This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

On the distribution of additive twists of the divisor function and Hecke eigenvalues

mayank pandey Department of Mathematics, Princeton University, Princeton, NJ 08540, USA [email protected]

1. Introduction

Let ff be an SL2()\operatorname{SL}_{2}(\mathbb{Z}) cusp form of weight kk, and suppose it has Fourier expansion

f(z)=n1λf(n)nk12e(nz)f(z)=\sum_{n\geqslant 1}\lambda_{f}(n)n^{\frac{k-1}{2}}e(nz)

for zz in the upper half plane. In this paper, one of our main objects of interest will be the exponential sum

Sf(α;X)=nXλf(n)e(nα).S_{f}(\alpha;X)=\sum_{n\leqslant X}\lambda_{f}(n)e(n\alpha).

Jutila [6] showed that this sum is O(X)O(\sqrt{X}) uniformly in α\alpha and therefore exhibits considerable oscillation. By Plancherel and (14.56) in [5]

(1.1) 01|Sf(α)|2𝑑α=nX|λf(n)|2=cfX+O(X3/5)\int_{0}^{1}|S_{f}(\alpha)|^{2}d\alpha=\sum_{n\leqslant X}|\lambda_{f}(n)|^{2}=c_{f}X+O(X^{3/5})

for some cf>0c_{f}>0, so it is clear that Jutila’s bound is sharp. By Hölder’s inequality, it follows from these estimates that for all s>0s>0

01|nXλf(n)e(nα)|s𝑑αXs2.\int_{0}^{1}\bigg{|}\sum_{n\leqslant X}\lambda_{f}(n)e(n\alpha)\bigg{|}^{s}d\alpha\asymp X^{\frac{s}{2}}.

It is desirable to know whether one can determine more information about the distribution of this exponential sum.

Another related exponential sum is

Sd(α;X)=nXd(n)e(nα)S_{d}(\alpha;X)=\sum_{n\leqslant X}d(n)e(n\alpha)

where

d(n)=d|n1d(n)=\sum_{d|n}1

is the divisor function.

The properties of this exponential sum are of interest in applications of the circle method. It behaves differently from the exponential sum Sf(α;X)S_{f}(\alpha;X) due to the positivity of its coefficients. For s>2s>2, due to this positivity, the contribution of α\alpha near 0 (and more generally near rationals with small denominator) determine the size of the LsL^{s} norm. Using the circle method, finding asymptotics of the form

01|Sd(α;X)|s𝑑αCsXs1(logX)s\int_{0}^{1}|S_{d}(\alpha;X)|^{s}d\alpha\sim C_{s}X^{s-1}(\log X)^{s}

is then quite straightforward. See [10] for a proof of this for higher divisor functions, where the situation is similar. Asymptotics in the case s=2s=2 quickly follow from Plancherel, as we have

01|Sd(α;X)|2𝑑α=nXd(n)21π2X(logX)3.\int_{0}^{1}|S_{d}(\alpha;X)|^{2}d\alpha=\sum_{n\leqslant X}d(n)^{2}\sim\frac{1}{\pi^{2}}X(\log X)^{3}.

Lower moments are significantly more difficult, as for s<2s<2 one expects a nontrivial contribution from the minor arcs as well. Until now, the only result for moments in this range was for the L1L^{1}-norm and due to Goldston and the author in [2], where it is shown that

X01|Sd(α)|𝑑αXlogX.\sqrt{X}\ll\int_{0}^{1}|S_{d}(\alpha)|d\alpha\ll\sqrt{X}\log X.

In this paper, we are able to find asymptotics for the LsL^{s}-norm of Sd(α;X)S_{d}(\alpha;X) for all 0<s<20<s<2. This, combined with the aforementioned results for higher moments resolves the problem of finding asymptotics for all moments of Sd(α;X)S_{d}(\alpha;X). Using the same method, we are able to show the following similar result for all moments of Sf(α;X)S_{f}(\alpha;X) as well in Theorem 1.

Theorem 1.

For 0<s<20<s<2, we have that for {d,f}\star\in{\left\{d,f\right\}}, with ff a holomorphic cusp form for SL2()\operatorname{SL}_{2}(\mathbb{Z})

01|S(α;X)|s𝑑α=CsXs2+O(Xs2η1s(2s))\int_{0}^{1}|S_{\star}(\alpha;X)|^{s}d\alpha=C_{s}^{\star}X^{\frac{s}{2}}+O(X^{\frac{s}{2}-\eta_{1}s(2-s)})

for some Cs,η1>0C_{s}^{\star},\eta_{1}>0. Furthermore, for s2s\geqslant 2, we also have that

01|Sf(α;X)|s𝑑α=CsfXs2+Os,f(Xs2η2)\int_{0}^{1}|S_{f}(\alpha;X)|^{s}d\alpha=C_{s}^{f}X^{\frac{s}{2}}+O_{s,f}(X^{\frac{s}{2}-\eta_{2}})

for some η2>0\eta_{2}>0.

This result has several interesting corollaries in the case =f\star=f. Note that from the bound Sf(α;X)XS_{f}(\alpha;X)\ll\sqrt{X}, (1.1), and Hölder, we have that exp(C1s)Csfexp(C2s)\exp(-C_{1}s)\leqslant C_{s}^{f}\leqslant\exp(C_{2}s) for some C1,C2>0C_{1},C_{2}>0. Then, by the method of moments (one may apply Theorem 9.2 in [4], for example), we obtain a limiting distribution for the magnitude of 1XSf(α;X)\frac{1}{\sqrt{X}}S_{f}(\alpha;X) sum as XX\to\infty.

Corollary 2.

Suppose ff is a holomorphic cusp form for SL2()\operatorname{SL}_{2}(\mathbb{Z}). Let AXA_{X} be the random variable given by

1X|nXλf(n)e(nα)|,\frac{1}{\sqrt{X}}\bigg{|}\sum_{n\leqslant X}\lambda_{f}(n)e(n\alpha)\bigg{|},

where α\alpha is chosen uniformly at random from [0,1][0,1]. Then, there is a random variable AA so that AXA_{X} converges to AA in distribution as XX\to\infty.

In particular, it follows that there exists a compactly supported measure μ\mu on [0,)[0,\infty) so that for any continuous f:[0,)f:[0,\infty)\to\mathbb{R}, we have that

limX01f(X12|nXλf(n)e(nα)|)𝑑α=f𝑑μ.\lim_{X\to\infty}\int_{0}^{1}f\bigg{(}X^{-\frac{1}{2}}\bigg{|}\sum_{n\leqslant X}\lambda_{f}(n)e(n\alpha)\bigg{|}\bigg{)}d\alpha=\int fd\mu.

If we restrict the second part of the main theorem to the case s=2rs=2r for rr a positive integer, we also obtain the following by orthogonality:

Corollary 3.

For all positive integers rr, we have that

n1++nr=m1++mrnr,,nr,m1,,mrXλf(n1)λf(nr)λf(m1)λf(mr)¯=Cf2rXr+O(Xrη2).\sum_{\begin{subarray}{c}n_{1}+\dots+n_{r}=m_{1}+\dots+m_{r}\\ n_{r},\dots,n_{r},m_{1},\dots,m_{r}\leqslant X\end{subarray}}\lambda_{f}(n_{1})\dots\lambda_{f}(n_{r})\overline{\lambda_{f}(m_{1})\dots\lambda_{f}(m_{r})}=C_{f}^{2r}X^{r}+O(X^{r-\eta_{2}}).

for some constant Cf2r>0C_{f}^{2r}>0.

Our proof of the main theorem proceeds via an iterative method, which we sketch below. For QX12+δQ\asymp X^{\frac{1}{2}+\delta}, the LsL^{s} integral may be approximated by

1Q2qQa(q)|S(aq;X)|s\frac{1}{Q^{2}}\sum_{q\sim Q}\mathop{\mathop{\sideset{}{{}^{*}}{\sum}}}_{a(q)}\bigg{|}S_{\star}\left(\frac{a}{q};X\right)\bigg{|}^{s}

up to some constant factor (the range of ss where this works depends on the choice of \star). In our case, we achieve this via a version of Jutila’s variant of the circle method in [7]. Applying Voronoi summation, this roughly reduces to dealing with

1Q2qQa(q)|S(aq;q2X)|s.\frac{1}{Q^{2}}\sum_{q\sim Q}\mathop{\mathop{\sideset{}{{}^{*}}{\sum}}}_{a(q)}\bigg{|}S_{\star}\left(\frac{a}{q};\frac{q^{2}}{X}\right)\bigg{|}^{s}.

Since qq is now much larger than the length of the sum, the inner sum amounts to integration over [0,1][0,1], and can be shown to be roughly

φ(q)01|S(α;q2X)|s𝑑α.\varphi(q)\int_{0}^{1}\bigg{|}S_{\star}{\left(\alpha;\frac{q^{2}}{X}\right)}\bigg{|}^{s}d\alpha.

Ignoring the factor of φ(q)\varphi(q) for purpose of this discussion, note the inner sum varies very little as qq varies by small amounts, and so one obtains that

1Q2qQa(q)|S(aq;q2X)|sc1Qq~Q01|S(α;q~2X)|s𝑑α𝑑q~\frac{1}{Q^{2}}\sum_{q\sim Q}\mathop{\mathop{\sideset{}{{}^{*}}{\sum}}}_{a(q)}\bigg{|}S_{\star}\left(\frac{a}{q};\frac{q^{2}}{X}\right)\bigg{|}^{s}\approx\frac{c_{1}}{Q}\int_{\tilde{q}\asymp Q}\int_{0}^{1}\bigg{|}S_{\star}{\left(\alpha;\frac{\tilde{q}^{2}}{X}\right)}|^{s}d\alpha d\tilde{q}

for some c1>0c_{1}>0. The same method applied starting with sums of length XXX^{\prime}\asymp X with Q=X/XQQ^{\prime}=\sqrt{X^{\prime}/X}Q yields the same quantity times (X/X)s2(X^{\prime}/X)^{\frac{s}{2}}. The following approximate functional equation is obtained:

Proposition 4.

For XX,0<s<2,{d,f}X\asymp X^{\prime},0<s<2,\star\in{\left\{d,f\right\}}, we have that for some η1>0\eta_{1}>0

(1.2) 01|1XS(α;X)|s𝑑α=01|1XS(α;X)|s𝑑α+O(Xη1s(2s)).\int_{0}^{1}\bigg{|}\frac{1}{\sqrt{X}}S_{\star}(\alpha;X)\bigg{|}^{s}d\alpha=\int_{0}^{1}\bigg{|}\frac{1}{\sqrt{X^{\prime}}}S_{\star}(\alpha;X^{\prime})\bigg{|}^{s}d\alpha+O(X^{-\eta_{1}s(2-s)}).

Furthermore, for s2s\geqslant 2, for some η2>0\eta_{2}>0, we have that

(1.3) 01|1XSf(α;X)|s𝑑α=01|1XSf(α;X)|s𝑑α+O(Xη2).\int_{0}^{1}\bigg{|}\frac{1}{\sqrt{X}}S_{f}(\alpha;X)\bigg{|}^{s}d\alpha=\int_{0}^{1}\bigg{|}\frac{1}{\sqrt{X^{\prime}}}S_{f}(\alpha;X^{\prime})\bigg{|}^{s}d\alpha+O(X^{-\eta_{2}}).

Iterating this yields the main theorem. The details of how this implies the main theorem are shown in Section 3, and the proof of Proposition 1.3 in Section 4. The next section is devoted to a few technical results that are used in the proof.

We remark that our result is related to a result of Jurkat and van Horne [8] in which a limiting distribution is found for magnitude of the exponential sum

|nXe(n2α)|.\bigg{|}\sum_{n\leqslant X}e(n^{2}\alpha)\bigg{|}.

Jurkat and van Horne’s methods appear to be quite different from ours, though both our result and their result involve applying a Farey dissection and using Poisson summation (Voronoi summation in our case) on what remains.

