects are the same, but morphism are allowed to have poles along ξ\xi on both categories.

Interestingly, extending 𝒢\mathscr{G}-torsors from YR+{{Y}_{R^{+}}} to Spec(W(R+)){\mathrm{Spec}}(W(R^{+})) adds yet another layer of complexity. Indeed, the equivalences of 2.5 and 2.7 are not exact equivalences, so Tannakian formalism can’t be used directly. As a matter of fact, only the pullback functor jj^{*} is exact. J. Anschütz gives a detailed study of the problem of extending 𝒢\mathscr{G}-torsors along jj in [Ans2].

Theorem 2.8.

([Ans2, Proposition 11.5]) Let Spa(R,R+){{\rm{Spa}}(R,R^{+})} be a product of points over kk. Every 𝒢\mathscr{G}-torsor 𝒯{{\mathcal{T}}} over YR+{{Y}_{R^{+}}} extends along j:YR+Spec(W(R+))j:{{Y}_{R^{+}}}\to{\mathrm{Spec}}(W(R^{+})) to a torsor 𝒢\mathscr{G} torsor over Spec(W(R+)){\mathrm{Spec}}(W(R^{+})).

We use the following descent result repeatedly.

Proposition 2.9.

([Ber2, Proposition 19.5.3]) Let SS be a perfectoid space over kk and let U𝒴S[0,)U\subseteq{{\mathcal{Y}}_{S}^{[0,\infty)}} be an open subset. For map of perfectoid spaces f:SSf:S^{\prime}\to S, let 𝒞S\mathcal{C}_{S^{\prime}} denote the category of 𝒢\mathscr{G}-torsors over 𝒴S[0,)×𝒴S[0,)U{{\mathcal{Y}}_{S^{\prime}}^{[0,\infty)}}\times_{{\mathcal{Y}}_{S}^{[0,\infty)}}U. Then the assignment S𝒞SS^{\prime}\mapsto\mathcal{C}_{S^{\prime}}, as a fibered category over PerfS{\mathrm{Perf}}_{S}, is a v-stack.

2.1.2. Lattices and shtukas.

For this section, fix Spa(R,R+){{\rm{Spa}}(R,R^{+})} an affinoid perfectoid space over kk, ϖR+\varpi\in R^{+} a choice of pseudo-uniformizer, RR^{\sharp} an untilt of RR and ξR\xi_{R^{\sharp}} a generator for the kernel of the map W(R+)R,+W(R^{+})\to R^{\sharp,+}.

Definition 2.10.

We define the groupoid of B+dR(R)B^{+}_{\mathrm{dR}}(R^{\sharp})-lattices with 𝒢\mathscr{G}-structure to have as objects pairs (𝒯,ψ)({{\mathcal{T}}},\psi) where 𝒯{{\mathcal{T}}} is a 𝒢\mathscr{G}-torsor over 𝒴R+[0,){{\mathcal{Y}}_{R^{+}}^{[0,\infty)}} and ψ:𝒯𝒢\psi:{{\mathcal{T}}}\to\mathscr{G} is an isomorphism over 𝒴R+[0,)V(ξR){{\mathcal{Y}}_{R^{+}}^{[0,\infty)}}\setminus V(\xi_{R^{\sharp}}) that is meromorphic along (ξR)(\xi_{R^{\sharp}}). Isomorphisms are the evident ones.

We now consider pp-adic shtukas. Recall that the spaces Spec(W(R+)){\mathrm{Spec}}(W(R^{+})), 𝒴R+[0,){{\mathcal{Y}}_{R^{+}}^{[0,\infty)}}, YR+{{Y}_{R^{+}}} and 𝒴R+{{\mathcal{Y}}_{R^{+}}} come equipped with a Frobenius action which we denote by φop\varphi^{{\mathrm{op}}}, induced from the arithmetic Frobenius ring homomorphism φ:W(R+)W(R+)\varphi:W(R^{+})\to W(R^{+}).

Definition 2.11.

We define the groupoid of shtukas with one paw over Spa(R,R,+){\mathrm{Spa}}(R^{\sharp},R^{\sharp,+}) and 𝒢\mathscr{G}-structure. Objects are pairs (𝒯,Φ)({{\mathcal{T}}},\Phi) where 𝒯{{\mathcal{T}}} is a 𝒢\mathscr{G}-torsor over 𝒴R+[0,){{\mathcal{Y}}_{R^{+}}^{[0,\infty)}} and Φ:φop,𝒯𝒯\Phi:\varphi^{{\mathrm{op}},*}{{\mathcal{T}}}\to{{\mathcal{T}}} is an isomorphism over 𝒴R+[0,)V(ξR){{\mathcal{Y}}_{R^{+}}^{[0,\infty)}}\setminus V(\xi_{R^{\sharp}}) meromorphic along (ξR)(\xi_{R^{\sharp}}). Isomorphisms being evident.

Definition 2.12.

