This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

11institutetext: Gabriele Ciaramella 22institutetext: Politecnico di Milano 22email: [email protected] 33institutetext: Luca Mechelli 44institutetext: Universität Konstanz 44email: [email protected]

On the effect of boundary conditions on the scalability of Schwarz methods

Gabriele Ciaramella and Luca Mechelli

1 Introduction

This work is concerned with convergence and weak scalability111Here, weak scalability is understood in the sense that the contraction factor does not deteriorate as the number NN of subdomains increases and, hence, the number of iterations, needed to reach a given tolerance, is uniformly bounded in NN; see, e.g., Ciaramella_mini_10_CiaramellaGander4 . analysis of one-level parallel Schwarz method (PSM) and optimized Schwarz method (OSM) for the solution of the problem

Δu=f in Ω,u(a1,y)=u(bN,y)=0 y(0,1),b(u)(x)=t(u)(x)=0 x(a1,bN),\begin{split}&-\Delta u=f\,\text{ in $\Omega$},\quad u(a_{1},y)=u(b_{N},y)=0\>\text{ $y\in(0,1)$},\\ &\mathcal{B}_{b}(u)(x)=\mathcal{B}_{t}(u)(x)=0\>\text{ $x\in(a_{1},b_{N}),$}\end{split} (1)

where Ω\Omega is the domain depicted in Fig. 1, and b\mathcal{B}_{b} and t\mathcal{B}_{t} are either Dirichlet, or Neumann or Robin operators:

Dirichlet: b(u)(x)=u(0,x),\displaystyle\mathcal{B}_{b}(u)(x)=u(0,x), t(u)(x)=u(1,x),\displaystyle\mathcal{B}_{t}(u)(x)=u(1,x),
Neumann: b(u)(x)=yu(0,x),\displaystyle\mathcal{B}_{b}(u)(x)=\partial_{y}u(0,x), t(u)(x)=yu(1,x),\displaystyle\mathcal{B}_{t}(u)(x)=\partial_{y}u(1,x),
Robin: b(u)(x)=qu(0,x)yu(0,x),\displaystyle\mathcal{B}_{b}(u)(x)=qu(0,x)-\partial_{y}u(0,x), t(u)(x)=qu(1,x)+yu(1,x).\displaystyle\mathcal{B}_{t}(u)(x)=qu(1,x)+\partial_{y}u(1,x).

Here, q>0q>0 and the subscripts ‘bb’ and ‘tt’ stand for ‘bottom’ and ‘top’.

xxb0b_{0}a1a_{1}a2a_{2}b1b_{1}\cdots\cdotsaja_{j}bj1b_{j-1}aj+1a_{j+1}bjb_{j}\cdots\cdotsaNa_{N}bN1b_{N-1}bNb_{N}aN+1a_{N+1}11Ω1\Omega_{1}2δ2\delta2δ2\deltaL2δL-2\delta\cdots\cdotsΩj\Omega_{j}2δ2\delta2δ2\deltaL2δL-2\delta\cdots\cdotsΩN\Omega_{N}2δ2\delta2δ2\deltaL2δL-2\delta
Figure 1: Two-dimensional chain of NN rectangular fixed-sized subdomains.

As shown in Fig. 1, the domain Ω\Omega is the union of subdomains Ωj\Omega_{j}, j=1,,Nj=1,\dots,N, defined as Ωj:=(aj,bj)×(0,1)\Omega_{j}:=(a_{j},b_{j})\times(0,1), where a1=0a_{1}=0, aj=L+aj1a_{j}=L+a_{j-1} for j=2,,N+1j=2,\dots,N+1 and bj=aj+1+2δb_{j}=a_{j+1}+2\delta for j=0,,Nj=0,\dots,N. Hence, the length of each subdomain is L+2δL+2\delta and the length of the overlap is 2δ2\delta with δ(0,L/2)\delta\in(0,L/2).

It is well known that one-level Schwarz methods are not weakly scalable, if the number of subdomains increases and the whole domain Ω\Omega is fixed. However, the recent work Ciaramella_mini_10_Stamm3 , published in the field of molecular dynamics, has drawn attention to the opposite case in which the number of subdomains increases, but their size remains unchanged, and, as a result, the size of the whole domain Ω\Omega increases. In this setting, weak scalability of PSM and OSM for (1) with Dirichlet boundary conditions is studied in Ciaramella_mini_10_CiaramellaGander ; Ciaramella_mini_10_CiaramellaGander4 . Scalability results for the PSM in case of more general geometries of the (sub)domains are presented in Ciaramella_mini_10_CiaramellaGander2 ; Ciaramella_mini_10_CiaramellaGander3 ; Ciaramella_mini_10_CHS2 . In these works, only external Dirichlet conditions are discussed and, in such a case, weak scalability is shown. A short remark about the non-scalability in case of external Neumann conditions is given in Ciaramella_mini_10_CiaramellaGander4 . Similar results have been recently presented in Ciaramella_mini_10_bootland2020 for time-harmonic problems. The goal of this work is to study the effect of different (possibly mixed) external boundary conditions on convergence and scalability of PSM and OSM. In particular, we will show that only in the case of (both) external Neumann conditions at the top and the bottom of Ω\Omega, PSM and OSM are not scalable. External Dirichlet conditions lead to the fastest convergence, while external Robin conditions lead to a convergence that depends heavily on the parameter qq.

