This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

On the Existence and Regularity for Stationary Boltzmann Equation in a Small Domain

I-KUN CHEN, CHUN-HSIUNG HSIA, DAISUKE KAWAGOE AND JHE-KUAN SU
(Date: December 29, 2024)
Abstract.

In this article, we study the stationary Boltzmann equation with the incoming boundary condition for the hard potential cases. Assuming the smallness of the domain and a suitable normal curvature condition on the boundary, we find a suitable solution space which is a proper subset of the W1,pW^{1,p} space for 1p<31\leq p<3.

1. Introduction

The Boltzmann equation, which reads as

(1.1) Ft+vxF=Q(F,F),(t,x,v)×Ω×3,\frac{\partial F}{\partial t}+v\cdot\nabla_{x}F=Q(F,F),\quad(t,x,v)\in\mathbb{R}\times\Omega\times\mathbb{R}^{3},

describes the dynamical behavior of rarefied gas molecular in the space domain Ω\Omega in 3\mathbb{R}^{3} with velocity in 3\mathbb{R}^{3} at time tt. The function QQ is called the collision operator and it is defined by

(1.2) Q(F,G):=302π0π2[F(v)G(v)F(v)G(v)]B(|vv|,θ)𝑑θ𝑑ϕ𝑑v,Q(F,G):=\int_{\mathbb{R}^{3}}\int_{0}^{2\pi}\int_{0}^{\frac{\pi}{2}}[F(v^{\prime})G(v_{*}^{\prime})-F(v)G(v_{*})]B(|v-v_{*}|,\theta)d\theta d\phi dv_{*},

where

v:=v+((vv)ω)ω,v:=v((vv)ω)ω,\displaystyle v^{\prime}:=v+((v_{*}-v)\cdot\omega)\omega,\,v_{*}^{\prime}:=v_{*}-((v_{*}-v)\cdot\omega)\omega,
ω:=cosθvv|vv|+(sinθcosϕ)e2+(sinθsinϕ)e3.\displaystyle\omega:=\cos{\theta}\frac{v_{*}-v}{|v_{*}-v|}+(\sin{\theta}\cos{\phi})e_{2}+(\sin{\theta}\sin{\phi})e_{3}.

Here, ϕ\phi and θ\theta are real values satisfying 0ϕ2π0\leq\phi\leq 2\pi and 0θπ/2\ 0\leq\theta\leq\pi/2, and the vectors e2e_{2}, e3e_{3} are chosen so that the pair {vv|vv|,e2,e3}\{\frac{v_{*}-v}{|v_{*}-v|},e_{2},e_{3}\} forms an orthonormal basis. The cross section BB describes the interaction between two gas particles when they collide.

In this article, we consider the existence and regularity theory of the stationary Boltzmann equation

(1.3) vxF=Q(F,F),(x,v)Ω×3v\cdot\nabla_{x}F=Q(F,F),\quad(x,v)\in\Omega\times\mathbb{R}^{3}

with the incoming boundary condition

(1.4) F(x,v)=G(x,v),(x,v)Γ.F(x,v)=G(x,v),\quad(x,v)\in\Gamma^{-}.

Here, the outgoing and incoming boundaries are defined Γ±:={(x,v)Ω×3±n(x)v>0}\Gamma^{\pm}:=\{(x,v)\in\Omega\times\mathbb{R}^{3}\mid\pm n(x)\cdot v>0\} with n(x)n(x) the outward unit normal of Ω\partial\Omega at xx.

When we consider the fluctuation of the solution to the equation (1.3) from the Maxwellian potential M:=π32e|v|2M:=\pi^{-\frac{3}{2}}e^{-|v|^{2}}, that is, F=M+M12fF=M+M^{\frac{1}{2}}f and G=M+M12gG=M+M^{\frac{1}{2}}g, the problem is reduced to the equation

(1.5) vxf=L(f)+Γ(f,f),(x,v)Ω×3v\cdot\nabla_{x}f=L(f)+\Gamma(f,f),\quad(x,v)\in\Omega\times\mathbb{R}^{3}

with the incoming boundary condition

(1.6) f(x,v)=g(x,v),(x,v)Γ,f(x,v)=g(x,v),\quad(x,v)\in\Gamma^{-},

where the operators LL and Γ\Gamma are defined by

L(h):=M12(Q(M,M12h)+Q(M12h,M)))L(h):=M^{-\frac{1}{2}}\left(Q(M,M^{\frac{1}{2}}h)+Q(M^{\frac{1}{2}}h,M))\right)

and

Γ(h1,h2):=M12Q(M12h1,M12h2),\Gamma(h_{1},h_{2}):=M^{-\frac{1}{2}}Q(M^{\frac{1}{2}}h_{1},M^{\frac{1}{2}}h_{2}),

respectively. Instead of discussing the boundary value problem (1.3)-(1.4), we shall discuss the boundary value problem (1.5)-(1.6).

The existence and regularity issues of (1.5) have attracted the attention of many authors. In the 1970s, Guiraud proved the existence of solutions to the stationary Boltzmann equation for both linear and nonlinear cases in convex domains [12, 13]. For general domains, Esposito, Guo, Kim and Marra proved the existence result for the nonlinear case with the diffuse reflection boundary condition [10]. Since then, various results had been developed for different boundary conditions. For instance, with some conditions on the boundary, a C1C^{1} time-dependent solution to the Boltzmann equation with external fields is constructed in [2, 3]. In [14], a W1,pW^{1,p} time-evolutionary solution for 1<p<21<p<2 and a weighted W1,pW^{1,p} solution for 2p2\leq p\leq\infty are constructed. In [9], a point-wise estimate for the first derivatives of a solution to the linearized Boltzmann equation with the diffuse reflection boundary condition has been achieved. The space H1H^{1-} regularity of solutions for the linear case with the incoming boundary condition was achieved in [8]. In [4], a C1,βC^{1,\beta} solution to the stationary Boltzmann equation with the diffuse reflection boundary condition is constructed. Recently, in [5], the existence of the Wx1,pW^{1,p}_{x} solution of Boltzmann equation with the diffuse reflection boundary condition for 1p<31\leq p<3 is proved, which only established the space regularity.

Nevertheless, for the linearized Boltzmann equation, the authors established the H1H^{1} regularity, for both space and velocity variables, for a small domain with the positive Gaussian curvature [6]. In [7], the effect of the geometry on the regularity is investigated. The authors prove the existence of solutions in W1,pW^{1,p} spaces for 1p<21\leq p<2. In contrast, if the positivity of the Gaussian curvature on the boundary is imposed, the authors prove the existence of solutions in W1,pW^{1,p} spaces for 1p<31\leq p<3. In both cases, counterexamples are also provided.

In this article, with more conditions like uniform sphere conditions for the space domain and the smallness of the incoming data, we derive a point-wise estimate over the gradient of the solution of the nonlinear Boltzmann equation, by which we can derive a W1,pW^{1,p} solution for 1p<31\leq p<3.

To study the existence of a solution to the Boltzmann equation, we regard it as the linearized Boltzmann equation with a source term:

vxf=L(f)+ϕv\cdot\nabla_{x}f=L(f)+\phi

with ϕ=Γ(f,f)\phi=\Gamma(f,f). Then we apply the following iteration scheme

(1.7) vxfi+1=L(fi+1)+Γ(fi,fi)v\cdot\nabla_{x}f_{i+1}=L(f_{i+1})+\Gamma(f_{i},f_{i})

to prove that the sequence {fi}\{f_{i}\} converges to a solution of the nonlinear Boltzmann equation.

Next, we state the detailed setup of our problem. In this article, we consider the following cross section BB in (1.2):

(1.8) B(|vv|,θ)=C|vv|γsinθcosθB(|v-v_{*}|,\theta)=C|v-v_{*}|^{\gamma}\sin{\theta}\cos{\theta}

for some C>0C>0 and 0γ10\leq\gamma\leq 1. The range of γ\gamma corresponds to the hard potential cases. Throughout this article, we adopt a convenient notation: We denote fgf\lesssim g if there exists a constant C0C\geq 0 such that fCgf\leq Cg. Under the assumption (1.8), as have been observed by many authors, the linear operator L(f)L(f) satisfies the following property.

Property A.

The linear operator L(f)L(f) can be decomposed as

L(f)(x,v)=ν(v)f(x,v)+K(f)(x,v),L(f)(x,v)=-\nu(v)f(x,v)+K(f)(x,v),

where

K(f)(x,v):=3k(v,v)f(x,v)𝑑v.K(f)(x,v):=\int_{\mathbb{R}^{3}}k(v,v_{*})f(x,v_{*})\,dv_{*}.

Here, ν(v)\nu(v) and k(v,v)k(v,v_{*}) satisfy the following estimates

(1.9) (1+|v|)γν(v)(1+|v|)γ,\displaystyle(1+|v|)^{\gamma}\lesssim\nu(v)\lesssim(1+|v|)^{\gamma},
(1.10) |ν(v)|(1+|v|)γ1,\displaystyle|\nabla\nu(v)|\lesssim(1+|v|)^{\gamma-1},
(1.11) |k(v,v)|1|vv|(1+|v|+|v|)1γe1ρ4(|vv|2+(|v|2|v|2|vv|)2),\displaystyle|k(v,v_{*})|\lesssim\frac{1}{|v-v_{*}|(1+|v|+|v_{*}|)^{1-\gamma}}e^{-\frac{1-\rho}{4}\left(|v-v_{*}|^{2}+\left(\frac{|v|^{2}-|v_{*}|^{2}}{|v-v_{*}|}\right)^{2}\right)},
(1.12) |vk(v,v)|1+|v||vv|2(1+|v|+|v|)1γe1ρ4(|vv|2+(|v|2|v|2|vv|)2)\displaystyle|\nabla_{v}k(v,v_{*})|\lesssim\frac{1+|v|}{|v-v_{*}|^{2}(1+|v|+|v_{*}|)^{1-\gamma}}e^{-\frac{1-\rho}{4}\left(|v-v_{*}|^{2}+\left(\frac{|v|^{2}-|v_{*}|^{2}}{|v-v_{*}|}\right)^{2}\right)}

for 0ρ<10\leq\rho<1.

We remark that, under the assumption (1.9), the function ν\nu is uniformly positive;

infv3ν(v)>0\inf_{v\in\mathbb{R}^{3}}\nu(v)>0

for all 0γ10\leq\gamma\leq 1, which plays a key role in our analysis.

Next, we introduce the following notations:

τx,v:=\displaystyle\tau_{x,v}:= inf{s0xsvΩc},\displaystyle\inf\{s\geq 0\mid x-sv\in\Omega^{c}\},
q(x,v):=\displaystyle q(x,v):= xτx,vv,\displaystyle x-\tau_{x,v}v,
N(x,v):=\displaystyle N(x,v):= n(q(x,v))v|v|.\displaystyle-n(q(x,v))\cdot\frac{v}{|v|}.

Also, we define

|f|,α:=esssup(x,v)Ω×3eα|v|2|f(x,v)|,\displaystyle|f|_{\infty,\alpha}:=\operatorname*{ess\,sup}_{(x,v)\in\Omega\times\mathbb{R}^{3}}e^{\alpha|v|^{2}}|f(x,v)|,
w(x,v):=|v||v|+1N(x,v),\displaystyle w(x,v):=\frac{|v|}{|v|+1}N(x,v),
|f|,α,w:=|wf|,α,\displaystyle|f|_{\infty,\alpha,w}:=|wf|_{\infty,\alpha},
f,α:=|f|,α+|xf|,α,w+|vf|,α,w,\displaystyle\|f\|_{\infty,\alpha}:=|f|_{\infty,\alpha}+|\nabla_{x}f|_{\infty,\alpha,w}+|\nabla_{v}f|_{\infty,\alpha,w},
Lα:={f|f|,α<},\displaystyle L^{\infty}_{\alpha}:=\{f\mid|f|_{\infty,\alpha}<\infty\},
L^α:={ff,α<},\displaystyle\hat{L}^{\infty}_{\alpha}:=\{f\mid||f||_{\infty,\alpha}<\infty\},

where α0\alpha\geq 0.

We assume that the space domain Ω\Omega has the following property.

Assumption Ω\Omega .

The space domain Ω\Omega is a bounded domain with C2C^{2} boundary of positive Gaussian curvature.

Notice that the positivity of Gaussian curvature implies non-vanishing principle curvatures.

In addition, we introduce uniform circumscribed and interior sphere conditions.

Definition 1.

Given Ω3\Omega\subset\mathbb{R}^{3}, we say that the boundary of Ω\Omega satisfies the uniform circumscribed sphere condition if there exists a positive constant RR such that for any xΩx\in\partial\Omega there exists a ball BRB_{R} with radius RR such that

xBR,Ω¯B¯R.x\in\partial B_{R},\ \bar{\Omega}\subset\bar{B}_{R}.

We call the constant RR the uniform circumscribed radius.

Definition 2.

Given Ω3\Omega\subset\mathbb{R}^{3}, we say that the boundary of Ω\Omega satisfies the uniform interior sphere condition if there exists a positive constant rr such that for any xΩx\in\partial\Omega there exists a ball BrB_{r} with radius rr such that

xBr,B¯rΩ¯.x\in\partial B_{r},\ \bar{B}_{r}\subseteq\overline{\Omega}.

We call the constant rr the uniform interior radius.

It is known that, if the domain Ω\Omega satisfies Assumption Ω\Omega, then the boundary of Ω\Omega satisfies both uniform circumscribed and interior sphere conditions. For details, see [8].

The main result of this article is the following theorem.

Theorem 1.1.

Suppose (1.8) holds. Given 0α<(1ρ)/20\leq\alpha<(1-\rho)/2, where ρ\rho is the constant in Property A, there exists a positive constant δ\delta such that: For any domain Ω\Omega satisfying Assumption Ω\Omega with uniform circumscribed and interior radii RR and rr respectively, if

(1.13) max{diam(Ω),(Rr)12(1+Rr),eν(v)τx,vg(q(x,v),v),α}<δ,\max\left\{\text{\rm diam}(\Omega),(Rr)^{\frac{1}{2}}\left(1+\frac{R}{r}\right),\|e^{-\nu(v)\tau_{x,v}}g(q(x,v),v)\|_{\infty,\alpha}\right\}<\delta,

then the equation (1.5) with the incoming boundary condition (1.6) admits a solution in L^α\hat{L}^{\infty}_{\alpha}.

Remark 1.

There exist a domain and a boundary data which satisfy the assumption of Theorem 1.1. For example, let Ω:=Br0(0)\Omega:=B_{r_{0}}(0). Then, we have R=r=r0R=r=r_{0} and diam(Ω)=2r0\text{\rm diam}(\Omega)=2r_{0}. Also take g=r0g0g=r_{0}g_{0}, where g0g_{0} is a smooth function on Γ\Gamma^{-} with |g0(x,v)|eα|v|2|g_{0}(x,v)|\lesssim e^{-\alpha|v|^{2}}, |Xg0(x,v)|(1+|v|)eα|v|2/|v||\nabla_{X}g_{0}(x,v)|\lesssim(1+|v|)e^{-\alpha|v|^{2}}/|v| and |vg0(x,v)|(1+|v|)eα|v|2/|v||\nabla_{v}g_{0}(x,v)|\lesssim(1+|v|)e^{-\alpha|v|^{2}}/|v|. Here X\nabla_{X} denotes the covariant derivative of gg along the surface Ω\partial\Omega.

Remark 2.

It can be shown that L^αW1,p\hat{L}^{\infty}_{\alpha}\subseteq W^{1,p}, by which it turns out that Theorem 1.1 provides a sufficient condition for the existence of a W1,pW^{1,p} solution to the equation (1.5) with the boundary condition (1.6) for 1p<31\leq p<3. A proof is given in Proposition A.1.

The strategy of our proof starts with the derivation of the existence of a solution to the linearized Boltzmann equation with a source term:

(1.14) {vxf+ν(v)f=Kf+ϕ,(x,v)Ω×3,f(x,v)=g(x,v),(x,v)Γ.\begin{cases}v\cdot\nabla_{x}f+\nu(v)f=Kf+\phi,&(x,v)\in\Omega\times\mathbb{R}^{3},\\ f(x,v)=g(x,v),&(x,v)\in\Gamma^{-}.\end{cases}

For the sake of the convenience in further discussion, we define operators JJ and SΩS_{\Omega} by

Jg(x,v):=eν(v)τx,vg(q(x,v),v)Jg(x,v):=e^{-\nu(v)\tau_{x,v}}g(q(x,v),v)

and

SΩh(x,v):=0τx,veν(v)sh(xsv,v)𝑑s,S_{\Omega}h(x,v):=\int_{0}^{\tau_{x,v}}e^{-\nu(v)s}h(x-sv,v)\,ds,

respectively. We notice that JgJg is a function defined on Ω×3\Omega\times\mathbb{R}^{3} while gg is defined on Γ\Gamma^{-}. Then, the equation (1.14) is equivalent to the following integral form

f(x,v)=eν(v)τx,vg(q(x,v),v)+0τx,veν(v)s(Kf+ϕ)(xsv)𝑑s,f(x,v)=e^{-\nu(v)\tau_{x,v}}g(q(x,v),v)+\int_{0}^{\tau_{x,v}}e^{-\nu(v)s}(Kf+\phi)(x-sv)\,ds,

or

(1.15) f=Jg+SΩKf+SΩϕ.f=Jg+S_{\Omega}Kf+S_{\Omega}\phi.

By doing the Picard iteration on (1.15), we obtain

(1.16) f=i=0n(SΩK)i(Jg+SΩϕ)+(SΩK)n+1f.f=\sum_{i=0}^{n}(S_{\Omega}K)^{i}(Jg+S_{\Omega}\phi)+(S_{\Omega}K)^{n+1}f.

We show the convergence of the summation on the right hand side of (1.16) as nn\to\infty, and this limit gives a solution formula. Namely, the Picard iteration suggest the following solution formula to (1.15).

(1.17) f=i=0(SΩK)i(Jg+SΩϕ).f=\sum_{i=0}^{\infty}(S_{\Omega}K)^{i}(Jg+S_{\Omega}\phi).

To achieve the above procedure, we need the following lemma.

Lemma 1.1.

Assume Property A and let 0α<(1ρ)/20\leq\alpha<(1-\rho)/2. Also, suppose Assumption Ω\Omega with uniform circumscribed and interior radii RR and rr respectively. Then, given hL^αh\in\hat{L}^{\infty}_{\alpha}, we have

(SΩK)h,α(1+diam(Ω))|h|,α+(Rr)12(1+Rr)h,α.\displaystyle||(S_{\Omega}K)h||_{\infty,\alpha}\lesssim(1+\text{\rm diam}(\Omega))|h|_{\infty,\alpha}+(Rr)^{\frac{1}{2}}\left(1+\frac{R}{r}\right)||h||_{\infty,\alpha}.

Then, we reach at the following lemma.

Lemma 1.2.