We expect that using our methods applied to the exponential sum with coefficients equal to 1χ41*\chi_{4}, with χ4\chi_{4} the character of conductor 44, we can strengthen Theorem 4 of [8]. Specifically, one has that for 0<s<40<s<4 and some δ>0\delta>0:

(1.4) 01|nXe(n2α)|s𝑑α=csXs/2+O(Xs2(1(4s)δ)),\int_{0}^{1}\bigg{|}\sum_{n\leqslant X}e(n^{2}\alpha)\bigg{|}^{s}d\alpha=c_{s}X^{s/2}+O(X^{\frac{s}{2}(1-(4-s)\delta)}),

with cαc_{\alpha} as in Theorem 4 of [8]. We expect our methods also apply to the case of exponential sums with coefficients the Fourier coefficients of Maass forms and half integral weight forms, as we use nothing about ff besides its modularity via Voronoi summation. Such improvements and generalizations should be straightforward and we leave the details to the interested reader.

1.1. Notation and conventions

As usual, we use Vinogradov’s notation ABA\ll B (equivalently BAB\gg A) to denote that |A|CB|A|\leqslant CB for some constant C>0C>0. When we use ε\varepsilon in a statement, we mean that the statement holds for all ε>0\varepsilon>0. For the purposes of this paper, this CC will depend only on f,s,εf,s,\varepsilon, unless specified otherwise. Any further dependencies will be specified in subscript beneath the \ll. We write ABA\asymp B to denote that AB,BAA\ll B,B\ll A. In addition, we write aAa\sim A to denote A<a2AA<a\leqslant 2A. We write

a(q)\mathop{\mathop{\sideset{}{{}^{*}}{\sum}}}_{a(q)}

to denote a sum over 0a<q0\leqslant a<q with (a,q)=1(a,q)=1. For convenience, for {d,f}\star\in{\left\{d,f\right\}}, we write

λ(n)={d(n)=dλf(n)=f.\lambda_{\star}(n)=\begin{cases}d(n)&\star=d\\ \lambda_{f}(n)&\star=f\end{cases}.

2. Standard technical lemmas

We shall use Voronoi summation as stated below, along with some properties of the integral transforms involved. These are well-known, and the final bounds follow from repeated integration by parts and trivial bounds (see §2 of [1], for example).

Proposition 5.

Let ww be smooth and supported on positive reals, q1q\geqslant 1 be prime, and (a,q)=1(a,q)=1. Then, we have

n1d(n)e(anq)\displaystyle\sum_{n\geqslant 1}d(n)e{\left(\frac{an}{q}\right)} w(nX)=1q(log(x/q2)+2γ)w(nX)𝑑x\displaystyle w{\left(\frac{n}{X}\right)}=\frac{1}{q}\int(\log(x/q^{2})+2\gamma)w{\left(\frac{n}{X}\right)}dx
+Xqn1d(n)e(a¯nq)dw(nq2/X),\displaystyle+\frac{X}{q}\sum_{n\geqslant 1}d(n)e{\left(-\frac{\overline{a}n}{q}\right)}\mathcal{I}_{d}w{\left(\frac{n}{q^{2}/X}\right)},
n1λf(n)e(anq)w(nX)=Xqn1λf(n)e(a¯nq)fw(nq2/X)\sum_{n\geqslant 1}\lambda_{f}(n)e{\left(\frac{an}{q}\right)}w{\left(\frac{n}{X}\right)}=\frac{X}{q}\sum_{n\geqslant 1}\lambda_{f}(n)e{\left(-\frac{\overline{a}n}{q}\right)}\mathcal{I}_{f}w{\left(\frac{n}{q^{2}/X}\right)}

where for {d,f},\star\in{\left\{d,f\right\}},

dw(x)=w(x)(4K0(4πx)2πY0(4πx))𝑑x,\mathcal{I}_{d}w(x)=\int w(x)(4K_{0}(4\pi\sqrt{x})-2\pi Y_{0}(4\pi\sqrt{x}))dx,
fw(x)=w(x)Jk1(4πx)𝑑x.\mathcal{I}_{f}w(x)=\int w(x)J_{k-1}(4\pi\sqrt{x})dx.

These transforms also satisfy the property that if ww is supported on values 1\asymp 1 and w(j)Hjw^{(j)}\ll H^{j} for j1j\geqslant 1, then w1\mathcal{I}_{\star}w\ll 1, and (w)(j)Hj(\mathcal{I}_{\star}w)^{(j)}\ll H^{j}. Also, for δ>0,|x|H1+δ\delta>0,|x|\geqslant H^{1+\delta}, we have that w(j)(x)δ,AHAw^{(j)}(x)\ll_{\delta,A}H^{-A}.

We shall also require and prove a modified version of Jutila’s circle method [7]. It slightly improves the error term of Jutila’s result slightly in some cases, at the cost of requiring a smoothing.

Proposition 6.

Let 𝒬\mathcal{Q} be a set of integers Q\asymp Q. Let Δ=HQ2\Delta=\frac{H}{Q^{2}} for some H1H\gg 1. Also, suppose that ϕ\phi is some nonzero smooth compactly supported function on \mathbb{R}. Write

L=q𝒬φ(q),L=\sum_{q\in\mathcal{Q}}\varphi(q),
χ~(α)=1ϕ^(0)ΔLq𝒬a(q)ϕ(Δ1(αa/q)).\tilde{\chi}(\alpha)=\frac{1}{\hat{\phi}(0)\Delta L}\sum_{q\in\mathcal{Q}}\mathop{\mathop{\sideset{}{{}^{*}}{\sum}}}_{a(q)}\phi(\Delta^{-1}(\alpha-a/q)).

Then, we have that

01|1χ~(α)|2𝑑αQ4HL2+Q2+εL2.\int_{0}^{1}|1-\tilde{\chi}(\alpha)|^{2}d\alpha\ll\frac{Q^{4}}{HL^{2}}+\frac{Q^{2+\varepsilon}}{L^{2}}.
Proof.

By Poisson summation, for (a,q)=1(a,q)=1 we have

ϕ(Δ1(αa/q))=Δϕ^(0)+Δ||>0ϕ^(Δ)e(aq)e(α),\phi(\Delta^{-1}(\alpha-a/q))=\Delta\hat{\phi}(0)+\Delta\sum_{|\ell|>0}\hat{\phi}(\Delta\ell)e\left(\frac{a\ell}{q}\right)e(-\ell\alpha),

so

χ~(α)1\displaystyle\tilde{\chi}(\alpha)-1 =1ϕ^(0)Lq𝒬a(q)||>0ϕ^(Δ)e(aq)e(α)\displaystyle=\frac{1}{\hat{\phi}(0)L}\sum_{q\in\mathcal{Q}}\mathop{\mathop{\sideset{}{{}^{*}}{\sum}}}_{a(q)}\sum_{|\ell|>0}\hat{\phi}(\Delta\ell)e\left(\frac{a\ell}{q}\right)e(-\ell\alpha)
=1ϕ^(0)L||>0ϕ^(Δ)e(α)q𝒬cq()\displaystyle=\frac{1}{\hat{\phi}(0)L}\sum_{|\ell|>0}\hat{\phi}(\Delta\ell)e(-\ell\alpha)\sum_{q\in\mathcal{Q}}c_{q}(\ell)

where

cq()=a(q)e(aq)c_{q}(\ell)=\mathop{\mathop{\sideset{}{{}^{*}}{\sum}}}_{a(q)}e\left(\frac{a\ell}{q}\right)

is the usual Ramanujan sum. Using the fact that cq()=d|(q,)μ(q/d)c_{q}(\ell)=\sum_{d|(q,\ell)}\mu(q/d), we obtain that

χ~(α)1=1L||>0ϕ^(Δ)e(α)d|dq1𝒬μ(q1).\tilde{\chi}(\alpha)-1=\frac{1}{L}\sum_{|\ell|>0}\hat{\phi}(\Delta\ell)e(\ell\alpha)\sum_{d|\ell}\sum_{dq_{1}\in\mathcal{Q}}\mu(q_{1}).

By Plancherel, and the bound ϕ^(t)A(1+|t|)A\hat{\phi}(t)\ll_{A}(1+|t|)^{-A} which holds for all A>0A>0, it follows that for some sufficiently large CC

01|χ~(α)1|2𝑑α\displaystyle\int_{0}^{1}|\tilde{\chi}(\alpha)-1|^{2}d\alpha =1ϕ^(0)2L2||>0|ϕ^(Δ)|2(d|dq1𝒬μ(q1))2\displaystyle=\frac{1}{\hat{\phi}(0)^{2}L^{2}}\sum_{|\ell|>0}|\hat{\phi}(\Delta\ell)|^{2}\bigg{(}\sum_{d|\ell}\sum_{dq_{1}\in\mathcal{Q}}\mu(q_{1})\bigg{)}^{2}
1L2||>0|ϕ^(Δ)|2(d|dQQd)2\displaystyle\ll\frac{1}{L^{2}}\sum_{|\ell|>0}|\hat{\phi}(\Delta\ell)|^{2}\bigg{(}\sum_{\begin{subarray}{c}d|\ell\\ d\ll Q\end{subarray}}\frac{Q}{d}\bigg{)}^{2}
1L2K1K10||KΔ1(d|dQQd)2.\displaystyle\ll\frac{1}{L^{2}}\sum_{K}\frac{1}{K^{10}}\sum_{|\ell|\leqslant K\Delta^{-1}}\bigg{(}\sum_{\begin{subarray}{c}d|\ell\\ d\ll Q\end{subarray}}\frac{Q}{d}\bigg{)}^{2}.

where KK runs over powers of two. Note that

||KΔ1(d|dQQd)2\displaystyle\sum_{|\ell|\leqslant K\Delta^{-1}}\bigg{(}\sum_{\begin{subarray}{c}d|\ell\\ d\ll Q\end{subarray}}\frac{Q}{d}\bigg{)}^{2} =d1,d2QQ2d1d2KΔ1[d1,d2]|1\displaystyle=\sum_{d_{1},d_{2}\ll Q}\frac{Q^{2}}{d_{1}d_{2}}\sum_{\begin{subarray}{c}\ell\leqslant K\Delta^{-1}\\ [d_{1},d_{2}]|\ell\end{subarray}}1
Kd1,d2QQ2d1d2(Δ1[d1,d2]+1)\displaystyle\leqslant K\sum_{d_{1},d_{2}\ll Q}\frac{Q^{2}}{d_{1}d_{2}}\cdot\bigg{(}\frac{\Delta^{-1}}{[d_{1},d_{2}]}+1\bigg{)}
KQ2Δ1d1,d2Q(d1,d2)d12d22+KQ2+ε\displaystyle\ll KQ^{2}\Delta^{-1}\sum_{d_{1},d_{2}\ll Q}\frac{(d_{1},d_{2})}{d_{1}^{2}d_{2}^{2}}+KQ^{2+\varepsilon}
KQ2Δ1d1,d2Q1d12d22a|(d1,d2)φ(a)+KQ2+ε\displaystyle\ll KQ^{2}\Delta^{-1}\sum_{d_{1},d_{2}\ll Q}\frac{1}{d_{1}^{2}d_{2}^{2}}\sum_{a|(d_{1},d_{2})}\varphi(a)+KQ^{2+\varepsilon}
KQ2Δ1aϕ(a)a3d1,d21d121d22+KQ2+ε\displaystyle\ll KQ^{2}\Delta^{-1}\sum_{a}\frac{\phi(a)}{a^{3}}\sum_{d_{1}^{\prime},d_{2}^{\prime}}\frac{1}{d_{1}^{\prime 2}}\frac{1}{d_{2}^{\prime 2}}+KQ^{2+\varepsilon}
K(Q2Δ1+Q2+ε).\displaystyle\ll K(Q^{2}\Delta^{-1}+Q^{2+\varepsilon}).

The desired result follows upon summing over KK. ∎

3. Proof of the main theorem

In this section, we prove the main theorem assuming Proposition 1.3, and in the following section, we prove Proposition 1.3. Iterating Proposition 1.3, we obtain that for all 0<s<2,YX0<s<2,Y\geqslant X

(3.1) 01|1XS(α;X)|s𝑑α=01|1YS(α;Y)|s𝑑α+O(Xη1s(2s))\int_{0}^{1}\bigg{|}\frac{1}{\sqrt{X}}S_{\star}(\alpha;X)\bigg{|}^{s}d\alpha=\int_{0}^{1}\bigg{|}\frac{1}{\sqrt{Y}}S_{\star}(\alpha;Y)\bigg{|}^{s}d\alpha+O(X^{-\eta_{1}s(2-s)})

and that for s2s\geqslant 2

(3.2) 01|1XSf(α;X)|s𝑑α=01|1YSf(α;Y)|s𝑑α+O(Xη2).\int_{0}^{1}\bigg{|}\frac{1}{\sqrt{X}}S_{f}(\alpha;X)\bigg{|}^{s}d\alpha=\int_{0}^{1}\bigg{|}\frac{1}{\sqrt{Y}}S_{f}(\alpha;Y)\bigg{|}^{s}d\alpha+O(X^{-\eta_{2}}).

