This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

On the fractional Korn inequality in bounded domains: Counterexamples to the case ps<1ps<1

Davit Harutyunyan and Hayk Mikayelyan111University of Nottingham Ningbo China, [email protected] University of California Santa Barbara, [email protected]
Abstract

The validity of Korn’s first inequality in the fractional setting in bounded domains has been open. We resolve this problem by proving that in fact Korn’s first inequality holds in the case ps>1ps>1 for fractional W0s,p(Ω)W^{s,p}_{0}(\Omega) Sobolev fields in open and bounded C1C^{1}-regular domains Ωn\Omega\subset\mathbb{R}^{n}. Also, in the case ps<1,ps<1, for any open bounded C1C^{1} domain Ωn\Omega\subset\mathbb{R}^{n} we construct counterexamples to the inequality, i.e., Korn’s first inequality fails to hold in bounded domains. The proof of the inequality in the case ps>1ps>1 follows a standard compactness approach adopted in the classical case, combined with a Hardy inequality, and a recently proven Korn second inequality by Mengesha and Scott [Commun. Math. Sci., Vol. 20, N0. 2, 405–423, 2022]. The counterexamples constructed in the case ps<1ps<1 are interpolations of a constant affine rigid motion inside the domain away from the boundary, and of the zero field close to the boundary.

1 Introduction

The classical Korn’s first inequality [References,References] states that for any vector field 𝒖W01,p(Ω,n)\bm{u}\in W^{1,p}_{0}(\Omega,\mathbb{R}^{n}) one has

𝒖Lp(Ω)Ce(𝒖)Lp(Ω),\|\nabla\bm{u}\|_{L^{p}(\Omega)}\leq C\|e(\bm{u})\|_{L^{p}(\Omega)}, (1.1)

where Ωn\Omega\subset\mathbb{R}^{n} is an open bounded Lipschitz domain, p(1,),p\in(1,\infty), C>0C>0 is an absolute constant, and e(𝒖)=12(𝒖+𝒖T)e(\bm{u})=\frac{1}{2}(\nabla\bm{u}+\nabla\bm{u}^{T}) is the symmetric part of the gradient. It is also know that if for a field 𝒖W1,p(Ω,n)\bm{u}\in W^{1,p}(\Omega,\mathbb{R}^{n}) one has e(𝒖)=0e(\bm{u})=0 a.e. in Ω,\Omega, then 𝒖\bm{u} must have a constant skew-symmetric gradient [References,References,References]; that is 𝒖(𝒙)=𝑨𝒙+𝒃\bm{u}(\bm{x})=\bm{A}\bm{x}+\bm{b} for some 𝑨n×n\bm{A}\in\mathbb{R}^{n\times n} with 𝑨+𝑨T=0,\bm{A}+\bm{A}^{T}=0, and some constant vector 𝒃n.\bm{b}\in\mathbb{R}^{n}. The fractional analogue of Korn’s first inequality can be formulated as follows. Assuming s(0,1),s\in(0,1), for a vector field 𝒖Lp(Ω,n),\bm{u}\in L^{p}(\Omega,\mathbb{R}^{n}), the seminorm associated to the fractional ss-derivative of 𝒖\bm{u} is given by

[𝒖]Ws,p(Ω)p=ΩΩ|𝒖(𝒙)𝒖(𝒚)|p|𝒙𝒚|n+ps𝑑𝒙𝑑𝒚,[\bm{u}]_{W^{s,p}(\Omega)}^{p}=\int_{\Omega}\int_{\Omega}\frac{|\bm{u}(\bm{x})-\bm{u}(\bm{y})|^{p}}{|\bm{x}-\bm{y}|^{n+ps}}d\bm{x}d\bm{y}, (1.2)

while the quantity 𝒖Ws,p(Ω)=[𝒖]Ws,p(Ω)+𝒖Lp(Ω)\|\bm{u}\|_{W^{s,p}(\Omega)}=[\bm{u}]_{W^{s,p}(\Omega)}+\|\bm{u}\|_{L^{p}(\Omega)} defines a norm in the space

Ws,p(Ω,n)={𝒖Lp(Ω,n):𝒖Ws,p(Ω)<},W^{s,p}(\Omega,\mathbb{R}^{n})=\{\bm{u}\in L^{p}(\Omega,\mathbb{R}^{n})\ :\ \|\bm{u}\|_{W^{s,p}(\Omega)}<\infty\},

that is a Banach space [References], see also [References,References]. It then turns out that the fractional analogue of the symmetric part of the ss-gradient of a field 𝒖Lp(Ω,n)\bm{u}\in L^{p}(\Omega,\mathbb{R}^{n}) is given by (following the notation in [References])

[𝒖]𝒳s,p(Ω)p=ΩΩ|(𝒖(𝒙)𝒖(𝒚))(𝒙𝒚)|p|𝒙𝒚|n+ps+p𝑑𝒙𝑑𝒚.[\bm{u}]_{\mathcal{X}^{s,p}(\Omega)}^{p}=\int_{\Omega}\int_{\Omega}\frac{|(\bm{u}(\bm{x})-\bm{u}(\bm{y}))\cdot(\bm{x}-\bm{y})|^{p}}{|\bm{x}-\bm{y}|^{n+ps+p}}d\bm{x}d\bm{y}. (1.3)

It is known that if for a vector field 𝒖Lp(Ω,n)\bm{u}\in L^{p}(\Omega,\mathbb{R}^{n}) one has [𝒖]𝒳s,p(Ω)=0,[\bm{u}]_{\mathcal{X}^{s,p}(\Omega)}=0, which is equivalent to (𝒖(𝒙)𝒖(𝒚))(𝒙𝒚)=0(\bm{u}(\bm{x})-\bm{u}(\bm{y}))\cdot(\bm{x}-\bm{y})=0 for a.e. 𝒙,𝒚Ω,\bm{x},\bm{y}\in\Omega, then in fact again 𝒖\bm{u} has to be an affine map with a skew-symmetric gradient [References, Proposition 1.2], see also [References, Theorem 3,1]. This observation suggests, as also noted by Mengesha [References] and Mengesha and Scott [References], that the fractional analogue of Korn’s first inequality should hold as well:

