This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

On the Feasible Region of Efficient Algorithms for Attributed Graph Alignment

Ziao Wang, Ning Zhang, Weina Wang, and Lele Wang Ziao Wang is with the Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC V6T1Z4, Canada (email: [email protected]).Ning Zhang is with the Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC V6T1Z4, Canada (email: [email protected]).Weina Wang is with the Computer Science Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA, (email: [email protected]).Lele Wang is with the Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC V6T1Z4, Canada (email: [email protected]).This work was presented in part at the 2022 IEEE International Symposium on Information Theory.
Abstract

Graph alignment aims at finding the vertex correspondence between two correlated graphs, a task that frequently occurs in graph mining applications such as social network analysis. Attributed graph alignment is a variant of graph alignment, in which publicly available side information or attributes are exploited to assist graph alignment. Existing studies on attributed graph alignment focus on either theoretical performance without computational constraints or empirical performance of efficient algorithms. This motivates us to investigate efficient algorithms with theoretical performance guarantee. In this paper, we propose two polynomial-time algorithms that exactly recover the vertex correspondence with high probability. The feasible region of the proposed algorithms is near optimal compared to the information-theoretic limits. When specialized to the seeded graph alignment problem under the seeded Erdős–Rényi graph pair model, the proposed algorithms extends the best known feasible region for exact alignment by polynomial-time algorithms.

I Introduction

The graph alignment problem, also referred to as the graph matching or noisy graph isomorphism problem, is the problem of finding the correspondence between the vertices of two correlated graphs. This problem has been given increasing attention for its applications in social network de-anonymization. For instance, datasets of social networks are typically anonymized for privacy protection. However, an attacker may be able to de-anonymize the dataset by aligning its user-user connection graph with that of publicly available data. Attributed graph alignment is a variant of graph alignment in which side information, referred to as attributes of vertices, is also publicly available in addition to the user-user connection information. This variant is motivated by the fact that there might exist publicly available attribute information in social networks. For example, the anonymized network Netflix has users’ movie-watching history and ratings publicly available. Moreover, the examination of the proposed model provides both achievability and converse results for various well-known variations of the Erdős–Rényi graph alignment problems. These variations include the traditional graph alignment problem without attributes, the seeded graph alignment problem, and the bipartite alignment problem. Consequently, the study of attributed graph alignment introduces a novel perspective for investigating these problems within an integrated framework.

In this paper, we focus on the attributed graph alignment problem under the attributed Erdős–Rényi pair model 𝒢(n,p,su;m,q,sa)\mathcal{G}(n,p,s_{\mathrm{u}};m,q,s_{\mathrm{a}}), first proposed in [1]. In this model, a base graph GG is generated on the vertex set [n+m][n+m] where the vertices from the set [n][n] represent users and the rest of the vertices represent attributes. Between each pair of users, an edge is generated independently and identically with probability pp to represent their connection. For each user-attribute pair, an edge is generated independently and identically with probability qq to represent their association. Note that there are no edges between attributes. The graph GG is then independently subsampled to two graphs G1G_{1} and G2G_{2}, where each user-user edge is subsampled with probability sus_{\mathrm{u}} and each user-attribute edge is subsampled with probability sas_{\mathrm{a}}. To model the anonymization procedure, a random permutation Π\Pi^{*} chosen uniformly at random is applied to the users in G2G_{2} to generate an anonymized version G2G_{2}^{\prime}. Our goal in this model is to achieve exact alignment, i.e., to exactly recover the permutation Π\Pi^{*} using G1G_{1} and G2G_{2}^{\prime}.

For the attributed graph alignment problem, and the graph alignment problem in general, two often asked questions are the following. First, for what region of graph statistics is exact alignment feasible with unlimited computational power? This region is usually referred to as the information-theoretically feasible region or the information-theoretic limits. Second, for what region of graph statistics is exact alignment feasible with polynomial-time algorithms? This region is usually referred to as the feasible region of polynomial-time algorithms. Characterizing these two feasible regions and their relationship is of utmost importance to developing a fundamental understanding of the graph alignment problem.

There has been extensive studies on these two questions under the Erdős–Rényi pair model without attributes. A line of research focuses on the information-theoretic limits of exact alignment [2, 3, 4, 5]. Roughly speaking, it is shown that exact alignment is information-theoretically feasible when the intersection graph is dense enough. A sharp threshold of exact alignment has been established, while there still exists some gap between the converse and the achievability results. Another line of research focuses on polynomial-time algorithms for exact alignment [6, 7, 8, 9, 10]. Compared to the information-theoretic limits, the existing polynomial-time algorithms further require higher edge correlation between the pair of graphs to achieve exact alignment. The question of whether there exists polynomial-time algorithms that achieve the known information-theoretic limits is still left open.

For the attributed graph alignment problem, the information-theoretic limit has been studied in [1], where the feasible region (achievability results) and infeasible region (converse results) are characterized with a gap in between in some regimes. However, the feasible region of polynomial-time algorithms for attributed graph alignment has not been studied before, and it is the focus of this paper. In this work, we propose two polynomial-time algorithms for attributed graph alignment and characterize their feasible regions. The two algorithms are designed for two different regimes of parameters based on the richness of attribute information: the algorithm AttrRich is designed for the regime where mqsa2=Ω(logn)mqs_{\mathrm{a}}^{2}=\Omega(\log n), referred to as the attribute-information rich regime; and the algorithm AttrSparse is designed for the regime where mqsa2=o(logn)mqs_{\mathrm{a}}^{2}=o(\log n), referred to as the attribute-information sparse regime. In both algorithms, we first explore the user-attribute connections to align a set of anchor users, and then utilize the user-user connections to the anchors to align the rest of users. Due to the regime difference, AttrRich is able to generate a much larger set of anchors in the first step than AttrSparse. Therefore, AttrRich and AttrSparse make use of the anchors differently in the second step: AttrRich explores one-hop user-user connections to align the rest of users, while AttrSparse explores one-hop or multiple-hop user-user connections to align the rest of users depending on the sparsity of user-user connections. This idea of matching vertices based on common neighbor witnesses has been explored to construct efficient graph alignment algorithms under the context of seeded graph alignment [11, 12, 13, 14]. In this work, we employ this idea in a two-step procedure under the setting of attributed graphs, and analyze its performance through a careful treatment of the dependency between the two steps.

Our characterizations of the feasible regions of AttrRich and AttrSparse are illustrated in Figure 1 as areas 2 and 3, respectively. The information-theoretically feasible and infeasible regions given in [1] are also illustrated in the figure for comparison. We can see that there is a gap between the feasible region achieved by AttrRich and AttrSparse and the known information-theoretically feasible region. It is left open whether this gap is a fundamental limit of polynomial-time algorithms 111We comment that in the line of work [15, 16, 17], the authors have explored efficient algorithms for a closely-related problem known as attributed network alignment. In this problem, attributes are attached to both vertices and edges, in contrast to the exclusive association with vertices in attributed graph alignment. The focus in this line of work is the empirical performance rather than the theoretical feasible region.

In addition, we specialize the feasible region of the proposed algorithms to the context of the seeded Erdős–Rényi graph alignment problem, and demonstrate that the specialized feasible region includes certain range of parameters that is not known to be achievable in the literature.

Refer to caption
logn±ω(1)\log{n}\pm\omega(1)
mqsa2mqs_{\mathrm{a}}^{2}
npsu2nps_{\mathrm{u}}^{2}
Refer to caption
(1+ϵ)logn(1+\epsilon)\log{n}
Refer to caption
4
1
3
Refer to caption
2
Refer to caption
logn±ω(1)\log{n}\pm\omega(1)
Refer to caption
Θ(logn)\Theta(\log{n})
logn+O(mq3/2)\log{n}+O(mq^{3/2})
(1+ϵ)logn(1+\epsilon)\log{n}
Refer to caption
Θ(lognlog1/q)\Theta\left(\frac{\log{n}}{\log{1/q}}\right)
Figure 1: Comparison between the feasible regions of the proposed algorithms and the information-theoretic limits: the shaded area ( 1+ 2+ 3) represents the information-theoretically feasible region given in [1]; area 2 is the feasible region for Algorithm AttrRich and area 3 is the feasible region for Algorithm AttrSparse; area 4 is the information-theoretically infeasible region given in [1].

Our results reveal that attributes possibly facilitate graph alignment in a much more significant way when computational efficiency is a priority. We demonstrate this possible impact of attributes under the sparse regime np=Θ(logn)np=\Theta(\log n) in Figure 2. In Figure 2(a), we let mqsa2=0mqs_{\mathrm{a}}^{2}=0 so there is no information from the attributes, which is equivalent to the graph alignment problem without attributes; in Figure 2(b), we let mqsa2=0.1lognmqs_{\mathrm{a}}^{2}=0.1\log n. We keep p=o(1)p=o(1), and assume the value of npsu/lognnps_{\mathrm{u}}/\log n can be an arbitrarily large constant but not tending to infinity in both settings for ease of comparison. Comparing these two figures, we can see that when mqsa2mqs_{\mathrm{a}}^{2} increases from 0 to 0.1logn0.1\log n, the information-theoretic limits in terms of user-user parameters (n,pn,p and sus_{\mathrm{u}}) improve a bit as expected. However, a more fundamental improvement is in the feasible region achievable by polynomial-time algorithms. In Figure 2(a), the green region above su=αs_{\mathrm{u}}=\sqrt{\alpha} is achievable by a polynomial-time algorithm proposed in [10], where α0.338\alpha\approx 0.338 is known as the Otter’s constant. The red region below su=αs_{\mathrm{u}}=\sqrt{\alpha} is not known to be achievable by any polynomial-time algorithms. Moreover, in [18], this red region is conjectured to be infeasible by any polynomial-time algorithm.222We note that the conjecture presented in [18] pertains to the sparse regime where np=Θ(logn)np=\Theta(\log n). In contrast, for the dense regime, it is conjectured in [19] that no polynomial-time algorithm can achieve exact alignment if su1/polylog(n)s_{\mathrm{u}}\leq 1/\mathrm{polylog}(n). In comparison, in Figure 2(b), the green region above the information theoretic limit, which is presented as the dotted curve, is achievable by our proposed polynomial-time algorithm AttrRich (assuming q=o(1)q=o(1) and sa=Θ(1)s_{\mathrm{a}}=\Theta(1)). Therefore, if α\sqrt{\alpha} is indeed the right threshold between achievable and impossible under polynomial-time algorithms for graph alignment without attributes in the sparse regime, a small amount of attribute information lowers this threshold to an arbitrarily small constant.

Refer to caption
sus_{\mathrm{u}}
npsu/lognnps_{\mathrm{u}}/\log n
α\sqrt{\alpha}
11
0.90.9
11
IT limit when mqsa2=0mqs_{\mathrm{a}}^{2}=0
IT limit when mqsa2=0.1lognmqs_{\mathrm{a}}^{2}=0.1\log n
easy
?
(a) Feasible region of polynomial-time algorithms when mqsa2=0mqs_{\mathrm{a}}^{2}=0
Refer to caption
sus_{\mathrm{u}}
npsu/lognnps_{\mathrm{u}}/\log n
α\sqrt{\alpha}
11
0.90.9
11
IT limit when mqsa2=0mqs_{\mathrm{a}}^{2}=0
IT limit when mqsa2=0.1lognmqs_{\mathrm{a}}^{2}=0.1\log n
easy
easy
(b) Feasible region of polynomial-time algorithms when mqsa2=0.1lognmqs_{\mathrm{a}}^{2}=0.1\log n
Figure 2: Comparison between feasible regions of polynomial-time algorithms when mqsa2=0mqs_{\mathrm{a}}^{2}=0 and when mqsa2=0.1lognmqs_{\mathrm{a}}^{2}=0.1\log n. Subgraph (a) captures the case when mqsa2=0mqs_{\mathrm{a}}^{2}=0. The green region is known to be feasible by a polynomial-time algorithm in [10], while no polynomial-time algorithms are known to be feasible in the red region. Subgraph (b) captures the case when mqsa2=0.1lognmqs_{\mathrm{a}}^{2}=0.1\log n. The green region is feasible by the proposed algorithm AttrRich.

II Model

In this section, we describe a random process that generates a pair of correlated graphs, which we refer to as the attributed Erdős–Rényi pair model 𝒢(n,p,su;m,q,sa)\mathcal{G}(n,p,s_{\mathrm{u}};m,q,s_{\mathrm{a}}). Under this model, we define the exact alignment problem.

Refer to caption
Figure 3: An illustration of attributed Erdős–Rényi pair model. We first sample a base graph GG. Then we get G1G_{1} and G2G_{2} through edge subsampling GG. The anonymized graph G2G_{2}^{\prime} is obtained through apply the permutation Π\Pi^{*} on the user vertex set of G2G_{2}.

Base graph generation. We first generate a base graph GG, whose vertex set 𝒱(G)\mathcal{V}(G) consists of two disjoint sets, the user vertex set 𝒱u={1,2,,n}\mathcal{V}^{\mathrm{u}}=\{1,2,\ldots,n\} and the attribute vertex set 𝒱a={n+1,n+2,,n+m}\mathcal{V}^{\mathrm{a}}=\{n+1,n+2,\ldots,n+m\}. There are two types of edges in the base graph GG, the user-user edges (edges connecting a pair of users) and the user-attribute edges (edges connecting a user vertex and an attribute vertex). The user-user edges are generated independently and identically with probability pp, and the user-attribute edges are generated independently and identically with probability qq. Throughout this paper, we assume that p=o(1)p=o(1) and q=o(1)q=o(1). We write iGji\stackrel{{\scriptstyle G}}{{\sim}}j if vertices ii and jj are connected in graph GG.

Edge subsampling. From the base graph GG, we obtain two correlated graphs G1G_{1} and G2G_{2} by subsampling the edges in GG independently. More specifically, we get G1G_{1} and G2G_{2} by independently including each user-user edge in GG with probability sus_{\mathrm{u}} and independently including each user-attribute edge with probability sas_{\mathrm{a}}. Throughout this paper, we assume that su=Θ(1)s_{\mathrm{u}}=\Theta(1) and sa=Θ(1)s_{\mathrm{a}}=\Theta(1).

Anonymization. From the G2G_{2} generated as above, we get an anonymized graph G2G_{2}^{\prime} by applying an unknown permutation Π\Pi^{*} on the user vertices of G2G_{2}, where Π\Pi^{*} is drawn uniformly at random from the set of all possible permutations on 𝒱u\mathcal{V}^{\mathrm{u}}. We use 𝒱2u\mathcal{V}_{2}^{\text{u}} to denote the user vertex set of G2G_{2}^{\prime} and use 𝒱1u\mathcal{V}_{1}^{\text{u}} to denote the user vertex set of G1G_{1}. Finally, we remark that this subsampling process is a special case of an earlier described attributed Erdős–Rényi pair model in [1].

Exact alignment. Given an observable pair (G1,G2)(G_{1},G_{2}^{\prime}), our goal is to recover the unknown permutation Π\Pi^{*}, which allows us to recover the original labels of user vertices in the anonymized graph G2G_{2}^{\prime}. We say exact alignment is achieved with high probability (w.h.p.) if limn𝖯(Π^Π)=0\lim_{n\rightarrow\infty}\mathsf{P}(\hat{\Pi}\neq\Pi^{*})=0. It is worth mentioning that 𝖯(Π^Π)=𝖯(Π^Π|Π=πid){\mathsf{P}}(\hat{\Pi}\neq\Pi^{*})={\mathsf{P}}(\hat{\Pi}\neq\Pi^{*}|\Pi^{*}=\pi_{\text{id}}) due to the symmetry among user vertices. Thus, we later assume without loss of generality that the underlying true permutation is the identity permutation.

Related random graph models. A closely related graph generation model is the correlated stochastic block model [20, 21, 22]. In this model, the base graph GG is instead generated from the stochastic block model, where vertices are grouped into latent blocks, and edges are formed between blocks with specific probabilities, capturing the underlying community structure in the network. The base graph GG is then subsampled into the two generated graphs G1G_{1} and G2G_{2}. In the proposed attributed Erdős–Rényi graph pair models, users and attributes can be viewed as two communities in the correlated stochastic block model. However, a key distinction lies in the fact that the attributed Erdős–Rényi graph pair model specifies the correspondence between attributes in the two graphs, whereas the correlated stochastic block model does not disclose such information.

Another well-studied graph alignment model with side information is the seeded Erdős–Rényi graph pair model [11, 12, 13, 14], where we have access to part of the true correspondence between user vertices. To make a comparison between the seeded Erdős–Rényi graph pair model and the proposed model, here we describe the seeded Erdős–Rényi pair model 𝒢(N,α,p,s)\mathcal{G}(N,\alpha,p,s) in detail. We first sample a base graph GG from the Erdős–Rényi graph on NN vertices with edge probability pp. Then two correlated copies G1G_{1} and G2G_{2} are obtained by independently subsampling the edges in the base graph where each edge is preserved with probability ss. The anonymized graph G2G_{2}^{\prime} is obtained by applying an unknown permutation Π\Pi^{*} on G2G_{2}, where Π\Pi^{*} is drawn uniformly at random. Let 𝒱(G1)\mathcal{V}(G_{1}) and 𝒱(G2)\mathcal{V}(G_{2}^{\prime}) denote the vertex sets of G1G_{1} and G2G_{2}^{\prime} respectively. Then, a subset 𝒱s𝒱(G1)\mathcal{V}_{s}\subset\mathcal{V}(G_{1}) of size Nα\lfloor N\alpha\rfloor is chosen uniformly at random and we define the vertex pairs 0={(v1,Π(v1)):v1𝒱s}\mathcal{I}_{0}=\{(v_{1},\Pi^{*}(v_{1})):v_{1}\in\mathcal{V}_{s}\} as the seed set. The graph pair (G1,G2)(G_{1},G_{2}^{\prime}) together with the seed set 0\mathcal{I}_{0} are given and the goal of the exact alignment is to recover the underlying permutation for the remaining vertices w.h.p.

Comparing the seeded Erdős–Rényi pair model and the attributed Erdős–Rényi pair model, we can see that the seed set and the attribute set both provide side information to assist the alignment of the remaining vertices. Nevertheless, there are two main differences between the two models. First, in the attributed Erdős–Rényi pair model, we allow different edge probabilities and subsampling probabilities for user-user edges and user-attribute edges, whereas in the seeded Erdős–Rényi pair model, the edge probability is identical for all edges and so is the subsampling probability. Second, while there are edges between seeds in seeded Erdős–Rényi pair model, there are no attribute-attribute edges in the attributed Erdős–Rényi pair model. However, it can be shown that the existence of edges between seeds has no influence on the information-theoretic limits for exact alignment in the seeded Erdős–Rényi pair model (see Lemma 1 in [23]). This further suggests that regarding the task of exact alignment, the information-theoretic limits on attributed graph alignment recover the information-theoretic limits on seeded Erdős–Rényi graph alignment if we specialize p=qp=q and su=sas_{\mathrm{u}}=s_{\mathrm{a}} in the attributed Erdős–Rényi pair model 𝒢(n,p,su;m,q,sa)\mathcal{G}(n,p,s_{\mathrm{u}};m,q,s_{\mathrm{a}}).

Other notation. Our algorithms rely on exploring the neighborhood similarity of user vertices in G1G_{1} and G2G_{2}^{\prime}. Here we introduce our notation of local neighborhoods. We define 𝒩1a(i){j𝒱1a:iG1j}\mathcal{N}_{1}^{\text{a}}(i)\triangleq\{j\in\mathcal{V}_{1}^{\text{a}}:i\stackrel{{\scriptstyle G_{1}}}{{\sim}}j\} as the set of attribute neighbors of a user vertex ii in G1G_{1} and 𝒩2a(i){j𝒱2a:iG2j}\mathcal{N}_{2}^{\text{a}}(i)\triangleq\{j\in\mathcal{V}_{2}^{\text{a}}:i\stackrel{{\scriptstyle G_{2}^{\prime}}}{{\sim}}j\} as the set of attribute neighbors of a user vertex ii in G2G_{2}^{\prime}. For two user vertices ii and jj in the same graph, let d(i,j)d(i,j) be the length of the shortest path connecting ii and jj via user-user edges. For a user vertex i𝒱1ui\in\mathcal{V}_{1}^{\text{u}}, we define the set of ll-hop user neighbors of vertex ii as 𝒩1u(i,l){j𝒱1u:d(i,j)l}\mathcal{N}_{1}^{\text{u}}(i,l)\triangleq\{j\in\mathcal{V}_{1}^{\text{u}}:d(i,j)\leq l\} for any positive integer ll. By convention, when l=1l=1, we simply write 𝒩1u(i)𝒩1u(i,1)\mathcal{N}_{1}^{\text{u}}(i)\equiv\mathcal{N}_{1}^{\text{u}}(i,1). The quantities 𝒩2u(i,l)\mathcal{N}_{2}^{\text{u}}(i,l) and 𝒩2u(i)\mathcal{N}_{2}^{\text{u}}(i) are defined similarly for user vertices in G2G_{2}^{\prime}.

Reminder of the Landau notation.

Notation Definition
f(n)=ω(g(n))f(n)=\omega(g(n)) limn|f(n)|g(n)=\lim\limits_{n\rightarrow\infty}\frac{|f(n)|}{g(n)}=\infty
f(n)=o(g(n))f(n)=o(g(n)) limn|f(n)|g(n)=0\lim\limits_{n\to\infty}\frac{|f(n)|}{g(n)}=0
f(n)=O(g(n))f(n)=O(g(n)) lim supn|f(n)|g(n)<\limsup\limits_{n\rightarrow\infty}\frac{|f(n)|}{g(n)}<\infty
f(n)=Ω(g(n))f(n)=\Omega(g(n)) lim infn|f(n)|g(n)>0\liminf\limits_{n\rightarrow\infty}\frac{|f(n)|}{g(n)}>0
f(n)=Θ(g(n))f(n)=\Theta(g(n)) f(n)=O(g(n))f(n)=O(g(n)) and f(n)=Ω(g(n))f(n)=\Omega(g(n))

III Main results

In this section, we propose two polynomial-time algorithms for the attributed graph alignment problem. Their feasible regions are characterized in the following two theorems.