In particular, the sequence

X01|1XnXλ(n)e(nα)|s𝑑αX\mapsto\int_{0}^{1}\bigg{|}\frac{1}{\sqrt{X}}\sum_{n\leqslant X}\lambda_{\star}(n)e(n\alpha)\bigg{|}^{s}d\alpha

is a Cauchy sequence for all s2s\geqslant 2 when =f\star=f and for 0<s<20<s<2 for general {d,f}\star\in{\left\{d,f\right\}}.

Taking the limit as YY\to\infty in (3.1) and (3.2), we have that for 0<s<2,{d,f}0<s<2,\star\in{\left\{d,f\right\}}

01|1XS(α;X)|s𝑑α=Cs+O(Xη1s(2s)).\int_{0}^{1}\bigg{|}\frac{1}{\sqrt{X}}S_{\star}(\alpha;X)\bigg{|}^{s}d\alpha=C_{s}^{\star}+O(X^{-\eta_{1}s(2-s)}).

for some constants Cs,η1>0C_{s}^{\star},\eta_{1}>0, and for s2s\geqslant 2

01|1XSf(α;X)|s𝑑α=Csf+O(Xη2)\int_{0}^{1}\bigg{|}\frac{1}{\sqrt{X}}S_{f}(\alpha;X)\bigg{|}^{s}d\alpha=C_{s}^{f}+O(X^{-\eta_{2}})

for some constants Csf,η2>0C_{s}^{f},\eta_{2}>0.

Thus, Theorem 1 follows if we can show that

(3.3) 01|1XS(α;X)|s𝑑α1\displaystyle\int_{0}^{1}\bigg{|}\frac{1}{\sqrt{X}}S_{\star}(\alpha;X)\bigg{|}^{s}d\alpha\gg 1 (s>0)\displaystyle(s>0)

(3.3) follows when =f\star=f from Hölder with the bounds Sf(α;X)XS_{f}(\alpha;X)\ll\sqrt{X} (Proposition 14) and (1.1). However, one does not have such bounds for SdS_{d}, so the rest of this section is dedicated to the case of =d\star=d.

In [2], it was shown that

(3.4) 01|Sd(α;X)|𝑑αX.\int_{0}^{1}|S_{d}(\alpha;X)|d\alpha\gg\sqrt{X}.

It follows from Hölder that (3.3) holds for s1s\geqslant 1. Thus, it remains to show:

Proposition 7.

We have

01|Sd(α;X)|s𝑑αXs2.\int_{0}^{1}|S_{d}(\alpha;X)|^{s}d\alpha\gg X^{\frac{s}{2}}.

for s<1s<1.

Proof.

The proof of this follows from Voronoi summation along with the large sieve to deal with the error terms introduced.

Let ww be some smooth function satisfying 𝟙[X110,1X110]w𝟙[1/X,1]\mathbbm{1}_{[X^{-\frac{1}{10}},1-X^{-\frac{1}{10}}]}\leqslant w\leqslant\mathbbm{1}_{[1/X,1]} with w(j)(x)jX110jw^{(j)}(x)\ll_{j}X^{\frac{1}{10}j} for all jj. We may then smooth Sd(α;X)S_{d}(\alpha;X) by replacing it with

S~d(α;X)=nd(n)e(nα)w(nX)\tilde{S}_{d}(\alpha;X)=\sum_{n}d(n)e(n\alpha)w{\left(\frac{n}{X}\right)}

since by Parseval and Cauchy-Schwarz

|01|Sd(α;X)|s|S~d(α;X)|sdα|01|n[1,X910][XX910,X]d(n)e(nα)(1w(nX))|s𝑑α(n[1,X910][XX910,X]d(n)2)s2X9s20+ε,\bigg{|}\int_{0}^{1}|S_{d}(\alpha;X)|^{s}-|\tilde{S}_{d}(\alpha;X)|^{s}d\alpha\bigg{|}\\ \leqslant\int_{0}^{1}\bigg{|}\sum_{n\in[1,X^{\frac{9}{10}}]\cup[X-X^{\frac{9}{10}},X]}d(n)e(n\alpha)\bigg{(}1-w{\left(\frac{n}{X}\right)}\bigg{)}\bigg{|}^{s}d\alpha\\ \leqslant\bigg{(}\sum_{n\in[1,X^{\frac{9}{10}}]\cup[X-X^{\frac{9}{10}},X]}d(n)^{2}\bigg{)}^{\frac{s}{2}}\ll X^{\frac{9s}{20}+\varepsilon},

which is an acceptable error. It thus remains to show that

01|S~d(α;X)|s𝑑αXs2.\int_{0}^{1}|\tilde{S}_{d}(\alpha;X)|^{s}d\alpha\gg X^{\frac{s}{2}}.

Take cc to be some sufficiently small constant. Then, we have that

01|Sd(α;X)|s𝑑αqcXa(q)cXcX|S~d(aq+β;X)|s𝑑β.\int_{0}^{1}|S_{d}(\alpha;X)|^{s}d\alpha\geqslant\sum_{q\sim c\sqrt{X}}\mathop{\mathop{\sideset{}{{}^{*}}{\sum}}}_{a(q)}\int_{-\frac{c}{X}}^{\frac{c}{X}}\bigg{|}\tilde{S}_{d}\bigg{(}\frac{a}{q}+\beta;X\bigg{)}\bigg{|}^{s}d\beta.

Now, note that by Proposition 5 (Voronoi summation), we have that

Sd(aq+β;X)=1q\displaystyle S_{d}\left(\frac{a}{q}+\beta;X\right)=\frac{1}{q} (log(x/q2)+2γ1)e(xβ)w(xX)𝑑x\displaystyle\int(\log(x/q^{2})+2\gamma-1)e(x\beta)w{\left(\frac{x}{X}\right)}dx
(3.5) +1qnd(n)e(a¯nq)dwβ(nq2/X).\displaystyle+\frac{1}{q}\sum_{n}d(n)e\left(-\frac{\overline{a}n}{q}\right)\mathcal{I}_{d}w_{\beta}{\left(\frac{n}{q^{2}/X}\right)}.

where

wβ(x)=w(x)e(xXβ).w_{\beta}(x)=w(x)e(xX\beta).

If cc is sufficiently small, then we have the bound Re(e(xβ))1c\operatorname{Re}(e(x\beta))\geqslant 1-c for 0xX,|β|cX0\leqslant x\leqslant X,|\beta|\leqslant\frac{c}{X}. Therefore, for qcXq\sim c\sqrt{X}, we have that

|\displaystyle\bigg{|}\int (log(x/q2)+2γ1)e(xβ)w(xX)dx|\displaystyle(\log(x/q^{2})+2\gamma-1)e(x\beta)w{\left(\frac{x}{X}\right)}dx\bigg{|}
(1c)q2XX910(log(x/q2)+2γ1)𝑑x1q2(log(q2/x)+2γ1)𝑑x\displaystyle\geqslant(1-c)\int_{q^{2}}^{X-X^{\frac{9}{10}}}(\log(x/q^{2})+2\gamma-1)dx-\int_{1}^{q^{2}}(\log(q^{2}/x)+2\gamma-1)dx
(1+O(c))X.\displaystyle\hskip 28.45274pt\geqslant(1+O(c))X.

We remark that for |β|cX|\beta|\leqslant\frac{c}{X} (which is so in our case), wβw_{\beta} satisfies the bounds

wβ(j)(x)X110jw_{\beta}^{(j)}(x)\ll X^{\frac{1}{10}j}

and also for 1/Xx11/X\leqslant x\leqslant 1

(3.6) wβ(x){X1101XxX110cX110x1X110X1101X110x1.w_{\beta}^{\prime}(x)\ll\begin{cases}X^{\frac{1}{10}}&\frac{1}{X}\leqslant x\leqslant X^{-\frac{1}{10}}\\ c&X^{-\frac{1}{10}}\leqslant x\leqslant 1-X^{-\frac{1}{10}}\\ X^{\frac{1}{10}}&1-X^{-\frac{1}{10}}\leqslant x\leqslant 1.\end{cases}

Note that the bounds on dwβ\mathcal{I}_{d}w_{\beta} given by Proposition 5 imply that the contribution of terms nX19n\geqslant X^{\frac{1}{9}} is AXA\ll_{A}X^{-A}. It follows from (3.5) that

|S~d(aq+β;X)|s(1+O(c))Xsqs1qsE(q,a;β)s+O(X2020)\bigg{|}\tilde{S}_{d}\left(\frac{a}{q}+\beta;X\right)\bigg{|}^{s}\geqslant(1+O(c))\frac{X^{s}}{q^{s}}-\frac{1}{q^{s}}E(q,a;\beta)^{s}+O(X^{-2020})

where

E(q,a;β)=|nX19d(n)e(a¯nq)dwβ(nq2/X)|.E(q,a;\beta)=\bigg{|}\sum_{n\leqslant X^{\frac{1}{9}}}d(n)e\left(-\frac{\overline{a}n}{q}\right)\mathcal{I}_{d}w_{\beta}{\left(\frac{n}{q^{2}/X}\right)}\bigg{|}.

By Hölder and the large sieve, we have that

a(q)E(q,a;β)s\displaystyle\mathop{\mathop{\sideset{}{{}^{*}}{\sum}}}_{a(q)}E(q,a;\beta)^{s} φ(q)1s2(a(q)E(q,a;β)2)s2\displaystyle\leqslant\varphi(q)^{1-\frac{s}{2}}\bigg{(}\mathop{\mathop{\sideset{}{{}^{*}}{\sum}}}_{a(q)}E(q,a;\beta)^{2}\bigg{)}^{\frac{s}{2}}
φ(q)(nX19d(n)2|dwβ(nq2/X)|2)s2.\displaystyle\ll\varphi(q)\bigg{(}\sum_{n\leqslant X^{\frac{1}{9}}}d(n)^{2}\bigg{|}\mathcal{I}_{d}w_{\beta}{\left(\frac{n}{q^{2}/X}\right)}\bigg{|}^{2}\bigg{)}^{\frac{s}{2}}.

Now, integrating by parts once yields that

dwβ(nq2/X)\displaystyle\mathcal{I}_{d}w_{\beta}{\left(\frac{n}{q^{2}/X}\right)} =wβ(xX)B0(4πnxq)𝑑x\displaystyle=\int w_{\beta}{\left(\frac{x}{X}\right)}B_{0}{\left(\frac{4\pi\sqrt{nx}}{q}\right)}dx
=q2πn1Xwβ(xX)B1(4πnxq)𝑑x.\displaystyle=\frac{q}{2\pi\sqrt{n}}\int\frac{1}{X}w_{\beta}^{\prime}{\left(\frac{x}{X}\right)}B_{1}{\left(\frac{4\pi\sqrt{nx}}{q}\right)}dx.

We have the standard bounds (see section 8.451 in [3], for example)

B1(x)x12\displaystyle B_{1}(x)\ll x^{-\frac{1}{2}} (x1),\displaystyle(x\gg 1),
B1(x)x1\displaystyle B_{1}(x)\ll x^{-1} (x1),\displaystyle(x\ll 1),

where we write Bν=4(1)νKν2πYνB_{\nu}=4(-1)^{\nu}K_{\nu}-2\pi Y_{\nu}, so it follows that

wβ(xX)B1(4πnxq)𝑑xqn1q2n1x|1Xwβ(xX)|𝑑x+qn14q2/nXX9101x14|1Xwβ(xX)|𝑑x+qn14XX910X1x14|1Xwβ(xX)|𝑑xqn14.\int w_{\beta}^{\prime}{\left(\frac{x}{X}\right)}B_{1}{\left(\frac{4\pi\sqrt{nx}}{q}\right)}dx\ll\frac{q}{\sqrt{n}}\int_{1}^{\frac{q^{2}}{n}}\frac{1}{\sqrt{x}}\bigg{|}\frac{1}{X}w_{\beta}^{\prime}{\left(\frac{x}{X}\right)}\bigg{|}dx\\ +\frac{q}{n^{\frac{1}{4}}}\int_{q^{2}/n}^{X-X^{\frac{9}{10}}}\frac{1}{x^{\frac{1}{4}}}\bigg{|}\frac{1}{X}w_{\beta}^{\prime}{\left(\frac{x}{X}\right)}\bigg{|}dx+\frac{q}{n^{\frac{1}{4}}}\int_{X-X^{\frac{9}{10}}}^{X}\frac{1}{x^{\frac{1}{4}}}\bigg{|}\frac{1}{X}w_{\beta}^{\prime}{\left(\frac{x}{X}\right)}\bigg{|}dx\ll\frac{q}{n^{\frac{1}{4}}}.