Let ϕ\phi be a function such that SΩϕL^αS_{\Omega}\phi\in\hat{L}^{\infty}_{\alpha}. Suppose (1.8) holds. Then, given 0<α<(1ρ)/20<\alpha<(1-\rho)/2, where ρ\rho is the constant in Property A, there exists a positive constant δ\delta such that: For any domain Ω\Omega satisfying Assumption Ω\Omega with uniform circumscribed and interior sphere radii RR and rr respectively, if

(1.18) max{diam(Ω),(Rr)12(1+Rr)}<δ,\max\left\{\text{\rm diam}(\Omega),(Rr)^{\frac{1}{2}}\left(1+\frac{R}{r}\right)\right\}<\delta,

there exists a solution fL^αf\in\hat{L}^{\infty}_{\alpha} to the integral equation (1.15). Moreover, we have

f,αSΩϕ,α+Jg,α.\|f\|_{\infty,\alpha}\lesssim\|S_{\Omega}\phi\|_{\infty,\alpha}+\|Jg\|_{\infty,\alpha}.

Next, to obtain the solution to the equation (1.5) with boundary condition (1.6), we consider the following iteration scheme:

(1.19) {vxfi+1+ν(v)fi+1=K(fi+1)+Γ(fi,fi),(x,v)Ω×3,fi(x,v)=g(x,v),(x,v)Γ.\begin{cases}v\cdot\nabla_{x}f_{i+1}+\nu(v)f_{i+1}=K(f_{i+1})+\Gamma(f_{i},f_{i}),&(x,v)\in\Omega\times\mathbb{R}^{3},\\ f_{i}(x,v)=g(x,v),&(x,v)\in\Gamma^{-}.\end{cases}

To show the convergence of the sequence {fi}\{f_{i}\} obtained by (1.19), we employ the following lemma:

Lemma 1.3.

Suppose (1.8) holds and let 0α<(1ρ)/20\leq\alpha<(1-\rho)/2. where ρ\rho is the constant in Property A. Also, suppose Assumption Ω\Omega with uniform circumscribed and interior radii RR and rr respectively. Then, for h1,h2L^αh_{1},h_{2}\in\hat{L}^{\infty}_{\alpha}, we have

SΩΓ(h1,h2),α(1+diam(Ω)+(Rr)12(1+Rr))h1,αh2,α.\displaystyle||S_{\Omega}\Gamma(h_{1},h_{2})||_{\infty,\alpha}\lesssim\left(1+\text{\rm diam}(\Omega)+(Rr)^{\frac{1}{2}}\left(1+\frac{R}{r}\right)\right)||h_{1}||_{\infty,\alpha}||h_{2}||_{\infty,\alpha}.

With the help of the bilinear estimate of SΩΓ(h1,h2),α\|S_{\Omega}\Gamma(h_{1},h_{2})\|_{\infty,\alpha} in Lemma 1.3, we derive the convergence of the sequence {fi}\{f_{i}\}. Finally we successfully prove that the limit of {fi}\{f_{i}\} is a solution to the equation (1.5) with the boundary condition (1.6).

The rest part of this article is as follows. In Section 2, we introduce some key estimates which are based on the assumption (1.8) and the geometry of Ω\Omega. In Section 3, we focus on the existence result and derive some estimates for the linear case. A detailed proof of the existence of a solution for the nonlinear case is given in Section 4.

2. Preliminary estimates

In this section, we introduce some key estimates which are based on the assumption (1.8) and the geometry of Ω\Omega.

2.1. Estimates for the linear integral kernel

Thanks to the assumption (1.11), we can derive a very useful integral estimate which will be frequently used later.

Lemma 2.1.

For 0α<(1ρ)/20\leq\alpha<(1-\rho)/2, where ρ\rho is the constant in Property A, we have

31+|v||v||k(v,v)|eα|v|2𝑑veα|v|2.\int_{\mathbb{R}^{3}}\frac{1+|v_{*}|}{|v_{*}|}|k(v,v_{*})|e^{-\alpha|v_{*}|^{2}}\,dv_{*}\lesssim e^{-\alpha|v|^{2}}.

Before starting our proof, we state a key estimate of kk.

Lemma 2.2.

For any α\alpha\in\mathbb{R}, we have

|k(v,v)|1|vv|(1+|v|+|v|)1γeα|v|2×e(1ρ+2α)(1ρ2α)4(1ρ)|vv|2e(1ρ)(v(vv)|vv|1ρ+2α2(1ρ)|vv|)2eα|v|2.\begin{split}|k(v,v_{*})|\lesssim&\frac{1}{|v-v_{*}|(1+|v|+|v_{*}|)^{1-\gamma}}e^{-\alpha|v|^{2}}\\ &\times e^{-\frac{(1-\rho+2\alpha)(1-\rho-2\alpha)}{4(1-\rho)}|v-v_{*}|^{2}}e^{-(1-\rho)\left(v\cdot\frac{(v-v_{*})}{|v-v_{*}|}-\frac{1-\rho+2\alpha}{2(1-\rho)}|v-v_{*}|\right)^{2}}e^{\alpha|v_{*}|^{2}}.\end{split}
Proof.

Notice that |v|2=|v|2+|vv|2+2v(vv)|v_{*}|^{2}=|v|^{2}+|v_{*}-v|^{2}+2v\cdot(v_{*}-v), which implies

|v|2|v|2|vv|=|vv|+2v(vv)|vv|.\frac{|v|^{2}-|v_{*}|^{2}}{|v-v_{*}|}=-|v-v_{*}|+2v\cdot\frac{(v-v_{*})}{|v-v_{*}|}.

Hence by substituting above equation for (1.11), we have

e1ρ4(|vv|2+(|vv|+2v(vv)|vv|)2)=\displaystyle e^{-\frac{1-\rho}{4}\left(|v-v_{*}|^{2}+\left(-|v-v_{*}|+2v\cdot\frac{(v-v_{*})}{|v-v_{*}|}\right)^{2}\right)}= e1ρ4(2|vv|24v(vv)+4(v(vv)|vv|)2)\displaystyle e^{-\frac{1-\rho}{4}\left(2|v-v_{*}|^{2}-4v\cdot(v-v_{*})+4\left(v\cdot\frac{(v-v_{*})}{|v-v_{*}|}\right)^{2}\right)}
=\displaystyle= e1ρ2|vv|2e(1ρ)v(vv)e(1ρ)(v(vv)|vv|)2.\displaystyle e^{-\frac{1-\rho}{2}|v-v_{*}|^{2}}e^{(1-\rho)v\cdot(v-v_{*})}e^{-(1-\rho)\left(v\cdot\frac{(v-v_{*})}{|v-v_{*}|}\right)^{2}}.

Then, we use the identity

|v|2+|vv|22(vv)v|v|2=0|v|^{2}+|v-v_{*}|^{2}-2(v-v_{*})\cdot v-|v_{*}|^{2}=0

to obtain

e1ρ2|vv|2e(1ρ)v(vv)e(1ρ)(v(vv)|vv|)2=eα(|v|2+|vv|22(vv)v|v|2)e1ρ2|vv|2e(1ρ)v(vv)e(1ρ)(v(vv)|vv|)2=eα|v|2e1ρ+2α2|vv|2e(1ρ+2α)v(vv)e(1ρ)(v(vv)|vv|)2eα|v|2=eα|v|2e(1ρ+2α)(1ρ2α)4(1ρ)|vv|2e(1ρ)(v(vv)|vv|1ρ+2α2(1ρ)|vv|)2eα|v|2.\begin{split}&e^{-\frac{1-\rho}{2}|v-v_{*}|^{2}}e^{(1-\rho)v\cdot(v-v_{*})}e^{-(1-\rho)\left(v\cdot\frac{(v-v_{*})}{|v-v_{*}|}\right)^{2}}\\ =&e^{-\alpha(|v|^{2}+|v-v_{*}|^{2}-2(v-v_{*})\cdot v-|v_{*}|^{2})}e^{-\frac{1-\rho}{2}|v-v_{*}|^{2}}e^{(1-\rho)v\cdot(v-v_{*})}e^{-(1-\rho)\left(v\cdot\frac{(v-v_{*})}{|v-v_{*}|}\right)^{2}}\\ =&e^{-\alpha|v|^{2}}e^{-\frac{1-\rho+2\alpha}{2}|v-v_{*}|^{2}}e^{(1-\rho+2\alpha)v\cdot(v-v_{*})}e^{-(1-\rho)\left(v\cdot\frac{(v-v_{*})}{|v-v_{*}|}\right)^{2}}e^{\alpha|v_{*}|^{2}}\\ =&e^{-\alpha|v|^{2}}e^{-\frac{(1-\rho+2\alpha)(1-\rho-2\alpha)}{4(1-\rho)}|v-v_{*}|^{2}}e^{-(1-\rho)\left(v\cdot\frac{(v-v_{*})}{|v-v_{*}|}-\frac{1-\rho+2\alpha}{2(1-\rho)}|v-v_{*}|\right)^{2}}e^{\alpha|v_{*}|^{2}}.\end{split}

This completes the proof. ∎

Proof of Lemma 2.1.

By applying Lemma 2.2, we have

31+|v||v||k(v,v)|eα|v|2𝑑v\displaystyle\int_{\mathbb{R}^{3}}\frac{1+|v_{*}|}{|v_{*}|}|k(v,v_{*})|e^{-\alpha|v_{*}|^{2}}dv_{*}
\displaystyle\lesssim 31+|v||v|1|vv|(1+|v|+|v|)1γeα|v|2e(1ρ+2α)(1ρ2α)4(1ρ)|vv|2\displaystyle\int_{\mathbb{R}^{3}}\frac{1+|v_{*}|}{|v_{*}|}\frac{1}{|v-v_{*}|(1+|v|+|v_{*}|)^{1-\gamma}}e^{-\alpha|v|^{2}}e^{-\frac{(1-\rho+2\alpha)(1-\rho-2\alpha)}{4(1-\rho)}|v-v_{*}|^{2}}
×e(1ρ)(v(vv)|vv|1ρ+2α2(1ρ)|vv|)2eα|v|2eα|v|2dv\displaystyle\times e^{-(1-\rho)\left(v\cdot\frac{(v-v_{*})}{|v-v_{*}|}-\frac{1-\rho+2\alpha}{2(1-\rho)}|v-v_{*}|\right)^{2}}e^{\alpha|v_{*}|^{2}}e^{-\alpha|v_{*}|^{2}}dv_{*}
\displaystyle\leq eα|v|231+|v||v|1|vv|(1+|v|+|v|)1γe(1ρ+2α)(1ρ2α)4(1ρ)|vv|2𝑑v.\displaystyle e^{-\alpha|v|^{2}}\int_{\mathbb{R}^{3}}\frac{1+|v_{*}|}{|v_{*}|}\frac{1}{|v-v_{*}|(1+|v|+|v_{*}|)^{1-\gamma}}e^{-\frac{(1-\rho+2\alpha)(1-\rho-2\alpha)}{4(1-\rho)}|v-v_{*}|^{2}}dv_{*}.

Since 1ρ2α>01-\rho-2\alpha>0, we get

31+|v||v|1|vv|(1+|v|+|v|)1γe(1ρ+2α)(1ρ2α)4(1ρ)|vv|2𝑑v\displaystyle\int_{\mathbb{R}^{3}}\frac{1+|v_{*}|}{|v_{*}|}\frac{1}{|v-v_{*}|(1+|v|+|v_{*}|)^{1-\gamma}}e^{-\frac{(1-\rho+2\alpha)(1-\rho-2\alpha)}{4(1-\rho)}|v-v_{*}|^{2}}dv_{*}
\displaystyle\leq 31+|v||v|1|vv|e(1ρ+2α)(1ρ2α)4(1ρ)|vv|2𝑑v\displaystyle\int_{\mathbb{R}^{3}}\frac{1+|v_{*}|}{|v_{*}|}\frac{1}{|v-v_{*}|}e^{-\frac{(1-\rho+2\alpha)(1-\rho-2\alpha)}{4(1-\rho)}|v-v_{*}|^{2}}dv_{*}
\displaystyle\leq |v||vv|1+|v||v|1|vv|e(1ρ+2α)(1ρ2α)4(1ρ)|vv|2𝑑v\displaystyle\int_{|v_{*}|\geq|v-v_{*}|}\frac{1+|v_{*}|}{|v_{*}|}\frac{1}{|v-v_{*}|}e^{-\frac{(1-\rho+2\alpha)(1-\rho-2\alpha)}{4(1-\rho)}|v-v_{*}|^{2}}dv_{*}
+|v||vv|1+|v||v|1|vv|e(1ρ+2α)(1ρ2α)4(1ρ)|vv|2𝑑v\displaystyle+\int_{|v_{*}|\leq|v-v_{*}|}\frac{1+|v_{*}|}{|v_{*}|}\frac{1}{|v-v_{*}|}e^{-\frac{(1-\rho+2\alpha)(1-\rho-2\alpha)}{4(1-\rho)}|v-v_{*}|^{2}}dv_{*}
\displaystyle\leq |v||vv|(1+1|vv|)1|vv|e(1ρ+2α)(1ρ2α)4(1ρ)|vv|2𝑑v\displaystyle\int_{|v_{*}|\geq|v-v_{*}|}\left(1+\frac{1}{|v-v_{*}|}\right)\frac{1}{|v-v_{*}|}e^{-\frac{(1-\rho+2\alpha)(1-\rho-2\alpha)}{4(1-\rho)}|v-v_{*}|^{2}}dv_{*}
+|v||vv|1+|v||v|1|v|e(1ρ+2α)(1ρ2α)4(1ρ)|v|2𝑑v\displaystyle+\int_{|v_{*}|\leq|v-v_{*}|}\frac{1+|v_{*}|}{|v_{*}|}\frac{1}{|v_{*}|}e^{-\frac{(1-\rho+2\alpha)(1-\rho-2\alpha)}{4(1-\rho)}|v_{*}|^{2}}dv_{*}
\displaystyle\leq 231+|v||v|2e(1ρ+2α)(1ρ2α)4(1ρ)|v|2𝑑v\displaystyle 2\int_{\mathbb{R}^{3}}\frac{1+|v_{*}|}{|v_{*}|^{2}}e^{-\frac{(1-\rho+2\alpha)(1-\rho-2\alpha)}{4(1-\rho)}|v_{*}|^{2}}dv_{*}
\displaystyle\lesssim 1.\displaystyle 1.

Therefore, we obtain

31+|v||v||k(v,v)|eα|v|2𝑑veα|v|2.\int_{\mathbb{R}^{3}}\frac{1+|v_{*}|}{|v_{*}|}|k(v,v_{*})|e^{-\alpha|v_{*}|^{2}}dv_{*}\lesssim e^{-\alpha|v|^{2}}.

This completes the proof. ∎

We use the same idea to derive a similar estimate for vk(v,v)\nabla_{v}k(v,v_{*}) once we adopt Property A.

Lemma 2.3.

For 0α<(1ρ)/20\leq\alpha<(1-\rho)/2, where ρ\rho is the constant in Property A, we have

3|vk(v,v)|eα|v|2𝑑v(1+|v|)γeα|v|2.\int_{\mathbb{R}^{3}}|\nabla_{v}k(v,v_{*})|e^{-\alpha|v_{*}|^{2}}dv_{*}\lesssim(1+|v|)^{\gamma}e^{-\alpha|v|^{2}}.

2.2. Estimates for the nonlinear cross section

We provide three estimates for the nonlinear term whose cross section BB satisfies the assumption (1.8).

Lemma 2.4.

Let β>0\beta>0 and 0γ10\leq\gamma\leq 1. Then, we have

3(1+1|v|)eβ|v|2|vv|γ𝑑v(1+|v|)γ\int_{\mathbb{R}^{3}}\left(1+\frac{1}{|v_{*}|}\right)e^{-\beta|v_{*}|^{2}}|v-v_{*}|^{\gamma}\,dv_{*}\lesssim(1+|v|)^{\gamma}

for all v3v\in\mathbb{R}^{3}.

Proof.

By the triangular inequality, we have

31|v|jeβ|v|2|vv|γ𝑑v\displaystyle\int_{\mathbb{R}^{3}}\frac{1}{|v_{*}|^{j}}e^{-\beta|v_{*}|^{2}}|v-v_{*}|^{\gamma}\,dv_{*}\leq |v|γ31|v|jeβ|v|2𝑑v+3|v|γjeβ|v|2𝑑v\displaystyle|v|^{\gamma}\int_{\mathbb{R}^{3}}\frac{1}{|v_{*}|^{j}}e^{-\beta|v_{*}|^{2}}\,dv_{*}+\int_{\mathbb{R}^{3}}|v_{*}|^{\gamma-j}e^{-\beta|v_{*}|^{2}}\,dv_{*}
\displaystyle\lesssim |v|γ+1\displaystyle|v|^{\gamma}+1
\displaystyle\lesssim (1+|v|)γ\displaystyle(1+|v|)^{\gamma}

for j=0,1j=0,1. This completes the proof. ∎

Lemma 2.5.

Let β>0\beta>0 and 0γ10\leq\gamma\leq 1. Then, we have

3eβ|v|2|vv|γ1𝑑v1\int_{\mathbb{R}^{3}}e^{-\beta|v_{*}|^{2}}|v-v_{*}|^{\gamma-1}\,dv_{*}\lesssim 1

for all v3v\in\mathbb{R}^{3}.

Proof.

We decompose the integral into two parts:

3eβ|v|2|vv|γ1𝑑v\displaystyle\int_{\mathbb{R}^{3}}e^{-\beta|v_{*}|^{2}}|v-v_{*}|^{\gamma-1}\,dv_{*}
=\displaystyle= |vv|<|v|eβ|v|2|vv|γ1𝑑v+|vv||v|eβ|v|2|vv|γ1𝑑v\displaystyle\int_{|v-v_{*}|<|v_{*}|}e^{-\beta|v_{*}|^{2}}|v-v_{*}|^{\gamma-1}\,dv_{*}+\int_{|v-v_{*}|\geq|v_{*}|}e^{-\beta|v_{*}|^{2}}|v-v_{*}|^{\gamma-1}\,dv_{*}
\displaystyle\leq |vv|<|v|eβ|vv||vv|γ1𝑑v+|vv||v|eβ|v|2|v|γ1𝑑v\displaystyle\int_{|v-v_{*}|<|v_{*}|}e^{-\beta|v-v_{*}|}|v-v_{*}|^{\gamma-1}\,dv_{*}+\int_{|v-v_{*}|\geq|v_{*}|}e^{-\beta|v_{*}|^{2}}|v_{*}|^{\gamma-1}\,dv_{*}
\displaystyle\lesssim 3eβ|v|2|v|γ1𝑑v\displaystyle\int_{\mathbb{R}^{3}}e^{-\beta|v_{*}|^{2}}|v_{*}|^{\gamma-1}\,dv_{*}
\displaystyle\lesssim 1.\displaystyle 1.