ΩΩ|𝒖(𝒙)𝒖(𝒚)|p|𝒙𝒚|n+ps𝑑𝒙𝑑𝒚CΩΩ|(𝒖(𝒙)𝒖(𝒚))(𝒙𝒚)|p|𝒙𝒚|n+ps+p𝑑𝒙𝑑𝒚,\int_{\Omega}\int_{\Omega}\frac{|\bm{u}(\bm{x})-\bm{u}(\bm{y})|^{p}}{|\bm{x}-\bm{y}|^{n+ps}}d\bm{x}d\bm{y}\leq C\int_{\Omega}\int_{\Omega}\frac{|(\bm{u}(\bm{x})-\bm{u}(\bm{y}))\cdot(\bm{x}-\bm{y})|^{p}}{|\bm{x}-\bm{y}|^{n+ps+p}}d\bm{x}d\bm{y}, (1.4)

for all vector fields 𝒖W0s,p(Ω,n),\bm{u}\in W^{s,p}_{0}(\Omega,\mathbb{R}^{n}), where the space W0s,p(Ω,n)W^{s,p}_{0}(\Omega,\mathbb{R}^{n}) is the closure of Cc1(Ω,n)C_{c}^{1}(\Omega,\mathbb{R}^{n}) fields in the Ws,p(Ω)W^{s,p}(\Omega) norm. Here the constant CC in (1.4) depends only on n,p,sn,p,s and Ω.\Omega. The expression in (1.3) has arisen in the theory of linear peridynamics [References,References,References,References,References,References] as the energy in the small strain regime in the analogy of linear elasticity, where the symmetric gradient e(𝒖)e(\bm{u}) is the linear strain, and the integral Ω|e(𝒖)|p𝑑𝒙\int_{\Omega}|e(\bm{u})|^{p}d\bm{x} is equivalent to the linear elastic energy. For the purpose of establishing the coercivity of the linear elastic energy, Korn proved [References,References] the estimate (1.1) and the Korn second inequality. The estimate (1.4) was first proven by Mengesha in the case when Ω\Omega is the entire space or the upper half-space {xn>0},\{x_{n}>0\}, and p=2,ps1p=2,ps\neq 1 in [References], and was later extended to any 1<p<,ps11<p<\infty,ps\neq 1 by Mengesha and Scott in [References]. When dealing with non-local operators like on both sides of (1.4), it is sometimes favorable to extend the field 𝒖\bm{u} into the entire space n\mathbb{R}^{n} and work with the extended domain to gain access to Fourier (or other transformation) analysis tools. This strategy has been successfully employed in all of the works [References,References,References], where the idea of Nitsche [References] of extending the field 𝒖\bm{u} into n\mathbb{R}^{n} so that, the symmetric gradient of the extension is suitably controllable plays a vital role. The question of validity of the inequality (1.4) for vector fields 𝒖W0s,p(Ω,n)\bm{u}\in W^{s,p}_{0}(\Omega,\mathbb{R}^{n}) in bounded domains Ω\Omega was addressed in [References,References,References], and has remained open, and is the topic of the present manuscript. We answer this question by proving that in fact (1.4) holds in bounded C1C^{1}-regular domains in the case ps>1,ps>1, and fails to hold when ps<1.ps<1. The interesting fact is that in the case ps<1,ps<1, it does not only fail in general, but it necessarily fails in any open bounded C1C^{1} domains, see Theorem 2.1. The outcome in the case ps<1ps<1 in bounded domains is in stark contrast with the case of unbounded domains like the entire space or epigraphs, where (1.4) holds as long as ps1ps\neq 1, [References,References,References]. However, it is not surprising as Korn’s first inequality does not hold in the borderline case p=1p=1 in the classical case as shown by the celebrated work of Ornstein [References], see also [References] for another approach to constructing counterexamples to such inequalities. For the proof in the case ps>1,ps>1, following Kondratiev and Oleinik [References] as for the classical case, we employ the recently proven Korn second inequality by Mengesha and Scott [References, Theorem 1.1] in bounded C1C^{1} domains, which reads as follows:

ΩΩ|𝒖(𝒙)𝒖(𝒚)|p|𝒙𝒚|n+ps𝑑𝒙𝑑𝒚C(ΩΩ|(𝒖(𝒙)𝒖(𝒚))(𝒙𝒚)|p|𝒙𝒚|n+ps+p𝑑𝒙𝑑𝒚+Ω|𝒖(𝒙)|p𝑑𝒙),\int_{\Omega}\int_{\Omega}\frac{|\bm{u}(\bm{x})-\bm{u}(\bm{y})|^{p}}{|\bm{x}-\bm{y}|^{n+ps}}d\bm{x}d\bm{y}\leq C\left(\int_{\Omega}\int_{\Omega}\frac{|(\bm{u}(\bm{x})-\bm{u}(\bm{y}))\cdot(\bm{x}-\bm{y})|^{p}}{|\bm{x}-\bm{y}|^{n+ps+p}}d\bm{x}d\bm{y}+\int_{\Omega}|\bm{u}(\bm{x})|^{p}d\bm{x}\right), (1.5)

for all vector fields 𝒖W0s,p(Ω,n).\bm{u}\in W_{0}^{s,p}(\Omega,\mathbb{R}^{n}). A considerably shorter proof of (1.5) for bounded C1C^{1} domains or for bounded Lipschitz domains with small Lipschitz constant has been recently given by Rutkowski in [References, Theorem 1.1]

For the case ps<1,ps<1, we construct the counterexamples 𝒖Cc1(Ω,n)\bm{u}\in C_{c}^{1}(\Omega,\mathbb{R}^{n}) by interpolating between affine and zero maps, where the nonzero affine value is taken in most of the interior of the domain Ω,\Omega, while the zero values are taken near the boundary.

Also, an important consequence of the validity of (1.4) in the case ps>1ps>1 is that if one extends any given field 𝒖W0s,p(Ω,n)\bm{u}\in W_{0}^{s,p}(\Omega,\mathbb{R}^{n}) onto n\mathbb{R}^{n} by zero outside Ω,\Omega, then the Ws,p(n)W^{s,p}(\mathbb{R}^{n}) and 𝒳s,p(n)\mathcal{X}^{s,p}(\mathbb{R}^{n}) norms of the extended field 𝒖¯\bar{\bm{u}} remain equivalent to the same norms of the original field 𝒖\bm{u} in Ω,\Omega, see Theorem 2.2.

2 Main Results

The below theorems contain the main results of the paper.

Theorem 2.1.

Let s(0,1)s\in(0,1) and p[1,)p\in[1,\infty) such that ps1.ps\neq 1. Assume Ωn\Omega\subset\mathbb{R}^{n} is an open bounded C1C^{1}-regular domain. Then the following holds:
(i) The case ps>1ps>1. There exists a constant C=C(n,p,s,Ω)C=C(n,p,s,\Omega) such that

𝒖Ws,p(Ω)C[𝒖]𝒳s,p(Ω),\|\bm{u}\|_{W^{s,p}(\Omega)}\leq C[\bm{u}]_{\mathcal{X}^{s,p}(\Omega)}, (2.1)

for all vector fields 𝐮W0s,p(Ω,n).\bm{u}\in W_{0}^{s,p}(\Omega,\mathbb{R}^{n}).
(ii) The case ps<1ps<1. There exists a sequence of vector fields 𝐮kCc1(Ω,n)\bm{u}_{k}\in C_{c}^{1}(\Omega,\mathbb{R}^{n}) such that

[𝒖k]𝒳s,p(Ω)(1[𝒖k]Ws,p(Ω)+1𝒖kLp(Ω))0ask.[\bm{u}_{k}]_{\mathcal{X}^{s,p}(\Omega)}\left(\frac{1}{[\bm{u}_{k}]_{W^{s,p}(\Omega)}}+\frac{1}{\|\bm{u}_{k}\|_{L^{p}(\Omega)}}\right)\to 0\qquad\text{as}\qquad k\to\infty. (2.2)

Consequently, in the case ps<1,ps<1, Korn’s inequality fails to hold in any open bounded C1C^{1} domain.

