This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

On the generalized Hamming weights of hyperbolic codes

Eduardo Camps-Moreno Escuela Superior de Física y Matemáticas
Instituto Politécnico Nacional
Mexico City, Mexico
[email protected]
Ignacio García-Marco Departamento de Matemáticas, Estadística e I.O.
Universidad de La Laguna
La Laguna, Tenerife, Spain
[email protected]
Hiram H. López Department of Mathematics and Statistics
Cleveland State University
Cleveland, OH USA
[email protected]
Irene Márquez-Corbella Departamento de Matemáticas, Estadística e I.O.
Universidad de La Laguna
La Laguna, Tenerife, Spain
[email protected]
Edgar Martínez-Moro Institute of Mathematics
University of Valladolid
Spain
[email protected]
 and  Eliseo Sarmiento Escuela Superior de Física y Matemáticas
Instituto Politécnico Nacional
Mexico City, Mexico
[email protected] Dedicated to Joachim Rosenthal on the occasion of his sixtieth birthday.
We thank Prof. Rosenthal for his selfless, continuous, and endless
support to shape the coding theory and cryptography community.
Abstract.

A hyperbolic code is an evaluation code that improves a Reed-Muller because the dimension increases while the minimum distance is not penalized. We give the necessary and sufficient conditions, based on the basic parameters of the Reed-Muller, to determine whether a Reed-Muller coincides with a hyperbolic code. Given a hyperbolic code, we find the largest Reed-Muller containing the hyperbolic code and the smallest Reed-Muller in the hyperbolic code. We then prove that similarly to Reed-Muller and Cartesian codes, the rr-th generalized Hamming weight and the rr-th footprint of the hyperbolic code coincide. Unlike Reed-Muller and Cartesian, determining the rr-th footprint of a hyperbolic code is still an open problem. We give upper and lower bounds for the rr-th footprint of a hyperbolic code that, sometimes, are sharp.

Key words and phrases:
Reed-Muller codes, evaluation codes, hyperbolic codes, generalized Hamming weights, footprint
2010 Mathematics Subject Classification:
Primary 94B05; Secondary 13P25, 14G50, 11T71
The first and sixth authors were partially supported by SIP-IPN, project 20211838, and CONACyT. The third author was partially supported by NSF DMS-2201094. The second and fourth authors were partially supported by the Spanish MICINN PID2019-105896GB-I00 and MASCA (ULL Research Project). The fourth and fifth authors were supported in part by Grant TED2021-130358B-I00 funded by MCIN/AEI/10.13039/501100011033 and by the “European Union NextGenerationEU/PRTR”. (Corresponding author: Hiram H. López.)
\markleft

E. Camps-Moreno, I. García-Marco, H. H. López, I. Márquez-Corbella, E. Martínez-Moro, and E. Sarmiento

1. Introduction

Let 𝔽q\mathbb{F}_{q} be a finite field with qq elements, where qq is a power of a prime. An [n,k,δ][n,k,\delta] linear code 𝒞\mathcal{C} over 𝔽q\mathbb{F}_{q} is a subspace 𝒞𝔽qn\mathcal{C}\subseteq\mathbb{F}_{q}^{n} with 𝔽q\mathbb{F}_{q}-dimension kk and minimum distance δ:=min{dH(𝐜,𝐜):𝐜,𝐜𝒞,𝐜𝐜},\delta:=\min\{d_{H}(\mathbf{c},\mathbf{c}^{\prime})\ :\ \mathbf{c},\mathbf{c}^{\prime}\in\mathcal{C},\mathbf{c}\neq\mathbf{c}^{\prime}\}, where dH(,)d_{H}(\cdot,\cdot) denotes the Hamming distance.

The Generalized Hamming weights (GHWs) for linear codes, a natural generalization of the minimum distance, were introduced by Wei in 1992 [14]. Wei showed in the same work [14] that the GHWs completely characterize the performance of a linear code when used on the wire-tap channel of type II. The GHWs are also related to resilient functions and trellis, or branch complexity of linear codes [13]. The precise definition is the following. For a nonnegative integer ss, we set [s]:={1,2,,s}[s]:=\{1,2,...,s\}. The support of a subspace 𝒟𝔽qn\mathcal{D}\subseteq\mathbb{F}_{q}^{n} is defined by χ(𝒟):={i[n]:there is (x1,,xn) in 𝒟 with xi0}.\chi(\mathcal{D}):=\left\{i\in[n]\ :\ \text{there is }\mathbf{(}x_{1},\ldots,x_{n})\text{ in }\mathcal{D}\text{ with }x_{i}\neq 0\right\}. For an integer 1rk1\leq r\leq k, the rr-th generalized Hamming weight of 𝒞\mathcal{C} is given by

δr(𝒞):=min{|χ(𝒟)|:𝒟𝒞,dim(𝒟)=r}.\delta_{r}(\mathcal{C}):=\min\{\ |\chi(\mathcal{D})|\ :\ \mathcal{D}\subseteq\mathcal{C},\dim(\mathcal{D})=r\}.

Note that δ1(𝒞)\delta_{1}(\mathcal{C}) is the minimum distance of CC.

This work will focus on evaluation codes whose evaluation points are the points in 𝒫:=𝔽qm\mathcal{P}:=\mathbb{F}_{q}^{m}. For AmA\subseteq\mathbb{N}^{m}, let 𝔽q[A]\mathbb{F}_{q}[A] be the subspace of polynomials in 𝔽q[𝐗]:=𝔽q[X1,,Xm]\mathbb{F}_{q}[\mathbf{X}]:=\mathbb{F}_{q}[X_{1},\ldots,X_{m}] with 𝔽q\mathbb{F}_{q}-basis {𝐗𝐢:=X1i1Xmim:𝐢=(i1,,im)A}.\left\{\mathbf{X}^{\mathbf{i}}:=X_{1}^{i_{1}}\cdots X_{m}^{i_{m}}\ :\ \mathbf{i}=(i_{1},\ldots,i_{m})\in A\right\}. Write 𝒫={P1,,Pn}\mathcal{P}=\{P_{1},\ldots,P_{n}\}, where n:=|𝒫|=qm.n:=|\mathcal{P}|=q^{m}. Define the following evaluation map

ev𝒫:𝔽q[X1,,Xm]𝔽qnf(f(P1),,f(Pn)).\begin{array}[]{cccc}\mathrm{ev}_{\mathcal{P}}:&\mathbb{F}_{q}[X_{1},\ldots,X_{m}]&\longrightarrow&\mathbb{F}_{q}^{n}\\ &f&\longmapsto&(f(P_{1}),\ldots,f(P_{n})).\end{array}

The evaluation or monomial code associated with AA is denoted and defined by

𝒞A:=ev𝒫(𝔽q[A])={ev𝒫(f):f𝔽q[A]}.\mathcal{C}_{A}:=\mathrm{ev}_{\mathcal{P}}(\mathbb{F}_{q}[A])=\left\{\mathrm{ev}_{\mathcal{P}}(f)\ :\ f\in\mathbb{F}_{q}[A]\right\}.

For a,ba,b\in\mathbb{R} and aba\leq b, we denote by [[a,b]][\![a,b]\!] the integer interval [a,b][a,b]\cap\mathbb{Z}. Recall Am.A\subseteq\mathbb{N}^{m}. As αq=α\alpha^{q}=\alpha for every α𝔽q\alpha\in\mathbb{F}_{q}, one can find a unique set B[[0,q1]]mB\subseteq[\![0,q-1]\!]^{m} such that 𝒞A=𝒞B\mathcal{C}_{A}=\mathcal{C}_{B}. In what follows, if a set AmA\subseteq\mathbb{N}^{m} defines the code 𝒞A\mathcal{C}_{A}, we are assuming that A[[0,q1]]mA\subseteq[\![0,q-1]\!]^{m}.

Observe that the length and dimension of the evaluation code 𝒞A\mathcal{C}_{A} are qmq^{m} and |A||A|, respectively. The minimum distance of 𝒞A\mathcal{C}_{A} has been studied in terms of the footprint that we now define. The footprint-bound of the evaluation code 𝒞A\mathcal{C}_{A} is the integer

FB(𝒞A):=min{j=1m(qij):(i1,,im)A}.\mathrm{FB}(\mathcal{C}_{A}):=\min\left\{\prod_{j=1}^{m}(q-i_{j})\ :\ (i_{1},\ldots,i_{m})\in A\right\}.