This completes the proof. ∎

Lemma 2.6.

Let Ω\Omega be a bounded domain in 3\mathbb{R}^{3} and 0γ10\leq\gamma\leq 1. Then, we have

(1+|v|)γmin{1,diam(Ω)|v|}1+diam(Ω)(1+|v|)^{\gamma}\min\left\{1,\frac{\text{\rm diam}(\Omega)}{|v|}\right\}\leq 1+\text{\rm diam}(\Omega)

for all v3{0}v\in\mathbb{R}^{3}\setminus\{0\}.

Proof.

For 0<|v|<diam(Ω)0<|v|<\text{\rm diam}(\Omega), we have

(1+|v|)γmin{1,diam(Ω)|v|}(1+diam(Ω))γ1+diam(Ω).(1+|v|)^{\gamma}\min\left\{1,\frac{\text{\rm diam}(\Omega)}{|v|}\right\}\leq(1+\text{\rm diam}(\Omega))^{\gamma}\leq 1+\text{\rm diam}(\Omega).

On the other hand, for |v|diam(Ω)|v|\geq\text{\rm diam}(\Omega), we have

(1+|v|)γmin{1,diam(Ω)|v|}\displaystyle(1+|v|)^{\gamma}\min\left\{1,\frac{\text{\rm diam}(\Omega)}{|v|}\right\}\leq (1+|v|)γ|v|diam(Ω)\displaystyle\frac{(1+|v|)^{\gamma}}{|v|}\text{\rm diam}(\Omega)
\displaystyle\leq (1+1|v|)diam(Ω)\displaystyle\left(1+\frac{1}{|v|}\right)\text{\rm diam}(\Omega)
\displaystyle\leq 1+diam(Ω).\displaystyle 1+\text{\rm diam}(\Omega).

Here and in what follows, we use the estimate; (1+|v|)γ1+|v|(1+|v|)^{\gamma}\leq 1+|v| for all 0γ10\leq\gamma\leq 1 and v3v\in\mathbb{R}^{3}. Therefore, the estimate is proved. ∎

2.3. Some geometrical estimates on bounded convex domains

We introduce some geometric properties for bounded domains with C2C^{2} boundaries with uniform circumscribed and interior radii RR and rr respectively.

Based on such sphere conditions, we derive some important estimates.

Proposition 2.1.

Given Ω\Omega with the uniform circumscribed radius RR, we have

|xq+(x,v)|RN(x,v)|x-q^{+}(x,v)|\lesssim RN(x,v)

for all v3{0}v\in\mathbb{R}^{3}\setminus\{0\} and xΓvx\in\Gamma^{-}_{v}, where Γv:={xΩn(x)v<0}\Gamma^{-}_{v}:=\{x\in\partial\Omega\mid n(x)\cdot v<0\} and q+(x,v):=q(x,v)q^{+}(x,v):=q(x,-v).

Proof.

We fix v3{0}v\in\mathbb{R}^{3}\setminus\{0\} and xΓvx\in\Gamma^{-}_{v}. By the definition of the uniform circumscribed radius, there exists a ball BRB_{R} with radius RR such that BR\partial B_{R} intersects Ω\partial\Omega at xx. Let OO be the center of the ball BRB_{R} and let AA be the intersection point of the half-line xq+\overrightarrow{xq^{+}} and BR\partial B_{R}, as Figure 2.1 shows.

Let θ\theta be the angle between n(x)n(x) and v-v. We note that the normal n(x)n(x) to Ω\partial\Omega is also the normal to BR\partial B_{R} at xx. By a geometrical observation, it is clear that

|xq+(x,v)|xA¯2Rcosθ=2RN(x,v).|x-q^{+}(x,v)|\leq\overline{xA}\leq 2R\cos{\theta}=2RN(x,v).

This completes the proof.

Refer to caption
Figure 2.1. A picture of the cross section of Ω\Omega and BRB_{R} containing OO, xx and q+(x,v)q^{+}(x,v) in Proposition 2.1.

Proposition 2.2.

Given Ω\Omega with the uniform circumscribed radius RR, we have

dx12R12N(x,v)d_{x}^{\frac{1}{2}}\leq R^{\frac{1}{2}}N(x,v)

for all xΩ¯x\in\overline{\Omega} and v3{0}v\in\mathbb{R}^{3}\setminus\{0\}. Here, dxd_{x} denotes the distance between xx and Ω\partial\Omega.

Proof.

By the uniform circumscribed sphere condition, for any xΩx\in\Omega and v3{0}v\in\mathbb{R}^{3}\setminus\{0\}, there exists a ball BRΩB_{R}\supseteq\Omega with radius RR such that q(x,v)BRΩq(x,v)\in\partial B_{R}\cap\partial\Omega. Let OO be the center of the ball BRB_{R}.

We first consider the case where three points OO, xx and q(x,v)q(x,v) are collinear. In this case, since BR\partial B_{R} shares its normal vector with Ω\partial\Omega at q(x,v)q(x,v), we have N(x,v)=1N(x,v)=1 and the desired estimate is obviously true. Thus, in what follows, we assume that OO, xx and q(x,v)q(x,v) are not collinear. Moreover, we discuss the estimate in the two-dimensional section since these three points are on the same plane.

Let AA be the intersection point of BR\partial B_{R} and the half line Ox\overrightarrow{Ox}. Take a point BB on the line xqxq such that the line OBOB is perpendicular to it. We notice that the point BB is the closest to OO among the points on the line OqOq. Thus, the inequality OB¯Ox¯\overline{OB}\leq\overline{Ox} holds. Let CC be defined as the intersection point of BR\partial B_{R} and the half line OB\overrightarrow{OB}. We provide a picture of the configuration as Figure 2.2.

Refer to caption
Figure 2.2. A picture of the cross section of Ω\Omega and BRB_{R} containing OO, xx and q(x,v)q(x,v) in Proposition 2.2.

We are ready to prove the estimate. Thanks to the condition ΩBR\Omega\subset B_{R}, we have

dxd(x,BR).d_{x}\leq d(x,\partial B_{R}).

Here, d(x,X)d(x,X) denotes the distance between the point xx and the set XX. We notice that

d(x,BR)=xA¯=ROx¯ROB¯=BC¯.d(x,\partial B_{R})=\overline{xA}=R-\overline{Ox}\leq R-\overline{OB}=\overline{BC}.

In the same way as in the proof of Proposition 2.1, let θ\theta be the angle between n(q(x,v))n(q(x,v)) and v-v. Then, as Figure 2.3 illustrates, noticing that N(x,v)=cosθN(x,v)=\cos\theta, we have

BC¯=R(1sinθ)=R(11cos2θ)=R(11N2(x,v))RN2(x,v).\overline{BC}=R(1-\sin{\theta})=R(1-\sqrt{1-\cos^{2}{\theta}})=R(1-\sqrt{1-N^{2}(x,v)})\leq RN^{2}(x,v).

Combining the above estimates, we obtain

dxRN2(x,v).d_{x}\leq RN^{2}(x,v).

This completes the proof.

Refer to caption
Figure 2.3. A picture of OO, BB, CC and q(x,v)q(x,v) in Proposition 2.2 (deleting the point AA).

Proposition 2.3.

Given Ω\Omega with uniform circumscribed and interior radii RR and rr respectively, we have

0|q(x,v)x|1dxsv|v|12𝑑sr12+Rr12,\int_{0}^{|q(x,v)-x|}\frac{1}{d_{x-s\frac{v}{|v|}}^{\frac{1}{2}}}\,ds\lesssim r^{\frac{1}{2}}+\frac{R}{r^{\frac{1}{2}}},

for all xΩ¯x\in\overline{\Omega} and v3{0}v\in\mathbb{R}^{3}\setminus\{0\}.

Remark 3.

A proof of Proposition 2.3 was firstly explored as that of Lemma 5.12 in [8]. We repeat the proof for readers’ convenience.

Proof.

Without loss of generality, we assume that xΓv+:={xΩn(x)v>0}x\in\Gamma^{+}_{v}:=\{x\in\partial\Omega\mid n(x)\cdot v>0\}.

We first consider the case where the domain is the ball with center OO and radius rr. Let AA be the mid point of xx and q(x,v)q(x,v).

If O=AO=A, then we have

0|q(x,v)x|1dxsv|v|𝑑s=20rdtt12=4r12,\int_{0}^{|q(x,v)-x|}\frac{1}{d_{x-s\frac{v}{|v|}}}\,ds=2\int_{0}^{r}\frac{dt}{t^{\frac{1}{2}}}=4r^{\frac{1}{2}},

which implies that the desired estimate holds. In what follows, we discuss the case where OAO\neq A.

Let BB be the intersection point of BR\partial B_{R} and the half line OA\overrightarrow{OA}. Take a point C:=xsv/|v|C:=x-sv/|v|, 0<s<|xq(x,v)|0<s<|x-q(x,v)| and let DD be the intersection point between the line segment xBxB and the line passing through CC and parallel to the line OBOB. The configuration of these points is seen in Figure 2.4.

Refer to caption
Figure 2.4. A picture of points OO, AA, BB, CC and DD in Proposition 2.3 when the domain is a ball.

We claim that d(C,BR)CD¯/2d(C,\partial B_{R})\geq\overline{CD}/\sqrt{2}. Let θ\theta be the angle between n(x)n(x) and vv, which is OxA\angle OxA. Through a geometrical observation, we see that xDC=xBA=π/4+θ/2\angle xDC=\angle xBA=\pi/4+\theta/2. Thus, we have

d(C,BR)CD¯sin(π4+θ2)CD¯2.d(C,\partial B_{R})\geq\overline{CD}\sin\left(\frac{\pi}{4}+\frac{\theta}{2}\right)\geq\frac{\overline{CD}}{\sqrt{2}}.

Since xAB\triangle xAB is similar to xCD\triangle xCD, we have

CD¯=AB¯Cx¯Ax=r(1sinθ)Cx¯rcosθ=(1sinθ)Cx¯cosθ.\overline{CD}=\overline{AB}\cdot\frac{\overline{Cx}}{Ax}=r(1-\sin{\theta})\frac{\overline{Cx}}{r\cos{\theta}}=(1-\sin{\theta})\frac{\overline{Cx}}{\cos{\theta}}.

Hence the integral in the left hand side is estimated as follows:

0|q(x,v)x|1dxsv|v|12𝑑s\displaystyle\int_{0}^{|q(x,v)-x|}\frac{1}{d_{x-s\frac{v}{|v|}}^{\frac{1}{2}}}\,ds 20rcosθ1(121sinθcosθt)12𝑑t\displaystyle\leq 2\int_{0}^{r\cos{\theta}}\frac{1}{\left(\frac{1}{\sqrt{2}}\frac{1-\sin{\theta}}{\cos{\theta}}t\right)^{\frac{1}{2}}}\,dt
(cosθ1sinθ)120rcosθ1t12𝑑t\displaystyle\lesssim\left(\frac{\cos{\theta}}{1-\sin{\theta}}\right)^{\frac{1}{2}}\int_{0}^{r\cos{\theta}}\frac{1}{t^{\frac{1}{2}}}\,dt
(cosθ1sinθ)12(rcosθ)12\displaystyle\lesssim\left(\frac{\cos{\theta}}{1-\sin{\theta}}\right)^{\frac{1}{2}}(r\cos{\theta})^{\frac{1}{2}}
=(cos2θ1sinθ)12r12\displaystyle=\left(\frac{\cos^{2}{\theta}}{1-\sin{\theta}}\right)^{\frac{1}{2}}r^{\frac{1}{2}}
=(1+sinθ)12r12\displaystyle=(1+\sin{\theta})^{\frac{1}{2}}r^{\frac{1}{2}}
r12,\displaystyle\lesssim r^{\frac{1}{2}},

which is the desired estimate.

We proceed to discuss the case for a general domain with the uniform circumscribed condition with radius RR. Based on the uniform interior sphere condition with radius rr, we introduce two open balls B1B_{1} and B2B_{2} with radii rr such that xB1x\in\partial B_{1}, B¯1Ω¯\bar{B}_{1}\subseteq\overline{\Omega} and q(x,v)B2q(x,v)\in\partial B_{2}, B¯2Ω¯\bar{B}_{2}\subseteq\overline{\Omega}.

If the line segment xqxq is in B1¯B2¯\overline{B_{1}}\cup\overline{B_{2}}, then we have

0|q(x,v)x|1dxsv|v|12𝑑s\displaystyle\int_{0}^{|q(x,v)-x|}\frac{1}{d_{x-s\frac{v}{|v|}}^{\frac{1}{2}}}\,ds
\displaystyle\leq {xsv|v|B1}1d(xsv|v|,B1)12𝑑s+{xsv|v|B2}1d(q(x,v)sv|v|,B2)12𝑑s\displaystyle\int_{\{x-s\frac{v}{|v|}\in B_{1}\}}\frac{1}{d\left(x-s\frac{v}{|v|},\partial B_{1}\right)^{\frac{1}{2}}}\,ds+\int_{\{x-s\frac{v}{|v|}\in B_{2}\}}\frac{1}{d\left(q(x,v)-s\frac{v}{|v|},\partial B_{2}\right)^{\frac{1}{2}}}\,ds
\displaystyle\lesssim r12.\displaystyle r^{\frac{1}{2}}.

If it is not the case, the line segment xqxq is still in the convex hull of B1B2B_{1}\cup B_{2}. Let θ1\theta_{1} is the angle between n(x)n(x) and vv, and let θ2\theta_{2} be that between q(x,v)q(x,v) and v-v. Then, we have dxsv/|v|rmin{1sinθ1,1sinθ2}d_{x-sv/|v|}\geq r\min\{1-\sin\theta_{1},1-\sin\theta_{2}\} when xsv/|v|B1B2x-sv/|v|\notin B_{1}\cup B_{2}. Also, by switching the pair (x,v)(x,v) and (q+(x,v),v)(q^{+}(x,v),-v) in the proof of Proposition 2.1, we can see that the length of the line segment {xsv/|v|0<s<|q(x,v)x|,xsv/|v|B1B2}\{x-sv/|v|\mid 0<s<|q(x,v)-x|,x-sv/|v|\notin B_{1}\cup B_{2}\} is less than

|xq(x,v)|Rmin{cosθ1,cosθ2}.|x-q(x,v)|\lesssim R\min\{\cos\theta_{1},\cos\theta_{2}\}.

Thus, we have

0|q(x,v)x|1dxsv|v|12𝑑s\displaystyle\int_{0}^{|q(x,v)-x|}\frac{1}{d_{x-s\frac{v}{|v|}}^{\frac{1}{2}}}\,ds
\displaystyle\leq {xsv|v|B1}1d(xsv|v|,B1)12𝑑s+{xsv|v|B2}1d(q(x,v)sv|v|,B2)12𝑑s\displaystyle\int_{\{x-s\frac{v}{|v|}\in B_{1}\}}\frac{1}{d\left(x-s\frac{v}{|v|},\partial B_{1}\right)^{\frac{1}{2}}}\,ds+\int_{\{x-s\frac{v}{|v|}\in B_{2}\}}\frac{1}{d\left(q(x,v)-s\frac{v}{|v|},\partial B_{2}\right)^{\frac{1}{2}}}\,ds
+{xsv|v|B1B2}1r12min{1sinθ1,1sinθ2}12𝑑s\displaystyle+\int_{\{x-s\frac{v}{|v|}\notin B_{1}\cup B_{2}\}}\frac{1}{r^{\frac{1}{2}}\min\{1-\sin\theta_{1},1-\sin\theta_{2}\}^{\frac{1}{2}}}\,ds
\displaystyle\lesssim r12+Rr12.\displaystyle r^{\frac{1}{2}}+\frac{R}{r^{\frac{1}{2}}}.

Here, we used facts that min{1sinθ1,1sinθ2}=1sinθj\min\{1-\sin\theta_{1},1-\sin\theta_{2}\}=1-\sin\theta_{j} if and only if min{cosθ1,cosθ2}=cosθj\min\{\cos\theta_{1},\cos\theta_{2}\}=\cos\theta_{j} and that 0cosθj/(1sinθj)1/210\leq\cos\theta_{j}/(1-\sin\theta_{j})^{1/2}\lesssim 1.

This completes the proof.

By changing variable of integration by s=|v|ts=|v|t in Proposition 2.3, we obtain the following estimate.

Corollary 2.1.

Given Ω\Omega with uniform circumscribed and interior radii RR and rr respectively, we have

0τx,v1dxtv12𝑑tr12|v|(1+Rr),\int_{0}^{\tau_{x,v}}\frac{1}{d_{x-tv}^{\frac{1}{2}}}\,dt\lesssim\frac{r^{\frac{1}{2}}}{|v|}\left(1+\frac{R}{r}\right),

for all xΩ¯x\in\overline{\Omega} and v3{0}v\in\mathbb{R}^{3}\setminus\{0\}.

3. Regularity for the linearized case

In this section, we provide a detailed proof of the existence of a solution to the integral equation (1.15). To make sure that the series (1.17) converges in L^α\hat{L}_{\alpha}^{\infty}, we need to estimate the L^α\hat{L}_{\alpha}^{\infty} norm for each term of the series.

We first present an important lemma.

Lemma 3.1.

Let Ω\Omega be a bounded domain in 3\mathbb{R}^{3} and suppose Property A. Also, let 0α<(1ρ)/20\leq\alpha<(1-\rho)/2. Then, given hLαh\in L^{\infty}_{\alpha}, we have

|SΩKh(x,v)|\displaystyle|S_{\Omega}Kh(x,v)|\lesssim |h|,αeα|v|2min{1,diam(Ω)|v|}\displaystyle|h|_{\infty,\alpha}e^{-\alpha|v|^{2}}\min\left\{1,\frac{\text{\rm diam}(\Omega)}{|v|}\right\}

for a.e. (x,v)Ω×3(x,v)\in\Omega\times\mathbb{R}^{3}.

Proof.

We start from the following estimate:

|SΩKh(x,v)|=|0τx,veν(v)sKh(xvs,v)𝑑s|0τx,veν(v)s|Kh(xvs,v)|𝑑s.\begin{split}|S_{\Omega}Kh(x,v)|=&\left|\int_{0}^{\tau_{x,v}}e^{-\nu(v)s}Kh(x-vs,v)ds\right|\\ \lesssim&\int_{0}^{\tau_{x,v}}e^{-\nu(v)s}\left|Kh(x-vs,v)\right|ds.\end{split}

Recall that

|h(x,v)||h|,αeα|v|2|h(x,v)|\lesssim|h|_{\infty,\alpha}e^{-\alpha|v|^{2}}

for a.e. (x,v)Ω×3(x,v)\in\Omega\times\mathbb{R}^{3}. Thus, by Lemma 2.1, we have

|Kh(xsv,v)||h|,αeα|v|2.|Kh(x-sv,v)|\lesssim|h|_{\infty,\alpha}e^{-\alpha|v|^{2}}.

