This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

On the Domain of Four-Dimensional Forward Difference Matrix in Some Double Sequence Spaces

Orhan Tuǧ Eberhard Malkowsky Viladimir Rakočević  and  Bipan Hazarika Department of Mathematics Education, Tishk International University, Erbil, Iraq [email protected] Faculty of Management, University Union Nikola Tesla, 11000 Belgrade, Serbia [email protected]; [email protected] Department of Mathematics, Faculty of Sciences and Mathematics University of Niš, Višegradska 33, 18000, Niš-Serbia [email protected] Department of Mathematics, Gauhati University, Gauhati, India. [email protected]
Abstract.

In this paper, we introduce some new double sequence spaces u(Δ)\mathcal{M}_{u}(\Delta) and 𝒞ϑ(Δ)\mathcal{C}_{\vartheta}(\Delta), where ϑ{bp,bp0,r,r0}\vartheta\in\{bp,bp0,r,r0\} as the domains of the four-dimensional forward difference matrix in the double sequence spaces u\mathcal{M}_{u} and 𝒞ϑ\mathcal{C}_{\vartheta}, respectively. Then we investigate some topological and algebraic properties. Moreover, we determine the α\alpha-, β(ϑ)\beta(\vartheta)-, and γ\gamma-duals of the new spaces u(Δ)\mathcal{M}_{u}(\Delta) and 𝒞ϑ(Δ)\mathcal{C}_{\vartheta}(\Delta). Finally, we characterize four-dimensional matrix classes (λ(Δ),μ)(\lambda(\Delta),\mu) and (μ,λ(Δ))(\mu,\lambda(\Delta)), where λ={u,𝒞ϑ}\lambda=\{\mathcal{M}_{u},\mathcal{C}_{\vartheta}\} and μ={u,𝒞ϑ}\mu=\{\mathcal{M}_{u},\mathcal{C}_{\vartheta}\}.

Key words and phrases:
Four-dimensional forward difference matrix; matrix domain; double sequence spaces; alpha-dual; beta-dual; gamma-dual; matrix transformations
2010 Mathematics Subject Classification:
46A45, 40C05.

1. Introduction

By Ω:={x=(xmn):xmn,m,n}\Omega:=\{x=(x_{mn}):x_{mn}\in\mathbb{C},~{}~{}\forall m,n\in\mathbb{N}\}, we denote the set of all complex valued double sequences; Ω\Omega is a vector space with coordinatewise addition and scalar multiplication and any vector subspace of Ω\Omega is called a double sequence space. A double sequence x=(xmn)x=(x_{mn}) is called convergent in Pringsheim’s sense to a limit point LL, if for every ϵ>0\epsilon>0 there exists a natural number n0=n0(ϵ)n_{0}=n_{0}(\epsilon) and LL\in\mathbb{C} such that |xmnL|<ϵ|x_{mn}-L|<\epsilon for all m,n>n0m,n>n_{0}, where \mathbb{C} denotes the complex field; this is denoted by L=plimm,nxmnL=p-\lim_{m,n\to\infty}x_{mn}. The space of all double sequences that are convergent in the Pringsheim sense is denoted by 𝒞p\mathcal{C}_{p} which is a linear space with coordinatewise addition and scalar multiplication. Mòricz [1] proved that the double sequence space 𝒞p\mathcal{C}_{p} is a complete seminormed space with the seminorm

x=limNsupm,nN|xmn|.\displaystyle\|x\|_{\infty}=\lim_{N\to\infty}\sup_{m,n\geq N}|x_{mn}|.

The space of all null double sequences in Pringsheim’s sense is denoted by 𝒞p0\mathcal{C}_{p0}.

A double sequence x=(xmn)x=(x_{mn}) of complex numbers is called bounded if x=supm,n|xmn|<\|x\|_{\infty}=\sup_{m,n\in\mathbb{N}}|x_{mn}|<\infty, where ={0,1,2,}\mathbb{N}=\{0,1,2,\cdots\}, and the space of all bounded double sequences is denoted by u\mathcal{M}_{u}, that is,

u:={x=(xmn)Ω:x=supm,n|xm,n|<};\displaystyle\mathcal{M}_{u}:=\{x=(x_{mn})\in\Omega:\|x\|_{\infty}=\sup_{m,n\in\mathbb{N}}|x_{m,n}|<\infty\};

it is a Banach space with the norm \|\cdot\|_{\infty}.

Unlike as in the case of single sequences there are double sequences which are convergent in Pringsheim’s sense but unbounded. That is, the set 𝒞pu\mathcal{C}_{p}\setminus\mathcal{M}_{u} is not empty. Boos [2] defined the sequence x=(xmn)x=(x_{mn}) by

xmn={n,m=0,n0,m1,n,\displaystyle x_{mn}=\left\{\begin{array}[]{ccl}n&,&m=0,n\in\mathbb{N}\\ 0&,&m\geq 1,n\in\mathbb{N},\end{array}\right.

which is obviously in 𝒞p\mathcal{C}_{p}, i.e., plimm,nxmn=0p-\lim_{m,n\rightarrow\infty}x_{mn}=0, but not in the set u\mathcal{M}_{u}, i.e., x=supm,n|xmn|=\|x\|_{\infty}=\sup_{m,n\in\mathbb{N}}|x_{mn}|=\infty. Thus, x𝒞pux\in\mathcal{C}_{p}\setminus\mathcal{M}_{u}.

We also consider the set 𝒞bp\mathcal{C}_{bp} of double sequences which are both convergent in Pringsheim’s sense and bounded, that is,

𝒞bp:=𝒞pu={x=(xmn)𝒞p:x=supm,n|xmn|<}.\displaystyle\mathcal{C}_{bp}:=\mathcal{C}_{p}\cap\mathcal{M}_{u}=\left\{x=(x_{mn})\in\mathcal{C}_{p}:\|x\|_{\infty}=\sup\limits_{m,n\in\mathbb{N}}|x_{mn}|<\infty\right\}.

The set 𝒞bp\mathcal{C}_{bp} is a Banach space with the norm

x=supm,n|xmn|<.\displaystyle\|x\|_{\infty}=\sup_{m,n\in\mathbb{N}}|x_{mn}|<\infty.

Hardy [3] called a sequence in the space 𝒞p\mathcal{C}_{p} regularly convergent if it is a convergent single sequence with respect to each index. We denote the set of such double sequences by 𝒞r\mathcal{C}_{r}, that is,

𝒞r:={x=(xmn)𝒞p:m(xmn)mc, and n(xmn)nc},\displaystyle\mathcal{C}_{r}:=\{x=(x_{mn})\in\mathcal{C}_{p}:\forall_{m\in\mathbb{N}}(x_{mn})_{m}\in c,\textit{ and }\forall_{n\in\mathbb{N}}(x_{mn})_{n}\in c\},

where cc denotes the set of all convergent single sequences of complex numbers. Regular convergence requires the boundedness of double sequences; this is the main difference between regular convergence and the convergence in Pringsheim’s sense. We also use the notations 𝒞bp0=u𝒞p0\mathcal{C}_{bp0}=\mathcal{M}_{u}\cap\mathcal{C}_{p0} and 𝒞r0=𝒞r𝒞p0\mathcal{C}_{r0}=\mathcal{C}_{r}\cap\mathcal{C}_{p0}.

Throughout the text, unless otherwise stated we mean by the summation klxkl\sum_{kl}x_{kl} without limits run from 0 to \infty is k,l=0xkl\sum_{k,l=0}^{\infty}x_{kl}.

The space q\mathcal{L}_{q} of all absolutely qq-summable double sequences was introduced by Başar and Sever [4] as follows

q:={x=(xkl)Ω:k,l|xkl|q<},(1q<)\displaystyle\mathcal{L}_{q}:=\left\{x=(x_{kl})\in\Omega:\sum_{k,l}|x_{kl}|^{q}<\infty\right\},\quad(1\leq q<\infty)

which is a Banach space with the norm q\|\cdot\|_{q} defined by

xq=(k,l|xkl|q)1/q.\|x\|_{q}=\left(\sum_{k,l}|x_{kl}|^{q}\right)^{1/q}.

Moreover, Zeltser [5] introduced the space u\mathcal{L}_{u} which is the special case of the space q\mathcal{L}_{q} for q=1q=1.

The double sequence spaces 𝒮\mathcal{BS}, 𝒞𝒮ϑ\mathcal{CS}_{\vartheta}, where ϑ{p,bp,r}\vartheta\in\{p,bp,r\}, and 𝒱\mathcal{BV} were introduced by Altay and Başar [6]. The set 𝒮\mathcal{BS} of all double series whose sequences of partial sums are bounded is defined by

𝒮={x=(xkl)Ω:supm,n|smn|<}\mathcal{BS}=\left\{x=(x_{kl})\in\Omega:\sup_{m,n\in\mathbb{N}}|s_{mn}|<\infty\right\}

where the sequence smn=k,l=0m,nxkls_{mn}=\sum_{k,l=0}^{m,n}x_{kl} is the (m,n)th(m,n)-th partial sum of the series. The series space 𝒮\mathcal{BS} is a Banach space with norm defined as

(1.2) x𝒮=supm,n|k,l=0m,nxkl|,\|x\|_{\mathcal{BS}}=\sup_{m,n\in\mathbb{N}}\left|\sum_{k,l=0}^{m,n}x_{kl}\right|,

which is linearly isomorphic to the sequence space u\mathcal{M}_{u}. The set 𝒞𝒮ϑ\mathcal{CS_{\vartheta}} of all series whose sequences of partial sums are ϑ\vartheta-convergent in Pringsheim’s sense is defined by

𝒞𝒮ϑ={x=(xkl)Ω:(smn)𝒞ϑ}\mathcal{CS_{\vartheta}}=\left\{x=(x_{kl})\in\Omega:(s_{mn})\in\mathcal{C_{\vartheta}}\right\}

where ϑ{p,bp,r}\vartheta\in\{p,bp,r\}. The space 𝒞𝒮p\mathcal{CS}_{p} is a complete seminormed space with the seminorm defined by

x=limn(supk,ln|i,j=0k,lxij|),\|x\|_{\infty}=\lim_{n\to\infty}\left(\sup_{k,l\geq n}\left|\sum_{i,j=0}^{k,l}x_{ij}\right|\right),

which is isomorphic to the sequence space 𝒞p\mathcal{C}_{p}. Moreover, the sets 𝒞𝒮bp\mathcal{CS}_{bp} and 𝒞𝒮r\mathcal{CS}_{r} are also Banach spaces with the norm (1.2) and the inclusion 𝒞𝒮r𝒞𝒮bp\mathcal{CS}_{r}\subset\mathcal{CS}_{bp} holds. The set 𝒱\mathcal{BV} of all double sequences of bounded variation is defined by Altay and Başar [6] as follows

𝒱={x=(xkl)Ω:k,l|xklxk1,lxk,l1+xk1,l1|<}.\mathcal{BV}=\left\{x=(x_{kl})\in\Omega:\sum_{k,l}\left|x_{kl}-x_{k-1,l}-x_{k,l-1}+x_{k-1,l-1}\right|<\infty\right\}.

The space 𝒱\mathcal{BV} is Banach space with the norm defined by

x𝒱=k,l|xklxk1,lxk,l1+xk1,l1|,\|x\|_{\mathcal{BV}}=\sum_{k,l}\left|x_{kl}-x_{k-1,l}-x_{k,l-1}+x_{k-1,l-1}\right|,

which is linearly isomorphic to the space u\mathcal{L}_{u} of absolutely convergent double series. Moreover, the inclusions 𝒱𝒞ϑ\mathcal{BV}\subset\mathcal{C_{\vartheta}} and 𝒱u\mathcal{BV}\subset\mathcal{M}_{u} strictly hold.

Let EE be any double sequence space. Then,

dE:={x=(xkl)Ω:{1klxkl}k,lE},\displaystyle dE:=\left\{x=(x_{kl})\in\Omega:\left\{\frac{1}{kl}x_{kl}\right\}_{k,l\in\mathbb{N}}\in E\right\},
E:={x=(xkl)Ω:{klxkl}k,lE},\displaystyle\int E:=\left\{x=(x_{kl})\in\Omega:\left\{klx_{kl}\right\}_{k,l\in\mathbb{N}}\in E\right\},
Eβ(ϑ):={a=(akl)Ω:{aklxkl}𝒞𝒮ϑ, for every x=(xkl)E},\displaystyle E^{\beta(\vartheta)}:=\bigg{\{}a=(a_{kl})\in\Omega:\left\{a_{kl}x_{kl}\right\}\in\mathcal{CS}_{\vartheta},\textit{ for every }x=(x_{kl})\in E\bigg{\}},
Eα:={a=(akl)Ω:{aklxkl}u, for every x=(xkl)E},\displaystyle E^{\alpha}:=\bigg{\{}a=(a_{kl})\in\Omega:\left\{a_{kl}x_{kl}\right\}\in\mathcal{L}_{u},\textit{ for every }x=(x_{kl})\in E\bigg{\}},
Eγ:={a=(akl)Ω:{aklxkl}𝒮, for every x=(xkl)E}.\displaystyle E^{\gamma}:=\bigg{\{}a=(a_{kl})\in\Omega:\left\{a_{kl}x_{kl}\right\}\in\mathcal{BS},\textit{ for every }x=(x_{kl})\in E\bigg{\}}.