The next theorem establishes that if one extends any Sobolev field 𝒖W0s,p(Ω,n)\bm{u}\in W_{0}^{s,p}(\Omega,\mathbb{R}^{n}) onto n\mathbb{R}^{n} by zero outside Ω,\Omega, then the seminorms (in this case those are also norms) [𝒖¯]Ws,p(n)[\bar{\bm{u}}]_{W^{s,p}(\mathbb{R}^{n})} and [𝒖]Ws,p(Ω)[\bm{u}]_{W^{s,p}(\Omega)} as well as the seminorms [𝒖¯]𝒳s,p(n)[\bar{\bm{u}}]_{\mathcal{X}^{s,p}(\mathbb{R}^{n})} and [𝒖]𝒳s,p(Ω)[\bm{u}]_{\mathcal{X}^{s,p}(\Omega)} will still be equivalent in the case ps>1.ps>1. This was noted by Rutkowski in [References] under the availability of (2.1). Now, keeping in mind that obviously the norms 𝒖¯Lp(n)\|\bar{\bm{u}}\|_{L^{p}(\mathbb{R}^{n})} and 𝒖Lp(Ω)\|\bm{u}\|_{L^{p}(\Omega)} are always equivalent, this result would allow one to work with fields defined over n\mathbb{R}^{n} instead of Ω,\Omega, opening up access to Fourier type analysis in particular.

Theorem 2.2.

Let s(0,1)s\in(0,1) and p(1,)p\in(1,\infty) such that ps>1.ps>1. Assume Ωn\Omega\subset\mathbb{R}^{n} is an open bounded C1C^{1}-regular domain. For any Sobolev field 𝐮W0s,p(Ω,n),\bm{u}\in W_{0}^{s,p}(\Omega,\mathbb{R}^{n}), denote by 𝐮¯\bar{\bm{u}} the extension of 𝐮\bm{u} onto n\mathbb{R}^{n} by zero outside Ω.\Omega. There exists a constant C=C(n,p,s,Ω)C=C(n,p,s,\Omega) such that

[𝒖¯]Ws,p(n)C[𝒖]Ws,p(Ω),[\bar{\bm{u}}]_{W^{s,p}(\mathbb{R}^{n})}\leq C[\bm{u}]_{W^{s,p}(\Omega)}, (2.3)

and

[𝒖¯]𝒳s,p(n)C[𝒖]𝒳s,p(Ω),[\bar{\bm{u}}]_{\mathcal{X}^{s,p}(\mathbb{R}^{n})}\leq C[\bm{u}]_{\mathcal{X}^{s,p}(\Omega)}, (2.4)

for all vector fields 𝐮W0s,p(Ω,n).\bm{u}\in W_{0}^{s,p}(\Omega,\mathbb{R}^{n}).

3 Proofs of the main results

Proof of Theorem 2.1.

We will establish (i) first.
Proof of (i).

The arguments are borrowed from the classical Korn inequality theory. Following Kondratiev and Oleinik [References] assume (2.1) fails to hold. Hence there exists a sequence 𝒖kW0s,p(Ω,n)\bm{u}_{k}\in W_{0}^{s,p}(\Omega,\mathbb{R}^{n}) such that

𝒖kWs,p(Ω)=1and[𝒖k]𝒳s,p(Ω)1/k,k=1,2,\|\bm{u}_{k}\|_{W^{s,p}(\Omega)}=1\quad\text{and}\quad[\bm{u}_{k}]_{\mathcal{X}^{s,p}(\Omega)}\leq 1/k,\quad k=1,2,\dots (3.1)

By density we can assume without loss of generality that 𝒖kCc1(Ω,n).\bm{u}_{k}\in C_{c}^{1}(\Omega,\mathbb{R}^{n}). From the compactness theorem [References, Theorem 7.1], we have that the sequence {𝒖k}\{\bm{u}_{k}\} is pre-compact in Lp(Ω),L^{p}(\Omega), thus we can assume without loss of generality that

𝒖k𝒖inLp(Ω),\bm{u}_{k}\to\bm{u}\quad\text{in}\quad L^{p}(\Omega), (3.2)

for some field 𝒖Lp(Ω).\bm{u}\in L^{p}(\Omega). We have 𝒖k𝒖mW0s,p(Ω,n),\bm{u}_{k}-\bm{u}_{m}\in W_{0}^{s,p}(\Omega,\mathbb{R}^{n}), thus by (1.5) ([References, Thereom 1.1]) we have by the triangle inequality

𝒖k𝒖mWs,p(Ω)\displaystyle\|\bm{u}_{k}-\bm{u}_{m}\|_{W^{s,p}(\Omega)} C([𝒖k𝒖m]𝒳s,p(Ω)+𝒖k𝒖mLp(Ω))\displaystyle\leq C([\bm{u}_{k}-\bm{u}_{m}]_{\mathcal{X}^{s,p}(\Omega)}+\|\bm{u}_{k}-\bm{u}_{m}\|_{L^{p}(\Omega)}) (3.3)
C([𝒖k]𝒳s,p(Ω)+[𝒖m]𝒳s,p(Ω)+𝒖k𝒖mLp(Ω))\displaystyle\leq C([\bm{u}_{k}]_{\mathcal{X}^{s,p}(\Omega)}+[\bm{u}_{m}]_{\mathcal{X}^{s,p}(\Omega)}+\|\bm{u}_{k}-\bm{u}_{m}\|_{L^{p}(\Omega)})
C(1/k+1/m+𝒖k𝒖mLp(Ω)).\displaystyle\leq C(1/k+1/m+\|\bm{u}_{k}-\bm{u}_{m}\|_{L^{p}(\Omega)}).

Note that conditions (3.2)-(3.3) imply that the sequence {𝒖k}\{\bm{u}_{k}\} is Cauchy and thus is convergent in Ws,p(Ω).W^{s,p}(\Omega). This gives

𝒖k𝒖inWs,p(Ω).\bm{u}_{k}\to\bm{u}\quad\text{in}\quad W^{s,p}(\Omega). (3.4)

From (3.4) and the obvious estimate

[𝒖]𝒳s,p(Ω)\displaystyle[\bm{u}]_{\mathcal{X}^{s,p}(\Omega)} [𝒖k]𝒳s,p(Ω)+[𝒖𝒖k]𝒳s,p(Ω)\displaystyle\leq[\bm{u}_{k}]_{\mathcal{X}^{s,p}(\Omega)}+[\bm{u}-\bm{u}_{k}]_{\mathcal{X}^{s,p}(\Omega)}
1/k+[𝒖𝒖k]Ws,p(Ω)\displaystyle\leq 1/k+[\bm{u}-\bm{u}_{k}]_{W^{s,p}(\Omega)}

we also infer that [𝒖]𝒳s,p(Ω)=0,[\bm{u}]_{\mathcal{X}^{s,p}(\Omega)}=0, which implies that

𝒖(𝒙)=𝑨𝒙+𝒃,for a.e.𝒙Ω,\bm{u}(\bm{x})=\bm{A}\cdot\bm{x}+\bm{b},\quad\text{for a.e.}\quad\bm{x}\in\Omega, (3.5)

for some constant skew-symmetric matrix 𝑨n×n\bm{A}\in\mathbb{R}^{n\times n} and some vector 𝒃n\bm{b}\in\mathbb{R}^{n} [References, Proposition 1.2]. We aim to prove that 𝑨=0\bm{A}=0 and 𝒃=0.\bm{b}=0. This can be achieved by either a utilization of a Hardy inequality or the notion of trace. The following Hardy inequality was proven by Dyda [References, Theorem 1.1]; a stronger version was recently proven in [References, Theorem 1.2].