The footprint-bound matters because the minimum distance δ1(𝒞A)\delta_{1}(\mathcal{C}_{A}) of 𝒞A\mathcal{C}_{A} is lower bounded by the footprint bound [9]: FB(𝒞A)δ1(𝒞A)\mathrm{FB}(\mathcal{C}_{A})\leq\delta_{1}(\mathcal{C}_{A}). The footprint-bound has been extensively studied in the literature. See, for example, [1, 4, 6, 12] and the references therein.

The families of Reed-Muller and hyperbolic codes that we describe below are particular cases of evaluation codes. Let s0,m1s\geq 0,m\geq 1 be integers and take

R:={𝐢=(i1,,im)[[0,q1]]m:j=1mijs}.R:=\left\{\mathbf{i}=(i_{1},\ldots,i_{m})\in[\![0,q-1]\!]^{m}\ :\ \sum_{j=1}^{m}i_{j}\leq s\right\}.

The evaluation code 𝒞R\mathcal{C}_{R}, denoted by RMq(s,m)\mathrm{RM}_{q}(s,m), is called Reed-Muller code over 𝔽q\mathbb{F}_{q} of degree ss with mm variables.

A hyperbolic code, introduced by Geil and Høholdt in [8], is an evaluation code designed to improve the dimension of a Reed-Muller code while the minimum distance is not penalized. The precise definition of a hyperbolic code is the following. Let d,m1d,m\geq 1 be integers and take

H:={𝐢=(i1,,im)[[0,q1]]m:j=1m(qij)d}.H:=\left\{\mathbf{i}=(i_{1},\ldots,i_{m})\in[\![0,q-1]\!]^{m}\ :\ \prod_{j=1}^{m}(q-i_{j})\geq d\right\}.

The evaluation code 𝒞H\mathcal{C}_{H}, denoted by Hypq(d,m)\mathrm{Hyp}_{q}(d,m), is called the hyperbolic code over 𝔽q\mathbb{F}_{q} of order dd with mm variables.

Note that the hyperbolic code Hypq(d,m)\mathrm{Hyp}_{q}(d,m) has been designed to be the code with the largest possible dimension among those monomial codes 𝒞A\mathcal{C}_{A} such that FB(𝒞A)d\mathrm{FB}(\mathcal{C}_{A})\geq d. There are instances where the hyperbolic codes improve the Reed-Muller codes, meaning that the dimension has increased [11]. But sometimes, the hyperbolic and Reed-Muller codes coincide. In this paper, we give the necessary and sufficient conditions to determine whether a Reed-Muller code is hyperbolic; those conditions are provided in terms of the basic parameters of the Reed-Muller code. Given a hyperbolic code, we find the largest (respectively smallest) Reed-Muller code contained in (respectively that contains) the hyperbolic.

The GHWs have been studied for many well-known families of codes. Heijnen and Pellikaan introduced in [10], in a general setting, the order bound on GHWs of codes on varieties to compute the GHWs of Reed-Muller codes. Beelen and Datta used a similar approach of the order bound in [2] to calculate the GHWs of Cartesian codes. Jaramillo et al. introduced in [12] the rr-th footprint to bound the GHWs for any evaluation code. This paper proves that the rr-th generalized Hamming weight and the rr-th footprint of a hyperbolic code coincide.

The outline of this paper is as follows. In Section 2, we determine when a Reed-Muller code is hyperbolic. Thus, we indicate when the hyperbolic code of order dd has a greater dimension concerning a Reed-Muller code with the same minimum distance. Given a hyperbolic code Hypq(d,m),\mathrm{Hyp}_{q}(d,m), we find in Section 3 the smallest Reed-Muller code RMq(s,m)\mathrm{RM}_{q}(s^{\prime},m) that contains Hypq(d,m).\mathrm{Hyp}_{q}(d,m). Section 4 finds the largest Reed-Muller code RMq(s,m)\mathrm{RM}_{q}(s,m) contained in Hypq(d,m).\mathrm{Hyp}_{q}(d,m). In other words, Section 3 and 4 find the largest ss and the smallest ss^{\prime} such that

RMq(s,m)Hypq(d,m)RMq(s,m).\mathrm{RM}_{q}(s,m)\subseteq\mathrm{Hyp}_{q}(d,m)\subseteq\mathrm{RM}_{q}(s^{\prime},m).

In Section 5, we prove that similarly to Reed-Muller and Cartesian codes, the rr-th generalized Hamming weight and the rr-th footprint of the hyperbolic code coincide. Unlike Reed-Muller and Cartesian, determining the rr-th footprint of a hyperbolic code is still an open problem. We use the results from Sections 23, and 4 to provide upper and lower bounds for the rr-th footprint of a hyperbolic code that, sometimes, are sharp.

2. When hyperbolic and Reed-Muller codes coincide

We determine in this section when a Reed-Muller code is hyperbolic. In other words, for a Reed-Muller code RMq(s,m),\mathrm{RM}_{q}(s,m), we give necessary and sufficient conditions over qq, s,s, mm and its minimum distance to determine if RMq(s,m)\mathrm{RM}_{q}(s,m) is a hyperbolic code.

Proposition 2.1.

Assume s=mt+rs=mt+r, where t,rt,r\in\mathbb{N} and 0rm1.0\leq r\leq m-1. Then

max{j=1m(qij):j=1mij=s, 0ijq1}=(qt1)r(qt)mr.\max\left\{\prod_{j=1}^{m}(q-i_{j})\ :\ \sum_{j=1}^{m}i_{j}=s,\ 0\leq i_{j}\leq q-1\right\}=(q-t-1)^{r}(q-t)^{m-r}.
Proof.

Consider 𝐢=(i1,,im)\mathbf{i}=(i_{1},\ldots,i_{m}) such that j=1m(qij)\prod_{j=1}^{m}(q-i_{j}) reaches the maximum value. If all the iji_{j}’s are equal, then ij=smi_{j}=\frac{s}{m} and we have the result (r=0r=0). If they are not equal, we can assume by symmetry that i1>i2i_{1}>i_{2}, and then we would have that

(qi1+1)(qi21)j=3m(qij)j=1m(qij)>0(q-i_{1}+1)(q-i_{2}-1)\prod_{j=3}^{m}(q-i_{j})-\prod_{j=1}^{m}(q-i_{j})>0

if and only if i1i21>0i_{1}-i_{2}-1>0. Since we have chosen 𝐢\mathbf{i} to be maximum, then i1i21=0i_{1}-i_{2}-1=0 and therefore i1=i2+1i_{1}=i_{2}+1. This means that i1==ir=t+1i_{1}=\ldots=i_{r}=t+1 and ir+1==im=ti_{r+1}=\ldots=i_{m}=t for some rr and tt (and then s=mt+rs=mt+r) and thus the conclusion follows. ∎

We come to one of the main results of this section.

Theorem 2.2.

Let m1m\geq 1 and 0s<m(q1)0\leq s<m(q-1). The Reed-Muller code RMq(s,m)\mathrm{RM}_{q}(s,m) with minimum distance δ\delta is a hyperbolic code if and only if

(qt1)r(qt)mr<δ,(q-t-1)^{r}(q-t)^{m-r}<\delta,

where s+1=mt+rs+1=mt+r and 0r<m.0\leq r<m. Even more, in this case we have RMq(s,m)=Hypq(δ,m).\mathrm{RM}_{q}(s,m)=\mathrm{Hyp}_{q}(\delta,m).

Proof.

Define the sets

R={𝐢[[0,q1]]m:j=1mijs} and H={𝐢[[0,q1]]m:j=1m(qij)δ}.R=\left\{{\bf i}\in[\![0,q-1]\!]^{m}\ :\ \sum_{j=1}^{m}i_{j}\leq s\right\}\text{ and }H=\left\{{\bf i}\in[\![0,q-1]\!]^{m}\ :\ \prod_{j=1}^{m}(q-i_{j})\geq\delta\right\}.