Given a φ\varphi-module with 𝒢\mathscr{G}-structure (,Φ)({\mathcal{E}},\Phi_{\mathcal{E}}) over 𝒴(0,)R+{{\mathcal{Y}}^{(0,\infty)}_{R^{+}}} and a shtuka (𝒯,Φ𝒯)({{\mathcal{T}}},\Phi_{{\mathcal{T}}}) an isogeny is an equivalence class of pairs (r,f)(r,f) with rr\in\mathbb{R} and f:(𝒯,Φ𝒯)(,Φ)f:({{\mathcal{T}}},\Phi_{{\mathcal{T}}})\to({\mathcal{E}},\Phi_{\mathcal{E}}) a φ\varphi-equivariant isomorphism defined over 𝒴[r,)R+{{\mathcal{Y}}^{[r,\infty)}_{R^{+}}}. Two pairs (r1,f1)(r_{1},f_{1}) and (r2,f2)(r_{2},f_{2}) are equivalent if there is a third pair (r3,f3)(r_{3},f_{3}) with r3>r1,r2r_{3}>r_{1},r_{2} and f1=f3=f2f_{1}=f_{3}=f_{2} when restricted to 𝒴[r3,)R+{{\mathcal{Y}}^{[r_{3},\infty)}_{R^{+}}}.

In what follows, we prove three technical lemmas that, intuitively speaking, allow us to “deform” lattices and shtukas with 𝒢\mathscr{G}-structure.

For any r[0,)r\in[0,\infty) let B[r,]R+=H0(𝒴[r,]R+,𝒪𝒴[r,]R+){B^{[r,\infty]}_{R^{+}}}=H^{0}({{\mathcal{Y}}^{[r,\infty]}_{R^{+}}},{\mathcal{O}}_{{{\mathcal{Y}}^{[r,\infty]}_{R^{+}}}}), and consider the ring R+red=(R+/ϖ)perf{R^{+}_{{\mathrm{red}}}}=(R^{+}/\varpi)^{\mathrm{perf}}. Observe that the universal property of 𝒴[r,]R+{{\mathcal{Y}}^{[r,\infty]}_{R^{+}}} as a rational subset of Spa(W(R+)){\mathrm{Spa}}({W(R^{+})}) induces compatible ring maps B[r,]R+W(R+red)[1p]{B^{[r,\infty]}_{R^{+}}}\to W({R^{+}_{{\mathrm{red}}}})[\frac{1}{p}] for varying rr. We denote this family of reduction maps by (red)({-_{{\mathrm{red}}}}).

Lemma 2.13.

Let sB[r,]R+s\in{B^{[r,\infty]}_{R^{+}}} and suppose that the reduction sred{s_{{\mathrm{red}}}}, originally defined over W(R+red)[1p]W({R^{+}_{{\mathrm{red}}}})[\frac{1}{p}], lies in W(R+red)W({R^{+}_{{\mathrm{red}}}}), then there is a tuple (r,a,b,ϖs)(r^{\prime},a,b,\varpi_{s}) with rr^{\prime} a number rrr\leq r^{\prime}, aW(R+)a\in W(R^{+}), bB[r,]R+b\in{B^{[r^{\prime},\infty]}_{R^{+}}} and a pseudo-uniformizer ϖsR+\varpi_{s}\in R^{+} such that s=a+bs=a+b and b[ϖs]B[r,]R+b\in[\varpi_{s}]\cdot{B^{[r^{\prime},\infty]}_{R^{+}}}.

Proof.

By enlarging rr if necessary we can assume 𝒴[r,]R+{{\mathcal{Y}}^{[r,\infty]}_{R^{+}}} is of the form:

{xSpa(W(R+))|[ϖ]|x|pm|x0}\{x\in{\mathrm{Spa}}({W(R^{+})})\mid|[\varpi]|_{x}\leq|p^{m}|_{x}\neq 0\}

for some mm, we compute B[r,]R+{B^{[r,\infty]}_{R^{+}}} explicitly. If S+S^{+} denotes the pp-adic completion of W(R+)[[ϖ]pm]W(R^{+})[\frac{[\varpi]}{p^{m}}], then B[r,]R+=S+[1p]{B^{[r,\infty]}_{R^{+}}}=S^{+}[\frac{1}{p}]. Any element sB[r,]R+s\in{B^{[r,\infty]}_{R^{+}}} is of the form s=1pnΣi=0[ai]xm(i)pis=\frac{1}{p^{n}}\cdot\Sigma_{i=0}^{\infty}[a_{i}]x^{m(i)}p^{i} where aiR+a_{i}\in R^{+}, x=[ϖ]pmx=\frac{[\varpi]}{p^{m}}, and m(i)m(i) denotes a non-negative integer. We can decompose pnsp^{n}\cdot s as

x(i=0,m(i)>0[ai]xm(i)1pi)+i=0,m(i)=0[ai]pi.x\cdot\left(\sum_{i=0,m(i)>0}^{\infty}[a_{i}]x^{m(i)-1}p^{i}\right)+\sum_{i=0,m(i)=0}^{\infty}[a_{i}]p^{i}.

Since x=[ϖ]pmx=\frac{[\varpi]}{p^{m}}, we have that [ϖ][\varpi] divides in B[r,]R+{B^{[r,\infty]}_{R^{+}}} the first term of this decomposition. As long as we pick a ϖs\varpi_{s} that divides ϖ\varpi, we may and do reduce to the case s=Σi=0[ai]pins=\Sigma_{i=0}^{\infty}[a_{i}]p^{i-n}. In this case, sred=Σi=0[(ai)red]pin{s_{{\mathrm{red}}}}=\Sigma_{i=0}^{\infty}[{{(a_{i})}_{{\mathrm{red}}}}]p^{i-n} and by hypothesis we have that for i<ni<n (ai)red=0{{(a_{i})}_{{\mathrm{red}}}}=0 in R+red{R^{+}_{{\mathrm{red}}}}. We can choose a pseudo-uniformizer ϖs\varpi_{s} for which all of aia_{i}, for i<ni<n, are zero in R+/ϖsR^{+}/\varpi_{s}. We can take a=i=n[ai]pina=\sum_{i=n}^{\infty}[a_{i}]p^{i-n} and b=i=0n1[ai]pinb=\sum_{i=0}^{n-1}[a_{i}]p^{i-n}. These clearly satisfy the properties. ∎

Lemma 2.14.