Therefore, let E1E_{1} and E2E_{2} are arbitrary double sequences with E2E1E_{2}\subset E_{1} then the inclusions E1αE2αE_{1}^{\alpha}\subset E_{2}^{\alpha}, E1γE1αE_{1}^{\gamma}\subset E_{1}^{\alpha} and E1β(ϑ)E1αE_{1}^{\beta(\vartheta)}\subset E_{1}^{\alpha} hold. But the inclusion E1γE1β(ϑ)E_{1}^{\gamma}\subset E_{1}^{\beta(\vartheta)} does not hold, since 𝒞pu\mathcal{C}_{p}\setminus\mathcal{M}_{u} is not empty.

Let A=(amnkl)m,n,k,lA=(a_{mnkl})_{m,n,k,l\in\mathbb{N}} be an infinite four–dimensional matrix and E1E_{1}, E2ΩE_{2}\in\Omega. We write

(1.3) ymn=Amn(x)=ϑk,lamnkxkl for each m,n.y_{mn}=A_{mn}(x)=\vartheta-\sum_{k,l}a_{mnk}x_{kl}\mbox{ for each }m,n\in\mathbb{N}.

We say that AA defines a matrix transformation from E1E_{1} to E2E_{2} if

(1.4) A(x)=(Amn(x))m,nE2 for all xE1.\displaystyle A(x)=(A_{mn}(x))_{m,n}\in E_{2}\mbox{ for all }x\in E_{1}.

The ϑ\vartheta-summability domain EA(ϑ)E_{A}^{(\vartheta)} of a four-dimensional infinite matrix AA in a double sequence space EE is defined by

EA(ϑ)={x=(xkl)Ω:Ax=(ϑk,lamnklxkl)m,nexists and is in E},\displaystyle E_{A}^{(\vartheta)}=\left\{x=(x_{kl})\in\Omega:Ax=\left(\vartheta-\sum_{k,l}a_{mnkl}x_{kl}\right)_{m,n\in\mathbb{N}}\textit{exists and is in }E\right\},

which is a sequence space. The above notation (1.4) says that A=(amnkl)m,n,k,lA=(a_{mnkl})_{m,n,k,l\in\mathbb{N}} maps the space E1E_{1} into the space E2E_{2} if E1(E2)A(ϑ)E_{1}\subset(E_{2})_{A}^{(\vartheta)} and we denote the set of all four-dimensional matrices that map the space E1E_{1} into the space E2E_{2} by (E1:E2)(E_{1}:E_{2}). Thus, A(E1:E2)A\in(E_{1}:E_{2}) if and only if the double series on the right side of (1.4) ϑ\vartheta-converges for each m,nm,n\in\mathbb{N}, i.e, Amn(E1)β(ϑ)A_{mn}\in(E_{1})^{\beta(\vartheta)} for all m,nm,n\in\mathbb{N} and we have AxE2Ax\in E_{2} for all xE1x\in E_{1}.

Adams [7] defined that the four-dimensional infinite matrix A=(amnkl)A=(a_{mnkl}) is a triangular matrix if amnkl=0a_{mnkl}=0 for k>mk>m or l>nl>n or both. We also say by [7] that a triangular matrix A=(amnkl)A=(a_{mnkl}) is called a triangle if amnmn0a_{mnmn}\neq 0 for all m,nm,n\in\mathbb{N}. One can be observed easily that if AA is triangle, then EA(ϑ)E_{A}^{(\vartheta)} and EE are linearly isomorphic.

Wilansky [8, Theorem 4.4.2, p. 66] defined that if EE is a sequence space, then the continuous dual EAE_{A}^{*} of the space EAE_{A} is given by

EA={f:f=gA,gE}.\displaystyle E_{A}^{*}=\{f:f=g\circ A,g\in E^{*}\}.

Zeltser [9] stated the notations of the double sequences ekl=(emnkl),e1,eke^{kl}=(e_{mn}^{kl}),e^{1},e_{k} and ee by

emnkl={1,(k,l)=(m,n);0,otherwise.\displaystyle e_{mn}^{kl}=\left\{\begin{array}[]{ccl}1&,&(k,l)=(m,n);\\ 0&,&otherwise.\end{array}\right.
e1=kekl;the double sequence that all terms of l-th column are one and\displaystyle e^{1}=\sum_{k}e^{kl};\textit{the double sequence that all terms of l-th column are one and}
other terms are zero,\displaystyle\textit{other terms are zero},
ek=lekl;the double sequence that all terms of k-th row are one and other\displaystyle e_{k}=\sum_{l}e^{kl};\textit{the double sequence that all terms of k-th row are one and other}
terms are zero,\displaystyle\textit{terms are zero},
e=klekl;the double sequence that all terms are one\displaystyle e=\sum_{kl}e^{kl};\textit{the double sequence that all terms are one}

for all k,l,m,nk,l,m,n\in\mathbb{N}.

The four-dimensional forward difference matrix Δ=(δmnkl)\Delta=(\delta_{mnkl}) is defined by

δmnkl:={(1)m+nkl,mkm+1,nln+1,0,otherwise\displaystyle\delta_{mnkl}:=\left\{\begin{array}[]{ccl}(-1)^{m+n-k-l}&,&m\leq k\leq m+1,~{}n\leq l\leq n+1,\\ 0&,&\textrm{otherwise}\end{array}\right.

for all m,n,k,lm,n,k,l\in\mathbb{N}. The Δ\Delta-transform of a double sequence x=(xmn)x=(x_{mn}) is given by

ymn:={Δx}mn=xmnxm+1,nxm,n+1+xm+1,n+1\displaystyle y_{mn}:=\{\Delta x\}_{mn}=x_{mn}-x_{m+1,n}-x_{m,n+1}+x_{m+1,n+1}

for all m,nm,n\in\mathbb{N}. We shall briefly discuss Δ1\Delta^{-1} which is the inverse of four-dimensional forward difference matrix Δ\Delta, where (Δ1Δ)(xkl)=xkl(\Delta^{-1}\Delta)(x_{kl})=x_{kl}. Let Δ1ykl=xkl\Delta^{-1}y_{kl}=x_{kl}. Then we can show that xklx_{kl} is a finite summation of the original double sequence ykly_{kl}.

(1.7) Δ(Δ1ykl)=Δxkl=xklxk+1,lxk,l+1+xk+1,l+1.\displaystyle\Delta(\Delta^{-1}y_{kl})=\Delta x_{kl}=x_{kl}-x_{k+1,l}-x_{k,l+1}+x_{k+1,l+1}.

If we write the equation (1.7) for y00,y01,y10,,ykly_{00},y_{01},y_{10},...,y_{kl}

Δ(Δ1y00)\displaystyle\Delta(\Delta^{-1}y_{00}) =\displaystyle= Δx00=x00x10x01+x11\displaystyle\Delta x_{00}=x_{00}-x_{10}-x_{01}+x_{11}
Δ(Δ1y01)\displaystyle\Delta(\Delta^{-1}y_{01}) =\displaystyle= Δx01=x01x11x02+x12\displaystyle\Delta x_{01}=x_{01}-x_{11}-x_{02}+x_{12}
Δ(Δ1y10)\displaystyle\Delta(\Delta^{-1}y_{10}) =\displaystyle= Δx10=x10x20x11+x21\displaystyle\Delta x_{10}=x_{10}-x_{20}-x_{11}+x_{21}
Δ(Δ1y11)\displaystyle\Delta(\Delta^{-1}y_{11}) =\displaystyle= Δx11=x11x21x12+x22\displaystyle\Delta x_{11}=x_{11}-x_{21}-x_{12}+x_{22}
\displaystyle\vdots
Δ(Δ1ykl)\displaystyle\Delta(\Delta^{-1}y_{kl}) =\displaystyle= Δxkl=xklxk+1,lxk,l+1+xk+1,l+1.\displaystyle\Delta x_{kl}=x_{kl}-x_{k+1,l}-x_{k,l+1}+x_{k+1,l+1}.

Then we add the left hand sides up to y00+y01+y10++ykly_{00}+y_{01}+y_{10}+...+y_{kl}

i,j=0k,lyi,j=xk+1,l+1+x00xk+1,0x0,l+1\displaystyle\sum_{i,j=0}^{k,l}y_{i,j}=x_{k+1,l+1}+x_{00}-x_{k+1,0}-x_{0,l+1}

for all k,lk,l\in\mathbb{N}. To be able to have xklx_{kl} instead of having xk+1,l+1x_{k+1,l+1} we must write it as

(1.8) xkl=i,j=0k1,l1yi,jx00+xk,0+x0,l\displaystyle x_{kl}=\sum_{i,j=0}^{k-1,l-1}y_{i,j}-x_{00}+x_{k,0}+x_{0,l}

for all k,lk,l\in\mathbb{N}. With this result we can introduce the role of inverse four-dimensional forward difference operator Δ1\Delta^{-1} on the double sequence ykly_{kl}, where xkl=Δ1yklx_{kl}=\Delta^{-1}y_{kl}, as the (k1,l1)th(k-1,l-1)^{th}-partial sum of the double sequence ykly_{kl} plus arbitrary constants on the first row and the first column of the double sequence x=(xkl)x=(x_{kl}).

2. New double sequence spaces

In this section, we introduce new double sequence spaces u(Δ)\mathcal{M}_{u}(\Delta), 𝒞ϑ(Δ)\mathcal{C}_{\vartheta}(\Delta), where ϑ{bp,r}\vartheta\in\{bp,r\}, as the matrix domains of the four-dimensional matrix of the forward differences in the sequence spaces u\mathcal{M}_{u} and 𝒞ϑ\mathcal{C}_{\vartheta} as follow;

u(Δ):={x=(xkl)Ω:supk,l|ykl|<},\displaystyle\mathcal{M}_{u}(\Delta):=\left\{x=(x_{kl})\in\Omega:\sup_{k,l\in\mathbb{N}}\left|y_{kl}\right|<\infty\right\},
𝒞ϑ(Δ):={x=(xkl)Ω:Lϑlimk,l|yklL|=0},\displaystyle\mathcal{C}_{\vartheta}(\Delta):=\left\{x=(x_{kl})\in\Omega:\exists{L\in\mathbb{C}}\ni\vartheta-\lim_{k,l\to\infty}\left|y_{kl}-L\right|=0\right\},
𝒞ϑ0(Δ):={x=(xkl)Ω:ϑlimk,l|ykl|=0},\displaystyle\mathcal{C}_{\vartheta 0}(\Delta):=\left\{x=(x_{kl})\in\Omega:\vartheta-\lim_{k,l\to\infty}\left|y_{kl}\right|=0\right\},

where ykl=Δxkl=(xklxk+1,lxk,l+1+xk+1,l+1)y_{kl}=\Delta x_{kl}=(x_{kl}-x_{k+1,l}-x_{k,l+1}+x_{k+1,l+1}) for all k,lk,l\in\mathbb{N}.

Theorem 2.1.

The spaces u(Δ)\mathcal{M}_{u}(\Delta) and 𝒞ϑ(Δ)\mathcal{C}_{\vartheta}(\Delta), where ϑ{bp,bp0,r,r0}\vartheta\in\{bp,bp0,r,r0\} are Banach spaces with the norm

xu(Δ)\displaystyle\|x\|_{\mathcal{M}_{u}(\Delta)} :=\displaystyle:= |xk,0+x0,lx00|+Δxu\displaystyle|x_{k,0}+x_{0,l}-x_{00}|+\|\Delta x\|_{\mathcal{M}_{u}}
:=\displaystyle:= |xk,0+x0,lx00|+supk,l|xklxk+1,lxk,l+1+xk+1,l+1|.\displaystyle|x_{k,0}+x_{0,l}-x_{00}|+\sup_{k,l\in\mathbb{N}}\left|x_{kl}-x_{k+1,l}-x_{k,l+1}+x_{k+1,l+1}\right|.
Proof.