Theorem 3.1.

Let s(0,1)s\in(0,1) and p(1,)p\in(1,\infty) such that ps>1.ps>1. Assume Ωn\Omega\subset\mathbb{R}^{n} is an open bounded Lipschitz domain. Then there exists a constant C=C(n,p,s,Ω)C=C(n,p,s,\Omega) such that

Ω|𝒖(𝒙)|p(dist(𝒙,Ω))psC[𝒖]Ws,p(Ω)p,\int_{\Omega}\frac{|\bm{u}(\bm{x})|^{p}}{(\mathrm{dist}(\bm{x},\partial\Omega))^{ps}}\leq C[\bm{u}]_{W^{s,p}(\Omega)}^{p}, (3.6)

for all vector fields 𝐮Cc1(Ω,n).\bm{u}\in C_{c}^{1}(\Omega,\mathbb{R}^{n}).

Note first that because of (3.2) we have for any δ>0\delta>0 that

{𝒚Ω:dist(𝒚,Ω)δ}|𝒖(𝒙)|pdist(𝒙,Ω)ps𝑑𝒙=limk{𝒚Ω:dist(𝒚,Ω)δ}|𝒖k(𝒙)|pdist(𝒙,Ω)ps𝑑𝒙,\int_{\{\bm{y}\in\Omega\ :\ \mathrm{dist}(\bm{y},\partial\Omega)\geq\delta\}}\frac{|\bm{u}(\bm{x})|^{p}}{\mathrm{dist}(\bm{x},\partial\Omega)^{ps}}d\bm{x}=\lim_{k\to\infty}\int_{\{\bm{y}\in\Omega\ :\ \mathrm{dist}(\bm{y},\partial\Omega)\geq\delta\}}\frac{|\bm{u}_{k}(\bm{x})|^{p}}{\mathrm{dist}(\bm{x},\partial\Omega)^{ps}}d\bm{x},

hence we have due to Theorem 3.1 and the assumption (3.1) the bound

{𝒚Ω:dist(𝒚,Ω)δ}|𝒖(𝒙)|pdist(𝒙,Ω)ps𝑑𝒙C.\int_{\{\bm{y}\in\Omega\ :\ \mathrm{dist}(\bm{y},\partial\Omega)\geq\delta\}}\frac{|\bm{u}(\bm{x})|^{p}}{\mathrm{dist}(\bm{x},\partial\Omega)^{ps}}d\bm{x}\leq C.

Consequently we discover letting δ\delta go to zero:

Ω|𝒖(𝒙)|pdist(𝒙,Ω)ps𝑑𝒙=Ω|𝑨𝒙+𝒃|pdist(𝒙,Ω)ps𝑑𝒙C.\int_{\Omega}\frac{|\bm{u}(\bm{x})|^{p}}{\mathrm{dist}(\bm{x},\partial\Omega)^{ps}}d\bm{x}=\int_{\Omega}\frac{|\bm{A}\cdot\bm{x}+\bm{b}|^{p}}{\mathrm{dist}(\bm{x},\partial\Omega)^{ps}}d\bm{x}\leq C. (3.7)

Note that as ps>1ps>1, then if 𝑨0\bm{A}\neq 0 or 𝒃0,\bm{b}\neq 0, the integral in (3.7) will necessarily diverge. Therefore we have 𝑨=0\bm{A}=0 and 𝒃=0\bm{b}=0 and thus 𝒖(𝒙)=0,\bm{u}(\bm{x})=0, for a.e. 𝒙Ω,\bm{x}\in\Omega, which contradicts the fact that 𝒖k𝒖\bm{u}_{k}\to\bm{u} in Ws,p(Ω),W^{s,p}(\Omega), while we have 𝒖kWs,p(Ω)=1\|\bm{u}_{k}\|_{W^{s,p}(\Omega)}=1 by (3.1) and (3.4). This completes the proof of part (i).

Remark 3.2.

Note that after (3.5) one could proceed utilizing the trace theorem in [References, Theorem 1.1]. Namely, Theorem 1.1 of [References] states that in bounded Lipschitz domains Ωn,\Omega\subset\mathbb{R}^{n}, in the case ps>1,ps>1, any Sobolev function 𝐮Ws,p(Ω)\bm{u}\in W^{s,p}(\Omega) admits a trace T𝐮Ws1/p,p(Ω)T\bm{u}\in W^{s-1/p,p}(\partial\Omega) on the boundary Ω,\partial\Omega, that satisfies the fractional trace inequality

T𝒖Ws1/p,p(Ω)C𝒖Ws,p(Ω).\|T\bm{u}\|_{W^{s-1/p,p}(\partial\Omega)}\leq C\|\bm{u}\|_{W^{s,p}(\Omega)}.

Moreover, the trace coincides with the function itself for Lipschitz functions. Consequently, as T𝐮k=0T\bm{u}_{k}=0 and T𝐮=𝐀𝐱+𝐛,T\bm{u}=\bm{A}\cdot\bm{x}+\bm{b}, we have by (3.2) and (3.4) that

𝑨𝒙+𝒃Ws1/p,p(Ω)\displaystyle\|\bm{A}\cdot\bm{x}+\bm{b}\|_{W^{s-1/p,p}(\partial\Omega)} =T𝒖T𝒖kWs1/p,p(Ω)\displaystyle=\|T\bm{u}-T\bm{u}_{k}\|_{W^{s-1/p,p}(\partial\Omega)}
C𝒖𝒖kWs,p(Ω)0\displaystyle\leq C\|\bm{u}-\bm{u}_{k}\|_{W^{s,p}(\Omega)}\to 0

as k,k\to\infty, which gives 𝐀=0\bm{A}=0 and 𝐛=0.\bm{b}=0.

Corollary 3.3.

Due to Theorem 2.1 and Theorem 3.1, one has in the case ps>1ps>1 the Korn-Hardy inequality

Ω|𝒖(𝒙)|pdist(𝒙,Ω)ps𝑑𝒙C[𝒖]𝒳s,p(Ω)p,\int_{\Omega}\frac{|\bm{u}(\bm{x})|^{p}}{\mathrm{dist}(\bm{x},\partial\Omega)^{ps}}d\bm{x}\leq C[\bm{u}]_{\mathcal{X}^{s,p}(\Omega)}^{p}, (3.8)

for all vector fields 𝐮W0s,p(Ω,n)\bm{u}\in W_{0}^{s,p}(\Omega,\mathbb{R}^{n}) by density.

