This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

On the defocusing semilinear wave equations in three space dimension with small power

Dongyi Wei    Shiwu Yang
Abstract

By introducing new weighted vector fields as multipliers, we derive quantitative pointwise estimates for solutions of defocusing semilinear wave equation in 1+3\mathbb{R}^{1+3} with pure power nonlinearity for all 1<p21<p\leq 2. Consequently, the solution vanishes on the future null infinity and decays in time polynomially for all 2<p2\sqrt{2}<p\leq 2. This improves the uniform boundedness result of the second author when 32<p2\frac{3}{2}<p\leq 2.

1 Introduction

In this paper, we continue our study on the global pointwise behaviors for solutions to the energy sub-critical defocusing semilinear wave equations

ϕ=|ϕ|p1ϕ,ϕ(0,x)=ϕ0(x),tϕ(0,x)=ϕ1(x)\Box\phi=|\phi|^{p-1}\phi,\quad\phi(0,x)=\phi_{0}(x),\quad\partial_{t}\phi(0,x)=\phi_{1}(x) (1)

in 1+3\mathbb{R}^{1+3} with small power 1<p21<p\leq 2.

The existence of global solutions in energy space is well known since the work [5] of Ginibre-Velo for the energy sub-critical case 1<p<51<p<5. The long time dynamics of these global solutions concerns mainly two types of questions: The first type is the problem of scattering, namely comparing the nonlinear solutions with linear solutions as time goes to infinity. A natural choice for the linear solution is the associated linear wave. Since linear wave decays in time in space dimension d2d\geq 2, the nonlinear solution approaches to linear wave in certain sense for sufficiently large power pp. This was shown by Strauss in [14] for the super-conformal case 3p<53\leq p<5 in space dimension three. Extensions could be found for example in [1], [6], [9], [13], [17]. The latest work [18] of the second author shows that the solution scatters to linear wave in energy space for 2.3542<p<52.3542<p<5 in 1+3\mathbb{R}^{1+3}. However the precise asymptotics of the solutions remains unclear for small power pp. One of the difficulties is that the equation degenerates to linear Klein-Gordon equation when pp approaches to the end point 11.

Another question is to investigate the asymptotic behaviors of the solutions in the pointwise sense, which is plausible in lower dimensions d3d\leq 3. The obstruction in higher dimension is that taking sufficiently many derivatives for energy sub-critical equations is not possible for general pp. Even for energy critical equations, the global regularity result only holds in space dimension d9d\leq 9 (see for example [10]). The energy super-critical case remains completely open (see recent breakthrough in [4] for the blowing up result for the defocusing energy super-critical nonlinear Schrödinger equations). The scattering result of Strauss is based on the time decay tϵ1t^{\epsilon-1} of the solution, which has been improved in [2] by using conformal compactification method. However this method only works for super-conformal case when p3p\geq 3. To study the asymptotic behaviors of the solutions with sub-conformal power p<3p<3, Pecher in [13], [7] observed that the potential energy decays in time with a weaker decay rate (comparing to t2t^{-2} for the super-conformal case). This allows him to obtain polynomial decay in time of the solutions when p>1+d2+42p>\frac{1+\sqrt{d^{2}+4}}{2} in space dimension d=2d=2 and 33.

However, Pecher’s observation was based on the conformal symmetry of Minkowski spacetime, that is, the time decay of the potential energy is derived by using the conformal Killing vector field as multiplier. As we have seen, the smaller power pp leads to the slower decay of the nonlinearity, hence making the analysis more difficult. More precisely, the power pp is closely related to the weights in the multipliers. For the super-conformal case pd+3d1p\geq\frac{d+3}{d-1}, one can use the conformal Killing vector field with weights t2t^{2}, which leads to the time decay t2t^{-2} of the potential energy. For the end point case p=1p=1, so far as we know, there is no similar weighted energy estimates for linear Klein-Gordon equations, without appealing to higher order derivatives. This suggests that it is important to use multipliers with proper weights depending on the power pp in order to reveal the asymptotic behaviors of the solutions. As the power pp varies continuously, it in particular calls for a family of weighted vector fields which are consistent with the structure of the equations.

The robust new vector field method originally introduced by Dafermos and Rodnianski in [3] provides such family of multipliers rγ(t+r)r^{\gamma}(\partial_{t}+\partial_{r}) with 0γ20\leq\gamma\leq 2. Combined with the well known integrated local energy estimates (see for example [12]), a pigeon-hole argument leads to the improved time decay of the potential energy. This enables the second author in [18] to show that the solution decays at least t13t^{-\frac{1}{3}} for 2<p<52<p<5 in three space dimension. The lower bound p>2p>2 arises due to the fact that the pigeon-hole argument works only for γ>1\gamma>1. However the multipliers can be used for all 0γ20\leq\gamma\leq 2 and hence uniform boundedness (or spatial decay) of the solution holds for 32<p2\frac{3}{2}<p\leq 2. We see that there is a gap regarding the time decay of the solutions between the cases p>2p>2 and p2p\leq 2. Moreover this method fails in lower dimensions d2d\leq 2.

The philosophy that suitable weighted multiplier yields the time decay of the potential energy inspires us to introduce new non-spherically symmetric weighted vector fields as multipliers in [16],[15] to show the polynomial decay in time of the solution for all p>1p>1 in space dimension one and two. This in particular extends the result of Lindblad and Tao in [11], where an averaged decay of the solution was shown for the defocusing semilinear wave equation in 1+1\mathbb{R}^{1+1}.

The aim of this paper is to investigate the asymptotic behaviors of the solutions in three space dimension with small power p2p\leq 2. Again, the essential idea is to introduce some new weighted vector fields as multipliers, which are partially inspired by our previous work [15] in space dimension two. This allows us to obtain potential energy decay for all 1<p<51<p<5 and time decay of the solutions for all p>2p>\sqrt{2}, and hence filling the gap left in [18].

To state our main theorem, for some constant γ\gamma and integer kk, define the weighted energy norm of the initial data

k,γ=lk3(1+|x|)γ+2l(|l+1ϕ0|2+|lϕ1|2)+(1+|x|)γ|ϕ0|p+1dx.\displaystyle\mathcal{E}_{k,\gamma}=\sum\limits_{l\leq k}\int_{\mathbb{R}^{3}}(1+|x|)^{\gamma+2l}(|\nabla^{l+1}\phi_{0}|^{2}+|\nabla^{l}\phi_{1}|^{2})+(1+|x|)^{\gamma}|\phi_{0}|^{p+1}dx.

We prove in this paper that

Theorem 1.1.