One-level PSM and OSM for the solution of (1) are

Δujn=fj in Ωj,b(ujn)(x)=t(ujn)(x)=0 x(a1,bN),𝒯(ujn)(aj)=𝒯(uj1n1)(aj),𝒯r(ujn)(bj)=𝒯r(uj+1n1)(bj),\begin{split}&-\Delta u_{j}^{n}=f_{j}\,\text{ in $\Omega_{j}$},\\ &\mathcal{B}_{b}(u_{j}^{n})(x)=\mathcal{B}_{t}(u_{j}^{n})(x)=0\>\text{ $x\in(a_{1},b_{N}),$}\\ &\mathcal{T}_{\ell}(u_{j}^{n})(a_{j})=\mathcal{T}_{\ell}(u_{j-1}^{n-1})(a_{j}),\quad\mathcal{T}_{r}(u_{j}^{n})(b_{j})=\mathcal{T}_{r}(u_{j+1}^{n-1})(b_{j}),\end{split} (2)

for j=2,,Nj=2,\dots,N, where 𝒯\mathcal{T}_{\ell} and 𝒯r\mathcal{T}_{r} are Dirichlet trace operators,

𝒯(ujn)(aj)=u(aj,y) and 𝒯r(ujn)(bj)=u(bj,y),\mathcal{T}_{\ell}(u_{j}^{n})(a_{j})=u(a_{j},y)\text{ and }\mathcal{T}_{r}(u_{j}^{n})(b_{j})=u(b_{j},y), (3)

for the PSM, and Robin trace operators,

𝒯(ujn)(aj)=pu(aj,y)xu(aj,y) and 𝒯r(ujn)(bj)=pu(bj,y)+xu(bj,y),\mathcal{T}_{\ell}(u_{j}^{n})(a_{j})=pu(a_{j},y)-\partial_{x}u(a_{j},y)\text{ and }\mathcal{T}_{r}(u_{j}^{n})(b_{j})=pu(b_{j},y)+\partial_{x}u(b_{j},y), (4)

with p>0p>0 for the OSM. The subscript ‘\ell’ and ‘rr’ stand for ‘left’ and ‘right’. For j=1j=1 the condition at a1a_{1} must be replaced by u1n(a1,y)=0u_{1}^{n}(a_{1},y)=0 and for j=Nj=N the condition at bNb_{N} must be replaced by uNn(bN,y)=0u_{N}^{n}(b_{N},y)=0. In this paper, ‘external conditions’ and ‘transmission conditions’ will always refer to the conditions obtained by the pairs (b,u)(\mathcal{B}_{b},\mathcal{B}_{u}) and (𝒯,𝒯r)(\mathcal{T}_{\ell},\mathcal{T}_{r}), respectively. Note that the Robin parameter pp of the OSM can be chosen independently of the Robin parameter qq used for the operators b\mathcal{B}_{b} and t\mathcal{B}_{t}. We analyze convergence of PSM and OSM by a Fourier analysis in Section 3. For this purpose, we use the solutions of eigenproblems of the 1D Laplace operators with mixed boundary conditions. These are studied in Section 2. Finally, results of numerical experiments are presented in Section 4.

2 Laplace eigenpairs for mixed external conditions

Consider the 1D eigenvalue problem

φ′′(y)=λφ(y), for y(0,1)b(φ)(0)=t(φ)(1)=0,\varphi^{\prime\prime}(y)=-\lambda\varphi(y),\text{ for $y\in(0,1)$, $\quad\mathcal{B}_{b}(\varphi)(0)=\mathcal{B}_{t}(\varphi)(1)=0$}, (5)

and six pairs of boundary operators (b,t)(\mathcal{B}_{b},\mathcal{B}_{t}):

  • (DD)

    b(φ)(0)=φ(0)\mathcal{B}_{b}(\varphi)(0)=\varphi(0), t(φ)(1)=φ(1)\quad\qquad\qquad\mathcal{B}_{t}(\varphi)(1)=\varphi(1),

  • (DR)

    b(φ)(0)=φ(0)\mathcal{B}_{b}(\varphi)(0)=\varphi(0), t(φ)(1)=qφ(1)+φ(1)\quad\qquad\qquad\mathcal{B}_{t}(\varphi)(1)=q\varphi(1)+\varphi^{\prime}(1),

  • (DN)

    b(φ)(0)=φ(0)\mathcal{B}_{b}(\varphi)(0)=\varphi(0), t(φ)(1)=φ(1)\quad\qquad\qquad\mathcal{B}_{t}(\varphi)(1)=\varphi^{\prime}(1),