As the minimum distance of the Reed-Muller code RMq(s,m)\mathrm{RM}_{q}(s,m) is δ\delta [3, Theorem 3.9], for every vector 𝐢=(i1,,im){\bf i}=\left(i_{1},\ldots,i_{m}\right) such that j=1mijs\sum_{j=1}^{m}i_{j}\leq s we have that j=1m(qij)δ.\prod_{j=1}^{m}(q-i_{j})\geq\delta. This implies that RH.R\subseteq H. Thus, by definition of hyperbolic code, the Reed-Muller code RMq(s,m)\mathrm{RM}_{q}(s,m) is a hyperbolic code if and only HR.H\subseteq R. Define 𝐢=(i1,,im){\bf i}=\left(i_{1},\ldots,i_{m}\right) such that j=1mijs+1=mt+r.\sum_{j=1}^{m}i_{j}\geq s+1=mt+r. By Proposition 2.1, j=1m(qij)(qt1)r(qt)mr.\prod_{j=1}^{m}(q-i_{j})\leq(q-t-1)^{r}(q-t)^{m-r}. We conclude R=HR=H if and only if (qt1)r(qt)mr<δ.(q-t-1)^{r}(q-t)^{m-r}<\delta. In this case, we see that 𝒞H\mathcal{C}_{H} is the hyperbolic code Hypq(δ,m).\mathrm{Hyp}_{q}(\delta,m).

Theorem 2.2 was previously proved in [5, Proposition 2] for the case when m=2m=2. Even when m=2m=2, we can observe that, in most nontrivial cases, the hyperbolic code outperforms the corresponding Reed-Muller code with the same minimum distance.

Example 2.3.

Take q=9q=9. By Theorem 2.2, we have the following inequality for the dimensions of the Reed-Muller and the hyperbolic codes

dim(RM9(s,2))<dim(Hyp9(δ,2))\dim(\mathrm{RM}_{9}(s,2))<\dim(\mathrm{Hyp}_{9}(\delta,2))

for all s[[5,13]]s\in[\![5,13]\!]. The dimensions are equal for s[[0,4]][[14,16]]s\in[\![0,4]\!]\cup[\![14,16]\!].

Corollary 2.4.

For q=2q=2, Reed-Muller codes and hyperbolic codes are the same.

Proof.

Take s+1<m(q1).s+1<m(q-1). Then s+1=m(0)+r,s+1=m(0)+r, with 0rm10\leq r\leq m-1. We know that

2mr<2mr+1=2ms=δ(RMq(s,m)).2^{m-r}<2^{m-r+1}=2^{m-s}=\delta(\mathrm{RM}_{q}(s,m)).

By Theorem 2.2 we have RMq(s,m)=Hypq(2ms,m).\mathrm{RM}_{q}(s,m)=\mathrm{Hyp}_{q}(2^{m-s},m).

3. The smallest Reed-Muller code

Given the hyperbolic code of degree dd with mm variables Hypq(d,m)\mathrm{Hyp}_{q}(d,m), we now find the smallest degree ss such that Hypq(d,m)RMq(s,m)\mathrm{Hyp}_{q}(d,m)\subseteq\mathrm{RM}_{q}(s,m). We will use the following notation. The symbol a\left\lfloor a\right\rfloor denotes the integer part of the real number a,a, which is the nearest and smaller integer of a,a, and {a}\{a\} is the fractional part of a,a, defined by the formula {a}=aa.\{a\}=a-\left\lfloor a\right\rfloor.

We start with m=2,m=2, the case of two variables.

Proposition 3.1.

Given d,d\in\mathbb{N}, define a=qda=q-\sqrt{d} and s=2a.s=\left\lfloor 2a\right\rfloor. Then Hypq(d,2)RMq(s,2)\mathrm{Hyp}_{q}(d,2)\subseteq\mathrm{RM}_{q}(s,2). Moreover, ss is the smallest integer with this property, that is

Hypq(d,2)RMq(s1,2).\mathrm{Hyp}_{q}(d,2)\not\subseteq\mathrm{RM}_{q}(s-1,2).
Proof.

Let H,R1,R2[[0,q1]]mH,R_{1},R_{2}\subseteq[\![0,q-1]\!]^{m} be the sets defining the codes Hypq(d,2)\mathrm{Hyp}_{q}(d,2), RMq(s,2)\mathrm{RM}_{q}(s,2) and RMq(s1,2)\mathrm{RM}_{q}(s-1,2), respectively. We show first that Hypq(d,2)RMq(s,2)\mathrm{Hyp}_{q}(d,2)\subseteq\mathrm{RM}_{q}(s,2). We will use the following fact:

(3.1) min{a1+a2:a1,a20,a1a2=d}=2d.\min\{a_{1}+a_{2}\ :\ a_{1},a_{2}\in\mathbb{R}_{\geq 0},a_{1}a_{2}=d\}=2\sqrt{d}.

For every 𝐢=(i1,i2)2\mathbf{i}=({i}_{1},{i}_{2})\in\mathbb{N}^{2} such that 𝐢H,\mathbf{i}\in H, we have that (qi1)(qi2)d(q-{i}_{1})(q-{i}_{2})\geq d. By Eq. (3.1), (qi1)+(qi2)2d(q-{i}_{1})+(q-{i}_{2})\geq 2\sqrt{d}, i.e. i1+i22a{i}_{1}+{i}_{2}\leq 2a. Moreover, since i1,i2{i}_{1},{i}_{2}\in\mathbb{N}, then i1+i22a=s{i}_{1}+{i}_{2}\leq\left\lfloor 2a\right\rfloor=s. Thus 𝐢R1,\mathbf{i}\in R_{1}, which proves the first statement.

We show now that Hypq(d,2)RM(s1,2)\mathrm{Hyp}_{q}(d,2)\not\subseteq\mathrm{RM}(s-1,2). We separate it into two cases.

Case 0{a}<120\leq\{a\}<\frac{1}{2}. Take 𝐚=(a,a)2\mathbf{a}=(\left\lfloor a\right\rfloor,\left\lfloor a\right\rfloor)\in\mathbb{N}^{2}. As (qa)2(qa)2=d,(q-\left\lfloor a\right\rfloor)^{2}\geq(q-a)^{2}=d, 𝐚{\mathbf{a}} belongs to HH. Observe that a+a=2a=2a=s>s1,\left\lfloor a\right\rfloor+\left\lfloor a\right\rfloor=2\left\lfloor a\right\rfloor=\left\lfloor 2a\right\rfloor=s>s-1, thus 𝐚R2.\mathbf{a}\notin R_{2}.

Case 12{a}<1\frac{1}{2}\leq\{a\}<1. Take 𝐚=(a,a+1)2.\mathbf{a}=(\left\lfloor a\right\rfloor,\left\lfloor a\right\rfloor+1)\in\mathbb{N}^{2}. Since {a}12\{a\}\geq\frac{1}{2}, then qa=qa{a}qa12q-a=q-\left\lfloor a\right\rfloor-\{a\}\leq q-\left\lfloor a\right\rfloor-\frac{1}{2}. Thus, the equation (qa12)2=(qa)(qa1)+14,\left(q-\left\lfloor a\right\rfloor-\frac{1}{2}\right)^{2}=(q-\left\lfloor a\right\rfloor)(q-\left\lfloor a\right\rfloor-1)+\frac{1}{4}, implies that (qa)(qa1)=(qa12)2(qa)2=d=d.(q-\left\lfloor a\right\rfloor)(q-\left\lfloor a\right\rfloor-1)=\left\lfloor\left(q-\left\lfloor a\right\rfloor-\frac{1}{2}\right)^{2}\right\rfloor\geq\left\lfloor(q-a)^{2}\right\rfloor=\left\lfloor d\right\rfloor=d. Which means that 𝐚\mathbf{a} belongs to H.H. As a+a+1=2a+1=2a=s>s1,\left\lfloor a\right\rfloor+\left\lfloor a\right\rfloor+1=2\left\lfloor a\right\rfloor+1=\left\lfloor 2a\right\rfloor=s>s-1, we have that 𝐚R2.\mathbf{a}\notin R_{2}.

The trivial generalization to mm variables of Proposition 3.1 is not valid. That is, in general, it is not true that the code RMq(s,m)\mathrm{RM}_{q}(s,m) is the smallest Reed-Muller code that contains the hyperbolic code Hypq(d,m),\mathrm{Hyp}_{q}(d,m), where a=qdma=q-\sqrt[m]{d} and s=mas=\left\lfloor ma\right\rfloor, check the example below.

Example 3.2.