Consider the defocusing semilinear wave equation (1) with initial data (ϕ0,ϕ1)(\phi_{0},\phi_{1}) such that 1,2\mathcal{E}_{1,2} is finite. Then for all 1<p<21<p<2, the solution ϕ\phi to the equation (1) exists globally in time and verifies the following asymptotic pointwise estimates

|ϕ(t,x)|{C(1,2+0,2pp+1)(1+|t|+|x|)p1p+1(1+|x||t|)p1p+1,|x||t|;C(1,2+0,2pp+1)(1+|t|+|x|)(p1)2p+1(1+|t||x|)32pp+1,|x||t||\phi(t,x)|\leq\begin{cases}C(\sqrt{\mathcal{E}_{1,2}}+\mathcal{E}_{0,2}^{\frac{p}{p+1}})(1+|t|+|x|)^{-\frac{p-1}{p+1}}(1+|x|-|t|)^{-\frac{p-1}{p+1}},\quad|x|\geq|t|;\\ C(\sqrt{\mathcal{E}_{1,2}}+\mathcal{E}_{0,2}^{\frac{p}{p+1}})(1+|t|+|x|)^{-\frac{(p-1)^{2}}{p+1}}(1+|t|-|x|)^{\frac{3-2p}{p+1}},\quad|x|\leq|t|\end{cases}

for some constant CC depending only on pp. For the quadratic nonlinearity with p=2p=2, it holds that

|ϕ(t,x)|Cϵ(1,2+0,22ϵ3(1ϵ))(1+|t|+|x|)12ϵ3(1+||x||t||)12ϵ3\displaystyle|\phi(t,x)|\leq C_{\epsilon}(\sqrt{\mathcal{E}_{1,2}}+\mathcal{E}_{0,2}^{\frac{2-\epsilon}{3(1-\epsilon)}})(1+|t|+|x|)^{-\frac{1-2\epsilon}{3}}(1+||x|-|t||)^{-\frac{1-2\epsilon}{3}}

for all 0<ϵ<120<\epsilon<\frac{1}{2} with constant CϵC_{\epsilon} depending only on ϵ\epsilon.

We give several remarks.

Remark 1.1.

The theorem implies that the solution decays along out going null curves (|t||x||t|-|x| is constant) for all 1<p51<p\leq 5 (see [18] for the case when 2<p<52<p<5 and [8] for the energy critical case). In other words, the solution vanishes on the future (and past) null infinity and blowing up can only occur at time infinity. It will be of great interest to see whether such blow up can happen particularly for pp close to 11.

Remark 1.2.

In view of the energy conservation, one can easily conclude that the solution grows at most polynomially in time tt with rate relying on the power pp. The theorem improves this growth for 1<p21<p\leq\sqrt{2} and shows that the solution decays inverse polynomially in time for 2<p2\sqrt{2}<p\leq 2. In particular, it fills the gap left in [18] by the second author, in which only uniform boundedness of the solution was obtained for 32<p2\frac{3}{2}<p\leq 2 while time decay with rate at least t13t^{-\frac{1}{3}} was shown for 2<p<32<p<3.

Remark 1.3.

The proof also indicates that the potential energy decays in time for all 1<p31<p\leq 3, that is,

3|ϕ(t,x)|p+1𝑑xC2,0(1+t)1p\displaystyle\int_{\mathbb{R}^{3}}|\phi(t,x)|^{p+1}dx\leq C\mathcal{E}_{2,0}(1+t)^{1-p}

with some constant CC depending only on pp. This time decay estimate is stronger than that in [17].

Now let’s review the main ideas for studying the asymptotic behaviors for defocusing semilinear wave equations. The early pioneering works (for example [6], [13],[7]) relied on the following time decay of the potential energy

3|ϕ|p+1𝑑xC(1+t)max{42p,2},1<p<5,\displaystyle\int_{\mathbb{R}^{3}}|\phi|^{p+1}dx\leq C(1+t)^{\max\{4-2p,-2\}},\quad 1<p<5, (2)

obtained by using the conformal Killing vector field t2t+r2rt^{2}\partial_{t}+r^{2}\partial_{r} (r=|x|r=|x|) as multiplier. The new vector field method of Dafermos and Rodnianski can improve the above time decay in the following way: First the rr-weighted energy estimates derived by using the vector fields rγ(t+r)r^{\gamma}(\partial_{t}+\partial_{r}) with 0γ20\leq\gamma\leq 2 as multipliers show that

1+3rγ1|ϕ|p+1𝑑x𝑑tC,0<γ<p1.\displaystyle\iint_{\mathbb{R}^{1+3}}r^{\gamma-1}|\phi|^{p+1}dxdt\leq C,\quad 0<\gamma<p-1.

However in order to obtain time decay of the potential energy, one then needs to combine the rr-weighted energy estimate with the integrated local energy estimates. A pigeon-hole argument then leads to the energy flux decay through the outgoing null hypersurface u\mathcal{H}_{u} (constant uu hypersurface with u=tr2u=\frac{t-r}{2})

u|ϕ|p+1𝑑σC(1+|u|)γ.\displaystyle\int_{\mathcal{H}_{u}}|\phi|^{p+1}d\sigma\leq C(1+|u|)^{-\gamma}.

Integrating in uu, we end up with a weighted spacetime bound

1+3(1+|u|)γ1ϵ|ϕ|p+1𝑑x𝑑tC,0<ϵ<γ1\displaystyle\iint_{\mathbb{R}^{1+3}}(1+|u|)^{\gamma-1-\epsilon}|\phi|^{p+1}dxdt\leq C,\quad\forall 0<\epsilon<\gamma-1

by assuming γ>1\gamma>1, which requires p>2p>2. In view of the above rr-weighted energy estimate, one then derives the time weighted spacetime bound

1+3(1+t+|x|)γ1ϵ|ϕ|p+1𝑑x𝑑tC.\displaystyle\iint_{\mathbb{R}^{1+3}}(1+t+|x|)^{\gamma-1-\epsilon}|\phi|^{p+1}dxdt\leq C.

This improves the above time decay (2) for the sub-conformal case p<3p<3 and is sufficient to conclude the time decay estimates of the solutions for p>2p>2 in [18].