  • (RR)

    b(φ)(0)=qφ(0)φ(0)\mathcal{B}_{b}(\varphi)(0)=q\varphi(0)-\varphi^{\prime}(0), t(φ)(1)=qφ(1)+φ(1)\quad\mathcal{B}_{t}(\varphi)(1)=q\varphi(1)+\varphi^{\prime}(1),

  • (NR)

    b(φ)(0)=φ(0)\mathcal{B}_{b}(\varphi)(0)=\varphi^{\prime}(0), t(φ)(1)=qφ(1)+φ(1)\quad\qquad\quad\;\;\,\mathcal{B}_{t}(\varphi)(1)=q\varphi(1)+\varphi^{\prime}(1),

  • (NN)

    b(φ)(0)=φ(0)\mathcal{B}_{b}(\varphi)(0)=\varphi^{\prime}(0), t(φ)(1)=φ(1)\quad\qquad\quad\;\;\,\mathcal{B}_{t}(\varphi)(1)=\varphi^{\prime}(1),

where q>0q>0 and ‘D’, ‘R’ and ‘N’ stand for ‘Dirichlet’, ‘Robin’ and ‘Neumann’. For all these six cases the eigenvalue problem (5) is solved by orthonormal (in L2(0,1)L^{2}(0,1)) Fourier basis functions.

Theorem 2.1 (Eigenpairs of the Laplace operator)

Let q>0q>0. The eigenproblems (5) with the above external conditions are solved by the non-trivial eigenpairs (φk,λk)(\varphi_{k},\lambda_{k}) given by

  • (DD)

    φk(y)=2sin(πky)\varphi_{k}(y)=\sqrt{2}\sin(\pi ky), λk=π2k2\lambda_{k}=\pi^{2}k^{2}, k=1,2,k=1,2,\dots

  • (DR)

    φk(y)=4μk2μksin(2μk)sin(μky)\varphi_{k}(y)=\sqrt{\frac{4\mu_{k}}{2\mu_{k}-\sin(2\mu_{k})}}\sin(\mu_{k}y), λk=μk2\lambda_{k}=\mu_{k}^{2}, k=1,2,k=1,2,\dots, where μk(kππ/2,kπ)\mu_{k}\in(k\pi-\pi/2,k\pi), k=1,2,k=1,2,\dots, are roots d^(x):=qsin(x)+xcos(x)\widehat{d}(x):=q\sin(x)+x\cos(x). Moreover, limq0μ1(q)=π/2\lim_{q\rightarrow 0}\mu_{1}(q)=\pi/2 and limqμ1(q)=π\lim_{q\rightarrow\infty}\mu_{1}(q)=\pi.

  • (DN)

    φk(y)=2sin(2k+12πy)\varphi_{k}(y)=\sqrt{2}\sin(\frac{2k+1}{2}\pi y), λk=(2k+1)24π2\lambda_{k}=\frac{(2k+1)^{2}}{4}\pi^{2}, k=0,1,2,k=0,1,2,\dots

  • (RR)

    φk(y)=4τk(τk2q2)sin(2τk)+4qτksin(τk)2+2τk3+2q2τk(qsin(τky)+τkcos(τky))\varphi_{k}(y)=\sqrt{\frac{4\tau_{k}}{(\tau_{k}^{2}-q^{2})\sin(2\tau_{k})+4q\tau_{k}\sin(\tau_{k})^{2}+2\tau_{k}^{3}+2q^{2}\tau_{k}}}\bigl{(}q\sin(\tau_{k}y)+\tau_{k}\cos(\tau_{k}y)\bigr{)}, λk=τk2\lambda_{k}=\tau_{k}^{2}, k=1,2,k=1,2,\dots, where τk(0,π)\tau_{k}\in(0,\pi), k=1,2,k=1,2,\dots, are roots of d~(x):=2qxcos(x)+(q2x2)sin(x)\widetilde{d}(x):=2qx\cos(x)+(q^{2}-x^{2})\sin(x). Moreover, limq0τ1(q)=0\lim_{q\rightarrow 0}\tau_{1}(q)=0 and limqτ1(q)=π\lim_{q\rightarrow\infty}\tau_{1}(q)=\pi.

  • (NR)

    φk(y)=4νk2νk+sin(2νk)cos(νky)\varphi_{k}(y)=\sqrt{\frac{4\nu_{k}}{2\nu_{k}+\sin(2\nu_{k})}}\cos(\nu_{k}y), λk=νk2\lambda_{k}=\nu_{k}^{2}, k=1,2,k=1,2,\dots, where νk((k1)π,(k12)π)\nu_{k}\in~{}((k-1)\pi,(k-\frac{1}{2})\pi), k=1,2,k=1,2,\dots, are roots of d(x):=xsin(x)qcos(x)d(x):=x\sin(x)-q\cos(x). Moreover, limq0ν1(q)=0\lim_{q\rightarrow 0}\nu_{1}(q)=0 and limqν1(q)=π/2\lim_{q\rightarrow\infty}\nu_{1}(q)=\pi/2.