Take q=27q=27, m=3m=3 and d=37d=37. Then a=qd3=2737323.66,a=q-\sqrt[3]{d}=27-\sqrt[3]{37}\approx 23.66, and s=3a=71.s=\left\lfloor 3a\right\rfloor=71. It is computationally easy to check that if i1,i2i_{1},i_{2} and i3i_{3} are integers such that (qi1)(qi2)(qi3)37,(q-i_{1})(q-i_{2})(q-i_{3})\geq 37, then i1+i2+i370.i_{1}+i_{2}+i_{3}\leq 70. Thus Hypq(d,m)RMq(s1,m).\mathrm{Hyp}_{q}(d,m)\subseteq\mathrm{RM}_{q}(s-1,m).

We have the following result as the first generalization of Proposition 3.1.

Proposition 3.3.

Given d,d\in\mathbb{N}, define a=qdma=q-\sqrt[m]{d} and s=ma.s=\left\lfloor ma\right\rfloor. Then Hypq(d,m)RMq(s,m).\mathrm{Hyp}_{q}(d,m)\subseteq\mathrm{RM}_{q}(s,m). Moreover, ss is the smallest integer with this property if {a}<1m\{a\}<\frac{1}{m}.

Proof.

Let H[[0,q1]]mH\subseteq[\![0,q-1]\!]^{m} be the set defining the hyperbolic code Hypq(d,m).\mathrm{Hyp}_{q}(d,m). We will use the following fact:

(3.2) min{j=1maj:aj0 and j=1maj=d}=mdm.\min\left\{\sum_{j=1}^{m}a_{j}\ :\ a_{j}\in\mathbb{R}_{\geq 0}\hbox{ and }\prod_{j=1}^{m}a_{j}=d\right\}=m\sqrt[m]{d}.

For every 𝐢=(i1,,im)m\mathbf{i}=({i}_{1},\ldots,{i}_{m})\in\mathbb{N}^{m} such that 𝐢H,\mathbf{i}\in H, we have that j=1m(qij)d\prod_{j=1}^{m}(q-{i}_{j})\geq d. By Equation (3.2), we obtain j=1m(qij)mdm\sum_{j=1}^{m}(q-{i}_{j})\geq m\sqrt[m]{d}, i.e. j=1mijma.\sum_{j=1}^{m}{i}_{j}\leq ma. Since ij{i}_{j}\in\mathbb{N} for j{1,,m}j\in\{1,\ldots,m\}, j=1mijma=s,\sum_{j=1}^{m}{i}_{j}\leq\left\lfloor ma\right\rfloor=s, which proves that Hypq(d,m)RMq(s,m).\mathrm{Hyp}_{q}(d,m)\subseteq\mathrm{RM}_{q}(s,m).

Let R[[0,q1]]mR\subseteq[\![0,q-1]\!]^{m} be the set defining the code RMq(s1,m)\mathrm{RM}_{q}(s-1,m). If {a}<1m,\{a\}<\frac{1}{m}, then ma=ma\left\lfloor ma\right\rfloor=m\left\lfloor a\right\rfloor. Consider 𝐚=(a,,a)m\mathbf{a}=\left(\left\lfloor a\right\rfloor,\ldots,\left\lfloor a\right\rfloor\right)\in\mathbb{N}^{m}. It is easy to check that 𝐚H,{\mathbf{a}}\in H, but 𝐚R.{\mathbf{a}}\notin R.

Remark 3.4.

Given d,d\in\mathbb{N}, take a:=qdm.a:=q-\sqrt[m]{d}. Observe that Hypq(d,m)RMq(ma1,m).\mathrm{Hyp}_{q}(d,m)\not\subseteq\mathrm{RM}_{q}(m\lfloor a\rfloor-1,m). Indeed, let H,R[[0,q1]]mH,R\subseteq[\![0,q-1]\!]^{m} be the sets defining the codes Hypq(d,m)\mathrm{Hyp}_{q}(d,m) and RMq(ma1,m)\mathrm{RM}_{q}(m\lfloor a\rfloor-1,m), respectively. Consider 𝐚:=(a,,a)m\mathbf{a}:=\left(\left\lfloor a\right\rfloor,\ldots,\left\lfloor a\right\rfloor\right)\in\mathbb{N}^{m}. It is easy to check that 𝐚H\mathbf{a}\in H, but 𝐚R\mathbf{a}\notin R.

We now come to one of the main results of this section.

Theorem 3.5.

Given d,d\in\mathbb{N}, define a=qdm.a=q-\sqrt[m]{d}. Then Hypq(d,m)RMq(s,m),\mathrm{Hyp}_{q}(d,m)\subseteq\mathrm{RM}_{q}(s,m), where

s=ma+r and r=mlog(qaqa)log(qa1qa).\begin{array}[]{ccc}s=m\left\lfloor a\right\rfloor+r&\hbox{ and }&r=\left\lfloor\frac{m\log\left(\frac{q-a}{q-\left\lfloor a\right\rfloor}\right)}{\log\left(\frac{q-\left\lfloor a\right\rfloor-1}{q-\left\lfloor a\right\rfloor}\right)}\right\rfloor.\end{array}

Even more, ss is the smallest integer with this property, that is

Hypq(d,m)RMq(s1,m).\mathrm{Hyp}_{q}(d,m)\not\subseteq\mathrm{RM}_{q}(s-1,m).
Proof.

Let H,R1,R2[[0,q1]]mH,R_{1},R_{2}\subset[\![0,q-1]\!]^{m} be the sets defining the codes Hypq(d,m)\mathrm{Hyp}_{q}(d,m), RMq(s,m)\mathrm{RM}_{q}(s,m) and RMq(s1,m)\mathrm{RM}_{q}(s-1,m), respectively. First note that, by the definition of rr, we know that r{0,,m1}r\in\{0,\ldots,m-1\} is the largest integer such that

(qa)mr(qa1)r(qa)m=d.(q-\left\lfloor a\right\rfloor)^{m-r}(q-\left\lfloor a\right\rfloor-1)^{r}\geq(q-a)^{m}=d.

Thus, if we consider

𝐚=(a+1,,a+1r,a,,amr)m,\mathbf{a}=(\underbrace{\left\lfloor a\right\rfloor+1,\ldots,\left\lfloor a\right\rfloor+1}_{r},\underbrace{\left\lfloor a\right\rfloor,\ldots,\left\lfloor a\right\rfloor}_{m-r})\in\mathbb{N}^{m},

then it is easy to check that 𝐚H{\mathbf{a}}\in H but 𝐚R2{\mathbf{a}}\notin R_{2}. Thus, Hypq(d,m)RMq(s1,m)\mathrm{Hyp}_{q}(d,m)\not\subseteq\mathrm{RM}_{q}(s-1,m).

Let R1¯\overline{R_{1}} be the complement of R1R_{1} in [[0,q1]]m[\![0,q-1]\!]^{m}, i.e.

R1¯={𝐢[[0,q1]]m:j=1mijs+1}.\overline{R_{1}}=\left\{{\mathbf{i}}\in[\![0,q-1]\!]^{m}\ :\ \sum_{j=1}^{m}{i}_{j}\geq s+1\right\}.

We will show that HR1¯=H\cap\overline{R_{1}}=\emptyset. First note that the point

𝐛=(a+1,,a+1r+1,a,,amr1)m,\mathbf{b}=(\underbrace{\left\lfloor a\right\rfloor+1,\ldots,\left\lfloor a\right\rfloor+1}_{r+1},\underbrace{\left\lfloor a\right\rfloor,\ldots,\left\lfloor a\right\rfloor}_{m-r-1})\in\mathbb{N}^{m},

satisfies that 𝐛R1¯{\mathbf{b}}\in\overline{R_{1}} but 𝐛H{\mathbf{b}}\notin H. A similar situation happens with any point obtained by a permutation of the entries of 𝐛\mathbf{b}. Now let 𝐢=(i1,,im)R1¯{\mathbf{i}}=(i_{1},\ldots,i_{m})\in\overline{R_{1}} such that j=1mij=s+1\sum_{j=1}^{m}i_{j}=s+1. If there exists an index ll such that il>a+1i_{l}>\left\lfloor a\right\rfloor+1, there must be an index \ell such that i<ai_{\ell}<\left\lfloor a\right\rfloor. Take 𝐚1=𝐢𝐞l+𝐞,\mathbf{a}_{1}=\mathbf{i}-\mathbf{e}_{l}+\mathbf{e}_{\ell}, where 𝐞i\mathbf{e}_{i} denotes the ii-th standard vector in m.\mathbb{N}^{m}. Define the function

f(X1,,Xm)=j=1m(qXj).f(X_{1},\ldots,X_{m})=\prod_{j=1}^{m}(q-X_{j}).