We also recall that, by the assumption (1.9) in Property A, the function ν\nu is uniformly positive. Thus, we have

(3.1) 0τx,veν(v)s𝑑smin{1,diam(Ω)|v|},\int_{0}^{\tau_{x,v}}e^{-\nu(v)s}\,ds\lesssim\min\left\{1,\frac{\text{\rm diam}(\Omega)}{|v|}\right\},

and

0τx,veν(v)s|Kh(xvs,v)|𝑑s|h|,αeα|v|20τx,veν(v)s𝑑s|h|,αeα|v|2min{1,diam(Ω)|v|}.\begin{split}\int_{0}^{\tau_{x,v}}e^{-\nu(v)s}\left|Kh(x-vs,v)\right|\,ds\lesssim&|h|_{\infty,\alpha}e^{-\alpha|v|^{2}}\int_{0}^{\tau_{x,v}}e^{-\nu(v)s}\,ds\\ \lesssim&|h|_{\infty,\alpha}e^{-\alpha|v|^{2}}\min\left\{1,\frac{\text{\rm diam}(\Omega)}{|v|}\right\}.\end{split}

This completes the proof. ∎

Lemma 3.1 gives the following estimate.

Corollary 3.1.

Let Ω\Omega be a bounded domain in 3\mathbb{R}^{3} and suppose Property A. Also, let 0α<(1ρ)/20\leq\alpha<(1-\rho)/2. Then, given hLαh\in L^{\infty}_{\alpha}, we have

|SΩKSΩKh|,α\displaystyle|S_{\Omega}KS_{\Omega}Kh|_{\infty,\alpha}\lesssim diam(Ω)|h|,α.\displaystyle\text{\rm diam}(\Omega)|h|_{\infty,\alpha}.
Proof.

Let hLαh\in L^{\infty}_{\alpha}. By Lemma 3.1, we have

|SΩKh(x,v)||h|,αeα|v|2diam(Ω)|v||S_{\Omega}Kh(x,v)|\lesssim|h|_{\infty,\alpha}e^{-\alpha|v|^{2}}\frac{\text{\rm diam}(\Omega)}{|v|}

for a.e. (x,v)Ω×3(x,v)\in\Omega\times\mathbb{R}^{3}. By Lemma 2.1 again, we have

|KSΩKh(x,v)|diam(Ω)|h|,α31|v||k(v,v)|eα|v|2diam(Ω)|h|,α|KS_{\Omega}Kh(x,v)|\lesssim\text{\rm diam}(\Omega)|h|_{\infty,\alpha}\int_{\mathbb{R}^{3}}\frac{1}{|v_{*}|}|k(v,v_{*})|e^{-\alpha|v_{*}|^{2}}\lesssim\text{\rm diam}(\Omega)|h|_{\infty,\alpha}

for a.e. (x,v)Ω×3(x,v)\in\Omega\times\mathbb{R}^{3}. The conclusion follows from the estimate (3.1). ∎

For the estimate on the xx derivative, we need to use some geometric properties of Ω\Omega. Recall that we assume uniform sphere conditions.

Lemma 3.2.

Suppose Property A and let 0α<(1ρ)/20\leq\alpha<(1-\rho)/2. Also, suppose Assumption Ω\Omega with uniform circumscribed and interior radii RR and rr respectively. Then, given hL^αh\in\hat{L}^{\infty}_{\alpha}, we have the following estimate:

|xSΩKh|,α,w|h|,α+(Rr)12(1+Rr)h,α.|\nabla_{x}S_{\Omega}Kh|_{\infty,\alpha,w}\lesssim|h|_{\infty,\alpha}+(Rr)^{\frac{1}{2}}\left(1+\frac{R}{r}\right)\|h\|_{\infty,\alpha}.
Proof.

It is known in [10] that

|xτx,v|=|n(q(x,v))||v|N(x,v)=1|v|N(x,v).|\nabla_{x}\tau_{x,v}|=\frac{|-n(q(x,v))|}{|v|N(x,v)}=\frac{1}{|v|N(x,v)}.

Also, by the definition of SΩS_{\Omega}, we have

xSΩKh(x,v)=SΩ,xKh(x,v)+SΩKxh(x,v),\nabla_{x}S_{\Omega}Kh(x,v)=S_{\Omega,x}Kh(x,v)+S_{\Omega}K\nabla_{x}h(x,v),

where

SΩ,xh(x,v):=n(q(x,v))|v|N(x,v)eν(v)τx,vh(q(x,v),v).S_{\Omega,x}h(x,v):=-\frac{n(q(x,v))}{|v|N(x,v)}e^{-\nu(v)\tau_{x,v}}h(q(x,v),v).

For the former term, we use Lemma 2.1 to derive

|SΩ,xKh(x,v)|1|v|N(x,v)|h|,αeα|v|2.\left|S_{\Omega,x}Kh(x,v)\right|\lesssim\frac{1}{|v|N(x,v)}|h|_{\infty,\alpha}e^{-\alpha|v|^{2}}.

For the latter term, we have

|SΩKxh(x,v)|=|0τx,veν(v)sKxh(xvs,v)𝑑s|0τx,veν(v)s|Kxh(xvs,v)|𝑑s.\begin{split}|S_{\Omega}K\nabla_{x}h(x,v)|&=\left|\int_{0}^{\tau_{x,v}}e^{-\nu(v)s}K\nabla_{x}h(x-vs,v)\,ds\right|\\ &\leq\int_{0}^{\tau_{x,v}}e^{-\nu(v)s}\left|K\nabla_{x}h(x-vs,v)\right|\,ds.\end{split}

Since by definition of ||,α,w|\cdot|_{\infty,\alpha,w}, we deduce that

|xh(x,v)||xh|,α,ww(x,v)1eα|v|2h,αw(x,v)1eα|v|2.|\nabla_{x}h(x,v)|\leq|\nabla_{x}h|_{\infty,\alpha,w}w(x,v)^{-1}e^{-\alpha|v|^{2}}\leq\|h\|_{\infty,\alpha}w(x,v)^{-1}e^{-\alpha|v|^{2}}.

Here, we recall that w(x,v)=|v|N(x,v)/(1+|v|)w(x,v)=|v|N(x,v)/(1+|v|). Thus, we have

|Kxh(x,v)|=|3k(v,v)xh(x,v)𝑑v|h,α3|k(v,v)|w(x,v)1eα|v|2𝑑v.\begin{split}|K\nabla_{x}h(x,v)|&=\left|\int_{\mathbb{R}^{3}}k(v,v_{*})\nabla_{x}h(x,v_{*})dv_{*}\right|\\ &\leq\|h\|_{\infty,\alpha}\int_{\mathbb{R}^{3}}|k(v,v_{*})|w(x,v_{*})^{-1}e^{-\alpha|v_{*}|^{2}}dv_{*}.\end{split}

By Lemma 2.1 and Proposition 2.2, we get

3|k(v,v)|w(x,v)1eα|v|2𝑑vR12dx1231+|v||v||k(v,v)|eα|v|2𝑑vR12dx12eα|v|2.\begin{split}\int_{\mathbb{R}^{3}}|k(v,v_{*})|w(x,v_{*})^{-1}e^{-\alpha|v_{*}|^{2}}dv_{*}\lesssim&\frac{R^{\frac{1}{2}}}{d_{x}^{\frac{1}{2}}}\int_{\mathbb{R}^{3}}\frac{1+|v_{*}|}{|v_{*}|}|k(v,v_{*})|e^{-\alpha|v_{*}|^{2}}dv_{*}\\ \lesssim&\frac{R^{\frac{1}{2}}}{d_{x}^{\frac{1}{2}}}e^{-\alpha|v|^{2}}.\end{split}

Hence, using Corollary 2.1, we obtain

|SΩKxh(x,v)|0τx,veν(v)s|xh|,α,wR12dxsv12eα|v|2𝑑sR12h,αeα|v|20τx,v1dxsv12𝑑sw(x,v)1(Rr)12(1+Rr)h,αeα|v|2.\begin{split}|S_{\Omega}K\nabla_{x}h(x,v)|\lesssim&\int_{0}^{\tau_{x,v}}e^{-\nu(v)s}|\nabla_{x}h|_{\infty,\alpha,w}\frac{R^{\frac{1}{2}}}{d_{x-sv}^{\frac{1}{2}}}e^{-\alpha|v|^{2}}\,ds\\ \leq&R^{\frac{1}{2}}\|h\|_{\infty,\alpha}e^{-\alpha|v|^{2}}\int_{0}^{\tau_{x,v}}\frac{1}{d_{x-sv}^{\frac{1}{2}}}\,ds\\ \lesssim&w(x,v)^{-1}(Rr)^{\frac{1}{2}}\left(1+\frac{R}{r}\right)\|h\|_{\infty,\alpha}e^{-\alpha|v|^{2}}.\end{split}

Therefore, we have

|SΩKxh|,α,w(Rr)12(1+Rr)h,α.|S_{\Omega}K\nabla_{x}h|_{\infty,\alpha,w}\lesssim(Rr)^{\frac{1}{2}}\left(1+\frac{R}{r}\right)\|h\|_{\infty,\alpha}.

Hence, we conclude that

|xSΩKh|,α,w|h|,α+(Rr)12(1+Rr)h,α,|\nabla_{x}S_{\Omega}Kh|_{\infty,\alpha,w}\lesssim|h|_{\infty,\alpha}+(Rr)^{\frac{1}{2}}\left(1+\frac{R}{r}\right)\|h\|_{\infty,\alpha},

which completes the proof. ∎

For the vv derivatives, we have the following estimate.

Lemma 3.3.

Suppose Property A and let 0α<(1ρ)/20\leq\alpha<(1-\rho)/2. Also, suppose Assumption Ω\Omega with uniform circumscribed and interior radii RR and rr respectively. Then, given hL^αh\in\hat{L}^{\infty}_{\alpha} , we have the follow estimate:

|vSΩKh|,α,w(1+diam(Ω))|h|,α+(Rr)12(1+Rr)h,α.|\nabla_{v}S_{\Omega}Kh|_{\infty,\alpha,w}\lesssim(1+\text{\rm diam}(\Omega))|h|_{\infty,\alpha}+(Rr)^{\frac{1}{2}}\left(1+\frac{R}{r}\right)\|h\|_{\infty,\alpha}.
Proof.

Notice that

vSΩKh(x,v)=\displaystyle\nabla_{v}S_{\Omega}Kh(x,v)= SΩ,vKh(x,v)(vν(v))SΩ,sKh(x,v)\displaystyle S_{\Omega,v}Kh(x,v)-(\nabla_{v}\nu(v))S_{\Omega,s}Kh(x,v)
SΩ,sKxh(x,v)+SΩKvh(x,v),\displaystyle-S_{\Omega,s}K\nabla_{x}h(x,v)+S_{\Omega}K_{v}h(x,v),

where

SΩ,vh(x,v):=\displaystyle S_{\Omega,v}h(x,v):= (vτx,v)eν(v)τx,vh(q(x,v),v),\displaystyle(\nabla_{v}\tau_{x,v})e^{-\nu(v)\tau_{x,v}}h(q(x,v),v),
SΩ,sh(x,v):=\displaystyle S_{\Omega,s}h(x,v):= 0τx,veν(v)ssKh(xsv,v)𝑑s,\displaystyle\int_{0}^{\tau_{x,v}}e^{-\nu(v)s}sKh(x-sv,v)\,ds,
Kvh(x,v):=\displaystyle K_{v}h(x,v):= 3vk(v,v)h(x,v)𝑑v.\displaystyle\int_{\mathbb{R}^{3}}\nabla_{v}k(v,v_{*})h(x,v_{*})\,dv_{*}.

For the first term in the right hand side, we notice that

|vτx,v|=|xq(x,v)||n(q(x,v))||v|2N(x,v)=|xq(x,v)||v|2N(x,v).|\nabla_{v}\tau_{x,v}|=\frac{|x-q(x,v)||n(q(x,v))|}{|v|^{2}N(x,v)}=\frac{|x-q(x,v)|}{|v|^{2}N(x,v)}.

As a result, we have

|SΩ,vKh(x,v)||xq(x,v)||v|2N(x,v)eν(v)τx,v|Kh(q(x,v),v)||h|,α1|v|N(x,v)ν(v)ν(v)|xq(x,v)||v|eν(v)|xq(x,v)||v|eα|v|2|h|,α1|v|N(x,v)eα|v|2.\begin{split}|S_{\Omega,v}Kh(x,v)|\leq&\frac{|x-q(x,v)|}{|v|^{2}N(x,v)}e^{-\nu(v)\tau_{x,v}}|Kh(q(x,v),v)|\\ \lesssim&|h|_{\infty,\alpha}\frac{1}{|v|N(x,v)\nu(v)}\frac{\nu(v)|x-q(x,v)|}{|v|}e^{-\nu(v)\frac{|x-q(x,v)|}{|v|}}e^{-\alpha|v|^{2}}\\ \lesssim&|h|_{\infty,\alpha}\frac{1}{|v|N(x,v)}e^{-\alpha|v|^{2}}.\end{split}

Here, we used the estimate (1.9) in order to guarantee that ν(v)11\nu(v)^{-1}\lesssim 1 for all v3v\in\mathbb{R}^{3}.

For the second and the third terms, we notice that eν(v)sseν(v)s/2e^{-\nu(v)s}s\lesssim e^{-\nu(v)s/2} for all s0s\geq 0 and v3v\in\mathbb{R}^{3} due to the property (1.9). Thus, they are estimated in the same way as in the proof of Lemma 3.1 and Lemma 3.2 to yield

|(vν(v))SΩ,sKh(x,v)||h|,αeα|v|2|(\nabla_{v}\nu(v))S_{\Omega,s}Kh(x,v)|\lesssim|h|_{\infty,\alpha}e^{-\alpha|v|^{2}}

and

|SΩ,sKxh(x,v)|w(x,v)1h,α(Rr)12(1+Rr)eα|v|2.|S_{\Omega,s}K\nabla_{x}h(x,v)|\lesssim w(x,v)^{-1}\|h\|_{\infty,\alpha}(Rr)^{\frac{1}{2}}\left(1+\frac{R}{r}\right)e^{-\alpha|v|^{2}}.

For the last term, we recall Lemma 2.3 to control the integral:

|SΩKvh(x,v)||h|,α0τx,veν(v)s3|vk(v,v)|eα|v|2𝑑v𝑑s|h|,αeα|v|2(1+|v|)γ0τx,veν(v)s𝑑s|h|,αeα|v|21+|v||v|diam(Ω).\begin{split}|S_{\Omega}K_{v}h(x,v)|\lesssim&|h|_{\infty,\alpha}\int_{0}^{\tau_{x,v}}e^{-\nu(v)s}\int_{\mathbb{R}^{3}}|\nabla_{v}k(v,v_{*})|e^{-\alpha|v_{*}|^{2}}dv_{*}ds\\ \lesssim&|h|_{\infty,\alpha}e^{-\alpha|v|^{2}}(1+|v|)^{\gamma}\int_{0}^{\tau_{x,v}}e^{-\nu(v)s}ds\\ \leq&|h|_{\infty,\alpha}e^{-\alpha|v|^{2}}\frac{1+|v|}{|v|}\text{\rm diam}(\Omega).\end{split}

The conclusion follows from the above estimates. We note that |N(x,v)|1|N(x,v)|\leq 1 for all (x,v)Ω×(3{0})(x,v)\in\Omega\times(\mathbb{R}^{3}\setminus\{0\}). ∎

We are ready to give a proof of Lemma 1.2. Consider the integral form of (1.15). By using Picard iteration, we already derived a formal solution as the series (1.17). By Lemma 2.1, 3.1, 3.2, and 3.3, we derive the following estimate:

(SΩK)i(Jg+SΩϕ),α\displaystyle||(S_{\Omega}K)^{i}(Jg+S_{\Omega}\phi)||_{\infty,\alpha}\lesssim (1+diam(Ω))|(SΩK)i1(Jg+SΩϕ)|,α\displaystyle(1+\text{\rm diam}(\Omega))|(S_{\Omega}K)^{i-1}(Jg+S_{\Omega}\phi)|_{\infty,\alpha}
+(Rr)12(1+Rr)(SΩK)i1(Jg+SΩϕ),α\displaystyle+(Rr)^{\frac{1}{2}}\left(1+\frac{R}{r}\right)||(S_{\Omega}K)^{i-1}(Jg+S_{\Omega}\phi)||_{\infty,\alpha}

for all i1i\geq 1. With δ>0\delta>0 in (1.18) small enough, we have

(SΩK)i(Jg+SΩϕ),α12(SΩK)i1(Jg+SΩϕ),α(1+diam(Ω))|(SΩK)i1(Jg+SΩϕ)|,α.\begin{split}&||(S_{\Omega}K)^{i}(Jg+S_{\Omega}\phi)||_{\infty,\alpha}-\frac{1}{2}||(S_{\Omega}K)^{i-1}(Jg+S_{\Omega}\phi)||_{\infty,\alpha}\\ \lesssim&(1+\text{\rm diam}(\Omega))|(S_{\Omega}K)^{i-1}(Jg+S_{\Omega}\phi)|_{\infty,\alpha}.\end{split}

Therefore,

i=0n(SΩK)i(Jg+SΩϕ),α(1+diam(Ω))i=0n|(SΩK)i(Jg+SΩϕ)|,α+Jg+SΩϕ,α.\begin{split}&\sum_{i=0}^{n}||(S_{\Omega}K)^{i}(Jg+S_{\Omega}\phi)||_{\infty,\alpha}\\ \lesssim&(1+\text{\rm diam}(\Omega))\sum_{i=0}^{n}|(S_{\Omega}K)^{i}(Jg+S_{\Omega}\phi)|_{\infty,\alpha}+||Jg+S_{\Omega}\phi||_{\infty,\alpha}.\end{split}

Furthermore, when δ>0\delta>0 in (1.18) is small enough, Corollary 3.1 yields

|(SΩK)i+2(Jg+SΩϕ)|,α12|(SΩK)i(Jg+SΩϕ)|,α.|(S_{\Omega}K)^{i+2}(Jg+S_{\Omega}\phi)|_{\infty,\alpha}\leq\frac{1}{2}|(S_{\Omega}K)^{i}(Jg+S_{\Omega}\phi)|_{\infty,\alpha}.

