This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

On the free metabelian Novikov and metabelian Lie-admissible algebras

Aigerim Dauletiyarova    Kanat Abdukhalikov and Bauyrzhan Sartayev
Abstract

In this paper, we consider Lie-admissible algebras, which are free Novikov and free Lie-admissible algebras with an additional metabelian identity. We construct a linear basis for both free metabelian Novikov and free metabelian Lie-admissible algebras. Additionally, we describe a space of symmetric polynomials for both the free metabelian Novikov algebra and the free metabelian Lie-admissible algebra.

keywords:
Novikov algebra, Lie-admissible algebra, metabelian identity, free algebra, polynomial identities.
\authorinfo

[Aigerim Dauletiyarova]SDU University, Kaskelen, [email protected] \authorinfo[Kanat Abdukhalikov]UAE University, Al Ain, [email protected] \authorinfo[Bauyrzhan Sartayev]Narxoz University, Almaty, Kazakhstan and UAE University, Al Ain, [email protected] \msc17A30 (primary), 17A50, 17D25 (secondary) \VOLUME33 \YEAR2025 \ISSUE3 \NUMBER3 \DOIhttps://doi.org/10.46298/cm.12877

1 Introduction

In recent years, algebras with metabelian identity have become popular objects in ring theory. Metabelian identity also can be stated as the solvability of index 22. Various types of classical algebras with metabelian identity, such as Lie, Leibniz, Malcev, Jordan, etc. are considered. The variety of metabelian Lie algebras has attracted significant attention, see [18, 21]. A basis of the free metabelian Lie algebra was constructed in [1]. In an analogical way, a basis of the free metabelian Leibniz algebra was constructed in [7]. Symmetric polynomials in the free metabelian Lie algebras were considered in [8]. The generators of symmetric polynomials in free metabelian Leibniz algebras were found in [24]. Other examples of Lie-admissible algebras are assosymmetric algebras [11]. A basis of the free metabelian Malcev algebra is constructed in [20]. For this reason, we add metabelian identity to a well-known class of algebras which are Novikov and Lie-admissible.

Novikov algebras were introduced in a study of Hamiltonian operators concerning the integrability of certain partial differential equations [12]. Later, they played a significant role in a study of Poisson brackets of hydrodynamic type [2].

It is well-known that, given a commutative algebra AA with a derivation DD, the space AA under the product x1x2=D(x1)x2x_{1}\circ x_{2}=D(x_{1})x_{2} forms a (right) Novikov algebra. Moreover, every Novikov algebra can be embedded into an appropriate commutative algebra with derivation DD [4]. Using rooted trees, the monomial basis of the free Novikov algebra in terms of \circ was constructed in [10]. In terms of Young diagrams, the basis was developed in [9]. By utilizing commutative algebra with derivation DD and a well-defined order, an alternative monomial basis of the free Novikov algebra is presented in [15]. The issues of solvability and nilpotency of Novikov algebras were addressed in [23]. In section 22, we construct a basis of the free solvable Novikov algebra with an index of 22. In section 33, we explicitly describe the symmetric polynomials for the multilinear part of the free metabelian Novikov algebra.

Let’s shift our focus to metabelian Lie-admissible algebras. In the realm of Lie-admissible algebra theory, additional conditions like flexibility or power-associativity are crucial, leading to numerous noteworthy outcomes in this context, see [3, 19]. Another important direction of the research on Lie-admissible algebras concerns the property that their associator satisfies relations defined by a natural action of the symmetric group of degree 3 [13, 14]. A basis of the free Lie-admissible algebra and the Gröbner-Shirshov base theory for Lie-admissible algebras is given in [5]. In addition, there is given an analogue of PBW-theorem for the pair of Lie and Lie-admissible algebras. A basis of the free Lie-admissible algebra in terms of commutator and anti-commutator is given in [17]. In Section 44, we construct the basis of a free metabelian Lie-admissible algebra in terms of commutator and anti-commutator. In Section 55, we explicitly describe the symmetric polynomials for the multilinear part of the free metabelian Lie-admissible algebra.

We consider all algebras over a field 𝕂\mathbb{K} of characteristic 0.

2 Free metabelian Novikov algebra

An algebra is called metabelian (right) Novikov if it satisfies the following identities:

a(bc)=b(ac),a(bc)=b(ac), (1)
(ab)ca(bc)=(ac)ba(cb),(ab)c-a(bc)=(ac)b-a(cb), (2)
(ab)(cd)=0(ab)(cd)=0 (3)

Let X={x1,x2}X=\{x_{1},x_{2}\ldots\} be a countable set of generators. We denote by NovX\operatorname{{Nov}}\langle X\rangle and MNovX\operatorname{{M}}\operatorname{{Nov}}\langle X\rangle the free Novikov and free metabelian Novikov algebra, respectively.

Let us denote by 𝒩n\mathcal{N}_{n} the set of monomials of degree nn of the following form:

𝒩n={(((xi1xi2)xi3))xin|i2i3in},\mathcal{N}_{n}=\{(\cdots((x_{i_{1}}x_{i_{2}})x_{i_{3}})\cdots)x_{i_{n}}\;|\;i_{2}\leq i_{3}\leq\ldots\leq i_{n}\},

where n5n\geq 5. We set

𝒩1={xi},𝒩2={xi1xi2}.\mathcal{N}_{1}=\{x_{i}\},\mathcal{N}_{2}=\{x_{i_{1}}x_{i_{2}}\}.

For degree 33, 𝒩3\mathcal{N}_{3} is defined as follows:

𝒩3={(xi1xi2)xi3,xi3(xi2xi1)|i2i3}.\mathcal{N}_{3}=\{(x_{i_{1}}x_{i_{2}})x_{i_{3}},x_{i_{3}}(x_{i_{2}}x_{i_{1}})\;|\;i_{2}\leq i_{3}\}.