Theorem 1.

Consider the attributed Erdős–Rényi pair 𝒢(n,p,su;m,q,sa)\mathcal{G}(n,p,s_{\mathrm{u}};m,q,s_{\mathrm{a}}) with p=o(1)p=o(1), q=o(1)q=o(1), su=Θ(1)s_{\mathrm{u}}=\Theta(1), and sa=Θ(1)s_{\mathrm{a}}=\Theta(1). Assume that

mqsa2=Ω(logn)mqs_{\mathrm{a}}^{2}=\Omega(\log n) (1)

and that there exists some constant ϵ>0\epsilon>0 such that

mqsa2+npsu2(1+ϵ)logn.mqs_{\mathrm{a}}^{2}+nps_{\mathrm{u}}^{2}\geq(1+\epsilon)\log n. (2)

Then there exists a polynomial-time algorithm, namely, Algorithm AttrRich with the parameters chosen in (8) and (9), that achieves exact alignment w.h.p.

Theorem 2.

Consider the attributed Erdős–Rényi pair 𝒢(n,p,su;m,q,sa)\mathcal{G}(n,p,s_{\mathrm{u}};m,q,s_{\mathrm{a}}) with p=o(1)p=o(1), q=o(1)q=o(1), su=Θ(1)s_{\mathrm{u}}=\Theta(1), and sa=Θ(1)s_{\mathrm{a}}=\Theta(1). Assume that

mqsa2=o(logn),mqs_{\mathrm{a}}^{2}=o(\log n), (3)
npsu2logn+,nps_{\mathrm{u}}^{2}-\log n\rightarrow+\infty, (4)

and that there exists some constant τ>0\tau>0 such that

mqsa22lognτlog1q.mqs_{\mathrm{a}}^{2}\geq\frac{2\log n}{\tau\log\frac{1}{q}}. (5)

Then there exists a polynomial-time algorithm, namely, Algorithm AttrSparse with the parameters chosen in (11), (12) and (13), that achieves exact alignment w.h.p.

The proofs of Theorems 1 and 2 are deferred to Sections V and VI respectively.

III-A Algorithm AttrRich

In this subsection, we propose the first algorithm that leads to the achievable region in Theorem 1. This algorithm is designed for the attribute-information rich regime, hence named AttrRich.

  • Input: The graph pair (G1,G2)(G_{1},G_{2}^{\prime}) and thresholds xx and yy.

  • Step 1: Align through attribute neighbors. In this step, we only consider the edge connections between users and attributes, and use these information to find the matching for a set of vertices which will be later referred to as anchors. For each pair of users i𝒱1ui\in\mathcal{V}_{1}^{\text{u}} and j𝒱2uj\in\mathcal{V}_{2}^{\text{u}}, compute the number of common attribute neighbors

    Cij|𝒩1a(i)𝒩2a(j)|.C_{ij}\triangleq|\mathcal{N}^{\text{a}}_{1}(i)\cap\mathcal{N}^{\text{a}}_{2}(j)|. (6)

    If Cij>xC_{ij}>x, add (i,j)(i,j) into 𝒮1\mathcal{S}_{1}. We refer to vertex pairs in the set 𝒮1\mathcal{S}_{1} as anchor. If there exists conflicting pairs in 𝒮1\mathcal{S}_{1}, i.e., two distinct pairs (i1,j1)(i_{1},j_{1}) and (i2,j2)(i_{2},j_{2}) with i1=i2i_{1}=i_{2} or j1=j2j_{1}=j_{2}, set 𝒮1=\mathcal{S}_{1}=\emptyset and declare failure. Otherwise, set π^(i)=j\hat{\pi}(i)=j for all pairs (i,j)𝒮1(i,j)\in\mathcal{S}_{1}.

  • Step 2: Align through user neighbors. In the previous step, we have aligned the anchors using the edges between users and attributes. In this step, we will align the non-anchor vertices by their edge connections to the anchors. Let

    𝒰1{i𝒱1u:(i,j)𝒮1,j𝒱2u}\mathcal{U}_{1}\triangleq\{i\in\mathcal{V}_{1}^{\text{u}}:(i,j)\not\in\mathcal{S}_{1},\forall j\in\mathcal{V}_{2}^{\text{u}}\}

    denote the set of all unmatched vertices in G1G_{1} and let

    𝒰2{j𝒱2u:(i,j)𝒮1,i𝒱1u}\mathcal{U}_{2}\triangleq\{j\in\mathcal{V}_{2}^{\text{u}}:(i,j)\not\in\mathcal{S}_{1},\forall i\in\mathcal{V}_{1}^{\text{u}}\}

    denote the set of all unmatched vertices in G2G_{2}. For each unmatched pair i𝒰1i\in\mathcal{U}_{1} and j𝒰2j\in\mathcal{U}_{2}, consider the user neighbors of ii and the user neighbors of jj that are matched as pairs in 𝒮1\mathcal{S}_{1}, and compute the number of such matched pairs for (i,j)(i,j)

    Wijk𝒩1u(i),l𝒩2u(j)𝟙{(k,l)𝒮1}.W_{ij}\triangleq\sum_{k\in\mathcal{N}_{1}^{\text{u}}(i),l\in\mathcal{N}_{2}^{\text{u}}(j)}\mathbbm{1}_{\{(k,l)\in\mathcal{S}_{1}\}}. (7)

    For each i𝒰1i\in\mathcal{U}_{1}, if Wij>y|𝒮1|W_{ij}>y|\mathcal{S}_{1}| for a unique j𝒰2j\in\mathcal{U}_{2}, set π^(i)=j\hat{\pi}(i)=j. Otherwise, declare failure. If π^\hat{\pi} is not a bijection from 𝒱1u\mathcal{V}_{1}^{\text{u}} to 𝒱2u\mathcal{V}_{2}^{\text{u}}, declare failure.

  • Output: The estimated permutation π^\hat{\pi}.

In this algorithm, there are two threshold parameters xx and yy. In the following analysis, we choose

x=(1δx)mqsa2,x=(1-\delta_{x})mqs_{\text{a}}^{2}, (8)

where 1δx=Δxlog1q1-\delta_{x}=\frac{\Delta_{x}}{\log\frac{1}{q}} with constant Δxmax{1,3lognmqsa2}\Delta_{x}\geq\max\{1,\frac{3\log n}{mqs_{\text{a}}^{2}}\}, and

y=(1δy)psu2,y=(1-\delta_{y})ps_{\text{u}}^{2}, (9)

where 1δy=Δylog1p1-\delta_{y}=\frac{\Delta_{y}}{\log\frac{1}{p}} with constant Δy2\Delta_{y}\geq 2.

Remark 1 (Complexity of Algorithm AttrRich).

In Algorithm AttrRich, the time complexity for computing CijC_{ij} for all pairs (i,j)𝒱1u×𝒱2u(i,j)\in\mathcal{V}_{1}^{\text{u}}\times\mathcal{V}_{2}^{\text{u}} is O(n2m)O(n^{2}m) since there are n2n^{2} pairs and for each pair, there are mm attributes to consider. Similarly, the time complexity for computing WijW_{ij} for all pairs (i,j)𝒰1×𝒰2(i,j)\in\mathcal{U}_{1}\times\mathcal{U}_{2} is at most O(n3)O(n^{3}). Therefore, if m=ω(n)m=\omega(n), the time complexity of Algorithm AttrRich is O(n2m)O(n^{2}m) and if m=O(n)m=O(n), the time complexity of Algorithm AttrRich is O(n3)O(n^{3}).

III-B Algorithm AttrSparse

In this subsection, we propose the second algorithm that leads to the achievable region in Theorem 2. This algorithm is designed for the attribute-information sparse regime, hence named AttrSparse. In Step 2 of this algorithm, we consider two different cases. In the case when the user-user connection is dense, we perform a similar process as in Step 2 of Algorithm AttrRich. In the case when the user-user connections is sparse, we call a seeded alignment algorithm proposed in [13], which is restated in Subsection III-C.

  • Input: The graph pair (G1,G2)(G_{1},G_{2}^{\prime}), three thresholds yy, zz and η\eta, an integer ll, and the model parameters nn and pp.

  • Step 1: Align through attribute neighbors. Similar to Step 1 of Algorithm AttrRich, for each pair of users i𝒱1ui\in\mathcal{V}_{1}^{\text{u}} and j𝒱2uj\in\mathcal{V}_{2}^{\text{u}}, we compute the quantity

    Cij=|𝒩1a(i)𝒩2a(j)|.C_{ij}=|\mathcal{N}^{\text{a}}_{1}(i)\cap\mathcal{N}^{\text{a}}_{2}(j)|. (10)

    Unlike Step 1 of Algorithm AttrRich, we create an anchor set using a different threshold zz. If Cij>zC_{ij}>z, add (i,j)(i,j) into 𝒮2\mathcal{S}_{2}. We refer to vertex pairs in the set 𝒮2\mathcal{S}_{2} as anchors. If there exists conflicting pairs in 𝒮2\mathcal{S}_{2}, i.e., two distinct pairs (i1,j1)(i_{1},j_{1}) and (i2,j2)(i_{2},j_{2}) with i1=i2i_{1}=i_{2} or j1=j2j_{1}=j_{2}, set 𝒮2=\mathcal{S}_{2}=\emptyset and declare failure.

  • Step 2: Align through user-user edges.

    • If np>n1/7np>n^{1/7}, we perform the similar process as in Step 2 of Algorithm AttrRich to align the non-anchor vertices. Define

      𝒰3{i𝒱1u:(i,j)𝒮2,j𝒱2u}\mathcal{U}_{3}\triangleq\{i\in\mathcal{V}_{1}^{\text{u}}:(i,j)\not\in\mathcal{S}_{2},\forall j\in\mathcal{V}_{2}^{\text{u}}\}

      and

      𝒰4{j𝒱2u:(i,j)𝒮2,i𝒱1u}.\mathcal{U}_{4}\triangleq\{j\in\mathcal{V}_{2}^{\text{u}}:(i,j)\not\in\mathcal{S}_{2},\forall i\in\mathcal{V}_{1}^{\text{u}}\}.

      For each unmatched pair i𝒰3i\in\mathcal{U}_{3} and j𝒰4j\in\mathcal{U}_{4}, compute WijW_{ij} as defined in (7). For each i𝒰3i\in\mathcal{U}_{3}, if Wij>y|𝒮2|W_{ij}>y|\mathcal{S}_{2}| for a unique j𝒰4j\in\mathcal{U}_{4}, set π^(i)=j\hat{\pi}(i)=j. Otherwise, declare failure. If π^\hat{\pi} is not a bijection from 𝒱1u\mathcal{V}_{1}^{\text{u}} to 𝒱2u\mathcal{V}_{2}^{\text{u}}, declare failure.

    • If npn1/7np\leq n^{1/7}, run Algorithm III-C with the induced subgraphs on user vertices 𝒱1u\mathcal{V}_{1}^{\text{u}} and 𝒱2u\mathcal{V}_{2}^{\text{u}}, the seed set 0=𝒮2\mathcal{I}_{0}=\mathcal{S}_{2}, and parameters ll and η\eta.

  • Output: The estimated permutation π^\hat{\pi}.

In this algorithm, there are four parameters yy, zz, ll and η\eta that we can choose. In the following analysis, we choose yy to be the same value as in (9),

z=(1+τ)mqsa2z=(1+\tau)mqs_{\mathrm{a}}^{2} (11)

(cf. the same τ\tau as in Theorem 2),

l=(6/7)lognlog(np),l=\left\lfloor\frac{(6/7)\log n}{\log(np)}\right\rfloor, (12)

and

η=42l+2n2/7.\eta=4^{2l+2}n^{-2/7}. (13)
Remark 2 (Complexity of Algorithm AttrSparse).

In Algorithm AttrSparse, the time complexity for computing CijC_{ij} for all pairs (i,j)𝒱1u×𝒱2u(i,j)\in\mathcal{V}_{1}^{\text{u}}\times\mathcal{V}_{2}^{\text{u}} is O(n2m)O(n^{2}m) since there are n2n^{2} pairs and for each pair, there are mm attributes to consider. The time complexity of computing WijW_{ij} for all pairs (i,j)𝒰3×𝒰4(i,j)\in\mathcal{U}_{3}\times\mathcal{U}_{4} is O(n3)O(n^{3}) and that of Algorithm III-C is O(n37/7)O(n^{37/7}) as given in [13], which can be improved with better data structures. Therefore, if np>n1/7np>n^{1/7}, the complexity of Algorithm AttrSparse is O(n2m+n3)O(n^{2}m+n^{3}); Otherwise its complexity is O(n2m+n37/7)O(n^{2}m+n^{37/7}).

III-C Seeded alignment in the sparse regime [13, Algorithm 3]

Except for the two graphs G1G_{1} and G2G_{2}^{\prime}, this algorithm takes a seed set 0\mathcal{I}_{0} as input. The seed set 0\mathcal{I}_{0} consists of vertex pairs (i,j)(i,j) such that π(i)=j\pi^{*}(i)=j. The algorithm utilizes this seed set to align the rest of vertices.

  • Input: The graph pair (G1,G2)(G_{1},G_{2}^{\prime}), the seed set 0\mathcal{I}_{0}, a threshold η\eta, and an integer ll.

  • Align high-degree vertices. Let

    𝒥1{i𝒱(G1):(i,j)0,j𝒱(G2)},\mathcal{J}_{1}\triangleq\{i\in\mathcal{V}(G_{1}):(i,j)\notin\mathcal{I}_{0},\forall j\in\mathcal{V}(G_{2}^{\prime})\},

    and

    𝒥2{j𝒱(G2):(i,j)0,i𝒱(G1)}.\mathcal{J}_{2}\triangleq\{j\in\mathcal{V}(G_{2}^{\prime}):(i,j)\notin\mathcal{I}_{0},\forall i\in\mathcal{V}(G_{1})\}.

    For each pair of unseeded vertices u𝒥1u\in\mathcal{J}_{1} and v𝒥2v\in\mathcal{J}_{2}, and for each pair of their neighbors i𝒩1u(u){u}i\in\mathcal{N}_{1}^{\mathrm{u}}(u)\setminus\{u\} and j𝒩2u(v){v}j\in\mathcal{N}_{2}^{\mathrm{u}}(v)\setminus\{v\}, compute

    λi,ju,v=minx𝒱(G1),y𝒱(G2){|{(k1,k2)0:\displaystyle\lambda_{i,j}^{u,v}=\min_{x\in\mathcal{V}(G_{1}),y\in\mathcal{V}(G_{2}^{\prime})}\{|\{(k_{1},k_{2})\in\mathcal{I}_{0}:
    k1𝒩G1{u,x}u(i,l),k2𝒩G2{v,y}u(j,l)}|},\displaystyle\;k_{1}\in\mathcal{N}_{G_{1}\setminus\{u,x\}}^{\mathrm{u}}(i,l),k_{2}\in\mathcal{N}_{G_{2}^{\prime}\setminus\{v,y\}}^{\mathrm{u}}(j,l)\}|\},

    where 𝒩GSu(i1,l)\mathcal{N}_{G\setminus S}^{\mathrm{u}}(i_{1},l) denotes the set of user vertices i2i_{2} such that d(i1,i2)ld(i_{1},i_{2})\leq l in the induced subgraph GG with the set of vertices SS removed. Let

    Zu,v=i𝒩1u(u){u}j𝒩2u(v){v}𝟙{λi,ju,vη|0|}.Z_{u,v}=\sum_{i\in\mathcal{N}_{1}^{\mathrm{u}}(u)\setminus\{u\}}\sum_{j\in\mathcal{N}_{2}^{\mathrm{u}}(v)\setminus\{v\}}\mathbbm{1}_{\{\lambda_{i,j}^{u,v}\geq\eta|\mathcal{I}_{0}|\}}.

    If Zu,vlogn/loglogn1Z_{u,v}\geq\log n/\log\log n-1, add (u,v)(u,v) into set 𝒯\mathcal{T}. Add all the vertex pairs from 0\mathcal{I}_{0} to 𝒯\mathcal{T}. If there exists conflicting pairs in 𝒯\mathcal{T}, i.e., two distinct pairs (i1,j1)(i_{1},j_{1}) and (i2,j2)(i_{2},j_{2}) with i1=i2i_{1}=i_{2} or j1=j2j_{1}=j_{2}, set 𝒯=\mathcal{T}=\emptyset and declare failure.

  • Align low-degree vertices. Let

    𝒥3{i𝒱(G1):(i,j)𝒯,j𝒱(G2)},\mathcal{J}_{3}\triangleq\{i\in\mathcal{V}(G_{1}):(i,j)\notin\mathcal{T},\forall j\in\mathcal{V}(G_{2}^{\prime})\},

    and

    𝒥4{j𝒱(G2):(i,j)𝒯,i𝒱(G1)}.\mathcal{J}_{4}\triangleq\{j\in\mathcal{V}(G_{2}^{\prime}):(i,j)\notin\mathcal{T},\forall i\in\mathcal{V}(G_{1})\}.

    For all pairs of unmatched vertices i1𝒥3i_{1}\in\mathcal{J}_{3} and i2𝒥4i_{2}\in\mathcal{J}_{4}, if i1i_{1} is adjacent to a user vertex j1j_{1} in G1G_{1} and i2i_{2} is adjacent to a user vertex j2j_{2} in G2G_{2}^{\prime} such that (j1,j2)𝒯(j_{1},j_{2})\in\mathcal{T}, then set π^(i1)=i2\hat{\pi}(i_{1})=i_{2}.

  • Finalize and output: For each vertex pair (i,j)𝒯(i,j)\in\mathcal{T}, set π^(i)=j\hat{\pi}(i)=j. If π^\hat{\pi} is a bijection from 𝒱(G1)\mathcal{V}(G_{1}) to 𝒱(G2)\mathcal{V}(G_{2}^{\prime}), output π^\hat{\pi}, otherwise declare failure.

IV Discussion

In this section, we compare the feasible region in Theorems 1 and 2 to existing works. In Section IV-A, we compare the feasible region with the information-theoretic limits in [1]. It is shown that there still exists a gap between the feasible region of the proposed algorithms and the information-theoretic limit. In Section IV-B, we specialize the feasible region of the proposed algorithm to the context of seeded graph alignment problem, and compare the specialized feasible region to the information-theoretic limits as well as the best-known feasible regions by polynomial-time algorithms for exact alignment in literature given in [13] and [14]. It is shown that while having a gap to the information-theoretic limit, the proposed Algorithms AttrRich and AttrSparse achieves exact recovery in certain range of parameters that is unknown to be feasible by any existing efficient algorithms. In Section IV-C, we consider the bipartite alignment problem which is another special case. We show that the proposed Algorithm AttrRich provides an alternative polynomial-time algorithm to the theoretically optimal Hungarian Algorithm [24], with a slightly lower complexity.

IV-A Comparison to the information theoretic limits

The information-theoretic limits of attributed graph alignment were established in [1]. The version for the subsampling model is stated as follows.

Theorem 3 (Theorem 1 in [1]).

Consider the attributed graph pair 𝒢(n,p,su;m,q,sa)\mathcal{G}(n,p,s_{\mathrm{u}};m,q,s_{\mathrm{a}}) with 1p=Θ(1)1-p=\Theta(1), 1q=Θ(1)1-q=\Theta(1), su=Θ(1)s_{\mathrm{u}}=\Theta(1), and sa=Θ(1)s_{\mathrm{a}}=\Theta(1).
Achievability: In the regime where q=O(1(logn)2)q=O\left(\frac{1}{(\log n)^{2}}\right), if

npsu2+mqsa2logn+ω(1),\displaystyle nps_{\mathrm{u}}^{2}+mqs_{\mathrm{a}}^{2}\geq\log n+\omega(1),

then exact alignment is achievable w.h.p.
In the regime where q=ω(1(logn)2)q=\omega\left(\frac{1}{(\log n)^{2}}\right), if

npsu2+mqsa2anlogn+ω(1),\displaystyle nps_{\mathrm{u}}^{2}+mqs_{\mathrm{a}}^{2}-a_{n}\geq\log n+\omega(1),

where anm(qsa2(1q+q(1sa)2)qsa(1sa))2mqsa2=O(mq3/2),a_{n}\triangleq m\left(\sqrt{qs_{\mathrm{a}}^{2}(1-q+q(1-s_{\mathrm{a}})^{2})}-qs_{\mathrm{a}}(1-s_{\mathrm{a}})\right)^{2}-mqs_{\mathrm{a}}^{2}=O(mq^{3/2}), then exact alignment is achievable w.h.p.
Converse: If

npsu2+mqsa2lognω(1),\displaystyle nps_{\mathrm{u}}^{2}+mqs_{\mathrm{a}}^{2}\leq\log n-\omega(1),

then no algorithm achieves exact alignment w.h.p.

From Theorem 3 we can see that when q=ω(1(logn)2)q=\omega\left(\frac{1}{(\log n)^{2}}\right), the achievability and converse differ by at most some constant times mq3/2mq^{3/2}; when q=O(1(logn)2)q=O\left(\frac{1}{(\log n)^{2}}\right), the achievability and converse are tight, because in this regime we have mq3/2=ω(1)mq^{3/2}=\omega(1). We visualize the information-theoretic limits and the computation feasible regions in Fig. 1.