It follows that we have the bound

wβ(xX)B0(4πnxq)𝑑xq2n34.\int w_{\beta}{\left(\frac{x}{X}\right)}B_{0}{\left(\frac{4\pi\sqrt{nx}}{q}\right)}dx\ll\frac{q^{2}}{n^{\frac{3}{4}}}.

Therefore, it follows that

a(q)E(q,a;β)sφ(q)(qφ(q))s2(q2nX19d(n)2n34)s2φ(q)q2sqφ(q).\mathop{\mathop{\sideset{}{{}^{*}}{\sum}}}_{a(q)}E(q,a;\beta)^{s}\ll\varphi(q)\bigg{(}\frac{q}{\varphi(q)}\bigg{)}^{\frac{s}{2}}\bigg{(}q^{2}\sum_{n\leqslant X^{\frac{1}{9}}}d(n)^{2}n^{-\frac{3}{4}}\bigg{)}^{\frac{s}{2}}\ll\varphi(q)q^{2s}\cdot\frac{q}{\varphi(q)}.

It follows that so long as cc is sufficiently small, for qcXq\sim c\sqrt{X}

a(q)|S~d(aq+β;X)|s\displaystyle\mathop{\mathop{\sideset{}{{}^{*}}{\sum}}}_{a(q)}\bigg{|}\tilde{S}_{d}\left(\frac{a}{q}+\beta;X\right)\bigg{|}^{s} (1+O(c))φ(q)Xsqs+O(φ(q)qsqφ(q))\displaystyle\geqslant(1+O(c))\varphi(q)\frac{X^{s}}{q^{s}}+O\bigg{(}\varphi(q)q^{s}\frac{q}{\varphi(q)}\bigg{)}
φ(q)Xs2(12(2c)s+O(csqφ(q))).\displaystyle\geqslant\varphi(q)X^{\frac{s}{2}}\cdot\bigg{(}\frac{1}{2}(2c)^{-s}+O\bigg{(}c^{s}\frac{q}{\varphi(q)}\bigg{)}\bigg{)}.

We thus obtain that

01|S~d(aq+β;X)|s𝑑αXs2cXcXqcXφ(q)12(2c)s+O(csq)dβ+O(X2020).\int_{0}^{1}\bigg{|}\tilde{S}_{d}\left(\frac{a}{q}+\beta;X\right)\bigg{|}^{s}d\alpha\geqslant X^{\frac{s}{2}}\int_{-\frac{c}{X}}^{\frac{c}{X}}\sum_{q\sim c\sqrt{X}}\varphi(q)\frac{1}{2}(2c)^{-s}+O(c^{s}q)d\beta+O(X^{-2020}).

Since

qcXφ(q)=(1+o(1))9π2c2X,\sum_{q\sim c\sqrt{X}}\varphi(q)=(1+o(1))\frac{9}{\pi^{2}}c^{2}X,

we obtain

cXcXqcXφ(q)12(2c)s+O(csq)dβ(1+o(1))2c9π2c2(12(2c)s+O(cs)).\displaystyle\int_{-\frac{c}{X}}^{\frac{c}{X}}\sum_{q\sim c\sqrt{X}}\varphi(q)\frac{1}{2}(2c)^{-s}+O(c^{s}q)d\beta\geqslant(1+o(1))2c\frac{9}{\pi^{2}}c^{2}\bigg{(}\frac{1}{2}(2c)^{-s}+O(c^{s})\bigg{)}.

This is c,s1\gg_{c,s}1 for cc sufficiently small, so the desired result follows. ∎

4. Proof of Proposition 1.3

Instead of showing Proposition 1.3, we show Proposition 8, from which Proposition 1.3 clearly follows.

Proposition 8.

Let δ=1100\delta=\frac{1}{100}. Suppose that XXX^{\prime}\asymp X, and that X1X2δX_{1}\asymp X^{2\delta}. Also, suppose that κ>0\kappa>0 is sufficiently small. Then, for 0<s<20<s<2

01|1XnXλ(n)e(nα)|s𝑑α=2312t01|1tX1nλ(n)e(nα)w(nX1t2)|s𝑑α𝑑t+O(Xκs(2s)),\int_{0}^{1}\bigg{|}\frac{1}{\sqrt{X^{\prime}}}\sum_{n\leqslant X^{\prime}}\lambda_{\star}(n)e(n\alpha)\bigg{|}^{s}d\alpha\\ =\frac{2}{3}\int_{1}^{2}t\int_{0}^{1}\bigg{|}\frac{1}{t\sqrt{X_{1}}}\sum_{n}\lambda_{\star}(n)e(n\alpha){\mathcal{I}}_{\star}w{\left(\frac{n}{X_{1}t^{2}}\right)}\bigg{|}^{s}d\alpha dt+O(X^{-\kappa s(2-s)}),

and for s2s\geqslant 2, we have that

01|1XnXλf(n)e(nα)|s𝑑α=2312t01|1tX1nλf(n)e(nα)fw(nX1t2)|s𝑑α𝑑t+O(Xκ).\int_{0}^{1}\bigg{|}\frac{1}{\sqrt{X^{\prime}}}\sum_{n\leqslant X^{\prime}}\lambda_{f}(n)e(n\alpha)\bigg{|}^{s}d\alpha\\ =\frac{2}{3}\int_{1}^{2}t\int_{0}^{1}\bigg{|}\frac{1}{t\sqrt{X_{1}}}\sum_{n}\lambda_{f}(n)e(n\alpha){\mathcal{I}}_{f}w{\left(\frac{n}{X_{1}t^{2}}\right)}\bigg{|}^{s}d\alpha dt+O(X^{-\kappa}).

We now proceed to prove Proposition 8 in the remainder of this section. After some initial setup, we shall show (8), (8) separately. The proofs of the two are largely similar, with (8) being slightly simpler.

Let δ1=δ100\delta_{1}=\delta^{100}. Let ww be some smooth function satisfying 𝟙[Xδ1,1Xδ1]w𝟙[C/X,1]\mathbbm{1}_{[X^{-\delta_{1}},1-X^{-\delta_{1}}]}\leqslant w\leqslant\mathbbm{1}_{[C/X,1]} for some C>0C>0 with w(j)(x)jXδ1jw^{(j)}(x)\ll_{j}X^{\delta_{1}j} for all jj. Then, let

Is=01|1Xnλ(n)e(nα)w(nX)|s𝑑α.I_{\star}^{s}=\int_{0}^{1}\bigg{|}\frac{1}{\sqrt{X^{\prime}}}\sum_{n}\lambda_{\star}(n)e(n\alpha)w{\left(\frac{n}{X^{\prime}}\right)}\bigg{|}^{s}d\alpha.

We shall use the following lemma to show that working with this smoothed exponential sum results in an acceptable loss.

Lemma 9.

We have that for 0<s<20<s<2

(4.4) Is01|1XnXλ(n)e(nα)|s𝑑αXδ14s+ε.I_{\star}^{s}-\int_{0}^{1}\bigg{|}\frac{1}{\sqrt{X^{\prime}}}\sum_{n\leqslant X^{\prime}}\lambda_{\star}(n)e(n\alpha)\bigg{|}^{s}d\alpha\ll X^{-\frac{\delta_{1}}{4}s+\varepsilon}.

Furthermore, for s2s\geqslant 2

(4.5) Ifs01|1XnXλf(n)e(nα)|s𝑑αXδ1+ε.I_{f}^{s}-\int_{0}^{1}\bigg{|}\frac{1}{\sqrt{X^{\prime}}}\sum_{n\leqslant X^{\prime}}\lambda_{f}(n)e(n\alpha)\bigg{|}^{s}d\alpha\ll X^{-\delta_{1}+\varepsilon}.
Proof.

For s1s\leqslant 1, we have the inequality ||x|s|y|s||xy|s||x|^{s}-|y|^{s}|\leqslant|x-y|^{s} for any x,yx,y\in\mathbb{C} so it follows by Cauchy-Schwarz and the bound |λ(n)|d(n)|\lambda_{\star}(n)|\leqslant d(n) that

Is01\displaystyle I_{\star}^{s}-\int_{0}^{1} |1XnXλ(n)e(nα)|sdα\displaystyle\bigg{|}\frac{1}{\sqrt{X^{\prime}}}\sum_{n\leqslant X^{\prime}}\lambda_{\star}(n)e(n\alpha)\bigg{|}^{s}d\alpha
01|1Xn[0,XXδ1][XXXδ1,X]λ(n)e(nα)(1w(nX))|s𝑑α\displaystyle\ll\int_{0}^{1}\bigg{|}\frac{1}{\sqrt{X^{\prime}}}\sum_{n\in[0,X^{\prime}X^{-\delta_{1}}]\cup[X^{\prime}-X^{\prime}X^{-\delta_{1}},X^{\prime}]}\lambda_{\star}(n)e(n\alpha)\bigg{(}1-w{\left(\frac{n}{X^{\prime}}\right)}\bigg{)}\bigg{|}^{s}d\alpha
(4.6) Xδ12s+ε.\displaystyle\hskip 56.9055pt\ll X^{-\frac{\delta_{1}}{2}s+\varepsilon}.

Now, for 1<s21<s\leqslant 2, by Hölder and Plancherel, we have

Is1,01|1XnXλ(n)e(nα)|s1𝑑αXε.I_{\star}^{s-1},\int_{0}^{1}\bigg{|}\frac{1}{\sqrt{X^{\prime}}}\sum_{n\leqslant X^{\prime}}\lambda_{\star}(n)e(n\alpha)\bigg{|}^{s-1}d\alpha\ll X^{\varepsilon}.

For 1<s1<s, we also have that ||x|s|y|s|(|x|s1+|y|s1)|xy|||x|^{s}-|y|^{s}|\ll(|x|^{s-1}+|y|^{s-1})|x-y|, so for 1<s<21<s<2, we have

Is\displaystyle I_{\star}^{s} 01|1XnXλ(n)e(nα)|s𝑑α\displaystyle-\int_{0}^{1}\bigg{|}\frac{1}{\sqrt{X^{\prime}}}\sum_{n\leqslant X^{\prime}}\lambda_{\star}(n)e(n\alpha)\bigg{|}^{s}d\alpha
Xε01|1Xn[0,XXδ1][XXXδ1,X]λ(n)e(nα)(1w(nX))|𝑑α\displaystyle\ll X^{\varepsilon}\int_{0}^{1}\bigg{|}\frac{1}{\sqrt{X^{\prime}}}\sum_{n\in[0,X^{\prime}X^{-\delta_{1}}]\cup[X^{\prime}-X^{\prime}X^{-\delta_{1}},X^{\prime}]}\lambda_{\star}(n)e(n\alpha)\bigg{(}1-w{\left(\frac{n}{X^{\prime}}\right)}\bigg{)}\bigg{|}d\alpha
(4.7) Xδ12+ε.\displaystyle\ll X^{-\frac{\delta_{1}}{2}+\varepsilon}.

Combining (4.6), (4.7), we obtain (4.4).

To show (4.5), note that we have that by Proposition 14 and partial summation

1Xnλf(n)e(nα)w(nX),1XnXλf(n)e(nα)1.\frac{1}{\sqrt{X^{\prime}}}\sum_{n}\lambda_{f}(n)e(n\alpha)w{\left(\frac{n}{X^{\prime}}\right)},\frac{1}{\sqrt{X^{\prime}}}\sum_{n\leqslant X^{\prime}}\lambda_{f}(n)e(n\alpha)\ll 1.