Hence, we get

i=02n1|(SΩK)i(Jg+SΩϕ)|,α\displaystyle\sum_{i=0}^{2n-1}|(S_{\Omega}K)^{i}(Jg+S_{\Omega}\phi)|_{\infty,\alpha}
\displaystyle\leq i=1n|(SΩK)2i2(Jg+SΩϕ)|,α+i=1n|(SΩK)2i1(Jg+SΩϕ)|,α\displaystyle\sum_{i=1}^{n}|(S_{\Omega}K)^{2i-2}(Jg+S_{\Omega}\phi)|_{\infty,\alpha}+\sum_{i=1}^{n}|(S_{\Omega}K)^{2i-1}(Jg+S_{\Omega}\phi)|_{\infty,\alpha}
\displaystyle\leq i=1n12i1|Jg+SΩϕ|,α+i=1n12i1|SΩK(Jg+SΩϕ)|,α\displaystyle\sum_{i=1}^{n}\frac{1}{2^{i-1}}|Jg+S_{\Omega}\phi|_{\infty,\alpha}+\sum_{i=1}^{n}\frac{1}{2^{i-1}}|S_{\Omega}K(Jg+S_{\Omega}\phi)|_{\infty,\alpha}
\displaystyle\lesssim |Jg+SΩϕ|,α+|SΩK(Jg+SΩϕ)|,α\displaystyle|Jg+S_{\Omega}\phi|_{\infty,\alpha}+|S_{\Omega}K(Jg+S_{\Omega}\phi)|_{\infty,\alpha}
\displaystyle\lesssim |Jg+SΩϕ|,α.\displaystyle|Jg+S_{\Omega}\phi|_{\infty,\alpha}.

In conclusion, the following estimate holds:

i=0n(SΩK)i(Jg+SΩϕ),α(1+diam(Ω))|Jg+SΩϕ|,α+Jg+SΩϕ,α,\sum_{i=0}^{n}||(S_{\Omega}K)^{i}(Jg+S_{\Omega}\phi)||_{\infty,\alpha}\lesssim(1+\text{\rm diam}(\Omega))|Jg+S_{\Omega}\phi|_{\infty,\alpha}+||Jg+S_{\Omega}\phi||_{\infty,\alpha},

which implies the convergence in L^α\hat{L}^{\infty}_{\alpha} of (1.17). This completes the proof of Lemma 1.2.

4. Regularity for the nonlinear case

To solve the nonlinear problem, we consider the following iteration scheme:

{vxf1+ν(v)f1=Kf1,vxfi+1+ν(v)fi+1=Kfi+1+Γ(fi,fi) fori1,(x,v)Ω×3\begin{cases}v\cdot\nabla_{x}f_{1}+\nu(v)f_{1}=Kf_{1},\\ v\cdot\nabla_{x}f_{i+1}+\nu(v)f_{i+1}=Kf_{i+1}+\Gamma(f_{i},f_{i})\mbox{ for}\ i\geq 1,\end{cases}(x,v)\in\Omega\times\mathbb{R}^{3}

with the boundary condition

fi(x,v)=g(x,v),(x,v)Γ,i0.f_{i}(x,v)=g(x,v),\quad(x,v)\in\Gamma^{-},i\geq 0.

Our goal is to prove that the sequence of functions {fi}\{f_{i}\} converges in L^α\hat{L}^{\infty}_{\alpha} space. The key ingredients are to show the estimate in Lemma 1.3 and to use this estimate in order to derive the convergence of the sequence {fi}\{f_{i}\}.

To do this, we decompose the nonlinear term Γ\Gamma into two parts:

Γ(h1,h2)=π34(Γgain(h1,h2)Γloss(h1,h2)),\Gamma(h_{1},h_{2})=\pi^{-\frac{3}{4}}\left(\Gamma_{\text{\rm gain}}(h_{1},h_{2})-\Gamma_{\text{\rm loss}}(h_{1},h_{2})\right),

where

Γgain(h1,h2):=\displaystyle\Gamma_{\text{\rm gain}}(h_{1},h_{2}):= 302π0π2e|v|22h1(v)h2(v)B(|vv|,θ)𝑑θ𝑑ϕ𝑑v,\displaystyle\int_{\mathbb{R}^{3}}\int_{0}^{2\pi}\int_{0}^{\frac{\pi}{2}}e^{-\frac{|v_{*}|^{2}}{2}}h_{1}(v^{\prime})h_{2}(v^{\prime}_{*})B(|v-v_{*}|,\theta)\,d\theta\,d\phi\,dv_{*},
Γloss(h1,h2):=\displaystyle\Gamma_{\text{\rm loss}}(h_{1},h_{2}):= 302π0π2e|v|22h1(v)h2(v)B(|vv|,θ)𝑑θ𝑑ϕ𝑑v\displaystyle\int_{\mathbb{R}^{3}}\int_{0}^{2\pi}\int_{0}^{\frac{\pi}{2}}e^{-\frac{|v_{*}|^{2}}{2}}h_{1}(v)h_{2}(v_{*})B(|v-v_{*}|,\theta)\,d\theta\,d\phi\,dv_{*}

We call Γgain\Gamma_{\text{\rm gain}} and Γloss\Gamma_{\text{\rm loss}} the gain term and the loss term, respectively.

We start from the weighted LL^{\infty} estimate for the nonlinear term.

Lemma 4.1.

Suppose (1.8). Then, for h1,h2Lαh_{1},h_{2}\in L^{\infty}_{\alpha}, we have

|Γ(h1,h2)(x,v)||h1|,α|h2|,αeα|v|2(1+|v|)γ|\Gamma(h_{1},h_{2})(x,v)|\lesssim|h_{1}|_{\infty,\alpha}|h_{2}|_{\infty,\alpha}e^{-\alpha|v|^{2}}(1+|v|)^{\gamma}

for a.e. (x,v)Ω×3(x,v)\in\Omega\times\mathbb{R}^{3}.

Proof.

For the gain term, invoking the relation |v|2+|v|2=|v|2+|v|2|v|^{2}+|v_{*}|^{2}=|v^{\prime}|^{2}+|v_{*}^{\prime}|^{2}, we have

|Γgain(h1,h2)(x,v)|\displaystyle\left|\Gamma_{\text{\rm gain}}(h_{1},h_{2})(x,v)\right|
\displaystyle\lesssim |302π0π2e|v|22h1(v)h2(v)B(|vv|,θ)𝑑θ𝑑ϕ𝑑v|\displaystyle\left|\int_{\mathbb{R}^{3}}\int_{0}^{2\pi}\int_{0}^{\frac{\pi}{2}}e^{-\frac{|v_{*}|^{2}}{2}}h_{1}(v^{\prime})h_{2}(v^{\prime}_{*})B(|v-v_{*}|,\theta)d\theta d\phi dv_{*}\right|
\displaystyle\lesssim |h1|,α|h2|,α302π0π2e|v|22eα|v|2eα|v|2B(|vv|,θ)𝑑θ𝑑ϕ𝑑v\displaystyle|h_{1}|_{\infty,\alpha}|h_{2}|_{\infty,\alpha}\int_{\mathbb{R}^{3}}\int_{0}^{2\pi}\int_{0}^{\frac{\pi}{2}}e^{-\frac{|v_{*}|^{2}}{2}}e^{-\alpha|v^{\prime}|^{2}}e^{-\alpha|v_{*}^{\prime}|^{2}}B(|v-v_{*}|,\theta)d\theta d\phi dv_{*}
=\displaystyle= |h1|,α|h2|,αeα|v|2302π0π2e|v|22eα|v|2B(|vv|,θ)𝑑θ𝑑ϕ𝑑v\displaystyle|h_{1}|_{\infty,\alpha}|h_{2}|_{\infty,\alpha}e^{-\alpha|v|^{2}}\int_{\mathbb{R}^{3}}\int_{0}^{2\pi}\int_{0}^{\frac{\pi}{2}}e^{-\frac{|v_{*}|^{2}}{2}}e^{-\alpha|v_{*}|^{2}}B(|v-v_{*}|,\theta)d\theta d\phi dv_{*}
\displaystyle\lesssim |h1|,α|h2|,αeα|v|23e|v|22eα|v|2|vv|γ𝑑v0π2sinθcosθdθ\displaystyle|h_{1}|_{\infty,\alpha}|h_{2}|_{\infty,\alpha}e^{-\alpha|v|^{2}}\int_{\mathbb{R}^{3}}e^{-\frac{|v_{*}|^{2}}{2}}e^{-\alpha|v_{*}|^{2}}|v-v_{*}|^{\gamma}\,dv_{*}\int_{0}^{\frac{\pi}{2}}\sin{\theta}\cos{\theta}\,d\theta
\displaystyle\lesssim |h1|,α|h2|,αeα|v|2(1+|v|)γ.\displaystyle|h_{1}|_{\infty,\alpha}|h_{2}|_{\infty,\alpha}e^{-\alpha|v|^{2}}(1+|v|)^{\gamma}.

Here, we used the estimate in Lemma 2.4.

In the same way, we obtain

|Γloss(h1,h2)(x,v)||h1|,α|h2|,αeα|v|2(1+|v|)γ.\left|\Gamma_{\text{\rm loss}}(h_{1},h_{2})(x,v)\right|\lesssim|h_{1}|_{\infty,\alpha}|h_{2}|_{\infty,\alpha}e^{-\alpha|v|^{2}}(1+|v|)^{\gamma}.

This completes the proof. ∎

As a corollary, we obtain the following estimate.

Lemma 4.2.

Let Ω\Omega be a bounded domain in 3\mathbb{R}^{3} and suppose (1.8). Then, for h1,h2Lαh_{1},h_{2}\in L^{\infty}_{\alpha}, we have

|SΩΓ(h1,h2)|,α(1+diam(Ω))|h1|,α|h2|,α.|S_{\Omega}\Gamma(h_{1},h_{2})|_{\infty,\alpha}\lesssim(1+\text{\rm diam}(\Omega))|h_{1}|_{\infty,\alpha}|h_{2}|_{\infty,\alpha}.
Proof.

By Lemma 4.1 with Lemma 2.6 and the estimate (3.1), we obtain

|SΩΓ(h1,h2)(x,v)|\displaystyle|S_{\Omega}\Gamma(h_{1},h_{2})(x,v)|\lesssim |h1|,α|h2|,αeα|v|2(1+|v|)γ0τx,veν(v)s𝑑s\displaystyle|h_{1}|_{\infty,\alpha}|h_{2}|_{\infty,\alpha}e^{-\alpha|v|^{2}}(1+|v|)^{\gamma}\int_{0}^{\tau_{x,v}}e^{-\nu(v)s}\,ds
\displaystyle\lesssim |h1|,α|h2|,αeα|v|2(1+|v|)γmin{1,diam(Ω)|v|}\displaystyle|h_{1}|_{\infty,\alpha}|h_{2}|_{\infty,\alpha}e^{-\alpha|v|^{2}}(1+|v|)^{\gamma}\min\left\{1,\frac{\text{\rm diam}(\Omega)}{|v|}\right\}
\displaystyle\lesssim |h1|,α|h2|,αeα|v|2(1+diam(Ω))\displaystyle|h_{1}|_{\infty,\alpha}|h_{2}|_{\infty,\alpha}e^{-\alpha|v|^{2}}(1+\text{\rm diam}(\Omega))

for a.e. (x,v)Ω×3(x,v)\in\Omega\times\mathbb{R}^{3}, which is the desired estimate. ∎

We next give estimates for the xx derivatives of the nonlinear term.

Lemma 4.3.

Suppose (1.8). Also, suppose Assumption Ω\Omega with uniform circumscribed and interior radii RR and rr respectively. Then, for h1,h2L^αh_{1},h_{2}\in\hat{L}^{\infty}_{\alpha}, we have

|xΓ(h1,h2)(x,v)|\displaystyle|\nabla_{x}\Gamma(h_{1},h_{2})(x,v)|\lesssim h1,αh2,αeα|v|2R12dx12(1+|v|)γ\displaystyle\|h_{1}\|_{\infty,\alpha}\|h_{2}\|_{\infty,\alpha}e^{-\alpha|v|^{2}}\frac{R^{\frac{1}{2}}}{d_{x}^{\frac{1}{2}}}(1+|v|)^{\gamma}
+h1,αh2,αw(x,v)1eα|v|2(1+|v|)γ\displaystyle+\|h_{1}\|_{\infty,\alpha}\|h_{2}\|_{\infty,\alpha}w(x,v)^{-1}e^{-\alpha|v|^{2}}(1+|v|)^{\gamma}

for a.e. (x,v)Ω×3(x,v)\in\Omega\times\mathbb{R}^{3}.

Proof.

We first treat the gain term. We notice that

xΓgain(h1,h2)(x,v)=G1(x,v)+G2(x,v),\nabla_{x}\Gamma_{\text{\rm gain}}(h_{1},h_{2})(x,v)=G_{1}(x,v)+G_{2}(x,v),

where

G1(x,v):=302π0π2e|v|22xh1(v)h2(v)B(|vv|,θ)𝑑θ𝑑ϕ𝑑v,G2(x,v):=302π0π2e|v|22h1(v)xh2(v)B(|vv|,θ)𝑑θ𝑑ϕ𝑑v.\begin{split}G_{1}(x,v):=&\int_{\mathbb{R}^{3}}\int_{0}^{2\pi}\int_{0}^{\frac{\pi}{2}}e^{-\frac{|v_{*}|^{2}}{2}}\nabla_{x}h_{1}(v^{\prime})h_{2}(v^{\prime}_{*})B(|v-v_{*}|,\theta)\,d\theta d\phi dv_{*},\\ G_{2}(x,v):=&\int_{\mathbb{R}^{3}}\int_{0}^{2\pi}\int_{0}^{\frac{\pi}{2}}e^{-\frac{|v_{*}|^{2}}{2}}h_{1}(v^{\prime})\nabla_{x}h_{2}(v^{\prime}_{*})B(|v-v_{*}|,\theta)\,d\theta d\phi dv_{*}.\end{split}

We recall that

|xhj(x,v)|hj,αw(x,v)1eα|v|2\displaystyle|\nabla_{x}h_{j}(x,v)|\leq\|h_{j}\|_{\infty,\alpha}w(x,v)^{-1}e^{-\alpha|v|^{2}}

for hjL^αh_{j}\in\hat{L}^{\infty}_{\alpha}, j=1,2j=1,2. Thus, by Proposition 2.2, we have

|G1(x,v)|\displaystyle|G_{1}(x,v)|\leq h1,α|h2|,αeα|v|2\displaystyle\|h_{1}\|_{\infty,\alpha}|h_{2}|_{\infty,\alpha}e^{-\alpha|v|^{2}}
×302π0π2e|v|22eα|v|2w(x,v)1B(|vv|,θ)dθdϕdv\displaystyle\times\int_{\mathbb{R}^{3}}\int_{0}^{2\pi}\int_{0}^{\frac{\pi}{2}}e^{-\frac{|v_{*}|^{2}}{2}}e^{-\alpha|v_{*}|^{2}}w(x,v^{\prime})^{-1}B(|v-v_{*}|,\theta)\,d\theta d\phi dv_{*}
\displaystyle\lesssim R12dx12h1,αh2,αeα|v|2\displaystyle\frac{R^{\frac{1}{2}}}{d_{x}^{\frac{1}{2}}}\|h_{1}\|_{\infty,\alpha}\|h_{2}\|_{\infty,\alpha}e^{-\alpha|v|^{2}}
×302π0π2e|v|22eα|v|2(1+1|v|)B(|vv|,θ)dθdϕdv.\displaystyle\times\int_{\mathbb{R}^{3}}\int_{0}^{2\pi}\int_{0}^{\frac{\pi}{2}}e^{-\frac{|v_{*}|^{2}}{2}}e^{-\alpha|v_{*}|^{2}}\left(1+\frac{1}{|v^{\prime}|}\right)B(|v-v_{*}|,\theta)\,d\theta d\phi dv_{*}.

In the same way, we have

|G2(x,v)|\displaystyle|G_{2}(x,v)|\lesssim R12dx12h1,αh2,αeα|v|2\displaystyle\frac{R^{\frac{1}{2}}}{d_{x}^{\frac{1}{2}}}\|h_{1}\|_{\infty,\alpha}\|h_{2}\|_{\infty,\alpha}e^{-\alpha|v|^{2}}
×302π0π2e|v|22eα|v|2(1+1|v|)B(|vv|,θ)dθdϕdv.\displaystyle\times\int_{\mathbb{R}^{3}}\int_{0}^{2\pi}\int_{0}^{\frac{\pi}{2}}e^{-\frac{|v_{*}|^{2}}{2}}e^{-\alpha|v_{*}|^{2}}\left(1+\frac{1}{|v^{\prime}|}\right)B(|v-v_{*}|,\theta)\,d\theta d\phi dv_{*}.

We give an estimate for the above integral factor. We notice that

302π0π2e|v|2eα|v|2(1+1|v|)B(|vv|,θ)𝑑θ𝑑ϕ𝑑v\displaystyle\int_{\mathbb{R}^{3}}\int_{0}^{2\pi}\int_{0}^{\frac{\pi}{2}}e^{-\frac{|v_{*}|}{2}}e^{-\alpha|v_{*}|^{2}}\left(1+\frac{1}{|v^{\prime}|}\right)B(|v-v_{*}|,\theta)\,d\theta d\phi dv_{*}
\displaystyle\lesssim 302π0π2e|v|22eα|v|2(1+1|v|)|vv|γsinθcosθdθdϕdv\displaystyle\int_{\mathbb{R}^{3}}\int_{0}^{2\pi}\int_{0}^{\frac{\pi}{2}}e^{-\frac{|v_{*}|^{2}}{2}}e^{-\alpha|v_{*}|^{2}}\left(1+\frac{1}{|v^{\prime}|}\right)|v-v_{*}|^{\gamma}\sin{\theta}\cos{\theta}\,d\theta d\phi dv_{*}
=\displaystyle= 3𝕊2e|v|22eα|v|2(1+1|v(σ)|)|vv|γ𝑑Σ(σ)𝑑v\displaystyle\int_{\mathbb{R}^{3}}\int_{\mathbb{S}^{2}}e^{-\frac{|v_{*}|^{2}}{2}}e^{-\alpha|v_{*}|^{2}}\left(1+\frac{1}{|v^{\prime}(\sigma)|}\right)|v-v_{*}|^{\gamma}\,d\Sigma(\sigma)dv_{*}
=\displaystyle= 3e|v|22eα|v|2|vv|γ𝕊2(1+1|v(σ)|)𝑑Σ(σ)𝑑v.\displaystyle\int_{\mathbb{R}^{3}}e^{-\frac{|v_{*}|^{2}}{2}}e^{-\alpha|v_{*}|^{2}}|v-v_{*}|^{\gamma}\int_{\mathbb{S}^{2}}\left(1+\frac{1}{|v^{\prime}(\sigma)|}\right)\,d\Sigma(\sigma)dv_{*}.

Here we introduced the sigma formulation, that is,

v:=v+v2+|vv|2σ,v:=v+v2|vv|2σ,σ𝕊2.v^{\prime}:=\frac{v+v_{*}}{2}+\frac{|v_{*}-v|}{2}\sigma,\,v_{*}^{\prime}:=\frac{v+v_{*}}{2}-\frac{|v_{*}-v|}{2}\sigma,\quad\sigma\in\mathbb{S}^{2}.