The linearity of those spaces is clear. Suppose that xi=(xkli)x^{i}=(x_{kl}^{i}) is a Cauchy sequence in the space u(Δ)\mathcal{M}_{u}(\Delta) for all k,lk,l\in\mathbb{N}. Then

xixju(Δ)\displaystyle\|x^{i}-x^{j}\|_{\mathcal{M}_{u}(\Delta)} =\displaystyle= |(xk,0ixk,0j)+(x0,lix0,lj)(x00ix00j)|\displaystyle|(x_{k,0}^{i}-x_{k,0}^{j})+(x_{0,l}^{i}-x_{0,l}^{j})-(x_{00}^{i}-x_{00}^{j})|
+supk,l|Δ(xklixklj)|0\displaystyle+\sup_{k,l\in\mathbb{N}}|\Delta(x_{kl}^{i}-x_{kl}^{j})|\to 0

as i,ji,j\to\infty. Thus, we obtain |xklixklj|0|x_{kl}^{i}-x_{kl}^{j}|\to 0 for i,ji,j\to\infty and for every k,lk,l\in\mathbb{N}. Hence xi=(xkli)x^{i}=(x_{kl}^{i}) is a Cauchy sequence in \mathbb{C} for each k,lk,l\in\mathbb{N}. Since \mathbb{C} is complete, then it converges to a sequence x=(xkl)x=(x_{kl}), i.e., we have

limixkli=xkl\displaystyle\lim_{i\to\infty}x_{kl}^{i}=x_{kl}

for each k,lk,l\in\mathbb{N}. Therefore, for every ϵ>0\epsilon>0, there exits a natural number N(ϵ)N(\epsilon), such that for all i,jN(ϵ)i,j\geq N(\epsilon), and for all k,lk,l\in\mathbb{N} we have

|xk,0ixk,0j|<ϵ4,|x0,lix0,lj|<ϵ4,|x0,0ix0,0j|<ϵ4,|Δ(xklixklj)|<ϵ4.\displaystyle|x_{k,0}^{i}-x_{k,0}^{j}|<\frac{\epsilon}{4},~{}|x_{0,l}^{i}-x_{0,l}^{j}|<\frac{\epsilon}{4},~{}|x_{0,0}^{i}-x_{0,0}^{j}|<\frac{\epsilon}{4},~{}|\Delta(x_{kl}^{i}-x_{kl}^{j})|<\frac{\epsilon}{4}.

Moreover,

limj|xk,0ixk,0j|=|xk,0ixk,0|<ϵ4,\displaystyle\lim_{j\to\infty}|x_{k,0}^{i}-x_{k,0}^{j}|=|x_{k,0}^{i}-x_{k,0}|<\frac{\epsilon}{4},
limj|x0,lix0,lj|=|x0,lix0,l|<ϵ4,\displaystyle\lim_{j\to\infty}|x_{0,l}^{i}-x_{0,l}^{j}|=|x_{0,l}^{i}-x_{0,l}|<\frac{\epsilon}{4},
limj|x0,0ix0,0j|=|x0,0ix0,0|<ϵ4,\displaystyle\lim_{j\to\infty}|x_{0,0}^{i}-x_{0,0}^{j}|=|x_{0,0}^{i}-x_{0,0}|<\frac{\epsilon}{4},
limj|Δ(xklixklj)|=|Δ(xklixkl)|<ϵ4\displaystyle\lim_{j\to\infty}|\Delta(x_{kl}^{i}-x_{kl}^{j})|=|\Delta(x_{kl}^{i}-x_{kl})|<\frac{\epsilon}{4}

for all iN(ϵ)i\geq N(\epsilon). Hence, we obtain that

xixu(Δ)\displaystyle\|x^{i}-x\|_{\mathcal{M}_{u}(\Delta)} =\displaystyle= |(xk,0ixk,0)+(x0,lix0,l)(x00ix00)|\displaystyle|(x_{k,0}^{i}-x_{k,0})+(x_{0,l}^{i}-x_{0,l})-(x_{00}^{i}-x_{00})|
+supk,l|Δ(xklixkl)|\displaystyle+\sup_{k,l\in\mathbb{N}}|\Delta(x_{kl}^{i}-x_{kl})|
\displaystyle\leq |xk,0ixk,0|+|x0,lix0,l|+|x00ix00|\displaystyle|x_{k,0}^{i}-x_{k,0}|+|x_{0,l}^{i}-x_{0,l}|+|x_{00}^{i}-x_{00}|
+supk,l|Δ(xklixkl)|<ϵ.\displaystyle+\sup_{k,l\in\mathbb{N}}|\Delta(x_{kl}^{i}-x_{kl})|<\epsilon.

Now we must show that xu(Δ)x\in\mathcal{M}_{u}(\Delta).

supk,l|Δxkl|\displaystyle\sup_{k,l\in\mathbb{N}}|\Delta x_{kl}| =\displaystyle= supk,l|xklxk+1,lxk,l+1+xk+1,l+1|\displaystyle\sup_{k,l\in\mathbb{N}}|x_{kl}-x_{k+1,l}-x_{k,l+1}+x_{k+1,l+1}|
=\displaystyle= supk,l|xklxkli+xklixk+1,l+xk+1,lixk+1,lixk,l+1+xk,l+1ixk,l+1i\displaystyle\sup_{k,l\in\mathbb{N}}\left|x_{kl}-x_{kl}^{i}+x_{kl}^{i}-x_{k+1,l}+x_{k+1,l}^{i}-x_{k+1,l}^{i}-x_{k,l+1}+x_{k,l+1}^{i}-x_{k,l+1}^{i}\right.
+xk+1,l+1xk+1,l+1i+xk+1,l+1i|\displaystyle\left.+x_{k+1,l+1}-x_{k+1,l+1}^{i}+x_{k+1,l+1}^{i}\right|
\displaystyle\leq supk,l|Δxkli|+supk,l|ΔxkliΔxkl|<\displaystyle\sup_{k,l\in\mathbb{N}}\left|\Delta x_{kl}^{i}\right|+\sup_{k,l\in\mathbb{N}}|\Delta x_{kl}^{i}-\Delta x_{kl}|<\infty

Hence x=(xkl)u(Δ)x=(x_{kl})\in\mathcal{M}_{u}(\Delta). This completes the proof.

Let ϑ={bp,bp0,r,r0}\vartheta=\{bp,bp0,r,r0\}. We define the operator PP form λ(Δ)\lambda(\Delta) into itself, where λ{u,𝒞ϑ}\lambda\in\{\mathcal{M}_{u},\mathcal{C}_{\vartheta}\} as

P:λ(Δ)\displaystyle P:\lambda(\Delta) \displaystyle\to λ(Δ)\displaystyle\lambda(\Delta)
x\displaystyle x \displaystyle\to Px=[00000x11x12x130x21x22x230x31x32x33]\displaystyle Px=\begin{bmatrix}0&0&0&0&\cdots\\ 0&x_{11}&x_{12}&x_{13}&\cdots\\ 0&x_{21}&x_{22}&x_{23}&\cdots\\ 0&x_{31}&x_{32}&x_{33}&\cdots\\ \vdots&\vdots&\vdots&\vdots&\ddots\end{bmatrix}

for all x=(xkl)λ(Δ)x=(x_{kl})\in\lambda(\Delta). Clearly PP is a linear and bounded operator on λ(Δ)\lambda(\Delta).

Now we show that the four-dimensional forward difference operator Δ\Delta is a linear homeomorphism.

(2.2) Δ:P(λ(Δ))\displaystyle\Delta:P(\lambda(\Delta)) \displaystyle\to λ\displaystyle\lambda
x\displaystyle x \displaystyle\to Δx=y=(xklxk+1,lxk,l+1+xk+1,l+1)\displaystyle\Delta x=y=(x_{kl}-x_{k+1,l}-x_{k,l+1}+x_{k+1,l+1})

where the set P(λ(Δ))P(\lambda(\Delta)) is defined by

P(λ(Δ)):={x=(xkl):xλ(Δ)andx00=xk,0=x0,l=0,k,l}λ(Δ)\displaystyle P(\lambda(\Delta)):=\{x=(x_{kl})\in\mathbb{C}:x\in\lambda(\Delta)~{}and~{}x_{00}=x_{k,0}=x_{0,l}=0,\forall k,l\in\mathbb{N}\}\subset\lambda(\Delta)

and

xP(λ(Δ))=Δxλ.\displaystyle\|x\|_{P(\lambda(\Delta))}=\|\Delta x\|_{\lambda}.

Therefore, the spaces P(λ(Δ))P(\lambda(\Delta)) and λ\lambda are equivalent as topological spaces, and the Δ\Delta and Δ1\Delta^{-1} are norm preserving and Δ=Δ1=1\|\Delta\|=\|\Delta^{-1}\|=1. We prove the following Lemma 2.2 for the case λ=𝒞r0\lambda=\mathcal{C}_{r0} by using the results in [1, Theorem 5., Remark 3., P.132]. Since the proofs of the other cases are similar to that of following Lemma 2.2, we left them as an exercise to the reader.

Lemma 2.2.

A linear functional fΔf_{\Delta} on P(𝒞r0(Δ))P(\mathcal{C}_{r0}(\Delta)) is continuous if and only if there exists a double sequence a=(akl)k,l1ua=(a_{kl})_{k,l\geq 1}\in\mathcal{L}_{u} such that

(2.3) fΔ(x)=k,l=1akl(Δx)klf_{\Delta}(x)=\sum_{k,l=1}^{\infty}a_{kl}(\Delta x)_{kl}

for all xP(𝒞r0(Δ))x\in P(\mathcal{C}_{r0}(\Delta)).

Proof.

First we show that Δ:P(𝒞r0(Δ))𝒞r0\Delta:P(\mathcal{C}_{r0}(\Delta))\to\mathcal{C}_{r0}, Δxkl=xklxk+1,lxk,l+1+xk+1,l+1\Delta x_{kl}=x_{kl}-x_{k+1,l}-x_{k,l+1}+x_{k+1,l+1} with x00=xk,0=x0,l=0x_{00}=x_{k,0}=x_{0,l}=0 for each k,lk,l\in\mathbb{N} is an isometric linear isomorphism, that is, we prove that Δ\Delta is a bijection between P(𝒞r0(Δ))P(\mathcal{C}_{r0}(\Delta)) and 𝒞r0\mathcal{C}_{r0} by Δxkl=xklxk+1,lxk,l+1+xk+1,l+1\Delta x_{kl}=x_{kl}-x_{k+1,l}-x_{k,l+1}+x_{k+1,l+1} with x00=xk,0=x0,l=0x_{00}=x_{k,0}=x_{0,l}=0 for each k,lk,l\in\mathbb{N}. Linearity is clear. Moreover, x=0x=0 whenever Δx=0\Delta x=0, and hence Δ\Delta is injective. Now suppose that y=(ykl)𝒞r0y=(y_{kl})\in\mathcal{C}_{r0}, we define the sequence x=(xkl)x=(x_{kl}) by xkl=i,j=0k1,l1yijx_{kl}=\sum_{i,j=0}^{k-1,l-1}y_{ij} with x00=xk,0=x0,l=0x_{00}=x_{k,0}=x_{0,l}=0 for each k,lk,l\in\mathbb{N}. Then we have,

xP(𝒞r0(Δ))\displaystyle\|x\|_{P(\mathcal{C}_{r0}(\Delta))} =\displaystyle= supk,l|Δxkl|\displaystyle\sup_{k,l\in\mathbb{N}}|\Delta x_{kl}|
=\displaystyle= supk,l|Δ(i,j=0k1,l1yij)|\displaystyle\sup_{k,l\in\mathbb{N}}\left|\Delta\left(\sum_{i,j=0}^{k-1,l-1}y_{ij}\right)\right|
=\displaystyle= supk,l|i,j=0k1,l1yiji,j=0k,l1yiji,j=0k1,lyij+i,j=0k,lyij|\displaystyle\sup_{k,l\in\mathbb{N}}\left|\sum_{i,j=0}^{k-1,l-1}y_{ij}-\sum_{i,j=0}^{k,l-1}y_{ij}-\sum_{i,j=0}^{k-1,l}y_{ij}+\sum_{i,j=0}^{k,l}y_{ij}\right|
=\displaystyle= supk,l|i,j=0k1,l1yij(j=0l1ykj+i,j=0k1,l1yij)\displaystyle\sup_{k,l\in\mathbb{N}}\left|\sum_{i,j=0}^{k-1,l-1}y_{ij}-\left(\sum_{j=0}^{l-1}y_{kj}+\sum_{i,j=0}^{k-1,l-1}y_{ij}\right)\right.
(i=0k1yil+i,j=0k1,l1yij)\displaystyle\left.-\left(\sum_{i=0}^{k-1}y_{il}+\sum_{i,j=0}^{k-1,l-1}y_{ij}\right)\right.
+(j=0l1ykj+i=0k1yil+i,j=0k1,l1yij+ykl)|\displaystyle\left.+\left(\sum_{j=0}^{l-1}y_{kj}+\sum_{i=0}^{k-1}y_{il}+\sum_{i,j=0}^{k-1,l-1}y_{ij}+y_{kl}\right)\right|
=\displaystyle= supk,l|ykl|=y<.\displaystyle\sup_{k,l\in\mathbb{N}}|y_{kl}|=\|y\|_{\infty}<\infty.