IV-B Specialization to the seeded Erdős–Rényi graph alignment

In this subsection, we specialize the feasible region of proposed algorithm to the seeded Erdős–Rényi graph alignment problem, and compare the feasible region with that of the existing algorithms. Consider an attributed Erdős–Rényi graph pair (G1,G2)𝒢(n,p,su;m,q,sa)(G_{1},G_{2}^{\prime})\sim\mathcal{G}(n,p,s_{\text{u}};m,q,s_{\text{a}}) with p=qp=q and sa=suss_{\mathrm{a}}=s_{\mathrm{u}}\triangleq s. Then these mm attributes can be viewed as mm seeds and (G1,G2)(G_{1},G_{2}^{\prime}) can be viewed as a graph pair generated from a seeded Erdős–Rényi pair model 𝒢(n+m,mm+n,p,s)\mathcal{G}(n+m,\frac{m}{m+n},p,s), and the edges between the these mm vertices are all removed.333The information theoretic limit of exact alignment in the seeded graph alignment problem remains the same after removing the edges between attributes (see Lemma 1 in [23]). For simplicity, we write

Nm+nandαmm+nN\triangleq m+n\quad\text{and}\quad\alpha\triangleq\tfrac{m}{m+n}

later on. In our comparisons, we always assume that (1α)N=ω(1)(1-\alpha)N=\omega(1), s=Θ(1)s=\Theta(1) and p=o(1)p=o(1).

We first specialize the feasible regions of Algorithm AttrRich in Theorem 1 and Algorithm AttrSparse in Theorem 2 to the seeded graph alignment problem.

Corollary 1 (Feasible region of Algorithm AttrRich).

Consider the seeded graph pair 𝒢(N,α,p,s)\mathcal{G}(N,\alpha,p,s) with p=o(1)p=o(1), s=Θ(1)s=\Theta(1) and (1α)N=ω(1)(1-\alpha)N=\omega(1). Assume that

αNps2=Ω(log((1α)N))\alpha Nps^{2}=\Omega(\log((1-\alpha)N)) (14)

and that there exists some constant ϵ>0\epsilon>0 such that

Nps2(1+ϵ)log((1α)N).Nps^{2}\geq(1+\epsilon)\log((1-\alpha)N). (15)

Then there exists a polynomial time algorithm, namely, Algorithm AttrRich with parameters

x=(1δx)αNps2andy=(1δy)ps2x=(1-\delta_{x})\alpha Nps^{2}\quad\text{and}\quad y=(1-\delta_{y})ps^{2}

that achieves exact alignment w.h.p. Here, 1δx=Δxlog1p1-\delta_{x}=\frac{\Delta_{x}}{\log\frac{1}{p}} with constant Δxmax{1,3log(1α)NαNps2}\Delta_{x}\geq\max\{1,\frac{3\log(1-\alpha)N}{\alpha Nps^{2}}\} and 1δy=Δylog1p1-\delta_{y}=\frac{\Delta_{y}}{\log\frac{1}{p}} with constant Δy2\Delta_{y}\geq 2.

Corollary 2 (Feasible region of Algorithm AttrSparse).

Consider the seeded graph pair 𝒢(N,α,p,s)\mathcal{G}(N,\alpha,p,s) with p=o(1)p=o(1), s=Θ(1)s=\Theta(1) and (1α)N=ω(1)(1-\alpha)N=\omega(1). Assume that

αNps2=o(log((1α)N)),\alpha Nps^{2}=o(\log((1-\alpha)N)), (16)
(1α)Nps2log((1α)N)ω(1),(1-\alpha)Nps^{2}-\log((1-\alpha)N)\geq\omega(1), (17)

and that there exists some constant τ>0\tau>0 such that

αNps22log((1α)N)τlog1p.\alpha Nps^{2}\geq\frac{2\log((1-\alpha)N)}{\tau\log\frac{1}{p}}. (18)

Then there exists a polynomial time algorithm, namely, Algorithm AttrSparse with parameters

z=(1+τ)αNps2,z=(1+\tau)\alpha Nps^{2},
L=(6/7)log(1α)Nlog(1α)Np,L=\left\lfloor\frac{(6/7)\log(1-\alpha)N}{\log(1-\alpha)Np}\right\rfloor,

and

η=42l+2((1α)N)2/7,\eta=4^{2l+2}((1-\alpha)N)^{-2/7},

that achieves exact alignment w.h.p.

Remark 3.

As expected, the feasible region of proposed algorithms AttrRich and AttrSparse is a strict subset of the information-theoretic feasible region established in [1]. We postpone the detailed comparison to Section VIII-A.

Now we compare the proposed algorithms to the best known polynomial-time algorithms in the literature [13] and [14]. The comparison of their feasible regions is summarized in the following theorem, the proof of which is postponed to Section VIII-B.

Theorem 4 (Comparison of polynomial-time algorithms).

Consider the seeded Erdős–Rényi pair model 𝒢(N,α,p,s)\mathcal{G}(N,\alpha,p,s) with p=o(1)p=o(1), s=Θ(1)s=\Theta(1) and (1α)N=ω(1)(1-\alpha)N=\omega(1). Assume that parameters N,α,pN,\alpha,p, and ss satisfy any of the following four sets of conditions:

1{plogNlog(1p)=ω(1),α=Ω(log((1α)N)Nps2log1p),α<2logNNI(p,s);\leavevmode\hbox to8.69pt{\vbox to8.69pt{\pgfpicture\makeatletter\hbox{\hskip 4.34673pt\lower-4.34673pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{{}\pgfsys@moveto{4.14673pt}{0.0pt}\pgfsys@curveto{4.14673pt}{2.29019pt}{2.29019pt}{4.14673pt}{0.0pt}{4.14673pt}\pgfsys@curveto{-2.29019pt}{4.14673pt}{-4.14673pt}{2.29019pt}{-4.14673pt}{0.0pt}\pgfsys@curveto{-4.14673pt}{-2.29019pt}{-2.29019pt}{-4.14673pt}{0.0pt}{-4.14673pt}\pgfsys@curveto{2.29019pt}{-4.14673pt}{4.14673pt}{-2.29019pt}{4.14673pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.5pt}{-3.22221pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{1}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{{}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\begin{cases}p\log N\log\left(\tfrac{1}{p}\right)=\omega(1),\\ \alpha=\Omega\left(\frac{\log((1-\alpha)N)}{Nps^{2}\log\frac{1}{p}}\right),\\ \alpha<\frac{2\log N}{NI(p,s)};\end{cases}

or

2{plogNlog(1p)=O(1),plogNlog2(1p)=ω(1),α=Ω(log((1α)N)Nps2log1p),α=O(1NI2(p,s));\leavevmode\hbox to8.69pt{\vbox to8.69pt{\pgfpicture\makeatletter\hbox{\hskip 4.34673pt\lower-4.34673pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{{}\pgfsys@moveto{4.14673pt}{0.0pt}\pgfsys@curveto{4.14673pt}{2.29019pt}{2.29019pt}{4.14673pt}{0.0pt}{4.14673pt}\pgfsys@curveto{-2.29019pt}{4.14673pt}{-4.14673pt}{2.29019pt}{-4.14673pt}{0.0pt}\pgfsys@curveto{-4.14673pt}{-2.29019pt}{-2.29019pt}{-4.14673pt}{0.0pt}{-4.14673pt}\pgfsys@curveto{2.29019pt}{-4.14673pt}{4.14673pt}{-2.29019pt}{4.14673pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.5pt}{-3.22221pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{2}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{{}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\begin{cases}p\log N\log\left(\tfrac{1}{p}\right)=O(1),\\ p\log N\log^{2}\left(\tfrac{1}{p}\right)=\omega(1),\\ \alpha=\Omega\left(\frac{\log((1-\alpha)N)}{Nps^{2}\log\frac{1}{p}}\right),\\ \alpha=O\left(\frac{1}{NI^{2}(p,s)}\right);\end{cases}

or

3{plogNlog2(1p)=O(1),Np>sN1/216(2s)2,α=Ω(log((1α)N)Nps2log1p),α<300logNNps2;\leavevmode\hbox to8.69pt{\vbox to8.69pt{\pgfpicture\makeatletter\hbox{\hskip 4.34673pt\lower-4.34673pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{{}\pgfsys@moveto{4.14673pt}{0.0pt}\pgfsys@curveto{4.14673pt}{2.29019pt}{2.29019pt}{4.14673pt}{0.0pt}{4.14673pt}\pgfsys@curveto{-2.29019pt}{4.14673pt}{-4.14673pt}{2.29019pt}{-4.14673pt}{0.0pt}\pgfsys@curveto{-4.14673pt}{-2.29019pt}{-2.29019pt}{-4.14673pt}{0.0pt}{-4.14673pt}\pgfsys@curveto{2.29019pt}{-4.14673pt}{4.14673pt}{-2.29019pt}{4.14673pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.5pt}{-3.22221pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{3}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{{}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\begin{cases}p\log N\log^{2}\left(\tfrac{1}{p}\right)=O(1),\\ Np>\frac{sN^{1/2}}{16(2-s)^{2}},\\ \alpha=\Omega\left(\frac{\log((1-\alpha)N)}{Nps^{2}\log\frac{1}{p}}\right),\\ \alpha<\frac{300\log N}{Nps^{2}};\end{cases}

or

4{N=Ω(((1α)N)1+ϵ),Nps2logN=O(1),Nps2(1+ϵ)log((1α)N)\leavevmode\hbox to8.69pt{\vbox to8.69pt{\pgfpicture\makeatletter\hbox{\hskip 4.34673pt\lower-4.34673pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{{}\pgfsys@moveto{4.14673pt}{0.0pt}\pgfsys@curveto{4.14673pt}{2.29019pt}{2.29019pt}{4.14673pt}{0.0pt}{4.14673pt}\pgfsys@curveto{-2.29019pt}{4.14673pt}{-4.14673pt}{2.29019pt}{-4.14673pt}{0.0pt}\pgfsys@curveto{-4.14673pt}{-2.29019pt}{-2.29019pt}{-4.14673pt}{0.0pt}{-4.14673pt}\pgfsys@curveto{2.29019pt}{-4.14673pt}{4.14673pt}{-2.29019pt}{4.14673pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.5pt}{-3.22221pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{4}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{{}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\begin{cases}N=\Omega(((1-\alpha)N)^{1+\epsilon}),\\ Nps^{2}-\log N=O(1),\\ Nps^{2}\geq(1+\epsilon)\log((1-\alpha)N)\end{cases}

for some positive constant ϵ\epsilon. Then the proposed algorithms achieve exact alignment w.h.p., while none the of existing algorithms in [13, 14] is known to achieve exact alignment w.h.p. On the other hand, when

logN+ω(1)s2NpsN1/216(2s)2,\frac{\log N+\omega(1)}{s^{2}}\leq Np\leq\frac{sN^{1/2}}{16(2-s)^{2}},

the feasible region of the proposed algorithms is a strict subset of that in [13].

Refer to caption
NpNp
m=o(n)m=o(n)
m=Ω(n)m=\Omega(n)
m=O(n1+ϵ)m=O(n^{1+\epsilon^{\prime}})
m=Ω(n1+ϵ)m=\Omega(n^{1+\epsilon})
logN+ω(1)s2\frac{\log N+\omega(1)}{s^{2}}
α\alpha
sN1/216(2s)2\frac{sN^{1/2}}{16(2-s)^{2}}
Between       and        : AttrSparse
Right of       : [16]
Above       : IT limit
Right of       : AttrRich
Right of       : [18]
Figure 4: Comparison of the feasible region of Corollaries 1 and 2 to the feasible region in [13] and [14]. On the top-left corner and bottom-right corner, the two blue regions are feasible for the proposed algorithms but not for any existing works. The red region is feasible for existing works, but not for the proposed algorithms. The green region is the overlap of our feasible region with the feasible region in the existing works.
Remark 4.

The polynomial-time algorithms for graph alignment under the unseeded Erdős–Rényi graph pair model proposed in [9] and [10] trivially imply polynomial-time algorithm for seeded graph alignment. However, the feasible regions of algorithms in [9] and [10] both require additional conditions on the subsampling probability ss. Therefore, we do not include them to the comparison in this section.

Remark 5.

As shown in Corollaries 1 and 2, the two proposed algorithms achieve exact alignment in two mutually exclusive regimes. Theorem 4 summarizes the comparison between the union of the feasible regions of the two proposed algorithms and the union of the feasible regions in [13] and [14]. Regions 1, 2, and 3 in Theorem 4 correspond to the top left blue area in Fig. 4. Region 4 in Theorem 4 corresponds to the bottom right blue area in Fig. 4.

As stated in Theorem 4, Corollaries 1 and 2 introduce some new feasible region in the regime Np>s16(2s)2N1/2Np>\frac{s}{16(2-s)^{2}}N^{1/2} (the top-left blue corner in Fig. 4). To understand the improvement over the feasible region in [13], recall that the proposed algorithms in this work align vertices two steps: initially aligning a group of anchor vertices by exploring the seeds within their one-hop neighborhood, and subsequently aligning the remaining unmatched vertices with the assistance of the anchors in their respective one-hop neighborhood. In contrast, the algorithm proposed in [13] for this scenario aligns all vertices by exploring the one-hop seed neighbors of the non-seed vertices, which closely resembles the first step of the proposed algorithms. This is why the proposed algorithms expand the feasible region introduced in [13]. To grasp the improvements made over the feasible region in [14], note that the algorithm introduced in [14] performs a similar two-step process as the algorithms in this work. The primary distinction lies in the second step of matching. In [14], the matched vertices from the first step, along with the seeds, act as anchors in the second step. In contrast, our proposed algorithms utilize only the matched vertices from the first step as anchors. We comment that the improvement of the proposed algorithms over the algorithm in [14] mainly comes from the tightness of analysis.

For completeness of the comparison, we restate the feasible regions of algorithms in [13, 14] as follows.

Theorem 5 (Theorem 4 in [13]).

Consider the seeded Erdős–Rényi pair model 𝒢(N,α,p,s)\mathcal{G}(N,\alpha,p,s). Suppose NpNp can be written as Np=bNaNp=bN^{a} for some constants aa and bb such that

0<a1and0<bs16(2s)2.0<a\leq 1\quad\text{and}\quad 0<b\leq\tfrac{s}{16(2-s)^{2}}.

Assume that

α300logN(Nps2)1/a.\alpha\geq\frac{300\log N}{(Nps^{2})^{\lfloor 1/a\rfloor}}. (19)

Then there exists a polynomial-time algorithm, namely, Algorithm 2 in [13], that achieves exact alignment w.h.p. Moreover, the algorithm runs in O(N3)O(N^{3}) time.

Theorem 6 (Theorem 3 in [13]).

Consider the seeded Erdős–Rényi pair model 𝒢(N,α,p,s)\mathcal{G}(N,\alpha,p,s) with NpNβNp\leq N^{\beta} for a fixed constant β<1/6\beta<1/6, and s=Θ(1)s=\Theta(1). Assume that

Nps2logN+ω(1)Nps^{2}\geq\log N+\omega(1) (20)

and

αN1+3β.\alpha\geq N^{-1+3\beta}. (21)

Then Algorithm III-C with the parameters

l=(6/7)logNlog(Np)andη=42l+2N2/7l=\left\lfloor\frac{(6/7)\log N}{\log(Np)}\right\rfloor\quad\text{and}\quad\eta=4^{2l+2}N^{-2/7}

achieves exact alignment w.h.p. Moreover, the algorithm runs in O(n5+2β)O(n^{5+2\beta}) time.

Theorem 7 (Theorem 2 in [14]).

Consider the seeded Erdős–Rényi pair model 𝒢(N,α,p,s)\mathcal{G}(N,\alpha,p,s) with p=o(1)p=o(1) and s=Θ(1)s=\Theta(1). Assume that

α=ω(1NI(p,s)2)\alpha=\omega\left(\frac{1}{NI(p,s)^{2}}\right) (22)

and

α2logNNI(p,s),\alpha\geq\frac{2\log N}{NI(p,s)}, (23)

where I(p,s)2pslog1ps+(22ps)log11ps+ps2logps2+2ps(1s)log(psps2)+(1+ps22ps)log(1+ps22ps)=(1+o(1))s2plog1pI(p,s)\triangleq 2ps\log\tfrac{1}{ps}+(2-2ps)\log\tfrac{1}{1-ps}+ps^{2}\log ps^{2}+2ps(1-s)\log(ps-ps^{2})+(1+ps^{2}-2ps)\log(1+ps^{2}-2ps)=(1+o(1))s^{2}p\log\tfrac{1}{p} denotes the mutual information between a pair of correlated edges in G1G_{1} and G2G_{2}^{\prime}. Then there exists a polynomial-time algorithm, namely, the TMS algorithm in [14], that achieves exact alignment w.h.p.

IV-C Specialization to the bipartite alignment

Consider an attributed Erdős–Rényi graph pair (G1,G2)𝒢(n,p,su;m,q,sa)(G_{1},G_{2})\sim\mathcal{G}(n,p,s_{\text{u}};m,q,s_{\text{a}}) with p=0p=0 or su=0s_{\mathrm{u}}=0. Then G1G_{1} and G2G_{2} reduce to two bipartite graphs with edges connected only between users and attributes. In this special case, conditions (1) and (2) reduce to a single condition: If there exists some positive constant ϵ>0\epsilon>0 such that

mqsa2(1+ϵ)logn,mqs_{\mathrm{a}}^{2}\geq(1+\epsilon)\log n, (24)

then Algorithm AttrRich achieves exact alignment w.h.p. In contrast, Corollary 1 in [1] implies that the maximum likelihood estimator exactly recovers π\pi^{*} w.h.p if

mqsa2logn+ω(1).mqs_{\mathrm{a}}^{2}\geq\log n+\omega(1). (25)

Moreover, the maximum likelihood estimator can be computed in polynomial time by first computing the similarity score for each pair of vertices (u,v)𝒱1u×𝒱2u(u,v)\in\mathcal{V}_{1}^{\text{u}}\times\mathcal{V}_{2}^{\text{u}} as Zu,v=|𝒩1a(u)𝒩2a(v)|Z_{u,v}=|\mathcal{N}_{1}^{\text{a}}(u)\cap\mathcal{N}_{2}^{\text{a}}(v)| and then solving the balanced assignment problem using the famous Hungarian Algorithm first proposed in [24]. From conditions (24) and (25), we can see that the feasible region of Algorithm AttrRich is completely covered by the feasible region of the Hungarian Algorithm. By the above argument, the maximum likelihood estimator requires O(n2m)O(n^{2}m) time complexity to compute the similarity score for all pairs of vertices and the Hungarian Algorithm can be implemented with O(n3)O(n^{3}) time complexity [25]. Therefore, if m=ω(n)m=\omega(n), the time complexity of the maximum likelihood estimator is O(n2m)O(n^{2}m) and if m=O(n)m=O(n), the time complexity of the maximum likelihood estimator is O(n3)O(n^{3}). In comparison, the time complexity of Algorithm AttrRich in this special case is always O(n2m)O(n^{2}m).

V Proof of Theorem 1

Recall that our algorithm consists of the following two steps: Step 1 (Align through attribute neighbors) produces a set 𝒮1\mathcal{S}_{1} that we refer to as the set of anchor pairs based on the CijC_{ij} defined in (6); Step 2 (Align through user neighbors) aligns the remaining vertices based on the WijW_{ij} defined in (7). Moreover, recall that we assume without generality that the true underlying permutation π\pi^{*} is the identity permutation. Our proof of Theorem 1 analyzes the following corresponding error events.

  • Step 1 Error Event. Define

    1{(i,j)𝒱1u×𝒱2u s.t. ij and Cij>x}.\mathcal{E}_{1}\triangleq\{\exists(i,j)\in\mathcal{V}_{1}^{\text{u}}\times\mathcal{V}_{2}^{\text{u}}\text{ s.t. }i\neq j\text{ and }C_{ij}>x\}.

    The event 1c\mathcal{E}_{1}^{c} guarantees that the anchor set found in the first step only contains correctly matched pairs.

  • Step 2 Error Events. Define

    2{(i,i)𝒰1×𝒰2 s.t. Wiiy|𝒮1|}\displaystyle\mathcal{E}_{2}\triangleq\{\exists(i,i)\in\mathcal{U}_{1}\times\mathcal{U}_{2}\text{ s.t. }W_{ii}\leq y{|\mathcal{S}_{1}|}\}

    and

    3{(i,j)𝒰1×𝒰2 s.t. ij and Wij>y|𝒮1|}.\displaystyle\mathcal{E}_{3}\triangleq\{\exists(i,j)\in\mathcal{U}_{1}\times\mathcal{U}_{2}\text{ s.t. }i\neq j\text{ and }W_{ij}>y{|\mathcal{S}_{1}|}\}.

    In the special case that 𝒰1×𝒰2=\mathcal{U}_{1}\times\mathcal{U}_{2}=\emptyset, i.e., all the vertices are matched in Step 1, we set events 2\mathcal{E}_{2} and 3\mathcal{E}_{3} to be empty by convention and thus 𝖯(2)=𝖯(3)=0{\mathsf{P}}(\mathcal{E}_{2})={\mathsf{P}}(\mathcal{E}_{3})=0. In the case that 𝒰1×𝒰2\mathcal{U}_{1}\times\mathcal{U}_{2}\neq\emptyset, event 2c3c\mathcal{E}_{2}^{c}\cap\mathcal{E}_{3}^{c} corresponds to the event that all non-anchor vertices are correctly matched through their user neighbors.

We first show that 1c2c3c\mathcal{E}_{1}^{c}\cap\mathcal{E}_{2}^{c}\cap\mathcal{E}_{3}^{c} implies that Algorithm AttrRich does not declare failure and it outputs π^=π\hat{\pi}=\pi^{*}. Under event 1c\mathcal{E}_{1}^{c}, it follows that there exists no conflicting pairs in 𝒮1\mathcal{S}_{1}, so Algorithm AttrRich does not declare failure at Step 1 and for each vertex i𝒱1u𝒰1i\in\mathcal{V}_{1}^{\text{u}}\setminus\mathcal{U}_{1}, we have π^(i)=i\hat{\pi}(i)=i. Furthermore, 1c\mathcal{E}_{1}^{c} implies that 𝒰1=𝒰2\mathcal{U}_{1}=\mathcal{U}_{2}. Now we consider two different cases to complete the proof.