Proof of (ii).
For any δ>0\delta>0 denote Ωδ={𝒙Ω:dist(𝒙,Ωc)>δ}.\Omega_{\delta}=\{\bm{x}\in\Omega\ :\ \mathrm{dist}(\bm{x},\Omega^{c})>\delta\}. Let 𝑨n×n\bm{A}\in\mathbb{R}^{n\times n} be a constant nonzero skew-symmetric matrix. Let δ\delta be fixed and so small that Ω5δ\Omega_{5\delta} is not empty. For any ϵ(0,δ)\epsilon\in(0,\delta) define the vector field

𝒖(𝒙)={𝑨𝒙,𝒙Ω3ϵ0,𝒙ΩΩ¯3ϵ.\bm{u}(\bm{x})=\begin{cases}\bm{A}\cdot\bm{x},&\bm{x}\in\Omega_{3\epsilon}\\[4.30554pt] 0,&\bm{x}\in\Omega-\bar{\Omega}_{3\epsilon}.\end{cases} (3.9)

Let ηϵ(𝒙):n\eta_{\epsilon}(\bm{x})\colon\mathbb{R}^{n}\to\mathbb{R} be the standard radial mollifier. Define the mollification 𝒖ϵ(𝒙)=(𝒖ηϵ)(𝒙):Ωϵ.\bm{u}^{\epsilon}(\bm{x})=(\bm{u}\ast\eta_{\epsilon})(\bm{x})\colon\Omega_{\epsilon}\to\mathbb{R}. It is clear that 𝒖(𝒙)=0\bm{u}(\bm{x})=0 for 𝒙ΩϵΩ¯2ϵ,\bm{x}\in\Omega_{\epsilon}-\bar{\Omega}_{2\epsilon}, thus if we extend the field 𝒖ϵ\bm{u}^{\epsilon} into all of Ω\Omega by zero and denote the extended field again by 𝒖ϵ,\bm{u}^{\epsilon}, it will preserve the smoothness property: 𝒖ϵCc(Ω).\bm{u}^{\epsilon}\in C_{c}^{\infty}(\Omega). The field 𝒖ϵ\bm{u}^{\epsilon} is basically an interpolation between 𝑨𝒙\bm{A}\cdot\bm{x} and zero over the set ΩϵΩ¯4ϵ.\Omega_{\epsilon}-\bar{\Omega}_{4\epsilon}. We claim that by choosing ϵ\epsilon small enough, we can make both of the ratios [𝒖]𝒳s,p(Ω)[𝒖]Ws,p(Ω)\frac{[\bm{u}]_{\mathcal{X}^{s,p}(\Omega)}}{[\bm{u}]_{W^{s,p}(\Omega)}} and [𝒖]𝒳s,p(Ω)𝒖Lp(Ω)\frac{[\bm{u}]_{\mathcal{X}^{s,p}(\Omega)}}{\|\bm{u}\|_{L^{p}(\Omega)}} as small as we wish. Indeed, on one hand it is clear that as ηϵ\eta_{\epsilon} is radial, then for each 𝒙Ω4ϵ\bm{x}\in\Omega_{4\epsilon} we have

𝒖ϵ(𝒙)=Bϵ(0)(𝑨(𝒙+𝒚))ηϵ(𝒚)𝑑𝒚=𝑨𝒙+Bϵ(0)(𝑨𝒚)ηϵ(𝒚)𝑑𝒚=𝑨𝒙,\bm{u}^{\epsilon}(\bm{x})=\int_{B_{\epsilon}(0)}(\bm{A}\cdot(\bm{x}+\bm{y}))\eta_{\epsilon}(\bm{y})d\bm{y}=\bm{A}\cdot\bm{x}+\int_{B_{\epsilon}(0)}(\bm{A}\cdot\bm{y})\eta_{\epsilon}(\bm{y})d\bm{y}=\bm{A}\cdot\bm{x},

hence as Ω4δΩ4ϵ,\Omega_{4\delta}\subset\Omega_{4\epsilon}, we have

[𝒖ϵ]Ws,p(Ω)[𝑨𝒙]Ws,p(Ω4δ)=C1>0,𝒖ϵLp(Ω)𝑨𝒙Lp(Ω4δ)=C2>0,[\bm{u}^{\epsilon}]_{W^{s,p}(\Omega)}\geq[\bm{A}\cdot\bm{x}]_{W^{s,p}(\Omega_{4\delta})}=C_{1}>0,\quad\|\bm{u}^{\epsilon}\|_{L^{p}(\Omega)}\geq\|\bm{A}\cdot\bm{x}\|_{L^{p}(\Omega_{4\delta})}=C_{2}>0, (3.10)

for some constants C1,C2>0C_{1},C_{2}>0 depending only on 𝑨,\bm{A}, δ\delta and Ω.\Omega. Let us now estimate the seminorm [𝒖ϵ]𝒳s,p(Ω).[\bm{u}^{\epsilon}]_{\mathcal{X}^{s,p}(\Omega)}. In what follows within the ongoing case the constant C>0C>0 will depend only on p,s,n,Ωp,s,n,\Omega and the matrix 𝑨.\bm{A}. We have that

[𝒖ϵ]𝒳s,p(Ω)\displaystyle[\bm{u}^{\epsilon}]_{\mathcal{X}^{s,p}(\Omega)} =Ω4ϵΩ4ϵ|(𝒖ϵ(𝒙)𝒖ϵ(𝒚))(𝒙𝒚)|p|𝒙𝒚|n+ps+p𝑑𝒙𝑑𝒚\displaystyle=\int_{\Omega_{4\epsilon}}\int_{\Omega_{4\epsilon}}\frac{|(\bm{u}^{\epsilon}(\bm{x})-\bm{u}^{\epsilon}(\bm{y}))\cdot(\bm{x}-\bm{y})|^{p}}{|\bm{x}-\bm{y}|^{n+ps+p}}d\bm{x}d\bm{y} (3.11)
+2Ω4ϵΩΩ¯4ϵ|(𝒖ϵ(𝒙)𝒖ϵ(𝒚))(𝒙𝒚)|p|𝒙𝒚|n+ps+p𝑑𝒙𝑑𝒚\displaystyle+2\int_{\Omega_{4\epsilon}}\int_{\Omega-\bar{\Omega}_{4\epsilon}}\frac{|(\bm{u}^{\epsilon}(\bm{x})-\bm{u}^{\epsilon}(\bm{y}))\cdot(\bm{x}-\bm{y})|^{p}}{|\bm{x}-\bm{y}|^{n+ps+p}}d\bm{x}d\bm{y}
+ΩΩ¯4ϵΩΩ¯4ϵ|(𝒖ϵ(𝒙)𝒖ϵ(𝒚))(𝒙𝒚)|p|𝒙𝒚|n+ps+p𝑑𝒙𝑑𝒚\displaystyle+\int_{\Omega-\bar{\Omega}_{4\epsilon}}\int_{\Omega-\bar{\Omega}_{4\epsilon}}\frac{|(\bm{u}^{\epsilon}(\bm{x})-\bm{u}^{\epsilon}(\bm{y}))\cdot(\bm{x}-\bm{y})|^{p}}{|\bm{x}-\bm{y}|^{n+ps+p}}d\bm{x}d\bm{y}
=I0+2I1+I2.\displaystyle=I_{0}+2I_{1}+I_{2}.