It shows that xP(𝒞r0(Δ))x\in P(\mathcal{C}_{r0}(\Delta)) and consequently Δ\Delta is surjective and norm preserving. It completes the first part of the proof.

Now suppose that fΔf_{\Delta} is a linear functional on P(𝒞r0(Δ))P(\mathcal{C}_{r0}(\Delta)). If fΔf_{\Delta} is continuous, then fΔΔ1f_{\Delta}\circ\Delta^{-1} is a continuous linear functional on 𝒞r0\mathcal{C}_{r0}. Then by [1, Remark 3.] there exists a double sequence a=(akl)k,l1ua=(a_{kl})_{k,l\geq 1}\in\mathcal{L}_{u} such that

fΔΔ1(y)=k,l=0aklyklf_{\Delta}\circ\Delta^{-1}(y)=\sum_{k,l=0}^{\infty}a_{kl}y_{kl}

for all y𝒞r0y\in\mathcal{C}_{r0}. It gives

fΔ(x)=(fΔΔ1)(Δx)=k,l=0akl(Δx)klf_{\Delta}(x)=\left(f_{\Delta}\circ\Delta^{-1}\right)(\Delta x)=\sum_{k,l=0}^{\infty}a_{kl}(\Delta x)_{kl}

for all xP(𝒞r0(Δ))x\in P(\mathcal{C}_{r0}(\Delta)). Conversely, if fΔ(x)=k,l=1akl(Δx)klf_{\Delta}(x)=\sum_{k,l=1}^{\infty}a_{kl}(\Delta x)_{kl} for all xP(𝒞r0(Δ))x\in P(\mathcal{C}_{r0}(\Delta)) and for some a=(akl)ua=(a_{kl})\in\mathcal{L}_{u}, then

|fΔ(x)|=|k,l=0akl(Δx)kl|\displaystyle\left|f_{\Delta}(x)\right|=\left|\sum_{k,l=0}^{\infty}a_{kl}(\Delta x)_{kl}\right| \displaystyle\leq k,l=1|akl||(Δx)kl|\displaystyle\sum_{k,l=1}^{\infty}|a_{kl}||(\Delta x)_{kl}|
\displaystyle\leq xP(𝒞r0(Δ))k,l=0|akl|\displaystyle\|x\|_{P(\mathcal{C}_{r0}(\Delta))}\sum_{k,l=0}^{\infty}|a_{kl}|
=\displaystyle= xP(𝒞r0(Δ))au.\displaystyle\|x\|_{P(\mathcal{C}_{r0}(\Delta))}\|a\|_{\mathcal{L}_{u}}.

Therefore, fΔau\|f_{\Delta}\|\leq\|a\|_{\mathcal{L}_{u}} and then we see that fΔf_{\Delta} is a bounded(continuous) linear functional on P(𝒞r0(Δ))P(\mathcal{C}_{r0}(\Delta)). This completes the proof. ∎

Definition 2.3.

Let XX and YY be Banach spaces, and (X,Y)\mathcal{B}(X,Y) be the space of bounded linear operators from XX into YY. An operator T(X,Y)T\in\mathcal{B}(X,Y) is called an isometry if Tx=x\|Tx\|=\|x\| for all xXx\in X.

Now we denote the continuous duals of P(λ(Δ))P(\lambda(\Delta)) and λ\lambda by [P(λ(Δ))][P(\lambda(\Delta))]^{*} and λ\lambda^{*}, respectively. We may now show that the operator

T:[P(λ(Δ))]\displaystyle T:[P(\lambda(\Delta))]^{*} \displaystyle\to λ\displaystyle\lambda^{*}
fΔ\displaystyle f_{\Delta} \displaystyle\to f=fΔ(Δ1)\displaystyle f=f_{\Delta}\circ(\Delta^{-1})

is a linear isometry. Hence, [P(u(Δ))]u[P(\mathcal{M}_{u}(\Delta))]^{*}\cong\mathcal{M}_{u}^{*}, by [1, Remark 3.] we have [P(λ(Δ))]λu[P(\lambda(\Delta))]^{*}\cong\lambda^{*}\cong\mathcal{L}_{u}, where λ{𝒞r,𝒞r0}\lambda\in\{\mathcal{C}_{r},\mathcal{C}_{r0}\}, by [1, Theorem 8.] we have [P(μ(Δ))]μ1()[P(\mu(\Delta))]^{*}\cong\mu^{*}\cong\ell_{1}(\ell_{\infty}^{*}), where μ{𝒞bp,𝒞bp0}\mu\in\{\mathcal{C}_{bp},\mathcal{C}_{bp0}\}, and the sets 1\ell_{1} and \ell_{\infty} represent absolutely summable and bounded single sequence spaces, respectively.

Now we prove the following Theorem only for the case λ=𝒞r0\lambda=\mathcal{C}_{r0}.

Theorem 2.4.

The continuous dual [P(𝒞r0(Δ))][P(\mathcal{C}_{r0}(\Delta))]^{*} is isometrically isomorphic to 𝒞r0u\mathcal{C}_{r0}^{*}\cong\mathcal{L}_{u}.

Proof.

Let us define an operator

T:[P(𝒞r0(Δ))]𝒞r0uT:[P(\mathcal{C}_{r0}(\Delta))]^{*}\to\mathcal{C}_{r0}^{*}\cong\mathcal{L}_{u}

with T(fΔ)=(fΔ(ekl))k,l1T(f_{\Delta})=\left(f_{\Delta}(e^{kl})\right)_{k,l\geq 1},

T(fΔ(x))=T((fΔΔ1)(Δx))=k,l=1aklT((Δx)kl)T\left(f_{\Delta}(x)\right)=T\left(\left(f_{\Delta}\circ\Delta^{-1}\right)(\Delta x)\right)=\sum_{k,l=1}^{\infty}a_{kl}T((\Delta x)_{kl})

where a=(akl)ua=(a_{kl})\in\mathcal{L}_{u}. Therefore, TT is a surjective linear map by Lemma 2.2. Moreover, since T(fΔ(ekl))=0=(0,0,0,)T(f_{\Delta}(e^{kl}))=0=(0,0,0,...) implies fΔ=0f_{\Delta}=0, where (xkl)=ekl(x_{kl})=e^{kl} is Schauder basis for 𝒞r0\mathcal{C}_{r0} by the definition of double Schauder basis [10, Definition 4.2., p. 14], TT is injective. Let fΔ[P(𝒞r0(Δ))]f_{\Delta}\in[P(\mathcal{C}_{r0}(\Delta))]^{*} and xP(𝒞r0(Δ))x\in P(\mathcal{C}_{r0}(\Delta)). Then we have

|fΔ(x)|=|fΔ(k,l=1(Δx)klekl)|\displaystyle\left|f_{\Delta}(x)\right|=\left|f_{\Delta}\left(\sum_{k,l=1}^{\infty}(\Delta x)_{kl}e^{kl}\right)\right| =\displaystyle= |k,l=1(Δx)klfΔ(ekl)|\displaystyle\left|\sum_{k,l=1}^{\infty}(\Delta x)_{kl}f_{\Delta}(e^{kl})\right|
\displaystyle\leq k,l=1|fΔ(ekl)||(Δx)kl|\displaystyle\sum_{k,l=1}^{\infty}\left|f_{\Delta}(e^{kl})\right||(\Delta x)_{kl}|
\displaystyle\leq supk,l|(Δx)kl|k,l=1|fΔ(ekl)|\displaystyle\sup_{k,l\in\mathbb{N}}|(\Delta x)_{kl}|\sum_{k,l=1}^{\infty}\left|f_{\Delta}(e^{kl})\right|
\displaystyle\leq xP(𝒞r0(Δ))T(fΔ)u.\displaystyle\|x\|_{P(\mathcal{C}_{r0}(\Delta))}\|T(f_{\Delta})\|_{\mathcal{L}_{u}}.

Then we obtain

(2.4) fΔT(fΔ)u.\|f_{\Delta}\|_{\infty}\leq\|T(f_{\Delta})\|_{\mathcal{L}_{u}}.

Furthermore, since |fΔ(ekl)|fΔeklP(𝒞r0(Δ))=fΔ\left|f_{\Delta}(e^{kl})\right|\leq\|f_{\Delta}\|_{\infty}\|e^{kl}\|_{P(\mathcal{C}_{r0}(\Delta))}=\|f_{\Delta}\|_{\infty}, then we have

(2.5) T(fΔ)u=supk,l|fΔ(ekl)|fΔ.\|T(f_{\Delta})\|_{\mathcal{L}_{u}}=\sup_{k,l\in\mathbb{N}}\left|f_{\Delta}(e^{kl})\right|\leq\|f_{\Delta}\|_{\infty}.

We obtain by (2.4) and (2.5) that T(fΔ)u=fΔ\|T(f_{\Delta})\|_{\mathcal{L}_{u}}=\|f_{\Delta}\|_{\infty}. This completes the proof. ∎

3. Dual Spaces of the New Double Sequence Spaces

In this section, we determine the α\alpha-, β(ϑ)\beta(\vartheta)- and γ\gamma-duals of our new double sequence spaces. First, we begin with some lemmas to determine the α\alpha-, β(ϑ)\beta(\vartheta)- and γ\gamma-duals of the spaces u(Δ)\mathcal{M}_{u}(\Delta), 𝒞ϑ(Δ)\mathcal{C}_{\vartheta}(\Delta), where ϑ{bp,r}\vartheta\in\{bp,r\}.

Lemma 3.1.

We have supk,l|Δxkl|<\sup_{k,l\in\mathbb{N}}|\Delta x_{kl}|<\infty if and only if

  • (i)

    supk,l1kl|xkl|<\sup_{k,l\in\mathbb{N}}\frac{1}{kl}|x_{kl}|<\infty,

  • (ii)

    supk,l|klΔ(1klxkl)|<\sup_{k,l\in\mathbb{N}}\left|kl\Delta\left(\frac{1}{kl}x_{kl}\right)\right|<\infty.

Proof.

Suppose that there exists a positive real number MM such that

supk,l|xklxk+1,lxk,l+1+xk+1,l+1|M.\sup_{k,l\in\mathbb{N}}|x_{kl}-x_{k+1,l}-x_{k,l+1}+x_{k+1,l+1}|\leq M.

Then

|xkl|=|xk,0+x0,lx00+xkl|=|i,j=0k1,l1Δxij|i,j=0k1,l1|Δxij|M(kl).\displaystyle|x_{kl}|=|x_{k,0}+x_{0,l}-x_{00}+x_{kl}|=\left|\sum_{i,j=0}^{k-1,l-1}\Delta x_{ij}\right|\leq\sum_{i,j=0}^{k-1,l-1}\left|\Delta x_{ij}\right|\leq M(kl).

It is clearly seen that (i) is necessary. Moreover, by considering the condition (i) there exists positive real numbers N1,N2,N3N_{1},N_{2},N_{3} such that

(3.1) supk,l1(k+1)l|xk+1,l|N1,\displaystyle\sup_{k,l\in\mathbb{N}}\frac{1}{(k+1)l}|x_{k+1,l}|\leq N_{1},
(3.2) supk,l1k(l+1)|xk,l+1|N2,\displaystyle\sup_{k,l\in\mathbb{N}}\frac{1}{k(l+1)}|x_{k,l+1}|\leq N_{2},
(3.3) supk,l1(k+1)(l+1)|xk+1,l+1|N3.\displaystyle\sup_{k,l\in\mathbb{N}}\frac{1}{(k+1)(l+1)}|x_{k+1,l+1}|\leq N_{3}.