  • 𝒰1=𝒰2=\mathcal{U}_{1}=\mathcal{U}_{2}=\emptyset: In this case, all the vertices are correctly aligned through attribute neighbors. Therefore, Algorithm AttrRich terminates at Step 1 and outputs π^=π\hat{\pi}=\pi^{*}.

  • 𝒰1=𝒰2\mathcal{U}_{1}=\mathcal{U}_{2}\neq\emptyset: In this case, not all the vertices are aligned through attribute neighbors. Then event 2c3c\mathcal{E}_{2}^{c}\cap\mathcal{E}_{3}^{c} guarantees that for each i𝒰1i\in\mathcal{U}_{1}, we have

    Wii>(1δy)|𝒮1|psu2W_{ii}>(1-\delta_{y})|\mathcal{S}_{1}|ps_{\mathrm{u}}^{2}

    and

    Wij(1δy)|𝒮1|psu2,j𝒰2,ij.W_{ij}\leq(1-\delta_{y})|\mathcal{S}_{1}|ps_{\mathrm{u}}^{2},\forall j\in\mathcal{U}_{2},i\neq j.

    Thus, the algorithm does not declare failure at Step 2 and we have for each i𝒰1i\in\mathcal{U}_{1}, π^(i)=i\hat{\pi}(i)=i. Finally, it follows that π^\hat{\pi} is a bijection and π^=π\hat{\pi}=\pi^{*}.

Next, to prove Theorem 1, it suffices to show that 𝖯(1c2c3c)=1o(1){\mathsf{P}}(\mathcal{E}_{1}^{c}\cap\mathcal{E}_{2}^{c}\cap\mathcal{E}_{3}^{c})=1-o(1). However, both events 2\mathcal{E}_{2} and 3\mathcal{E}_{3} are based on two random sets 𝒰1\mathcal{U}_{1} and 𝒰2\mathcal{U}_{2}. If we apply the union bound to upper bound the probability of 2\mathcal{E}_{2} and 3\mathcal{E}_{3} without any restriction on the size of 𝒰1\mathcal{U}_{1} and 𝒰2\mathcal{U}_{2}, the bound will be very loose. Our key idea of the proof is to analyze the error events of Step 2 by conditioning on a carefully chosen event. Specifically, let the set of vertex pairs correctly matched through attribute neighbors be denoted as

𝒮1={(i,i)𝒱1u×𝒱2u s.t. Cii>x}.\mathcal{S}_{1}^{\prime}=\{(i,i)\in\mathcal{V}_{1}^{\text{u}}\times\mathcal{V}_{2}^{\text{u}}\text{ s.t. }C_{ii}>x\}.

Note that 𝒮1𝒮1\mathcal{S}_{1}^{\prime}\subseteq\mathcal{S}_{1} since 𝒮1\mathcal{S}_{1}^{\prime} only counts the correctly matched pairs. Then we consider the following auxiliary event:

𝒜{n|𝒮1|<nc},\displaystyle\mathcal{A}\triangleq\{n-|\mathcal{S}_{1}^{\prime}|<n^{c}\},

where cmax{1mqsa2(1+ϵ/2)logn,0}c\triangleq\max\left\{1-\frac{mqs_{\text{a}}^{2}}{(1+\epsilon/2)\log n},0\right\} (cf. the constant ϵ\epsilon in Theorem 1). To prove that 𝖯(1c2c3c)=1o(1){\mathsf{P}}(\mathcal{E}_{1}^{c}\cap\mathcal{E}_{2}^{c}\cap\mathcal{E}_{3}^{c})=1-o(1), it then suffices to prove that 𝖯(𝒜1c2c3c)=1o(1){\mathsf{P}}(\mathcal{A}\cap\mathcal{E}_{1}^{c}\cap\mathcal{E}_{2}^{c}\cap\mathcal{E}_{3}^{c})=1-o(1). Notice that event 1c\mathcal{E}_{1}^{c} guarantees that the anchor set found in the first step only contains correctly matched pairs. It follows that event 1c\mathcal{E}_{1}^{c} implies 𝒮1=𝒮1\mathcal{S}_{1}=\mathcal{S}_{1}^{\prime}. Therefore, event 𝒜1c\mathcal{A}\cap\mathcal{E}_{1}^{c} restricts the size of the set 𝒰1×𝒰2\mathcal{U}_{1}\times\mathcal{U}_{2}, so we can apply a much tighter union bound to upper bound the probability of 2\mathcal{E}_{2} and 3\mathcal{E}_{3} if we condition on the event 𝒜1c\mathcal{A}\cap\mathcal{E}_{1}^{c}.

We now analyze 𝖯(𝒜1c2c3c){\mathsf{P}}(\mathcal{A}\cap\mathcal{E}_{1}^{c}\cap\mathcal{E}_{2}^{c}\cap\mathcal{E}_{3}^{c}). Note that

𝖯(𝒜1c2c3c)\displaystyle{\mathsf{P}}(\mathcal{A}\cap\mathcal{E}_{1}^{c}\cap\mathcal{E}_{2}^{c}\cap\mathcal{E}_{3}^{c})
=𝖯(𝒜1c)𝖯(2c3c|𝒜1c)\displaystyle={\mathsf{P}}(\mathcal{A}\cap\mathcal{E}_{1}^{c}){\mathsf{P}}(\mathcal{E}_{2}^{c}\cap\mathcal{E}_{3}^{c}|\mathcal{A}\cap\mathcal{E}_{1}^{c})
=(1𝖯(𝒜c1))(1𝖯(23|𝒜1c))\displaystyle=(1-{\mathsf{P}}(\mathcal{A}^{c}\cup\mathcal{E}_{1}))(1-{\mathsf{P}}(\mathcal{E}_{2}\cup\mathcal{E}_{3}|\mathcal{A}\cap\mathcal{E}_{1}^{c}))
(1𝖯(𝒜c)𝖯(1))(1𝖯(2|𝒜1c)𝖯(3|𝒜1c)).\displaystyle\geq(1-{\mathsf{P}}(\mathcal{A}^{c})-{\mathsf{P}}(\mathcal{E}_{1}))(1-{\mathsf{P}}(\mathcal{E}_{2}|\mathcal{A}\cap\mathcal{E}_{1}^{c})-{\mathsf{P}}(\mathcal{E}_{3}|\mathcal{A}\cap\mathcal{E}_{1}^{c})). (26)

where (26) follows by the union bound. With Lemmas 14 below, it is easy to see that 𝖯(𝒜1c2c3c)=1o(1){\mathsf{P}}(\mathcal{A}\cap\mathcal{E}_{1}^{c}\cap\mathcal{E}_{2}^{c}\cap\mathcal{E}_{3}^{c})=1-o(1).

Lemma 1.

Consider 𝒢(n,p,su;m,q,sa)\mathcal{G}(n,p,s_{\mathrm{u}};m,q,s_{\mathrm{a}}) with q=o(1)q=o(1) and sa=Θ(1)s_{\mathrm{a}}=\Theta(1). Assume that

mqsa2=Ω(logn).mqs_{\mathrm{a}}^{2}=\Omega(\log n).

Then 𝖯(1)=o(n1/2).{\mathsf{P}}(\mathcal{E}_{1})=o(n^{-1/2}).

Lemma 2.

Consider 𝒢(n,p,su;m,q,sa)\mathcal{G}(n,p,s_{\mathrm{u}};m,q,s_{\mathrm{a}}) with q=o(1)q=o(1) and sa=Θ(1)s_{\mathrm{a}}=\Theta(1). Assume that

mqsa2=Ω(logn).mqs_{\mathrm{a}}^{2}=\Omega(\log n).

Then 𝖯(𝒜)=1o(1).{\mathsf{P}}(\mathcal{A})=1-o(1).

Lemma 3.

Consider 𝒢(n,p,su;m,q,sa)\mathcal{G}(n,p,s_{\mathrm{u}};m,q,s_{\mathrm{a}}) with p=o(1)p=o(1) and su=Θ(1)s_{\mathrm{u}}=\Theta(1). Assume there exists some constant ϵ>0\epsilon>0 such that

mqsa2+npsu2\displaystyle mqs_{\mathrm{a}}^{2}+nps_{\mathrm{u}}^{2} (1+ϵ)logn,\displaystyle\geq(1+\epsilon)\log n, (27)
mqsa2\displaystyle mqs_{\mathrm{a}}^{2} =Ω(logn).\displaystyle=\Omega(\log n). (28)

Then 𝖯(2|𝒜1c)=nΘ(1){\mathsf{P}}(\mathcal{E}_{2}|\mathcal{A}\cap\mathcal{E}_{1}^{c})={n^{-\Theta(1)}}.

Lemma 4.

Consider 𝒢(n,p,su;m,q,sa)\mathcal{G}(n,p,s_{\mathrm{u}};m,q,s_{\mathrm{a}}) with p=o(1)p=o(1) and su=Θ(1)s_{\mathrm{u}}=\Theta(1). Assume there exists some constant ϵ>0\epsilon>0 such that

mqsa2+npsu2\displaystyle mqs_{\mathrm{a}}^{2}+nps_{\mathrm{u}}^{2} (1+ϵ)logn,\displaystyle\geq(1+\epsilon)\log n, (29)
mqsa2\displaystyle mqs_{\mathrm{a}}^{2} =Ω(logn).\displaystyle=\Omega(\log n). (30)

Then 𝖯(3|𝒜1c)=nΘ(1){\mathsf{P}}(\mathcal{E}_{3}|\mathcal{A}\cap\mathcal{E}_{1}^{c})={n^{-\Theta(1)}}.

VI Proof of Theorem 2

Recall that Algorithm AttrSparse consists of the following two steps: In Step 1 (Align through attribute neighbors), the algorithm produces a set 𝒮2\mathcal{S}_{2}, which we refer to as the set of anchor pairs based on CijC_{ij} defined in (6); In Step 2 (Align through user neighbors), the algorithm performs two different processes depending on the sparsity of the user-user connections. In case when the user-user connection is sparse npn1/7np\leq n^{1/7}, the algorithm treats the anchors found in Step 1 as seeds and runs Algorithm III-C. In case the user-user connection is dense np>n1/7np>n^{1/7}, the algorithm explores the anchor vertices in the one-hop neighborhood of each non-anchor user vertex to align them. To prove Theorem 2, we first consider two error events associated with Step 1, and then we separately consider the two different cases for Step 2.

Define

4{(i,j)𝒱1u×𝒱2u s.t. ij and Cijz}.\mathcal{E}_{4}\triangleq\{\exists(i,j)\in\mathcal{V}_{1}^{\text{u}}\times\mathcal{V}_{2}^{\text{u}}\text{ s.t. }i\neq j\text{ and }C_{ij}\geq z\}.

Event 4c\mathcal{E}_{4}^{c} guarantees the anchors found in Step 1 only contain correctly matched pairs. Let

𝒮2={(i,i)𝒱1u×𝒱2u s.t. Ciiz}\mathcal{S}_{2}^{\prime}=\{(i,i)\in\mathcal{V}_{1}^{\text{u}}\times\mathcal{V}_{2}^{\text{u}}\text{ s.t. }C_{ii}\geq z\}

and define

5{|𝒮2|<n7/8}.\mathcal{E}_{5}\triangleq\{|\mathcal{S}_{2}^{\prime}|<n^{7/8}\}.

Event 4c5c\mathcal{E}_{4}^{c}\cap\mathcal{E}_{5}^{c} guarantees the size of anchor set is large. Given 4c5c\mathcal{E}_{4}^{c}\cap\mathcal{E}_{5}^{c}, we first show that algorithm AttrSparse outputs the correct permutation w.h.p., i.e, 𝖯(Π^Π|4c5c)=o(1){\mathsf{P}}(\hat{\Pi}\neq\Pi^{*}|\mathcal{E}_{4}^{c}\cap\mathcal{E}_{5}^{c})=o(1). We consider two different cases for npnp.

  • npn1/7np\leq n^{1/7}. Recall that in this regime of npnp, Algorithm III-C is applied in Step 2. Notice that the choice of set 𝒮2\mathcal{S}_{2} only depends on the user-attribute edges, so it is independent of all user-user edges. Therefore, by symmetry, when we run Algorithm III-C, we can view the seed set 0\mathcal{I}_{0} as a set chosen uniformly at random over all subsets with size |0||\mathcal{I}_{0}| and thus Theorem 6 can directly be applied. So it suffices to show that the conditions in Theorem 6 are satisfied under event 4c5c\mathcal{E}_{4}^{c}\cap\mathcal{E}_{5}^{c}. Event 4c\mathcal{E}_{4}^{c} implies that 0=𝒮2=𝒮2\mathcal{I}_{0}=\mathcal{S}_{2}=\mathcal{S}_{2}^{\prime} and event 5c\mathcal{E}_{5}^{c} implies that |0|n7/8|\mathcal{I}_{0}|\geq n^{7/8}. Moreover, because we assume that npsu2logn=ω(1)nps_{\mathrm{u}}^{2}-\log n=\omega(1), we have 𝖯(Π^Π|4c5c)=o(1){\mathsf{P}}(\hat{\Pi}\neq\Pi^{*}|\mathcal{E}_{4}^{c}\cap\mathcal{E}_{5}^{c})=o(1) by Theorem 6 with β=1/7\beta=1/7.

  • np>n1/7np>n^{1/7}. Recall that in this regime of npnp, we perform a similar process as Step 2 of Algorithm AttrRich. We align the non-anchor vertices by exploring the anchors in their one-hop neighborhood. Similarly to the analysis for Theorem 1, we define two error events associated with this steps. Define

    6{(i,i)𝒰3×𝒰4 s.t. Wiiy|𝒮2|}\displaystyle\mathcal{E}_{6}\triangleq\{\exists(i,i)\in\mathcal{U}_{3}\times\mathcal{U}_{4}\text{ s.t. }W_{ii}\leq y|\mathcal{S}_{2}|\}

    and

    7{(i,j)𝒰3×𝒰4 s.t. ij and Wij>y|𝒮2|}.\displaystyle\mathcal{E}_{7}\triangleq\{\exists(i,j)\in\mathcal{U}_{3}\times\mathcal{U}_{4}\text{ s.t. }i\neq j\text{ and }W_{ij}>y|\mathcal{S}_{2}|\}.

    From the proof of Theorem 1, we know that {Π^Π|4c5c}{6c7c|4c5c}\{\hat{\Pi}\neq\Pi^{*}|\mathcal{E}_{4}^{c}\cap\mathcal{E}_{5}^{c}\}\subset\{\mathcal{E}_{6}^{c}\cap\mathcal{E}_{7}^{c}|\mathcal{E}_{4}^{c}\cap\mathcal{E}_{5}^{c}\}. Therefore, we have

    𝖯(Π^Π|4c5c)\displaystyle{\mathsf{P}}(\hat{\Pi}\neq\Pi^{*}|\mathcal{E}_{4}^{c}\cap\mathcal{E}_{5}^{c}) 𝖯(67|4c5c)\displaystyle\leq{\mathsf{P}}(\mathcal{E}_{6}\cup\mathcal{E}_{7}|\mathcal{E}_{4}^{c}\cap\mathcal{E}_{5}^{c})
    𝖯(6|4c5c)+𝖯(7|4c5c).\displaystyle\leq{\mathsf{P}}(\mathcal{E}_{6}|\mathcal{E}_{4}^{c}\cap\mathcal{E}_{5}^{c})+{\mathsf{P}}(\mathcal{E}_{7}|\mathcal{E}_{4}^{c}\cap\mathcal{E}_{5}^{c}).

    The statement 𝖯(Π^Π|4c5c)=o(1){\mathsf{P}}(\hat{\Pi}\neq\Pi^{*}|\mathcal{E}_{4}^{c}\cap\mathcal{E}_{5}^{c})=o(1) follows from the Lemma below.

    Lemma 5.

    Consider 𝒢(n,p,su;m,q,sa)\mathcal{G}(n,p,s_{\mathrm{u}};m,q,s_{\mathrm{a}}) with p=o(1)p=o(1) and su=Θ(1)s_{\mathrm{u}}=\Theta(1). Suppose that np>n1/7np>n^{1/7}. Then we have

    𝖯(6|4c5c)=nΘ(1).{\mathsf{P}}(\mathcal{E}_{6}|\mathcal{E}_{4}^{c}\cap\mathcal{E}_{5}^{c})=n^{-\Theta(1)}.
    Lemma 6.

    Consider 𝒢(n,p,su;m,q,sa)\mathcal{G}(n,p,s_{\mathrm{u}};m,q,s_{\mathrm{a}}) with p=o(1)p=o(1) and su=Θ(1)s_{\mathrm{u}}=\Theta(1). Suppose that np>n1/7np>n^{1/7}. Then we have

    𝖯(7|4c5c)=nΘ(1).{\mathsf{P}}(\mathcal{E}_{7}|\mathcal{E}_{4}^{c}\cap\mathcal{E}_{5}^{c})=n^{-\Theta(1)}.

Finally, we have

𝖯(Π^Π)\displaystyle{\mathsf{P}}(\hat{\Pi}\neq\Pi^{*}) =𝖯(Π^Π,4c5c)+𝖯(Π^Π,45)\displaystyle={\mathsf{P}}(\hat{\Pi}\neq\Pi^{*},\mathcal{E}_{4}^{c}\cap\mathcal{E}_{5}^{c})+{\mathsf{P}}(\hat{\Pi}\neq\Pi^{*},\mathcal{E}_{4}\cup\mathcal{E}_{5})
𝖯(Π^Π|4c5c)+𝖯(45)\displaystyle\leq{\mathsf{P}}(\hat{\Pi}\neq\Pi^{*}|\mathcal{E}_{4}^{c}\cap\mathcal{E}_{5}^{c})+{\mathsf{P}}(\mathcal{E}_{4}\cup\mathcal{E}_{5})
o(1)+𝖯(4)+𝖯(5).\displaystyle\leq o(1)+{\mathsf{P}}(\mathcal{E}_{4})+{\mathsf{P}}(\mathcal{E}_{5}).

With Lemmas 7 and 8 below, it is easy to see that 𝖯(Π^Π)=o(1){\mathsf{P}}(\hat{\Pi}\neq\Pi^{*})=o(1).

Lemma 7.

Consider 𝒢(n,p,su;m,q,sa)\mathcal{G}(n,p,s_{\mathrm{u}};m,q,s_{\mathrm{a}}) with q=o(1)q=o(1) and sa=Θ(1)s_{\mathrm{a}}=\Theta(1). Assume that there exists some constant τ>0\tau>0 such that

mqsa22lognτlog1q.mqs_{\mathrm{a}}^{2}\geq\frac{2\log n}{\tau\log\frac{1}{q}}. (31)

Then 𝖯(4)=o(1){\mathsf{P}}(\mathcal{E}_{4})=o(1).

Lemma 8.

Consider 𝒢(n,p,su;m,q,sa)\mathcal{G}(n,p,s_{\mathrm{u}};m,q,s_{\mathrm{a}}) with q=o(1)q=o(1) and sa=Θ(1)s_{\mathrm{a}}=\Theta(1). Assume that

mqsa2=o(logn).mqs_{\mathrm{a}}^{2}=o(\log n).

Then 𝖯(5)=o(1){\mathsf{P}}(\mathcal{E}_{5})=o(1).

VII Proof of Lemmas

In this section, we prove the lemmas stated in the proofs of Theorems 1 and 2. To this end, we first state two technical lemmas that bound the binomial tail probability.

Lemma 9 (Theorem 1 in [26]).

Let XBinom(n,θ)X\sim\mathrm{Binom}(n,\theta). Then we have:

  • 𝖯(Xnθ+λ)exp(nDKL(θ+λn||θ)){\mathsf{P}}(X\geq n\theta+\lambda)\leq\exp\left(-nD_{\mathrm{KL}}\left(\theta+\frac{\lambda}{n}||\theta\right)\right) for 0<λ<nnθ0<\lambda<n-n\theta;

  • 𝖯(Xnθλ)exp(nDKL(θλn||θ)){\mathsf{P}}(X\leq n\theta-\lambda)\leq\exp\left(-nD_{\mathrm{KL}}\left(\theta-\frac{\lambda}{n}||\theta\right)\right) for 0<λ<nθ0<\lambda<n\theta,

where DKL(x||y)xlogxy+(1x)log1x1yD_{\mathrm{KL}}(x||y)\triangleq x\log\frac{x}{y}+(1-x)\log\frac{1-x}{1-y} denotes the the Kullback–Leibler divergence between Bern(x)\mathrm{Bern}(x) and Bern(y)\mathrm{Bern}(y).

Lemma 10 (Lemma 4.7.2 in [27]).

Let XBinom(n,θ)X\sim\mathrm{Binom}(n,\theta). Then we have

𝖯(Xλ)18λ(1λ/n)exp{nDKL(λn||θ)}{\mathsf{P}}(X\geq\lambda)\geq\frac{1}{\sqrt{8\lambda(1-\lambda/n)}}\exp\left\{-nD_{\mathrm{KL}}\left(\tfrac{\lambda}{n}\big{|}\big{|}\theta\right)\right\}

for any nθ<λnn\theta<\lambda\leq n.

The following lemma gives an approximation for the Kullback–Leibler divergence term in Lemmas 9 and 10.

Lemma 11.