Let 𝒯1{{\mathcal{T}}}_{1} and 𝒯2{{\mathcal{T}}}_{2} be trivial 𝒢\mathscr{G}-torsor over Spec(W(R+)){\mathrm{Spec}}(W(R^{+})) and let λ:𝒯1𝒯2\lambda:{{\mathcal{T}}}_{1}\to{{\mathcal{T}}}_{2} be an isomorphism over 𝒴[r,]R+{{\mathcal{Y}}^{[r,\infty]}_{R^{+}}} whose reduction to Spec(W(R+red)[1p]){\mathrm{Spec}}(W({R^{+}_{{\mathrm{red}}}})[\frac{1}{p}]) extends Spec(W(R+red)){\mathrm{Spec}}(W({R^{+}_{{\mathrm{red}}}})). Then, there is an isomorphism λ~:𝒯1𝒯2\widetilde{\lambda}:{{\mathcal{T}}}_{1}\to{{\mathcal{T}}}_{2} over Spec(W(R+)){\mathrm{Spec}}(W(R^{+})), a pseudo-uniformizer ϖλR+\varpi_{\lambda}\in R^{+} and a number rrr\leq r^{\prime} such that λ=λ~\lambda=\widetilde{\lambda} in HomSpec(B[r,]R+/[ϖλ])(𝒯1,𝒯2){\mathrm{Hom}}_{{\mathrm{Spec}}({B^{[r^{\prime},\infty]}_{R^{+}}}/[\varpi_{\lambda}])}({{\mathcal{T}}}_{1},{{\mathcal{T}}}_{2}).

Proof.

Fix trivializations ιi:𝒯i𝒢\iota_{i}:{{\mathcal{T}}}_{i}\to\mathscr{G}, and consider ι2λι11\iota_{2}\circ\lambda\circ\iota_{1}^{-1} as an element gH0(𝒴[r,]R+,𝒢)H0(𝒴[r,]R+,GLn)g\in H^{0}({{\mathcal{Y}}^{[r,\infty]}_{R^{+}}},\mathscr{G})\subseteq H^{0}({{\mathcal{Y}}^{[r,\infty]}_{R^{+}}},{\mathrm{{\mathrm{GL}}}}_{n}) for some nn and some embedding 𝒢GLn\mathscr{G}\to{\mathrm{GL}}_{n} defined over W(k)W(k). By 2.13 we can find ϖλ\varpi_{\lambda} such that g=M1+[ϖλ]M2g=M_{1}+[\varpi_{\lambda}]M_{2} with M1GLn(W(R+))M_{1}\in{\mathrm{GL}}_{n}(W(R^{+})) and M2Mn×n(B[r,]R+)M_{2}\in{\mathrm{M}}_{n\times n}({B^{[r^{\prime},\infty]}_{R^{+}}}). Since W(R+)/[ϖλ]B[r,]R+/[ϖλ]W(R^{+})/[\varpi_{\lambda}]\subseteq{B^{[r^{\prime},\infty]}_{R^{+}}}/[\varpi_{\lambda}] the reduction of M1M_{1} to GLn(B[r,]R+/[ϖλ]){\mathrm{GL}}_{n}({B^{[r^{\prime},\infty]}_{R^{+}}}/[\varpi_{\lambda}]) lies in 𝒢(W(R+)/[ϖλ])\mathscr{G}(W(R^{+})/[\varpi_{\lambda}]). Moreover, since 𝒢\mathscr{G} is a smooth group and W(R+)W(R^{+}) is [ϖλ][\varpi_{\lambda}]-complete, we can lift this to an element g𝒢(W(R+))g^{\prime}\in\mathscr{G}(W(R^{+})) with g=M1g^{\prime}=M_{1} in GLn(W(R+)/[ϖλ]){\mathrm{GL}}_{n}(W(R^{+})/[\varpi_{\lambda}]). Consequently g=gg^{\prime}=g in 𝒢(B[r,]R+/[ϖλ])\mathscr{G}({B^{[r^{\prime},\infty]}_{R^{+}}}/[\varpi_{\lambda}]), and by letting λ~=ι21gι1{\widetilde{\lambda}}=\iota_{2}^{-1}\circ g^{\prime}\circ\iota_{1} we get the desired isomorphism. ∎

The proof of the following lemma is inspired by the computations that appear in [HartlVieh, Theorem 5.6], and it is a key input in the proof of LABEL:thm:comparetub.

Lemma 2.15 (Unique liftability of isogenies).