However, the above new vector field method works only in space dimension d3d\geq 3, due to the lack of integrated local energy estimates in lower dimensions. To improve the asymptotic decay estimates of the solution in space dimension two, we in [15] introduced non-spherically symmetric vector fields

X=u1p12(t1)+u1p122x22(t+1)+2u1p121x22,u1=tx1+1\displaystyle X=u_{1}^{\frac{p-1}{2}}(\partial_{t}-\partial_{1})+u_{1}^{\frac{p-1}{2}-2}x_{2}^{2}(\partial_{t}+\partial_{1})+2u_{1}^{\frac{p-1}{2}-1}x_{2}\partial_{2},\quad u_{1}=t-x_{1}+1

as multipliers applied to regions bounded by the null hyperplane {t=x1}\{t=x_{1}\} and the initial hypersurface. The advantage of using such non-spherically symmetric vector fields is that we can make use of the reflection symmetry x1x1x_{1}\rightarrow-x_{1} as well as rotation symmetries. This enables us to derive the time decay of the potential energy

2|ϕ|p+1𝑑xC(1+t)max{p12,2},p>1\displaystyle\int_{\mathbb{R}^{2}}|\phi|^{p+1}dx\leq C(1+t)^{\max\{-\frac{p-1}{2},-2\}},\quad\forall p>1

in space dimension two. This decay rate is consistent with that in higher dimensions. However we emphasize here that this method works for all p>1p>1 while a lower bound p>1+2d1p>1+\frac{2}{d-1} was required in higher dimensions (see [17]).

For the three dimensional case when p2p\leq 2, we observe that it is not likely to use multipliers with weights higher than tt. Although the vector fields rγ(t+r)r^{\gamma}(\partial_{t}+\partial_{r}) can be used for all 0γ20\leq\gamma\leq 2, it does not contain weights in time. In particular these vector fields can only lead to the spatial decay of the solution instead of time decay. Inspired by our previous work in space dimension two, we introduce new non-spherical symmetric weighted vector fields

X=u2f(u)(t1)+\displaystyle X=u^{2}f(u)(\partial_{t}-\partial_{1})+ f(u)(x22+x32)(t+1)+2uf(u)(x22+x33)+(2f(u)+1)t,\displaystyle f(u)(x_{2}^{2}+x_{3}^{2})(\partial_{t}+\partial_{1})+2uf(u)(x_{2}\partial_{2}+x_{3}\partial_{3})+(2f(u)+1)\partial_{t},
u=tx1,f(u)=(1+|max{u,0}|2)p32.\displaystyle u=t-x_{1},\quad f(u)=(1+|\max\{u,0\}|^{2})^{\frac{p-3}{2}}.

as multipliers. By applying this vector field to the region bounded by the null hyperplane {t=x11}\{t=x_{1}-1\}, the initial hypersurface and the constant tt-hypersurface, we can derive that

x10(1+t)p1|ϕ(t,x)|p+1𝑑xC2,0.\displaystyle\int_{x_{1}\leq 0}(1+t)^{p-1}|\phi(t,x)|^{p+1}dx\leq C\mathcal{E}_{2,0}.

Using the symmetry x1x1x_{1}\rightarrow-x_{1}, we then conclude the time decay of the potential energy

3|ϕ(t,x)|p+1𝑑xC2,0(1+t)1p\displaystyle\int_{\mathbb{R}^{3}}|\phi(t,x)|^{p+1}dx\leq C\mathcal{E}_{2,0}(1+t)^{1-p}

for all 1<p21<p\leq 2. In view of this, we believe that such method can also lead to the time decay of potential energy in higher dimensions for the full energy sub-critical case.

Regarding the pointwise decay estimates for the solution, we rely on the representation formula. To control the nonlinearity, we apply the above vector fields to the region bounded by the backward light cone 𝒩(q)\mathcal{N}^{-}(q) emanating from the point q1+3q\in\mathbb{R}^{1+3}. To simplify the analysis, we can assume that q=(t0,x0)q=(t_{0},x_{0}), x0=(r0=|x0|,0,0)x_{0}=(r_{0}=|x_{0}|,0,0). This gives the weighted energy estimate

𝒩(q)(|t0r0|p1(1x1r0|xx0|)+|t0+r0|p1(1+x1r0|xx0|)+1)|ϕ|p+1𝑑xC0,2,\displaystyle\int_{\mathcal{N}^{-}(q)}(|t_{0}-r_{0}|^{p-1}(1-\frac{x_{1}-r_{0}}{|x-x_{0}|})+|t_{0}+r_{0}|^{p-1}(1+\frac{x_{1}-r_{0}}{|x-x_{0}|})+1)|\phi|^{p+1}dx\leq C\mathcal{E}_{0,2},

which is sufficient to conclude the pointwise estimate for the solution in the interior region |x|t|x|\leq t. The better decay estimates in the exterior region are based on the weighted energy estimate

𝒩(q){x1t}|r0+t0x1r0|xx0|||ϕ|p+1𝑑xC0,1.\displaystyle\int_{\mathcal{N}^{-}(q)\cap\{x_{1}\geq t\}}|r_{0}+t_{0}\frac{x_{1}-r_{0}}{|x-x_{0}|}||\phi|^{p+1}dx\leq C\mathcal{E}_{0,1}.

obtained by using the Lorentz rotation vector field x1t+t1x_{1}\partial_{t}+t\partial_{1} as multiplier.

Acknowledgments. S. Yang is partially supported by NSFC-11701017.

2 Preliminaries and notations

Additional to the Cartesian coordinates (t,x)=(t,x1,x2,x3)(t,x)=(t,x_{1},x_{2},x_{3}) for the Minkowski spacetime 1+3\mathbb{R}^{1+3}, we will also use the null frame

L1=t+1,L¯1=t1L_{1}=\partial_{t}+\partial_{1},\quad\underline{L}_{1}=\partial_{t}-\partial_{1}

with i\partial_{i} be shorthand for xi\partial_{x_{i}}. For fixed point q=(t0,x0)1+3q=(t_{0},x_{0})\in\mathbb{R}^{1+3}, let (t~,x~)(\tilde{t},\tilde{x}) be the new Cartesian coordinates centered at qq. More precisely, define

t~=tt0,x~=xx0,r~=|x~|,ω~=x~|x~|,L~=t~+r~,L¯~=t~r~.\tilde{t}=t-t_{0},\quad\tilde{x}=x-x_{0},\quad\tilde{r}=|\tilde{x}|,\quad\tilde{\omega}=\frac{\tilde{x}}{|\tilde{x}|},\quad\tilde{L}=\partial_{\tilde{t}}+\partial_{\tilde{r}},\quad\tilde{\underline{L}}=\partial_{\tilde{t}}-\partial_{\tilde{r}}.

By translation invariance, note that

t~=t,r~=ω~~=ω~.\displaystyle\partial_{\tilde{t}}=\partial_{t},\quad\partial_{\tilde{r}}=\tilde{\omega}\cdot\tilde{\nabla}=\tilde{\omega}\cdot\nabla.