(Approximation of KL-divergence) Assume that θ=o(1)\theta=o(1), s=Θ(1)s=\Theta(1), and Δ=Θ(1)\Delta=\Theta(1). Then we have

DKL(Δlog1/θθs2||θs2)\displaystyle D_{\mathrm{KL}}\left(\frac{\Delta}{\log{1/\theta}}\theta s^{2}\bigg{|}\bigg{|}\theta s^{2}\right) =θs2+o(θ),\displaystyle=\theta s^{2}+o(\theta), (32)
DKL(Δlog1/θθs2||θ2s2)\displaystyle D_{\mathrm{KL}}\left(\frac{\Delta}{\log{1/\theta}}\theta s^{2}\bigg{|}\bigg{|}\theta^{2}s^{2}\right) =Δθs2+o(θ).\displaystyle=\Delta\theta s^{2}+o(\theta). (33)

With the three technical lemmas above, we are ready to prove Lemmas 1-8.

VII-A Proof of Lemma 1

Recall that we defined error event 1{(i,j)𝒱1u×𝒱2u s.t. ij and Cij>x}.\mathcal{E}_{1}\triangleq\{\exists(i,j)\in\mathcal{V}_{1}^{\text{u}}\times\mathcal{V}_{2}^{\text{u}}\text{ s.t. }i\neq j\text{ and }C_{ij}>x\}. Here we prove 𝖯(1)=o(n1/2){\mathsf{P}}(\mathcal{E}_{1})=o(n^{-1/2}) under the assumption that mqsa2=Ω(logn)mqs_{\mathrm{a}}^{2}=\Omega(\log n). To bound the probability of 1\mathcal{E}_{1}, we first consider distribution of random variable CijC_{ij}. For two different vertices i𝒱1ui\in\mathcal{V}_{1}^{\text{u}} and j𝒱2uj\in\mathcal{V}_{2}^{\text{u}} such that iji\neq j, it follows from the definition of the model 𝒢(n,p,su;m,q,sa)\mathcal{G}(n,p,s_{\mathrm{u}};m,q,s_{\mathrm{a}}) that CijBinom(m,q2sa2)C_{ij}\sim\text{Binom}(m,q^{2}s_{\mathrm{a}}^{2}). Moreover, notice that

x=Δxlog1qmqsa2=ω(mq2sa2)=ω(𝖤[Cij]),x=\frac{\Delta_{x}}{\log\frac{1}{q}}mqs_{\mathrm{a}}^{2}=\omega(mq^{2}s_{\mathrm{a}}^{2})=\omega({\mathsf{E}}[C_{ij}]),

because Δx=Θ(1)\Delta_{x}=\Theta(1) and q=o(1)q=o(1). Now, we can upper bound the probability of error event 1\mathcal{E}_{1} as

𝖯(1)\displaystyle{\mathsf{P}}(\mathcal{E}_{1}) =𝖯{(i,j)𝒱1u×𝒱2u:ij and Cij>x}\displaystyle={\mathsf{P}}\{\exists(i,j)\in\mathcal{V}_{1}^{\text{u}}\times\mathcal{V}_{2}^{\text{u}}:i\neq j\text{ and }C_{ij}>x\}
(n2n)𝖯(C12>x)\displaystyle\leq(n^{2}-n){\mathsf{P}}\left(C_{12}>x\right) (34)
n2exp(mDKL(xm||q2sa2))\displaystyle\leq n^{2}\exp\left(-mD_{\text{KL}}\left(\tfrac{x}{m}\big{|}\big{|}q^{2}s_{\mathrm{a}}^{2}\right)\right) (35)
=n2exp(mDKL(Δxlog1qqsa2||q2sa2))\displaystyle=n^{2}\exp\left(-mD_{\text{KL}}\left(\frac{\Delta_{x}}{\log\frac{1}{q}}qs_{\mathrm{a}}^{2}\bigg{|}\bigg{|}q^{2}s_{\mathrm{a}}^{2}\right)\right)
=n2exp(m(Δxqsa2+o(q)))\displaystyle=n^{2}\exp(-m(\Delta_{x}qs_{\mathrm{a}}^{2}+o(q))) (36)
=exp(2lognm(Δxqsa2+o(q)))\displaystyle=\exp(2\log n-m(\Delta_{x}qs_{\mathrm{a}}^{2}+o(q)))
=o(n1/2),\displaystyle=o(n^{-1/2}), (37)

where (34) follows from the union bound, (35) follows from Lemma 9, (36) follows from Lemma 11 and (37) follows since constant Δx3lognmqsa2\Delta_{x}\geq\frac{3\log n}{mqs_{\mathrm{a}}^{2}}.

VII-B Proof of Lemma 2

Recall that we defined auxiliary event 𝒜{n|𝒮1|<nc}\mathcal{A}\triangleq\{n-|\mathcal{S}_{1}^{\prime}|<n^{c}\}, where 𝒮1={(i,i)𝒱1u×𝒱2u s.t. Cii>x}\mathcal{S}_{1}^{\prime}=\{(i,i)\in\mathcal{V}_{1}^{\text{u}}\times\mathcal{V}_{2}^{\text{u}}\text{ s.t. }C_{ii}>x\}. Here we prove 𝖯(𝒜)=1o(1){\mathsf{P}}(\mathcal{A})=1-o(1) under the assumption that mqsa2=Ω(logn)mqs_{\mathrm{a}}^{2}=\Omega(\log n). To show this, we first consider the distribution of random variable CiiC_{ii} and upper bound the probability of event {Ciix}\{C_{ii}\leq x\}. For each vertex i𝒱1ui\in\mathcal{V}_{1}^{\text{u}}, it follows from the definition of the model 𝒢(n,p,su;m,q,sa)\mathcal{G}(n,p,s_{\mathrm{u}};m,q,s_{\mathrm{a}}) that CiiBinom(m,qsa2)C_{ii}\sim\text{Binom}(m,qs_{\mathrm{a}}^{2}). Notice that

x=Δxlog1qmqsa2=o(mqsa2)=o(𝖤[Cii]),x=\frac{\Delta_{x}}{\log\frac{1}{q}}mqs_{\mathrm{a}}^{2}=o(mqs_{\mathrm{a}}^{2})=o({\mathsf{E}}[C_{ii}]),

because q=o(1)q=o(1) and Δx=Θ(1)\Delta_{x}=\Theta(1). We can upper bound the probability of the tail event {Ciix}\{C_{ii}\leq x\} using Lemma 9:

𝖯(Ciix)\displaystyle{\mathsf{P}}(C_{ii}\leq x) exp(mDKL(xm||qsa2))\displaystyle\leq\exp\left(-mD_{\text{KL}}\left(\frac{x}{m}||qs_{\mathrm{a}}^{2}\right)\right)
=exp(mDKL(Δxlog1qqsa2||qsa2))\displaystyle=\exp\left(-mD_{\text{KL}}\left(\frac{\Delta_{x}}{\log\frac{1}{q}}qs_{\mathrm{a}}^{2}||qs_{\mathrm{a}}^{2}\right)\right)
=exp(m(qsa2+o(q))),\displaystyle=\exp\left(-m\left(qs_{\mathrm{a}}^{2}+o(q)\right)\right), (38)

where (38) follows from Lemma 11. For simplicity, we denote exp(mDKL(Δxlog1qqsa2||qsa2))\exp\left(-mD_{\text{KL}}\left(\frac{\Delta_{x}}{\log\frac{1}{q}}qs_{\mathrm{a}}^{2}||qs_{\mathrm{a}}^{2}\right)\right) by γ\gamma from this point. By (38) and the assumption that mqsa2=Ω(logn)mqs_{\mathrm{a}}^{2}=\Omega(\log n), we have γ=o(1)\gamma=o(1).

Furthermore, notice that for each different i𝒱1ui\in\mathcal{V}_{1}^{\text{u}}, the random variable CiiC_{ii} are independent and identically distributed. Therefore, the number of vertices i𝒱1ui\in\mathcal{V}_{1}^{\text{u}} with CiixC_{ii}\leq x is distributed according to the Binomial distribution

n|𝒮1|Binom(n,𝖯(Ciix)).n-|\mathcal{S}_{1}^{\prime}|\sim\text{Binom}(n,{\mathsf{P}}(C_{ii}\leq x)).

By the upper bound (38), for any positive number zz, we have

𝖯(n|𝒮1|z)𝖯(Binom(n,γ)z).\displaystyle{\mathsf{P}}(n-|\mathcal{S}_{1}^{\prime}|\geq z)\leq{\mathsf{P}}\left(\text{Binom}\left(n,\gamma\right)\geq z\right). (39)

Recall that cmax{1mqsa2(1+ϵ/2)logn,0}c\triangleq\max\left\{1-\frac{mqs_{\mathrm{a}}^{2}}{(1+\epsilon/2)\log n},0\right\}, where ϵ\epsilon is a positive constant. We have

nc1γ\displaystyle\frac{n^{c-1}}{\gamma} nmqsa2(1+ϵ/2)lognexp(mDKL(Δxlog1qqsa2||qsa2))\displaystyle\geq n^{-\frac{mqs_{\mathrm{a}}^{2}}{(1+\epsilon/2)\log n}}\exp\left(mD_{\text{KL}}\left(\frac{\Delta_{x}}{\log\frac{1}{q}}qs_{\mathrm{a}}^{2}||qs_{\mathrm{a}}^{2}\right)\right)
=exp(mqsa21+ϵ/2+mqsa2+o(mq))\displaystyle=\exp\left(-\frac{mqs_{\mathrm{a}}^{2}}{1+\epsilon/2}+mqs_{\mathrm{a}}^{2}+o(mq)\right) (40)
=ω(1),\displaystyle=\omega(1), (41)

where (40) follows from (38), and (41) follows since mqsa2=Ω(logn)mqs_{\mathrm{a}}^{2}=\Omega(\log n). Finally, we can upper bound the probability of event 𝒜c\mathcal{A}^{c} as

𝖯(𝒜c)\displaystyle{\mathsf{P}}(\mathcal{A}^{c})
=𝖯(n|𝒮1|nc)\displaystyle={\mathsf{P}}(n-|\mathcal{S}_{1}^{\prime}|\geq n^{c})
𝖯(Binom(n,γ)nc)\displaystyle\leq{\mathsf{P}}\left(\text{Binom}\left(n,\gamma\right)\geq n^{c}\right) (42)
exp(nDKL(nc1||γ))\displaystyle\leq\exp(-nD_{\text{KL}}(n^{c-1}||\gamma)) (43)
=exp(n(nc1lognc1γ+(1nc1)log1nc11γ))\displaystyle=\exp\left(-n\left(n^{c-1}\log\tfrac{n^{c-1}}{\gamma}+(1-n^{c-1})\log\tfrac{1-n^{c-1}}{1-\gamma}\right)\right)
=exp(n(nc1lognc1γ\displaystyle=\exp\bigg{(}-n\bigg{(}n^{c-1}\log\tfrac{n^{c-1}}{\gamma}
+(1nc1)γnc11γ(1+o(1))))\displaystyle\;\;\;\;+(1-n^{c-1})\tfrac{\gamma-n^{c-1}}{1-\gamma}(1+o(1))\bigg{)}\bigg{)} (44)
=exp(n(ω(nc1)nc1(1+o(1))))\displaystyle=\exp\left(-n\left(\omega(n^{c-1})-n^{c-1}(1+o(1))\right)\right) (45)
=exp(nω(nc1))\displaystyle=\exp\left(-n\cdot\omega(n^{c-1})\right)
=o(1),\displaystyle=o(1), (46)

where (42) follows from (39), (43) follows from Lemma 9, (44) follow from the Taylor expansion of the function logx\log x and the fact that nc1=o(1)n^{c-1}=o(1) and γ=o(1)\gamma=o(1), (45) follows since nc1=ω(γ)n^{c-1}=\omega(\gamma) and finally, (46) follows from the fact that c0c\geq 0.

VII-C Proof of Lemma 3

Here we prove that the conditions (27) and (28) imply 𝖯(2|𝒜1c)=nΘ(1)\mathsf{P}(\mathcal{E}_{2}|\mathcal{A}\cap\mathcal{E}_{1}^{c})=n^{-\Theta(1)}. Recall that we defined events

2\displaystyle\mathcal{E}_{2} ={(i,i)𝒰1×𝒰2:Wiiy|𝒮1|},\displaystyle=\{\exists(i,i)\in\mathcal{U}_{1}\times\mathcal{U}_{2}:W_{ii}\leq y{|\mathcal{S}_{1}|}\},
𝒜\displaystyle\mathcal{A} ={n|𝒮1|<nc},\displaystyle=\{n-|\mathcal{S}_{1}^{\prime}|<n^{c}\},
1\displaystyle\mathcal{E}_{1} ={(i,j)𝒱1u×𝒱2u s.t. ij and Cij>x}.\displaystyle=\{\exists(i,j)\in\mathcal{V}_{1}^{\text{u}}\times\mathcal{V}_{2}^{\text{u}}\text{ s.t. }i\neq j\text{ and }C_{ij}>x\}.

To analyze the conditional event 2|𝒜1c\mathcal{E}_{2}|\mathcal{A}\cap\mathcal{E}_{1}^{c}, first notice that 1c\mathcal{E}_{1}^{c} implies that only identical pairs are in the anchor set, i.e., 𝒰1=𝒰2\mathcal{U}_{1}=\mathcal{U}_{2}. Thus, we obtain a simplified expression of the conditional event as

2|𝒜1c={i𝒰1:Wiiy|𝒮1|}𝒜1c.\mathcal{E}_{2}|\mathcal{A}\cap\mathcal{E}_{1}^{c}=\{\exists i\in\mathcal{U}_{1}:W_{ii}\leq y{|\mathcal{S}_{1}|}\}\mid\mathcal{A}\cap\mathcal{E}_{1}^{c}.

The condition on the auxiliary event 𝒜\mathcal{A} further implies that the number of identical pairs that are not discovered in the anchor set is at most ncn^{c}, i.e., |𝒰1|<nc|\mathcal{U}_{1}|<n^{c}. Here, recall that c=max{1mqsa2(1+ϵ/2)logn,0}c=\max\left\{1-\frac{mqs_{\text{a}}^{2}}{(1+\epsilon/2)\log n},0\right\}. We note that c=0c=0 implies that the unmatched users set 𝒰1=\mathcal{U}_{1}=\emptyset, which is taken care of by a separate analysis in the proof of Theorem 1. For the remaining analysis in this Lemma, we only consider the case where 𝒰1\mathcal{U}_{1}\neq\emptyset, and consequently we have c=1mqsa2(1+ϵ/2)lognc=1-\frac{mqs_{\text{a}}^{2}}{(1+\epsilon/2)\log n}.

Applying the union bound on the conditional error event, we have

𝖯(2|𝒜1c)=𝖯(i𝒰1,Wiiy|𝒮1|𝒜1c)\displaystyle\mathsf{P}(\mathcal{E}_{2}|\mathcal{A}\cap\mathcal{E}_{1}^{c})=\mathsf{P}(\exists i\in\mathcal{U}_{1},W_{ii}\leq y{|\mathcal{S}_{1}|}\mid\mathcal{A}\cap\mathcal{E}_{1}^{c})
=k=0nc𝖯(i𝒰1,Wiiy|𝒮1||𝒰1|=k,1c)𝖯(|𝒰1|=k𝒜1c)\displaystyle=\sum_{k=0}^{n^{c}}\mathsf{P}(\exists i\in\mathcal{U}_{1},W_{ii}\leq y{|\mathcal{S}_{1}|}\mid|\mathcal{U}_{1}|=k,\mathcal{E}_{1}^{c})\mathsf{P}(|\mathcal{U}_{1}|=k\mid\mathcal{A}\cap\mathcal{E}_{1}^{c}) (47)
k=0nck𝖯(W11y|𝒮1||𝒰1|=k,1c)𝖯(|𝒰1|=k𝒜1c)\displaystyle\leq\sum_{k=0}^{n^{c}}k\mathsf{P}(W_{11}\leq y{|\mathcal{S}_{1}|}\mid|\mathcal{U}_{1}|=k,\mathcal{E}_{1}^{c})\mathsf{P}(|\mathcal{U}_{1}|=k\mid\mathcal{A}\cap\mathcal{E}_{1}^{c}) (48)
maxk[0,nc]{k𝖯(W11y|𝒮1||𝒰1|=k,1c)}.\displaystyle\leq\max_{k\in[0,n^{c}]}\{k\mathsf{P}(W_{11}\leq y{|\mathcal{S}_{1}|}\mid|\mathcal{U}_{1}|=k,\mathcal{E}_{1}^{c})\}. (49)

In (47), we have ncn^{c} as the upper limit in the summation because of conditioning on 𝒜\mathcal{A}. Equation (48) follows from the union bound.

Next, we upper bound 𝖯(W11y|𝒮1||𝒰1|=k,1c)\mathsf{P}(W_{11}\leq y{|\mathcal{S}_{1}|}\mid|\mathcal{U}_{1}|=k,\mathcal{E}_{1}^{c}). Recall

W11=v𝒩1u(1),u𝒩2u(1)𝟙{(v,u)𝒮1}W_{11}=\sum_{v\in\mathcal{N}_{1}^{\text{u}}(1),u\in\mathcal{N}_{2}^{\text{u}}(1)}\mathbbm{1}_{\{(v,u)\in\mathcal{S}_{1}\}}

counts the number of aligned anchor neighbors of a user vertex. To see the conditional distribution of W11W_{11}, notice that conditioned on events 1c\mathcal{E}_{1}^{c} and |𝒰1|=k|\mathcal{U}_{1}|=k, the whole anchor set 𝒮1\mathcal{S}_{1} only contains identical pairs and is of size nkn-k. Thus, we get the following simpler expression

W11{|𝒰1|=k,1c}\displaystyle W_{11}\mid\{|\mathcal{U}_{1}|=k,\mathcal{E}_{1}^{c}\} =v𝒩1u(1),v𝒩2u(1)𝟙{(v,v)𝒮1}\displaystyle=\sum_{v\in\mathcal{N}_{1}^{\text{u}}(1),v\in\mathcal{N}_{2}^{\text{u}}(1)}\mathbbm{1}_{\{(v,v)\in\mathcal{S}_{1}\}}
=(v,v)𝒮1𝟙{v𝒩1u(1),v𝒩2u(1)}.\displaystyle=\sum_{(v,v)\in\mathcal{S}_{1}}\mathbbm{1}\{v\in\mathcal{N}_{1}^{\text{u}}(1),v\in\mathcal{N}_{2}^{\text{u}}(1)\}.

Here this random variable W11{|𝒰1|=k,1c}W_{11}\mid\{|\mathcal{U}_{1}|=k,\mathcal{E}_{1}^{c}\} is the summation of |𝒮1|=nk|\mathcal{S}_{1}|=n-k independent and identically distributed Bernoulli random variables. Each Bernoulli random variable takes value 1 when a pair of anchor vertices connect to vertex 1 in both G1G_{1} and G2G_{2}, and this happens with probability psu2ps_{\mathrm{u}}^{2}. We therefore have W11{|𝒰1|=k,1c}Binom(nk,psu2)W_{11}\mid\{|\mathcal{U}_{1}|=k,\mathcal{E}_{1}^{c}\}\sim\operatorname*{\mathrm{Binom}}(n-k,ps_{\mathrm{u}}^{2}). To upper bound the probability 𝖯(W11y|𝒮1||𝒰1|=k,1c)\mathsf{P}(W_{11}\leq y{|\mathcal{S}_{1}|}\mid|\mathcal{U}_{1}|=k,\mathcal{E}_{1}^{c}) in (49), we use the Chernoff bound from Lemma 9 and get

𝖯(W11y|𝒮1||𝒰1|=k,1c)\displaystyle\mathsf{P}(W_{11}\leq y{|\mathcal{S}_{1}|}\mid|\mathcal{U}_{1}|=k,\mathcal{E}_{1}^{c})
exp{(nk)DKL(Δylog1/ppsu2||psu2)}.\displaystyle\leq\exp\left\{-(n-k)D_{\mathrm{KL}}\left(\frac{\Delta_{y}}{\log 1/p}ps_{\mathrm{u}}^{2}||ps_{\mathrm{u}}^{2}\right)\right\}. (50)

Plugging (50) into the previous (49), we finally have

𝖯(2|𝒜1c)\displaystyle\mathsf{P}(\mathcal{E}_{2}|\mathcal{A}\cap\mathcal{E}_{1}^{c})
maxk[0,nc]{kexp{(nk)DKL(Δylog1/ppsu2||psu2)}\displaystyle\leq\max_{k\in[0,n^{c}]}\left\{k\exp\{-(n-k)D_{\mathrm{KL}}\left(\frac{\Delta_{y}}{\log 1/p}ps_{\mathrm{u}}^{2}||ps_{\mathrm{u}}^{2}\right)\right\}
=ncexp{(nnc)DKL(Δylog1/ppsu2||psu2)}\displaystyle=n^{c}\exp\left\{-(n-n^{c})D_{\mathrm{KL}}\left(\frac{\Delta_{y}}{\log 1/p}ps_{\mathrm{u}}^{2}||ps_{\mathrm{u}}^{2}\right)\right\}
=exp{clogn(nnc)(psu2+o(psu2))}\displaystyle=\exp\{c\log n-(n-n^{c})(ps_{\mathrm{u}}^{2}+o(ps_{\mathrm{u}}^{2}))\} (51)
exp{lognmqsa2(1+ϵ/2)npsu2+o(np)}\displaystyle\leq\exp\left\{\log n-\frac{mqs_{\text{a}}^{2}}{(1+\epsilon/2)}-nps_{\mathrm{u}}^{2}+o(np)\right\} (52)
exp{lognmqsa2+npsu2(1+ϵ/2)}\displaystyle\leq\exp\left\{\log n-\frac{mqs_{\text{a}}^{2}+nps_{\mathrm{u}}^{2}}{(1+\epsilon/2)}\right\} (53)
exp{ϵ/21+ϵ/2logn}\displaystyle\leq\exp\left\{-\frac{\epsilon/2}{1+\epsilon/2}\log n\right\} (54)
=nΘ(1).\displaystyle={n^{-\Theta(1)}}.