Let 𝒯{{\mathcal{T}}} be a trivial 𝒢\mathscr{G}-torsor over Spec(W(R+)){\mathrm{Spec}}(W(R^{+})) and let 𝒢b\mathscr{G}_{b} denote the trivial 𝒢\mathscr{G}-torsor endowed with the φ\varphi-module structure over 𝒴(0,]R+{{\mathcal{Y}}^{(0,\infty]}_{R^{+}}} given by an element b𝒢(𝒴(0,]R+)b\in\mathscr{G}({{\mathcal{Y}}^{(0,\infty]}_{R^{+}}}). Let Φ:φop,𝒯𝒯\Phi:\varphi^{{\mathrm{op}},*}{{\mathcal{T}}}\to{{\mathcal{T}}} be an isomorphism defined over Spec(W(R+)[1ξ]){\mathrm{Spec}}(W(R^{+})[\frac{1}{\xi}]) and λ:𝒯𝒢b\lambda:{{\mathcal{T}}}\to\mathscr{G}_{b} a φ\varphi-equivariant isomorphism defined over B[r,]R+/[ϖ]{B^{[r,\infty]}_{R^{+}}}/[\varpi] for some rr big enough so that ξR\xi_{R^{\sharp}} becomes a unit. Then, there is a unique φ\varphi-equivariant isomorphism λ~:𝒯𝒢b{\widetilde{\lambda}}:{{\mathcal{T}}}\to\mathscr{G}_{b} defined over 𝒴[r,]R+{{\mathcal{Y}}^{[r,\infty]}_{R^{+}}} such that λ~=λ{\widetilde{\lambda}}=\lambda in B[r,]R+/[ϖ]{B^{[r,\infty]}_{R^{+}}}/[\varpi].

Proof.

By transport of structure, we assume that 𝒢=𝒯\mathscr{G}={{\mathcal{T}}}, that Φ𝒢(W(R+)[1ξ])\Phi\in\mathscr{G}(W(R^{+})[\frac{1}{\xi}]), and that λ𝒢(B[r,]R+/[ϖ])\lambda\in\mathscr{G}({B^{[r,\infty]}_{R^{+}}}/[\varpi]). It suffices to find λ~𝒢(B[r,]R+){\widetilde{\lambda}}\in\mathscr{G}({B^{[r,\infty]}_{R^{+}}}) reducing to λ\lambda with Φ=λ~1bφ(λ~)\Phi={\widetilde{\lambda}}^{-1}\circ b\circ\varphi({\widetilde{\lambda}}). Choose an arbitrary lift λ0𝒢(B[r,]R+)\lambda_{0}\in\mathscr{G}({B^{[r,\infty]}_{R^{+}}}) of λ\lambda, and let η0=λ01bφ(λ0)Φ1\eta_{0}={\lambda_{0}}^{-1}\circ b\circ\varphi({\lambda_{0}})\circ\Phi^{-1}. We construct a pair of sequences of maps, λi:𝒢𝒢b\lambda_{i}:\mathscr{G}\to\mathscr{G}_{b} and ηi:𝒢𝒢\eta_{i}:\mathscr{G}\to\mathscr{G} defined recursively by the relations λn+1=λnηn\lambda_{n+1}=\lambda_{n}\circ\eta_{n} and ηn=λn1bφ(λn)Φ1\eta_{n}=\lambda_{n}^{-1}\circ b\circ\varphi(\lambda_{n})\circ\Phi^{-1}. Observe that η0=Id\eta_{0}={\mathrm{Id}} in 𝒢(B[r,]R+/[ϖ])\mathscr{G}({B^{[r,\infty]}_{R^{+}}}/[\varpi]). We prove inductively that ηn=Id\eta_{n}={\mathrm{Id}} in 𝒢(B[r,]R+/[ϖpn])\mathscr{G}({B^{[r,\infty]}_{R^{+}}}/[\varpi^{p^{n}}]). Now, when g𝒢(B[r,]R+)g\in\mathscr{G}({B^{[r,\infty]}_{R^{+}}}) with g=Idg={\mathrm{Id}} in 𝒢(B[r,]R+/[ϖpn])\mathscr{G}({B^{[r,\infty]}_{R^{+}}}/[\varpi^{p^{n}}]), then φ(g)=Id\varphi(g)={\mathrm{Id}} in 𝒢(B[rp,]R+/[ϖpn+1])𝒢(B[r,]R+/[ϖpn+1])\mathscr{G}({B^{[\frac{r}{p},\infty]}_{R^{+}}}/[\varpi^{p^{n+1}}])\subseteq\mathscr{G}({B^{[r,\infty]}_{R^{+}}}/[\varpi^{p^{n+1}}]).

The induction then follows from the computation:

ηn+1\displaystyle\eta_{n+1} =λn+11bφ(λn+1)Φ1=ηn1λn1bφ(λn+1)Φ1\displaystyle=\lambda_{n+1}^{-1}\circ b\circ\varphi(\lambda_{n+1})\circ\Phi^{-1}=\eta_{n}^{-1}\circ\lambda_{n}^{-1}\circ b\circ\varphi(\lambda_{n+1})\circ\Phi^{-1} (1)
=Φφ(λn)1b1λnλn1bφ(λn+1)Φ1\displaystyle=\Phi\circ\varphi(\lambda_{n})^{-1}\circ b^{-1}\circ\lambda_{n}\circ\lambda_{n}^{-1}\circ b\circ\varphi(\lambda_{n+1})\circ\Phi^{-1} (2)
=Φφ(λn)1φ(λn+1)Φ1=Φφ(ηn)Φ1\displaystyle=\Phi\circ\varphi(\lambda_{n})^{-1}\circ\varphi(\lambda_{n+1})\circ\Phi^{-1}=\Phi\circ\varphi(\eta_{n})\circ\Phi^{-1} (3)

Since φ(ηn)=Id\varphi(\eta_{n})={\mathrm{Id}} in 𝒢(B[r,]R+/[ϖpn+1])\mathscr{G}({B^{[r,\infty]}_{R^{+}}}/[\varpi^{p^{n+1}}]) we also have that ηn+1=Id\eta_{n+1}={\mathrm{Id}} in 𝒢(B[r,]R+/[ϖpn+1])\mathscr{G}({B^{[r,\infty]}_{R^{+}}}/[\varpi^{p^{n+1}}]).