  • (NN)

    φk(y)=2cos(πky)\varphi_{k}(y)=\sqrt{2}\cos(\pi ky), λk=π2k2\lambda_{k}=\pi^{2}k^{2}, k=0,1,2,k=0,1,2,\dots

Proof

If we multiply (5) with φ\varphi, integrate over [0,1][0,1], and integrate by parts, we get λ01|φ(y)|2𝑑y=01|φ(y)|2𝑑yφ(1)φ(1)+φ(0)φ(0)\lambda\int_{0}^{1}|\varphi(y)|^{2}dy=\int_{0}^{1}|\varphi^{\prime}(y)|^{2}dy-\varphi^{\prime}(1)\varphi(1)+\varphi^{\prime}(0)\varphi(0). Using any of the above external conditions (and that q>0q>0, for the Robin ones) one gets λ0\lambda\geq 0. We refer to, e.g., (Ciaramella_mini_10_Olver2013, , Section 4.1) for similar discussions. Now, all the cases can be proved by using the ansatz φ(y)=Acos(λy)+Bsin(λy)\varphi(y)=A\cos(\sqrt{\lambda}y)+B\sin(\sqrt{\lambda}y), which clearly satisfies (5), and computing, e.g., AA and λ\lambda in such a way that φ(y)\varphi(y) satisfies the two external conditions and BB as a normalization factor.

The coefficients ν1\nu_{1}, μ1\mu_{1} and τ1\tau_{1} as functions of qq are shown in Fig. 2 (left),

Refer to caption
Refer to caption
Figure 2: Left: Maps qμ1(q)q\mapsto\mu_{1}(q), qν1(q)q\mapsto\nu_{1}(q) and qτ1(q)q\mapsto\tau_{1}(q) . Right: ρDR\rho_{\rm DR}, ρNR\rho_{{\rm NR}}, ρDD\rho_{\rm DD} and ρDN\rho_{\rm DN} as functions of qq and for δ=0.1\delta=0.1 and L=1.0L=1.0.

where we can observe that ν1(q)<π2<μ1(q)<π\nu_{1}(q)<\frac{\pi}{2}<\mu_{1}(q)<\pi and 0<τ1(q)<π0<\tau_{1}(q)<\pi, and that the maps qν1(q)q\mapsto\nu_{1}(q), qμ1(q)q\mapsto\mu_{1}(q) and qτ1(q)q\mapsto\tau_{1}(q) increase monotonically and approach, respectively, π2\frac{\pi}{2} and π\pi as qq\rightarrow\infty. Hence, by taking the limit q0q\rightarrow 0, one can pass from the conditions (DR), (RR) and (NR) to (DN), (NN) and (NN), respectively. Similarly, by taking the limit qq\rightarrow\infty, the conditions (DR), (RR) and (NR) become (DD), (DD) and (DN), respectively.

3 Convergence and scalability

Consider the Schwarz method (2) and any pair (b,t)(\mathcal{B}_{b},\mathcal{B}_{t}) of operators as in Section 2. The Fourier expansions of ujn(x,y)u_{j}^{n}(x,y), j=1,,Nj=1,\dots,N, are

ujn(x,y)=ku^jn(x,λk)φk(y),u_{j}^{n}(x,y)=\sum_{k}\widehat{u}_{j}^{n}(x,\lambda_{k})\varphi_{k}(y), (6)

where the sum is over k=1,2,k=1,2,\dots for (DD), (DR), (RR) and (NR), and over k=0,1,2,k=0,1,2,\dots for (DN) and (NN). The functions φk\varphi_{k} depend on the external boundary conditions and are the ones obtained in Theorem 2.1. The Fourier coefficients u^jn(x,λk)\widehat{u}_{j}^{n}(x,\lambda_{k}) satisfy

xxu^jn(x,λk)+λku^jn(x,λk)=f^j(x,λk) in (aj,bj),𝒯(u^jn(,λk))(aj)=𝒯(u^j1n1(,λk))(aj),𝒯r(u^jn(,λk))(bj)=𝒯r(u^j+1n1(,λk))(bj),\begin{split}-\partial_{xx}\widehat{u}_{j}^{n}(x,\lambda_{k})+\lambda_{k}\widehat{u}_{j}^{n}(x,\lambda_{k})&=\widehat{f}_{j}(x,\lambda_{k})\,\text{ in $(a_{j},b_{j})$},\\ \mathcal{T}_{\ell}(\widehat{u}_{j}^{n}(\cdot,\lambda_{k}))(a_{j})&=\mathcal{T}_{\ell}(\widehat{u}_{j-1}^{n-1}(\cdot,\lambda_{k}))(a_{j}),\\ \mathcal{T}_{r}(\widehat{u}_{j}^{n}(\cdot,\lambda_{k}))(b_{j})&=\mathcal{T}_{r}(\widehat{u}_{j+1}^{n-1}(\cdot,\lambda_{k}))(b_{j}),\end{split} (7)

for j=2,,Nj=2,\dots,N. For j=1j=1, the condition at a1a_{1} must be replaced by u1n(a1)=0u_{1}^{n}(a_{1})=0 and for j=Nj=N the condition at bNb_{N} must be replaced by uNn(bN)=0u_{N}^{n}(b_{N})=0. If the operators 𝒯\mathcal{T}_{\ell} and 𝒯r\mathcal{T}_{r} correspond to Dirichlet conditions (see (3)), then (7) is a PSM. If they correspond to Robin conditions (see (4)), then (7) is an OSM. The convergence of the iteration (7) is analyzed in Theorem 3.1.