Here (51) follows from the KL-divergence approximation (32) in Lemma 11. We get (52) by plugging in c=1mqsa2(1+ϵ/2)lognc=1-\frac{mqs_{\text{a}}^{2}}{(1+\epsilon/2)\log n} and applying assumption (28) mqsa2=Ω(logn)mqs_{\mathrm{a}}^{2}=\Omega(\log n). Equation (53) follows because o(np)ϵ/21+ϵ/2npsu2=Θ(np)o(np)\leq\frac{\epsilon/2}{1+\epsilon/2}nps_{\mathrm{u}}^{2}=\Theta(np). Equation (54) follows from the condition (27), which requires that mqsa2+npsu2(1+ϵ)lognmqs_{\mathrm{a}}^{2}+nps_{\mathrm{u}}^{2}\geq(1+\epsilon)\log n for a constant ϵ\epsilon.

VII-D Proof of Lemma 4

Here we prove that conditions (29) and (30) imply 𝖯(3|𝒜1c)=nΘ(1)\mathsf{P}(\mathcal{E}_{3}|\mathcal{A}\cap\mathcal{E}_{1}^{c})=n^{-\Theta(1)}. The conditioned events here are exactly the same as those of Lemma 3, and we use a similar proof strategy. Recall that we defined the event

3{(i,j)𝒰1×𝒰2 s.t. ij and Wij>y|𝒮1|}.\displaystyle\mathcal{E}_{3}\triangleq\{\exists(i,j)\in\mathcal{U}_{1}\times\mathcal{U}_{2}\text{ s.t. }i\neq j\text{ and }W_{ij}>y{|\mathcal{S}_{1}|}\}.

To analyze the conditional event 3|𝒜1c\mathcal{E}_{3}|\mathcal{A}\cap\mathcal{E}_{1}^{c}, we reuse the same observation from the proof of Lemma 3, that only identical pairs are in the anchor set. Thus, we are able to simplify the expression as

3𝒜1c={i,j𝒰1,ij:Wij>y|𝒮1|}𝒜1c,\mathcal{E}_{3}\mid\mathcal{A}\cap\mathcal{E}_{1}^{c}=\{\exists i,j\in\mathcal{U}_{1},i\neq j:W_{ij}>y{|\mathcal{S}_{1}|}\}\mid\mathcal{A}\cap\mathcal{E}_{1}^{c},

where the number of unaligned identical pairs |𝒰1|<nc|\mathcal{U}_{1}|<n^{c}. Here, we also have c=1mqsa2(1+ϵ/2)lognc=1-\frac{mqs_{\text{a}}^{2}}{(1+\epsilon/2)\log n}, because c=0c=0 implies that the unmatched users set 𝒰1=\mathcal{U}_{1}=\emptyset, which is taken care of by a separate analysis in the proof of Theorem 1.

Applying the union bound on the conditional error event, we get

𝖯(3|𝒜1c)=𝖯(i,j𝒰1,ij,Wij>y|𝒮1|𝒜1c)\displaystyle\mathsf{P}(\mathcal{E}_{3}|\mathcal{A}\cap\mathcal{E}_{1}^{c})=\mathsf{P}(\exists i,j\in\mathcal{U}_{1},i\neq j,W_{ij}>y{|\mathcal{S}_{1}|}\mid\mathcal{A}\cap\mathcal{E}_{1}^{c})
=k=0nc𝖯(i,j𝒰1,ij,Wij>y|𝒮1||𝒰1|=k,1c)\displaystyle=\sum_{k=0}^{n^{c}}\mathsf{P}(\exists i,j\in\mathcal{U}_{1},i\neq j,W_{ij}>y{|\mathcal{S}_{1}|}\mid|\mathcal{U}_{1}|=k,\mathcal{E}_{1}^{c})
×𝖯(|𝒰1|=k𝒜1c)\displaystyle\hskip 36.0pt\times\mathsf{P}(|\mathcal{U}_{1}|=k\mid\mathcal{A}\cap\mathcal{E}_{1}^{c})
k=0nck2𝖯(W12>y|𝒮1||𝒰1|=k,1c)𝖯(|𝒰1|=k𝒜1c)\displaystyle\leq\sum_{k=0}^{n^{c}}k^{2}\mathsf{P}(W_{12}>y{|\mathcal{S}_{1}|}\mid|\mathcal{U}_{1}|=k,\mathcal{E}_{1}^{c})\mathsf{P}(|\mathcal{U}_{1}|=k\mid\mathcal{A}\cap\mathcal{E}_{1}^{c}) (55)
maxk[0,nc]{k2𝖯(W12>y|𝒮1||𝒰1|=k,1c)}.\displaystyle\leq\max_{k\in[0,n^{c}]}\{k^{2}\mathsf{P}(W_{12}>y{|\mathcal{S}_{1}|}\mid|\mathcal{U}_{1}|=k,\mathcal{E}_{1}^{c})\large\}. (56)

Here we further upper bound 𝖯(W12>y|𝒮1||𝒰1|=k,1c)\mathsf{P}(W_{12}>y{|\mathcal{S}_{1}|}\mid{|\mathcal{U}_{1}|=k},\mathcal{E}_{1}^{c}) in (56). Recall that

W12=v𝒩1u(1),u𝒩2u(2)𝟙{(v,u)𝒮1},W_{12}=\sum_{v\in\mathcal{N}_{1}^{\text{u}}(1),u\in\mathcal{N}_{2}^{\text{u}}(2)}\mathbbm{1}_{\{(v,u)\in\mathcal{S}_{1}\}},

represents the number of aligned anchor neighbors of user vertex 11 in G1G_{1} and user vertex 22 in G2G_{2}, Notice that conditioned on events 1c\mathcal{E}_{1}^{c} and |𝒰1|=k|\mathcal{U}_{1}|=k , the anchor set 𝒮1\mathcal{S}_{1} only contains identical pairs and is of size nkn-k. Thus, we get the following simpler expression

W12{|𝒰1|=k,1c}\displaystyle W_{12}\mid\{{|\mathcal{U}_{1}|=k},\mathcal{E}_{1}^{c}\} =v𝒩1u(1),v𝒩2u(2)𝟙{(v,v)𝒮1}\displaystyle=\sum_{v\in\mathcal{N}_{1}^{\text{u}}(1),v\in\mathcal{N}_{2}^{\text{u}}(2)}\mathbbm{1}_{\{(v,v)\in\mathcal{S}_{1}\}}
=(v,v)𝒮1𝟙{v𝒩1u(1),v𝒩2u(2)}\displaystyle=\sum_{(v,v)\in\mathcal{S}_{1}}\mathbbm{1}\{v\in\mathcal{N}_{1}^{\text{u}}(1),v\in\mathcal{N}_{2}^{\text{u}}(2)\}

Here the random variable W12{|𝒰1|=k,1c}W_{12}\mid\{{|\mathcal{U}_{1}|=k},\mathcal{E}_{1}^{c}\} is the summation of nkn-k independent and identically distributed Bernoulli random variables. Each Bernoulli random variable takes value 1 when a pair of anchor vertices in 𝒮1\mathcal{S}_{1} connect to vertex 1 in G1G_{1} and vertex 2 in G2G_{2} and this happens with probability p2su2p^{2}s_{\mathrm{u}}^{2}. Therefore, we have W12|{|𝒰1|=k,1c}Binom(nk,p2su2)W_{12}|\{|\mathcal{U}_{1}|=k,\mathcal{E}_{1}^{c}\}\sim\operatorname*{\mathrm{Binom}}(n-k,p^{2}s_{\mathrm{u}}^{2}). We then apply Chernoff bound in Lemma 9 and get

𝖯(W12>y|𝒮1||𝒰1|=k,1c)\displaystyle\mathsf{P}(W_{12}>y{|\mathcal{S}_{1}|}\mid|\mathcal{U}_{1}|=k,\mathcal{E}_{1}^{c})
exp{(nk)DKL(Δylog1/ppsu2||p2su2)}\displaystyle\leq\exp\left\{-(n-k)D_{\mathrm{KL}}\left(\frac{\Delta_{y}}{\log 1/p}ps_{\mathrm{u}}^{2}||p^{2}s_{\mathrm{u}}^{2}\right)\right\} (57)

Plugging (57) into (56) , we have

𝖯(3|𝒜1c)\displaystyle\mathsf{P}(\mathcal{E}_{3}|\mathcal{A}\cap\mathcal{E}_{1}^{c})
maxk[0,nc]{k2exp{(nk)DKL(Δylog1/ppsu2||p2su2)}\displaystyle\leq\max_{k\in[0,n^{c}]}\left\{k^{2}\exp\{-(n-k)D_{\mathrm{KL}}\left(\frac{\Delta_{y}}{\log 1/p}ps_{\mathrm{u}}^{2}||p^{2}s_{\mathrm{u}}^{2}\right)\right\}
=n2cexp{(nnc)DKL(Δylog1/ppsu2||p2su2)}\displaystyle=n^{2c}\exp\left\{-(n-n^{c})D_{\mathrm{KL}}\left(\frac{\Delta_{y}}{\log 1/p}ps_{\mathrm{u}}^{2}||p^{2}s_{\mathrm{u}}^{2}\right)\right\}
exp{2clogn(nnc)(Δypsu2+o(p))}\displaystyle\leq\exp\{2c\log n-(n-n^{c})(\Delta_{y}ps_{\mathrm{u}}^{2}+o(p))\} (58)
exp{2logn2mqsa21+ϵ/2Δynpsu2+o(pn)}\displaystyle\leq\exp\left\{2\log n-\frac{2mqs_{\mathrm{a}}^{2}}{1+\epsilon/2}-\Delta_{y}nps_{\mathrm{u}}^{2}+o(pn)\right\} (59)
exp{2logn2mqsa2+2npsu21+ϵ/2}\displaystyle\leq\exp\left\{2\log n-\frac{2mqs_{\mathrm{a}}^{2}+2nps_{\mathrm{u}}^{2}}{1+\epsilon/2}\right\} (60)
exp{ϵ1+ϵ/2logn}\displaystyle\leq\exp\left\{-\frac{\epsilon}{1+\epsilon/2}\log n\right\} (61)
=nΘ(1).\displaystyle=n^{-\Theta(1)}. (62)

Here (58) follows from the KL-divergence approximation formula (33) in Lemma 11. We get (59) by plugging in c=1mqsa2(1+ϵ/2)lognc=1-\frac{mqs_{\text{a}}^{2}}{(1+\epsilon/2)\log n} and applying assumption (30) mqsa2=Ω(logn)mqs_{\mathrm{a}}^{2}=\Omega(\log n). Equation (60) follows from the fact that o(np)ϵ/2Δy1+ϵ/2npsu2=Θ(np)o(np)\leq\frac{\epsilon/2\Delta_{y}}{1+\epsilon/2}nps_{\mathrm{u}}^{2}=\Theta(np), and condition that Δy2\Delta_{y}\geq 2. Equation (61) follows from the condition (29).

VII-E Proof of Lemma 5

Recall that we defined events

4={(i,j)𝒱1u×𝒱2u s.t. ij and Cijz},\displaystyle\mathcal{E}_{4}=\{\exists(i,j)\in\mathcal{V}_{1}^{\text{u}}\times\mathcal{V}_{2}^{\text{u}}\text{ s.t. }i\neq j\text{ and }C_{ij}\geq z\},
5={|𝒮2|<n7/8},\displaystyle\mathcal{E}_{5}=\{|\mathcal{S}_{2}^{\prime}|<n^{7/8}\},
6={(i,i)𝒰3×𝒰4 s.t. Wiiy|𝒮2|}.\displaystyle\mathcal{E}_{6}=\{\exists(i,i)\in\mathcal{U}_{3}\times\mathcal{U}_{4}\text{ s.t. }W_{ii}\leq y|\mathcal{S}_{2}|\}.

Here we prove that 𝖯(6|4c5c)=o(1){\mathsf{P}}(\mathcal{E}_{6}|\mathcal{E}_{4}^{c}\cap\mathcal{E}_{5}^{c})=o(1) under the assumption that np>n1/7np>n^{1/7}. By the analogous argument as for equations (49) and (50) respectively, we have that

𝖯(6|4c5c)\displaystyle{\mathsf{P}}(\mathcal{E}_{6}|\mathcal{E}_{4}^{c}\cap\mathcal{E}_{5}^{c})
maxk[0,nn7/8]{k𝖯(W11y|𝒮2||𝒰3|=k,4c)},\displaystyle\leq\max_{k\in[0,n-n^{7/8}]}\{k\mathsf{P}(W_{11}\leq y|\mathcal{S}_{2}|\mid|\mathcal{U}_{3}|=k,\mathcal{E}_{4}^{c})\}, (63)

and

𝖯(W11y|𝒮2||𝒰3|=k,4c)\displaystyle\mathsf{P}(W_{11}\leq y|\mathcal{S}_{2}|\mid|\mathcal{U}_{3}|=k,\mathcal{E}_{4}^{c})
exp{(nk)DKL(Δylog1/ppsu2||psu2)}.\displaystyle\leq\exp\left\{-(n-k)D_{\mathrm{KL}}\left(\frac{\Delta_{y}}{\log 1/p}ps_{\mathrm{u}}^{2}||ps_{\mathrm{u}}^{2}\right)\right\}. (64)

Finally, plugging equation (64) into equation (63) gives

𝖯(6|4c5c)\displaystyle{\mathsf{P}}(\mathcal{E}_{6}|\mathcal{E}_{4}^{c}\cap\mathcal{E}_{5}^{c})
maxk[0,nn7/8]{kexp{(nk)DKL(Δylog1/ppsu2||psu2)}}\displaystyle\leq\max_{k\in[0,n-n^{7/8}]}\left\{k\exp\left\{-(n-k)D_{\mathrm{KL}}\left(\tfrac{\Delta_{y}}{\log 1/p}ps_{\mathrm{u}}^{2}||ps_{\mathrm{u}}^{2}\right)\right\}\right\}
nexp(n7/8DKL(Δylog1/ppsu2||psu2))\displaystyle\leq n\exp\left(-n^{7/8}D_{\mathrm{KL}}\left(\tfrac{\Delta_{y}}{\log 1/p}ps_{\mathrm{u}}^{2}||ps_{\mathrm{u}}^{2}\right)\right)
exp(lognn7/8(psu2+o(psu2)))\displaystyle\leq\exp(\log n-n^{7/8}(ps_{\mathrm{u}}^{2}+o(ps_{\mathrm{u}}^{2}))) (65)
=nΘ(1),\displaystyle=n^{-\Theta(1)}, (66)

where (65) follows from the KL-divergence approximation (32) in Lemma 11 and (66) follows because np>n1/7np>n^{1/7}.

VII-F Proof of Lemma 6

Recall that we defined event

7{(i,j)𝒰3×𝒰4 s.t. ij and Wij>y|𝒮2|}.\displaystyle\mathcal{E}_{7}\triangleq\{\exists(i,j)\in\mathcal{U}_{3}\times\mathcal{U}_{4}\text{ s.t. }i\neq j\text{ and }W_{ij}>y|\mathcal{S}_{2}|\}.

Here we prove that 𝖯(7|4c5c)=o(1){\mathsf{P}}(\mathcal{E}_{7}|\mathcal{E}_{4}^{c}\cap\mathcal{E}_{5}^{c})=o(1) under the assumption that np>n1/7np>n^{1/7}. By the analogous argument as for equations (56) and (57), we have that

𝖯(7|4c5c)\displaystyle{\mathsf{P}}(\mathcal{E}_{7}|\mathcal{E}_{4}^{c}\cap\mathcal{E}_{5}^{c})
maxk[0,nn7/8]{k2𝖯(W12>y|𝒮2||𝒰3|=k,4c)},\displaystyle\leq\max_{k\in[0,n-n^{7/8}]}\{k^{2}\mathsf{P}(W_{12}>y|\mathcal{S}_{2}|\mid|\mathcal{U}_{3}|=k,\mathcal{E}_{4}^{c})\}, (67)

and

𝖯(W12>y|𝒮2||𝒰3|=k,4c)\displaystyle\mathsf{P}(W_{12}>y|\mathcal{S}_{2}|\mid|\mathcal{U}_{3}|=k,\mathcal{E}_{4}^{c})
exp{(nk)DKL(Δylog1/ppsu2||p2su2)}.\displaystyle\leq\exp\left\{-(n-k)D_{\mathrm{KL}}\left(\frac{\Delta_{y}}{\log 1/p}ps_{\mathrm{u}}^{2}||p^{2}s_{\mathrm{u}}^{2}\right)\right\}. (68)

Plugging equation (68) into equation (67) gives

𝖯(7|4c5c)\displaystyle{\mathsf{P}}(\mathcal{E}_{7}|\mathcal{E}_{4}^{c}\cap\mathcal{E}_{5}^{c})
maxk[0,nn7/8]{k2exp{(nk)DKL(Δylog1/ppsu2||p2su2)}}\displaystyle\leq\max_{k\in[0,n-n^{7/8}]}\left\{k^{2}\exp\left\{-(n-k)D_{\mathrm{KL}}\left(\tfrac{\Delta_{y}}{\log 1/p}ps_{\mathrm{u}}^{2}||p^{2}s_{\mathrm{u}}^{2}\right)\right\}\right\}
n2exp(n7/8DKL(Δylog1/ppsu2||p2su2))\displaystyle\leq n^{2}\exp\left(-n^{7/8}D_{\mathrm{KL}}\left(\tfrac{\Delta_{y}}{\log 1/p}ps_{\mathrm{u}}^{2}||p^{2}s_{\mathrm{u}}^{2}\right)\right)
exp(2lognn7/8(Δypsu2+o(p))\displaystyle\leq\exp(2\log n-n^{7/8}(\Delta_{y}ps_{\mathrm{u}}^{2}+o(p)) (69)
=o(1),\displaystyle=o(1), (70)

where (69) follows from the KL-divergence approximation formula (33) in Lemma 11 and (70) follows because np>n1/7np>n^{1/7} and Δy=Θ(1)\Delta_{y}=\Theta(1).

VII-G Proof of Lemma 7

Recall that we defined error event 4{(i,j)𝒱1u×𝒱2u s.t. ij and Cijz}\mathcal{E}_{4}\triangleq\{\exists(i,j)\in\mathcal{V}_{1}^{\text{u}}\times\mathcal{V}_{2}^{\text{u}}\text{ s.t. }i\neq j\text{ and }C_{ij}\geq z\}. Here we prove 𝖯(4)=o(1){\mathsf{P}}(\mathcal{E}_{4})=o(1) under the assumption that mqsa22lognτlog1qmqs_{\mathrm{a}}^{2}\geq\frac{2\log n}{\tau\log\frac{1}{q}}. To bound the probability of 4\mathcal{E}_{4}, we first consider the distribution of random variable CijC_{ij}. For two different vertices i𝒱1ui\in\mathcal{V}_{1}^{\text{u}} and j𝒱2uj\in\mathcal{V}_{2}^{\text{u}} such that iji\neq j, it follows from the definition of the model 𝒢(n,p,su;m,q,sa)\mathcal{G}(n,p,s_{u};m,q,s_{a}) that CijBinom(m,q2sa2)C_{ij}\sim\text{Binom}(m,q^{2}s_{\text{a}}^{2}). Moreover, notice that

z=(1+τ)mqsa2=ω(mq2sa2)=ω(𝖤[Cij]),z=(1+\tau)mqs_{\text{a}}^{2}=\omega(mq^{2}s_{\text{a}}^{2})=\omega({\mathsf{E}}[C_{ij}]),

since q=o(1)q=o(1). Therefore, we can upper bound the probability of error event 4\mathcal{E}_{4} as

𝖯(4)\displaystyle{\mathsf{P}}(\mathcal{E}_{4})
=𝖯{(i,j)𝒱1u×𝒱2u:ij and Cijz}\displaystyle={\mathsf{P}}\{\exists(i,j)\in\mathcal{V}_{1}^{\text{u}}\times\mathcal{V}_{2}^{\text{u}}:i\neq j\text{ and }C_{ij}\geq z\}
(n2n)𝖯(C12z)\displaystyle\leq(n^{2}-n){\mathsf{P}}\left(C_{12}\geq z\right) (71)
n2exp(mDKL(zm||q2sa2))\displaystyle\leq n^{2}\exp\left(-mD_{\text{KL}}\left(\tfrac{z}{m}\big{|}\big{|}q^{2}s_{\text{a}}^{2}\right)\right) (72)
=n2exp(mDKL((1+τ)qsa2||q2sa2))\displaystyle=n^{2}\exp\left(-mD_{\text{KL}}\left((1+\tau)qs_{\text{a}}^{2}||q^{2}s_{\text{a}}^{2}\right)\right)
=n2exp(m(1+τ)qsa2log1+τq)\displaystyle=n^{2}\exp\left(-m(1+\tau)qs_{\mathrm{a}}^{2}\log\frac{1+\tau}{q}\right)
exp(m(1(1+τ)qsa2)log1(1+τ)qsa21q2sa2)\displaystyle\;\;\;\cdot\exp\left(-m(1-(1+\tau)qs_{\mathrm{a}}^{2})\log\frac{1-(1+\tau)qs_{\mathrm{a}}^{2}}{1-q^{2}s_{\mathrm{a}}^{2}}\right)
=n2exp(m(1+τ)qsa2log1+τq)\displaystyle=n^{2}\exp\left(-m(1+\tau)qs_{\mathrm{a}}^{2}\log\frac{1+\tau}{q}\right)
exp((1+o(1))m(1(1+τ)qsa2)(1+τ)qsa2q2sa21q2sa2)\displaystyle\;\;\;\cdot\exp\left((1+o(1))m(1-(1+\tau)qs_{\mathrm{a}}^{2})\frac{(1+\tau)qs_{\mathrm{a}}^{2}-q^{2}s_{\mathrm{a}}^{2}}{1-q^{2}s_{\mathrm{a}}^{2}}\right)
=n2exp(m(1+τ)qsa2log1+τq)\displaystyle=n^{2}\exp\left(-m(1+\tau)qs_{\mathrm{a}}^{2}\log\frac{1+\tau}{q}\right)
exp((1+o(1))m(1+τ)qsa2)\displaystyle\;\;\;\cdot\exp\left((1+o(1))m(1+\tau)qs_{\mathrm{a}}^{2}\right)
=exp(2lognm(1o(1))(1+τ)qsa2log1q)\displaystyle=\exp\left(2\log n-m(1-o(1))(1+\tau)qs_{\mathrm{a}}^{2}\log\frac{1}{q}\right)
=exp(Ω(logn))\displaystyle=\exp(-\Omega(\log n)) (73)
=nΩ(1),\displaystyle=n^{-\Omega(1)},

where (71) follows by the union bound, (72) follows from Lemma 9, and (73) follows since in (5) we assume that mqlog1qτsa22lognmq\log\frac{1}{q}\tau s_{\mathrm{a}}^{2}\geq 2\log n and τ=Θ(1)\tau=\Theta(1).