Here \nabla is the spatial gradient while ~\tilde{\nabla} is the associated one centered at qq.

For vector fields X,YX,Y in 1+3\mathbb{R}^{1+3}, we use the geometric notation X,Y\langle X,Y\rangle meaning the inner product of these two vector fields under the flat Minkowski metric mμνm_{\mu\nu} with non-vanishing components

m00=1,mii=1,i=1,2,3.\displaystyle m_{00}=-1,\quad m_{ii}=1,\quad i=1,2,3.

Raising and lowering indices are carried out with respect to this metric in the sequel.

As the wave equation is time reversible, without loss of generality, we only consider the case in the future t0t\geq 0. For q=(t0,x0)1+3q=(t_{0},x_{0})\in\mathbb{R}^{1+3}, let 𝒥(q)\mathcal{J}^{-}(q) be the causal past

𝒥(q):={(t,x)||xx0|t0t,t0}.\displaystyle\mathcal{J}^{-}(q):=\{(t,x)||x-x_{0}|\leq t_{0}-t,\quad t\geq 0\}.

The boundary contains the past null cone 𝒩(q)\mathcal{N}^{-}(q) emanating from qq, that is,

𝒩(q):={(t,x)|t0t=|xx0|,t0}.\displaystyle\mathcal{N}^{-}(q):=\{(t,x)|t_{0}-t=|x-x_{0}|,\quad t\geq 0\}.

For r>0r>0, we use q(r)\mathcal{B}_{q}(r) to denote the spatial ball centered at q=(t0,x0)q=(t_{0},x_{0}) with radius rr. More precisely

q(r)={(t,x)|t=t0,|xx0|r}.\displaystyle\mathcal{B}_{q}(r)=\{(t,x)|t=t_{0},|x-x_{0}|\leq r\}.

The boundary of q(r)\mathcal{B}_{q}(r) is the 2-sphere 𝒮q(r)\mathcal{S}_{q}(r).

Finally to avoid too many constants, we make a convention that ABA\lesssim B means there exists a constant CC, depending only on pp and the small constant 0<ϵ<120<\epsilon<\frac{1}{2} such that ACBA\leq CB.

3 Weighted energy estimates through backward light cones

Following the framework established early in [14] and developed in [13], [18], potential energy decay is of crucial importance to deduce the asymptotic long time behavior for the solution. We begin with the following weighted potential energy estimate through backward light cones.

Proposition 3.1.

Assume that 1<p21<p\leq 2. Let q=(t0,r0,0,0)q=(t_{0},r_{0},0,0) be a point in 1+3\mathbb{R}^{1+3} with t0,r00t_{0},r_{0}\geq 0. Then the solution ϕ\phi of the nonlinear wave equation (1) verifies the following weighted energy estimates

𝒩(q)(|t0r0|p1(1ω~1)+|t0+r0|p1(1+ω~1)+1)|ϕ|p+1𝑑σC0,2,\displaystyle\int_{\mathcal{N}^{-}(q)}(|t_{0}-r_{0}|^{p-1}(1-\tilde{\omega}_{1})+|t_{0}+r_{0}|^{p-1}(1+\tilde{\omega}_{1})+1)|\phi|^{p+1}d\sigma\leq C\mathcal{E}_{0,2}, (3)
𝒩(q){x1t}|r0+t0ω~1||ϕ|p+1𝑑σC0,1\displaystyle\int_{\mathcal{N}^{-}(q)\cap\{x_{1}\geq t\}}|r_{0}+t_{0}\tilde{\omega}_{1}||\phi|^{p+1}d\sigma\leq C\mathcal{E}_{0,1} (4)

for some constant CC depending only on pp. Here dσd\sigma is the surface measure and ω~1=x1r0(x1r)2+x22+x32.\tilde{\omega}_{1}=\frac{x_{1}-r_{0}}{\sqrt{(x_{1}-r)^{2}+x_{2}^{2}+x_{3}^{2}}}.

Proof.

Recall the energy momentum tensor for the scalar field ϕ\phi

T[ϕ]μν=μϕνϕ12mμν(γϕγϕ+2p+1|ϕ|p+1).\displaystyle T[\phi]_{\mu\nu}=\partial_{\mu}\phi\partial_{\nu}\phi-\frac{1}{2}m_{\mu\nu}(\partial^{\gamma}\phi\partial_{\gamma}\phi+\frac{2}{p+1}|\phi|^{p+1}).

For any vector fields XX, YY and any function χ\chi, define the current

JμX,Y,χ[ϕ]=T[ϕ]μνXν12μχ|ϕ|2+12χμ|ϕ|2+Yμ.J^{X,Y,\chi}_{\mu}[\phi]=T[\phi]_{\mu\nu}X^{\nu}-\frac{1}{2}\partial_{\mu}\chi\cdot|\phi|^{2}+\frac{1}{2}\chi\partial_{\mu}|\phi|^{2}+Y_{\mu}.

Then for solution ϕ\phi of equation (1) and any domain 𝒟\mathcal{D} in 1+3\mathbb{R}^{1+3}, we have the energy identity

𝒟μJμX,Y,χ[ϕ]dvol=𝒟𝑑iv(Y)+T[ϕ]μνπμνX+χμϕμϕ12χ|ϕ|2+χ|ϕ|p+1dvol.\iint_{\mathcal{D}}\partial^{\mu}J^{X,Y,\chi}_{\mu}[\phi]d\textnormal{vol}=\iint_{\mathcal{D}}div(Y)+T[\phi]^{\mu\nu}\pi^{X}_{\mu\nu}+\chi\partial_{\mu}\phi\partial^{\mu}\phi-\frac{1}{2}\Box\chi\cdot|\phi|^{2}+\chi|\phi|^{p+1}d\textnormal{vol}. (5)

Here πX=12Xm\pi^{X}=\frac{1}{2}{\mathcal{L}}_{X}m is the deformation tensor for the vector field XX.

In the above energy identity, choose the vector fields X,X, YY and the function χ\chi as follows:

X=u2f(u)L¯1+f(u)(x22+x32)L1+2uf(u)(x22+x33)+(2f(u)+1)t,\displaystyle X=u^{2}f(u){\underline{L}_{1}}+f(u)(x_{2}^{2}+x_{3}^{2}){L_{1}}+2uf(u)(x_{2}\partial_{2}+x_{3}\partial_{3})+(2f(u)+1)\partial_{t},
Y=(L1g)S(Sg+3g)L1,χ=2uf(u),g=f(u)|ϕ|2,u=tx1,\displaystyle Y=({L_{1}}g)S-(Sg+3g){L_{1}},\quad\chi=2uf(u),\quad g=f(u)|\phi|^{2},\quad u=t-x_{1},
f(u)=1foru0;f(u)=(1+u2)p32foru0.\displaystyle f(u)=1\quad\text{for}\quad u\leq 0;\quad f(u)=(1+u^{2})^{\frac{p-3}{2}}\quad\text{for}\quad u\geq 0.