Then we have

kl|Δ(1klxkl)|\displaystyle kl\left|\Delta\left(\frac{1}{kl}x_{kl}\right)\right| =\displaystyle= kl|1klxkl1(k+1)lxk+1,l1k(l+1)xk,l+1\displaystyle kl\left|\frac{1}{kl}x_{kl}-\frac{1}{(k+1)l}x_{k+1,l}-\frac{1}{k(l+1)}x_{k,l+1}\right.
+1(k+1)(l+1)xk+1,l+1|\displaystyle\left.+\frac{1}{(k+1)(l+1)}x_{k+1,l+1}\right|
=\displaystyle= kl|1klΔxkl+(1kl(k+1)xk+1,l+1kl(l+1)xk,l+1\displaystyle kl\left|\frac{1}{kl}\Delta x_{kl}+\left(\frac{1}{kl(k+1)}x_{k+1,l}+\frac{1}{kl(l+1)}x_{k,l+1}\right.\right.
(k+l+1)kl(k+1)(l+1)xk+1,l+1)|\displaystyle\left.\left.-\frac{(k+l+1)}{kl(k+1)(l+1)}x_{k+1,l+1}\right)\right|
\displaystyle\leq kl(|1klΔxkl|+|1kl(k+1)xk+1,l|+|1kl(l+1)xk,l+1|\displaystyle kl\left(\left|\frac{1}{kl}\Delta x_{kl}\right|+\left|\frac{1}{kl(k+1)}x_{k+1,l}\right|+\left|\frac{1}{kl(l+1)}x_{k,l+1}\right|\right.
+|(k+l+1)kl(k+1)(l+1)xk+1,l+1|)\displaystyle\left.+\left|\frac{(k+l+1)}{kl(k+1)(l+1)}x_{k+1,l+1}\right|\right)
\displaystyle\leq M\displaystyle M^{\prime}

where M=M+N1+N2+N3M^{\prime}=M+N_{1}+N_{2}+N_{3}. So it gives the necessity of (ii).

Now let us suppose that the conditions (i) and (ii) hold. By only considering the following inequality

kl|Δ(1klxkl)|\displaystyle kl\left|\Delta\left(\frac{1}{kl}x_{kl}\right)\right| =\displaystyle= |klklxklkl(k+1)lxk+1,lklk(l+1)xk,l+1\displaystyle\left|\frac{kl}{kl}x_{kl}-\frac{kl}{(k+1)l}x_{k+1,l}-\frac{kl}{k(l+1)}x_{k,l+1}\right.
+kl(k+1)(l+1)xk+1,l+1|\displaystyle\left.+\frac{kl}{(k+1)(l+1)}x_{k+1,l+1}\right|
=\displaystyle= kl|1klΔxkl(1kl(k+1)xk+1,l+1kl(l+1)xk,l+1\displaystyle kl\left|\frac{1}{kl}\Delta x_{kl}-\left(\frac{1}{kl(k+1)}x_{k+1,l}+\frac{1}{kl(l+1)}x_{k,l+1}\right.\right.
(k+l+1)kl(k+1)(l+1)xk+1,l+1)|\displaystyle\left.\left.-\frac{(k+l+1)}{kl(k+1)(l+1)}x_{k+1,l+1}\right)\right|
\displaystyle\geq |Δxkl||1(k+1)xk+1,l1(l+1)xk,l+1\displaystyle|\Delta x_{kl}|-\left|-\frac{1}{(k+1)}x_{k+1,l}-\frac{1}{(l+1)}x_{k,l+1}\right.
+(k+l+1)(k+1)(l+1)xk+1,l+1|\displaystyle\left.+\frac{(k+l+1)}{(k+1)(l+1)}x_{k+1,l+1}\right|

we can see the necessity of supk,l|Δxkl|<\sup_{k,l\in\mathbb{N}}|\Delta x_{kl}|<\infty.

Lemma 3.2.

Let Δxkl=ykl\Delta x_{kl}=y_{kl}. If

supm,n|k,l=1m,nykl|<\displaystyle\sup_{m,n\in\mathbb{N}}\left|\sum_{k,l=1}^{m,n}y_{kl}\right|<\infty

then

supm,n((m+1)(n+1)|k,l=1ym+k1,n+l1(m+k)(n+l)|)<\displaystyle\sup_{m,n\in\mathbb{N}}\left((m+1)(n+1)\left|\sum_{k,l=1}^{\infty}\frac{y_{m+k-1,n+l-1}}{(m+k)(n+l)}\right|\right)<\infty
Proof.

Let us consider Abel’s double partial summation on the (s,t)th(s,t)^{th}- partial sum of the series k,l=1ym+k+1,n+l+1(m+k)(n+l)\sum_{k,l=1}^{\infty}\frac{y_{m+k+1,n+l+1}}{(m+k)(n+l)} as in the following equation.

k,l=1s,tym+k1,n+l1(m+k)(n+l)\displaystyle\sum_{k,l=1}^{s,t}\frac{y_{m+k-1,n+l-1}}{(m+k)(n+l)} =\displaystyle= k,l=1s,tym+k1,n+l1(1(m+k)(n+l))\displaystyle\sum_{k,l=1}^{s,t}y_{m+k-1,n+l-1}\left(\frac{1}{(m+k)(n+l)}\right)
=\displaystyle= k,l=1s1,t1(i,j=1k,lym+i1,n+j1)Δ11kl(1(m+k)(n+l))\displaystyle\sum_{k,l=1}^{s-1,t-1}\left(\sum_{i,j=1}^{k,l}y_{m+i-1,n+j-1}\right)\Delta_{11}^{kl}\left(\frac{1}{(m+k)(n+l)}\right)
+k=1s1(i,j=1k,tym+i1,n+j1)Δ10kl(1(m+k)(n+t))\displaystyle+\sum_{k=1}^{s-1}\left(\sum_{i,j=1}^{k,t}y_{m+i-1,n+j-1}\right)\Delta_{10}^{kl}\left(\frac{1}{(m+k)(n+t)}\right)
+l=1t1(i,j=1s,lym+i1,n+j1)Δ01kl(1(m+s)(n+l))\displaystyle+\sum_{l=1}^{t-1}\left(\sum_{i,j=1}^{s,l}y_{m+i-1,n+j-1}\right)\Delta_{01}^{kl}\left(\frac{1}{(m+s)(n+l)}\right)
+i,j=1s,tym+i1,n+j1(1(m+s)(n+t))\displaystyle+\sum_{i,j=1}^{s,t}y_{m+i-1,n+j-1}\left(\frac{1}{(m+s)(n+t)}\right)

where for the double sequence akl=1(m+k)(n+l)a_{kl}=\frac{1}{(m+k)(n+l)}

Δ10klakl=aklak+1,l\displaystyle\Delta_{10}^{kl}a_{kl}=a_{kl}-a_{k+1,l}
Δ01klakl=aklak,l+1\displaystyle\Delta_{01}^{kl}a_{kl}=a_{kl}-a_{k,l+1}
Δ11klakl=Δ10kl(Δ01klakl)=Δ01kl(Δ10klakl)=aklak+1,lak,l+1+ak+1,l+1.\displaystyle\Delta_{11}^{kl}a_{kl}=\Delta_{10}^{kl}(\Delta_{01}^{kl}a_{kl})=\Delta_{01}^{kl}(\Delta_{10}^{kl}a_{kl})=a_{kl}-a_{k+1,l}-a_{k,l+1}+a_{k+1,l+1}.

Since there exists a positive real number MM such that

(3.5) supm,n|k,l=1m,nykl|M,\sup_{m,n\in\mathbb{N}}\left|\sum_{k,l=1}^{m,n}y_{kl}\right|\leq M,

the equation (3) is written as

k,l=1s,tym+k1,n+l1(m+k)(n+l)\displaystyle\sum_{k,l=1}^{s,t}\frac{y_{m+k-1,n+l-1}}{(m+k)(n+l)} \displaystyle\leq M[k,l=1s1,t1(1(m+k)(n+l)1(m+k+1)(n+l)\displaystyle M\left[\sum_{k,l=1}^{s-1,t-1}\left(\frac{1}{(m+k)(n+l)}-\frac{1}{(m+k+1)(n+l)}\right.\right.
1(m+k)(n+l+1)+1(m+k+1)(n+l+1))\displaystyle\left.\left.-\frac{1}{(m+k)(n+l+1)}+\frac{1}{(m+k+1)(n+l+1)}\right)\right.
+k=1s11(n+t)(1(m+k)1(m+k+1))\displaystyle+\left.\sum_{k=1}^{s-1}\frac{1}{(n+t)}\left(\frac{1}{(m+k)}-\frac{1}{(m+k+1)}\right)\right.
+l=1t11(m+s)(1(n+l)1(n+l+1))\displaystyle+\left.\sum_{l=1}^{t-1}\frac{1}{(m+s)}\left(\frac{1}{(n+l)}-\frac{1}{(n+l+1)}\right)\right.
+1(m+s)(n+t)]\displaystyle+\left.\frac{1}{(m+s)(n+t)}\right]
=\displaystyle= M(m+1)(n+1).\displaystyle\frac{M}{(m+1)(n+1)}.

Therefore by passing to ϑ\vartheta-limit as s,ts,t\to\infty, where ϑ={bp,r}\vartheta=\{bp,r\}, and taking supremum over m,nm,n\in\mathbb{N}, then the condition

supm,n((m+1)(n+1)|k,l=1ym+k1,n+l1(m+k)(n+l)|)<\displaystyle\sup_{m,n\in\mathbb{N}}\left((m+1)(n+1)\left|\sum_{k,l=1}^{\infty}\frac{y_{m+k-1,n+l-1}}{(m+k)(n+l)}\right|\right)<\infty

is immediate. ∎

Lemma 3.3.

Let ϑ{bp,r}\vartheta\in\{bp,r\}. If the series k,l=1Δxkl\sum_{k,l=1}^{\infty}\Delta x_{kl} is ϑ\vartheta-convergent, then

ϑlimm,n((m+1)(n+1)|k,l=1ym+k1,n+l1(m+k)(n+l)|)=0\displaystyle\vartheta-\lim_{m,n\to\infty}\left((m+1)(n+1)\left|\sum_{k,l=1}^{\infty}\frac{y_{m+k-1,n+l-1}}{(m+k)(n+l)}\right|\right)=0
Proof.

Since the partial sum of the series k,l=1Δxkl\sum_{k,l=1}^{\infty}\Delta x_{kl} is ϑ\vartheta-convergent, where ϑ{bp,r}\vartheta\in\{bp,r\}, we have

|i,j=1k,lym+i1,n+j1|=|i,j=m,nm+k1,n+l1yij|=O(1).\displaystyle\left|\sum_{i,j=1}^{k,l}y_{m+i-1,n+j-1}\right|=\left|\sum_{i,j=m,n}^{m+k-1,n+l-1}y_{ij}\right|=O(1).

Then by using the equality (3) we write

(m+1)(n+1)|k,l=1ym+k1,n+l1(m+k)(n+l)|=O(1).\displaystyle(m+1)(n+1)\left|\sum_{k,l=1}^{\infty}\frac{y_{m+k-1,n+l-1}}{(m+k)(n+l)}\right|=O(1).

If we let ϑ\vartheta-limit as m,nm,n\to\infty, we reach the proof. ∎

Corollary 3.4.

Let ϑ{bp,r}\vartheta\in\{bp,r\} and a=(akl)a=(a_{kl}) be any double sequence. Then

  • (i)

    If supm,n|k,l=1m,nklakl|<\sup_{m,n\in\mathbb{N}}\left|\sum_{k,l=1}^{m,n}kla_{kl}\right|<\infty, then

    supm,n|mnk,l=m+1,n+1akl|<\displaystyle\sup_{m,n\in\mathbb{N}}\left|mn\sum_{k,l=m+1,n+1}^{\infty}a_{kl}\right|<\infty
  • (ii)

    If k,l=1klakl\sum_{k,l=1}^{\infty}kla_{kl} is ϑ\vartheta-convergent, then

    ϑlimm,n(mnk,l=m+1,n+1akl)=0\displaystyle\vartheta-\lim_{m,n\to\infty}\left(mn\sum_{k,l=m+1,n+1}^{\infty}a_{kl}\right)=0
  • (iii)

    k,l=1klakl\sum_{k,l=1}^{\infty}kla_{kl} is ϑ\vartheta-convergent if and only if

    k,l=1Rkl is ϑconvergent with mnRmn=O(1),\displaystyle\sum_{k,l=1}^{\infty}R_{kl}\textit{ is $\vartheta-$convergent with }mnR_{mn}=O(1),

    where Rmn=k,l=m+1,n+1aklR_{mn}=\sum_{k,l=m+1,n+1}^{\infty}a_{kl}

Proof.