This let us conclude that ηi\eta_{i} converges to Id{\mathrm{Id}} in 𝒢(B[r,]R+)\mathscr{G}({B^{[r,\infty]}_{R^{+}}}). Define λ~𝒢(B[r,]R+){\widetilde{\lambda}}\in\mathscr{G}({B^{[r,\infty]}_{R^{+}}}) as the limit of the λi\lambda_{i}. Taking limits we get Id=η=λ~bφ(λ~)Φ1{\mathrm{Id}}=\eta_{\infty}={\widetilde{\lambda}}\circ b\circ\varphi({\widetilde{\lambda}})\circ\Phi^{-1} and λ~=λi=λ{\widetilde{\lambda}}=\lambda_{i}=\lambda in 𝒢(B[r,]R+/[ϖ])\mathscr{G}({B^{[r,\infty]}_{R^{+}}}/[\varpi]).

Let us prove uniqueness. Given two lifts λ~i{\widetilde{\lambda}}_{i} of λ\lambda we let g=λ~1λ~21g={\widetilde{\lambda}}_{1}\circ{\widetilde{\lambda}}_{2}^{-1} with g𝒢(B[r,]R+)g\in\mathscr{G}({B^{[r,\infty]}_{R^{+}}}). Now, φ\varphi-equivariance gives b=g1bφ(g)b=g^{-1}\circ b\circ\varphi(g), and since g=Idg={\mathrm{Id}} in 𝒢(B[r,]R+/[ϖ])\mathscr{G}({B^{[r,\infty]}_{R^{+}}}/[\varpi]) then φ(g)=Id\varphi(g)={\mathrm{Id}} in 𝒢(B[r,]R+/[ϖp])\mathscr{G}({B^{[r,\infty]}_{R^{+}}}/[\varpi^{p}]). From the identity b=g1bIdb=g^{-1}\circ b\circ{\mathrm{Id}} in 𝒢(B[r,]R+/[ϖp])\mathscr{G}({B^{[r,\infty]}_{R^{+}}}/[\varpi^{p}]) we proceed inductively to prove that g=Idg={\mathrm{Id}} in 𝒢(B[r,]R+/[ϖpn])\mathscr{G}({B^{[r,\infty]}_{R^{+}}}/[\varpi^{p^{n}}]) for every nn and by separatedness also in 𝒢(B[r,]R+)\mathscr{G}({B^{[r,\infty]}_{R^{+}}}). ∎

2.2. Specialization map for pp-adic Beilinson–Drinfeld Grassmannians.

We recall the definition of the pp-adic Beilinson–Drinfeld Grassmannian that is most suitable to study its specialization map.

Definition 2.16.

([Ber2, Definition 20.3.1]) We let Gr𝒢W(k){{\mathrm{Gr}}^{\mathscr{G}}_{W(k)}} denote the v-sheaf Gr𝒢W(k)(R,R+)={(R,ι,f,𝒯,ψ)}{{\mathrm{Gr}}^{\mathscr{G}}_{W(k)}}(R,R^{+})=\{(R^{\sharp},\iota,f,{{\mathcal{T}}},\psi)\}_{\cong} with (R,ι,f)(R^{\sharp},\iota,f) an untilt over W(k)W(k) and (𝒯,ψ)({{\mathcal{T}}},\psi) is a lattice with 𝒢\mathscr{G}-structure as in 2.10.

By Beauville–Laszlo glueing this agrees with the loop group description.

Proposition 2.17.

With terminology as in [Specializ, Definition 4.6] the v-sheaf Gr𝒢W(k){{\mathrm{Gr}}^{\mathscr{G}}_{W(k)}} formalizes products of points. In particular, it is v-formalizing.

Proof.

Let Spa(R,R+){{\rm{Spa}}(R,R^{+})} be a product of points and f:Spa(R,R+)Gr𝒢W(k)f:{{\rm{Spa}}(R,R^{+})}\to{{\mathrm{Gr}}^{\mathscr{G}}_{W(k)}} a map. By definition, associated to this map we have an untilt (R,ι,m)(R^{\sharp},\iota,m) over W(k)W(k) and a 𝒢\mathscr{G}-torsor 𝒯{{\mathcal{T}}} over 𝒴R+[0,){{\mathcal{Y}}_{R^{+}}^{[0,\infty)}} together with a trivialization ψ:𝒯𝒢\psi:{{\mathcal{T}}}\to\mathscr{G} over 𝒴R+[0,)V(ξR){{\mathcal{Y}}_{R^{+}}^{[0,\infty)}}\setminus V(\xi_{R^{\sharp}}) meromorphic along ξR\xi_{R^{\sharp}}. We use ψ\psi to glue 𝒯{{\mathcal{T}}} and 𝒢\mathscr{G} along 𝒴[r,)R+{{\mathcal{Y}}^{[r,\infty)}_{R^{+}}} to get a 𝒢\mathscr{G}-torsor defined over 𝒴R+{{\mathcal{Y}}_{R^{+}}}. Using 2.4, 2.8 and the fact that by construction 𝒯{{\mathcal{T}}} is trivial on YR+V(ξ){{Y}_{R^{+}}}\setminus V(\xi) we can extend 𝒯{{\mathcal{T}}} to a 𝒢\mathscr{G}-torsor over Spec(W(R+)){\mathrm{Spec}}(W(R^{+})) together with a trivialization over Spec(W(R+)[1ξR]){\mathrm{Spec}}(W(R^{+})[\frac{1}{\xi_{R^{\sharp}}}]). This is enough to define a map Spd(R+)Gr𝒢W(k){{\mathrm{Spd}}({R^{+}})}\to{{\mathrm{Gr}}^{\mathscr{G}}_{W(k)}} that restricts to the original one. ∎

Proposition 2.18.