It is easy to check that f(𝐢)<f(𝐚1)f(\mathbf{i})<f(\mathbf{a}_{1}). Indeed,

f(𝐢)<f(𝐚1)\displaystyle f(\mathbf{i})<f(\mathbf{a}_{1}) \displaystyle\Longleftrightarrow (qil)(qi)<(qa1,l)(qa1,)\displaystyle(q-i_{l})(q-i_{\ell})<(q-a_{1,l})(q-a_{1,\ell})
\displaystyle\Longleftrightarrow i<il1.\displaystyle i_{\ell}<i_{l}-1.

Now, if there exists again an index l2l_{2} such that a1,l2>a+1a_{1,l_{2}}>\left\lfloor a\right\rfloor+1, then there must exists an index 2\ell_{2} such that a1,2<aa_{1,\ell_{2}}<\left\lfloor a\right\rfloor. Then we can repeat the process until we reach a permutation of the entries of the point 𝐛\mathbf{b}. Thus, we get a set of points {𝐚i}i=1,,s\{\mathbf{a}_{i}\}_{i=1,\ldots,s} such that f(𝐢)<f(𝐚1)<<f(𝐚s)<f(𝐛)<df(\mathbf{i})<f(\mathbf{a}_{1})<\ldots<f(\mathbf{a}_{s})<f(\mathbf{b})<d. That is 𝐛R1¯,{\mathbf{b}}\in\overline{R_{1}}, but 𝐛H{\mathbf{b}}\notin H. ∎

Example 3.6.

The Reed-Muller RM9(s,2)\mathrm{RM}_{9}(s,2) are hyperbolic codes for s4s\leq 4 and s14s\geq 14 by Theorem 2.2.

We close this section with an example that shows the smallest Reed-Muller that contains a hyperbolic code.

Example 3.7.

The lattice points under the red curve of Figure 1(A) define the hyperbolic code Hyp9(27,2)\mathrm{Hyp}_{9}(27,2). By Theorem 3.5, we have that Hyp9(27,2)RM9(s,2)\mathrm{Hyp}_{9}(27,2)\subseteq\mathrm{RM}_{9}(s,2) when s7s\geq 7. The lattice points under the blue curve of Figure 1(A) define the Reed-Muller hyperbolic code RM9(7,2)\mathrm{RM}_{9}(7,2), which is the smallest Reed-Muller code that contains Hyp9(27,2)\mathrm{Hyp}_{9}(27,2).

Example 3.8.

The lattice points under the red curve of Figure 1(B) define the hyperbolic code Hyp9(9,2)\mathrm{Hyp}_{9}(9,2). By Theorem 3.5, we have that Hyp9(9,2)RM9(s,2)\mathrm{Hyp}_{9}(9,2)\subseteq\mathrm{RM}_{9}(s,2) when s12s\geq 12. The lattice points under the blue curve of Figure 1(B) define the Reed-Muller hyperbolic code RM9(12,2)\mathrm{RM}_{9}(12,2), which is the smallest Reed-Muller code that contains Hyp9(9,2)\mathrm{Hyp}_{9}(9,2).

Refer to caption
(A)
Refer to caption
(B)
Figure 1. (A) The lattice points under the red curve define Hyp9(27,2)\mathrm{Hyp}_{9}(27,2). The lattice points under the blue curve define RM9(7,2)\mathrm{RM}_{9}(7,2), the smallest Reed-Muller code that contains Hyp9(27,2)\mathrm{Hyp}_{9}(27,2). (B) The lattice points under the red curve define Hyp9(9,2)\mathrm{Hyp}_{9}(9,2). The lattice points under the blue curve define RM9(12,2)\mathrm{RM}_{9}(12,2), the smallest Reed-Muller code that contains Hyp9(9,2)\mathrm{Hyp}_{9}(9,2).

4. The largest Reed-Muller code

Given the hyperbolic code over 𝔽q\mathbb{F}_{q} of degree dd with mm variables Hypq(d,m)\mathrm{Hyp}_{q}(d,m), we now find the largest degree ss such that RMq(s,m)Hypq(d,m).\mathrm{RM}_{q}(s,m)\subseteq\mathrm{Hyp}_{q}(d,m). We first recall the dimension of a Reed-Muller code.

Proposition 4.1.

([7]) Take s(q1)ms\leq(q-1)m. Write s=t(q1)+r,s=t(q-1)+r, where t,rt,r\in\mathbb{N} and 0r<q1.0\leq r<q-1. The minimum distance of the Reed-Muller code RMq(s,m)\mathrm{RM}_{q}(s,m) is δ=(qr)qm1t\delta=(q-r)q^{m-1-t}.

Proposition 4.2.

Let d1.d\in\mathbb{Z}_{\geq 1}. The minimum distance δ(RMq(s,m))d\delta\left(\mathrm{RM}_{q}(s,m)\right)\geq d if and only if

s(mc)(q1)+qdqc1, where c:=logq(d).s\leq(m-c)(q-1)+q-\left\lceil\frac{d}{q^{c-1}}\right\rceil\hbox{, where }c:=\left\lceil\log_{q}(d)\right\rceil.
Proof.

Write s=t(q1)+r,s=t(q-1)+r, where t,rt,r\in\mathbb{N} and 0r<q10\leq r<q-1. By Proposition 4.1,

δ(RMq(s,m))=(qr)qm1t.\delta\left(\mathrm{RM}_{q}(s,m)\right)=(q-r)q^{m-1-t}.

()(\Rightarrow) Assume that δ(RMq(s,m))d.\delta(\mathrm{RM}_{q}(s,m))\geq d. Then we have that qmt(qr)qm1td.q^{m-t}\geq(q-r)q^{m-1-t}\geq d. Because the logarithmic properties, mtlogq(d)m-t\geq\left\lceil\log_{q}(d)\right\rceil and tmlogq(d)=mct\leq m-\left\lceil\log_{q}(d)\right\rceil=m-c. For t<mct<m-c we have that s<(t+1)(q1)(mc)(q1)s<(t+1)(q-1)\leq(m-c)(q-1) and the result follows. Moreover, for t=mc,t=m-c, then qrd/qm1t=d/qc1q-r\geq\left\lceil d/q^{m-1-t}\right\rceil=\left\lceil d/q^{c-1}\right\rceil and, hence, rqdqc1r\leq q-\left\lceil\frac{d}{q^{c-1}}\right\rceil. Putting all together we have that s(mc)(q1)+qdqc1.s\leq(m-c)(q-1)+q-\left\lceil\frac{d}{q^{c-1}}\right\rceil.

()(\Leftarrow) Conversely, if s<(mc)(q1)+qdqc1,s<(m-c)(q-1)+q-\left\lceil\frac{d}{q^{c-1}}\right\rceil, then δ(RMq(s,m))d\delta(\mathrm{RM}_{q}(s,m))\geq d. ∎

We come to one of the main results of this section, which helps to find the largest Reed-Muller code inside of a hyperbolic code.

Theorem 4.3.

Let d1d\in\mathbb{Z}_{\geq 1}. Then RMq(s,m)Hypq(d,m)\mathrm{RM}_{q}(s,m)\subseteq\mathrm{Hyp}_{q}(d,m) if and only if

s(mc)(q1)+qdqc1, where c:=logq(d).s\leq(m-c)(q-1)+q-\left\lceil\frac{d}{q^{c-1}}\right\rceil\hbox{, where }c:=\left\lceil\log_{q}(d)\right\rceil.
Proof.

This is a direct consequence of Proposition 4.2. ∎

Example 4.4.

The lattice points under the red curve of Figure 2(A) define the hyperbolic code Hyp9(27,2)\mathrm{Hyp}_{9}(27,2). By Theorem 4.3, we have that RM9(s,2)Hyp9(27,2)\mathrm{RM}_{9}(s,2)\subseteq\mathrm{Hyp}_{9}(27,2) when s6s\leq 6. The lattice points under the black curve of Figure 2(A) define the Reed-Muller hyperbolic code RM9(6,2)\mathrm{RM}_{9}(6,2), which is the largest Reed-Muller in Hyp9(27,2)\mathrm{Hyp}_{9}(27,2).