For degree 44, we define the set 𝒩4\mathcal{N}_{4} as follows:

𝒩4={((xi1xi2)xi3)xi4,xj1(xj2(xj3xj4))|i2i3i4,j1j2j3j4}.\mathcal{N}_{4}=\{((x_{i_{1}}x_{i_{2}})x_{i_{3}})x_{i_{4}},x_{j_{1}}(x_{j_{2}}(x_{j_{3}}x_{j_{4}}))\;|\;i_{2}\leq i_{3}\leq i_{4},\;j_{1}\leq j_{2}\leq j_{3}\leq j_{4}\}.
Lemma 2.1.

The algebra MNovX\operatorname{{M}}\operatorname{{Nov}}\langle X\rangle satisfies the following identities:

((x1(x2x3))x4)x5=(x1((x2x3)x4))x5=(x1(x2(x3x4)))x5=x1(((x2x3)x4)x5)=x1((x2(x3x4))x5)=x1(x2((x3x4)x5))=x1(x2(x3(x4x5)))=0.((x_{1}(x_{2}x_{3}))x_{4})x_{5}=(x_{1}((x_{2}x_{3})x_{4}))x_{5}=(x_{1}(x_{2}(x_{3}x_{4})))x_{5}=x_{1}(((x_{2}x_{3})x_{4})x_{5})=\\ x_{1}((x_{2}(x_{3}x_{4}))x_{5})=x_{1}(x_{2}((x_{3}x_{4})x_{5}))=x_{1}(x_{2}(x_{3}(x_{4}x_{5})))=0. (4)
Proof 2.2.

Using (1), (2) and (3), one can obtain

0=((x1x2)x3)(x4x5)=x4(((x1x2)x3)x5)=(x1(x2x5))(x4x3)=x4((x1(x2x5))x3)=x4(x1((x2x5)x3))+x4((x1x3)(x2x5))x4(x1(x3(x2x5)))=x4((x2x5)(x1x3))x4(x1(x3(x2x5)))=x4(x1(x3(x2x5))),0=((x_{1}x_{2})x_{3})(x_{4}x_{5})=x_{4}(((x_{1}x_{2})x_{3})x_{5})=(x_{1}(x_{2}x_{5}))(x_{4}x_{3})=x_{4}((x_{1}(x_{2}x_{5}))x_{3})=\\ x_{4}(x_{1}((x_{2}x_{5})x_{3}))+x_{4}((x_{1}x_{3})(x_{2}x_{5}))-x_{4}(x_{1}(x_{3}(x_{2}x_{5})))=\\ x_{4}((x_{2}x_{5})(x_{1}x_{3}))-x_{4}(x_{1}(x_{3}(x_{2}x_{5})))=-x_{4}(x_{1}(x_{3}(x_{2}x_{5}))),

which gives

x1(((x2x3)x4)x5)=x1((x2(x3x4))x5)=x1(x2(x3(x4x5)))=x1(x2((x3x4)x5))=0.x_{1}(((x_{2}x_{3})x_{4})x_{5})=x_{1}((x_{2}(x_{3}x_{4}))x_{5})=x_{1}(x_{2}(x_{3}(x_{4}x_{5})))=x_{1}(x_{2}((x_{3}x_{4})x_{5}))=0.

By (1), (2) and (3), we have

((x1(x2x3))x4)x5=(x1((x2x3)x4))x5+((x1x4)(x2x3))x5(x1(x4(x2x3)))x5=x1((x4(x2x3))x5)(x1x5)(x4(x2x3))+x1(x5(x4(x2x3)))=x1(x5(x4(x2x3)))=(x4(x2x3))(x1x5)+x1(x5(x4(x2x3)))=x1(x5(x4(x2x3)))=0,((x_{1}(x_{2}x_{3}))x_{4})x_{5}=(x_{1}((x_{2}x_{3})x_{4}))x_{5}+((x_{1}x_{4})(x_{2}x_{3}))x_{5}-(x_{1}(x_{4}(x_{2}x_{3})))x_{5}=\\ -x_{1}((x_{4}(x_{2}x_{3}))x_{5})-(x_{1}x_{5})(x_{4}(x_{2}x_{3}))+x_{1}(x_{5}(x_{4}(x_{2}x_{3})))=x_{1}(x_{5}(x_{4}(x_{2}x_{3})))=\\ -(x_{4}(x_{2}x_{3}))(x_{1}x_{5})+x_{1}(x_{5}(x_{4}(x_{2}x_{3})))=x_{1}(x_{5}(x_{4}(x_{2}x_{3})))=0,

which gives

((x1(x2x3))x4)x5=(x1((x2x3)x4))x5=(x1(x2(x3x4)))x5=0.((x_{1}(x_{2}x_{3}))x_{4})x_{5}=(x_{1}((x_{2}x_{3})x_{4}))x_{5}=(x_{1}(x_{2}(x_{3}x_{4})))x_{5}=0.
Theorem 2.3.

The set 𝒩i\bigcup\mathcal{N}_{i} is a linear basis of the algebra MNovX\operatorname{{M}}\operatorname{{Nov}}\langle X\rangle.

Proof 2.4.

The statement for degrees less than 5 can be verified by direct calculations. For n5n\geq 5, firstly, we show that every monomial of MNovX\operatorname{{M}}\operatorname{{Nov}}\langle X\rangle can be written as a sum of monomials from the set i5𝒩i\bigcup_{i\geq 5}\mathcal{N}_{i}. By Lemma 2.1, we obtain that every monomial except (((xi1xi2)xi3))xin(\cdots((x_{i_{1}}x_{i_{2}})x_{i_{3}})\cdots)x_{i_{n}} is equal to 0. By (2) and Lemma 2.1, we have

((((xi1xi2))xim1)xim))xin=((((xi1xi2))(xim1xim)))xin+(((((xi1xi2))xim)xim1))xin((((xi1xi2))(ximxim1)))xin=(((((xi1xi2))xim)xim1))xin,(\cdots((\cdots(x_{i_{1}}x_{i_{2}})\cdots)x_{i_{m-1}})x_{i_{m}})\cdots)x_{i_{n}}=(\cdots((\cdots(x_{i_{1}}x_{i_{2}})\cdots)(x_{i_{m-1}}x_{i_{m}}))\cdots)x_{i_{n}}+\\ (\cdots(((\cdots(x_{i_{1}}x_{i_{2}})\cdots)x_{i_{m}})x_{i_{m-1}})\cdots)x_{i_{n}}-(\cdots((\cdots(x_{i_{1}}x_{i_{2}})\cdots)(x_{i_{m}}x_{i_{m-1}}))\cdots)x_{i_{n}}=\\ (\cdots(((\cdots(x_{i_{1}}x_{i_{2}})\cdots)x_{i_{m}})x_{i_{m-1}})\cdots)x_{i_{n}},

i.e., the generators xi2x_{i_{2}}, xi3,x_{i_{3}},\ldots, xinx_{i_{n}} are rearrangeable. From these equations, we get that every monomial of MNovX\operatorname{{M}}\operatorname{{Nov}}\langle X\rangle which has a degree greater than 4 can be written as a sum of i5𝒩i\bigcup_{i\geq 5}\mathcal{N}_{i}.