Then, for s2s\geqslant 2 we obtain from Cauchy-Schwarz and Plancherel that

Ifs\displaystyle I_{f}^{s} 01|1XnXλ(n)e(nα)|s𝑑α\displaystyle-\int_{0}^{1}\bigg{|}\frac{1}{\sqrt{X^{\prime}}}\sum_{n\leqslant X^{\prime}}\lambda_{\star}(n)e(n\alpha)\bigg{|}^{s}d\alpha
1X01|n[0,XXδ1][XXXδ1,X]λ(n)e(nα)(1w(nX))|s𝑑α\displaystyle\ll\frac{1}{\sqrt{X^{\prime}}}\int_{0}^{1}\bigg{|}\sum_{n\in[0,X^{\prime}X^{-\delta_{1}}]\cup[X^{\prime}-X^{\prime}X^{-\delta_{1}},X^{\prime}]}\lambda_{\star}(n)e(n\alpha)\bigg{(}1-w{\left(\frac{n}{X^{\prime}}\right)}\bigg{)}\bigg{|}^{s}d\alpha
Xδ12+ε\displaystyle\ll X^{-\frac{\delta_{1}}{2}+\varepsilon}

so (4.5) follows from Cauchy-Schwarz and Plancherel. ∎

4.1. Proof of (8)

At this point we require the following estimate.

Lemma 10.

Suppose that

QX12+δ,L=qQφ(q).Q\asymp X^{\frac{1}{2}+\delta},L=\sum_{q\sim Q}\varphi(q).

Then, we have that for 0<s<20<s<2

(4.8) Is=1LqQa(q)|nλ(n)e(anq)w(nX)|s+O(Xδ4s(2s)+ε).I_{\star}^{s}=\frac{1}{L}\sum_{q\sim Q}\mathop{\mathop{\sideset{}{{}^{*}}{\sum}}}_{a(q)}\bigg{|}\sum_{n}\lambda_{\star}(n)e{\left(\frac{an}{q}\right)}w{\left(\frac{n}{X}\right)}\bigg{|}^{s}+O(X^{-\frac{\delta}{4}s(2-s)+\varepsilon}).
Proof.

Let ϕ\phi be some nonzero smooth function supported on [1,2][1,2] with ϕ=1\int\phi=1, and let

H=Xδ,Δ=HQ2,H=X^{\delta},\Delta=\frac{H}{Q^{2}},
χ~(α)=1ΔLqQa(q)ϕ(Δ1(αa/q)).\tilde{\chi}(\alpha)=\frac{1}{\Delta L}\sum_{q\sim Q}\mathop{\mathop{\sideset{}{{}^{*}}{\sum}}}_{a(q)}\phi(\Delta^{-1}(\alpha-a/q)).

Since the fractions {aq:q𝒬,(a,q)=1}{\left\{\frac{a}{q}:q\in\mathcal{Q},(a,q)=1\right\}} are at least Q2Q^{-2}-spaced, we have the bound

χ~(α)1LΔ(1+ΔQ2)Qε\tilde{\chi}(\alpha)\ll\frac{1}{L\Delta}\cdot(1+\Delta Q^{2})\ll Q^{\varepsilon}

as LQ2L\gg Q^{2}.

Now, let

I~s=01|1Xnλ(n)e(nα)w(nX)|sχ~(α)𝑑α.\tilde{I}_{\star}^{s}=\int_{0}^{1}\bigg{|}\frac{1}{\sqrt{X^{\prime}}}\sum_{n}\lambda_{\star}(n)e(n\alpha)w{\left(\frac{n}{X^{\prime}}\right)}\bigg{|}^{s}\tilde{\chi}(\alpha)d\alpha.

By Hölder, we have that

|IsI~s|(01|1XS(α;X)|2𝑑α)s2(01|1χ~(α)|s2s𝑑α)1s2.|I_{\star}^{s}-\tilde{I}_{\star}^{s}|\leqslant\bigg{(}\int_{0}^{1}\bigg{|}\frac{1}{\sqrt{X^{\prime}}}S_{\star}(\alpha;X^{\prime})\bigg{|}^{2}d\alpha\bigg{)}^{\frac{s}{2}}\bigg{(}\int_{0}^{1}|1-\tilde{\chi}(\alpha)|^{\frac{s}{2-s}}d\alpha\bigg{)}^{1-\frac{s}{2}}.

Note that for 0<s<20<s<2, we have that s2ss2\frac{s}{2-s}\geqslant\frac{s}{2}. By Plancherel and our pointwise bound on χ~\tilde{\chi}, it follows that the above is

Xε(01|1χ~(α)|s2𝑑α)1s2.\ll X^{\varepsilon}\bigg{(}\int_{0}^{1}|1-\tilde{\chi}(\alpha)|^{\frac{s}{2}}d\alpha\bigg{)}^{1-\frac{s}{2}}.

By Proposition 6 and Hölder, we may therefore conclude that

(4.9) |IsI~s|Xδ4s(2s)+ε.|I_{\star}^{s}-\tilde{I}_{\star}^{s}|\ll X^{-\frac{\delta}{4}s(2-s)+\varepsilon}.

By the definition of χ~\tilde{\chi}, we have that

I~s=12ϕ(t)qQa(q)|1Xnλ(n)e(anq)e(ntΔ)w(nX)|sdt.\tilde{I}_{\star}^{s}=\int_{1}^{2}\phi(t)\sum_{q\sim Q}\mathop{\mathop{\sideset{}{{}^{*}}{\sum}}}_{a(q)}\bigg{|}\frac{1}{\sqrt{X^{\prime}}}\sum_{n}\lambda_{\star}(n)e{\left(\frac{an}{q}\right)}e(nt\Delta)w{\left(\frac{n}{X^{\prime}}\right)}\bigg{|}^{s}dt.

Now, note that for all β[Δ,2Δ]\beta\in[\Delta,2\Delta], we have that

1Xnλ(n)e(anq)e(nβ)w(nX)=1Xe(Xβ)nλ(n)e(anq)w(nX)+O(XΔE(q,a,β)),\frac{1}{\sqrt{X^{\prime}}}\sum_{n}\lambda_{\star}(n)e{\left(\frac{an}{q}\right)}e(n\beta)w{\left(\frac{n}{X^{\prime}}\right)}\\ =\frac{1}{\sqrt{X^{\prime}}}e(X^{\prime}\beta)\sum_{n}\lambda_{\star}(n)e{\left(\frac{an}{q}\right)}w{\left(\frac{n}{X^{\prime}}\right)}+O(X\Delta E(q,a,\beta)),

where

E(q,a,β)=supI[1,X]|1XnIλ(n)e(anq)w(nX)|.E(q,a,\beta)=\sup_{I\subset[1,X^{\prime}]}\bigg{|}\frac{1}{\sqrt{X^{\prime}}}\sum_{n\in I}\lambda_{\star}(n)e{\left(\frac{an}{q}\right)}w{\left(\frac{n}{X^{\prime}}\right)}\bigg{|}.

In general, for positive A,BA,B, we have the inequality (A+O(B))s=As+O(Bs+Asmin(1,s)Bmin(1,s))(A+O(B))^{s}=A^{s}+O(B^{s}+A^{s-\min(1,s)}B^{\min(1,s)}). It follows that

|1Xnλ(n)e(anq)e(nβ)w(nX)|s=|1Xnλ(n)e(anq)w(nX)|s\bigg{|}\frac{1}{\sqrt{X^{\prime}}}\sum_{n}\lambda_{\star}(n)e{\left(\frac{an}{q}\right)}e(n\beta)w{\left(\frac{n}{X^{\prime}}\right)}\bigg{|}^{s}=\bigg{|}\frac{1}{\sqrt{X^{\prime}}}\sum_{n}\lambda_{\star}(n)e{\left(\frac{an}{q}\right)}w{\left(\frac{n}{X^{\prime}}\right)}\bigg{|}^{s}

plus an error that is

(XΔ)sE(q,a,β)s.\ll(X\Delta)^{s}E(q,a,\beta)^{s}.

if s1s\leqslant 1 and

(XΔ)s\displaystyle\ll(X\Delta)^{s} E(q,a,β)s+(XΔ)E(q,a,β)|nλ(n)e(anq)w(nX)|s1\displaystyle E(q,a,\beta)^{s}+(X\Delta)E(q,a,\beta)\bigg{|}\sum_{n}\lambda_{\star}(n)e{\left(\frac{an}{q}\right)}w{\left(\frac{n}{X^{\prime}}\right)}\bigg{|}^{s-1}
(XΔ)s2E(q,a,β)s\displaystyle\ll(X\Delta)^{\frac{s}{2}}E(q,a,\beta)^{s}

if 1<s<21<s<2. Since (XΔ)Xδ(X\Delta)\ll X^{-\delta}, we have that both of these error terms are

(XΔ)s2(E(q,a,β)s+|1Xnλ(n)e(anq)w(nX)|s).\ll(X\Delta)^{\frac{s}{2}}\bigg{(}E(q,a,\beta)^{s}+\bigg{|}\frac{1}{\sqrt{X^{\prime}}}\sum_{n}\lambda_{\star}(n)e{\left(\frac{an}{q}\right)}w{\left(\frac{n}{X^{\prime}}\right)}\bigg{|}^{s}\bigg{)}.

At this point, we shall use a maximal version of the large sieve of Montgomery (see Theorem 2 of [9]), which we state below:

Proposition 11 (Maximal large sieve, [9]).

For any sequence a:a:\mathbb{N}\to\mathbb{C} supported on an interval II of length NN, and η\eta-separated frequencies α1,,αR\alpha_{1},\dots,\alpha_{R}, we have that

rRsupJI|nJa(n)e(nαr)|2(η1+N)n|a(n)|2\sum_{r\leqslant R}\sup_{J\subset I}\bigg{|}\sum_{n\in J}a(n)e(n\alpha_{r})\bigg{|}^{2}\ll(\eta^{-1}+N)\sum_{n}|a(n)|^{2}

where JJ ranges over subintervals of II

Then, by Hölder and the maximal large sieve, we have that

(4.10) 1φ(q)a(q)E(q,a,β)s+|1Xnλ(n)e(anq)w(nX)|sXε.\frac{1}{\varphi(q)}\mathop{\mathop{\sideset{}{{}^{*}}{\sum}}}_{a(q)}E(q,a,\beta)^{s}+\bigg{|}\frac{1}{\sqrt{X}^{\prime}}\sum_{n}\lambda_{\star}(n)e{\left(\frac{an}{q}\right)}w{\left(\frac{n}{X^{\prime}}\right)}\bigg{|}^{s}\ll X^{\varepsilon}.

Combining the above with (4.9), we obtain that

(4.11) Is=qQa(q)|1Xnλ(n)e(anq)w(nX)|s+O(Xδ4s(2s)+ε).I_{\star}^{s}=\sum_{q\sim Q}\mathop{\mathop{\sideset{}{{}^{*}}{\sum}}}_{a(q)}\bigg{|}\frac{1}{\sqrt{X^{\prime}}}\sum_{n}\lambda_{\star}(n)e{\left(\frac{an}{q}\right)}w{\left(\frac{n}{X^{\prime}}\right)}\bigg{|}^{s}+O(X^{-\frac{\delta}{4}s(2-s)+\varepsilon}).

Now, take Q=(XX1)12Q=(X^{\prime}X_{1})^{\frac{1}{2}}, and suppose that qQq\sim Q.

By Proposition 5, we have that (noting that the main term in the case of =d\star=d can be easily absorbed into the error term)

1Xnλ(n)e(anq)w(nX)=1X1(q/Q)2nλ(n)e(a¯nq)w(nX1(q/Q)2)+O(Xδs2+ε).\frac{1}{\sqrt{X^{\prime}}}\sum_{n}\lambda_{\star}(n)e{\left(\frac{an}{q}\right)}w{\left(\frac{n}{X^{\prime}}\right)}\\ =\frac{1}{\sqrt{X_{1}(q/Q)^{2}}}\sum_{n}\lambda_{\star}(n)e{\left(-\frac{\overline{a}n}{q}\right)}\mathcal{I}_{\star}w{\left(\frac{n}{X_{1}(q/Q)^{2}}\right)}+O(X^{-\frac{\delta s}{2}+\varepsilon}).

From the properties of IwI_{\star}w noted in Proposition 5, we have that w(x)\mathcal{I}_{\star}w(x) is AXA\ll_{A}X^{-A} for xX2δ1x\geqslant X^{2\delta_{1}}. Furthermore, we have the trivial bound w(x)1\mathcal{I}_{\star}w(x)\ll 1, and (w)(j)(x)Xδ1(\mathcal{I}_{\star}w)^{(j)}(x)\ll X^{\delta_{1}} for j1j\geqslant 1.