Here S=tt+rrS=t\partial_{t}+r\partial_{r} is the scaling vector field and L1=t+1{L_{1}}=\partial_{t}+\partial_{1}, L¯1=t1{\underline{L}_{1}}=\partial_{t}-\partial_{1}. We then compute that

L1X=0,jX=2f(u)xjL1+2uf(u)j,j=2,3,\displaystyle\nabla_{{L_{1}}}X=0,\quad\nabla_{j}X=2f(u)x_{j}{L_{1}}+2uf(u)\partial_{j},\quad j=2,3,
L¯1X=2(2uf(u)+u2f(u))L¯1+2f(u)(x22+x32)L1+4(f(u)+uf(u))(x22+x33)+4f(u)t.\displaystyle\nabla_{{\underline{L}_{1}}}X=2(2uf(u)+u^{2}f^{\prime}(u)){\underline{L}_{1}}+2f^{\prime}(u)(x_{2}^{2}+x_{3}^{2}){L_{1}}+4(f(u)+uf^{\prime}(u))(x_{2}\partial_{2}+x_{3}\partial_{3})+4f^{\prime}(u)\partial_{t}.

In particular the non-vanishing components of the deformation tensor πμνX\pi_{\mu\nu}^{X} are

πL1L¯1X\displaystyle\pi^{X}_{{L_{1}}{\underline{L}_{1}}} =2(2uf(u)+(u2+1)f(u)),πL¯1L¯1X=4f(u)(x22+x32+1),\displaystyle=-2(2uf(u)+(u^{2}+1)f^{\prime}(u)),\quad\pi^{X}_{{\underline{L}_{1}}{\underline{L}_{1}}}=-4f^{\prime}(u)(x_{2}^{2}+x_{3}^{2}+1),
πL¯1jX\displaystyle\pi^{X}_{{\underline{L}_{1}}\partial_{j}} =2uf(u)xj,πjjX=2uf(u),j=2,3.\displaystyle=2uf^{\prime}(u)x_{j},\quad\pi^{X}_{\partial_{j}\partial_{j}}=2uf(u),\quad j=2,3.

We also have div(L1)=0div({L_{1}})=0, div(S)=4div(S)=4, [L1,S]=L1[{L_{1}},S]={L_{1}} and

div(Y)\displaystyle div(Y) =SL1g+4L1gL1(Sg+3g)=[L1,S]g+L1g=0.\displaystyle=S{L_{1}}g+4{L_{1}}g-{L_{1}}(Sg+3g)=-[{L_{1}},S]g+{L_{1}}g=0.

Since χ=0\Box\chi=0, we therefore can compute that

T[ϕ]μνπμνX+χμϕμϕ+χ|ϕ|p+112χ|ϕ|2\displaystyle T[\phi]^{\mu\nu}\pi^{X}_{\mu\nu}+\chi\partial_{\mu}\phi\partial^{\mu}\phi+\chi|\phi|^{p+1}-\frac{1}{2}\Box\chi|\phi|^{2}
=\displaystyle= (2uf(u)+(u2+1)f(u))(|(2,3)ϕ|2+2p+1|ϕ|p+1)\displaystyle-(2uf(u)+(u^{2}+1)f^{\prime}(u))(|(\partial_{2},\partial_{3})\phi|^{2}+\frac{2}{p+1}|\phi|^{p+1})
+2uf(u)(|(2,3)ϕ|2μϕμϕ2p+1|ϕ|p+1)\displaystyle+2uf(u)(|(\partial_{2},\partial_{3})\phi|^{2}-\partial^{\mu}\phi\partial_{\mu}\phi-\frac{2}{p+1}|\phi|^{p+1})
f(u)(x22+x32+1)|L1ϕ|22uf(u)(x22ϕ+x33ϕ)L1ϕ+2uf(u)(μϕμϕ+|ϕ|p+1)\displaystyle-f^{\prime}(u)(x_{2}^{2}+x_{3}^{2}+1)|{L_{1}}\phi|^{2}-2uf^{\prime}(u)(x_{2}\partial_{2}\phi+x_{3}\partial_{3}\phi){L_{1}}\phi+2uf(u)(\partial_{\mu}\phi\partial^{\mu}\phi+|\phi|^{p+1})
=\displaystyle= f(u)(|(x2,x3)L1ϕ+u(2,3)ϕ|2+|(2,3,L1)ϕ|2)+2|ϕ|p+1p+1((p3)uf(u)(u2+1)f(u)).\displaystyle-f^{\prime}(u)(|(x_{2},x_{3}){L_{1}}\phi+u(\partial_{2},\partial_{3})\phi|^{2}+|(\partial_{2},\partial_{3},{L_{1}})\phi|^{2})+\frac{2|\phi|^{p+1}}{p+1}((p-3)uf(u)-(u^{2}+1)f^{\prime}(u)).

Since we are restricting to the range 1<p2<31<p\leq 2<3, in view of the definition of the function ff, we note that when u0u\leq 0,

f(u)=0,(p3)uf(u)=(p3)u0,f^{\prime}(u)=0,(p-3)uf(u)=(p-3)u\geq 0,

and

f(u)=(p3)u(1+u2)p320,(p3)uf(u)=(u2+1)f(u),u0.f^{\prime}(u)=(p-3)u(1+u^{2})^{\frac{p-3}{2}}\leq 0,\quad(p-3)uf(u)=(u^{2}+1)f^{\prime}(u),\quad u\geq 0.

In particular we always have

f(u)0,(p3)uf(u)(u2+1)f(u),\displaystyle f^{\prime}(u)\leq 0,\quad(p-3)uf(u)\geq(u^{2}+1)f^{\prime}(u), (6)

which implies that the bulk integral is nonnegative.