The proof of (i) and (ii) can be easily seen by writing klaklkla_{kl} instead of ykly_{kl} in Lemma 3.2, and writing (k+1)(l+1)ak+1,l+1(k+1)(l+1)a_{k+1,l+1} instead of ykly_{kl} in Lemma 3.3, respectively.

To prove the corollary (iii), the following (s,t)th(s,t)^{th}- partial sum can be written by using Abel’s double summation formula that

k,l=1s,tklakl\displaystyle\sum_{k,l=1}^{s,t}kla_{kl} =\displaystyle= k,l=1s1,t1(i,j=0k,laij)Δ11kl(kl)+k=1s1(i,j=0k,taij)Δ10kl(kl)\displaystyle\sum_{k,l=1}^{s-1,t-1}\left(\sum_{i,j=0}^{k,l}a_{ij}\right)\Delta_{11}^{kl}(kl)+\sum_{k=1}^{s-1}\left(\sum_{i,j=0}^{k,t}a_{ij}\right)\Delta_{10}^{kl}(kl)
+i,j=0s,taij(st)\displaystyle+\sum_{i,j=0}^{s,t}a_{ij}(st)
=\displaystyle= k,l=1s,t(i,j=k,ls,taij)+stk,l=s+1,t+1akl.\displaystyle\sum_{k,l=1}^{s,t}\left(\sum_{i,j=k,l}^{s,t}a_{ij}\right)+st\sum_{k,l=s+1,t+1}^{\infty}a_{kl}.

Letting ϑ\vartheta-limit as s,ts,t\to\infty, we obtain the statement in Part (iii). ∎

Let us define the following sets to be able to define the dual spaces of λ(Δ)\lambda(\Delta).

D1:=u:={a=(akl)Ω:k,l=1kl|akl|<}\displaystyle D_{1}:=\int\mathcal{L}_{u}:=\left\{a=(a_{kl})\in\Omega:\sum_{k,l=1}^{\infty}kl|a_{kl}|<\infty\right\}
D2:=𝒞𝒮ϑ:={a=(akl)Ω:k,l=1klaklisϑconvergent}\displaystyle D_{2}:=\int\mathcal{CS}_{\vartheta}:=\left\{a=(a_{kl})\in\Omega:\sum_{k,l=1}^{\infty}kla_{kl}~{}~{}is~{}~{}\vartheta-convergent~{}\right\}
D3:=𝒮:={a=(akl)Ω:m,n|k,l=1m,nklakl|<}\displaystyle D_{3}:=\int\mathcal{BS}:=\left\{a=(a_{kl})\in\Omega:\sum_{m,n}\left|\sum_{k,l=1}^{m,n}kla_{kl}\right|<\infty\right\}
D4:={a=(akl)Ω:k,l=1|i,j=k,laij|<}\displaystyle D_{4}:=\left\{a=(a_{kl})\in\Omega:\sum_{k,l=1}^{\infty}\left|\sum_{i,j=k,l}^{\infty}a_{ij}\right|<\infty\right\}
Theorem 3.5.

Let λ{u,𝒞bp,𝒞r}\lambda\in\{\mathcal{M}_{u},\mathcal{C}_{bp},\mathcal{C}_{r}\}. Then [P(λ(Δ))]α=D1\left[P(\lambda(\Delta))\right]^{\alpha}=D_{1}

Proof.

We need to prove the existence of the inclusion relations D1[P(λ(Δ))]αD_{1}\subset\left[P(\lambda(\Delta))\right]^{\alpha} and [P(λ(Δ))]αD1\left[P(\lambda(\Delta))\right]^{\alpha}\subset D_{1}.

Suppose that a=(akl)D1a=(a_{kl})\in D_{1}, i.e., k,l=1kl|akl|<\sum_{k,l=1}^{\infty}kl|a_{kl}|<\infty. Then by using Lemma 3.1 we have

k,l=1|aklxkl|=k,l=1kl|akl|(|xkl|kl)<\displaystyle\sum_{k,l=1}^{\infty}|a_{kl}x_{kl}|=\sum_{k,l=1}^{\infty}kl|a_{kl}|\left(\frac{|x_{kl}|}{kl}\right)<\infty

for all x=(xkl)P(λ(Δ))x=(x_{kl})\in P(\lambda(\Delta)). This shows that a=(akl)[P(λ(Δ))]αa=(a_{kl})\in\left[P(\lambda(\Delta))\right]^{\alpha}. Hence, the inclusion D1[P(λ(Δ))]αD_{1}\subset\left[P(\lambda(\Delta))\right]^{\alpha} holds.

Now suppose that a=(akl)[P(λ(Δ))]αa=(a_{kl})\in\left[P(\lambda(\Delta))\right]^{\alpha}, i.e., k,l=1|aklxkl|<\sum_{k,l=1}^{\infty}|a_{kl}x_{kl}|<\infty for all x=(xkl)P(λ(Δ))x=(x_{kl})\in P(\lambda(\Delta)). If we consider the double sequence x=(xkl)x=(x_{kl}) as

(3.9) xkl:={0,k=0,l00,l=0,k0kl,k1,l1\displaystyle x_{kl}:=\left\{\begin{array}[]{cccl}0&,&k=0,l\geq 0\\ 0&,&l=0,k\geq 0\\ kl&,&k\geq 1,l\geq 1\end{array}\right.

Then we have

k,l=1|aklxkl|=k,l=1kl|akl|<\displaystyle\sum_{k,l=1}^{\infty}|a_{kl}x_{kl}|=\sum_{k,l=1}^{\infty}kl|a_{kl}|<\infty

which says a=(akl)D1a=(a_{kl})\in D_{1}. Hence, the inclusion [P(λ(Δ))]αD1\left[P(\lambda(\Delta))\right]^{\alpha}\subset D_{1} holds. This concludes the proof. ∎

Theorem 3.6.

Let λ{u,𝒞bp,𝒞r}\lambda\in\{\mathcal{M}_{u},\mathcal{C}_{bp},\mathcal{C}_{r}\}. Then [P(λ(Δ))]β(ϑ)=D2D4\left[P(\lambda(\Delta))\right]^{\beta(\vartheta)}=D_{2}\cap D_{4}.

Proof.

We should show the validity of the inclusions D2D4[P(λ(Δ))]β(ϑ)D_{2}\cap D_{4}\subset\left[P(\lambda(\Delta))\right]^{\beta(\vartheta)} and [P(λ(Δ))]β(ϑ)D2D4\left[P(\lambda(\Delta))\right]^{\beta(\vartheta)}\subset D_{2}\cap D_{4}.

Suppose that the double sequence a=(akl)D2D4a=(a_{kl})\in D_{2}\cap D_{4} and the sequence x=(xkl)P(λ(Δ))x=(x_{kl})\in P(\lambda(\Delta)) are defined with the relation (2.2) between the terms of the sequence x=(xkl)x=(x_{kl}) and y=(ykl)y=(y_{kl}) as

(3.10) xkl=i,j=1k,lyi1,j1,\displaystyle x_{kl}=\sum_{i,j=1}^{k,l}y_{i-1,j-1},

where y=(ykl)λy=(y_{kl})\in\lambda which is defined as

(3.15) ykl:={x11,k=0,l=0x11+x12,k=0,l=1x11+x21,k=1,l=0xklxk+1,lxk,l+1+xk+1,l+1,k1,l1\displaystyle y_{kl}:=\left\{\begin{array}[]{ccccl}x_{11}&,&k=0,l=0\\ -x_{11}+x_{12}&,&k=0,l=1\\ -x_{11}+x_{21}&,&k=1,l=0\\ x_{kl}-x_{k+1,l}-x_{k,l+1}+x_{k+1,l+1}&,&k\geq 1,l\geq 1\end{array}\right.

Then, we have the following (s,t)th(s,t)^{th}-partial sum of the series k,laklxkl\sum_{k,l}a_{kl}x_{kl} that

k,l=1s,taklxkl\displaystyle\sum_{k,l=1}^{s,t}a_{kl}x_{kl} =\displaystyle= k,l=1s,takl(i,j=1k,lyi1,j1)\displaystyle\sum_{k,l=1}^{s,t}a_{kl}\left(\sum_{i,j=1}^{k,l}y_{i-1,j-1}\right)
=\displaystyle= k,l=1s1,t1(i,j=k,ls1,t1aij)ykl\displaystyle\sum_{k,l=1}^{s-1,t-1}\left(\sum_{i,j=k,l}^{s-1,t-1}a_{ij}\right)y_{kl}
=\displaystyle= k,l=1s1,t1(i,j=k,laij)yklk,l=1s1,t1(i,j=s,taij)ykl\displaystyle\sum_{k,l=1}^{s-1,t-1}\left(\sum_{i,j=k,l}^{\infty}a_{ij}\right)y_{kl}-\sum_{k,l=1}^{s-1,t-1}\left(\sum_{i,j=s,t}^{\infty}a_{ij}\right)y_{kl}
=\displaystyle= k,l=1s1,t1RklyklRstk,l=1s1,t1ykl.\displaystyle\sum_{k,l=1}^{s-1,t-1}R_{kl}y_{kl}-R_{st}\sum_{k,l=1}^{s-1,t-1}y_{kl}.

Now, by the Corollary 3.4(iii), we can say that the sequence k,l=1s,taklxkl\sum_{k,l=1}^{s,t}a_{kl}x_{kl} is ϑ\vartheta- convergent for every x=(xkl)P(λ(Δ))x=(x_{kl})\in P(\lambda(\Delta)), since k,l=1s1,t1Rklykl\sum_{k,l=1}^{s-1,t-1}R_{kl}y_{kl} is ϑ\vartheta- convergent with xstRst0x_{st}R_{st}\to 0 as s,ts,t\to\infty. This yields that a=(akl)[P(λ(Δ))]β(ϑ)a=(a_{kl})\in\left[P(\lambda(\Delta))\right]^{\beta(\vartheta)} and the inclusion D2D4[P(λ(Δ))]β(ϑ)D_{2}\cap D_{4}\subset\left[P(\lambda(\Delta))\right]^{\beta(\vartheta)} holds.

Now, suppose that a=(akl)[P(λ(Δ))]β(ϑ)a=(a_{kl})\in\left[P(\lambda(\Delta))\right]^{\beta(\vartheta)}. Then the series k,l=1aklxkl\sum_{k,l=1}^{\infty}a_{kl}x_{kl} is ϑ\vartheta-convergent for every x=(xkl)P(λ(Δ))x=(x_{kl})\in P(\lambda(\Delta)). If we consider the sequence x=(xkl)x=(x_{kl}) defined in (3.9) Then, we can observe that

k,l=1aklxkl=k,l=1klakl\displaystyle\sum_{k,l=1}^{\infty}a_{kl}x_{kl}=\sum_{k,l=1}^{\infty}kla_{kl}

and by the equality y=Δxy=\Delta x we have the following series

k,l=1s,tklakl\displaystyle\sum_{k,l=1}^{s,t}kla_{kl} =\displaystyle= k,l=1s1,t1(i,j=k,laij)k,l=1s1,t1(i,j=s,taij)\displaystyle\sum_{k,l=1}^{s-1,t-1}\left(\sum_{i,j=k,l}^{\infty}a_{ij}\right)-\sum_{k,l=1}^{s-1,t-1}\left(\sum_{i,j=s,t}^{\infty}a_{ij}\right)
=\displaystyle= k,l=1s1,t1RklstRst\displaystyle\sum_{k,l=1}^{s-1,t-1}R_{kl}-stR_{st}

which is ϑ\vartheta-convergent as s,ts,t\to\infty. Thus, a=(akl)D2a=(a_{kl})\in D_{2}. Moreover, by Corollary 3.4(ii) we can write that stRst0stR_{st}\to 0 as s,ts,t\to\infty for every y=(ykl)λy=(y_{kl})\in\lambda, and k,l=1Rkl<\sum_{k,l=1}^{\infty}R_{kl}<\infty. Therefore, a=(akl)D4a=(a_{kl})\in D_{4}. Hence the inclusion [P(λ(Δ))]β(ϑ)D2D4\left[P(\lambda(\Delta))\right]^{\beta(\vartheta)}\subset D_{2}\cap D_{4} holds. This completes the proof. ∎

Theorem 3.7.

Let λ{u,𝒞ϑ}\lambda\in\{\mathcal{M}_{u},\mathcal{C}_{\vartheta}\}. Then [P(λ(Δ))]γ=D3D4\left[P(\lambda(\Delta))\right]^{\gamma}=D_{3}\cap D_{4}, where ϑ{bp,r}\vartheta\in\{bp,r\}.