Now, we consider an algebra AXA\langle X\rangle with a basis monomials 𝒩i\bigcup\mathcal{N}_{i} and multiplication *. Let us define a multiplication on monomials 𝒩i\bigcup\mathcal{N}_{i} in AXA\langle X\rangle as follows:

{X1X2=0if X1,X2𝒩i and deg(X1),deg(X2)>1;xj(((xi1xi2))xin)=0;(((xi1xi2))xin)xj=((((((xi1xi2))xik)xj)xik+1))xin,\begin{gathered}\begin{cases}X_{1}*X_{2}=0\;\;\text{if $X_{1},X_{2}\in\mathcal{N}_{i}$ and $\mathrm{deg}(X_{1}),\mathrm{deg}(X_{2})>1$};\\ x_{j}*((\cdots(x_{i_{1}}x_{i_{2}})\cdots)x_{i_{n}})=0;\\ ((\cdots(x_{i_{1}}x_{i_{2}})\cdots)x_{i_{n}})*x_{j}=((\cdots(((\cdots(x_{i_{1}}x_{i_{2}})\cdots)x_{i_{k}})x_{j})x_{i_{k+1}})\cdots)x_{i_{n}},\\ \end{cases}\end{gathered}

where n>4n>4 and i2ikjik+1ini_{2}\leq\ldots\leq i_{k}\leq j\leq i_{k+1}\leq\ldots\leq i_{n}. Up to degree 4, we define multiplication in AXA\langle X\rangle that is consistent with identities (1), (2) and (3). By straightforward calculation, we can check that an algebra AXA\langle X\rangle satisfies to (1), (2) and (3) identities. It remains to note that AXMNovXA\langle X\rangle\cong\operatorname{{M}}\operatorname{{Nov}}\langle X\rangle.

3 Symmetric polynomials of the free metabelian Novikov algebra

Let p(x1,x2,,xn)p(x_{1},x_{2},\ldots,x_{n}) be a polynomial of the free metabelian Novikov algebra generated by a finite set X={x1,x2,,xn}X=\{x_{1},x_{2},\ldots,x_{n}\}. The polynomial p(x1,x2,,xn)p(x_{1},x_{2},\ldots,x_{n}) is called symmetric if it satisfies the following condition:

σp(x1,x2,,xn)=p(xσ(1),xσ(2),,xσ(n))=p(x1,x2,,xn),\sigma p(x_{1},x_{2},\ldots,x_{n})=p(x_{\sigma(1)},x_{\sigma(2)},\ldots,x_{\sigma(n)})=p(x_{1},x_{2},\ldots,x_{n}),

where σSn\sigma\in S_{n}. Let us define a set of polynomials 𝒫\mathcal{P} in MNovX\operatorname{{M}}\operatorname{{Nov}}\langle X\rangle as follows:

p1=ixi,p2=ijxixj,p_{1}=\sum_{i}x_{i},\;p_{2}=\sum_{i\neq j}x_{i}x_{j},
p3,1=i=1nj1<j2xj2(xj1xi),p3,2=i=1nj1<j2(xixj1)xj2,p_{3,1}=\sum_{i=1}^{n}\sum_{j_{1}<j_{2}}x_{j_{2}}(x_{j_{1}}x_{i}),\;p_{3,2}=\sum_{i=1}^{n}\sum_{j_{1}<j_{2}}(x_{i}x_{j_{1}})x_{j_{2}},
p4,1=j1<j2<j3<j4xj1(xj2(xj3xj4)),p4,2=i=1nj1<j2<j3((xixj1)xj2)xj3,p_{4,1}=\sum_{j_{1}<j_{2}<j_{3}<j_{4}}x_{j_{1}}(x_{j_{2}}(x_{j_{3}}x_{j_{4}})),\;p_{4,2}=\sum_{i=1}^{n}\sum_{j_{1}<j_{2}<j_{3}}((x_{i}x_{j_{1}})x_{j_{2}})x_{j_{3}},

and

pn=i=1nj1<j2<<jn1(((xixj1)xj2))xjn1,p_{n}=\sum_{i=1}^{n}\sum_{j_{1}<j_{2}<\ldots<j_{n-1}}(\cdots((x_{i}x_{j_{1}})x_{j_{2}})\cdots)x_{j_{n-1}},

where n5n\geq 5. The multilinear part of the free metabelian Novikov algebra is a space consisting of all elements containing each xix_{i} exactly once.

Example 3.1.

For multilinear part of MNovX\operatorname{{M}}\operatorname{{Nov}}\langle X\rangle, we obtain

p3,1=x2(x1x3)+x3(x2x1)+x3(x1x2),p3,2=(x1x2)x3+(x2x1)x3+(x3x1)x2,p_{3,1}=x_{2}(x_{1}x_{3})+x_{3}(x_{2}x_{1})+x_{3}(x_{1}x_{2}),\;p_{3,2}=(x_{1}x_{2})x_{3}+(x_{2}x_{1})x_{3}+(x_{3}x_{1})x_{2},
p4,1=x1(x2(x3x4)),p4,2=((x1x2)x3)x4+((x2x1)x3)x4+((x3x1)x2)x4+((x4x1)x2)x3,p_{4,1}=x_{1}(x_{2}(x_{3}x_{4})),\;p_{4,2}=((x_{1}x_{2})x_{3})x_{4}+((x_{2}x_{1})x_{3})x_{4}+((x_{3}x_{1})x_{2})x_{4}+((x_{4}x_{1})x_{2})x_{3},
pn=((((x1x2)x3)x4))xn+((((x2x1)x3)x4))xn+((((x3x1)x2)x4))xn++((((xnx1)x2)x3))xn1,p_{n}=(\cdots(((x_{1}x_{2})x_{3})x_{4})\cdots)x_{n}+(\cdots(((x_{2}x_{1})x_{3})x_{4})\cdots)x_{n}+\\ (\cdots(((x_{3}x_{1})x_{2})x_{4})\cdots)x_{n}+\ldots+(\cdots(((x_{n}x_{1})x_{2})x_{3})\cdots)x_{n-1},

where n5n\geq 5.