Now take the domain 𝒟\mathcal{D} to be 𝒥(q)\mathcal{J}^{-}(q) with boundary (0,x0)(t0)𝒩(q)\mathcal{B}_{(0,x_{0})}(t_{0})\cup\mathcal{N}^{-}(q). In view of Stokes’ formula, the left hand side of the energy identity (5) is reduced to integrals on the initial hypersurface (0,x0)(t0)\mathcal{B}_{(0,x_{0})}(t_{0}) and on the backward light cone 𝒩(q)\mathcal{N}^{-}(q). Since the bulk integral on the right hand side is nonnegative, we conclude that

𝒩(q)iJX,Y,χ[ϕ]𝑑vol+(0,x0)(t0)iJX,Y,χ[ϕ]𝑑vol0.\displaystyle\int_{\mathcal{N}^{-}(q)}i_{J^{X,Y,\chi}[\phi]}d\textnormal{vol}+\int_{\mathcal{B}_{(0,x_{0})}(t_{0})}i_{J^{X,Y,\chi}[\phi]}d\textnormal{vol}\geq 0. (7)

For the integral on the initial hypersurface (0,x0)(t0)\mathcal{B}_{(0,x_{0})}(t_{0}), we compute it under the coordinates (t,x)(t,x)

iJX,Y,χ[ϕ]dvol=\displaystyle i_{J^{X,Y,\chi}[\phi]}d\textnormal{vol}= (JX,Y,χ[ϕ])0dx=(T[ϕ]0νXν12tχ|ϕ|2+12χt|ϕ|2+Y0)dx\displaystyle-(J^{X,Y,\chi}[\phi])^{0}dx=(T[\phi]_{0\nu}X^{\nu}-\frac{1}{2}\partial_{t}\chi|\phi|^{2}+\frac{1}{2}\chi\cdot\partial_{t}|\phi|^{2}+Y_{0})dx
=\displaystyle= 12f(u)((x22+x32+u2)(|tϕ|2+|ϕ|2+2p+1|ϕ|p+1)+2ut|ϕ|2\displaystyle\frac{1}{2}f(u)\left((x_{2}^{2}+x_{3}^{2}+u^{2})(|\partial_{t}\phi|^{2}+|\nabla\phi|^{2}+\frac{2}{p+1}|\phi|^{p+1})+2u\partial_{t}|\phi|^{2}\right.
+2(x22+x32u2)tϕ1ϕ+4utϕ(x22ϕ+x33ϕ))dx(f(u)+uf(u))|ϕ|2dx\displaystyle\left.+2(x_{2}^{2}+x_{3}^{2}-u^{2})\partial_{t}\phi\cdot\partial_{1}\phi+4u\partial_{t}\phi(x_{2}\partial_{2}\phi+x_{3}\partial_{3}\phi)\right)dx-(f(u)+uf^{\prime}(u))|\phi|^{2}dx
+12(2f(u)+1)(|tϕ|2+|ϕ|2+2p+1|ϕ|p+1)dx+(Sg+3gtL1g)dx\displaystyle+\frac{1}{2}(2f(u)+1)(|\partial_{t}\phi|^{2}+|\nabla\phi|^{2}+\frac{2}{p+1}|\phi|^{p+1})dx+(Sg+3g-t{L_{1}}g)dx
=\displaystyle= 12f(u)(|(x2,x3)(tϕ+1ϕ)+u(2,3)ϕ|2+|u(tϕ1ϕ)+(x22+x33)ϕ+2ϕ|2\displaystyle\frac{1}{2}f(u)\left(|(x_{2},x_{3})(\partial_{t}\phi+\partial_{1}\phi)+u(\partial_{2},\partial_{3})\phi|^{2}+|u(\partial_{t}\phi-\partial_{1}\phi)+(x_{2}\partial_{2}+x_{3}\partial_{3})\phi+2\phi|^{2}\right.
+(x23ϕx32ϕ)2+2(x22+x32+u2)p+1|ϕ|p+1)dx\displaystyle\qquad\quad\left.+(x_{2}\partial_{3}\phi-x_{3}\partial_{2}\phi)^{2}+\frac{2(x_{2}^{2}+x_{3}^{2}+u^{2})}{p+1}|\phi|^{p+1}\right)dx
+12(2f(u)+1)(|tϕ|2+|ϕ|2+2p+1|ϕ|p+1)dx.\displaystyle+\frac{1}{2}(2f(u)+1)(|\partial_{t}\phi|^{2}+|\nabla\phi|^{2}+\frac{2}{p+1}|\phi|^{p+1})dx.

Here we used the relation L1u=0{L_{1}}u=0, Su=uSu=u and the following computation

Sg+3gtL1g\displaystyle Sg+3g-t{L_{1}}g =S(f(u)|ϕ|2)+3f(u)|ϕ|2tL1(f(u)|ϕ|2)\displaystyle=S(f(u)|\phi|^{2})+3f(u)|\phi|^{2}-t{L_{1}}(f(u)|\phi|^{2})
=f(u)S|ϕ|2+(uf(u)+3f(u))|ϕ|2tf(u)L1|ϕ|2\displaystyle=f(u)S|\phi|^{2}+(uf^{\prime}(u)+3f(u))|\phi|^{2}-tf(u){L_{1}}|\phi|^{2}
=f(u)(u1+x22+x33)|ϕ|2+(uf(u)+3f(u))|ϕ|2.\displaystyle=f(u)(-u\partial_{1}+x_{2}\partial_{2}+x_{3}\partial_{3})|\phi|^{2}+(uf^{\prime}(u)+3f(u))|\phi|^{2}.

Since 0<f(u)10<f(u)\leq 1 and u=x1u=-x_{1} on (0,x0)(t0)\mathcal{B}_{(0,x_{0})}(t_{0}), by using Hardy’s inequality to control |ϕ|2|\phi|^{2}, we can bound the integral on the initial hypersurface by the initial weighted energy

(0,x0)(t0)iJX,Y,χ[ϕ]𝑑volC0,2.\displaystyle\int_{\mathcal{B}_{(0,x_{0})}(t_{0})}i_{J^{X,Y,\chi}[\phi]}d\textnormal{vol}\leq C\mathcal{E}_{0,2}. (8)

Next we compute the boundary integral on the backward light cone 𝒩(q)\mathcal{N}^{-}(q). The surface measure is of the form

iJX,Y,χ[ϕ]dvol=JL¯~X,Y,χ[ϕ]dσ=(T[ϕ]L¯~νXν12(L¯~χ)|ϕ|2+12χL¯~|ϕ|2+YL¯~)dσ.\displaystyle-i_{J^{X,Y,\chi}[\phi]}d\textnormal{vol}=J_{\tilde{\underline{L}}}^{X,Y,\chi}[\phi]d\sigma=(T[\phi]_{\tilde{\underline{L}}\nu}X^{\nu}-\frac{1}{2}(\tilde{\underline{L}}\chi)|\phi|^{2}+\frac{1}{2}\chi\cdot\tilde{\underline{L}}|\phi|^{2}+Y_{\tilde{\underline{L}}})d\sigma.