Example 4.5.

The lattice points under the red curve of Figure 2(B) define the hyperbolic code Hyp9(9,2)\mathrm{Hyp}_{9}(9,2). By Theorem 4.3, we have that RM9(s,2)Hyp9(9,2)\mathrm{RM}_{9}(s,2)\subseteq\mathrm{Hyp}_{9}(9,2) when s8s\leq 8. The lattice points under the black curve of Figure 2(B) define the Reed-Muller hyperbolic code RM9(8,2)\mathrm{RM}_{9}(8,2), which is the largest Reed-Muller in Hyp9(9,2)\mathrm{Hyp}_{9}(9,2).

Refer to caption
(A)
Refer to caption
(B)
Figure 2. (A) The lattice points under the red curve define Hyp9(27,2)\mathrm{Hyp}_{9}(27,2). The lattice points under the black curve define RM9(6,2)\mathrm{RM}_{9}(6,2), the largest Reed-Muller code in Hyp9(27,2)\mathrm{Hyp}_{9}(27,2). (B) The lattice points under the red curve define Hyp9(9,2)\mathrm{Hyp}_{9}(9,2). The lattice points under the black curve define RM9(8,2)\mathrm{RM}_{9}(8,2), the largest Reed-Muller in Hyp9(9,2)\mathrm{Hyp}_{9}(9,2).

5. Generalized Hamming weights

This section proves that, similarly to Reed-Muller and Cartesian codes, the rr-th generalized Hamming weight and the rr-th footprint of the hyperbolic code coincide. Unlike Reed-Muller [10] and Cartesian [2], determining the rr-th footprint of a hyperbolic code is still an open problem. We give upper and lower bounds for the rr-th footprint of a hyperbolic code Hypq(d,m)\mathrm{Hyp}_{q}(d,m) in terms of the largest Reed-Muller code RMq(s,m)\mathrm{RM}_{q}(s,m) contained in Hypq(d,m)\mathrm{Hyp}_{q}(d,m) and the smallest Reed-Muller code RMq(s,m)\mathrm{RM}_{q}(s^{\prime},m) that contains Hypq(d,m)\mathrm{Hyp}_{q}(d,m). These bounds sometimes are sharp.

Recall that the monomial code associated with A[[0,q1]]mA\subseteq[\![0,q-1]\!]^{m} is given by

𝒞A=ev𝒫(𝔽q[A])={ev𝒫(f):f𝔽q[A]}.\mathcal{C}_{A}=\mathrm{ev}_{\mathcal{P}}(\mathbb{F}_{q}[A])=\left\{\mathrm{ev}_{\mathcal{P}}(f)\ :\ f\in\mathbb{F}_{q}[A]\right\}.

For and an integer 1r|A|1\leq r\leq|A|, the rr-th generalized Hamming weight of 𝒞A\mathcal{C}_{A} is given by

δr(𝒞A)=min{|χ(𝒟)|:𝒟𝒞A,dim(𝒟)=r},\delta_{r}(\mathcal{C}_{A})=\min\{\ |\chi(\mathcal{D})|\ :\ \mathcal{D}\subseteq\mathcal{C}_{A},\ \dim(\mathcal{D})=r\},

where χ(𝒟):={i[n]|there is 𝐱𝒟 with xi0}.\chi(\mathcal{D}):=\left\{i\in[n]\ |\ \text{there is }\mathbf{x}\in\mathcal{D}\text{ with }x_{i}\neq 0\right\}. We now explain how to bound the rr-th generalized Hamming weight in terms of the footprint. For 𝐢=(i1,,im)[[0,q1]]m\mathbf{i}=(i_{1},\ldots,i_{m})\in[\![0,q-1]\!]^{m}, we define the set

(𝐢):=[[i1,q1]]××[[im,q1]].\nabla(\mathbf{i}):=[\![i_{1},q-1]\!]\times\cdots\times[\![i_{m},q-1]\!].

Note that |(𝐢)|=j=1m(qij)|\nabla(\mathbf{i})|=\prod_{j=1}^{m}(q-i_{j}). We can rewrite the footprint-bound of the code CAC_{A} as

FB(CA)=min{|(𝐢)|:𝐢A}.\mathrm{FB}(C_{A})=\min\left\{|\nabla(\mathbf{i})|\ :\ \mathbf{i}\in A\right\}.

The minimum distance δ(𝒞A)\delta(\mathcal{C}_{A}) of 𝒞A\mathcal{C}_{A} is lower bounded by the footprint bound [9]: FB(𝒞A)δ(𝒞A)\mathrm{FB}(\mathcal{C}_{A})\leq\delta(\mathcal{C}_{A}). Jaramillo et al. generalized in [12] the footprint-bound to the rr-th footprint:

FBr(𝒞A):=min{|j=1r(𝐢j)|:𝐢jA,𝐢𝐢j for ,j[[1,m]]}.\mathrm{FB}_{r}(\mathcal{C}_{A}):=\min\left\{\middle|\bigcup_{j=1}^{r}\nabla(\mathbf{i}_{j})\middle|\ :\ \mathbf{i}_{j}\in A,\ \mathbf{i}_{\ell}\neq\mathbf{i}_{j}\text{ for }\ell,j\in[\![1,m]\!]\right\}.

Similarly to the minimum distance, the rr-th generalized Hamming weight is lower bounded by the rr-th footprint [12, Theorem 3.9]:

(5.1) FBr(𝒞A)δr(𝒞A).\mathrm{FB}_{r}(\mathcal{C}_{A})\leq\delta_{r}(\mathcal{C}_{A}).

The rr-th footprint is sharp for Reed-Muller and Cartesian codes by [10] and [2], respectively. We now extend the result by proving that the rr-th footprint is sharp for hyperbolic codes. Recall that the hyperbolic code Hypq(d,m)\mathrm{Hyp}_{q}(d,m) depends on the set

H={𝐢[[0,q1]]m:|(𝐢)|d}.H=\left\{\mathbf{i}\in[\![0,q-1]\!]^{m}\ :\ |\nabla(\mathbf{i})|\geq d\right\}.

We come to one of the main results of this section.

Theorem 5.1.

The rr-th generalized Hamming weight of a hyperbolic code Hypq(d,m)\mathrm{Hyp}_{q}(d,m) is given by the rr-th footprint:

δr(Hypq(d,m))=FBr(Hypq(d,m)):=min{|j=1r(𝐢j)|:𝐢jH,𝐢𝐢j for ,j[[1,m]]}.\delta_{r}(\mathrm{Hyp}_{q}(d,m))=\mathrm{FB}_{r}(\mathrm{Hyp}_{q}(d,m)):=\min\left\{\middle|\bigcup_{j=1}^{r}\nabla(\mathbf{i}_{j})\middle|\ :\ \mathbf{i}_{j}\in H,\ \mathbf{i}_{\ell}\neq\mathbf{i}_{j}\text{ for }\ell,j\in[\![1,m]\!]\right\}.
Proof.

By Equation (5.1), FBr(Hypq(d,m))δr(Hypq(d,m))\mathrm{FB}_{r}(\mathrm{Hyp}_{q}(d,m))\leq\delta_{r}(\mathrm{Hyp}_{q}(d,m)).

To prove the inequality δr(Hypq(d,m))FBr(Hypq(d,m))\delta_{r}(\mathrm{Hyp}_{q}(d,m))\leq\mathrm{FB}_{r}(\mathrm{Hyp}_{q}(d,m)), we construct rr elements in Hypq(d,m)\mathrm{Hyp}_{q}(d,m) that generate a subspace in Hypq(d,m)\mathrm{Hyp}_{q}(d,m) of dimension rr and support length precisely FBr(Hypq(d,m))\mathrm{FB}_{r}(\mathrm{Hyp}_{q}(d,m)). Let γ\gamma be a primitive element of 𝔽q\mathbb{F}_{q}. For an nonnegative integer \ell, we define the polynomial f(,x)f(\ell,x) in 𝔽q[x]\mathbb{F}_{q}[x] of degree \ell as

f(,x):={1if =0xif =1(x)(xγ)(xγ1)if >1.f(\ell,x):=\begin{cases}1&\text{if $\ell=0$}\\ x&\text{if $\ell=1$}\\ (x)(x-\gamma)\cdots(x-\gamma^{\ell-1})&\text{if $\ell>1$.}\end{cases}

Let 𝐢1,,𝐢r\mathbf{i}_{1},\ldots,\mathbf{i}_{r} be elements in HH such that FBr(Hypq(d,m))=|j=1r(𝐢j)|\mathrm{FB}_{r}(\mathrm{Hyp}_{q}(d,m))=\left|\bigcup_{j=1}^{r}\nabla(\mathbf{i}_{j})\right|. For every 1jr1\leq j\leq r, assume 𝐢j=(ij1,,ijm)\mathbf{i}_{j}=(i_{j1},\ldots,i_{jm}), and define the polynomial

fj:=f(ij1,x1)f(ijm,xm).f_{j}:=f(i_{j1},x_{1})\cdots f(i_{jm},x_{m}).