Theorem 3.2.

For the multilinear part of the free metabelian Novikov algebra, the symmetric polynomials have the form 𝒫\mathcal{P}.

Proof 3.3.

For n=1,2n=1,2, the result is obvious. For n3n\geq 3, we use the fact that every Novikov algebra is embeddable into commutative algebra with derivation and spanning elements of Novikov algebra in commutative algebra with derivation are monomials of weight 1-1 [4, 16]. The weight function wt(u)\operatorname{{wt}}(u)\in\mathbb{Z} is defined on monomials of commutative algebra with derivation DD by induction as follows,

wt(x)=1,xX;\displaystyle\operatorname{{wt}}(x)=-1,\quad x\in X;
wt(d(u))=wt(u)+1;wt(uv)=wt(u)+wt(v).\displaystyle\operatorname{{wt}}(d(u))=\operatorname{{wt}}(u)+1;\quad\operatorname{{wt}}(uv)=\operatorname{{wt}}(u)+\operatorname{{wt}}(v).

For simplicity, we denote D(x)D(x) and Dn(x)D^{n}(x) by xx^{\prime} and (Dn1(x))(D^{n-1}(x))^{\prime}, respectively. For the multilinear part to describe the space of symmetric polynomials of NovX\operatorname{{Nov}}\langle X\rangle in degree 33, we need to find the space of the symmetric polynomials of the differential commutative algebra of weight 1-1 in degree 33. This is the monomials of the form

x2x1x3+x3x2x1+x3x1x2andx1′′x2x3+x2′′x1x3+x3′′x1x2.x_{2}^{\prime}x_{1}^{\prime}x_{3}+x_{3}^{\prime}x_{2}^{\prime}x_{1}+x_{3}^{\prime}x_{1}^{\prime}x_{2}\;\textrm{and}\;x_{1}^{\prime\prime}x_{2}x_{3}+x_{2}^{\prime\prime}x_{1}x_{3}+x_{3}^{\prime\prime}x_{1}x_{2}.

Rewriting the first polynomial by the operation of Novikov algebra, we obtain p3,1p_{3,1}. Rewriting the second polynomial, we obtain

(x1x2)x3x1(x2x3)+(x2x1)x3x2(x1x3)+(x3x1)x2x3(x1x2).(x_{1}x_{2})x_{3}-x_{1}(x_{2}x_{3})+(x_{2}x_{1})x_{3}-x_{2}(x_{1}x_{3})+(x_{3}x_{1})x_{2}-x_{3}(x_{1}x_{2}).

Adding to the last expression p3,1p_{3,1}, we obtain p3,2p_{3,2}.

For degree 44, we have

MNovX/{(ab)(cd)}ComX1(D)/{a′′bcd+abcd},\operatorname{{M}}\operatorname{{Nov}}\langle X\rangle/\{(ab)(cd)\}\cong\operatorname{Com}\langle X\rangle^{(D)}_{-1}/\{a^{\prime\prime}b^{\prime}cd+a^{\prime}b^{\prime}c^{\prime}d\},

where ComX1(D)\operatorname{Com}\langle X\rangle^{(D)}_{-1} is a space of differential commutative algebra of weight 1-1. Hence, in degree 44 of ComX1(D)/{a′′bcd+abcd}\operatorname{Com}\langle X\rangle^{(D)}_{-1}/\{a^{\prime\prime}b^{\prime}cd+a^{\prime}b^{\prime}c^{\prime}d\} we rewrite all monomials of the form xi1′′xi2xi3xi4x_{i_{1}}^{\prime\prime}x_{i_{2}}^{\prime}x_{i_{3}}x_{i_{4}} to xi1xi2xi3xi4-x_{i_{1}}^{\prime}x_{i_{2}}^{\prime}x_{i_{3}}^{\prime}x_{i_{4}}. It remains to note that

0=a′′bcd+abcd(a′′bdc+abdc)=abcdabdc0=a^{\prime\prime}b^{\prime}cd+a^{\prime}b^{\prime}c^{\prime}d-(a^{\prime\prime}b^{\prime}dc+a^{\prime}b^{\prime}d^{\prime}c)=a^{\prime}b^{\prime}c^{\prime}d-a^{\prime}b^{\prime}d^{\prime}c

which gives that we rewrite monomial abdca^{\prime}b^{\prime}d^{\prime}c to abcda^{\prime}b^{\prime}c^{\prime}d. Finally, the remained monomials of weight 1-1 are xi1xi2xi3xi4′′′x_{i_{1}}x_{i_{2}}x_{i_{3}}x_{i_{4}}^{\prime\prime\prime} and xj1xj2xj3xj4x_{j_{1}}x_{j_{2}}^{\prime}x_{j_{3}}^{\prime}x_{j_{4}}^{\prime}, where i1i2i3i_{1}\leq i_{2}\leq i_{3} and j1j2j3j4j_{1}\leq j_{2}\leq j_{3}\leq j_{4}. By Theorem 2.3, these monomials are linearly independent, and for multilinear part symmetric polynomials of ComX1(D)/{a′′bcd+abcd}\operatorname{Com}\langle X\rangle^{(D)}_{-1}/\{a^{\prime\prime}b^{\prime}cd+a^{\prime}b^{\prime}c^{\prime}d\} are

x1x2x3x4andx1′′′x2x3x4+x2′′′x1x3x4+x3′′′x1x2x4+x4′′′x1x2x3,x_{1}^{\prime}x_{2}^{\prime}x_{3}^{\prime}x_{4}\;\textrm{and}\;x_{1}^{\prime\prime\prime}x_{2}x_{3}x_{4}+x_{2}^{\prime\prime\prime}x_{1}x_{3}x_{4}+x_{3}^{\prime\prime\prime}x_{1}x_{2}x_{4}+x_{4}^{\prime\prime\prime}x_{1}x_{2}x_{3},

which correspond to p4,1p_{4,1} and p4,2p_{4,2}, analogically as in degree 33.