First let us observe that 𝒖ϵ(𝒙)=𝑨𝒙\bm{u}^{\epsilon}(\bm{x})=\bm{A}\bm{x} in Ω4ϵ\Omega_{4\epsilon}, and since 𝑨\bm{A} is skew-symmetric, we have 𝑨𝒙𝒙=0\bm{A}\bm{x}\cdot\bm{x}=0 for an arbitrary 𝒙n\bm{x}\in\mathbb{R}^{n}. Thus I0=0I_{0}=0. Further we have |𝒖ϵ(𝒙)|C|\bm{u}^{\epsilon}(\bm{x})|\leq C for all 𝒙Ω,\bm{x}\in\Omega, thus we can estimate

I1\displaystyle I_{1} =Ω4ϵΩΩ¯4ϵ|(𝒖ϵ(𝒙)𝒖ϵ(𝒚))(𝒙𝒚)|p|𝒙𝒚|n+ps+p𝑑𝒙𝑑𝒚\displaystyle=\int_{\Omega_{4\epsilon}}\int_{\Omega-\bar{\Omega}_{4\epsilon}}\frac{|(\bm{u}^{\epsilon}(\bm{x})-\bm{u}^{\epsilon}(\bm{y}))\cdot(\bm{x}-\bm{y})|^{p}}{|\bm{x}-\bm{y}|^{n+ps+p}}d\bm{x}d\bm{y} (3.12)
CΩ4ϵΩΩ¯4ϵ1|𝒙𝒚|n+ps𝑑𝒙𝑑𝒚.\displaystyle\leq C\int_{\Omega_{4\epsilon}}\int_{\Omega-\bar{\Omega}_{4\epsilon}}\frac{1}{|\bm{x}-\bm{y}|^{n+ps}}d\bm{x}d\bm{y}.

For any fixed 𝒚ΩΩ¯4ϵ\bm{y}\in\Omega-\bar{\Omega}_{4\epsilon} with dist(𝒚,Ω4ϵ)=t,\mathrm{dist}(\bm{y},\Omega_{4\epsilon})=t, where 0t4ϵ,0\leq t\leq 4\epsilon, we clearly have

Ω4ϵ1|𝒙𝒚|n+ps𝑑𝒙|𝒛|td𝒛|𝒛|n+ps=Ctps.\int_{\Omega_{4\epsilon}}\frac{1}{|\bm{x}-\bm{y}|^{n+ps}}d\bm{x}\leq\int_{|\bm{z}|\geq t}\frac{d\bm{z}}{|\bm{z}|^{n+ps}}=Ct^{-ps}.

For small enough ϵ>0,\epsilon>0, each of the level sets Γt={𝒚ΩΩ¯4ϵ:dist(𝒚,Ω4ϵ)=t}\Gamma_{t}=\{\bm{y}\in\Omega-\bar{\Omega}_{4\epsilon}\ :\ \mathrm{dist}(\bm{y},\Omega_{4\epsilon})=t\} will have a perimeter smaller than C=per(Ω)+1,C=\mathrm{per}(\Omega)+1, thus we get integrating over the level sets Γt:\Gamma_{t}:

I1C04ϵΓttps𝑑S𝑑tC04ϵtps𝑑t=Cϵ1ps.I_{1}\leq C\int_{0}^{4\epsilon}\int_{\Gamma_{t}}t^{-ps}dSdt\leq C\int_{0}^{4\epsilon}t^{-ps}dt=C\epsilon^{1-ps}. (3.13)

In order to estimate I2I_{2} note first that 𝒖ϵ\bm{u}^{\epsilon} is a Lipschitz function with Lipschitz constant C/ϵ.C/\epsilon. This allows us to estimate

I2\displaystyle I_{2} =ΩΩ¯4ϵΩΩ¯4ϵ|(𝒖ϵ(𝒙)𝒖ϵ(𝒚))(𝒙𝒚)|p|𝒙𝒚|n+ps+p𝑑𝒙𝑑𝒚\displaystyle=\int_{\Omega-\bar{\Omega}_{4\epsilon}}\int_{\Omega-\bar{\Omega}_{4\epsilon}}\frac{|(\bm{u}^{\epsilon}(\bm{x})-\bm{u}^{\epsilon}(\bm{y}))\cdot(\bm{x}-\bm{y})|^{p}}{|\bm{x}-\bm{y}|^{n+ps+p}}d\bm{x}d\bm{y}
=ΩΩ¯4ϵ(ΩΩ¯4ϵ){|𝒙𝒚|ϵ}|(𝒖ϵ(𝒙)𝒖ϵ(𝒚))(𝒙𝒚)|p|𝒙𝒚|n+ps+p𝑑𝒙𝑑𝒚\displaystyle=\int_{\Omega-\bar{\Omega}_{4\epsilon}}\int_{(\Omega-\bar{\Omega}_{4\epsilon})\cap\{|\bm{x}-\bm{y}|\leq\epsilon\}}\frac{|(\bm{u}^{\epsilon}(\bm{x})-\bm{u}^{\epsilon}(\bm{y}))\cdot(\bm{x}-\bm{y})|^{p}}{|\bm{x}-\bm{y}|^{n+ps+p}}d\bm{x}d\bm{y}
+ΩΩ¯4ϵ(ΩΩ¯4ϵ){|𝒙𝒚|>ϵ}|(𝒖ϵ(𝒙)𝒖ϵ(𝒚))(𝒙𝒚)|p|𝒙𝒚|n+ps+p𝑑𝒙𝑑𝒚\displaystyle+\int_{\Omega-\bar{\Omega}_{4\epsilon}}\int_{(\Omega-\bar{\Omega}_{4\epsilon})\cap\{|\bm{x}-\bm{y}|>\epsilon\}}\frac{|(\bm{u}^{\epsilon}(\bm{x})-\bm{u}^{\epsilon}(\bm{y}))\cdot(\bm{x}-\bm{y})|^{p}}{|\bm{x}-\bm{y}|^{n+ps+p}}d\bm{x}d\bm{y}
CϵpΩΩ¯4ϵ(ΩΩ¯4ϵ){|𝒙𝒚|ϵ}1|𝒙𝒚|n+psp𝑑𝒙𝑑𝒚\displaystyle\leq\frac{C}{\epsilon^{p}}\int_{\Omega-\bar{\Omega}_{4\epsilon}}\int_{(\Omega-\bar{\Omega}_{4\epsilon})\cap\{|\bm{x}-\bm{y}|\leq\epsilon\}}\frac{1}{|\bm{x}-\bm{y}|^{n+ps-p}}d\bm{x}d\bm{y}
+CΩΩ¯4ϵ(ΩΩ¯4ϵ){|𝒙𝒚|>ϵ}1|𝒙𝒚|n+ps𝑑𝒙𝑑𝒚\displaystyle+C\int_{\Omega-\bar{\Omega}_{4\epsilon}}\int_{(\Omega-\bar{\Omega}_{4\epsilon})\cap\{|\bm{x}-\bm{y}|>\epsilon\}}\frac{1}{|\bm{x}-\bm{y}|^{n+ps}}d\bm{x}d\bm{y}
=C(I21+I22).\displaystyle=C(I_{2}^{1}+I_{2}^{2}).