([Ber2, §20.3]) With terminology as in [Specializ, Definition 4.11, Definition 3.20, Definition 3.12] the v-sheaf Gr𝒢W(k){{\mathrm{Gr}}^{\mathscr{G}}_{W(k)}} is specializing, formally pp-adic, and (Gr𝒢W(k))red({{\mathrm{Gr}}^{\mathscr{G}}_{W(k)}})^{\mathrm{red}} is represented by the Witt-vector affine flag variety, l𝒢𝒲,k{{\mathcal{F}}l^{\mathscr{G}}_{{\mathcal{W}},k}}.

Proof.

We need to prove that Gr𝒢W(k){{\mathrm{Gr}}^{\mathscr{G}}_{W(k)}} is separated, v-formalizing and that the diagonal map is formally adic. The first two properties follow respectively from [Ber2, Theorem 20.3.2, Theorem 21.2.1] and 2.17. By [Specializ, Proposition 3.29], it is enough to prove that Gr𝒢W(k){{\mathrm{Gr}}^{\mathscr{G}}_{W(k)}} is formally pp-adic. This follows from the fact that Gr𝒢W(k)×Spd(W(k))Spec(k)=(l𝒢𝒲,k){{\mathrm{Gr}}^{\mathscr{G}}_{W(k)}}\times_{{{\rm{Spd}}(W(k))}}{\mathrm{Spec}}(k)^{\diamond}=({{\mathcal{F}}l^{\mathscr{G}}_{{\mathcal{W}},k}})^{\diamond}, from [Specializ, Lemma 3.32] and the fact that l𝒢𝒲,k{{\mathcal{F}}l^{\mathscr{G}}_{{\mathcal{W}},k}} is ind-representable by a perfect scheme. Indeed, ind-representability proves that l𝒢𝒲,k{{\mathcal{F}}l^{\mathscr{G}}_{{\mathcal{W}},k}} is a reduced scheme-theoretic v-sheaf as in [Specializ, Definition 3.15]. ∎

Recall that given μX+(T)\mu\in X^{+}_{*}(T) with field of definition EE we may define a “local model” v-sheaf 𝒢,μOE{{\mathcal{M}}^{\mathscr{G},\leq\mu}_{O_{E}}} over Spd(OE){{\rm{Spd}}(O_{E})}. This is defined as the v-sheaf closure of GrG,μE{\mathrm{Gr}}^{G,\leq\mu}_{E} in Gr𝒢p×pOE{{\mathrm{Gr}}^{\mathscr{G}}_{{\mathbb{Z}_{p}}}}\times_{{\mathbb{Z}_{p}}}O_{E} [Ber2, §21.4]. In [AGLR22], our collaboration with Anschütz, Lourenço, and Richarz, we prove the following statement.

Theorem 2.19.

([AGLR22]) With terminology as in [AGLR22]. If 𝒢\mathscr{G} is parahoric and μX+(T)\mu\in X^{+}_{*}(T), then 𝒢,μOE{{\mathcal{M}}^{\mathscr{G},\leq\mu}_{O_{E}}} is a flat and rich pp-adic kimberlite. Moreover, (𝒢,μOE)red=𝒜𝒢,μ({{\mathcal{M}}^{\mathscr{G},\leq\mu}_{O_{E}}})^{\mathrm{red}}={{\mathcal{A}}_{\mathscr{G},\mu}}, the μ\mu-admissible locus in l𝒢𝒲,k{{\mathcal{F}}l^{\mathscr{G}}_{{\mathcal{W}},k}}.

When 𝒢\mathscr{G} is reductive we can say a bit more. Indeed, in this case one can use a Demazure resolution as in [Specializ] to prove the following statement.

Theorem 2.20.

([Specializ, Theorem 5.1]) Let FF be a nonarchimedean field extension of EE. If 𝒢\mathscr{G} is reductive and μX+(T)\mu\in X^{+}_{*}(T), then 𝒢,μOF{{\mathcal{M}}^{\mathscr{G},\leq\mu}_{O_{F}}} has geometrically connected tubular neighborhoods.

2.3. Moduli spaces of shtukas are smelted kimberlites.

Fix an element bG(K0)b\in G(K_{0}) and let 𝒢b:Rep𝒢pIsoCrysK0\mathscr{G}_{b}:{\mathrm{Rep}}^{\mathscr{G}}_{{\mathbb{Z}_{p}}}\to{\mathrm{IsoCrys}}_{K_{0}} denote the associated isocrystal with 𝒢\mathscr{G}-structure.

Definition 2.21.

The moduli space of pp-adic shtukas associated to 𝒢b\mathscr{G}_{b}, which we denote by Sht𝒢bW(k){{\mathrm{Sht}}^{\mathscr{G}_{b}}_{W(k)}}, is the functor Sht𝒢bW(k)(R,R+)={(R,ι,f),𝒯,Φ,λ}/{{\mathrm{Sht}}^{\mathscr{G}_{b}}_{W(k)}}(R,R^{+})=\{(R^{\sharp},\iota,f),{{\mathcal{T}}},\Phi,\lambda\}/_{\cong} with (R,ι,f)(R^{\sharp},\iota,f) untilt over W(k)W(k), (𝒯,Φ)({{\mathcal{T}}},\Phi) is a shtuka as in 2.11 and λ:𝒯𝒢b|𝒴[r,)R+\lambda:{{\mathcal{T}}}\to\mathscr{G}_{b}|_{{\mathcal{Y}}^{[r,\infty)}_{R^{+}}} an isogeny as in 2.12.