Proof.

The proof can be done with the similar path as above by considering Corollary 3.4(i). So, we omit the repetition. ∎

4. Matrix Transformations

In this section we characterize the four-dimensional matrix mapping from the sequence space λ(Δ)\lambda(\Delta) to μ\mu and vice-versa. Then we conclude the section with some significant results.

Theorem 4.1.

The four-dimensional matrix A=(amnkl)(λ(Δ):μ)A=(a_{mnkl})\in(\lambda(\Delta):\mu) if and only if

(4.1) Amn=(amnkl)k,l(λ(Δ))β(ϑ) for all m,n,\displaystyle A_{mn}=(a_{mnkl})_{k,l\in\mathbb{N}}\in\left(\lambda(\Delta)\right)^{\beta(\vartheta)}\textit{ for all }m,n\in\mathbb{N},
(4.2) Amn(kl)=k,l=1klamnklμ,\displaystyle A_{mn}(kl)=\sum_{k,l=1}^{\infty}kla_{mnkl}\in\mu,
(4.3) B=(bmnkl)(λ:μ),\displaystyle B=(b_{mnkl})\in(\lambda:\mu),

where the four-dimensional matrix

(4.4) B=(bmnkl)=i,j=k,lamnij for all m,n,k,l.B=(b_{mnkl})=\sum_{i,j=k,l}^{\infty}a_{mnij}\textit{ for all }m,n,k,l\in\mathbb{N}.
Proof.

Suppose that A=(amnkl)(λ(Δ):μ)A=(a_{mnkl})\in(\lambda(\Delta):\mu). Then, Amn(x)A_{mn}(x) exists for every x=(xkl)λ(Δ)x=(x_{kl})\in\lambda(\Delta) and is in μ\mu for all m,nm,n\in\mathbb{N}. If we define the sequence x=(xkl)x=(x_{kl}) by

(4.7) xkl:={1,k=l0,otherwise\displaystyle x_{kl}:=\left\{\begin{array}[]{ccl}1&,&k=l\\ 0&,&\textit{otherwise}\end{array}\right.

for all k,lk,l\in\mathbb{N}, then the necessity of (4.1) is clear. If we define the sequence x=(xkl)x=(x_{kl}) as xkl=klx_{kl}=kl for all k,lk,l\in\mathbb{N}, then the necessity of (4.2) is also clear by Theorem 3.6. Moreover, by Theorem 3.6 we have k,l=1|amnkl|<\sum_{k,l=1}^{\infty}|a_{mnkl}|<\infty for each m,nm,n\in\mathbb{N}.

Now suppose that x=(xkl)P(λ(Δ))λ(Δ)x=(x_{kl})\in P(\lambda(\Delta))\subset\lambda(\Delta) let us consider the (s,t)th(s,t)^{th}-partial sum of the series k,l=1amnklxkl\sum_{k,l=1}^{\infty}a_{mnkl}x_{kl} by considering the relation xkl=i,j=0k1,l1yijx_{kl}=\sum_{i,j=0}^{k-1,l-1}y_{ij} between terms of the sequences x=(xkl)x=(x_{kl}) and y=(ykl)y=(y_{kl}) as in the following

Amnst(x)\displaystyle A_{mn}^{st}(x) =\displaystyle= k,l=1s,tamnklxkl\displaystyle\sum_{k,l=1}^{s,t}a_{mnkl}x_{kl}
=\displaystyle= k,l=1s,tamnkl(i,j=0k1,l1yij)\displaystyle\sum_{k,l=1}^{s,t}a_{mnkl}\left(\sum_{i,j=0}^{k-1,l-1}y_{ij}\right)
=\displaystyle= k,l=1s1,t1(i,j=k,ls1,t1amnij)ykl\displaystyle\sum_{k,l=1}^{s-1,t-1}\left(\sum_{i,j=k,l}^{s-1,t-1}a_{mnij}\right)y_{kl}
=\displaystyle= k,l=1s1,t1(i,j=k,lamnij)yklk,l=1s1,t1(i,j=s,tamnij)ykl\displaystyle\sum_{k,l=1}^{s-1,t-1}\left(\sum_{i,j=k,l}^{\infty}a_{mnij}\right)y_{kl}-\sum_{k,l=1}^{s-1,t-1}\left(\sum_{i,j=s,t}^{\infty}a_{mnij}\right)y_{kl}
=\displaystyle= k,l=1s1,t1bmnklyklbmnstk,l=1s1,t1ykl\displaystyle\sum_{k,l=1}^{s-1,t-1}b_{mnkl}y_{kl}-b_{mnst}\sum_{k,l=1}^{s-1,t-1}y_{kl}

where yλy\in\lambda. We obtain by letting ϑ\vartheta-limit as s,ts,t\to\infty and by considering the Corollary 3.4(iii)(iii) that Amn(x)=k,l=1bmnklyklA_{mn}(x)=\sum_{k,l=1}^{\infty}b_{mnkl}y_{kl}, that is Ax=ByAx=By for each m,nm,n\in\mathbb{N}. Therefore, A=(amnkl)(λ(Δ):μ)A=(a_{mnkl})\in(\lambda(\Delta):\mu) implies that B=(bmnkl)(λ:μ)B=(b_{mnkl})\in(\lambda:\mu).

Now suppose that the conditions (4.1)-(4.3) hold. Let us take a sequence x=(xkl)λ(Δ)x=(x_{kl})\in\lambda(\Delta) defined by

xkl:={xk,1,k1,l=1x1,l,k=l,l1xkl~,k>l,l>1\displaystyle x_{kl}:=\left\{\begin{array}[]{cccl}x_{k,1}&,&k\geq 1,l=1\\ x_{1,l}&,&k=l,l\geq 1\\ \widetilde{x_{kl}}&,&k>l,l>1\end{array}\right.

where x~=(xkl~)P(λ(Δ))\widetilde{x}=(\widetilde{x_{kl}})\in P(\lambda(\Delta)). Then, if we write again the above (s,t)th(s,t)^{th}-partial sum of the series k,l=1amnklxkl\sum_{k,l=1}^{\infty}a_{mnkl}x_{kl}, we have

Amnst(x)\displaystyle A_{mn}^{st}(x) =\displaystyle= k,l=1s,tamnklxkl\displaystyle\sum_{k,l=1}^{s,t}a_{mnkl}x_{kl}
=\displaystyle= amn11x11+l=2tamn,1,lx1,l+k=2samn,k,1xk,1+k,l=2s,tamnklxkl~\displaystyle a_{mn11}x_{11}+\sum_{l=2}^{t}a_{mn,1,l}x_{1,l}+\sum_{k=2}^{s}a_{mn,k,1}x_{k,1}+\sum_{k,l=2}^{s,t}a_{mnkl}\widetilde{x_{kl}}
=\displaystyle= amn11x11+k=2s1bmnk,1yk,1+l=2t1bmn,1,ly1,l+k,l=1s1,t1bmnklyklbmnstk,l=1s1,t1ykl.\displaystyle a_{mn11}x_{11}+\sum_{k=2}^{s-1}b_{mnk,1}y_{k,1}+\sum_{l=2}^{t-1}b_{mn,1,l}y_{1,l}+\sum_{k,l=1}^{s-1,t-1}b_{mnkl}y_{kl}-b_{mnst}\sum_{k,l=1}^{s-1,t-1}y_{kl}.

Therefore, we obtain by letting limit as s,ts,t\to\infty that

Amn(x)=amn11x11+k=2bmnk,1yk,1+l=2bmn,1,ly1,l+k,l=1bmnklykl.\displaystyle A_{mn}(x)=a_{mn11}x_{11}+\sum_{k=2}^{\infty}b_{mnk,1}y_{k,1}+\sum_{l=2}^{\infty}b_{mn,1,l}y_{1,l}+\sum_{k,l=1}^{\infty}b_{mnkl}y_{kl}.

Thus, Amn(x)A_{mn}(x) exists for each x=(xkl)λ(Δ)x=(x_{kl})\in\lambda(\Delta) and is in μ\mu since B(λ:μ)B\in(\lambda:\mu). This completes the proof. ∎

We list some four-dimensional matrix classes from and into the sequence spaces λ,μ={u,𝒞bp,𝒞r}\lambda,\mu=\{\mathcal{M}_{u},\mathcal{C}_{bp},\mathcal{C}_{r}\} as in the following table, which have been characterized in some distinguished papers (see [14, Theorem 3.5],[15, Lemma 3.2],[16, Theorem 2.2],[17, Theorem 3.2]).

(4.9) supm,nk,l|amnkl|<,\displaystyle\sup_{m,n\in\mathbb{N}}\sum_{k,l}|a_{mnkl}|<\infty,
(4.10) aklϑlimm,namnkl=akl for all k,l,\displaystyle\exists a_{kl}\in\mathbb{C}\ni\vartheta-\lim_{m,n\to\infty}a_{mnkl}=a_{kl}\textrm{ for all }k,l\in\mathbb{N},
(4.11) lϑlimm,nk,lamnkl=l exists ,\displaystyle\exists l\in\mathbb{C}\ni\vartheta-\lim_{m,n\to\infty}\sum_{k,l}a_{mnkl}=l\textrm{ exists },
(4.12) k0ϑlimm,nl|amnk0lak0l|=0,\displaystyle\exists k_{0}\in\mathbb{N}\ni\vartheta-\lim_{m,n\to\infty}\sum_{l}|a_{mnk_{0}l}-a_{k_{0}l}|=0,
(4.13) l0ϑlimm,nk|amnkl0akl0|=0,\displaystyle\exists l_{0}\in\mathbb{N}\ni\vartheta-\lim_{m,n\to\infty}\sum_{k}|a_{mnkl_{0}}-a_{kl_{0}}|=0,
(4.14) l0ϑlimm,nkamnkl0=ul0,\displaystyle\exists l_{0}\in\mathbb{N}\ni\vartheta-\lim_{m,n\to\infty}\sum_{k}a_{mnkl_{0}}=u_{l_{0}},
(4.15) k0ϑlimm,nlamnk0l=vk0,\displaystyle\exists k_{0}\in\mathbb{N}\ni\vartheta-\lim_{m,n\to\infty}\sum_{l}a_{mnk_{0}l}=v_{k_{0}},
(4.16) aklbplimm,nk,l|amnklakl|=0,\displaystyle\exists a_{kl}\in\mathbb{C}\ni bp-\lim_{m,n\to\infty}\sum_{k,l}|a_{mnkl}-a_{kl}|=0,
(4.17) bplimm,nl=0namnkl exists for each k,\displaystyle bp-\lim_{m,n\to\infty}\sum_{l=0}^{n}a_{mnkl}\textrm{ exists for each }k\in\mathbb{N},
(4.18) bplimm,nk=0mamnkl exists for each l,\displaystyle bp-\lim_{m,n\to\infty}\sum_{k=0}^{m}a_{mnkl}\textrm{ exists for each }l\in\mathbb{N},
(4.19) k,l|amnkl| converges.\displaystyle\sum_{k,l}|a_{mnkl}|\textrm{ converges}.
Table 1. The characterizations of the matrix classes (λ;μ)(\lambda;\mu), where λ,μ{u,𝒞bp,𝒞r}\lambda,\mu\in\{\mathcal{M}_{u},\mathcal{C}_{bp},\mathcal{C}_{r}\}.
𝑭𝒓𝒐𝒎𝝀/𝑻𝒐𝝁From~{}\lambda{\downarrow}/To~{}\mu\to 𝓜𝒖\mathcal{M}_{u} 𝓒𝒃𝒑\mathcal{C}_{bp} 𝓒𝒓\mathcal{C}_{r}
u\mathcal{M}_{u} 1 2 *
𝒞bp\mathcal{C}_{bp} 3 4 4
𝒞r\mathcal{C}_{r} * 5 5

We list the necessary and sufficient conditions for each class in the following table. Note that * shows the unknown characterization of respective four-dimensional matrix class.

Table 2. The necessary and sufficient conditions for A(λ;μ)A\in(\lambda;\mu), where λ,μ{u,𝒞bp,𝒞r}\lambda,\mu\in\{\mathcal{M}_{u},\mathcal{C}_{bp},\mathcal{C}_{r}\}.
1 iff 2 iff 3 iff 4 iff 5 iff
(4.9)(\ref{eq3.0}) (4.9)(\ref{eq3.0}) (4.9)(\ref{eq3.0}) (4.9)(\ref{eq3.0}) (4.9)(\ref{eq3.0})
(4.10)(\ref{eq3.01}) (4.10) (4.10)(\ref{eq3.01})
(4.16)(\ref{eq3.15}) (4.11) (4.11)
(4.17)(\ref{eq3.151}) (4.12) (4.14)
(4.18)(\ref{eq3.152}) (4.13) (4.15)
(4.19)(\ref{eq3.153})
Corollary 4.2.