For small enough ϵ,\epsilon, for the measure of ΩΩ¯4ϵ\Omega-\bar{\Omega}_{4\epsilon} we have |ΩΩ¯4ϵ|(1+per(Ω))ϵ|\Omega-\bar{\Omega}_{4\epsilon}|\leq(1+\mathrm{per}(\Omega))\epsilon by Steiner’s formula [References], thus we can estimate

I21\displaystyle I_{2}^{1} =CϵpΩΩ¯4ϵ(ΩΩ¯4ϵ){|𝒙𝒚|ϵ}1|𝒙𝒚|n+psp𝑑𝒙𝑑𝒚\displaystyle=\frac{C}{\epsilon^{p}}\int_{\Omega-\bar{\Omega}_{4\epsilon}}\int_{(\Omega-\bar{\Omega}_{4\epsilon})\cap\{|\bm{x}-\bm{y}|\leq\epsilon\}}\frac{1}{|\bm{x}-\bm{y}|^{n+ps-p}}d\bm{x}d\bm{y} (3.14)
CϵpΩΩ¯4ϵ|𝒛|ϵ1|𝒛|n+psp𝑑𝒛𝑑𝒙\displaystyle\leq\frac{C}{\epsilon^{p}}\int_{\Omega-\bar{\Omega}_{4\epsilon}}\int_{|\bm{z}|\leq\epsilon}\frac{1}{|\bm{z}|^{n+ps-p}}d\bm{z}d\bm{x}
=Cϵpϵpps|ΩΩ¯4ϵ|\displaystyle=\frac{C}{\epsilon^{p}}\epsilon^{p-ps}|\Omega-\bar{\Omega}_{4\epsilon}|
Cϵ1ps.\displaystyle\leq C\epsilon^{1-ps}.

On the other hand for I22I_{2}^{2} we have

I22\displaystyle I_{2}^{2} =CΩΩ¯4ϵ(ΩΩ¯4ϵ){|𝒙𝒚|>ϵ}1|𝒙𝒚|n+ps𝑑𝒙𝑑𝒚\displaystyle=C\int_{\Omega-\bar{\Omega}_{4\epsilon}}\int_{(\Omega-\bar{\Omega}_{4\epsilon})\cap\{|\bm{x}-\bm{y}|>\epsilon\}}\frac{1}{|\bm{x}-\bm{y}|^{n+ps}}d\bm{x}d\bm{y} (3.15)
ΩΩ¯4ϵ|𝒛|>ϵ1|𝒛|n+ps𝑑𝒛𝑑𝒙\displaystyle\leq\int_{\Omega-\bar{\Omega}_{4\epsilon}}\int_{|\bm{z}|>\epsilon}\frac{1}{|\bm{z}|^{n+ps}}d\bm{z}d\bm{x}
=Cϵps|ΩΩ¯4ϵ|\displaystyle=C\epsilon^{-ps}|\Omega-\bar{\Omega}_{4\epsilon}|
Cϵ1ps.\displaystyle\leq C\epsilon^{1-ps}.

Finally combining (3.11)-(3.15) we discover

[𝒖ϵ]𝒳s,p(Ω)Cϵ1ps.[\bm{u}^{\epsilon}]_{\mathcal{X}^{s,p}(\Omega)}\leq C\epsilon^{1-ps}. (3.16)

Putting together (3.10) and (3.16) we obtain due to the fact ps<1,ps<1,

[𝒖ϵ]𝒳s,p(Ω)[𝒖ϵ]Ws,p(Ω)+[𝒖ϵ]𝒳s,p(Ω)𝒖ϵLp(Ω)Cϵ1ps0asϵ0.\frac{[\bm{u}^{\epsilon}]_{\mathcal{X}^{s,p}(\Omega)}}{[\bm{u}^{\epsilon}]_{W^{s,p}(\Omega)}}+\frac{[\bm{u}^{\epsilon}]_{\mathcal{X}^{s,p}(\Omega)}}{\|\bm{u}^{\epsilon}\|_{L^{p}(\Omega)}}\leq C\epsilon^{1-ps}\to 0\quad\text{as}\quad\epsilon\to 0. (3.17)

This completes the proof of part (ii).

Proof of Theorem 2.2.

The proof is obtained as a direct consequence of Theorem 2.1 and Theorem 3.1. Indeed, we have for any 𝒙Ω\bm{x}\in\Omega and 𝒚Ωc\bm{y}\in\Omega^{c} the bound |𝒙𝒚|dist(𝒙,Ω)=d𝒙,|\bm{x}-\bm{y}|\geq\mathrm{dist}(\bm{x},\partial\Omega)=d_{\bm{x}}, thus we can calculate

[𝒖¯]Ws,p(n)p\displaystyle[\bar{\bm{u}}]_{W^{s,p}(\mathbb{R}^{n})}^{p} =[𝒖]Ws,p(Ω)p+2ΩΩc|𝒖(𝒙)|p|𝒙𝒚|n+ps𝑑𝒙𝑑𝒚\displaystyle=[\bm{u}]_{W^{s,p}(\Omega)}^{p}+2\int_{\Omega}\int_{\Omega^{c}}\frac{|\bm{u}(\bm{x})|^{p}}{|\bm{x}-\bm{y}|^{n+ps}}d\bm{x}d\bm{y} (3.18)
[𝒖]Ws,p(Ω)p+2Ω(Bd𝒙(𝒙))c|𝒖(𝒙)|p|𝒙𝒚|n+ps𝑑𝒙𝑑𝒚\displaystyle\leq[\bm{u}]_{W^{s,p}(\Omega)}^{p}+2\int_{\Omega}\int_{(B_{d_{\bm{x}}}(\bm{x}))^{c}}\frac{|\bm{u}(\bm{x})|^{p}}{|\bm{x}-\bm{y}|^{n+ps}}d\bm{x}d\bm{y}
=[𝒖]Ws,p(Ω)p+2Ω|𝒖(𝒙)|p|d𝒙|ps𝑑𝒙,\displaystyle=[\bm{u}]_{W^{s,p}(\Omega)}^{p}+2\int_{\Omega}\frac{|\bm{u}(\bm{x})|^{p}}{|d_{\bm{x}}|^{ps}}d\bm{x},

consequently Theorem 3.1 implies

[𝒖¯]Ws,p(n)C[𝒖]Ws,p(Ω).[\bar{\bm{u}}]_{W^{s,p}(\mathbb{R}^{n})}\leq C[\bm{u}]_{W^{s,p}(\Omega)}. (3.19)