By Theorem 2.3, starting from degree 55, all monomials of ComX(D)/{a′′bcd+abcd}\operatorname{Com}\langle X\rangle^{(D)}/\{a^{\prime\prime}b^{\prime}cd+a^{\prime}b^{\prime}c^{\prime}d\} of weight 1-1 except xi(n1)xjn1xj1x_{i}^{(n-1)}x_{j_{n-1}}\ldots x_{j_{1}} are equal to 0, where xi(n1)=(xi(n2))x_{i}^{(n-1)}=(x_{i}^{(n-2)})^{\prime}. Hence, starting from degree 55, symmetric polynomials of ComX(D)/\operatorname{Com}\langle X\rangle^{(D)}/ {a′′bcd+abcd}\{a^{\prime\prime}b^{\prime}cd+a^{\prime}b^{\prime}c^{\prime}d\} of weight 1-1 are

x1(n1)x2x3x4xn+x2(n1)x1x3x4xn+x3(n1)x1x2x4xn++xn(n1)x1x2x3xn1,x_{1}^{(n-1)}x_{2}x_{3}x_{4}\cdots x_{n}+x_{2}^{(n-1)}x_{1}x_{3}x_{4}\cdots x_{n}+\\ x_{3}^{(n-1)}x_{1}x_{2}x_{4}\cdots x_{n}+\ldots+x_{n}^{(n-1)}x_{1}x_{2}x_{3}\cdots x_{n-1},

which correspond to pnp_{n}.

4 Free metabelian Lie-admissible algebra

An algebra is called metabelian Lie-admissible if it satisfies the following identities:

(ab)c(ba)cc(ab)+c(ba)+(bc)a(cb)aa(bc)+a(cb)+(ca)b(ac)bb(ca)+b(ac)=0,(ab)c-(ba)c-c(ab)+c(ba)+(bc)a-(cb)a-a(bc)\\ +a(cb)+(ca)b-(ac)b-b(ca)+b(ac)=0, (5)
(ab)(cd)=0.(ab)(cd)=0. (6)

Let us consider the polarization of metabelian Lie-admissible algebra, i.e., we consider an algebra with two operations which is defined on metabelian Lie-admissible algebra as follows:

[a.b]=abba,{a,b}=ab+ba.[a.b]=ab-ba,\;\{a,b\}=ab+ba.

In this case, the defining identities of the variety of metabelian Lie-admissible algebras become to

[a,b]=[b,a],{a,b}={b,a},[a,b]=-[b,a],\;\{a,b\}=\{b,a\},
[[a,b],c]+[[b,c],a]+[[c,a],b]=0,[[a,b],c]+[[b,c],a]+[[c,a],b]=0,
[[a,b],[c,d]]=[[a,b],{c,d}]=[{a,b},{c,d}]={{a,b},{c,d}}={{a,b},[c,d]}={[a,b],[c,d]}=0.[[a,b],[c,d]]=[[a,b],\{c,d\}]=[\{a,b\},\{c,d\}]=\{\{a,b\},\{c,d\}\}=\\ \{\{a,b\},[c,d]\}=\{[a,b],[c,d]\}=0. (7)

As a consequence, we obtain

[[[a,b],c],d]=[[[a,b],d],c][[[a,b],c],d]=[[[a,b],d],c] (8)

and

[[{a,b},c],d]=[[{a,b},d],c][[\{a,b\},c],d]=[[\{a,b\},d],c] (9)

which hold in free metabelian Lie-admissible algebra.

Let us construct a basis of the free metabelian Lie-admissible algebra in terms of binary trees with two types of vertices \bullet and \circ. We consider only trees of the following form:

A=A=**

\ldots

*xi1x_{i_{1}}xi2x_{i_{2}}xin1x_{i_{n-1}}xinx_{i_{n}}

We place on vertices of the tree \bullet and \circ in all possible ways. On the leaves of the tree, we place generators from the countable set XX. This tree in a unique way corresponds to the sequence (xi1,xi2,,xin1,xin).(*_{x_{i_{1}}},*_{x_{i_{2}}},\ldots,*_{x_{i_{n-1}}},x_{i_{n}}).

Example 4.1.

If

A=A=\bullet\circx1x_{1}x2x_{2}x3x_{3}

then AA corresponds to (x1,x2,x3)(\bullet_{x_{1}},\circ_{x_{2}},x_{3}). We define a set of sequences as follows:

1) If there are several consecutive black dots in a sequence, then all corresponding generators of these vertices are ordered, i.e., for (,ik1,ik,ik+1,,il1,il,)(\ldots,\circ_{i_{k-1}},\bullet_{i_{k}},\bullet_{i_{k+1}},\ldots,\bullet_{i_{l-1}},\circ_{i_{l}},\ldots), we have ikik+1il1i_{k}\geq i_{k+1}\geq\ldots\geq i_{l-1};

2) If the rightmost vertex is white then the rightmost generator is less than the previous one, i.e., for (,in1,xin)(\ldots,\circ_{i_{n-1}},x_{i_{n}}), we have in1ini_{n-1}\leq i_{n};

3) If a given consecutive sequence of black dots continues to the rightmost vertex and the number of black dots is bigger than 22, then all the generators of these vertices are ordered and the rightmost generator is bigger than the previous one, i.e., for (,ik,ik+1,,in1,xin)(\ldots,\bullet_{i_{k}},\bullet_{i_{k+1}},\ldots,\bullet_{i_{n-1}},x_{i_{n}}), we have ikik+1in1<ini_{k}\geq i_{k+1}\geq\ldots\geq i_{n-1}<i_{n};