Theorem 3.1 (Convergence of Schwarz methods in Fourier space)

The contraction factors of the Schwarz methods222The contraction factor for (7) (corresponding to the kk-th Fourier component) is the spectral radius of the Schwarz iteration matrix; see Ciaramella_mini_10_CiaramellaGander ; Ciaramella_mini_10_CiaramellaGander4 . (7) are bounded by

ρ(λk,δ)=e2λkδ+eλkLe2λkδ+λkL+1.\rho(\lambda_{k},\delta)=\frac{e^{2\lambda_{k}\delta}+e^{\lambda_{k}L}}{e^{2\lambda_{k}\delta+\lambda_{k}L}+1}. (8)

Moreover, it holds that ρ(λk,δ)[0,1]\rho(\lambda_{k},\delta)\in[0,1] with ρ(0,δ)=1\rho(0,\delta)=1 (independently of NN), and that λρ(λ,δ)\lambda\mapsto\rho(\lambda,\delta) is strictly monotonically decreasing.

Proof

The Dirichlet case follows from (Ciaramella_mini_10_CiaramellaGander, , Lemma 2 and Theorem 3). See also (Ciaramella_mini_10_CiaramellaGander4, , Lemma 2 and Theorem 1). We focus here on the Robin case. From Theorem 3 in Ciaramella_mini_10_CiaramellaGander4 and the corresponding proof we have that the contraction factor of the OSM is bounded by max{φ(λ,δ,p),|ζ(λ,δ,p)|}\max\{\varphi(\lambda,\delta,p),|\zeta(\lambda,\delta,p)|\} where

φ(λ,δ,p):=(λ+p)2e2δλ(λp)2e2δλ+(λ+p)|λp|(eλLeλL)(λ+p)2eλL+2λδ(λp)2eλL2λδ0,ζ(λ,δ,p):=(λ+p)eλL+(λp)eλL(λ+p)eλ(L+2δ)+(λp)eλ(L+2δ),\begin{split}\varphi(\lambda,\delta,p)&:=\frac{(\lambda+p)^{2}e^{2\delta\lambda}-(\lambda-p)^{2}e^{-2\delta\lambda}+(\lambda+p)|\lambda-p|(e^{\lambda L}-e^{-\lambda L})}{(\lambda+p)^{2}e^{\lambda L+2\lambda\delta}-(\lambda-p)^{2}e^{-\lambda L-2\lambda\delta}}\geq 0,\\ \zeta(\lambda,\delta,p)&:=\frac{(\lambda+p)e^{-\lambda L}+(\lambda-p)e^{\lambda L}}{(\lambda+p)e^{\lambda(L+2\delta)}+(\lambda-p)e^{-\lambda(L+2\delta)}},\end{split}

with φ(λ,δ,p)φ(λ,δ,0)=limp~φ(λ,δ,p~)=e2δλe2δλ+eλLeλLeλL+2δλeλL2δλ\varphi(\lambda,\delta,p)\leq\varphi(\lambda,\delta,0)=\lim_{\widetilde{p}\rightarrow\infty}\varphi(\lambda,\delta,\widetilde{p})=\frac{e^{2\delta\lambda}-e^{-2\delta\lambda}+e^{\lambda L}-e^{-\lambda L}}{e^{\lambda L+2\delta\lambda}-e^{-\lambda L-2\delta\lambda}} for all λ0\lambda\geq 0 and δ>0\delta>0. If we compute the derivative of λφ(λ,δ,0)\lambda\mapsto\varphi(\lambda,\delta,0) we get

λφ(λ,δ,0)=L(e4δλ+LλeLλ)+2δ(e2δλ+2Lλe2δλ)(e2δλ+Lλ+1)2,\partial_{\lambda}\varphi(\lambda,\delta,0)=-\frac{L(e^{4\delta\lambda+L\lambda}-e^{L\lambda})+2\delta(e^{2\delta\lambda+2L\lambda}-e^{2\delta\lambda})}{(e^{2\delta\lambda+L\lambda}+1)^{2}},