By taking unit vectors e2e_{2}, e3e_{3} so that the pair {v+v|v+v|,e2,e3}\{\frac{v+v_{*}}{|v+v_{*}|},e_{2},e_{3}\} forms an orthonormal basis in 3\mathbb{R}^{3}, and applying the changing of variable:

σ=cosψv+v|v+v|+(sinψcosϕ)e2+(sinψsinϕ)e3,0<ψ<π,0ϕ<2π.\sigma=\cos{\psi}\frac{v_{*}+v}{|v_{*}+v|}+(\sin{\psi}\cos{\phi})e_{2}+(\sin{\psi}\sin{\phi})e_{3},\quad 0<\psi<\pi,0\leq\phi<2\pi.

we have

(4.1) 𝕊21|v(σ)|𝑑Σ(σ)=02π0π1|v+v2|2+|vv2|2+2|v+v2||vv2|cosψsinψdψdϕ=02π111|v+v2|2+|vv2|2+2|v+v2||vv2|z𝑑z𝑑ϕ=2π111|v+v2|2+|vv2|2+2|v+v2||vv2|z𝑑z=8πmin{1|v+v|,1|vv|}.\begin{split}&\int_{\mathbb{S}^{2}}\frac{1}{|v^{\prime}(\sigma)|}\,d\Sigma(\sigma)\\ =&\int_{0}^{2\pi}\int_{0}^{\pi}\frac{1}{\sqrt{|\frac{v+v_{*}}{2}|^{2}+|\frac{v-v_{*}}{2}|^{2}+2|\frac{v+v_{*}}{2}||\frac{v-v_{*}}{2}|\cos{\psi}}}\sin{\psi}\,d\psi d\phi\\ =&\int_{0}^{2\pi}\int_{-1}^{1}\frac{1}{\sqrt{|\frac{v+v_{*}}{2}|^{2}+|\frac{v-v_{*}}{2}|^{2}+2|\frac{v+v_{*}}{2}||\frac{v-v_{*}}{2}|z}}\,dzd\phi\\ =&2\pi\int_{-1}^{1}\frac{1}{\sqrt{|\frac{v+v_{*}}{2}|^{2}+|\frac{v-v_{*}}{2}|^{2}+2|\frac{v+v_{*}}{2}||\frac{v-v_{*}}{2}|z}}\,dz\\ =&8\pi\min\left\{\frac{1}{|v+v_{*}|},\frac{1}{|v-v_{*}|}\right\}.\end{split}

By the identity (4.1) with the aid of Lemma 2.4 and Lemma 2.5, we obtain

3e|v|22eα|v|2|vv|γ𝕊2(1+1|v|)𝑑Σ(σ)𝑑v3e|v|22eα|v|2|vv|γ(1+1|vv|)𝑑v(1+|v|)γ.\begin{split}&\int_{\mathbb{R}^{3}}e^{-\frac{|v_{*}|^{2}}{2}}e^{-\alpha|v_{*}|^{2}}|v-v_{*}|^{\gamma}\int_{\mathbb{S}^{2}}\left(1+\frac{1}{|v^{\prime}|}\right)\,d\Sigma(\sigma)dv_{*}\\ \lesssim&\int_{\mathbb{R}^{3}}e^{-\frac{|v_{*}|^{2}}{2}}e^{-\alpha|v_{*}|^{2}}|v-v_{*}|^{\gamma}\left(1+\frac{1}{|v-v_{*}|}\right)\,dv_{*}\\ \lesssim&(1+|v|)^{\gamma}.\end{split}

Hence, we have

|xΓgain(h1,h2)(x,v)|\displaystyle\left|\nabla_{x}\Gamma_{\text{\rm gain}}(h_{1},h_{2})(x,v)\right|\leq |G1(x,v)|+|G2(x,v)|\displaystyle|G_{1}(x,v)|+|G_{2}(x,v)|
\displaystyle\lesssim h1,αh2,αeα|v|2R12dx12(1+|v|)γ\displaystyle\|h_{1}\|_{\infty,\alpha}\|h_{2}\|_{\infty,\alpha}e^{-\alpha|v|^{2}}\frac{R^{\frac{1}{2}}}{d_{x}^{\frac{1}{2}}}(1+|v|)^{\gamma*}

for a.e. (x,v)Ω×3(x,v)\in\Omega\times\mathbb{R}^{3}.

We next treat the loss term. We have

xΓloss(h1,h2)(x,v)=L1(x,v)+L2(x,v),\nabla_{x}\Gamma_{\text{\rm loss}}(h_{1},h_{2})(x,v)=L_{1}(x,v)+L_{2}(x,v),

where

L1(x,v):=\displaystyle L_{1}(x,v):= xh1(v)302π0π2e|v|22h2(v)B(|vv|,θ)𝑑θ𝑑ϕ𝑑v,\displaystyle\nabla_{x}h_{1}(v)\int_{\mathbb{R}^{3}}\int_{0}^{2\pi}\int_{0}^{\frac{\pi}{2}}e^{-\frac{|v_{*}|^{2}}{2}}h_{2}(v_{*})B(|v-v_{*}|,\theta)d\theta d\phi dv_{*},
L2(x,v):=\displaystyle L_{2}(x,v):= h1(v)302π0π2e|v|22xh2(v)B(|vv|,θ)𝑑θ𝑑ϕ𝑑v.\displaystyle h_{1}(v)\int_{\mathbb{R}^{3}}\int_{0}^{2\pi}\int_{0}^{\frac{\pi}{2}}e^{-\frac{|v_{*}|^{2}}{2}}\nabla_{x}h_{2}(v_{*})B(|v-v_{*}|,\theta)d\theta d\phi dv_{*}.

For the L1L_{1} term, invoking the assumption (1.8) and Lemma 2.4, we get

|L1(x,v)|\displaystyle|L_{1}(x,v)|\lesssim |h1|,α,w|h2|,αw(x,v)1eα|v|2\displaystyle|\nabla h_{1}|_{\infty,\alpha,w}|h_{2}|_{\infty,\alpha}w(x,v)^{-1}e^{-\alpha|v|^{2}}
×3e|v|22eα|v|2|vv|γdv02π0π2sinθcosθdθdϕ\displaystyle\times\int_{\mathbb{R}^{3}}e^{-\frac{|v_{*}|^{2}}{2}}e^{-\alpha|v_{*}|^{2}}|v-v_{*}|^{\gamma}\,dv_{*}\int_{0}^{2\pi}\int_{0}^{\frac{\pi}{2}}\sin{\theta}\cos{\theta}\,d\theta d\phi
\displaystyle\lesssim h1,α|h2|,αw(x,v)1eα|v|23e|v|22eα|v|2|vv|γ𝑑v\displaystyle\|h_{1}\|_{\infty,\alpha}|h_{2}|_{\infty,\alpha}w(x,v)^{-1}e^{-\alpha|v|^{2}}\int_{\mathbb{R}^{3}}e^{-\frac{|v_{*}|^{2}}{2}}e^{-\alpha|v_{*}|^{2}}|v-v_{*}|^{\gamma}\,dv_{*}
\displaystyle\lesssim h1,αh2,αw(x,v)1eα|v|2(1+|v|)γ\displaystyle\|h_{1}\|_{\infty,\alpha}\|h_{2}\|_{\infty,\alpha}w(x,v)^{-1}e^{-\alpha|v|^{2}}(1+|v|)^{\gamma}

for a.e. (x,v)Ω×3(x,v)\in\Omega\times\mathbb{R}^{3}. For the L2L_{2} term, applying Proposition 2.1 and Lemma 2.4, we have

|L2(x,v)|\displaystyle|L_{2}(x,v)|
\displaystyle\lesssim |h1|,α|xh2|,α,weα|v|2\displaystyle|h_{1}|_{\infty,\alpha}|\nabla_{x}h_{2}|_{\infty,\alpha,w}e^{-\alpha|v|^{2}}
×302π0π2e|v|22eα|v|2w(x,v)1B(|vv|,θ)dθdϕdv\displaystyle\times\int_{\mathbb{R}^{3}}\int_{0}^{2\pi}\int_{0}^{\frac{\pi}{2}}e^{-\frac{|v_{*}|^{2}}{2}}e^{-\alpha|v_{*}|^{2}}w(x,v_{*})^{-1}B(|v-v_{*}|,\theta)\,d\theta d\phi dv_{*}
\displaystyle\lesssim h1,αh2,αeα|v|23e|v|22eα|v|2w(x,v)1|vv|γ𝑑v\displaystyle\|h_{1}\|_{\infty,\alpha}\|h_{2}\|_{\infty,\alpha}e^{-\alpha|v|^{2}}\int_{\mathbb{R}^{3}}e^{-\frac{|v_{*}|^{2}}{2}}e^{-\alpha|v_{*}|^{2}}w(x,v_{*})^{-1}|v-v_{*}|^{\gamma}\,dv_{*}
\displaystyle\lesssim h1,αh2,αeα|v|2R12dx123e|v|22eα|v|2(1+1|v|)|vv|γ𝑑v\displaystyle\|h_{1}\|_{\infty,\alpha}\|h_{2}\|_{\infty,\alpha}e^{-\alpha|v|^{2}}\frac{R^{\frac{1}{2}}}{d_{x}^{\frac{1}{2}}}\int_{\mathbb{R}^{3}}e^{-\frac{|v_{*}|^{2}}{2}}e^{-\alpha|v_{*}|^{2}}\ \left(1+\frac{1}{|v_{*}|}\right)|v-v_{*}|^{\gamma}\,dv_{*}
\displaystyle\lesssim h1,αh2,αeα|v|2R12dx12(1+|v|)γ\displaystyle\|h_{1}\|_{\infty,\alpha}\|h_{2}\|_{\infty,\alpha}e^{-\alpha|v|^{2}}\frac{R^{\frac{1}{2}}}{d_{x}^{\frac{1}{2}}}(1+|v|)^{\gamma}

for a.e. (x,v)Ω×3(x,v)\in\Omega\times\mathbb{R}^{3}. Thus, we obtain

|xΓloss(h1,h2)(x,v)|\displaystyle|\nabla_{x}\Gamma_{\text{\rm loss}}(h_{1},h_{2})(x,v)|\lesssim h1,αh2,αw(x,v)1eα|v|2(1+|v|)γ\displaystyle\|h_{1}\|_{\infty,\alpha}\|h_{2}\|_{\infty,\alpha}w(x,v)^{-1}e^{-\alpha|v|^{2}}(1+|v|)^{\gamma}
+h1,αh2,αeα|v|2R12dx12(1+|v|)γ\displaystyle+\|h_{1}\|_{\infty,\alpha}\|h_{2}\|_{\infty,\alpha}e^{-\alpha|v|^{2}}\frac{R^{\frac{1}{2}}}{d_{x}^{\frac{1}{2}}}(1+|v|)^{\gamma}

for a.e. (x,v)Ω×3(x,v)\in\Omega\times\mathbb{R}^{3}.

The estimate for |xΓ(h1,h2)||\nabla_{x}\Gamma(h_{1},h_{2})| is obtained by summing the estimates for |xΓgain(h1,h2)||\nabla_{x}\Gamma_{\text{\rm gain}}(h_{1},h_{2})| and |xΓloss(h1,h2)||\nabla_{x}\Gamma_{\text{\rm loss}}(h_{1},h_{2})|. ∎

Remark 4.

In the sigma formulation, vv^{\prime}_{*} is obtained by replacing σ\sigma in vv^{\prime} by σ-\sigma. Thus, in the same way as in the computation (4.1), we have

(4.2) 𝕊21|v(σ)|𝑑Σ(σ)=8πmin{1|v+v|,1|vv|},\int_{\mathbb{S}^{2}}\frac{1}{|v_{*}^{\prime}(\sigma)|}\,d\Sigma(\sigma)=8\pi\min\left\{\frac{1}{|v+v_{*}|},\frac{1}{|v-v_{*}|}\right\},

which is used in a proof of Lemma 4.5.

Lemma 4.4.

Suppose (1.8). Also, suppose Assumption Ω\Omega with uniform circumscribed and interior radii RR and rr respectively. Then, for h1,h2L^αh_{1},h_{2}\in\hat{L}^{\infty}_{\alpha}, we have

|xSΩΓ(h1,h2)|,α,w(1+diam(Ω)+(Rr)12(1+Rr))h1,αh2,α.|\nabla_{x}S_{\Omega}\Gamma(h_{1},h_{2})|_{\infty,\alpha,w}\lesssim\left(1+\text{\rm diam}(\Omega)+(Rr)^{\frac{1}{2}}\left(1+\frac{R}{r}\right)\right)\|h_{1}\|_{\infty,\alpha}\|h_{2}\|_{\infty,\alpha}.
Proof.

In the same way as in Section 3, we have

|xSΩΓ(h1,h2)(x,v)|\displaystyle|\nabla_{x}S_{\Omega}\Gamma(h_{1},h_{2})(x,v)|
\displaystyle\leq |n(q(x,v))|v|N(x,v)Γ(h1,h2)(q(x,v),v)|+|SΩxΓ(h1,h2)(x,v)|.\displaystyle\left|\frac{-n(q(x,v))}{|v|N(x,v)}\Gamma(h_{1},h_{2})(q(x,v),v)\right|+|S_{\Omega}\nabla_{x}\Gamma(h_{1},h_{2})(x,v)|.

By Lemma 4.1, we have

|n(q(x,v))|v|N(x,v)Γ(h1,h2)(x,v)|\displaystyle\left|\frac{-n(q(x,v))}{|v|N(x,v)}\Gamma(h_{1},h_{2})(x,v)\right|\lesssim 1|v|N(x,v)|h1|,α|h2|,αeα|v|2(1+|v|)γ\displaystyle\frac{1}{|v|N(x,v)}|h_{1}|_{\infty,\alpha}|h_{2}|_{\infty,\alpha}e^{-\alpha|v|^{2}}(1+|v|)^{\gamma}
\displaystyle\leq w(x,v)1h1,αh2,αeα|v|2.\displaystyle w(x,v)^{-1}\|h_{1}\|_{\infty,\alpha}\|h_{2}\|_{\infty,\alpha}e^{-\alpha|v|^{2}}.

Also, by Lemma 4.3, we have

|SΩxΓ(h1,h2)(x,v)|\displaystyle|S_{\Omega}\nabla_{x}\Gamma(h_{1},h_{2})(x,v)|
\displaystyle\leq 0τx,veν(v)s|xΓ(h1,h2)(xsv,v)|𝑑s\displaystyle\int_{0}^{\tau_{x,v}}e^{-\nu(v)s}\left|\nabla_{x}\Gamma(h_{1},h_{2})(x-sv,v)\right|\,ds
\displaystyle\lesssim h1,αh2,αeα|v|2(1+|v|)γR120τx,v1dxvs12𝑑s\displaystyle\|h_{1}\|_{\infty,\alpha}\|h_{2}\|_{\infty,\alpha}e^{-\alpha|v|^{2}}(1+|v|)^{\gamma}R^{\frac{1}{2}}\int_{0}^{\tau_{x,v}}\frac{1}{d_{x-vs}^{\frac{1}{2}}}\,ds
+h1,αh2,αeα|v|2(1+|v|)γ0τx,veν(v)sw(xsv,v)1𝑑s.\displaystyle+\|h_{1}\|_{\infty,\alpha}\|h_{2}\|_{\infty,\alpha}e^{-\alpha|v|^{2}}(1+|v|)^{\gamma}\int_{0}^{\tau_{x,v}}e^{-\nu(v)s}w(x-sv,v)^{-1}\,ds.

For the first term in the right hand side, we apply Corollary 2.1 to obtain

h1,αh2,αeα|v|2(1+|v|)γR120τx,v1dxvs12𝑑s\displaystyle\|h_{1}\|_{\infty,\alpha}\|h_{2}\|_{\infty,\alpha}e^{-\alpha|v|^{2}}(1+|v|)^{\gamma}R^{\frac{1}{2}}\int_{0}^{\tau_{x,v}}\frac{1}{d_{x-vs}^{\frac{1}{2}}}\,ds
\displaystyle\lesssim h1,αh2,αeα|v|21+|v||v|(Rr)12(1+Rr)\displaystyle\|h_{1}\|_{\infty,\alpha}\|h_{2}\|_{\infty,\alpha}e^{-\alpha|v|^{2}}\frac{1+|v|}{|v|}(Rr)^{\frac{1}{2}}\left(1+\frac{R}{r}\right)
\displaystyle\leq h1,αh2,αeα|v|2w(x,v)1(Rr)12(1+Rr).\displaystyle\|h_{1}\|_{\infty,\alpha}\|h_{2}\|_{\infty,\alpha}e^{-\alpha|v|^{2}}w(x,v)^{-1}(Rr)^{\frac{1}{2}}\left(1+\frac{R}{r}\right).

For the second term in the right hand side, noticing that N(xsv,v)=N(x,v)N(x-sv,v)=N(x,v) for all 0<s<τx,v0<s<\tau_{x,v} and recalling Lemma 2.6 and the estimate (3.1), we have

h1,αh2,αeα|v|2(1+|v|)γ0τx,veν(v)sw(xsv,v)1𝑑s\displaystyle\|h_{1}\|_{\infty,\alpha}\|h_{2}\|_{\infty,\alpha}e^{-\alpha|v|^{2}}(1+|v|)^{\gamma}\int_{0}^{\tau_{x,v}}e^{-\nu(v)s}w(x-sv,v)^{-1}\,ds
\displaystyle\lesssim h1,αh2,αw(x,v)1eα|v|2(1+diam(Ω)).\displaystyle\|h_{1}\|_{\infty,\alpha}\|h_{2}\|_{\infty,\alpha}w(x,v)^{-1}e^{-\alpha|v|^{2}}(1+\text{\rm diam}(\Omega)).

This completes the proof. ∎

Next we estimate the vv derivative of the nonlinear term.

Lemma 4.5.

Suppose (1.8). Also, suppose Assumption Ω\Omega with uniform circumscribed and interior radii RR and rr respectively. Then, for h1,h2L^αh_{1},h_{2}\in\hat{L}^{\infty}_{\alpha}, we have

|vΓ(h1,h2)(x,v)|\displaystyle|\nabla_{v}\Gamma(h_{1},h_{2})(x,v)|\lesssim h1,αh2,αeα|v|2R12dx12(1+|v|)γ\displaystyle\|h_{1}\|_{\infty,\alpha}\|h_{2}\|_{\infty,\alpha}e^{-\alpha|v|^{2}}\frac{R^{\frac{1}{2}}}{d_{x}^{\frac{1}{2}}}(1+|v|)^{\gamma}
+h1,αh2,αw(x,v)1eα|v|2(1+|v|)γ\displaystyle+\|h_{1}\|_{\infty,\alpha}\|h_{2}\|_{\infty,\alpha}w(x,v)^{-1}e^{-\alpha|v|^{2}}(1+|v|)^{\gamma}
+h1,αh2,αeα|v|2\displaystyle+\|h_{1}\|_{\infty,\alpha}\|h_{2}\|_{\infty,\alpha}e^{-\alpha|v|^{2}}

for a.e. (x,v)Ω×3(x,v)\in\Omega\times\mathbb{R}^{3}.