Denote by Z(fj)Z(f_{j}) the set of zeros of fjf_{j} in 𝔽qm\mathbb{F}_{q}^{m}. Note that

𝔽qmZ(fj)={(γa1,,γam)𝔽qm:(a1,,am)(𝐢j)},\mathbb{F}_{q}^{m}\setminus Z(f_{j})=\left\{\left(\gamma^{a_{1}},\ldots,\gamma^{a_{m}}\right)\in\mathbb{F}_{q}^{m}\ :\ (a_{1},\ldots,a_{m})\in\nabla(\mathbf{i}_{j})\right\},

which implies that ev𝔽qm(fj)Hypq(d,m)ev_{\mathbb{F}_{q}^{m}}(f_{j})\in\mathrm{Hyp}_{q}(d,m). Let Z(f1,,fr)Z(f_{1},\ldots,f_{r}) be the set of common zeros of f1,,frf_{1},\ldots,f_{r} in 𝔽qm\mathbb{F}_{q}^{m}. As Z(f1,,fr)=j=1rZ(fj)Z(f_{1},\ldots,f_{r})=\bigcap_{j=1}^{r}Z(f_{j}), then 𝔽qmZ(f1,,fr)=j=1r(𝔽qmZ(fj))\mathbb{F}_{q}^{m}\setminus Z(f_{1},\ldots,f_{r})=\bigcup_{j=1}^{r}\left(\mathbb{F}_{q}^{m}\setminus Z(f_{j})\right). Thus, if 𝒟r:=Span𝔽q{ev𝔽qm(f1),,ev𝔽qm(fr)}Hypq(d,m),\mathcal{D}_{r}:=\text{Span}_{\mathbb{F}_{q}}\left\{ev_{\mathbb{F}_{q}^{m}}(f_{1}),\ldots,ev_{\mathbb{F}_{q}^{m}}(f_{r})\right\}\subseteq\mathrm{Hyp}_{q}(d,m), then

|χ(𝒟r)|=|𝔽qmZ(f1,,fr)|=|j=1r(𝐢j)|=FBr(Hypq(d,m)).|\chi(\mathcal{D}_{r})|=|\mathbb{F}_{q}^{m}\setminus Z(f_{1},\ldots,f_{r})|=\left|\bigcup_{j=1}^{r}\nabla(\mathbf{i}_{j})\right|=\mathrm{FB}_{r}(\mathrm{Hyp}_{q}(d,m)).

We conclude that δr(Hypq(d,m))FBr(Hypq(d,m)).\delta_{r}(\mathrm{Hyp}_{q}(d,m))\leq\mathrm{FB}_{r}(\mathrm{Hyp}_{q}(d,m)).

We now use Theorem 5.1 to bound the GHWs of hyperbolic codes in terms of the rr-th footprint.

Corollary 5.2.

Let 𝐢1,,𝐢rH\mathbf{i}_{1},\ldots,\mathbf{i}_{r}\in H be the first rr elements of HH in descending lexicographical order. Then

δr(Hypq(d,m))|j=1r(𝐢j)|.\delta_{r}(\mathrm{Hyp}_{q}(d,m))\leq\left|\bigcup_{j=1}^{r}\nabla(\mathbf{i}_{j})\right|.
Proof.

This is a direct consequence of Theorem 5.1. ∎

Heijnen and Pellikaan proved in [10, Theorem 5.10] that the bound of Corollary 5.2 is sharp for a Reed-Muller code. Even more, Heijnen and Pellikaan explicitly described the rr-th generalized Hamming weight in terms of the rr-th element in [[0,q1]]m[\![0,q-1]\!]^{m} in the lexicographic order. Note that Theorem 5.1 gives an expression to compute the GHWs of a hyperbolic code in terms of finding a minimum on a set. Naturally, when the hyperbolic code coincides with a Reed-Muller code, we obtain a close formula for the GHWs of some hyperbolic codes.

Theorem 5.3.

Take m1m\geq 1. Let dd be such that (qt1)r(qt)mr<d,(q-t-1)^{r}(q-t)^{m-r}<d, where s+1=mt+rs+1=mt+r, 0s<m(q1)0\leq s<m(q-1), and 0r<m0\leq r<m. The rr-th generalized Hamming weight of the hyperbolic code Hypq(d,m)\mathrm{Hyp}_{q}(d,m) is given by:

δr(Hypq(d,m))=i=1mami+1qi1+1,\delta_{r}(\mathrm{Hyp}_{q}(d,m))=\sum_{i=1}^{m}a_{m-i+1}q^{i-1}+1,

where 𝐚=(a1,,am)\mathbf{a}=(a_{1},\ldots,a_{m}) is the rr-th element in [[0,q1]]m[\![0,q-1]\!]^{m} in the lexicographic order with the property that deg(𝐚)>(q1)ms1\deg(\mathbf{a})>(q-1)m-s-1.

Proof.

By Theorem 2.2, the hyperbolic code Hypq(d,m)\mathrm{Hyp}_{q}(d,m) coincides with the Reem-Muller code RMq(s,m)\mathrm{RM}_{q}(s,m). By [10, Theorem 5.10], the rr-th generalized Hamming weight is given by δr(RMq(s,m))=i=1mami+1qi1+1.\delta_{r}(\mathrm{RM}_{q}(s,m))=\sum_{i=1}^{m}a_{m-i+1}q^{i-1}+1.

We also have the following bounds for the GHWs of an arbitrary hyperbolic code Hypq(d,m)\mathrm{Hyp}_{q}(d,m) in terms of the GHWs of some Reed-Muller codes.

Corollary 5.4.

Let Hypq(d,m)\mathrm{Hyp}_{q}(d,m) be a hyperbolic code. Define s:=ma+rs^{\prime}:=m\left\lfloor a\right\rfloor+r, where a=qdma=q-\sqrt[m]{d} and r=mlog(qaqa)log(qa1qa)r=\left\lfloor\frac{m\log\left(\frac{q-a}{q-\left\lfloor a\right\rfloor}\right)}{\log\left(\frac{q-\left\lfloor a\right\rfloor-1}{q-\left\lfloor a\right\rfloor}\right)}\right\rfloor. Let ss be the maximum integer such that s(mc)(q1)+qdqc1s\leq(m-c)(q-1)+q-\left\lceil\frac{d}{q^{c-1}}\right\rceil, where c:=logq(d).c:=\left\lceil\log_{q}(d)\right\rceil. Then

δr(RMq(s,m))δr(Hypq(d,m))δr(RMq(s,m)),\delta_{r}(\mathrm{RM}_{q}(s^{\prime},m))\leq\delta_{r}(\mathrm{Hyp}_{q}(d,m))\leq\delta_{r}(\mathrm{RM}_{q}(s,m)),

where the first inequality is valid for any 1rdim(RMq(s,m))1\leq r\leq\dim({\rm RM}_{q}(s,m)) and the second inequality is true for any 1rdim(Hypq(d,m))1\leq r\leq\dim(\mathrm{Hyp}_{q}(d,m)).

Proof.

The result follows from Theorems 3.5 and 4.3, where we prove RMq(s,m)Hypq(d,m)RMq(s,m).\mathrm{RM}_{q}(s,m)\subseteq\mathrm{Hyp}_{q}(d,m)\subseteq\mathrm{RM}_{q}(s^{\prime},m).

Example 5.5.

From Examples 3.7 and 4.4, we have that RM9(6,2)Hyp9(27,2)RM9(7,2)\mathrm{RM}_{9}(6,2)\subseteq\mathrm{Hyp}_{9}(27,2)\subseteq\mathrm{RM}_{9}(7,2). Thus,

26=δ2(RM9(7,2))δ2(Hyp9(27,2))δ2(RM9(6,2))=35.26=\delta_{2}(\mathrm{RM}_{9}(7,2))\leq\delta_{2}(\mathrm{Hyp}_{9}(27,2))\leq\delta_{2}(\mathrm{RM}_{9}(6,2))=35.