4) In condition 33 if the number of black dots is not bigger than 22, then the generators are ordered as in Lyndon-Shirshov words, i.e., the basis monomials of the free Lie algebra of degrees 2 and 3;

For every such tree, we define a monomial from free metabelian Lie-admissible algebra as follows: the tree with nn leaves is a right-normed monomial of degree nn, i.e., this is the monomial xi1(xi2((xin1xin)))x_{i_{1}}*(x_{i_{2}}*(\ldots(x_{i_{n-1}}*x_{i_{n}})\ldots)). The black multiplication \bullet corresponds to the Lie bracket [,][\cdot,\cdot] and white multiplication \circ corresponds to {,}\{\cdot,\cdot\}. We denote by 𝒯\mathcal{T} a set of trees that satisfy conditions (1), (2), (3) and (4), and we denote by \mathcal{M} the set of monomials which correspond to the trees from 𝒯\mathcal{T}.

Theorem 4.2.

The set of monomials \mathcal{M} is a basis of the free metabelian Lie-admissible algebra.

Proof 4.3.

Firstly, we show that any monomial of the free Lie-admissible algebra can be written as a sum of monomials from \mathcal{M}. After polarization of Lie-admissible algebra, one obtains that by commutative and anti-commutative identities on {,}\{\cdot,\cdot\} and [,][\cdot,\cdot], respectively, and by (7), any monomial can be written as a sum of right-normed monomials with multiplications {,}\{\cdot,\cdot\} and [,][\cdot,\cdot]. The condition (1) for right-normed monomials is provided by identities (8) and (9). The condition (3) is provided by the basis of the free metabelian Lie algebra, see [1]. The conditions (2) and (4) are provided by commutativity of {,}\{\cdot,\cdot\} and identities of [,][\cdot,\cdot], respectively.

Now, let us consider a free algebra AXA\langle X\rangle with the basis \mathcal{M}. The multiplications \bullet and \circ in AXA\langle X\rangle are defined as follows:

{X1X2=0if X1,X2deg(X1),deg(X2)>1 and  is  or ;(xi1((xin1xin)))xj=xj(xi1((xin1xin))),(xi1((xin1xin)))xj=xj(xi1((xin1xin))),where n3.(xi1((xik(xik+1((xin1xin))))))xj=xi1((xl(xj(xl+1((xik(xik+1((xin1xin))))))))),where ljl+1 and n3.\begin{gathered}\begin{cases}X_{1}*X_{2}=0\;\;\text{if $X_{1},X_{2}\in\mathcal{M}$, $\mathrm{deg}(X_{1}),\mathrm{deg}(X_{2})>1$ and $*$ is $\bullet$ or $\circ$};\\ (x_{i_{1}}*(\cdots*(x_{i_{n-1}}*x_{i_{n}})\cdots))\circ x_{j}=x_{j}\circ(x_{i_{1}}*(\cdots*(x_{i_{n-1}}*x_{i_{n}})\cdots)),\\ (x_{i_{1}}\circ(\cdots*(x_{i_{n-1}}*x_{i_{n}})\cdots))\bullet x_{j}=-x_{j}\bullet(x_{i_{1}}\circ(\cdots*(x_{i_{n-1}}*x_{i_{n}})\cdots)),\\ \text{where $n\geq 3$.}\\ (x_{i_{1}}\bullet(\cdots\bullet(x_{i_{k}}\bullet(x_{i_{k+1}}\circ(\cdots*(x_{i_{n-1}}*x_{i_{n}})\cdots)))\cdots))\bullet x_{j}=-x_{i_{1}}\bullet(\cdots\bullet(x_{l}\\ \bullet(x_{j}\bullet(x_{l+1}\bullet(\cdots\bullet(x_{i_{k}}\bullet(x_{i_{k+1}}\circ(\cdots*(x_{i_{n-1}}*x_{i_{n}})\cdots)))\cdots))))\cdots),\\ \text{where $l\leq j\leq l+1$ and $n\geq 3$.}\\ \end{cases}\end{gathered}

If the monomials X1X_{1} and X2X_{2} do not involve \circ then we rewrite the product X1X2X_{1}\bullet X_{2} according to the multiplication table of free metabelian Lie algebras.

If the multiplications \bullet and \circ correspond to [,][\cdot,\cdot] and {,}\{\cdot,\cdot\}, respectively, then by straightforward calculations, we can check that an algebra AXA\langle X\rangle satisfies Jacobi identity and identities (7), (8), (9). It remains to note that AXMLie-admXA\langle X\rangle\cong\operatorname{{M}}\operatorname{Lie}\textrm{-}\operatorname{adm}\langle X\rangle, where MLie-admX\operatorname{{M}}\operatorname{Lie}\textrm{-}\operatorname{adm}\langle X\rangle is a free metabelian Lie-admissible algebra.

Calculating the dimension of operad MLie\operatorname{{M}}\operatorname{Lie} by means of the package [6], we get the following result:

nn 1 2 3 4 5 6 7
dim(MLie-adm(n))\dim(\operatorname{{M}}\operatorname{Lie}\textrm{-}\operatorname{adm}(n)) 1 2 11 77 679 7184 88668

We see that the dimension of this operad is growing at a high rate, and this sequence does not coincide with any sequence from OEIS. In [22] was given the dimension of the Lie-admissible operad up to degree 77, which is

nn 1 2 3 4 5 6 7
dim(Lie-adm(n))\dim(\operatorname{Lie}\textrm{-}\operatorname{adm}(n)) 1 2 11 101 1299 21484 434314

It will be interesting to find a general formula for the dimension of the metabelian Lie-admissible and Lie-admissible operads.