Thus, noting that aa¯a\mapsto-\overline{a} is a permutation of (/q)×(\mathbb{Z}/q\mathbb{Z})^{\times}, combining the above with Lemma 4.8 (observing that Q2/X=X1Q^{2}/X^{\prime}=X_{1})

Is=1LqQa(q)|1X1(q/Q)2nX1X2δ1λ(n)e(anq)w(nX1(q/Q)2)|s+O(Xδ4s(2s)+ε).I_{\star}^{s}=\frac{1}{L}\sum_{q\sim Q}\mathop{\mathop{\sideset{}{{}^{*}}{\sum}}}_{a(q)}\bigg{|}\frac{1}{\sqrt{X_{1}(q/Q)^{2}}}\sum_{n\leqslant X_{1}X^{2\delta_{1}}}\lambda_{\star}(n)e{\left(\frac{an}{q}\right)}\mathcal{I}_{\star}w{\left(\frac{n}{X_{1}(q/Q)^{2}}\right)}\bigg{|}^{s}\\ +O(X^{-\frac{\delta}{4}s(2-s)+\varepsilon}).

We now deal with the inner sum with the following lemma, which amounts to the observation that averaging the exponential sum over fractions aq\frac{a}{q} with (a,q)=1,0<a<q(a,q)=1,0<a<q is essentially integration over [0,1][0,1]. This is because these fractions are equidistributed on scales much smaller than the reciprocal of the length of the exponential sum since qq is large.

This observation is stated more generally in the following lemma.

Lemma 12.

Suppose that a:a:\mathbb{N}\to\mathbb{C} is a sequence of complex numbers satisfying |a(n)|nε|a(n)|\ll n^{\varepsilon}. Then, if qY10q\geqslant Y^{10}, 0<s<20<s<2, we have that

1φ(q)a(q)|1YnYa(n)e(anq)|s=01|1YnYa(n)e(nα)|s𝑑α+O(Ys).\frac{1}{\varphi(q)}\mathop{\mathop{\sideset{}{{}^{*}}{\sum}}}_{a(q)}\bigg{|}\frac{1}{\sqrt{Y}}\sum_{n\leqslant Y}a(n)e{\left(\frac{an}{q}\right)}\bigg{|}^{s}=\int_{0}^{1}\bigg{|}\frac{1}{\sqrt{Y}}\sum_{n\leqslant Y}a(n)e(n\alpha)\bigg{|}^{s}d\alpha+O(Y^{-s}).

It should be possible to show this for qY1+εq\geqslant Y^{1+\varepsilon} for any ε>0\varepsilon>0 (and an error of YcεsY^{-c\varepsilon s}), though our result suffices.

To prove this lemma, we first prove the following crude result on the equidistribution of reduced residue classes in short intervals.

Lemma 13.

For q1,H1q\geqslant 1,H\geqslant 1, we have that

Nq([x,x+H])=φ(q)qH+O(d(q)).N_{q}([x,x+H])=\frac{\varphi(q)}{q}H+O(d(q)).

where

Nq(I)=nI(n,q)=11N_{q}(I)=\sum_{\begin{subarray}{c}n\in I\\ (n,q)=1\end{subarray}}1
Proof.

By Möbius inversion, we have that for any D1D\geqslant 1

xnx+H(n,q)=11\displaystyle\sum_{\begin{subarray}{c}x\leqslant n\leqslant x+H\\ (n,q)=1\end{subarray}}1 =xnx+H(n,q)=1d|nd|qμ(d)\displaystyle=\sum_{\begin{subarray}{c}x\leqslant n\leqslant x+H\\ (n,q)=1\end{subarray}}\sum_{\begin{subarray}{c}d|n\\ d|q\end{subarray}}\mu(d)
=d|qμ(d)xnx+Hd|n1\displaystyle=\sum_{d|q}\mu(d)\sum_{\begin{subarray}{c}x\leqslant n\leqslant x+H\\ d|n\end{subarray}}1
=d|qμ(d)(Hd+O(1))=Hd|qμ(d)d+O(d(q)).\displaystyle=\sum_{d|q}\mu(d)\left(\frac{H}{d}+O(1)\right)=H\sum_{d|q}\frac{\mu(d)}{d}+O(d(q)).

The desired result follows upon noting that φ(q)q=d|qμ(d)d\frac{\varphi(q)}{q}=\sum_{d|q}\frac{\mu(d)}{d}. ∎

Proof of Lemma 12.

First, note that for all |β|q12|\beta|\leqslant q^{-\frac{1}{2}}, we have that

nYa(n)e(anq)e(nβ)=nYa(n)e(anq)+O(Y2|β|).\sum_{n\leqslant Y}a(n)e{\left(\frac{an}{q}\right)}e(n\beta)=\sum_{n\leqslant Y}a(n)e{\left(\frac{an}{q}\right)}+O(Y^{2}|\beta|).

From our bound on |β||\beta|, the error term then must be Y3\leqslant Y^{-3}. It follows from Lemma 13 that

1φ(q)\displaystyle\frac{1}{\varphi(q)} a(q)|1YnYa(n)e(anq)|s\displaystyle\mathop{\mathop{\sideset{}{{}^{*}}{\sum}}}_{a(q)}\bigg{|}\frac{1}{\sqrt{Y}}\sum_{n\leqslant Y}a(n)e{\left(\frac{an}{q}\right)}\bigg{|}^{s}
=1φ(q)a(q)q120q12|1YnYa(n)e(anq)e(nβ)|s𝑑α+O(Ys)\displaystyle=\frac{1}{\varphi(q)}\mathop{\mathop{\sideset{}{{}^{*}}{\sum}}}_{a(q)}q^{\frac{1}{2}}\int_{0}^{q^{-\frac{1}{2}}}\bigg{|}\frac{1}{\sqrt{Y}}\sum_{n\leqslant Y}a(n)e{\left(\frac{an}{q}\right)}e(n\beta)\bigg{|}^{s}d\alpha+O(Y^{-s})
=q12φ(q)01|1YnYa(n)e(nα)|sNq([qα,qα+q12])𝑑α+O(Ys)\displaystyle=\frac{q^{\frac{1}{2}}}{\varphi(q)}\int_{0}^{1}\bigg{|}\frac{1}{\sqrt{Y}}\sum_{n\leqslant Y}a(n)e(n\alpha)\bigg{|}^{s}N_{q}([q\alpha,q\alpha+q^{\frac{1}{2}}])d\alpha+O(Y^{-s})
=01|1YnYa(n)e(nα)|s𝑑α+O(q1+ε01|1YnYa(n)e(nα)|s𝑑α).\displaystyle=\int_{0}^{1}\bigg{|}\frac{1}{\sqrt{Y}}\sum_{n\leqslant Y}a(n)e(n\alpha)\bigg{|}^{s}d\alpha+O\bigg{(}q^{-1+\varepsilon}\int_{0}^{1}\bigg{|}\frac{1}{\sqrt{Y}}\sum_{n\leqslant Y}a(n)e(n\alpha)\bigg{|}^{s}d\alpha\bigg{)}.

By Hölder, the error is at most q1+εq^{-1+\varepsilon}, and the desired result follows. ∎

Applying Lemma 12, we obtain that for 0<s<20<s<2

Is=1LqQφ(q)01|1X1(q/Q)2\displaystyle I_{\star}^{s}=\frac{1}{L}\sum_{q\sim Q}\varphi(q)\int_{0}^{1}\bigg{|}\frac{1}{\sqrt{X_{1}(q/Q)^{2}}} nX1X2δ1λ(n)e(nα)w(nX1(q/Q)2)|sdα\displaystyle\sum_{n\leqslant X_{1}X^{2\delta_{1}}}\lambda_{\star}(n)e(n\alpha)\mathcal{I}_{\star}w{\left(\frac{n}{X_{1}(q/Q)^{2}}\right)}\bigg{|}^{s}d\alpha
(4.12) +O(Xδ4s(2s)+ε).\displaystyle+O(X^{-\frac{\delta}{4}s(2-s)+\varepsilon}).

We now show that the sum over qQq\sim Q may be turned into an integral over [Q,2Q][Q,2Q] at a small loss. We first eliminate the φ(q)\varphi(q) at the cost of averaging over qq in a short interval. To see that this is so, consider some qQq\sim Q and a real q~[Q,2Q]\tilde{q}\in[Q,2Q]. Then, we have that

1X1(q/Q)2=1X1(q~/Q)2+O(|qq~|1QX1).\frac{1}{\sqrt{X_{1}(q/Q)^{2}}}=\frac{1}{\sqrt{X_{1}(\tilde{q}/Q)^{2}}}+O\bigg{(}|q-\tilde{q}|\frac{1}{Q\sqrt{X_{1}}}\bigg{)}.

Note that QX1X120Q\sqrt{X_{1}}\gg X_{1}^{20}. We also have that from the derivative bounds on w\mathcal{I}_{\star}w that for nX1X2δ1n\leqslant X_{1}X^{2\delta_{1}}

w(nX1(q/Q)2)w(nX1(q~/Q)2)|qq~|X3δ1Q.\mathcal{I}_{\star}w{\left(\frac{n}{X_{1}(q/Q)^{2}}\right)}-\mathcal{I}_{\star}w{\left(\frac{n}{X_{1}(\tilde{q}/Q)^{2}}\right)}\ll|q-\tilde{q}|\cdot\frac{X^{3\delta_{1}}}{Q}.

Then, for all α\alpha\in\mathbb{R}

1X1(q/Q)2nX1X2δ1λ(n)e(nα)w(nX1(q/Q)2)\displaystyle\frac{1}{\sqrt{X_{1}(q/Q)^{2}}}\sum_{n\leqslant X_{1}X^{2\delta_{1}}}\lambda_{\star}(n)e(n\alpha)\mathcal{I}_{\star}w{\left(\frac{n}{X_{1}(q/Q)^{2}}\right)}
=1X1(q/Q)2nX1X2δ1λ(n)e(nα)w(nX1(q~/Q)2)\displaystyle=\frac{1}{\sqrt{X_{1}(q/Q)^{2}}}\sum_{n\leqslant X_{1}X^{2\delta_{1}}}\lambda_{\star}(n)e(n\alpha)\mathcal{I}_{\star}w{\left(\frac{n}{X_{1}(\tilde{q}/Q)^{2}}\right)}
+O(|qq~|X1X5δ1Q1)\displaystyle\hskip 56.9055pt+O\bigg{(}|q-\tilde{q}|\sqrt{X_{1}}X^{5\delta_{1}}Q^{-1}\bigg{)}
=1X1(q~/Q)2nX1X2δ1λ(n)e(nα)w(nX1(q~/Q)2)\displaystyle=\frac{1}{\sqrt{X_{1}(\tilde{q}/Q)^{2}}}\sum_{n\leqslant X_{1}X^{2\delta_{1}}}\lambda_{\star}(n)e(n\alpha)\mathcal{I}_{\star}w{\left(\frac{n}{X_{1}(\tilde{q}/Q)^{2}}\right)}
+O(|qq~|X1X5δ1Q1).\displaystyle\hskip 56.9055pt+O\bigg{(}|q-\tilde{q}|\sqrt{X_{1}}X^{5\delta_{1}}Q^{-1}\bigg{)}.

If |qq~|Q110|q-\tilde{q}|\ll Q^{\frac{1}{10}}, note that we must have |qq~|X1X5δ1Q1X20δ|q-\tilde{q}|\sqrt{X_{1}}X^{5\delta_{1}}Q^{-1}\ll X^{-20\delta} so since q~/q=1+O(Q9/10)\tilde{q}/q=1+O(Q^{-9/10}) (and since by Plancherel and Hoölder, the below is Xε\ll X^{\varepsilon}), we have

01|1X1(q/Q)2nX1X2δ1λ(n)e(nα)w(nX1(q/Q)2)|s𝑑α\displaystyle\int_{0}^{1}\bigg{|}\frac{1}{\sqrt{X_{1}(q/Q)^{2}}}\sum_{n\leqslant X_{1}X^{2\delta_{1}}}\lambda_{\star}(n)e(n\alpha)\mathcal{I}_{\star}w{\left(\frac{n}{X_{1}(q/Q)^{2}}\right)}\bigg{|}^{s}d\alpha
=01|1X1(q~/Q)2nX1X2δ1λ(n)e(nα)w(nX1(q~/Q)2)|s𝑑α+O(X10δs+ε).\displaystyle=\int_{0}^{1}\bigg{|}\frac{1}{\sqrt{X_{1}(\tilde{q}/Q)^{2}}}\sum_{n\leqslant X_{1}X^{2\delta_{1}}}\lambda_{\star}(n)e(n\alpha)\mathcal{I}_{\star}w{\left(\frac{n}{X_{1}(\tilde{q}/Q)^{2}}\right)}\bigg{|}^{s}d\alpha+O(X^{-10\delta s+\varepsilon}).
(4.13) =q~q01|1X1(q~/Q)2nX1X2δ1λ(n)e(nα)w(nX1(q~/Q)2)|s𝑑α+O(X10δs+ε).\displaystyle=\frac{\tilde{q}}{q}\int_{0}^{1}\bigg{|}\frac{1}{\sqrt{X_{1}(\tilde{q}/Q)^{2}}}\sum_{n\leqslant X_{1}X^{2\delta_{1}}}\lambda_{\star}(n)e(n\alpha)\mathcal{I}_{\star}w{\left(\frac{n}{X_{1}(\tilde{q}/Q)^{2}}\right)}\bigg{|}^{s}d\alpha+O(X^{-10\delta s+\varepsilon}).