which is negative for any λ0\lambda\geq 0 and δ>0\delta>0. Thus, λφ(λ,δ,0)\lambda\mapsto\varphi(\lambda,\delta,0) is strictly monotonically decreasing. Let us now study the function ζ(λ,δ,p)\zeta(\lambda,\delta,p). Direct calculations reveal that pζ(λ,δ,p)=2λe2δλ(e4λ(δ+L)1)((λ+p)e4δλ+2Lλ+λp)2\partial_{p}\zeta(\lambda,\delta,p)=-\frac{2\lambda e^{2\delta\lambda}(e^{4\lambda(\delta+L)}-1)}{((\lambda+p)e^{4\delta\lambda+2L\lambda}+\lambda-p)^{2}}, which is negative for any λ0\lambda\geq 0 and δ>0\delta>0, and ζ(λ,δ,0)=(e2Lλ+1)e2δλe4δλ+2Lλ+1>0\zeta(\lambda,\delta,0)=\frac{(e^{2L\lambda}+1)e^{2\delta\lambda}}{e^{4\delta\lambda+2L\lambda}+1}>0 and limpζ(λ,δ,p)=(e2Lλ1)e2δλe4δλ+2Lλ1<0\lim_{p\rightarrow\infty}\zeta(\lambda,\delta,p)=-\frac{(e^{2L\lambda}-1)e^{2\delta\lambda}}{e^{4\delta\lambda+2L\lambda}-1}<0 for any λ0\lambda\geq 0 and δ>0\delta>0. These observations imply that pζ(λ,δ,p)p\mapsto\zeta(\lambda,\delta,p) is strictly monotonically decreasing and attains its maximum at p=0p=0. Finally, a direct comparison shows that φ(λ,δ,0)ζ(λ,δ,0)limp|ζ(λ,δ,p)|\varphi(\lambda,\delta,0)\geq\zeta(\lambda,\delta,0)\geq\lim_{p\rightarrow\infty}\left|\zeta(\lambda,\delta,p)\right| and the result follows, because φ(λ,δ,0)=e2δλe2δλ+eλLeλLeλL+2δλeλL2δλ=e2λδ+eλLe2λδ+λL+1\varphi(\lambda,\delta,0)=\frac{e^{2\delta\lambda}-e^{-2\delta\lambda}+e^{\lambda L}-e^{-\lambda L}}{e^{\lambda L+2\delta\lambda}-e^{-\lambda L-2\delta\lambda}}=\frac{e^{2\lambda\delta}+e^{\lambda L}}{e^{2\lambda\delta+\lambda L}+1}.

Theorem 3.1 gives the same bound (8) for the convergence factors of PSM and OSM. This fact is not surprising. First, it is well known that OSM converges faster than PSM for δ>0\delta>0. Hence, a convergence bound for the PSM is a valid bound also for the OSM. Second, in the above proof the convergence bound for the OSM is obtained for pp\rightarrow\infty, which corresponds to passing from Robin transmission conditions to Dirichlet transmission conditions. The bound (8) is based on the ones obtained in Ciaramella_mini_10_CiaramellaGander ; Ciaramella_mini_10_CiaramellaGander4 . These are quite sharp for large values of NN; see, e.g., (Ciaramella_mini_10_CiaramellaGander4, , Fig. 4 and Fig. 5).

We can now prove our main convergence result, which allows us to study convergence and scalability of PSM and OSM for all the external conditions considered in Section 2.

Theorem 3.2 (Convergence of PSM and OSM)

The contraction factors (in the L2L^{2} norm) of PSM and OSM for the solution to (1) are bounded by

(DD)ρDD(δ):=ρ(π2,δ),\displaystyle{\rm(DD)}\;\rho_{\rm DD}(\delta):=\rho(\pi^{2},\delta), (DR)ρDR(δ,q):=ρ(μ1(q)2,δ),\displaystyle{\rm(DR)}\;\rho_{\rm DR}(\delta,q):=\rho(\mu_{1}(q)^{2},\delta),
(DN)ρDN(δ):=ρ(π2/4,δ),\displaystyle{\rm(DN)}\;\rho_{\rm DN}(\delta):=\rho(\pi^{2}/4,\delta), (RR)ρRR(δ,q):=ρ(τ1(q)2,δ),\displaystyle{\rm(RR)}\;\rho_{\rm RR}(\delta,q):=\rho(\tau_{1}(q)^{2},\delta),
(NR)ρNR(δ,q):=ρ(ν1(q)2,δ),\displaystyle{\rm(NR)}\;\rho_{{\rm NR}}(\delta,q):=\rho(\nu_{1}(q)^{2},\delta), (NN)ρNN(δ):=ρ(0,δ)=1,\displaystyle{\rm(NN)}\;\rho_{\rm NN}(\delta):=\rho(0,\delta)=1,

where q(0,)q\in(0,\infty) and ρ(λ,δ)\rho(\lambda,\delta) is defined in Theorem 3.1. Moreover, for any δ>0\delta>0 we have that