We consider the following auxiliary space.

Definition 2.22.

Let WSht𝒢bW(k){{{\mathrm{WSht}}}^{\mathscr{G}_{b}}_{W(k)}} denote the functor WSht𝒢bW(k)(R,R+)={(R,ι,f),M,λ}{{{\mathrm{WSht}}}^{\mathscr{G}_{b}}_{W(k)}}(R,R^{+})=\{(R^{\sharp},\iota,f),M,\lambda\} with (R,ι,f)(R^{\sharp},\iota,f) an untilt over W(k)W(k), M𝒢(W(R+)[1ξR])M\in\mathscr{G}(W(R^{+})[\frac{1}{\xi_{R^{\sharp}}}]) and λ:𝒢M𝒢b\lambda:\mathscr{G}_{M}\to\mathscr{G}_{b} an isogeny. Here 𝒢M:=(𝒢,ΦM)\mathscr{G}_{M}:=(\mathscr{G},\Phi_{M}) with ΦM:φop,𝒢𝒢\Phi_{M}:\varphi^{{\mathrm{op}},*}\mathscr{G}\to\mathscr{G} given by MM.

We denote by 𝕎+𝒢\mathbb{W}^{+}\mathscr{G} the sheaf in groups 𝕎+𝒢(R,R+)=𝒢(W(R+))\mathbb{W}^{+}\mathscr{G}(R,R^{+})=\mathscr{G}(W(R^{+})).

Proposition 2.23.

The following hold:

  1. (1)

    The functors Sht𝒢bW(k){{\mathrm{Sht}}^{\mathscr{G}_{b}}_{W(k)}} and WSht𝒢bW(k){{{\mathrm{WSht}}}^{\mathscr{G}_{b}}_{W(k)}} are small v-sheaves.

  2. (2)

    The natural map WSht𝒢bW(k)Sht𝒢bW(k){{{\mathrm{WSht}}}^{\mathscr{G}_{b}}_{W(k)}}\to{{\mathrm{Sht}}^{\mathscr{G}_{b}}_{W(k)}} is a 𝕎+𝒢\mathbb{W}^{+}\mathscr{G}-torsor for the v-topology.

  3. (3)

    WSht𝒢bW(k){{{\mathrm{WSht}}}^{\mathscr{G}_{b}}_{W(k)}} is formalizing and Sht𝒢bW(k){{\mathrm{Sht}}^{\mathscr{G}_{b}}_{W(k)}} is v-formalizing.

Proof.

Standard argument using 2.9 proves the first claim. Given N𝕎+𝒢(R,R+)N\in\mathbb{W}^{+}\mathscr{G}(R,R^{+}) and (M,λ)WSht𝒢bW(k)(R,R+)(M,\lambda)\in{{{\mathrm{WSht}}}^{\mathscr{G}_{b}}_{W(k)}}(R,R^{+}) let N(M,λ)=(N1Mφ(N),λN)N\cdot(M,\lambda)=(N^{-1}M\varphi(N),\lambda\circ N). This action on WSht𝒢bW(k){{{\mathrm{WSht}}}^{\mathscr{G}_{b}}_{W(k)}} makes the map WSht𝒢bW(k)Sht𝒢bW(k){{{\mathrm{WSht}}}^{\mathscr{G}_{b}}_{W(k)}}\to{{\mathrm{Sht}}^{\mathscr{G}_{b}}_{W(k)}} equivariant for the trivial action on the target. It suffices to prove that the basechange of the map along product of points is the trivial 𝕎+𝒢\mathbb{W}^{+}\mathscr{G}-torsor.

Let Spa(R,R+){{\rm{Spa}}(R,R^{+})} be a product of points, and let (𝒯,Φ,λ)Sht𝒢bW(k)(R,R+)({{\mathcal{T}}},\Phi,\lambda)\in{{\mathrm{Sht}}^{\mathscr{G}_{b}}_{W(k)}}(R,R^{+}). Similarly to the proof of 2.17, we can glue 𝒯{{\mathcal{T}}} along λ\lambda over 𝒴[r,)R+{{\mathcal{Y}}^{[r,\infty)}_{R^{+}}} and use 2.8 to get a 𝒢\mathscr{G}-bundle over Spec(W(R+)){\mathrm{Spec}}(W(R^{+})) with a meromorphic Φ\Phi that restrict to the previous one. Now, any 𝒢\mathscr{G}-bundle on Spec(W(R+)){\mathrm{Spec}}(W(R^{+})) is trivial. Indeed, Spec(W(R+)){\mathrm{Spec}}(W(R^{+})) splits every étale cover. The choice of a trivialization specifies a section (M,λ)WSht𝒢bW(k)(R,R+)(M,\lambda)\in{{{\mathrm{WSht}}}^{\mathscr{G}_{b}}_{W(k)}}(R,R^{+}) and after chasing definitions one can see that the natural action of 𝕎+𝒢\mathbb{W}^{+}\mathscr{G} on the set of trivialization acts compatibly with the action specified above.