VII-H Proof of Lemma 8

Recall that we defined error event 5{|𝒮2|<n7/8}\mathcal{E}_{5}\triangleq\{|\mathcal{S}_{2}^{\prime}|<n^{7/8}\}, where 𝒮2={(i,i)𝒱1u×𝒱2u s.t. Ciiz}\mathcal{S}_{2}^{\prime}=\{(i,i)\in\mathcal{V}_{1}^{\text{u}}\times\mathcal{V}_{2}^{\text{u}}\text{ s.t. }C_{ii}\geq z\}. Here we prove 𝖯(5)=o(1){\mathsf{P}}(\mathcal{E}_{5})=o(1) under the assumption that mqsa2=o(logn)mqs_{\mathrm{a}}^{2}=o(\log n). To show this, we first consider the distribution of random variable CiiC_{ii} and lower bound the probability of event {Ciiz}\{C_{ii}\geq z\}. For each vertex i𝒱1ui\in\mathcal{V}_{1}^{\text{u}}, it follows from the definition of the model 𝒢(n,p,su;m,q,sa)\mathcal{G}(n,p,s_{\mathrm{u}};m,q,s_{\mathrm{a}}) that CiiBinom(m,qsa2)C_{ii}\sim\text{Binom}(m,qs_{\text{a}}^{2}). Notice that

z=(1+τ)mqsa2>𝖤[Cii].z=(1+\tau)mqs_{\text{a}}^{2}>{\mathsf{E}}[C_{ii}].

We can lower bound the probability of the tail event {Ciiz}\{C_{ii}\geq z\} using Lemma 10 as

𝖯(Ciiz)\displaystyle{\mathsf{P}}(C_{ii}\geq z)
18z(1z/m)exp(mDKL(zm||qsa2))\displaystyle\geq\frac{1}{\sqrt{8z(1-z/m)}}\exp\left(-mD_{\mathrm{KL}}\left(\tfrac{z}{m}\big{|}\big{|}qs_{\mathrm{a}}^{2}\right)\right)
18zexp(mDKL((1+τ)qsa2||qsa2))\displaystyle\geq\frac{1}{\sqrt{8z}}\exp\left(-mD_{\mathrm{KL}}\left((1+\tau)qs_{\mathrm{a}}^{2}||qs_{\mathrm{a}}^{2}\right)\right)
=exp(12log(8(1+τ)mqsa2))\displaystyle=\exp\left(-\frac{1}{2}\log(8(1+\tau)mqs_{\mathrm{a}}^{2})\right)
exp(m(1+τ)qsa2log(1+τ))\displaystyle\;\;\;\cdot\exp(-m(1+\tau)qs_{\mathrm{a}}^{2}\log(1+\tau))
exp(m(1(1+τ)qsa2)log1(1+τ)qsa21qsa2)\displaystyle\;\;\;\cdot\exp\left(-m(1-(1+\tau)qs_{\mathrm{a}}^{2})\log\frac{1-(1+\tau)qs_{\mathrm{a}}^{2}}{1-qs_{\mathrm{a}}^{2}}\right)
=exp(12log(8(1+τ)mqsa2))\displaystyle=\exp\left(-\frac{1}{2}\log(8(1+\tau)mqs_{\mathrm{a}}^{2})\right)
exp(m(1+τ)qsa2log(1+τ))\displaystyle\;\;\;\cdot\exp(-m(1+\tau)qs_{\mathrm{a}}^{2}\log(1+\tau))
exp((1+o(1))(1(1+τ)qsa2)mτqsa21qsa2)\displaystyle\;\;\;\cdot\exp\left((1+o(1))(1-(1+\tau)qs_{\mathrm{a}}^{2})m\frac{\tau qs_{\mathrm{a}}^{2}}{1-qs_{\mathrm{a}}^{2}}\right)
=exp(12log(8(1+τ)mqsa2))\displaystyle=\exp\left(-\frac{1}{2}\log(8(1+\tau)mqs_{\mathrm{a}}^{2})\right)
exp((1+o(1))((1+τ)log(1+τ)τ)mqsa2)\displaystyle\;\;\;\cdot\exp(-(1+o(1))((1+\tau)\log(1+\tau)-\tau)mqs_{\mathrm{a}}^{2})
=exp(o(logn))\displaystyle=\exp(-o(\log n)) (74)
n1/9,\displaystyle\geq n^{-1/9}, (75)

where (74) follows since mqsa2=o(logn)mqs_{\mathrm{a}}^{2}=o(\log n) and that τ=Θ(1)\tau=\Theta(1). Furthermore, notice that for each different i𝒱1ui\in\mathcal{V}_{1}^{\text{u}}, the random variable CiiC_{ii} are independent and identically distributed. Therefore, the number of vertices i𝒱1ui\in\mathcal{V}_{1}^{\text{u}} with CiizC_{ii}\geq z is distributed according to the Binomial distribution

|𝒮2|Binom(n,𝖯(Ciiz)).|\mathcal{S}_{2}^{\prime}|\sim\text{Binom}(n,{\mathsf{P}}(C_{ii}\geq z)).

By the lower bound (75), for any positive number ww, we have

𝖯(|𝒮2|w)𝖯(Binom(n,n1/9)w).\displaystyle{\mathsf{P}}(|\mathcal{S}_{2}^{\prime}|\leq w)\leq{\mathsf{P}}\left(\text{Binom}\left(n,n^{-1/9}\right)\leq w\right). (76)

Finally we can upper bound the probability of event 5\mathcal{E}_{5} as

𝖯(5)\displaystyle{\mathsf{P}}(\mathcal{E}_{5})
=𝖯(|𝒮2|<n7/8)\displaystyle={\mathsf{P}}(|\mathcal{S}_{2}^{\prime}|<n^{7/8})
𝖯(Binom(n,n1/9)n7/8)\displaystyle\leq{\mathsf{P}}\left(\text{Binom}\left(n,n^{-1/9}\right)\leq n^{7/8}\right) (77)
exp(nDKL(n1/8||n1/9))\displaystyle\leq\exp\left(-nD_{\mathrm{KL}}(n^{-1/8}||n^{-1/9})\right) (78)
=exp(nn1/8log(n1/72))\displaystyle=\exp\left(-n\cdot n^{-1/8}\log\left(n^{-1/72}\right)\right)
exp(n(1n1/8)log1n1/81n1/9)\displaystyle\;\;\;\cdot\exp\left(-n\left(1-n^{-1/8}\right)\log\frac{1-n^{-1/8}}{1-n^{-1/9}}\right)
=exp(172n7/8logn(1+o(1))n8/9)\displaystyle=\exp\left(\frac{1}{72}n^{7/8}\log n-(1+o(1))n^{8/9}\right)
=o(1),\displaystyle=o(1),

where (77) follows from (76) and (78) follows from Lemma 9.

VII-I Proof of Lemma 11

(1) Proof for equation (32): From the definition of the KL-divergence between Bern(Δlog1/θθs2)\operatorname*{\mathrm{Bern}}\left(\frac{\Delta}{\log{1/\theta}}\theta s^{2}\right) and Bern(θs2)\operatorname*{\mathrm{Bern}}(\theta s^{2}), we have

DKL(Δlog1/θθs2||θs2)\displaystyle D_{\mathrm{KL}}\left(\tfrac{\Delta}{\log{1/\theta}}\theta s^{2}\Big{|}\Big{|}\theta s^{2}\right)
=Δlog1/θθs2log(Δlog1/θ)\displaystyle=\tfrac{\Delta}{\log{1/\theta}}\theta s^{2}\log\left(\tfrac{\Delta}{\log{1/\theta}}\right)
+[1(Δlog1/θ)θs2]log(1(Δlog1/θ)θs21θs2)\displaystyle\hskip 5.0pt+\left[1-\left(\tfrac{\Delta}{\log{1/\theta}}\right)\theta s^{2}\right]\log\left(\tfrac{1-(\frac{\Delta}{\log{1/\theta}})\theta s^{2}}{1-\theta s^{2}}\right)
=Δlog1/θθs2log(Δlog1/θ)\displaystyle=\tfrac{\Delta}{\log{1/\theta}}\theta s^{2}\log\left(\tfrac{\Delta}{\log{1/\theta}}\right)
+[1(Δlog1/θ)θs2]((1Δlog1/θ)θs21θs2+o(θ))\displaystyle\hskip 5.0pt+\left[1-\left(\tfrac{\Delta}{\log{1/\theta}}\right)\theta s^{2}\right]\left(\left(1-\tfrac{\Delta}{\log{1/\theta}}\right)\tfrac{\theta s^{2}}{1-\theta s^{2}}+o(\theta)\right) (79)

Here equation (VII-I) follows from the Taylor series for the logarithm log(1+x)=x+o(x)\log(1+x)=x+o(x) for x=o(1)x=o(1). Within the terms from (VII-I), we have that Δ=Θ(1)\Delta=\Theta(1) and θ=o(1)\theta=o(1), we thus get Δlog1/θ=o(1)\frac{\Delta}{\log{1/\theta}}=o(1) and (Δlog1/θ)log(Δlog1/θ)=o(1)\left(\frac{\Delta}{\log{1/\theta}}\right)\log\left(\frac{\Delta}{\log{1/\theta}}\right)=o(1). We therefore have

DKL(Δlog1/θθs2||θs2)\displaystyle D_{\mathrm{KL}}\left(\frac{\Delta}{\log{1/\theta}}\theta s^{2}\bigg{|}\bigg{|}\theta s^{2}\right)
=o(θ)+(θs21θs2)\displaystyle=o(\theta)+\left(\frac{\theta s^{2}}{1-\theta s^{2}}\right)
=o(θ)+θs2.\displaystyle=o(\theta)+\theta s^{2}. (80)

Here, the last equality (80) follows because θ=o(1)\theta=o(1).

(2) Proof for equation (33): From the definition of the KL-divergence between Bern(Δlog1/θθs2)\operatorname*{\mathrm{Bern}}\left(\frac{\Delta}{\log{1/\theta}}\theta s^{2}\right) and Bern(θ2s2)\operatorname*{\mathrm{Bern}}(\theta^{2}s^{2}), we have

DKL(Δlog1/θθs2||θ2s2)\displaystyle D_{\mathrm{KL}}\left(\tfrac{\Delta}{\log{1/\theta}}\theta s^{2}\Big{|}\Big{|}\theta^{2}s^{2}\right)
=Δlog1/θθs2log(Δlog1/θθ)\displaystyle=\tfrac{\Delta}{\log{1/\theta}}\theta s^{2}\log\left(\tfrac{\frac{\Delta}{\log{1/\theta}}}{\theta}\right)
+[1(Δlog1/θ)θs2]log(1(Δlog1/θ)θs21θ2s2)\displaystyle\hskip 10.0pt+\left[1-\left(\tfrac{\Delta}{\log{1/\theta}}\right)\theta s^{2}\right]\log\left(\tfrac{1-(\frac{\Delta}{\log{1/\theta}})\theta s^{2}}{1-\theta^{2}s^{2}}\right)
=(Δlog1/θ)θs2log(Δlog1/θθ)\displaystyle=\left(\tfrac{\Delta}{\log{1/\theta}}\right)\theta s^{2}\log\left(\tfrac{\frac{\Delta}{\log{1/\theta}}}{\theta}\right)
+[1(Δlog1/θ)θs2]((Δlog1/θ)θs2θ2s21θ2s2+o(θ))\displaystyle\hskip 10.0pt+\left[1-\left(\tfrac{\Delta}{\log{1/\theta}}\right)\theta s^{2}\right]\left(-\tfrac{(\frac{\Delta}{\log{1/\theta}})\theta s^{2}-\theta^{2}s^{2}}{1-\theta^{2}s^{2}}+o(\theta)\right) (81)
=(Δlog1/θ)θs2log(Δlog1/θθ)+o(θ)\displaystyle=\left(\tfrac{\Delta}{\log{1/\theta}}\right)\theta s^{2}\log\left(\tfrac{\frac{\Delta}{\log{1/\theta}}}{\theta}\right)+{o(\theta)} (82)
=Δθs2logΔ+log1/θloglog1/θlog1/θ+o(θ)\displaystyle=\Delta\theta s^{2}\frac{\log\Delta+\log 1/\theta-\log\log 1/\theta}{\log 1/\theta}+o(\theta)
=Δθs2+o(θ)\displaystyle=\Delta\theta s^{2}+{o(\theta)} (83)

Here (81) follows from the Taylor expansion of log(1+x)\log(1+x). Equation (82) follows because Δlog1/θ=o(1)\frac{\Delta}{\log{1/\theta}}=o(1). Equation (83) follows because Δ=Θ(1)\Delta=\Theta(1) and log1/θ=ω(1)\log 1/\theta=\omega(1).

VIII Detailed discussion in seeded alignment

In this section, we provide further details on the discussion in the seeded graph alignment problem in Section IV-B. We prove Remark 3 and Theorem 4 by comparing the feasible regions in Corollaries 1 and 2 to the information theoretic feasible region and the best known feasible region by efficient algorithms in literature.

VIII-A Comparison to the information-theoretic limits

Let us first compare the feasible region of Algorithms AttrRich and AttrSparse to the information theoretic limit of seeded alignment. The next corollary follows readily from Theorem 3.

Corollary 3 (Information-theoretic limits on seeded graph alignment).

Consider the seeded Erdős–Rényi pair model 𝒢(N,α,p,s)\mathcal{G}(N,\alpha,p,s), with 1p=Θ(1)1-p=\Theta(1), s=Θ(1)s=\Theta(1), and (1α)N=ω(1)(1-\alpha)N=\omega(1).
Achievability: In the regime where p=O(1[log(N(1α))]2)p=O\left(\frac{1}{[\log(N(1-\alpha))]^{2}}\right), if

Nps2log(N(1α))+ω(1),\displaystyle Nps^{2}\geq\log(N(1-\alpha))+\omega(1), (84)

then exact alignment is achievable w.h.p.
In the regime where p=ω(1[log(N(1α))]2)p=\omega\left(\frac{1}{[\log(N(1-\alpha))]^{2}}\right), if

Nps2aNlog(N(1α))+ω(1),\displaystyle Nps^{2}-a_{N}\geq\log(N(1-\alpha))+\omega(1), (85)

where aNαN(ps2(1p+p(1s)2)ps(1s))2Nαps2=O(Nαp3/2),a_{N}\triangleq\alpha N\left(\sqrt{ps^{2}(1-p+p(1-s)^{2})}-ps(1-s)\right)^{2}-N\alpha ps^{2}=O(N\alpha p^{3/2}), then exact alignment is achievable w.h.p.
Converse: If

Nps2log(N(1α))ω(1),\displaystyle Nps^{2}\leq\log(N(1-\alpha))-\omega(1),

then no algorithm achieves exact alignment w.h.p.

To compare the feasible region of Corollary 3 to the feasible regions of Corollaries 1 and 2, we consider two different regimes for pp.

  1. 1.

    p=O(1[log(N(1α))]2)p=O\left(\frac{1}{[\log(N(1-\alpha))]^{2}}\right). In this regime, the feasible region in Corollary 3 is given by condition (84): Nps2log(N(1α))+ω(1)Nps^{2}\geq\log(N(1-\alpha))+\omega(1). In Corollary 1, condition (15) requires that Nps2(1+ϵ)log((1α)N)Nps^{2}\geq(1+\epsilon)\log((1-\alpha)N). Since we assume that n=(1α)N=ω(1)n=(1-\alpha)N=\omega(1), we can see that condition (15) implies condition (84). Therefore, the feasible region in Corollary 1 is a subset of the feasible region in Corollary 3.

    Similarly, in Corollary 2, condition (17) can be written as Nps2log((1α)N)+ω(1)1αNps^{2}\geq\frac{\log((1-\alpha)N)+\omega(1)}{1-\alpha}, which also implies condition (84) since 1α<11-\alpha<1. Therefore, the feasible region in Corollary 2 is also a subset of the feasible region in Corollary 3.

  2. 2.

    p=ω(1[log(N(1α))]2)p=\omega\left(\frac{1}{[\log(N(1-\alpha))]^{2}}\right). In this regime, the feasible region in Corollary 3 is given by condition (85): Nps2log(N(1α))+aN+ω(1)Nps^{2}\geq\log(N(1-\alpha))+a_{N}+\omega(1). Since s=Θ(1)s=\Theta(1) and p=ω(1[log(N(1α))]2)p=\omega\left(\frac{1}{[\log(N(1-\alpha))]^{2}}\right), it follows that Nps2=ω(log(N(1α)))Nps^{2}=\omega(\log(N(1-\alpha))). Moreover, since p=o(1)p=o(1) and aN=O(Nαp3/2)a_{N}=O(N\alpha p^{3/2}), we have Nps2=ω(aN)Nps^{2}=\omega(a_{N}). Therefore, condition (85) is satisfied and thus Corollary 3 applies in this regime while Corollaries 1 and 2 requires further conditions to apply. Therefore, the feasible regions in Corollaries 1 and 2 are both subsets of the feasible region in Corollary 3.

VIII-B Comparison to existing efficient algorithms

In this subsection, we prove Theorem 4 by thoroughly comparing the feasible region of the proposed algorithms in Corollaries 1 and 2 to that of the existing algorithms in Theorems 56 and 7. We discuss three regimes for mm.

Case 1: m=o(n)m=o(n). Recall that αmm+n\alpha\triangleq\frac{m}{m+n}. Therefore, we have α=o(1)\alpha=o(1) in this regime. For the discussion in this regime, we first show that both Corollaries 1 and 2 apply in this regime. We then show that the feasible region in Corollaries 1 and 2 extends the feasible region for exact alignment in Theorems 56 and 7.

To see Corollary 1 applies in this regime, note that when α=o(1)\alpha=o(1), condition (14) αNps2=Ω(log((1α)N))\alpha Nps^{2}=\Omega(\log((1-\alpha)N)) implies condition (15) Nps2(1+ϵ)log((1α)N)Nps^{2}\geq(1+\epsilon)\log((1-\alpha)N). Therefore, the feasible region in Corollary 1 simplifies to condition (14), which is non-empty when pp, ss and α\alpha are large enough. To see Corollary 2 applies in this regime, we notice that conditions (16) αNps2=o(log((1α)N))\alpha Nps^{2}=o(\log((1-\alpha)N)) and (17) (1α)Nps2log((1α)N)ω(1)(1-\alpha)Nps^{2}-\log((1-\alpha)N)\geq\omega(1) together imply that α=o(1)\alpha=o(1) which is exactly the case in this regime.

Now we move on to compare the feasible region in Corollaries 1 and 2 to that in Theorems 56 and 7. We consider three different regimes for NpNp.

Case 1.1: NpN1/7Np\leq N^{1/7}. For this regime of NpNp, both Theorems 5 and 6 apply. We will show that the feasible regions in Corollaries 1 and 2 are covered by the feasible region in Theorem 6 to illustrate that the proposed algorithms do not introduce any new feasible region in this regime. In this and all later cases, we always set β=1/7\beta=1/7 when we apply Theorem 6.

We first argue that the feasible region in Corollary 1 is a subset of that in Theorem 6. This is because condition (14) α=Ω(log((1α)N)Nps2)\alpha=\Omega(\frac{\log((1-\alpha)N)}{Nps^{2}}) implies condition (21) αN4/7\alpha\geq N^{-4/7} under the assumption that α=o(1)\alpha=o(1) and NpN1/7Np\leq N^{1/7}, and condition (15) Nps2(1+ϵ)log((1α)N)Nps^{2}\geq(1+\epsilon)\log((1-\alpha)N) implies condition (20) Nps2logN+ω(1)Nps^{2}\geq\log N+\omega(1) under the assumption that α=o(1)\alpha=o(1).

Now we move on to show that the feasible region in Corollary 2 is also a subset of that in Theorem 6. This is because conditions (17) (1α)Nps2log((1α)N)ω(1)(1-\alpha)Nps^{2}-\log((1-\alpha)N)\geq\omega(1) and (18) αNps22log((1α)N)τlog1p\alpha Nps^{2}\geq\frac{2\log((1-\alpha)N)}{\tau\log\frac{1}{p}} together imply condition (21) αN4/7\alpha\geq N^{-4/7} under the assumption that α=o(1)\alpha=o(1) and NpN1/7Np\leq N^{1/7}, and condition (17) (1α)Nps2log((1α)N)ω(1)(1-\alpha)Nps^{2}-\log((1-\alpha)N)\geq\omega(1) implies condition (20) Nps2logN+ω(1)Nps^{2}\geq\log N+\omega(1) under the assumption that α=o(1)\alpha=o(1).