5 Symmetric polynomials of the free metabelian Lie-admissible algebra

For nn, let us define the sequence (xi1,xi2,,xin1,xin)(*_{x_{i_{1}}},*_{x_{i_{2}}},\ldots,*_{x_{i_{n-1}}},x_{i_{n}}), where * can be \circ or \bullet. For each sequence, we define a space (xi1,xi2,,xin1,xin)(,,,)(*_{x_{i_{1}}},*_{x_{i_{2}}},\ldots,*_{x_{i_{n-1}}},x_{i_{n}})_{(*,*,\ldots,*)} as follows:

(xi1,xi2,,xin1,xin)(,,,)=i1,,inxi1(xi2((xin1xin))).(*_{x_{i_{1}}},*_{x_{i_{2}}},\ldots,*_{x_{i_{n-1}}},x_{i_{n}})_{(*,*,\ldots,*)}=\sum_{i_{1},\ldots,i_{n}}x_{i_{1}}*(x_{i_{2}}*(\ldots(x_{i_{n-1}}*x_{i_{n}})\ldots)).
Example 5.1.
(xi1,xi2,xi3)(,)=i1,i2,i3xi1(xi2xi3).(\bullet_{x_{i_{1}}},\circ_{x_{i_{2}}},x_{i_{3}})_{(\bullet,\circ)}=\sum_{i_{1},i_{2},i_{3}}x_{i_{1}}\bullet(x_{i_{2}}\circ x_{i_{3}}).

For each space (xi1,xi2,,xin1,xin)(,,,)(*_{x_{i_{1}}},*_{x_{i_{2}}},\ldots,*_{x_{i_{n-1}}},x_{i_{n}})_{(*,*,\ldots,*)}, n3n\geq 3, we define a polynomial p(,,,,n)p_{(*,*,\ldots,*,n)} as follows:

1) We divide this sequence into consecutive vertices of the same colour;

2) For kik_{i} consecutive white vertices, we select kik_{i} generators and write all possible permutations for them;

3) For kik_{i} consecutive black vertices, we select kik_{i} generating ones and write them in descending order;

4) If the sequence ends with kik_{i} vertices of white colour, then for the selected generator we write all possible permutations of kik_{i} generators so that the last two generators are always ordered;

5) If the sequence ends with kik_{i} vertices of black colour, then for the selected generator we write symmetric polynomials of the free metabelian Lie algebra on ki+1k_{i+1} generators.

The sum of such monomials gives polynomial p(,,,,n)p_{(*,*,\ldots,*,n)}. For n=1,2n=1,2, we set

p(1)=x1+x2++xn and p(2)=ijxixj.p_{(1)}=x_{1}+x_{2}+\ldots+x_{n}\quad\textup{ and }\quad p_{(2)}=\sum_{i\neq j}x_{i}\circ x_{j}.
Example 5.2.

For multilinear part of MLie-admX\operatorname{{M}}\operatorname{Lie}\textrm{-}\operatorname{adm}\langle X\rangle, let us construct (xi1,xi2,(\bullet_{x_{i_{1}}},\circ_{x_{i_{2}}}, xi3)(,)x_{i_{3}}{)}_{(\bullet,\circ)}, (xi1,xi2,xi3)(,){(\circ_{x_{i_{1}}},\bullet_{x_{i_{2}}},x_{i_{3}})}_{(\bullet,\circ)} and (xi1,xi2,xi3)(,){(\circ_{x_{i_{1}}},\circ_{x_{i_{2}}},x_{i_{3}})}_{(\bullet,\circ)}.

p(,,3)=x1(x2x3)+x2(x1x3)+x3(x1x2),p_{(\bullet,\circ,3)}=x_{1}\bullet(x_{2}\circ x_{3})+x_{2}\bullet(x_{1}\circ x_{3})+x_{3}\bullet(x_{1}\circ x_{2}),
p(,,3)=x1(x2x3)+x2(x1x3)+x3(x1x2),p_{(\circ,\bullet,3)}=x_{1}\circ(x_{2}\bullet x_{3})+x_{2}\circ(x_{1}\bullet x_{3})+x_{3}\circ(x_{1}\bullet x_{2}),
p(,,3)=x1(x2x3)+x2(x1x3)+x3(x1x2).p_{(\circ,\circ,3)}=x_{1}\circ(x_{2}\circ x_{3})+x_{2}\circ(x_{1}\circ x_{3})+x_{3}\circ(x_{1}\circ x_{2}).

For (xi1,xi2,xi3,xi4)(,,){(\bullet_{x_{i_{1}}},\bullet_{x_{i_{2}}},\circ_{x_{i_{3}}},x_{i_{4}})}_{(\bullet,\bullet,\circ)}, we have

p(,,,3)=x2(x1(x3x4))+x3(x1(x2x4))+x4(x1(x2x3))+x3(x2(x1x4))+x4(x2(x1x3))+x4(x3(x1x2)).p_{(\bullet,\bullet,\circ,3)}=x_{2}\bullet(x_{1}\bullet(x_{3}\circ x_{4}))+x_{3}\bullet(x_{1}\bullet(x_{2}\circ x_{4}))+x_{4}\bullet(x_{1}\bullet(x_{2}\circ x_{3}))+\\ x_{3}\bullet(x_{2}\bullet(x_{1}\circ x_{4}))+x_{4}\bullet(x_{2}\bullet(x_{1}\circ x_{3}))+x_{4}\bullet(x_{3}\bullet(x_{1}\circ x_{2})).

For each p(,,,,n)p_{(*,*,\ldots,*,n)}, we replace \bullet and \circ to [,][\cdot,\cdot] and {,}\{\cdot,\cdot\}, respectively. Finally, we obtain the following result:

Theorem 5.3.

For the multilinear part of the free metabelian Lie-admissible algebra, the symmetric polynomials have the form p(,,,,n)p_{(*,*,\ldots,*,n)}.

Proof 5.4.