ρDD(δ)<ρDR(δ,q)<ρDN(δ)<ρNR(δ,q)<ρNN(δ)=1,\begin{split}&\rho_{\rm DD}(\delta)<\rho_{\rm DR}(\delta,q)<\rho_{\rm DN}(\delta)<\rho_{{\rm NR}}(\delta,q)<\rho_{\rm NN}(\delta)=1,\end{split} (9)
ρDD(δ)<ρRR(δ,q)<ρNN(δ)=1.\begin{split}&\rho_{\rm DD}(\delta)<\rho_{\rm RR}(\delta,q)<\rho_{\rm NN}(\delta)=1.\end{split} (10)
Proof

According to Theorem 3.1, the bounds of the Fourier contraction factor ρ(λ,δ)\rho(\lambda,\delta) is monotonically decreasing in λ\lambda. Therefore, an upper bound for the convergence factor of PSM and OSM (in the L2L^{2} norm) can be obtained by taking the maximum over the admissible Fourier frequencies λk\lambda_{k} and invoking Parseval’s identity (see, e.g., Ciaramella_mini_10_CiaramellaGander ). Recalling Theorem 2.1, these maxima are attained at λ1=π2\lambda_{1}=\pi^{2} for (DD), λ1=μ12\lambda_{1}=\mu_{1}^{2} for (DR), λ0=π2/4\lambda_{0}=\pi^{2}/4 for (DN), λ1=τ12\lambda_{1}=\tau_{1}^{2} for (RR), λ1=ν12\lambda_{1}=\nu_{1}^{2} for (NR), and λ0=0\lambda_{0}=0 for (NN). The inequalities (9) and (10) follow from the monotonicity λρ(λ,δ)\lambda\mapsto\rho(\lambda,\delta) and the fact that ν1(q)<π2<μ1(q)<π\nu_{1}(q)<\frac{\pi}{2}<\mu_{1}(q)<\pi and τ1(q)(0,π)\tau_{1}(q)\in(0,\pi).

The inequalities (9) and (10) imply that the contraction factor is bounded, independently of NN, by a constant strictly smaller than 11 for all the cases except (NN). In the case (NN), the first Fourier frequency is λ0=0\lambda_{0}=0. Hence, the coefficients u^jn(x,λ0)\widehat{u}_{j}^{n}(x,\lambda_{0}) are generated by the 1D Schwarz method

xxu^jn(x,λ0)=f^j(x,λ0) in (aj,bj),𝒯(u^jn(,λ0))(aj)=𝒯(u^j1n1(,λ0))(aj),𝒯r(u^jn(,λ0))(bj)=𝒯r(u^j+1n1(,λ0))(bj),\begin{split}-\partial_{xx}\widehat{u}_{j}^{n}(x,\lambda_{0})&=\widehat{f}_{j}(x,\lambda_{0})\,\text{ in $(a_{j},b_{j})$},\\ \mathcal{T}_{\ell}(\widehat{u}_{j}^{n}(\cdot,\lambda_{0}))(a_{j})&=\mathcal{T}_{\ell}(\widehat{u}_{j-1}^{n-1}(\cdot,\lambda_{0}))(a_{j}),\\ \mathcal{T}_{r}(\widehat{u}_{j}^{n}(\cdot,\lambda_{0}))(b_{j})&=\mathcal{T}_{r}(\widehat{u}_{j+1}^{n-1}(\cdot,\lambda_{0}))(b_{j}),\end{split} (11)

which is known to be not scalable; see, e.g., Ciaramella_mini_10_CiaramellaGander4 ; Ciaramella_mini_10_CHS1 . The scalability of PSM and OSM for different external conditions applied at the top and at the bottom of the domain is summarized in Table 1.

bottomtop Dirichlet Robin Neumann
Dirichlet yes yes yes
Robin yes yes yes
Neumann yes yes no
bottomtop Dirichlet Robin Neumann
Dirichlet - yes -
Robin yes no no
Neumann - no -
Table 1: Left: Scalability of PSM and OSM for different external conditions (for a fixed and finite q>0q>0) applied at the top and at the bottom of the domain. Right: Robustness of PSM and OSM with respect to q[0,]q\in[0,\infty].

Inequalities (9) and (10) lead to another interesting observation. The contraction factors are clearly influenced by the external boundary conditions. Dirichlet conditions lead to faster convergence than Robin conditions, which in turn lead to faster convergence than Neumann conditions. For example, if one external condition is of the Dirichlet type, then PSM and OSM converge faster if the other condition is of the Dirichlet type and slower if this is of Robin and even slower for the Neumann type. The case (RR) is slightly different, because the corresponding convergence of PSM and OSM depends heavily on the Robin parameter qq. The behavior of the bounds ρRR(δ,q)\rho_{\rm RR}(\delta,q), ρDR(δ,q)\rho_{\rm DR}(\delta,q) and ρNR(δ,q)\rho_{\rm NR}(\delta,q) with respect to qq is depicted in Fig. 2 (right), which shows the bounds discussed in Theorem 3.2 as functions of qq (recall that ρNN=1\rho_{\rm NN}=1). Here, we can observe that the inequalities (9) and (10) are satisfied and that

  • As qq increases the Dirichlet part of the Robin external condition dominates. In addition, the bounds ρRR\rho_{\rm RR} and ρDR\rho_{\rm DR} decrease and approach ρDD\rho_{\rm DD} as qq\rightarrow\infty. Similarly, ρNR\rho_{\rm NR} decreases and approaches ρDN\rho_{\rm DN}.