Here we recall that the null frame {L¯~,L~,e~1,e~2}\{\tilde{\underline{L}},\tilde{L},\tilde{e}_{1},\tilde{e}_{2}\} is centered at the point qq. Since

L1u=0,Su=u=S,L1,{L_{1}}u=0,\quad Su=u=-\langle S,{L_{1}}\rangle,

we have

L1g\displaystyle{L_{1}}g =L1(f(u)|ϕ|2)=f(u)L1|ϕ|2,\displaystyle={L_{1}}(f(u)|\phi|^{2})=f(u){L_{1}}|\phi|^{2},
Sg+3g\displaystyle Sg+3g =S(f(u)|ϕ|2)+3f(u)|ϕ|2=f(u)S|ϕ|2+(uf(u)+3f(u))|ϕ|2.\displaystyle=S(f(u)|\phi|^{2})+3f(u)|\phi|^{2}=f(u)S|\phi|^{2}+(uf^{\prime}(u)+3f(u))|\phi|^{2}.

Note that

L¯~u=L¯~(t)L¯~(x1)=L¯~,tL¯~,1=L¯~,L1.\tilde{\underline{L}}u=\tilde{\underline{L}}(t)-\tilde{\underline{L}}(x_{1})=-\langle\tilde{\underline{L}},\partial_{t}\rangle-\langle\tilde{\underline{L}},\partial_{1}\rangle=-\langle\tilde{\underline{L}},{L_{1}}\rangle.

We therefore can compute that

12(L¯~χ)|ϕ|2+12χL¯~|ϕ|2+YL¯~\displaystyle-\frac{1}{2}(\tilde{\underline{L}}\chi)|\phi|^{2}+\frac{1}{2}\chi\cdot\tilde{\underline{L}}|\phi|^{2}+Y_{\tilde{\underline{L}}}
=L¯~(uf(u))|ϕ|2+uf(u)L¯~|ϕ|2+(L1g)S,L¯~(Sg+3g)L1,L¯~\displaystyle=-\tilde{\underline{L}}(uf(u))|\phi|^{2}+uf(u)\tilde{\underline{L}}|\phi|^{2}+({L_{1}}g)\langle S,\tilde{\underline{L}}\rangle-(Sg+3g)\langle{L_{1}},\tilde{\underline{L}}\rangle
=(L¯~u)(f(u)+uf(u))|ϕ|2+uf(u)L¯~|ϕ|2+f(u)(L1|ϕ|2)S,L¯~\displaystyle=-(\tilde{\underline{L}}u)(f(u)+uf^{\prime}(u))|\phi|^{2}+uf(u)\tilde{\underline{L}}|\phi|^{2}+f(u)({L_{1}}|\phi|^{2})\langle S,\tilde{\underline{L}}\rangle
+(f(u)S|ϕ|2+(uf(u)+3f(u))|ϕ|2)L¯~u\displaystyle\quad+(f(u)S|\phi|^{2}+(uf^{\prime}(u)+3f(u))|\phi|^{2})\tilde{\underline{L}}u
=f(u)(L1|ϕ|2)S,L¯~+(f(u)S|ϕ|2+2f(u)|ϕ|2)L¯~u+uf(u)L¯~|ϕ|2\displaystyle=f(u)({L_{1}}|\phi|^{2})\langle S,\tilde{\underline{L}}\rangle+(f(u)S|\phi|^{2}+2f(u)|\phi|^{2})\tilde{\underline{L}}u+uf(u)\tilde{\underline{L}}|\phi|^{2}
=f(u)Z|ϕ|2f(u)(S|ϕ|2+2|ϕ|2)L¯~,L1\displaystyle=f(u)Z|\phi|^{2}-f(u)(S|\phi|^{2}+2|\phi|^{2})\langle\tilde{\underline{L}},{L_{1}}\rangle
=f(u)(Z~|ϕ|22|ϕ|2L¯~,L1).\displaystyle=f(u)\left(\widetilde{Z}|\phi|^{2}-2|\phi|^{2}\langle\tilde{\underline{L}},{L_{1}}\rangle\right).

Here the vector fields ZZ, Z~\widetilde{Z} are given by

Z=S,L¯~L1+uL¯~=S,L¯~L1S,L1L¯~,Z~=ZL¯~,L1S.\displaystyle Z=\langle S,\tilde{\underline{L}}\rangle{L_{1}}+u\tilde{\underline{L}}=\langle S,\tilde{\underline{L}}\rangle{L_{1}}-\langle S,{L_{1}}\rangle\tilde{\underline{L}},\quad\widetilde{Z}=Z-\langle\tilde{\underline{L}},{L_{1}}\rangle S.

Now we write the vector field XX as

X=f(u)X0+(2f(u)+1)t,X0=u2(t1)+(x22+x32)(t+1)+2u(x22+x33).\displaystyle X=f(u)X_{0}+(2f(u)+1)\partial_{t},\quad X_{0}=u^{2}(\partial_{t}-\partial_{1})+(x_{2}^{2}+x_{3}^{2})(\partial_{t}+\partial_{1})+2u(x_{2}\partial_{2}+x_{3}\partial_{3}).

The vector field X0X_{0} can be further written as

X0=(r2t2)(t+1)+2uS=S,SL12S,L1S.\displaystyle X_{0}=(r^{2}-t^{2})(\partial_{t}+\partial_{1})+2uS=\langle S,S\rangle{L_{1}}-2\langle S,{L_{1}}\rangle S.

Now we expand the current

JL¯~X,Y,χ[ϕ]\displaystyle J_{\tilde{\underline{L}}}^{X,Y,\chi}[\phi] =T[ϕ]L¯~νXν12(L¯~χ)|ϕ|2+12χL¯~|ϕ|2+YL¯~\displaystyle=T[\phi]_{\tilde{\underline{L}}\nu}X^{\nu}-\frac{1}{2}(\tilde{\underline{L}}\chi)|\phi|^{2}+\frac{1}{2}\chi\cdot\tilde{\underline{L}}|\phi|^{2}+Y_{\tilde{\underline{L}}}
=f(u)T[ϕ]L¯~X0+(2f(u)+1)T[ϕ]L¯~t+f(u)(Z~|ϕ|22|ϕ|2L¯~,L1)\displaystyle=f(u)T[\phi]_{\tilde{\underline{L}}X_{0}}+(2f(u)+1)T[\phi]_{\tilde{\underline{L}}\partial_{t}}+f(u)(\widetilde{Z}|\phi|^{2}-2|\phi|^{2}\langle\tilde{\underline{L}},{L_{1}}\rangle)
=f(u)(T[ϕ]L¯~X0+Z~|ϕ|22|ϕ|2L¯~,L1)+(2f(u)+1)T[ϕ]L¯~t.\displaystyle=f(u)(T[\phi]_{\tilde{\underline{L}}X_{0}}+\widetilde{Z}|\phi|^{2}-2|\phi|^{2}\langle\tilde{\underline{L}},{L_{1}}\rangle)+(2f(u)+1)T[\phi]_{\tilde{\underline{L}}\partial_{t}}.