Note that a similar calculation and Corollary 3.3 imply

[𝒖¯]𝒳s,p(n)p\displaystyle[\bar{\bm{u}}]_{\mathcal{X}^{s,p}(\mathbb{R}^{n})}^{p} =[𝒖]𝒳s,p(Ω)p+2ΩΩc|𝒖(𝒙)(𝒙𝒚)|p|𝒙𝒚|n+ps+p𝑑𝒙𝑑𝒚\displaystyle=[\bm{u}]_{\mathcal{X}^{s,p}(\Omega)}^{p}+2\int_{\Omega}\int_{\Omega^{c}}\frac{|\bm{u}(\bm{x})\cdot(\bm{x}-\bm{y})|^{p}}{|\bm{x}-\bm{y}|^{n+ps+p}}d\bm{x}d\bm{y} (3.20)
[𝒖]𝒳s,p(Ω)p+2Ω(Bd𝒙(𝒙))c|𝒖(𝒙)|p|𝒙𝒚|n+ps𝑑𝒙𝑑𝒚\displaystyle\leq[\bm{u}]_{\mathcal{X}^{s,p}(\Omega)}^{p}+2\int_{\Omega}\int_{(B_{d_{\bm{x}}}(\bm{x}))^{c}}\frac{|\bm{u}(\bm{x})|^{p}}{|\bm{x}-\bm{y}|^{n+ps}}d\bm{x}d\bm{y}
=[𝒖]𝒳s,p(Ω)p+2Ω|𝒖(𝒙)|p|d𝒙|ps𝑑𝒙\displaystyle=[\bm{u}]_{\mathcal{X}^{s,p}(\Omega)}^{p}+2\int_{\Omega}\frac{|\bm{u}(\bm{x})|^{p}}{|d_{\bm{x}}|^{ps}}d\bm{x}
C[𝒖]𝒳s,p(Ω)p.\displaystyle\leq C[\bm{u}]_{\mathcal{X}^{s,p}(\Omega)}^{p}.

Acknowledgements

We thank the anonymous referee for useful comments and for pointing out some relevant literature that improved the presentation of the manuscript. The work of D.H. is supported by the National Science Foundation under Grants No. DMS-1814361.

References

  • [1] R. A. Adams. Sobolev Spaces, Acad. Press (1975).
  • [2] J. Bourgain, H. Brezis, and P. Mironescu. Another look at Sobolev spaces, Optimal Control and Partial Differential Equations. A Volume in Honor of A. Bensoussan’s 60th Birthday, IOS Press, Amsterdam, 2001, pp. 439–455.
  • [3] E. Di Nezza, G. Palatucci, and E. Valdinoci. Hitchhiker’s guide to the fractional Sobolev spaces, Bulletin Des Sciences Mathématiques, Vol. 136, Issue 5, July–August 2012, pp. 521–573.
  • [4] B. Dyda. A fractional order Hardy inequality. Illinois J. Math. 48(2) (2004), pp. 575–588.
  • [5] S. Conti, D. Faraco, and F. Maggi. A New Approach to Counterexamples to L1L^{1} Estimates: Korn’s Inequality, Geometric Rigidity, and Regularity for Gradients of Separately Convex Functions, Archive for Rational Mechanics and Analysis, Vol. 175, pp. 287–300, (2005).
  • [6] Q. Du and R. Lipton. Peridynamics, Fracture, and Nonlocal Continuum Models. SIAM News, Vol. 47, Nr. 3, April 2014.
  • [7] Q. Du and T. Mengesha. On the variational limit of a class of nonlocal functionals related to peridynamics, Nonlinearity, Vol. 28, Nr. 11, pp. 3999–4035, 2015.
  • [8] Q. Du, T. Mengesha, and X. Tian. Fractional Hardy-type and trace theorems for nonlocal function spaces with heterogeneous localization, Analysis and Applications, https://doi.org/10.1142/S0219530521500329
  • [9] Q. Du and K. Zhou, Mathematical analysis for the peridynamic non-local continuum theory. ESAIM: Mathematical Modeling and Numerical Analysis, Vol. 45 (2011) no. 2, pp. 217–234.
  • [10] M. Kirszbraun. Über die zusammenziehende und Lipschitzsche Transformationen, Fundamenta Mathematicae, 22 (1934), 77–108.
  • [11] V. A. Kondratiev and O. A. Oleinik. Boundary value problems for a system in elasticity theory in unbounded domains. Korn inequalities. Uspekhi Mat. Nauk, 43, 5(263) (1988), 55–98, 239.
  • [12] A. Korn. Solution générale du problème d’équilibre dans la théorie de l’élasticité dans le cas où les efforts sont donnés à la surface, Ann. Fac. Sci. Toulouse, ser. 2. 10 (1908), 165-269.
  • [13] A. Korn. Über einige Ungleichungen, welche in der Theorie der elastischen und elektrischen Schwingungen eine Rolle spielen, Bull. Int. Cracovie Akademie Umiejet, Classe des Sci. Math. Nat., (1909) 705-724.
  • [14] V. Maz’ya and T. Shaposhnikova. On the Bourgain, Brezis, and Mironescu theorem concerning limiting embeddings of fractional Sobolev spaces, J. Funct. Anal. 195 (2) (2002) 230–238; Erratum, J. Funct. Anal. 201 (1) (2003) 298–300.
  • [15] T. Mengesha, Nonlocal Korn-type characterization of Sobolev vector fields. Communications in Contemporary Mathematics, Vol. 14, No. 04, 1250028, (2012).
  • [16] T. Mengesha. Fractional Korn and Hardy-type inequalities for vector fields in half space, Communications in Contemporary Mathematics, Vol. 21, No. 7 (2019)
  • [17] T. Mengesha and J. M. Scott. A fractional Korn–type inequality, Discrete and Continuous Dynamical Systems, 39(6): 3315–3343, 2019.
  • [18] T. Mengesha and J. M. Scott. A Fractional Korn-type inequality for smooth domains and a regularity estimate for nonlinear nonlocal systems of equations, Commun. Math. Sci. Vol. 20, N0. 2, 405–423, 2022.
  • [19] J. A. Nitsche. On Korn’s second inequality. ESAIM: M2AN, Vol. 15 (1981) no. 3, pp. 237–248.
  • [20] D. A. Ornstein. Non-inequality for differential operators in the L1L^{1}-norm, Arch. Ration. Mech. Anal., 11, 40–49 (1962). 
  • [21] A. Rutkowski. Fractional Korn’s inequality on subsets of the Euclidean space. arXiv 2102.11325.
  • [22] R. Schneider. Convex bodies: The Brunn-Minkowski theory. Encyclopedia of Mathematics and its Applications, 44. Cambridge University Press, Cambridge, 1993.
  • [23] S. A. Silling. Reformulation of elasticity theory for discontinuities and long-range forces, J. Mech. Phys. Solids, 48, 175–209.
  • [24] S. A. Silling. Linearized theory of peridynamic states, J. Elastisity, 99, 8–111.
  • [25] S. A. Silling, M. Epton, O. Weckner, J. Xu, and E. Askari. Peridynamic states and constitutive modeling, J. Elastisity, 88, 151–184.
  • [26] R. Temam and A. Miranville, Mathematical Modeling in Continuum Mechanics, Cambridge University Press, 2001.