Proof.

For the gain term, by the sigma formulation, we have

02π0π2h1(v)h2(v)B(|vv|,θ)𝑑θ𝑑ϕ=\displaystyle\int_{0}^{2\pi}\int_{0}^{\frac{\pi}{2}}h_{1}(v^{\prime})h_{2}(v^{\prime}_{*})B(|v-v_{*}|,\theta)\,d\theta d\phi= 𝕊2h1(v)h2(v)B(|vv|,θ)2sinθcosθ𝑑Σ(σ)\displaystyle\int_{\mathbb{S}^{2}}h_{1}(v^{\prime})h_{2}(v^{\prime}_{*})\frac{B(|v-v_{*}|,\theta)}{2\sin{\theta}\cos{\theta}}\,d\Sigma(\sigma)
=\displaystyle= C2𝕊2h1(v)h2(v)|vv|γ𝑑Σ(σ).\displaystyle\frac{C}{2}\int_{\mathbb{S}^{2}}h_{1}(v^{\prime})h_{2}(v^{\prime}_{*})|v-v_{*}|^{\gamma}\,d\Sigma(\sigma).

Here, we used the assumption (1.8). Thus, we obtain

|vΓgain(h1,h2)|3e|v|22|v𝕊2h1(v)h2(v)|vv|γ𝑑Σ(σ)|𝑑v.\displaystyle|\nabla_{v}\Gamma_{\text{\rm gain}}(h_{1},h_{2})|\lesssim\int_{\mathbb{R}^{3}}e^{-\frac{|v_{*}|^{2}}{2}}\left|\nabla_{v}\int_{\mathbb{S}^{2}}h_{1}(v^{\prime})h_{2}(v^{\prime}_{*})|v-v_{*}|^{\gamma}\,d\Sigma(\sigma)\right|\,dv_{*}.

Notice that, by the identity |v|2+|v|2=|v|2+|v|2|v|^{2}+|v_{*}|^{2}=|v^{\prime}|^{2}+|v_{*}^{\prime}|^{2}, we have

|v𝕊2h1(v)h2(v)|vv|γ𝑑Σ(σ)|\displaystyle\left|\nabla_{v}\int_{\mathbb{S}^{2}}h_{1}(v^{\prime})h_{2}(v^{\prime}_{*})|v-v_{*}|^{\gamma}\,d\Sigma(\sigma)\right|
\displaystyle\leq 𝕊2|vh1(v)||h2(v)||vv|γ𝑑Σ(σ)+𝕊2|h1(v)||vh2(v)||vv|γ𝑑Σ(σ)\displaystyle\int_{\mathbb{S}^{2}}\left|\nabla_{v}h_{1}(v^{\prime})\right||h_{2}(v^{\prime}_{*})||v-v_{*}|^{\gamma}\,d\Sigma(\sigma)+\int_{\mathbb{S}^{2}}|h_{1}(v^{\prime})|\left|\nabla_{v}h_{2}(v^{\prime}_{*})\right||v-v_{*}|^{\gamma}\,d\Sigma(\sigma)
+𝕊2|h1(v)||h2(v)||vv|γ1𝑑Σ(σ)\displaystyle+\int_{\mathbb{S}^{2}}|h_{1}(v^{\prime})||h_{2}(v^{\prime}_{*})||v-v_{*}|^{\gamma-1}\,d\Sigma(\sigma)
\displaystyle\lesssim h1,α|h2|,α|vv|γ𝕊2w(x,v)1eα(|v|2+|v|2)𝑑Σ(σ)\displaystyle\|h_{1}\|_{\infty,\alpha}|h_{2}|_{\infty,\alpha}|v-v_{*}|^{\gamma}\int_{\mathbb{S}^{2}}w(x,v^{\prime})^{-1}e^{-\alpha(|v^{\prime}|^{2}+|v_{*}^{\prime}|^{2})}\,d\Sigma(\sigma)
+|h1|,αh2,α|vv|γ𝕊2w(x,v)1eα(|v|2+|v|2)𝑑Σ(σ)\displaystyle+|h_{1}|_{\infty,\alpha}\|h_{2}\|_{\infty,\alpha}|v-v_{*}|^{\gamma}\int_{\mathbb{S}^{2}}w(x,v_{*}^{\prime})^{-1}e^{-\alpha(|v^{\prime}|^{2}+|v_{*}^{\prime}|^{2})}\,d\Sigma(\sigma)
+|h1|,α|h2|,α|vv|γ1𝕊2eα(|v|2+|v|2)𝑑Σ(σ)\displaystyle+|h_{1}|_{\infty,\alpha}|h_{2}|_{\infty,\alpha}|v-v_{*}|^{\gamma-1}\int_{\mathbb{S}^{2}}e^{-\alpha(|v^{\prime}|^{2}+|v_{*}^{\prime}|^{2})}\,d\Sigma(\sigma)
\displaystyle\lesssim h1,α|h2|,α|vv|γeα(|v|2+|v|2)𝕊2w(x,v)1𝑑Σ(σ)\displaystyle\|h_{1}\|_{\infty,\alpha}|h_{2}|_{\infty,\alpha}|v-v_{*}|^{\gamma}e^{-\alpha(|v|^{2}+|v_{*}|^{2})}\int_{\mathbb{S}^{2}}w(x,v^{\prime})^{-1}\,d\Sigma(\sigma)
+|h1|,αh2,α|vv|γeα(|v|2+|v|2)𝕊2w(x,v)1𝑑Σ(σ)\displaystyle+|h_{1}|_{\infty,\alpha}\|h_{2}\|_{\infty,\alpha}|v-v_{*}|^{\gamma}e^{-\alpha(|v|^{2}+|v_{*}|^{2})}\int_{\mathbb{S}^{2}}w(x,v_{*}^{\prime})^{-1}\,d\Sigma(\sigma)
+|h1|,α|h2|,α|vv|γ1eα(|v|2+|v|2).\displaystyle+|h_{1}|_{\infty,\alpha}|h_{2}|_{\infty,\alpha}|v-v_{*}|^{\gamma-1}e^{-\alpha(|v|^{2}+|v_{*}|^{2})}.

For the first term, by Proposition 2.2 and the identity (4.1), we have

𝕊2w(x,v)1𝑑Σ(σ)=\displaystyle\int_{\mathbb{S}^{2}}w(x,v^{\prime})^{-1}\,d\Sigma(\sigma)= 𝕊21+|v||v|N(x,v)𝑑Σ(σ)\displaystyle\int_{\mathbb{S}^{2}}\frac{1+|v^{\prime}|}{|v^{\prime}|N(x,v^{\prime})}\,d\Sigma(\sigma)
\displaystyle\lesssim R12dx12𝕊2(1+1|v|)𝑑Σ(σ)\displaystyle\frac{R^{\frac{1}{2}}}{d_{x}^{\frac{1}{2}}}\int_{\mathbb{S}^{2}}\left(1+\frac{1}{|v^{\prime}|}\right)\,d\Sigma(\sigma)
\displaystyle\lesssim R12dx12(1+1|vv|).\displaystyle\frac{R^{\frac{1}{2}}}{d_{x}^{\frac{1}{2}}}\left(1+\frac{1}{|v-v_{*}|}\right).

For the second term, by the identity (4.2), we have

𝕊2w(x,v)1𝑑Σ(σ)R12dx12(1+1|vv|).\displaystyle\int_{\mathbb{S}^{2}}w(x,v_{*}^{\prime})^{-1}\,d\Sigma(\sigma)\lesssim\frac{R^{\frac{1}{2}}}{d_{x}^{\frac{1}{2}}}\left(1+\frac{1}{|v-v_{*}|}\right).

Hence we have

|vΓgain(h1,h2)(x,v)|\displaystyle\left|\nabla_{v}\Gamma_{\text{\rm gain}}(h_{1},h_{2})(x,v)\right|
\displaystyle\lesssim h1,αh2,αeα|v|2R12dx123e|v|22|vv|γeα|v|2(1+1|vv|)𝑑v\displaystyle\|h_{1}\|_{\infty,\alpha}\|h_{2}\|_{\infty,\alpha}e^{-\alpha|v|^{2}}\frac{R^{\frac{1}{2}}}{d_{x}^{\frac{1}{2}}}\int_{\mathbb{R}^{3}}e^{-\frac{|v_{*}|^{2}}{2}}|v-v_{*}|^{\gamma}e^{-\alpha|v_{*}|^{2}}\left(1+\frac{1}{|v-v_{*}|}\right)dv_{*}
+|h1|,α|h2|,αeα|v|23e|v|22eα|v|2|vv|γ1𝑑v\displaystyle+|h_{1}|_{\infty,\alpha}|h_{2}|_{\infty,\alpha}e^{-\alpha|v|^{2}}\int_{\mathbb{R}^{3}}e^{-\frac{|v_{*}|^{2}}{2}}e^{-\alpha|v_{*}|^{2}}|v-v_{*}|^{\gamma-1}dv_{*}
\displaystyle\lesssim h1,αh2,αeα|v|2R12dx12(1+|v|)γ+h1,αh2,αeα|v|2\displaystyle\|h_{1}\|_{\infty,\alpha}\|h_{2}\|_{\infty,\alpha}e^{-\alpha|v|^{2}}\frac{R^{\frac{1}{2}}}{d_{x}^{\frac{1}{2}}}(1+|v|)^{\gamma}+\|h_{1}\|_{\infty,\alpha}\|h_{2}\|_{\infty,\alpha}e^{-\alpha|v|^{2}}

for a.e. (x,v)Ω×3(x,v)\in\Omega\times\mathbb{R}^{3}.

For the loss term, we notice that

Γloss(h1,h2)=h1(v)3e|v|22h2(v)02π0π2B(|vv|,θ)𝑑θ𝑑ϕ𝑑v,\displaystyle\Gamma_{\text{\rm loss}}(h_{1},h_{2})=h_{1}(v)\int_{\mathbb{R}^{3}}e^{-\frac{|v_{*}|^{2}}{2}}h_{2}(v_{*})\int_{0}^{2\pi}\int_{0}^{\frac{\pi}{2}}B(|v-v_{*}|,\theta)\,d\theta d\phi\,dv_{*},

and, under the assumption (1.8),

02π0π2B(|vv|,θ)𝑑θ𝑑ϕ=Cπ|vv|γ.\int_{0}^{2\pi}\int_{0}^{\frac{\pi}{2}}B(|v-v_{*}|,\theta)\,d\theta d\phi=C\pi|v-v_{*}|^{\gamma}.

Thus, the gradient of Γloss\Gamma_{\text{\rm loss}} with respect to the vv variable is described as below:

vΓloss(h1,h2)(x,v)=L3(x,v)+L4(x,v),\nabla_{v}\Gamma_{\text{\rm loss}}(h_{1},h_{2})(x,v)=L_{3}(x,v)+L_{4}(x,v),

where

L3(x,v):=\displaystyle L_{3}(x,v):= Cπvh1(v)3e|v|22h2(v)|vv|γ𝑑v,\displaystyle C\pi\nabla_{v}h_{1}(v)\int_{\mathbb{R}^{3}}e^{-\frac{|v_{*}|^{2}}{2}}h_{2}(v_{*})|v-v_{*}|^{\gamma}\,dv_{*},
L4(x,v):=\displaystyle L_{4}(x,v):= Cγπh1(v)3e|v|22h2(v)|vv|γ2(vv)𝑑v.\displaystyle C\gamma\pi h_{1}(v)\int_{\mathbb{R}^{3}}e^{-\frac{|v_{*}|^{2}}{2}}h_{2}(v_{*})|v-v_{*}|^{\gamma-2}(v-v_{*})dv_{*}.

For the L3L_{3} term, we apply Lemma 2.4 to obtain

|L3(x,v)|\displaystyle|L_{3}(x,v)|\lesssim |vh1|,α,w|h2|,αw(x,v)1eα|v|23e|v|22eα|v|2|vv|γ𝑑v\displaystyle|\nabla_{v}h_{1}|_{\infty,\alpha,w}|h_{2}|_{\infty,\alpha}w(x,v)^{-1}e^{-\alpha|v|^{2}}\int_{\mathbb{R}^{3}}e^{-\frac{|v_{*}|^{2}}{2}}e^{-\alpha|v_{*}|^{2}}|v-v_{*}|^{\gamma}dv_{*}
\displaystyle\lesssim h1,α|h2|,αw(x,v)1eα|v|2(1+|v|)γ.\displaystyle\|h_{1}\|_{\infty,\alpha}|h_{2}|_{\infty,\alpha}w(x,v)^{-1}e^{-\alpha|v|^{2}}(1+|v|)^{\gamma}.

Also, for the L4L_{4} term, we apply Lemma 2.5 to get

|L4(x,v)|\displaystyle|L_{4}(x,v)|\lesssim |h1|,α|h2|,αeα|v|23e|v|22eα|v|2|vv|γ1𝑑v\displaystyle|h_{1}|_{\infty,\alpha}|h_{2}|_{\infty,\alpha}e^{-\alpha|v|^{2}}\int_{\mathbb{R}^{3}}e^{-\frac{|v_{*}|^{2}}{2}}e^{-\alpha|v_{*}|^{2}}|v-v_{*}|^{\gamma-1}\,dv_{*}
\displaystyle\lesssim h1,αh2,αeα|v|2.\displaystyle\|h_{1}\|_{\infty,\alpha}\|h_{2}\|_{\infty,\alpha}e^{-\alpha|v|^{2}}.

Hence we conclude that

|vΓloss(h1,h2)(x,v)|\displaystyle|\nabla_{v}\Gamma_{\text{\rm loss}}(h_{1},h_{2})(x,v)|\lesssim h1,α|h2|,αw(x,v)1eα|v|2(1+|v|)γ\displaystyle\|h_{1}\|_{\infty,\alpha}|h_{2}|_{\infty,\alpha}w(x,v)^{-1}e^{-\alpha|v|^{2}}(1+|v|)^{\gamma}
+h1,αh2,αeα|v|2\displaystyle+\|h_{1}\|_{\infty,\alpha}\|h_{2}\|_{\infty,\alpha}e^{-\alpha|v|^{2}}

for a.e. (x,v)Ω×3(x,v)\in\Omega\times\mathbb{R}^{3}.

Combining the estimates for |vΓgain(h1,h2)||\nabla_{v}\Gamma_{\text{\rm gain}}(h_{1},h_{2})| and |vΓloss(h1,h2)||\nabla_{v}\Gamma_{\text{\rm loss}}(h_{1},h_{2})|, we obtain the desired estimate. ∎

Lemma 4.6.

Suppose (1.8). Also, suppose Assumption Ω\Omega with uniform circumscribed and interior radii RR and rr respectively. Then, for h1,h2L^αh_{1},h_{2}\in\hat{L}^{\infty}_{\alpha}, we have

|vSΩΓ(h1,h2)|,α,w(1+diam(Ω)+(Rr)12(1+Rr))h1,αh2,α.\displaystyle|\nabla_{v}S_{\Omega}\Gamma(h_{1},h_{2})|_{\infty,\alpha,w}\lesssim\left(1+\text{\rm diam}(\Omega)+(Rr)^{\frac{1}{2}}\left(1+\frac{R}{r}\right)\right)\|h_{1}\|_{\infty,\alpha}\|h_{2}\|_{\infty,\alpha}.
Proof.

We follow the proof of Lemma 3.3. We have

vSΩΓ(h1,h2)(x,v)=SΩ,vΓ(h1,h2)(x,v)(vν(v))SΩ,sΓ(h1,h2)(x,v)\displaystyle\nabla_{v}S_{\Omega}\Gamma(h_{1},h_{2})(x,v)=S_{\Omega,v}\Gamma(h_{1},h_{2})(x,v)-(\nabla_{v}\nu(v))S_{\Omega,s}\Gamma(h_{1},h_{2})(x,v)
SΩ,sxΓ(h1,h2)(x,v)+SΩvΓ(h1,h2)(x,v).\displaystyle-S_{\Omega,s}\nabla_{x}\Gamma(h_{1},h_{2})(x,v)+S_{\Omega}\nabla_{v}\Gamma(h_{1},h_{2})(x,v).

For the first term, by Lemma 4.1, we have

|SΩ,vΓ(h1,h2)(x,v)|\displaystyle|S_{\Omega,v}\Gamma(h_{1},h_{2})(x,v)|\lesssim |xq(x,v)||v|2N(x,v)eν(v)τx,v|h1|,α|h2|,αeα|v|2(1+|v|)γ\displaystyle\frac{|x-q(x,v)|}{|v|^{2}N(x,v)}e^{-\nu(v)\tau_{x,v}}|h_{1}|_{\infty,\alpha}|h_{2}|_{\infty,\alpha}e^{-\alpha|v|^{2}}(1+|v|)^{\gamma}
\displaystyle\lesssim 1|v|N(x,v)|h1|,α|h2|,αeα|v|2(1+|v|)γ\displaystyle\frac{1}{|v|N(x,v)}|h_{1}|_{\infty,\alpha}|h_{2}|_{\infty,\alpha}e^{-\alpha|v|^{2}}(1+|v|)^{\gamma}
\displaystyle\lesssim w(x,v)1|h1|,α|h2|,αeα|v|2.\displaystyle w(x,v)^{-1}|h_{1}|_{\infty,\alpha}|h_{2}|_{\infty,\alpha}e^{-\alpha|v|^{2}}.

For the second term, by the estimate (1.10), we get

|(vν(v))SΩ,sΓ(h1,h2)(x,v)|\displaystyle\left|(\nabla_{v}\nu(v))S_{\Omega,s}\Gamma(h_{1},h_{2})(x,v)\right|\lesssim |Γ(h1,h2)|,αeα|v|20τx,veν(v)2s𝑑s\displaystyle|\Gamma(h_{1},h_{2})|_{\infty,\alpha}e^{-\alpha|v|^{2}}\int_{0}^{\tau_{x,v}}e^{-\frac{\nu(v)}{2}s}\,ds
\displaystyle\lesssim |h1|,α|h2|,αeα|v|2diam(Ω)|v|\displaystyle|h_{1}|_{\infty,\alpha}|h_{2}|_{\infty,\alpha}e^{-\alpha|v|^{2}}\frac{\text{\rm diam}(\Omega)}{|v|}
\displaystyle\lesssim diam(Ω)h1,αh2,αw(x,v)1eα|v|2.\displaystyle\text{\rm diam}(\Omega)\|h_{1}\|_{\infty,\alpha}\|h_{2}\|_{\infty,\alpha}w(x,v)^{-1}e^{-\alpha|v|^{2}}.