Let us prove that WSht𝒢bW(k){{{\mathrm{WSht}}}^{\mathscr{G}_{b}}_{W(k)}} is formalizing. From this and surjectivity of WSht𝒢bW(k)Sht𝒢bW(k){{{\mathrm{WSht}}}^{\mathscr{G}_{b}}_{W(k)}}\to{{\mathrm{Sht}}^{\mathscr{G}_{b}}_{W(k)}} it follows that Sht𝒢bW(k){{\mathrm{Sht}}^{\mathscr{G}_{b}}_{W(k)}} is v-formalizing. Let Spa(S,S+)Perfk{{\rm{Spa}}(S,S^{+})}\in{\mathrm{Perf}}_{k}, and ϖSS+\varpi_{S}\in S^{+} a pseudo-uniformizer. Let ((S,ι,f),M,λ)WSht𝒢bW(k)(S,S+)((S^{\sharp},\iota,f),M,\lambda)\in{{{\mathrm{WSht}}}^{\mathscr{G}_{b}}_{W(k)}}(S,S^{+}), we construct a natural transformation Spd(S+)WSht𝒢bW(k){{\mathrm{Spd}}({S^{+}})}\to{{{\mathrm{WSht}}}^{\mathscr{G}_{b}}_{W(k)}}. A map f:Spa(L,L+)Spd(S+)f:{{\rm{Spa}}(L,L^{+})}\to{{\mathrm{Spd}}({S^{+}})} induces f:W(S+)[1ξS]W(L+)[1ξL]f:W(S^{+})[\frac{1}{\xi_{S^{\sharp}}}]\to W(L^{+})[\frac{1}{\xi_{L^{\sharp}}}], we let ML=f(M)M_{L}=f(M). Fix a pseudo-uniformizer ϖLL+\varpi_{L}\in L^{+}, there is a large enough rr^{\prime}\in\mathbb{R} for which the following diagram is commutative:

𝒴[r,]L+{{{\mathcal{Y}}^{[r^{\prime},\infty]}_{L^{+}}}}𝒴[r,]R+{{{\mathcal{Y}}^{[r,\infty]}_{R^{+}}}}Spa(W(L+)){{\mathrm{Spa}}({W(L^{+})})}Spa(W(S+)){{\mathrm{Spa}}({W(S^{+})})}

This map allows us to pullback the isogeny λ\lambda to Spa(L,L+){{\rm{Spa}}(L,L^{+})}. The isogeny constructed this way does not depend of the choices of ϖS\varpi_{S}, ϖL\varpi_{L}, rr or rr^{\prime}. ∎

Recall that moduli spaces of shtukas satisfy the valuative criterion for partial properness over Spd(W(k)){{\rm{Spd}}(W(k))}.

Lemma 2.24.

Let 𝒢1𝒢2\mathscr{G}_{1}\to\mathscr{G}_{2} be a closed embeddings of parahoric group schemes over p{\mathbb{Z}_{p}} and 𝒢b\mathscr{G}_{b} an isocrystal with 𝒢1\mathscr{G}_{1} structure. Let 𝒢b=𝒢b×𝒢1𝒢2\mathscr{G}^{\prime}_{b}=\mathscr{G}_{b}\overset{\mathscr{G}_{1}}{\times}\mathscr{G}_{2}, the induced map WSht𝒢bW(k)WSht𝒢bW(k){{{\mathrm{WSht}}}^{\mathscr{G}_{b}}_{W(k)}}\to{{{\mathrm{WSht}}}^{\mathscr{G}^{\prime}_{b}}_{W(k)}} is a closed immersion.

Proof.

Let Spa(S,S+){{\rm{Spa}}(S,S^{+})} in Perfk{\mathrm{Perf}}_{k} be totally disconnected, and let (M,λ)WSht𝒢bW(k)(S,S+)(M,\lambda)\in{{{\mathrm{WSht}}}^{\mathscr{G}^{\prime}_{b}}_{W(k)}}(S,S^{+}). It suffices to prove that the basechange along SS is a closed immersion. Abusing notation, we let (r,λ)(r,\lambda) represent the isogeny. By unraveling definitions we think of MM and λ\lambda as ring maps 𝒪𝒢2W(S+)[1ξS]{\mathcal{O}}_{\mathscr{G}_{2}}\to W(S^{+})[\frac{1}{\xi_{S^{\sharp}}}] and 𝒪𝒢2BS+[r,]{\mathcal{O}}_{\mathscr{G}_{2}}\to{B^{S^{+}}_{[r,\infty]}} with 𝒪𝒢1=𝒪𝒢2/I{\mathcal{O}}_{\mathscr{G}_{1}}={\mathcal{O}}_{\mathscr{G}_{2}}/I. The basechange Spa(S,S+)×WSht𝒢bW(k)WSht𝒢bW(k){{\rm{Spa}}(S,S^{+})}\times_{{{\mathrm{WSht}}}^{\mathscr{G}^{\prime}_{b}}_{W(k)}}{{{\mathrm{WSht}}}^{\mathscr{G}_{b}}_{W(k)}} represents the maps Spa(R,R+)Spa(S,S+){{\rm{Spa}}(R,R^{+})}\to{{\rm{Spa}}(S,S^{+})} such that the induced morphisms M:𝒪𝒢2W(R+)[1ξR]M:{\mathcal{O}}_{\mathscr{G}_{2}}\to W(R^{+})[\frac{1}{\xi_{R^{\sharp}}}] and λ:𝒪𝒢2B[r,]R+\lambda:{\mathcal{O}}_{\mathscr{G}_{2}}\to{B^{[r,\infty]}_{R^{+}}} map elements of II to 0.

Since II is finitely generated, it suffi