Case 1.2: N1/7<Nps16(2s)2N1/2N^{1/7}<Np\leq\frac{s}{16(2-s)^{2}}N^{1/2}. In this case, both Theorems 5 and 6 apply. We will show that the feasible regions in Corollaries 1 and 2 are covered by the feasible region in Theorem 5 to illustrate that the proposed algorithms do not introduce any new feasible region in this regime.

Firstly, we argue that the feasible region in Corollary 1 is a subset of that in Theorem 5. Note that because N1/7<Nps16(2s)2N1/2N^{1/7}<Np\leq\frac{s}{16(2-s)^{2}}N^{1/2}, we can write Np=bNaNp=bN^{a} for some aa and bb such that a,b=Θ(1)a,b=\Theta(1) and 0<a12and0<bs16(2s)2.0<a\leq\tfrac{1}{2}\quad\text{and}\quad 0<b\leq\tfrac{s}{16(2-s)^{2}}. Because a12a\leq\frac{1}{2}, we have 1/a2\lfloor 1/a\rfloor\geq 2. Then the statement follows because condition (14) αNps2=Ω(log((1α)N))\alpha Nps^{2}=\Omega(\log((1-\alpha)N)) implies condition (19) α300logN(Nps2)1/a\alpha\geq\frac{300\log N}{(Nps^{2})^{\lfloor 1/a\rfloor}} under the assumption that α=o(1)\alpha=o(1).

Now we move on to show that the feasible region in Corollary 2 is also covered by the feasible region in Theorem 5. This is because again we have 1/a2\lfloor 1/a\rfloor\geq 2 and it follows that conditions (17) (1α)Nps2log((1α)N)ω(1)(1-\alpha)Nps^{2}-\log((1-\alpha)N)\geq\omega(1) and (18) αNps22log((1α)N)τlog1p\alpha Nps^{2}\geq\frac{2\log((1-\alpha)N)}{\tau\log\frac{1}{p}} together imply condition (19) α300logN(Nps2)1/a\alpha\geq\frac{300\log N}{(Nps^{2})^{\lfloor 1/a\rfloor}} under that assumption that α=o(1)\alpha=o(1).

Case 1.3: Np>s16(2s)2N1/2Np>\frac{s}{16(2-s)^{2}}N^{1/2}. In this regime, Theorem 6 does not apply since Np=Ω(N1/2)Np=\Omega(N^{1/2}). We compare the feasible regions in Corollaries 1 and 2 to those in Theorems 5 and 7 to show that the proposed algorithms strictly improve the best known feasible region in this regime.

To compare with the existing results, we first consider the feasible region achieved by the proposed algorithms. Because we are in the dense regime Np=Ω(N1/2)Np=\Omega(N^{1/2}), conditions (15) Nps2(1+ϵ)log((1α)N)Nps^{2}\geq(1+\epsilon)\log((1-\alpha)N) and (17) (1α)Nps2log((1α)N)ω(1)(1-\alpha)Nps^{2}-\log((1-\alpha)N)\geq\omega(1) are satisfied. Then conditions for Corollaries 1 and 2 reduce to constraints on α\alpha. The constraint in Corollary 1 is given by (14) αNps2=Ω(log((1α)N))\alpha Nps^{2}=\Omega(\log((1-\alpha)N)), and the constraint in Corollary 2 is given by (16) αNps2=o(log((1α)N))\alpha Nps^{2}=o(\log((1-\alpha)N)) and (18), which can be written as α=Ω(log((1α)N)Nps2log1p)\alpha=\Omega(\frac{\log((1-\alpha)N)}{Nps^{2}\log\frac{1}{p}}). Taking the union of the two constraints on α\alpha, the feasible region of the proposed algorithm simplifies to

α=Ω(log((1α)N)Nps2log1p).\alpha=\Omega\left(\frac{\log((1-\alpha)N)}{Nps^{2}\log\frac{1}{p}}\right). (86)

Now, we move on to consider the feasible region in Theorem 5. Because Np>s16(2s)2N1/2Np>\frac{s}{16(2-s)^{2}}N^{1/2}, if we write Np=bNaNp=bN^{a} for some a,b=Θ(1)a,b=\Theta(1) and 0<bs16(2s)20<b\leq\frac{s}{16(2-s)^{2}}, we must have 12<a<1\frac{1}{2}<a<1. Therefore, we have 1/a=1\lfloor 1/a\rfloor=1 in this regime and the feasible region in Theorem 5 reduces to

α300logNNps2.\alpha\geq\frac{300\log N}{Nps^{2}}. (87)

From the above argument, we see that if condition (86) is satisfied while condition (87) and at least one of conditions (22) α=ω(1NI(p,s)2)\alpha=\omega\left(\frac{1}{NI(p,s)^{2}}\right) and (23) α2logNNI(p,s)\alpha\geq\frac{2\log N}{NI(p,s)} in Theorem 7 are not, then the proposed algorithms achieve exact w.h.p. while none of the existing works [13] and [14] do. In the following, we further consider three sub-cases for pp to discuss which one of conditions (22), (23) and (87) is the bottleneck condition in the existing works [13] and [14] and to see the range of α\alpha that is feasible by the proposed algorithms while not by [13] and [14].

  • Suppose plogNlog1p=ω(1)p\log N\log\frac{1}{p}=\omega(1). In this sub-case, condition (23) α2logNNI(p,s)\alpha\geq\frac{2\log N}{NI(p,s)} implies condition (22) α=ω(1NI2(p,s))\alpha=\omega(\frac{1}{NI^{2}(p,s)}) and condition (87) α300logNNps2\alpha\geq\frac{300\log N}{Nps^{2}} implies condition (23). Then the bottleneck condition is condition (23). Therefore, if condition (86) is satisfied and α<2logNNI(p,s)\alpha<\frac{2\log N}{NI(p,s)}, the proposed algorithms achieve exact alignment w.h.p while the algorithms in [13] and [14] do not. Such α\alpha exists because I(p,s)=(1+o(1))s2plog1pI(p,s)=(1+o(1))s^{2}p\log\frac{1}{p} and thus 2logNNI(p,s)=Θ(log((1α)N)Nps2log1p)\frac{2\log N}{NI(p,s)}=\Theta(\frac{\log((1-\alpha)N)}{Nps^{2}\log\frac{1}{p}}).

  • Suppose plogNlog1p=O(1)p\log N\log\frac{1}{p}=O(1) and plogNlog21p=ω(1)p\log N\log^{2}\frac{1}{p}=\omega(1). In this sub-case, condition (22) α=ω(1NI2(p,s))\alpha=\omega(\frac{1}{NI^{2}(p,s)}) implies condition (23) α2logNNI(p,s)\alpha\geq\frac{2\log N}{NI(p,s)} and condition (87) α300logNNps2\alpha\geq\frac{300\log N}{Nps^{2}} implies condition (22). Then the bottleneck condition is condition (22). Therefore, if condition (86) is satisfied and α=O(1NI2(p,s))\alpha=O(\frac{1}{NI^{2}(p,s)}), the proposed algorithms achieve exact alignment w.h.p while the algorithms in [13] and [14] do not. Such α\alpha exists because log((1α)N)Nps2log1p=O(1NI2(p,s))\frac{\log((1-\alpha)N)}{Nps^{2}\log\frac{1}{p}}=O(\frac{1}{NI^{2}(p,s)}) under the assumption that plogNlog1p=O(1)p\log N\log\frac{1}{p}=O(1).

  • Suppose plogNlog21p=O(1)p\log N\log^{2}\frac{1}{p}=O(1). In this sub-case, condition (22) α=ω(1NI2(p,s))\alpha=\omega(\frac{1}{NI^{2}(p,s)}) implies condition (23) α2logNNI(p,s)\alpha\geq\frac{2\log N}{NI(p,s)} and condition (22) implies condition (87) α300logNNps2\alpha\geq\frac{300\log N}{Nps^{2}}. Then the bottleneck condition is condition (87). Therefore, if condition (86) is satisfied and α<300logNNps2\alpha<\frac{300\log N}{Nps^{2}}, the proposed algorithms achieve exact alignment w.h.p while the algorithms in [13] and [14] do not. Such α\alpha exists because log((1α)N)Nps2log1p=o(300logNNps2)\frac{\log((1-\alpha)N)}{Nps^{2}\log\frac{1}{p}}=o(\frac{300\log N}{Nps^{2}}).

To summarize, in the regime of m=o(n)m=o(n), the proposed Algorithms AttrRich and AttrSparse together strictly improve the best known feasible region for exact alignment when Np>s16(2s)2N1/2Np>\frac{s}{16(2-s)^{2}}N^{1/2}. In the other two regimes for NpNp, the feasible region of the proposed algorithms is a strict subset of that in [13].

Case 2: m=Ω(n)m=\Omega(n) and m=O(n1+ϵ)m=O(n^{1+\epsilon^{\prime}}) for some positive constant ϵ\epsilon^{\prime} that satisfies ϵ<ϵ\epsilon^{\prime}<\epsilon and ϵϵ=Θ(1)\epsilon-\epsilon^{\prime}=\Theta(1) (cf. the constant ϵ\epsilon in Corollary 1). In this regime, we have α=Θ(1)\alpha=\Theta(1). For the discussion in this regime, we first show that Corollary 1 applies in this regime while Corollary 2 does not. We then show that the feasible region in Corollary 1 is a subset of the feasible regions in Theorems 5 and 6 from existing work [13].

Since we have α=Θ(1)\alpha=\Theta(1), it follows that Nps2(1+ϵ)log((1α)N)Nps^{2}\geq(1+\epsilon)\log((1-\alpha)N) implies αNps2=Ω(log((1α)N))\alpha Nps^{2}=\Omega(\log((1-\alpha)N)), i.e., condition (15) implies (14). Therefore, the feasible region in Corollary 1 simplifies to condition (15) which holds true when pp and ss are large enough. As we argued in Case 1, Corollary 2 requires α=o(1)\alpha=o(1), so Corollary 2 does not apply in this regime.

Now we move on to compare the feasible region in Corollary 1 to that in Theorems 5 and 6. We further consider two different regimes for NpNp.

Case 2.1: Np=exp(o(logN))Np=\exp(o(\log N)). We can see that Theorem 6 applies in this regime since Np=exp(o(logN))N1/7Np=\exp(o(\log N))\leq N^{1/7}. Condition (21) αN1+3/7\alpha\geq N^{-1+3/7} is satisfied without any further assumptions since α=Θ(1)\alpha=\Theta(1). Moreover, condition (15) Nps2(1+ϵ)log((1α)N)Nps^{2}\geq(1+\epsilon)\log((1-\alpha)N) implies condition (20) Nps2logN+ω(1)Nps^{2}\geq\log N+\omega(1) under the assumption that m=O(n1+ϵ)m=O(n^{1+\epsilon^{\prime}}) and thus the feasible region in Corollary 1 is a subset of the feasible region in Theorem 6.

Case 2.2: Np=exp(Ω(logN))Np=\exp(\Omega(\log N)). Since Np=exp(Ω(logN))Np=\exp(\Omega(\log N)) and we assume that p=o(1)p=o(1), we can write Np=bNaNp=bN^{a}, where a,b=Θ(1)a,b=\Theta(1), 0<a10<a\leq 1, and 0<bs16(2s)20<b\leq\frac{s}{16(2-s)^{2}}. Therefore, Theorem 5 applies in this regime. Furthermore, condition (19) in Theorem 5 is satisfied since α=Θ(1)300logN(Nps2)1/a\alpha=\Theta(1)\geq\frac{300\log N}{(Nps^{2})^{\lfloor 1/a\rfloor}}. We can see that all the conditions in Theorem 5 are satisfied in this regime without any further assumptions.

For Corollary 1, we have Nps2=exp(Ω(logN))(1+ϵ)log((1α)N)Nps^{2}=\exp(\Omega(\log N))\geq(1+\epsilon)\log((1-\alpha)N), i.e., condition (15) is satisfied. We can see that all conditions in Corollary 1 are also satisfied in this regime without any further assumptions.

To summarize, in the regime m=Ω(n)m=\Omega(n) and =O(n1+ϵ)=O(n^{1+\epsilon^{\prime}}), the feasible region of the proposed algorithms is a subset of the feasible region given by existing work [13].

Case 3: m=Ω(n1+ϵ)m=\Omega(n^{1+\epsilon}). In this regime, we have α=1o(1)\alpha=1-o(1). For the same reason as in Case 2, Corollary 1 applies while Corollary 2 does not. We will show that the feasible region in Corollary 1 extends the best known region for exact alignment in Theorems 56 and 7. We discuss two regimes for NpNp. Case 3.1: Np=exp(o(logN))Np=\exp(o(\log N)). We first point out that Theorem 7 does not apply in this regime. This is because I(p,s)=(1+o(1))s2plog1pI(p,s)=(1+o(1))s^{2}p\log\frac{1}{p} and plog1p=exp(o(logN))NlogNexp(o(logN))=o(1N)p\log\frac{1}{p}=\frac{\exp(o(\log N))}{N}\log\frac{N}{\exp(o(\log N))}=o(\frac{1}{\sqrt{N}}), so condition (22) α=ω(1NI(p,s)2)\alpha=\omega\left(\frac{1}{NI(p,s)^{2}}\right) cannot be satisfied. Therefore, we focus on showing that the feasible region in Corollary 1 strictly improves in the feasible regions in Theorem 6. This is because m=Ω(n1+ϵ)m=\Omega(n^{1+\epsilon}) is equivalent as N=Ω(((1α)N)1+ϵ)N=\Omega(((1-\alpha)N)^{1+\epsilon}), and it follows that condition (20) Nps2logN+ω(1)Nps^{2}\geq\log N+\omega(1) implies condition (15) Nps2(1+ϵ)log((1α)N)Nps^{2}\geq(1+\epsilon)\log((1-\alpha)N). So in the case when Nps2logN=O(1)Nps^{2}-\log N=O(1) and Nps2(1+ϵ)log((1α)N)Nps^{2}\geq(1+\epsilon)\log((1-\alpha)N) the proposed Algorithm AttrRich achieves exact alignment w.h.p., while the algorithms in [13] does not.

Case 3.2: Np=exp(Ω(logN))Np=\exp(\Omega(\log N)). This case is included in the feasible region of both Corollary 1 and Theorem 5 for the same reason as in Case 2. Theorem 7 further requires conditions (22) and (23) to apply in this regime.

To summarize, in the regime m=Ω(n1+ϵ)m=\Omega(n^{1+\epsilon}), the proposed Algorithm AttrRich strictly improves the best known feasible region for exact alignment in the case when Np=exp(o(logN))Np=\exp(o(\log N)). In the case when Np=exp(Ω(logN))Np=\exp(\Omega(\log N)), the feasible region by the proposed algorithms is a subset of that in existing literature [13].

From the above discussion, when specialized to the seeded Erdős–Rényi graph pair model, the feasible region in Corollaries 1 and 2 strictly improves the best known feasible region in [13] and [14], as shown in the blue area in Fig. 4. We note, however, that there is also some region that is feasible by existing results but not feasible by the proposed algorithms in this paper, as shown in the red area in Fig. 4.

Acknowledgment

This work was supported in part by the NSERC Discovery Grant No. RGPIN-2019-05448, the NSERC Collaborative Research and Development Grant CRDPJ 54367619, and the NSF grant CNS-2007733.

References

  • Zhang et al. [2021] N. Zhang, W. Wang, and L. Wang, “Attributed graph alignment,” in Proc. IEEE Internat. Symp. Inf. Theory, 2021, pp. 1829–1834.
  • Pedarsani and Grossglauser [2011] P. Pedarsani and M. Grossglauser, “On the privacy of anonymized networks,” in Proc. Ann. ACM SIGKDD Conf. Knowledge Discovery and Data Mining (KDD), 2011, pp. 1235–1243.
  • Cullina and Kiyavash [2016] D. Cullina and N. Kiyavash, “Improved achievability and converse bounds for Erdős-Rényi graph matching,” ACM SIGMETRICS Perform. Evaluation Rev., vol. 44, no. 1, p. 63–72, June 2016.
  • Cullina and Kiyavash [2017] D. Cullina and N. Kiyavash, “Exact alignment recovery for correlated Erdős-Rényi graphs,” 2017. [Online]. Available: https://arxiv.org/abs/1711.06783
  • Wu et al. [2022] Y. Wu, J. Xu, and S. H. Yu, “Settling the sharp reconstruction thresholds of random graph matching,” IEEE Transactions on Information Theory, vol. 68, no. 8, pp. 5391–5417, 2022.
  • Dai et al. [2019] O. Dai, D. Cullina, N. Kiyavash, and M. Grossglauser, “Analysis of a canonical labeling algorithm for the alignment of correlated erdős-rényi graphs,” ACM SIGMETRICS Perform. Evaluation Rev., vol. 47, pp. 96–97, 12 2019.
  • Ding et al. [2021] J. Ding, Z. Ma, Y. Wu, and J. Xu, “Efficient random graph matching via degree profiles,” Probability Theory and Related Fields, vol. 179, pp. 29–115, 2021.
  • Fan et al. [2020] Z. Fan, C. Mao, Y. Wu, and J. Xu, “Spectral graph matching and regularized quadratic relaxations: Algorithm and theory,” in Proceedings of the 37th International Conference on Machine Learning, ser. Proceedings of Machine Learning Research, H. D. III and A. Singh, Eds., vol. 119.   PMLR, 13–18 July 2020, pp. 2985–2995.
  • Mao et al. [2023a] C. Mao, M. Rudelson, and K. Tikhomirov, “Exact matching of random graphs with constant correlation,” Probability Theory and Related Fields, vol. 186, no. 1-2, pp. 327–389, 2023.
  • Mao et al. [2023b] C. Mao, Y. Wu, J. Xu, and S. H. Yu, “Random graph matching at otter’s threshold via counting chandeliers,” in Proceedings of the 55th Annual ACM Symposium on Theory of Computing, 2023, pp. 1345–1356.
  • Korula and Lattanzi [2014] N. Korula and S. Lattanzi, “An efficient reconciliation algorithm for social networks,” Proc. VLDB Endow., vol. 7, no. 5, p. 377–388, jan 2014.
  • Yartseva and Grossglauser [2013] L. Yartseva and M. Grossglauser, “On the performance of percolation graph matching,” in Proceedings of the First ACM Conference on Online Social Networks, ser. COSN ’13.   New York, NY, USA: Association for Computing Machinery, 2013, p. 119–130. [Online]. Available: https://doi.org/10.1145/2512938.2512952
  • Mossel and Xu [2020] E. Mossel and J. Xu, “Seeded graph matching via large neighborhood statistics,” Random Structures & Algorithms, vol. 57, no. 3, pp. 570–611, 2020.
  • Shirani et al. [2017] F. Shirani, S. Garg, and E. Erkip, “Seeded graph matching: Efficient algorithms and theoretical guarantees,” in Proc. Asilomar Conf. Signals, Systems, and Computers, 2017, pp. 253–257.
  • Zhang and Tong [2016] S. Zhang and H. Tong, “Final: Fast attributed network alignment,” in Proc. Ann. ACM SIGKDD Conf. Knowledge Discovery and Data Mining (KDD), ser. KDD ’16.   New York, NY, USA: Association for Computing Machinery, 2016, p. 1345–1354.
  • Zhang and Tong [2019] ——, “Attributed network alignment: Problem definitions and fast solutions,” Proc. IEEE Trans. Knowl. Data Eng., vol. 31, no. 9, pp. 1680–1692, 2019.
  • Zhou et al. [2021] Q. Zhou, L. Li, X. Wu, N. Cao, L. Ying, and H. Tong, Attent: Active Attributed Network Alignment.   New York, NY, USA: Association for Computing Machinery, 2021, p. 3896–3906.
  • Yu [2023] S. H. Yu, “Matching in networks: Fundamental limits and efficient algorithms,” Ph.D. dissertation, Duke University, 2023.
  • Mao et al. [2022] C. Mao, Y. Wu, J. Xu, and S. H. Yu, “Testing network correlation efficiently via counting trees,” arXiv preprint arXiv:2110.11816, 2022.
  • Onaran et al. [2016] E. Onaran, S. Garg, and E. Erkip, “Optimal de-anonymization in random graphs with community structure,” in 2016 50th Asilomar Conference on Signals, Systems and Computers, 2016, pp. 709–713.
  • Cullina et al. [2016] D. Cullina, K. Singhal, N. Kiyavash, and P. Mittal, “On the simultaneous preservation of privacy and community structure in anonymized networks,” arXiv preprint arXiv:1603.08028, 2016.
  • Lyzinski et al. [2015] V. Lyzinski, D. E. Fishkind, M. Fiori, J. T. Vogelstein, C. E. Priebe, and G. Sapiro, “Graph matching: Relax at your own risk,” IEEE transactions on pattern analysis and machine intelligence, vol. 38, no. 1, pp. 60–73, 2015.
  • Zhang et al. [2023] N. Zhang, Z. Wang, W. Wang, and L. Wang, “Attributed graph alignment,” 2023. [Online]. Available: https://arxiv.org/abs/2102.00665
  • Kuhn and Yaw [1955] H. W. Kuhn and B. Yaw, “The Hungarian method for the assignment problem,” Naval Res. Logist. Quart, pp. 83–97, 1955.
  • Munkres [1957] J. Munkres, “Algorithms for the assignment and transportation problems,” Journal of the Society for Industrial and Applied Mathematics, vol. 5, no. 1, pp. 32–38, 1957. [Online]. Available: http://www.jstor.org/stable/2098689
  • Hoeffding [1963] W. Hoeffding, “Probability inequalities for sums of bounded random variables,” Journal of the American Statistical Association, vol. 58, no. 301, pp. 13–30, 1963.
  • Ash [1990] R. Ash, Information Theory, ser. Dover books on advanced mathematics.   Dover Publications, 1990.