  • As qq decreases the Neumann part of the Robin external condition dominates. In addition, the bounds ρNR\rho_{\rm NR} and ρRR\rho_{\rm RR} decrease and approach ρNN=1\rho_{\rm NN}=1 as q0q\rightarrow 0. Similarly, ρDR\rho_{\rm DR} increases and approaches ρDN\rho_{\rm DN}.

These observations lead to Tab. 1 (right), where we summarize the robustness of PSM and OSM with respect to the parameter qq. The methods are robust with respect to qq only if one of the two external boundary conditions is of Dirichlet type. This is due to the fact that Robin conditions become Neumann conditions for q0q\rightarrow 0.

4 Numerical experiments

In this section, we test the scalability of PSM and OSM by numerical simulations. For this purpose, we run PSM and OSM for all the external boundary conditions discussed in this paper and measure the number of iterations required to reach a tolerance on the error of 10610^{-6}. To guarantee that the initial errors contain all frequencies, the methods are initialized with random initial guesses. In all cases, each subdomain is discretized with a uniform grid of size 9090 interior points in direction xx and 5050 interior points in direction yy. The mesh size is h=L51h=\frac{L}{51}, with L=1L=1, and the overlap parameter is δ=10h\delta=10h. For the OSM the robin parameter is p=10p=10. The Robin parameter qq of the external Robin conditions is q=10q=10, and the (RR) case is also tested with q=0.1q=0.1. The results of our experiments are shown in Tab. 2 and confirm the theoretical results discussed in the previous sections.

NN DD DR(10) DN RR(10) NR(10) NN RR(0.1)
3 12 - 9 13 - 10 27 - 19 14 - 10 26 - 19 77 - 54 65 - 45
4 13 - 9 14 - 10 29 - 21 15 - 11 29 - 21 130 - 90 95 - 66
5 13 - 9 14 - 10 31 - 22 15 - 11 31 - 22 194 - 134 124 - 86
10 13 - 10 14 - 10 33 - 24 15 - 11 34 - 24 >>401 - >>401 227 - 155
20 13 - 10 14 - 10 34 - 24 15 - 11 35 - 24 >>401 - >>401 293 - 199
30 13 - 10 14 - 10 34 - 24 15 - 11 35 - 24 >>401 - >>401 311 - 210
40 13 - 10 14 - 10 34 - 24 15 - 11 35 - 24 >>401 - >>401 317 - 214
50 13 - 10 14 - 10 34 - 24 15 - 11 35 - 24 >>401 - >>401 319 - 216
Table 2: Number of iterations of PSM (left) and OSM (right) needed to reduce the norm of the error below a tolerance of 10610^{-6} for increasing number NN of fixed-sized subdomains. The maximum number of allowed iterations is 401. This limit is only reached in the (NN) case, for which PSM and OSM are not scalable.

References

  • [1] N. Bootland, V. Dolean, A. Kyriakis, and J. Pestana. Analysis of parallel Schwarz algorithms for time-harmonic problems using block Toeplitz matrices. arXiv.2006.08801, 2020.
  • [2] E. Cancès, Y. Maday, and B. Stamm. Domain decomposition for implicit solvation models. J. Chem. Phys., 139:054111, 2013.
  • [3] F. Chaouqui, G. Ciaramella, M. J. Gander, and T. Vanzan. On the scalability of classical one-level domain-decomposition methods. Vietnam J. Math., 46(4):1053–1088, 2018.
  • [4] G. Ciaramella and M. J. Gander. Analysis of the parallel Schwarz method for growing chains of fixed-sized subdomains: Part I. SIAM J. Numer. Anal., 55(3):1330–1356, 2017.
  • [5] G. Ciaramella and M. J. Gander. Analysis of the parallel Schwarz method for growing chains of fixed-sized subdomains: Part II. SIAM J. Numer. Anal., 56 (3):1498–1524, 2018.
  • [6] G. Ciaramella and M. J. Gander. Analysis of the parallel Schwarz method for growing chains of fixed-sized subdomains: Part III. Electron. Trans. Numer. Anal., 49:210–243, 2018.
  • [7] G. Ciaramella, M. Hassan, and B. Stamm. On the scalability of the parallel Schwarz method in one-dimension. In Domain Decomposition Methods in Science and Engineering XXV, pages 151–158. Springer International Publishing, 2020.
  • [8] G. Ciaramella, M. Hassan, and B. Stamm. On the scalability of the Schwarz method. SMAI-JCM, 6:33–68, 2020.
  • [9] P. J. Olver. Introduction to Partial Differential Equations. Undergraduate Texts in Mathematics. Springer International Publishing, 2013.