Now, let {Ij}1jK{\left\{I_{j}\right\}}_{1\leqslant j\leqslant K} be a partition of [Q,2Q][Q,2Q] into intervals of length Q110\asymp Q^{\frac{1}{10}} for some KQ1110K\asymp Q^{1-\frac{1}{10}}. We obtain from (4.13), adding redundant averaging over q~Q\tilde{q}\sim Q, that

1LqQφ(q)\displaystyle\frac{1}{L}\sum_{q\sim Q}\varphi(q) 01|1X1(q/Q)2nX1X2δ1λ(n)e(nα)w(nX1(q/Q)2)|s𝑑α\displaystyle\int_{0}^{1}\bigg{|}\frac{1}{\sqrt{X_{1}(q/Q)^{2}}}\sum_{n\leqslant X_{1}X^{2\delta_{1}}}\lambda_{\star}(n)e(n\alpha)\mathcal{I}_{\star}w{\left(\frac{n}{X_{1}(q/Q)^{2}}\right)}\bigg{|}^{s}d\alpha
=1Lj=1K\displaystyle=\frac{1}{L}\sum_{j=1}^{K} qIjφ(q)01|1X1(q/Q)2nX1X2δ1λ(n)e(nα)w(nX1(q/Q)2)|s𝑑α\displaystyle\sum_{q\in I_{j}}\varphi(q)\int_{0}^{1}\bigg{|}\frac{1}{\sqrt{X_{1}(q/Q)^{2}}}\sum_{n\leqslant X_{1}X^{2\delta_{1}}}\lambda_{\star}(n)e(n\alpha)\mathcal{I}_{\star}w{\left(\frac{n}{X_{1}(q/Q)^{2}}\right)}\bigg{|}^{s}d\alpha
(4.14) =1L\displaystyle=\frac{1}{L} j=1KqIjφ(q)q1|Ij|Ijq~01[]𝑑α𝑑q~+O(X10δs+ε)\displaystyle\sum_{j=1}^{K}\sum_{q\in I_{j}}\frac{\varphi(q)}{q}\frac{1}{|I_{j}|}\int_{I_{j}}\tilde{q}\int_{0}^{1}[\dots]d\alpha d\tilde{q}+O(X^{-10\delta s+\varepsilon})

where [][\dots] is

|1X1(q~/Q)2nX1X2δ1λ(n)e(nα)w(nX1(q~/Q)2)|s.\bigg{|}\frac{1}{\sqrt{X_{1}(\tilde{q}/Q)^{2}}}\sum_{n\leqslant X_{1}X^{2\delta_{1}}}\lambda_{\star}(n)e(n\alpha)\mathcal{I}_{\star}w{\left(\frac{n}{X_{1}(\tilde{q}/Q)^{2}}\right)}\bigg{|}^{s}.

It follows from well-known elementary results that

L=9π2Q2+O(QlogQ),nIjφ(q)q=6π2|Ij|+O(logQ).L=\frac{9}{\pi^{2}}Q^{2}+O(Q\log Q),\sum_{n\in I_{j}}\frac{\varphi(q)}{q}=\frac{6}{\pi^{2}}|I_{j}|+O(\log Q).

Thus (4.14) equals

23Q2Q2Qq~01|1X1(q~/Q)2nX1X2δ1λ(n)e(nα)w(nX1(q~/Q)2)|s𝑑α𝑑q~\frac{2}{3Q^{2}}\int_{Q}^{2Q}\tilde{q}\int_{0}^{1}\bigg{|}\frac{1}{\sqrt{X_{1}(\tilde{q}/Q)^{2}}}\sum_{n\leqslant X_{1}X^{2\delta_{1}}}\lambda_{\star}(n)e(n\alpha)\mathcal{I}_{\star}w{\left(\frac{n}{X_{1}(\tilde{q}/Q)^{2}}\right)}\bigg{|}^{s}d\alpha d\tilde{q}

plus an error of Q1+εX12Q^{-1+\varepsilon}\ll X^{-\frac{1}{2}}. By the change of variables t=q~/Qt=\tilde{q}/Q, this equals

2312t01|1X1t2nX1X2δ1λ(n)e(nα)w(nX1t2)|s𝑑α𝑑t.\frac{2}{3}\int_{1}^{2}t\int_{0}^{1}\bigg{|}\frac{1}{\sqrt{X_{1}t^{2}}}\sum_{n\leqslant X_{1}X^{2\delta_{1}}}\lambda_{\star}(n)e(n\alpha)\mathcal{I}_{\star}w{\left(\frac{n}{X_{1}t^{2}}\right)}\bigg{|}^{s}d\alpha dt.

Completing the sum over nn with the same method by which it was removed, and gathering up (4.4), (4.12), we obtain that for some κ>0\kappa>0

01|1XnXλ(n)e(nα)|s𝑑α=2312t01|1tX1nλ(n)e(nα)w(nX1t2)|s𝑑α𝑑t+O(Xκs(2s)).\int_{0}^{1}\bigg{|}\frac{1}{\sqrt{X^{\prime}}}\sum_{n\leqslant X^{\prime}}\lambda_{\star}(n)e(n\alpha)\bigg{|}^{s}d\alpha\\ =\frac{2}{3}\int_{1}^{2}t\int_{0}^{1}\bigg{|}\frac{1}{t\sqrt{X_{1}}}\sum_{n}\lambda_{\star}(n)e(n\alpha)\mathcal{I}_{\star}w{\left(\frac{n}{X_{1}t^{2}}\right)}\bigg{|}^{s}d\alpha dt+O(X^{-\kappa s(2-s)}).

for any X1X2δX_{1}\asymp X^{2\delta}. The desired result follows.

4.2. Proof of (8)

This section proceeds a similar fashion to the previous section, so we shall refer to it heavily and only indicate those places in which the two differ. What allows us to deal with higher moments is the following bound of Jutila (which improves by a factor of logX\log X on an older bound of Wilton, which we could have also used):

Proposition 14 ([6]).

For all L,RL,R, we have that

|L<nRλf(n)e(nα)|R12.\bigg{|}\sum_{L<n\leqslant R}\lambda_{f}(n)e(n\alpha)\bigg{|}\ll R^{\frac{1}{2}}.

As a corollary of this and partial summation, it follows that for any Y1YY_{1}\leqslant Y

|Y1<nYλf(n)e(nα)w(nY)|Y12.\bigg{|}\sum_{Y_{1}<n\leqslant Y}\lambda_{f}(n)e(n\alpha)w{\left(\frac{n}{Y}\right)}\bigg{|}\ll Y^{\frac{1}{2}}.

For the rest of the section, we also suppose that s2s\geqslant 2. By (4.5), it suffices to show that for XXX^{\prime}\asymp X

Ifs=2312t01|1tX1nλf(n)e(nα)fw(nX1t2)|s𝑑α𝑑t+O(Xη)I_{f}^{s}=\frac{2}{3}\int_{1}^{2}t\int_{0}^{1}\bigg{|}\frac{1}{t\sqrt{X_{1}}}\sum_{n}\lambda_{f}(n)e(n\alpha)\mathcal{I}_{f}w{\left(\frac{n}{X_{1}t^{2}}\right)}\bigg{|}^{s}d\alpha dt+O(X^{-\eta})

for some η>0\eta>0, and this is what the rest of the section is devoted to showing.

We now show the following analogue of (4.8)

Lemma 15.

Suppose that

QX12+δ,L=qQφ(q).Q\asymp X^{\frac{1}{2}+\delta},L=\sum_{q\sim Q}\varphi(q).

Then, we have that for s2s\geqslant 2

(4.15) Ifs=1LqQa(q)|nλf(n)e(anq)w(nX)|s+O(Xδ4).I_{f}^{s}=\frac{1}{L}\sum_{q\sim Q}\mathop{\mathop{\sideset{}{{}^{*}}{\sum}}}_{a(q)}\bigg{|}\sum_{n}\lambda_{f}(n)e{\left(\frac{an}{q}\right)}w{\left(\frac{n}{X}\right)}\bigg{|}^{s}+O(X^{-\frac{\delta}{4}}).
Proof.

Let ϕ\phi be some nonzero smooth function supported on [1,2][1,2] with ϕ^(0)=1\hat{\phi}(0)=1. Also, as in the previous subsection, let

H=Xδ,Δ=HQ2,H=X^{\delta},\Delta=\frac{H}{Q^{2}},
χ~(α)=1ΔLqQa(q)ϕ(Δ1(αa/q)),\tilde{\chi}(\alpha)=\frac{1}{\Delta L}\sum_{q\sim Q}\mathop{\mathop{\sideset{}{{}^{*}}{\sum}}}_{a(q)}\phi(\Delta^{-1}(\alpha-a/q)),
I~s=01|1Xnλ(n)e(nα)w(nX)|sχ~(α)𝑑α.\tilde{I}_{\star}^{s}=\int_{0}^{1}\bigg{|}\frac{1}{\sqrt{X^{\prime}}}\sum_{n}\lambda_{\star}(n)e(n\alpha)w{\left(\frac{n}{X^{\prime}}\right)}\bigg{|}^{s}\tilde{\chi}(\alpha)d\alpha.

Then, by Proposition 14 and partial summation, Proposition 6, and Cauchy Schwarz

(4.16) IfsI~fs01|1χ~(α)|𝑑α(01|1χ~(α)|2𝑑α)12Xδ2,I_{f}^{s}-\tilde{I}_{f}^{s}\ll\int_{0}^{1}|1-\tilde{\chi}(\alpha)|d\alpha\ll\bigg{(}\int_{0}^{1}|1-\tilde{\chi}(\alpha)|^{2}d\alpha\bigg{)}^{\frac{1}{2}}\ll X^{-\frac{\delta}{2}},

so the error from replacing IfsI_{f}^{s} with I~fs\tilde{I}_{f}^{s} is admissible. For βΔ\beta\sim\Delta, we have that by partial summation and Proposition 14

1Xnλf(n)e(anq)e(nβ)w(nX)=1Xnλf(n)e(anq)w(nX)+O(Xδ)\frac{1}{\sqrt{X}}\sum_{n}\lambda_{f}(n)e{\left(\frac{an}{q}\right)}e(n\beta)w{\left(\frac{n}{X}\right)}=\frac{1}{\sqrt{X}}\sum_{n}\lambda_{f}(n)e{\left(\frac{an}{q}\right)}w{\left(\frac{n}{X}\right)}+O(X^{-\delta})

so

|1Xnλf(n)e(anq)e(nβ)w(nX)|s=|1Xnλf(n)e(anq)w(nX)|s+O(Xδ)\bigg{|}\frac{1}{\sqrt{X}}\sum_{n}\lambda_{f}(n)e{\left(\frac{an}{q}\right)}e(n\beta)w{\left(\frac{n}{X}\right)}\bigg{|}^{s}=\bigg{|}\frac{1}{\sqrt{X}}\sum_{n}\lambda_{f}(n)e{\left(\frac{an}{q}\right)}w{\left(\frac{n}{X}\right)}\bigg{|}^{s}+O(X^{-\delta})

and the desired result follows from this and (4.16) immediately. ∎

Take Q=(XX1)1/2Q=(X^{\prime}X_{1})^{1/2}. Applying Voronoi and bounds for tails of fw\mathcal{I}_{f}w as in the previous section, we obtain that

Ifs=1LqQa(q)|1X1(q/Q)2nX1X2δ1λf(n)e(anq)fw(nX1(q/Q)2)|s.I_{f}^{s}=\frac{1}{L}\sum_{q\sim Q}\mathop{\mathop{\sideset{}{{}^{*}}{\sum}}}_{a(q)}\bigg{|}\frac{1}{\sqrt{X_{1}(q/Q)^{2}}}\sum_{n\leqslant X_{1}X^{2\delta_{1}}}\lambda_{f}(n)e{\left(\frac{an}{q}\right)}\mathcal{I}_{f}w{\left(\frac{n}{X_{1}(q/Q)^{2}}\right)}\bigg{|}^{s}.

plus an error of O(Xδ2)O(X^{-\frac{\delta}{2}})

We now require the following analogue of Lemma 12 for high moments.