Using computational software and Theorem 5.1, we can see that the actual value is δ2(Hyp9(27,2))=FB2(Hyp9(27,2))=32\delta_{2}(\mathrm{Hyp}_{9}(27,2))={\rm FB}_{2}(\mathrm{Hyp}_{9}(27,2))=32 (see Figure 3).

Refer to caption
(A)
Refer to caption
(B)
Figure 3. We observe that RM9(6,2)Hyp9(27,2)RM9(7,2)\mathrm{RM}_{9}(6,2)\subseteq\mathrm{Hyp}_{9}(27,2)\subseteq\mathrm{RM}_{9}(7,2). The boxes represent the lattice points that help to compute the second GHWs. The number of lattice points inside: the red box is equal to δ2(Hyp9(27,2))\delta_{2}(\mathrm{Hyp}_{9}(27,2)), the black box is equal to δ2(RM9(6,2))\delta_{2}(\mathrm{RM}_{9}(6,2)), and the blue box is equal to δ2(RM9(7,2))\delta_{2}(\mathrm{RM}_{9}(7,2)).
Example 5.6.

From Examples 3.8 and 4.5, we have that RM9(8,2)Hyp9(9,2)RM9(12,2)\mathrm{RM}_{9}(8,2)\subseteq\mathrm{Hyp}_{9}(9,2)\subseteq\mathrm{RM}_{9}(12,2). Thus,

9=δ2(RM9(12,2))δ2(Hyp9(9,2))δ2(RM9(8,2))=17.9=\delta_{2}(\mathrm{RM}_{9}(12,2))\leq\delta_{2}(\mathrm{Hyp}_{9}(9,2))\leq\delta_{2}(\mathrm{RM}_{9}(8,2))=17.

Using computational software and Theorem 5.1, we can see that the actual value is δ2(Hyp9(9,2))=FB2(Hyp9(9,2))=12\delta_{2}(\mathrm{Hyp}_{9}(9,2))={\rm FB}_{2}(\mathrm{Hyp}_{9}(9,2))=12 (see Figure 4).

Refer to caption
(A)
Refer to caption
(B)
Figure 4. We observe that RM9(8,2)Hyp9(9,2)RM9(12,2)\mathrm{RM}_{9}(8,2)\subseteq\mathrm{Hyp}_{9}(9,2)\subseteq\mathrm{RM}_{9}(12,2). The boxes represent the lattice points that help to compute the second GHWs. The number of lattice points inside: the red box is equal to δ2(Hyp9(9,2))\delta_{2}(\mathrm{Hyp}_{9}(9,2)), the black box is equal to δ2(RM9(8,2))\delta_{2}(\mathrm{RM}_{9}(8,2)), and the blue box is equal to δ2(RM9(12,2))\delta_{2}(\mathrm{RM}_{9}(12,2)).

The following example shows that the bounds of Corollary 5.2 may be sharp for some of the GHWs of a hyperbolic code.

Example 5.7.

Let q=9q=9 and H={(i1,i2)[[0,8]]|(9i1)(9i2)27}H=\{(i_{1},i_{2})\in[\![0,8]\!]\ |\ (9-i_{1})(9-i_{2})\geq 27\}. By computational software, the first generalized Hamming weight, which is the minimum distance, is given by the first element of HH in descending lexicographical order. This first element is (6,0)(6,0). See Figure 5. As |(6,0)|=27|\nabla(6,0)|=27, we obtain δ1(Hyp9(27,2))=27\delta_{1}(\mathrm{Hyp}_{9}(27,2))=27.

Refer to caption
Figure 5. The number of lattice points inside of the blue box equals δ1(Hyp9(27,2))\delta_{1}(\mathrm{Hyp}_{9}(27,2)).

The first two elements in descending lexicographical order in HH are (6,0)(6,0) and (5,2)(5,2). See Figure 6. We obtain |(6,0)(5,2)|=34|\nabla(6,0)\cup\nabla(5,2)|=34. However, δ2(Hyp9(27,2))=32\delta_{2}(\mathrm{Hyp}_{9}(27,2))=32 by Example 5.5, which means that the first two elements do not give the second weight in descending lexicographical order.

Refer to caption
Figure 6. The number of lattice points inside of the green box equals δ2(Hyp9(27,2))\delta_{2}(\mathrm{Hyp}_{9}(27,2)).

The first fourth elements in descending lexicographical order in HH are (6,0),(5,2),(5,1),(6,0),(5,2),(5,1), and (5,0)(5,0). See Figure 7. The first and fourth elements, respectively, give the third and fourth GHWs:

δ3(Hyp9(2,27))=|(6,0)(5,2)(5,1)|=35\delta_{3}(\mathrm{Hyp}_{9}(2,27))=|\nabla(6,0)\cup\nabla(5,2)\cup\nabla(5,1)|=35

Thus,

δ4(Hyp9(2,27))=|(6,0)(5,2)(5,1)(5,0)|=36.\delta_{4}(\mathrm{Hyp}_{9}(2,27))=|\nabla(6,0)\cup\nabla(5,2)\cup\nabla(5,1)\cup\nabla(5,0)|=36.
Refer to caption
Figure 7. The number of lattice points inside of the grey box equals δ4(Hyp9(2,27))=|(6,0)(5,2)(5,1)(5,0)|=36\delta_{4}(\mathrm{Hyp}_{9}(2,27))=|\nabla(6,0)\cup\nabla(5,2)\cup\nabla(5,1)\cup\nabla(5,0)|=36.

Acknowledgments

Part of this work was developed while E. Camps-Moreno visited Universidad de La Laguna.

References

  • [1] P. Beelen. A note on the generalized hamming weights of reed–muller codes. Applicable Algebra in Engineering, Communication and Computing, 30(3):233–242, 2019.
  • [2] P. Beelen and M. Datta. Generalized hamming weights of affine cartesian codes. Finite Fields and Their Applications, 51:130–145, 2018.
  • [3] E. Camps, H. H. López, G. L. Matthews, and E. Sarmiento. Polar decreasing monomial-Cartesian codes. IEEE Transactions on Information Theory, 67(6):3664–3674, 2021.
  • [4] C. Carvalho, M. Chara, and L. Quoos. On evaluation codes coming from a tower of function fields. Journal of Symbolic Computation, 89:121–128, 2018.
  • [5] I. García-Marco, I. Márquez-Corbella, and D. Ruano. High dimensional affine codes whose square has a designed minimum distance. Designs, Codes and Cryptography, 88(8):1653–1672, 2020.
  • [6] O. Geil. Evaluation Codes from an Affine Variety Code Perspective, pages 153–180. World Scientific, 2008.
  • [7] O. Geil. On the second weight of generalized reed-muller codes. Designs, Codes and Cryptography, 48(3):323–330, 2008.
  • [8] O. Geil and T. Hø holdt. On hyperbolic codes. In Applied algebra, algebraic algorithms and error-correcting codes (Melbourne, 2001), volume 2227 of Lecture Notes in Comput. Sci., pages 159–171. Springer, Berlin, 2001.
  • [9] O. Geil and T. Hoholdt. Footprints or generalized bezout’s theorem. IEEE Transactions on Information Theory, 46(2):635–641, 2000.
  • [10] P. Heijnen and R. Pellikaan. Generalized hamming weights of q-ary reed-muller codes. IEEE Transactions on Information Theory, 44(1):181–196, 1998.
  • [11] T. Høholdt, J. van Lint, and R. Pellikaan. Algebraic Geometry Codes, volume 1, pages 871–961. Elsevier, Amsterdam, 1998.
  • [12] D. Jaramillo, M. Vaz Pinto, and R. H. Villarreal. Evaluation codes and their basic parameters. Designs, Codes and Cryptography, 89(2):269–300, 2021.
  • [13] M. Tsfasman and S. Vladut. Geometric approach to higher weights. IEEE Transactions on Information Theory, 41(6):1564–1588, 1995.
  • [14] V. K. Wei. Generalized Hamming weights for linear codes. IEEE Trans. Inform. Theory, 37(5):1412–1418, 1991.