For the third term, we apply Lemma 4.3 to obtain

|SΩ,sxΓ(h1,h2)(x,v)|\displaystyle\left|S_{\Omega,s}\nabla_{x}\Gamma(h_{1},h_{2})(x,v)\right|
\displaystyle\lesssim h1,αh2,αeα|v|2R12(1+|v|)γ0τx,vseν(v)s1dxsv12𝑑s\displaystyle\|h_{1}\|_{\infty,\alpha}\|h_{2}\|_{\infty,\alpha}e^{-\alpha|v|^{2}}R^{\frac{1}{2}}(1+|v|)^{\gamma}\int_{0}^{\tau_{x,v}}se^{-\nu(v)s}\frac{1}{d_{x-sv}^{\frac{1}{2}}}\,ds
+h1,αh2,αeα|v|2(1+|v|)γ0τx,vseν(v)sw(xsv,v)1𝑑s\displaystyle+\|h_{1}\|_{\infty,\alpha}\|h_{2}\|_{\infty,\alpha}e^{-\alpha|v|^{2}}(1+|v|)^{\gamma}\int_{0}^{\tau_{x,v}}se^{-\nu(v)s}w(x-sv,v)^{-1}\,ds
\displaystyle\lesssim (1+diam(Ω)+(Rr)12(1+Rr))h1,αh2,αw(x,v)1eα|v|2.\displaystyle\left(1+\text{\rm diam}(\Omega)+(Rr)^{\frac{1}{2}}\left(1+\frac{R}{r}\right)\right)\|h_{1}\|_{\infty,\alpha}\|h_{2}\|_{\infty,\alpha}w(x,v)^{-1}e^{-\alpha|v|^{2}}.

For the last term, we use Lemma 4.5 to see that

|SΩvΓ(h1,h2)(x,v)|\displaystyle|S_{\Omega}\nabla_{v}\Gamma(h_{1},h_{2})(x,v)|
\displaystyle\lesssim h1,αh2,αeα|v|2R12(1+|v|)γ0τx,vseν(v)s1dxsv12𝑑s\displaystyle\|h_{1}\|_{\infty,\alpha}\|h_{2}\|_{\infty,\alpha}e^{-\alpha|v|^{2}}R^{\frac{1}{2}}(1+|v|)^{\gamma}\int_{0}^{\tau_{x,v}}se^{-\nu(v)s}\frac{1}{d_{x-sv}^{\frac{1}{2}}}\,ds
+h1,αh2,αeα|v|2(1+|v|)γ0τx,vseν(v)sw(xsv,v)1𝑑s\displaystyle+\|h_{1}\|_{\infty,\alpha}\|h_{2}\|_{\infty,\alpha}e^{-\alpha|v|^{2}}(1+|v|)^{\gamma}\int_{0}^{\tau_{x,v}}se^{-\nu(v)s}w(x-sv,v)^{-1}\,ds
+h1,αh2,αeα|v|20τx,vseν(v)sw(xsv,v)1𝑑s\displaystyle+\|h_{1}\|_{\infty,\alpha}\|h_{2}\|_{\infty,\alpha}e^{-\alpha|v|^{2}}\int_{0}^{\tau_{x,v}}se^{-\nu(v)s}w(x-sv,v)^{-1}\,ds
\displaystyle\lesssim (1+diam(Ω)+(Rr)12(1+Rr))h1,αh2,αw(x,v)1eα|v|2.\displaystyle\left(1+\text{\rm diam}(\Omega)+(Rr)^{\frac{1}{2}}\left(1+\frac{R}{r}\right)\right)\|h_{1}\|_{\infty,\alpha}\|h_{2}\|_{\infty,\alpha}w(x,v)^{-1}e^{-\alpha|v|^{2}}.

This completes the proof. ∎

Lemma 1.3 follows from Lemma 4.2, Lemma 4.4 and Lemma 4.6.

We are ready to prove Theorem 1.1. First, define f0:=0f_{0}:=0 and consider the following iteration scheme:

{vxfi+1+ν(v)fi+1=Kfi+1+Γ(fi,fi),(x,v)Ω×3,fi(x,v)=g(x,v),(x,v)Γ\begin{cases}&v\cdot\nabla_{x}f_{i+1}+\nu(v)f_{i+1}=Kf_{i+1}+\Gamma(f_{i},f_{i}),\quad(x,v)\in\Omega\times\mathbb{R}^{3},\\ &f_{i}(x,v)=g(x,v),\quad(x,v)\in\Gamma^{-}\end{cases}

for i1i\geq 1. By Lemma 1.2 and Lemma 1.3, we have

fi+1,α\displaystyle\|f_{i+1}\|_{\infty,\alpha}\lesssim SΩΓ(fi,fi)|_,α+Jg,α\displaystyle\|S_{\Omega}\Gamma(f_{i},f_{i})|\_{\infty,\alpha}+\|Jg\|_{\infty,\alpha}
\displaystyle\lesssim (1+diam(Ω)+(Rr)12(1+Rr))fi,αfi,α+Jg,α.\displaystyle\left(1+\text{\rm diam}(\Omega)+(Rr)^{\frac{1}{2}}\left(1+\frac{R}{r}\right)\right)\|f_{i}\|_{\infty,\alpha}\|f_{i}\|_{\infty,\alpha}+\|Jg\|_{\infty,\alpha}.

Hence, by the assumption that diam(Ω)\text{\rm diam}(\Omega) and (Rr)12(1+Rr)(Rr)^{\frac{1}{2}}\left(1+\frac{R}{r}\right) is small enough, we have

fi+1,αCfi,αfi,α+CJg,α.||f_{i+1}||_{\infty,\alpha}\leq C||f_{i}||_{\infty,\alpha}||f_{i}||_{\infty,\alpha}+C||Jg||_{\infty,\alpha}.

for some constant C>0C>0. Without loss of generality, we assume that CC is a constant any arbitrary large real number which is greater than 11.

We further take δ>0\delta>0 so small thatδ<1/4C2\delta<1/4C^{2} to achieve

f1,α14C12C.\|f_{1}\|_{\infty,\alpha}\leq\frac{1}{4C}\leq\frac{1}{2C}.

Also, if fi,α1/2C\|f_{i}\|_{\infty,\alpha}\leq 1/2C for some ii, we have

fi+1,α\displaystyle||f_{i+1}||_{\infty,\alpha}\leq 12fi,α+14C12C.\displaystyle\frac{1}{2}||f_{i}||_{\infty,\alpha}+\frac{1}{4C}\leq\frac{1}{2C}.

Hence, by induction, the L^α\hat{L}^{\infty}_{\alpha} norm of the sequence fif_{i} is uniformly bounded by 1/2C1/2C. Furthermore, by substituting fi+1fif_{i+1}-f_{i} for (1.7), we have

{vx(fi+1fi)+ν(v)(fi+1fi)=K(fi+1fi)+Γ(fi,fi)Γ(fi1,fi1),(x,v)Ω×3,fi+1(x,v)fi(x,v)=0,(x,v)Γ.\begin{cases}&v\cdot\nabla_{x}(f_{i+1}-f_{i})+\nu(v)(f_{i+1}-f_{i})\\ &\quad=K(f_{i+1}-f_{i})+\Gamma(f_{i},f_{i})-\Gamma(f_{i-1},f_{i-1}),\quad(x,v)\in\Omega\times\mathbb{R}^{3},\\ &f_{i+1}(x,v)-f_{i}(x,v)=0,(x,v)\in\Gamma^{-}.\end{cases}

Notice that Γ(fi,fi)Γ(fi1,fi1)=Γ(fi,fifi1)+Γ(fifi1,fi1)\Gamma(f_{i},f_{i})-\Gamma(f_{i-1},f_{i-1})=\Gamma(f_{i},f_{i}-f_{i-1})+\Gamma(f_{i}-f_{i-1},f_{i-1}). Hence, we have

fi+1fi,α\displaystyle\|f_{i+1}-f_{i}\|_{\infty,\alpha}\lesssim (1+diam(Ω)+(Rr)12(1+Rr))\displaystyle\left(1+\text{\rm diam}(\Omega)+(Rr)^{\frac{1}{2}}\left(1+\frac{R}{r}\right)\right)
×(fi,αfifi1,α+fifi1,αfi1,α)\displaystyle\times(\|f_{i}\|_{\infty,\alpha}\|f_{i}-f_{i-1}\|_{\infty,\alpha}+\|f_{i}-f_{i-1}\|_{\infty,\alpha}\|f_{i-1}\|_{\infty,\alpha})
\displaystyle\lesssim (1+diam(Ω)+(Rr)12(1+Rr))1Cfifi1,α.\displaystyle\left(1+\text{\rm diam}(\Omega)+(Rr)^{\frac{1}{2}}\left(1+\frac{R}{r}\right)\right)\frac{1}{C}\|f_{i}-f_{i-1}\|_{\infty,\alpha}.

In the last line, we use the uniform bound 1/2C1/2C of fi+1,α\|f_{i+1}\|_{\infty,\alpha}. With small enough diam(Ω)\text{\rm diam}(\Omega) and (Rr)12(1+Rr)(Rr)^{\frac{1}{2}}\left(1+\frac{R}{r}\right) we have

fi+1fi,α1Cfifi1,α.\|f_{i+1}-f_{i}\|_{\infty,\alpha}\lesssim\frac{1}{C}\|f_{i}-f_{i-1}\|_{\infty,\alpha}.

With large CC, we finally deduced that

fi+1fi,α12fifi1,α.\|f_{i+1}-f_{i}\|_{\infty,\alpha}\leq\frac{1}{2}\|f_{i}-f_{i-1}\|_{\infty,\alpha}.

Hence we achieve the convergence in L^α\hat{L}^{\infty}_{\alpha} of the iteration scheme (1.7) when diam(Ω)\text{\rm diam}(\Omega), (Rr)12(1+Rr)(Rr)^{\frac{1}{2}}\left(1+\frac{R}{r}\right) and Jg,α\|Jg\|_{\infty,\alpha} is small enough.

Acknowledgement

I. Chen is supported in part by NSTC with the grant number 108-2628-M-002-006-MY4, 111-2918-I-002-002-, and 112-2115-M-002-009-MY3. C. Hsia is supported in part by NSTC with the grant number 109-2115-M-002-013-MY3. D. Kawagoe is supported in part by JSPS KAKENHI grant number 20K14344. D. Kawagoe and J. Su is supported in part by the National Taiwan University-Kyoto University Joint Funding.

Appendix A The inclusion L^αW1,p\hat{L}^{\infty}_{\alpha}\subset W^{1,p}

In this section, we provide a detail proof of the fact that the weighted space L^α\hat{L}^{\infty}_{\alpha} is in fact in W1,pW^{1,p} for 1p<31\leq p<3.

Proposition A.1.

Suppose that the domain Ω\Omega satisfies the uniform circumscribed condition with radius RR. Then, given 0<α<0<\alpha<\infty we have L^αW1,p\hat{L}^{\infty}_{\alpha}\subseteq W^{1,p} for 1p<31\leq p<3.

Proof.

Given a function hL^αh\in\hat{L}^{\infty}_{\alpha}, it suffices to show that hh, xh\nabla_{x}h and vh\nabla_{v}h belong to LpL^{p}. Without loss of generality, it suffices to show that w(x,v)1w(x,v)^{-1} belongs to LpL^{p}.

By performing the change of variable x=z+sv/|v|x=z+sv/|v|, where zΓvz\in\Gamma^{-}_{v}, we have

3Ωw(x,v)pepα|v|2𝑑x𝑑v\displaystyle\int_{\mathbb{R}^{3}}\int_{\Omega}w(x,v)^{-p}e^{-p\alpha|v|^{2}}\,dxdv
\displaystyle\lesssim 3Γv0q(x,v)(1+1|v|p)1N(x,v)p1epα|v|2𝑑s𝑑Σ(z)𝑑v.\displaystyle\int_{\mathbb{R}^{3}}\int_{\Gamma^{-}_{v}}\int_{0}^{q(x,-v)}\left(1+\frac{1}{|v|^{p}}\right)\frac{1}{N(x,v)^{p-1}}e^{-p\alpha|v|^{2}}\,dsd\Sigma(z)dv.

By Proposition 2.1, we have

3Γv0q(x,v)(1+1|v|p)1N(x,v)p1epα|v|2𝑑s𝑑Σ(z)𝑑v\displaystyle\int_{\mathbb{R}^{3}}\int_{\Gamma^{-}_{v}}\int_{0}^{q(x,-v)}\left(1+\frac{1}{|v|^{p}}\right)\frac{1}{N(x,v)^{p-1}}e^{-p\alpha|v|^{2}}\,dsd\Sigma(z)dv
\displaystyle\lesssim 3Γv(1+1|v|p)1N(x,v)p2epα|v|2𝑑Σ(z)𝑑v.\displaystyle\int_{\mathbb{R}^{3}}\int_{\Gamma^{-}_{v}}\left(1+\frac{1}{|v|^{p}}\right)\frac{1}{N(x,v)^{p-2}}e^{-p\alpha|v|^{2}}\,d\Sigma(z)dv.

We then change the order of integration and introduce the spherical coordinates to obtain

3Γv(1+1|v|p)1N(x,v)p2epα|v|2𝑑Σ(z)𝑑v\displaystyle\int_{\mathbb{R}^{3}}\int_{\Gamma^{-}_{v}}\left(1+\frac{1}{|v|^{p}}\right)\frac{1}{N(x,v)^{p-2}}e^{-p\alpha|v|^{2}}\,d\Sigma(z)dv
=\displaystyle= ΩΓx(1+1|v|p)1N(x,v)p2epα|v|2𝑑v𝑑Σ(z)\displaystyle\int_{\partial\Omega}\int_{\Gamma^{-}_{x}}\left(1+\frac{1}{|v|^{p}}\right)\frac{1}{N(x,v)^{p-2}}e^{-p\alpha|v|^{2}}\,dvd\Sigma(z)
=\displaystyle= Ω002π0π2(1+1rp)1cosp2θepαr2r2sinθdθdϕdrdΣ(z)\displaystyle\int_{\partial\Omega}\int_{0}^{\infty}\int_{0}^{2\pi}\int_{0}^{\frac{\pi}{2}}\left(1+\frac{1}{r^{p}}\right)\frac{1}{\cos^{p-2}{\theta}}e^{-p\alpha r^{2}}r^{2}\sin{\theta}\,d\theta d\phi drd\Sigma(z)
\displaystyle\lesssim Ω002π0π2(r2+1rp2)1cosp2θepαr2sinθdθdϕdrdΣ(z)\displaystyle\int_{\partial\Omega}\int_{0}^{\infty}\int_{0}^{2\pi}\int_{0}^{\frac{\pi}{2}}\left(r^{2}+\frac{1}{r^{p-2}}\right)\frac{1}{\cos^{p-2}{\theta}}e^{-p\alpha r^{2}}\sin{\theta}\,d\theta d\phi drd\Sigma(z)
\displaystyle\lesssim Ω00π2(r2+1rp2)1cosp2θepαr2sinθdθdrdΣ(z)\displaystyle\int_{\partial\Omega}\int_{0}^{\infty}\int_{0}^{\frac{\pi}{2}}\left(r^{2}+\frac{1}{r^{p-2}}\right)\frac{1}{\cos^{p-2}{\theta}}e^{-p\alpha r^{2}}\sin{\theta}\,d\theta drd\Sigma(z)
=\displaystyle= Ω0(r2+1rp2)epαr2011tp2𝑑t𝑑r𝑑Σ(z)\displaystyle\int_{\partial\Omega}\int_{0}^{\infty}\left(r^{2}+\frac{1}{r^{p-2}}\right)e^{-p\alpha r^{2}}\int_{0}^{1}\frac{1}{t^{p-2}}\,dtdrd\Sigma(z)
<\displaystyle< .\displaystyle\infty.

This completes the proof. ∎

References

  • [1] Caflisch, Russel E. The Boltzmann equation with a soft potential. I. Linear, spatially-homogeneous. Comm. Math. Phys. 74 (1980), no. 1, 71–95.
  • [2] Cao, Yunbai. Regularity of Boltzmann equation with external fields in convex domains of diffuse reflection. SIAM J. Math. Anal. 51 (2019), no.4, 3195–3275.
  • [3] Cao, Yunbai Rarefied gas dynamics with external fields under specular reflection boundary condition. Commun. Math. Sci. 20 (2022), no.8, 2133–2206.
  • [4] Chen, Hongxu; Kim, Chanwoo Regularity of stationary Boltzmann equation in convex domains. Arch. Ration. Mech. Anal. 244 (2022), no.3, 1099–1222.
  • [5] Chen, Hongxu; Kim, Chanwoo Gradient Decay in the Boltzmann Theory of Non-isothermal Boundary. Arch. Ration. Mech. Anal. 248 (2024), no.2, Paper No. 14.
  • [6] Chen, I-Kun; Chuang, Ping-Han; Hsia, Chun-Hsiung; Kawagoe, Daisuke; Su, Jhe-Kuan. On the existence of H1H^{1} solutions for stationary linearized Boltzmann equation in a small convex domain, preprint, arXiv:2304.08800.
  • [7] Chen, I-Kun; Chuang, Ping-Han; Hsia, Chun-Hsiung; Kawagoe, Daisuke; Su, Jhe-Kuan. Geometric effects on W1,pW^{1,p} regularity of the stationary linearized Boltzmann equation, preprint, arXiv:2311.12387 .
  • [8] Chen, I-Kun; Chuang, Ping-Han; Hsia, Chun-Hsiung; Su, Jhe-Kuan. A revisit of the velocity averaging lemma: on the regularity of stationary Boltzmann equation in a bounded convex domain. J. Stat. Phys. 189 (2022), no. 2, Paper No. 17, 43 pp.
  • [9] Chen, I-Kun; Hsia, Chun-Hsiung; Kawagoe, Daisuke. Regularity for diffuse reflection boundary problem to the stationary linearized Boltzmann equation in a convex domain. Ann. Inst. H. Poincaré C Anal.Non Linéaire 36 (2019), no. 3, 745-–782.
  • [10] Esposito, Raffaele; Guo, Yan; Kim, Chanwoo; Marra, Rossana. Non-isothermal boundary in the Boltzmann theory and Fourier law. Comm. Math. Phys. 323 (2013), no. 1, 177–239.
  • [11] Grad, Harold. Asymptotic theory of the Boltzmann equation. II. 1963 Rarefied Gas Dynamics (Proc. 3rd Internat. Sympos., Palais de l’UNESCO, Paris, 1962), Vol. I pp. 26–59 Academic Press, New York.
  • [12] Guiraud, Jean-Pierre. Problème aux limites intérieur pour l’équation de Boltzmann linéaire. J. Mécanique 9 (1970), 443–-490.
  • [13] Guiraud, Jean-Pierre Problème aux limites intérieur pour l’équation de Boltzmann en régime stationnaire, faiblement non linéaire. J. Mécanique 11 (1972), 183–231.
  • [14] Guo, Yan; Kim, Chanwoo; Tonon, Daniela; Trescases, Ariane Regularity of the Boltzmann equation in convex domains. Invent. Math. 207 (2017), no.1, 115–290.