Lemma 16.

Suppose that q(YY)20q\geqslant(YY^{\prime})^{20}. Also, suppose that ww is smooth and compactly supported away from 11 with |w|1,|w(j)|Yj\int|w^{\prime}|\ll 1,|w^{(j)}|\ll Y^{\prime j}. Then we have that for s1s\geqslant 1 and YY sufficiently large

1φ(q)a(q)|1Y\displaystyle\frac{1}{\varphi(q)}\mathop{\mathop{\sideset{}{{}^{*}}{\sum}}}_{a(q)}\bigg{|}\frac{1}{\sqrt{Y}} nYY2λf(n)e(anq)fw(wY)|s\displaystyle\sum_{n\leqslant YY^{\prime 2}}\lambda_{f}(n)e{\left(\frac{an}{q}\right)}\mathcal{I}_{f}w{\left(\frac{w}{Y}\right)}\bigg{|}^{s}
=01|1YnYY2λf(n)e(nα)fw(wY)|s𝑑α+O((YY)1).\displaystyle=\int_{0}^{1}\bigg{|}\frac{1}{\sqrt{Y}}\sum_{n\leqslant YY^{\prime 2}}\lambda_{f}(n)e(n\alpha)\mathcal{I}_{f}w{\left(\frac{w}{Y}\right)}\bigg{|}^{s}d\alpha+O((YY^{\prime})^{-1}).
Proof.

Proceeding as in the proof of Lemma 12, we have that for |β|q12|\beta|\ll q^{-\frac{1}{2}}

1YnYYλf(n)e(anq)\displaystyle\frac{1}{\sqrt{Y}}\sum_{n\leqslant YY^{\prime}}\lambda_{f}(n)e{\left(\frac{an}{q}\right)} fw(nY)\displaystyle\mathcal{I}_{f}w{\left(\frac{n}{Y}\right)}
=1YnYYλf(n)e(anq+βn)fw(nY)+O((YY)3).\displaystyle=\frac{1}{\sqrt{Y}}\sum_{n\leqslant YY^{\prime}}\lambda_{f}(n)e{\left(\frac{an}{q}+\beta n\right)}\mathcal{I}_{f}w{\left(\frac{n}{Y}\right)}+O((YY^{\prime})^{-3}).

Now, using the bounds on fw\mathcal{I}_{f}w in Proposition 5, we may complete the sum over nn at the cost of an error of O((YY)100)O((YY^{\prime})^{-100}). Applying Voronoi summation to the complete sum yields that

1YnYYλf(n)e(anq)fw(nY)=1Ynλf(n)e(anq)fw(nY)+O((YY)100)=1q2/Ynq2/Yλf(n)e(a¯nq)w(nq2/Y)+O((YY)100).\frac{1}{\sqrt{Y}}\sum_{n\leqslant YY^{\prime}}\lambda_{f}(n)e{\left(\frac{an}{q}\right)}\mathcal{I}_{f}w{\left(\frac{n}{Y}\right)}\\ =\frac{1}{\sqrt{Y}}\sum_{n}\lambda_{f}(n)e{\left(\frac{an}{q}\right)}\mathcal{I}_{f}w{\left(\frac{n}{Y}\right)}+O((YY^{\prime})^{-100})\\ =\frac{1}{\sqrt{q^{2}/Y}}\sum_{n\asymp q^{2}/Y}\lambda_{f}(n)e{\left(\frac{\overline{a}n}{q}\right)}w{\left(\frac{n}{q^{2}/Y}\right)}+O((YY^{\prime})^{-100}).

By Jutila’s bound (Proposition 14), we have that this is 1\ll 1, so it follows that since all α\alpha are of the form aq+β\frac{a}{q}+\beta for some |β|q12|\beta|\ll q^{-\frac{1}{2}} (by Lemma 13, for example), we have the pointwise bound

(4.17) 1YnYYλf(n)e(nα)fw(nY)1.\frac{1}{\sqrt{Y}}\sum_{n\leqslant YY^{\prime}}\lambda_{f}(n)e(n\alpha)\mathcal{I}_{f}w{\left(\frac{n}{Y}\right)}\ll 1.

Therefore, we have that

|1YnYYλf(n)e(anq)fw(nY)|s=|1YnYYλf(n)e(anq+βn)fw(nY)|s+O((YY)3).\bigg{|}\frac{1}{\sqrt{Y}}\sum_{n\leqslant YY^{\prime}}\lambda_{f}(n)e{\left(\frac{an}{q}\right)}\mathcal{I}_{f}w{\left(\frac{n}{Y}\right)}\bigg{|}^{s}\\ =\bigg{|}\frac{1}{\sqrt{Y}}\sum_{n\leqslant YY^{\prime}}\lambda_{f}(n)e{\left(\frac{an}{q}+\beta n\right)}\mathcal{I}_{f}w{\left(\frac{n}{Y}\right)}\bigg{|}^{s}+O((YY^{\prime})^{-3}).

Then, proceeding as in the proof of Lemma 12, we obtain that

1φ(q)a(q)|1YnYYλf(n)e(anq)fw(nY)|s=q12φ(q)01|1YnYYλf(n)e(nα)fw(nY)|sNq([qα,qα+q12])𝑑α+O((YY)3)=01|1YnYYλf(n)e(nα)fw(nY)|s+O((YY)3).\frac{1}{\varphi(q)}\mathop{\mathop{\sideset{}{{}^{*}}{\sum}}}_{a(q)}\bigg{|}\frac{1}{\sqrt{Y}}\sum_{n\leqslant YY^{\prime}}\lambda_{f}(n)e{\left(\frac{an}{q}\right)}\mathcal{I}_{f}w{\left(\frac{n}{Y}\right)}\bigg{|}^{s}\\ =\frac{q^{\frac{1}{2}}}{\varphi(q)}\int_{0}^{1}\bigg{|}\frac{1}{\sqrt{Y}}\sum_{n\leqslant YY^{\prime}}\lambda_{f}(n)e(n\alpha)\mathcal{I}_{f}w{\left(\frac{n}{Y}\right)}\bigg{|}^{s}N_{q}([q\alpha,q\alpha+q^{\frac{1}{2}}])d\alpha+O((YY^{\prime})^{-3})\\ =\int_{0}^{1}\bigg{|}\frac{1}{\sqrt{Y}}\sum_{n\leqslant YY^{\prime}}\lambda_{f}(n)e(n\alpha)\mathcal{I}_{f}w{\left(\frac{n}{Y}\right)}\bigg{|}^{s}+O((YY^{\prime})^{-3}).

The desired result follows.

Also, as in the previous subsection, by the pointwise bound (4.17), we have that for qQ,q~[Q,2Q]q\sim Q,\tilde{q}\in[Q,2Q],

1X1(q/Q)2nX1X2δ1λf(n)e(nα)fw(nX1(q/Q)2)\displaystyle\frac{1}{\sqrt{X_{1}(q/Q)^{2}}}\sum_{n\leqslant X_{1}X^{2\delta_{1}}}\lambda_{f}(n)e(n\alpha)\mathcal{I}_{f}w{\left(\frac{n}{X_{1}(q/Q)^{2}}\right)}
=1X1(q~/Q)2nX1X2δ1λf(n)e(nα)fw(nX1(q~/Q)2)\displaystyle=\frac{1}{\sqrt{X_{1}(\tilde{q}/Q)^{2}}}\sum_{n\leqslant X_{1}X^{2\delta_{1}}}\lambda_{f}(n)e(n\alpha)\mathcal{I}_{f}w{\left(\frac{n}{X_{1}(\tilde{q}/Q)^{2}}\right)}
+O(|qq~|X1X5δ1Q1).\displaystyle\hskip 56.9055pt+O\bigg{(}|q-\tilde{q}|\sqrt{X_{1}}X^{5\delta_{1}}Q^{-1}\bigg{)}.

Then, we obtain

01|\displaystyle\int_{0}^{1}\bigg{|} 1X1(q/Q)2nX1X2δ1λf(n)e(nα)fw(nX1(q/Q)2)|sdα\displaystyle\frac{1}{\sqrt{X_{1}(q/Q)^{2}}}\sum_{n\leqslant X_{1}X^{2\delta_{1}}}\lambda_{f}(n)e(n\alpha)\mathcal{I}_{f}w{\left(\frac{n}{X_{1}(q/Q)^{2}}\right)}\bigg{|}^{s}d\alpha
=01|1X1(q~/Q)2nX1X2δ1λf(n)e(nα)fw(nX1(q~/Q)2)|s𝑑α+O(X10δ).\displaystyle=\int_{0}^{1}\bigg{|}\frac{1}{\sqrt{X_{1}(\tilde{q}/Q)^{2}}}\sum_{n\leqslant X_{1}X^{2\delta_{1}}}\lambda_{f}(n)e(n\alpha)\mathcal{I}_{f}w{\left(\frac{n}{X_{1}(\tilde{q}/Q)^{2}}\right)}\bigg{|}^{s}d\alpha+O(X^{-10\delta}).

Combining with Lemma 16 exactly as in the previous section, we obtain that

01|1XnXλf(n)e(nα)|s𝑑α=2312t01|1tX1nλf(n)e(nα)fw(nX1t2)|s𝑑α𝑑t+O(Xκ)\int_{0}^{1}\bigg{|}\frac{1}{\sqrt{X^{\prime}}}\sum_{n\leqslant X^{\prime}}\lambda_{f}(n)e(n\alpha)\bigg{|}^{s}d\alpha\\ =\frac{2}{3}\int_{1}^{2}t\int_{0}^{1}\bigg{|}\frac{1}{t\sqrt{X_{1}}}\sum_{n}\lambda_{f}(n)e(n\alpha)\mathcal{I}_{f}w{\left(\frac{n}{X_{1}t^{2}}\right)}\bigg{|}^{s}d\alpha dt+O(X^{-\kappa})

for some κ>0\kappa>0. The desired result follows.

References

  • [1] Fouvry, E., Ganguly, S., Kowalski, E., Michel, P., Gaussian distribution for the divisor function and Hecke eigenvalues in arithmetic progressions, Comment. Math. Helv. 89 (2014): 979-1014.
  • [2] Goldston, D., Pandey, M., On the L1L^{1} norm of an exponential sum involving the divisor function. Arch. Math. (Basel) 112 (2019): 261-268.
  • [3] Gradshteyn, I. S., Ryzhik, I. M., Table of Integrals, Series, and Products. Editors: Zwillinger, D., Moll, V., Academic Press, 2014
  • [4] Gut, A., Probability: A graduate course. Springer-Verlag, New York, 2005.
  • [5] Iwaniec, H., Kowalski E., Analytic number theory, Amer. Math. Soc. Colloquium Publ. 53, Amer. Math. Soc., Providence RI, 2004
  • [6] Jutila, M., On exponential sums involving the Ramanujan function. Proc. Math. Sci., 97 (1987): 157-166.
  • [7] Jutila, M., Transformations of exponential sums. Proceedings of the Amalfi Conference on Analytic Number Theory (Maiori 1989), Univ. Salerno, Salerno, 1992, 263-270.
  • [8] W. B. Jurkat and J. W. van Horne. On the central limit theorem for theta series. Michigan Math. J. 29 (1982) 65–77
  • [9] Montgomery, H. L., Maximal variants of the large sieve. J. Fac. Sci. Univ. Tokyo Sect. IA Math., 28 (1982): 805-812.
  • [10] Pandey, M., Moment estimates for the exponential sum with higher divisor functions. C.R. Math. Acad. Sci. Paris, accepted.