For n=1,2n=1,2, the result is obvious. From the multiplication table of the free metabelian Lie-admissible algebra, one obtains

MLie-adm3X=(,,,)(xi1,xi2,,xin1,xin)(,,,)\operatorname{{M}}\operatorname{Lie}\textrm{-}\operatorname{adm}_{\geq 3}\langle X\rangle=\oplus_{(*,*,\ldots,*)}(*_{x_{i_{1}}},*_{x_{i_{2}}},\ldots,*_{x_{i_{n-1}}},x_{i_{n}})_{(*,*,\ldots,*)}

as a vector space, where MLie-adm3X\operatorname{{M}}\operatorname{Lie}\textrm{-}\operatorname{adm}_{\geq 3}\langle X\rangle is a multilinear part of the free metabelian Lie-admissible algebra of degree greater than 22. For example, if n=3n=3 then

MLie-adm3X=(xi1,xi2,xi3)(,)(xi1,xi2,xi3)(,)(xi1,xi2,xi3)(,)(xi1,xi2,xi3)(,).\operatorname{{M}}\operatorname{Lie}\textrm{-}\operatorname{adm}_{3}\langle X\rangle=(\bullet_{x_{i_{1}}},\bullet_{x_{i_{2}}},x_{i_{3}})_{(\bullet,\bullet)}\oplus(\bullet_{x_{i_{1}}},\circ_{x_{i_{2}}},x_{i_{3}})_{(\bullet,\circ)}\oplus\\ (\circ_{x_{i_{1}}},\bullet_{x_{i_{2}}},x_{i_{3}})_{(\circ,\bullet)}\oplus(\circ_{x_{i_{1}}},\circ_{x_{i_{2}}},x_{i_{3}})_{(\circ,\circ)}.

Moreover, each monomial of the space (xi1,,xin1,xin)(,,,)(*_{x_{i_{1}}},\ldots,*_{x_{i_{n-1}}},x_{i_{n}})_{(*,*,\ldots,*)} under action SnS_{n} belongs to the same space. It remains to note that p(,,,,n)p_{(*,*,\ldots,*,n)} is a symmetric polynomial, and for each space (xi1,xi2,,xin1,(*_{x_{i_{1}}},*_{x_{i_{2}}},\ldots,*_{x_{i_{n-1}}}, xin)(,,,)x_{i_{n}})_{(*,*,\ldots,*)} there is one unique symmetric polynomial which is p(,,,,n)p_{(*,*,\ldots,*,n)}.

Acknowledgments

This work was supported by UAEU grant G00004614. The authors are grateful to the anonymous referees for their valuable remarks that improved the text.

References

  • [1] J. A. Bahturin. Identities in Lie algebras. I. Vestnik Moskov. Univ. Ser. I Mat. Meh., 28(1):12–18, 1973. [in Russian].
  • [2] A. A. Balinskii and S. P. Novikov. Poisson brackets of hydrodynamic type, Frobenius algebras and Lie algebras. Dokl. Akad. Nauk SSSR, 283(5):1036–1039, 1985. [in Russian].
  • [3] G. M. Benkart. Power-associative Lie-admissible algebras. J. Algebra, 90(1):37–58, 1984.
  • [4] L. A. Bokut, Y. Chen, and Z. Zhang. Gröbner–Shirshov bases method for Gelfand–Dorfman–Novikov algebras. J. Algebra Appl., 16(1):1750001, 2017.
  • [5] Y. Chen, I. Shestakov, and Z. Zhang. Free Lie-admissible algebras and an analogue of the PBW theorem. J. Algebra, 590:234–253, 2022.
  • [6] V. Dotsenko and W. Heijltjes. Gröbner bases for operads, 2019.
  • [7] V. Drensky, G. Piacentini Cattaneo, and G. Maria. Varieties of metabelian Leibniz algebras. J. Algebra Appl., 1(1):31–50, 2002.
  • [8] V. Drensky, S. Fındık, and N. S. Öuslu. Symmetric polynomials in the free metabelian Lie algebras. Mediterr. J. Math., 17(5):11 pp., 2020.
  • [9] A. S. Dzhumadildaev and N. A. Ismailov. Sn{S}_{n}- and GLn{GL}_{n}-module structures on free Novikov algebras. J. Algebra, 416:287–313, 2014.
  • [10] A. S. Dzhumadil’daev and C. Löfwall. Trees, free right-symmetric algebras, free Novikov algebras and identities. Homology Homotopy Appl., 4(2):165–190, 2002.
  • [11] A. S. Dzhumadil’daev, B. K. Zhakhayev, and S. A. Abdykassymova. Assosymmetric operad. Commun. Math., 30(1):175–190, 2022.
  • [12] I. M. Gelfand and I. Y. Dorfman. Hamilton operators and associated algebraic structures. Funct. Anal. Appl., 13(4):13–30, 1979.
  • [13] M. Goze and E. Remm. Lie-admissible algebras and operads. J. Algebra, 273(1):129–152, 2004.
  • [14] M. Goze and E. Remm. A class of nonassociative algebras. Algebra Colloq., 14(2):313–326, 2007.
  • [15] V. Gubarev and B. K. Sartayev. Free special Gelfand-Dorfman algebra. J. Algebra Appl., 2023.
  • [16] P. S. Kolesnikov and B. K.  Sartayev. On the special identities of Gelfand-Dorfman algebras. Exp. Math., 33(1), 165–174, 2024.
  • [17] M. Markl and E. Remm. Algebras with one operation including Poisson and other Lie-admissible algebras. J. Algebra, 299(1):171–189, 2006.
  • [18] F. A. Mashurov and B. K. Sartayev. Metabelian Lie and perm algebras. J. Algebra Appl., 23(4):2450065, 2024.
  • [19] H. C. Myung. Some classes of flexible Lie-admissible algebras. Trans. Amer. Math. Soc., 167:79–88, 1972.
  • [20] S. V. Pchelintsev. Speciality of Metabelian Malcev Algebras. Math. Notes, 1-2:245–254, 2003.
  • [21] V. Romankov. Generators of symmetric polynomials in free metabelian Leibniz algebras. Internat. J. Algebra Comput., 18(2):209–226, 2008.
  • [22] B. Sartayev and A. Ydyrys. Free products of operads and Gröbner base of some operads. In 2023 17th International Conference on Electronics Computer and Computation (ICECCO), pages 1–6, 2023.
  • [23] I. Shestakov and Z. Zhang. Solvability and nilpotency of Novikov algebras. Comm. Algebra, 48(12):5412–5420, 2020.
  • [24] Z. Özkurt and S. Fındık. Generators of symmetric polynomials in free metabelian Leibniz algebras. J. Algebra Appl., to appear.
\EditInfo

January 17, 2024April 13, 2024David Towers and Ivan Kaygorodov