Let the four-dimensional matrix B=(bmnkl)B=(b_{mnkl}) is defined as in (4.4). Then the followings hold for four-dimensional infinite matrix A=(amnkl)A=(a_{mnkl}).

  1. (i)

    A(u(Δ),u)A\in(\mathcal{M}_{u}(\Delta),\mathcal{M}_{u}) if and only if the conditions in (4.1) and (4.2) hold, and 11 holds in Table 2 with bmnklb_{mnkl} instead of amnkla_{mnkl}.

  2. (ii)

    A(u(Δ),𝒞bp)A\in(\mathcal{M}_{u}(\Delta),\mathcal{C}_{bp}) if and only if the conditions in (4.1) and (4.2) hold, and 22 holds in Table 2 with bmnklb_{mnkl} instead of amnkla_{mnkl}.

  3. (iii)

    A(𝒞bp(Δ),u)A\in(\mathcal{C}_{bp}(\Delta),\mathcal{M}_{u}) if and only if the conditions in (4.1) and (4.2) hold, and 33 holds in Table 2 with bmnklb_{mnkl} instead of amnkla_{mnkl}.

  4. (iv)

    Let ϑ={bp,r}\vartheta=\{bp,r\}. A(𝒞bp(Δ),𝒞ϑ)A\in(\mathcal{C}_{bp}(\Delta),\mathcal{C}_{\vartheta}) if and only if the conditions in (4.1) and (4.2) hold, and 44 holds in Table 2 with bmnklb_{mnkl} instead of amnkla_{mnkl}.

  5. (v)

    Let ϑ={bp,r}\vartheta=\{bp,r\}. A(𝒞r(Δ),𝒞ϑ)A\in(\mathcal{C}_{r}(\Delta),\mathcal{C}_{\vartheta}) if and only if the conditions in (4.1) and (4.2) hold, and 55 holds in Table 2 with bmnklb_{mnkl} instead of amnkla_{mnkl}.

Theorem 4.3.

The four-dimensional matrix A=(amnkl)(μ:λ(Δ))A=(a_{mnkl})\in(\mu:\lambda(\Delta)) if and only if

(4.20) Amnμβ(ϑ),\displaystyle A_{mn}\in\mu^{\beta(\vartheta)},
(4.21) F=(fmnkl)(μ:λ),\displaystyle F=(f_{mnkl})\in(\mu:\lambda),

where the four-dimensional matrix

(4.22) F=(fmnkl)=Δ11mnamnij=amnijam+1,nijam,n+1,ij+am+1,n+1,ij.F=(f_{mnkl})=\Delta_{11}^{mn}a_{mnij}=a_{mnij}-a_{m+1,nij}-a_{m,n+1,ij}+a_{m+1,n+1,ij}.
Proof.

Suppose that A=(amnkl)(μ:λ(Δ))A=(a_{mnkl})\in(\mu:\lambda(\Delta)). Then, Amn(x)A_{mn}(x) exists for every x=(xkl)μx=(x_{kl})\in\mu and is in λ(Δ)\lambda(\Delta) for all m,nm,n\in\mathbb{N}. Thus, the necessity of (4.20) is immediate. Since Amn(x)λ(Δ)A_{mn}(x)\in\lambda(\Delta), then ΔAλ\Delta A\in\lambda for every x=(xkl)μx=(x_{kl})\in\mu. Clearly ΔA\Delta A is the matrix FF. Hence, the necessity of the condition F=(fmnkl)(λ:μ)F=(f_{mnkl})\in(\lambda:\mu) can be clearly seen. The rest of the theorem can be followed by the similar path as in the Theorem 4.1. We omit the details. ∎

Corollary 4.4.

Let the four-dimensional matrix F=(fmnkl)F=(f_{mnkl}) is defined as in (4.22). Then the followings hold for four-dimensional infinite matrix A=(amnkl)A=(a_{mnkl}).

  1. (i)

    A(u,u(Δ))A\in(\mathcal{M}_{u},\mathcal{M}_{u}(\Delta)) if and only if the condition in (4.20) holds, and 11 holds in Table 2 with fmnklf_{mnkl} instead of amnkla_{mnkl}.

  2. (ii)

    A(u,𝒞bp(Δ))A\in(\mathcal{M}_{u},\mathcal{C}_{bp}(\Delta)) if and only if the condition in (4.20) holds, and 22 holds in Table 2 with fmnklf_{mnkl} instead of amnkla_{mnkl}.

  3. (iii)

    A(𝒞bp,u(Δ))A\in(\mathcal{C}_{bp},\mathcal{M}_{u}(\Delta)) if and only if the condition in (4.20) holds, and 33 holds in Table 2 with fmnklf_{mnkl} instead of amnkla_{mnkl}.

  4. (iv)

    Let ϑ={bp,r}\vartheta=\{bp,r\}. A(𝒞bp,𝒞ϑ(Δ))A\in(\mathcal{C}_{bp},\mathcal{C}_{\vartheta}(\Delta)) if and only if the condition in (4.20) holds, and 44 holds in Table 2 with fmnklf_{mnkl} instead of amnkla_{mnkl}.

  5. (v)

    Let ϑ={bp,r}\vartheta=\{bp,r\}. A(𝒞r,𝒞ϑ(Δ))A\in(\mathcal{C}_{r},\mathcal{C}_{\vartheta}(\Delta)) if and only if the condition in (4.20) holds, and 55 holds in Table 2 with fmnklf_{mnkl} instead of amnkla_{mnkl}.

5. conclusion

The four-dimensional backward difference matrix domain on some double sequence spaces has been studied by Demiriz and Duyar [12]. Then Başar and Tuǧ [13], and Tuǧ [14, 18, 19, 20, 21, 22, 23] studied the four-dimensional generalized backward difference matrix and its domain in some double sequence spaces. Moreover, Tuǧ at al. [24], [25] studied the sequentially defined four-dimensional backward difference matrix domain on some double sequence spaces, and the space 𝒱ϑ0\mathcal{BV}_{\vartheta 0} of double sequences of bounded variations, respectively.

In this work we defined the new double sequence spaces u(Δ),𝒞ϑ(Δ)\mathcal{M}_{u}(\Delta),\mathcal{C}_{\vartheta}(\Delta), where ϑ{bp,r}\vartheta\in\{bp,r\} derived by the domain of four-dimensional forward difference matrix Δ\Delta. Then we investigated some topological properties, determined α\alpha-, β(ϑ)\beta(\vartheta)- and γ\gamma-duals and characterized some four-dimensional matrix classes related with these new double sequence spaces.

The paper contribute nonstandard results and new contributions to the theory of double sequences. As a natural continuation of this work, the four-dimensional forward difference matrix domain in the double sequence spaces 𝒞p\mathcal{C}_{p} and q\mathcal{L}_{q}, where 0<q<0<q<\infty are still open problem. Moreover, the four-dimensional forward difference matrix domain in the spaces 𝒞f\mathcal{C}_{f}, 𝒮\mathcal{BS}, 𝒞𝒮\mathcal{CS} and 𝒱\mathcal{BV} can be calculated. Furthermore, Hahn double sequence space can be defined and studied by using some significant results stated in this work.

Funding

Not applicable.

Conflict of interest

The authors declare that they have no conflict of interest.

Availability of data and material

Not available.

Code availability

Not available.

References

  • [1] F. Móricz, Extensions of the spaces cc and c0c_{0} from single to double sequence, Acta Math. Hungar. 57 (1991), 129–136.
  • [2] J. Boos, Classical and Modern Methods in Summability, Oxford university Press, New York, 2000.
  • [3] G.H. Hardy, On the convergence of certain multiple series, Math. Proc. Cambridge Philos. Soc. 19 (1916-1919), 86–95.
  • [4] F. Başar, Y. Sever, The space q\mathcal{L}_{q} of double sequences, Math. J. Okayama Univ. 51 (2009), 149–157.
  • [5] M. Zeltser, On conservative matrix methods for double sequence spaces, Acta Math. Hungar. 95 (3) (2002), 225–242.
  • [6] B. Altay,, and F. Başar, Some new spaces of double sequences, Journal of Mathematical Analysis and Applications 309, no. 1 (2005): 70-90.
  • [7] C. R. Adams, On non-factorable transformations of double sequences. Proceedings of the National Academy of Sciences of the United States of America, 19(5), 564(1933).
  • [8] A. Wilansky, Summability through Functional Analysis, North-Holland Mathematics Studies 85, Amsterdam-New York-Oxford, 1984.
  • [9] M. Zeltser, Investigation of double sequence spaces by soft and hard analytical methods. Tartu: Tartu Univ. Press, (2001).
  • [10] S. Loganathan and C. Ganesa Moorthy, A net convergence for Schauder double bases, Asian-European Journal of Mathematics 9 (01) (2016), 1650010.
  • [11] R. G. Cooke, Infinite matrices and sequence spaces. Courier Corporation (2014).
  • [12] S. Demiriz and O. Duyar, Domain of difference matrix of order one in some spaces of double sequences. arXiv preprint arXiv:1501.01113 (2015).
  • [13] O. Tuğ and F. Başar, Four-dimensional generalized difference matrix and some double sequence spaces. AIP Conference Proceedings. Vol. 1759. No. 1. AIP Publishing, 2016.
  • [14] O. Tuğ, Four-dimensional generalized difference matrix and some double sequence spaces. J. Inequal. Appl. 2017.1, 149(2017). https://doi.org/10.1186/s13660-017-1423-y.
  • [15] C. Çakan, B. Altay, M. Mursaleen, The σ\sigma-convergence and σ\sigma-core of double sequences. Appl. Math. Lett. 2006, 19, 387–399, doi:10.1016/j.aml.2005.12.003.
  • [16] M. Zeltser, M. Mursaleen and S. A. Mohiuddine, On almost conservative matrix methods for double sequence spaces, Publ. Math. Debrecen 75 (2009), 387?399.
  • [17] M. Yeşilkayagil, F. Başar, Mercerian theorm for four-dimensional matrices. Commun. Fac. Sci. Univ. Ank. Ser. A1A1 2016, 65, 147-155, doi:10.1501/Commua1_\_0000000750.
  • [18] O. Tuǧ, On almost B-summable double sequence spaces, J. Inequal. Appl. vol. 2018,1, 9(2018). https://doi.org/10.1186/s13660-017-1606-6
  • [19] O. Tuǧ, On the characterization of some classes of four-dimensional matrices and almost BB-summable double sequences, J. Math., vol. 2018, Article ID 1826485, 7 pages, 2018. https://doi.org/10.1155/2018/1826485.
  • [20] O. Tuǧ, Four-Dimensional Generalized Difference Matrix and Almost Convergent Double Sequence Spaces. In: Kalmenov T., Nursultanov E., Ruzhansky M., Sadybekov M. (eds) Functional Analysis in Interdisciplinary Applications. FAIA 2017. Springer Proceedings in Mathematics &\& Statistics, vol 216. Springer, Cham, 2017. https://doi.org/10.1007/978-3-319-67053-9_\_7.
  • [21] O. Tuǧ, On the Matrix Domain in the Sequence u\mathcal{L}_{u}, Eurasian Journal of Science and Engineering 3, no. 1: 204-211(2017). https://doi.org/10.23918/eajse.v3i1sip204
  • [22] O. Tuǧ, B(r,s,t,u)B(r,s,t,u)-summable Double Sequence Spaces and Matrix Transformations. Ph.D. Dissertation; University of Niš; Niš, Serbia, 2019. http://nardus.mpn.gov.rs/handle/123456789/12150.
  • [23] O. Tuǧ, The spaces of B(r,s,t,u)B(r,s,t,u) strongly almost convergent double sequences and matrix transformations, Bull. Sci. Math, 169(2021) https://doi.org/10.1016/j.bulsci.2021.102989.
  • [24] O. Tuǧ, V. Rakočevic̀ and E. Malkowsky, On the Domain of the Four-Dimensional Sequential Band Matrix in Some Double Sequence Spaces. Mathematics, 8, 789(2020). https://doi.org/10.3390/math8050789.
  • [25] O. Tuǧ, V. Rakočevic̀ and E. Malkowsky, On the Spaces 𝒱ϑ0\mathcal{BV}_{\vartheta 0} of Double Sequences of Bounded Variation, Under review.