For the second term, note that

T[ϕ]L¯~t=12|L¯~ϕ|2+12(|/ ~ϕ|2+2p+1|ϕ|p+1)1p+1|ϕ|p+1.\displaystyle T[\phi]_{\tilde{\underline{L}}\partial_{t}}=\frac{1}{2}|{\tilde{\underline{L}}}\phi|^{2}+\frac{1}{2}(|\tilde{\mbox{$\nabla\mkern-13.0mu/$\,}}\phi|^{2}+\frac{2}{p+1}|\phi|^{p+1})\geq\frac{1}{p+1}|\phi|^{p+1}.

For the first term we claim that

T[ϕ]L¯~X0+Z~|ϕ|22|ϕ|2L¯~,L1L¯~,X0|ϕ|p+1p+1.\displaystyle T[\phi]_{\tilde{\underline{L}}X_{0}}+\widetilde{Z}|\phi|^{2}-2|\phi|^{2}\langle\tilde{\underline{L}},{L_{1}}\rangle\geq-\langle\tilde{\underline{L}},X_{0}\rangle\frac{|\phi|^{p+1}}{p+1}. (9)

At any fixed point of the backward light cone 𝒩(q)\mathcal{N}^{-}(q), we prove the above claim by discussing three different cases:

  • (i)

    If the vector field X0X_{0} vanishes, that is X0=0X_{0}=0, then

    0=u=tx1=x2=x3.0=u=t-x_{1}=x_{2}=x_{3}.

    In particular, we have

    S=tL1,L¯~,L1=r~t~,t+1=r~11t,t+1=1+ω~10.S=t{L_{1}},\quad-\langle\tilde{\underline{L}},{L_{1}}\rangle=\langle\partial_{\tilde{r}}-\partial_{\tilde{t}},\partial_{t}+\partial_{1}\rangle=\langle\tilde{r}^{-1}\partial_{1}-\partial_{t},\partial_{t}+\partial_{1}\rangle=1+\widetilde{\omega}_{1}\geq 0.

    Here recall that q=(t0,r0,0,0)q=(t_{0},r_{0},0,0) and x2=x3=0x_{2}=x_{3}=0 for this case. This implies that

    Z~=S,L¯~L1L¯~,L1S=0,\displaystyle\widetilde{Z}=\langle S,\tilde{\underline{L}}\rangle{L_{1}}-\langle\tilde{\underline{L}},{L_{1}}\rangle S=0,
    T[ϕ]L¯~X0+Z~|ϕ|22|ϕ|2L¯~,L1=2|ϕ|2L¯~,L10.\displaystyle T[\phi]_{\tilde{\underline{L}}X_{0}}+\widetilde{Z}|\phi|^{2}-2|\phi|^{2}\langle\tilde{\underline{L}},{L_{1}}\rangle=-2|\phi|^{2}\langle\tilde{\underline{L}},{L_{1}}\rangle\geq 0.

    Hence the above claim holds.

  • (ii)

    If X00X_{0}\neq 0 and the vector fields X0X_{0}, L¯~\tilde{\underline{L}} are linearly dependent, by comparing the coefficients of t=t~\partial_{t}=\partial_{\tilde{t}}, we conclude that X0=λL¯~X_{0}=\lambda\tilde{\underline{L}} with λ=u2+x22+x32>0\lambda=u^{2}+x_{2}^{2}+x_{3}^{2}>0. Recall the definition for the vector fields X0X_{0}, Z~\widetilde{Z}. We can show that

    λZ~\displaystyle\lambda\widetilde{Z} =S,X0L1S,L1X0X0,L1S\displaystyle=\langle S,X_{0}\rangle{L_{1}}-\langle S,{L_{1}}\rangle X_{0}-\langle X_{0},{L_{1}}\rangle S
    =S,SS,L1L1S,L1X0+2S,L12S\displaystyle=-\langle S,S\rangle\langle S,{L_{1}}\rangle{L_{1}}-\langle S,{L_{1}}\rangle X_{0}+2\langle S,{L_{1}}\rangle^{2}S
    =2S,L1X0=2uλL¯~,\displaystyle=-2\langle S,{L_{1}}\rangle X_{0}=2u\lambda\tilde{\underline{L}},

    which in particular implies that Z~=2uL¯~\widetilde{Z}=2u\tilde{\underline{L}}. Note that

    λL¯~,L1=X0,L1=2S,L12=2u2.\displaystyle-\lambda\langle\tilde{\underline{L}},{L_{1}}\rangle=-\langle X_{0},{L_{1}}\rangle=2\langle S,{L_{1}}\rangle^{2}=2u^{2}.

    We then can demonstrate that

    T[ϕ]L¯~X0+Z~|ϕ|22|ϕ|2L¯~,L1=λ|L¯~ϕ|2+2uL¯~|ϕ|2+4u2|ϕ|2/λ=|λL¯~ϕ+2uϕ|2λ10.\displaystyle T[\phi]_{\tilde{\underline{L}}X_{0}}+\widetilde{Z}|\phi|^{2}-2|\phi|^{2}\langle\tilde{\underline{L}},{L_{1}}\rangle=\lambda|\tilde{\underline{L}}\phi|^{2}+2u\tilde{\underline{L}}|\phi|^{2}+4u^{2}|\phi|^{2}/\lambda=|\lambda\tilde{\underline{L}}\phi+2u\phi|^{2}\lambda^{-1}\geq 0.

    The above claim follows as L¯~,X0=0\langle\tilde{\underline{L}},X_{0}\rangle=0.

  • (iii)

    The remaining case is when X00X_{0}\neq 0 and the vector fields X0X_{0}, L¯~\tilde{\underline{L}} are linearly independent. We write

    X0=(u2+x22+x32)(t+ω^),L¯~=tω~,\displaystyle X_{0}=(u^{2}+x_{2}^{2}+x_{3}^{2})(\partial_{t}+\hat{\omega}\cdot\nabla),\quad\tilde{\underline{L}}=\partial_{t}-\widetilde{\omega}\cdot\nabla,
    ω^=(x22+x32u2,2ux2,2ux3)/(u2+x22+x32),|ω^|=1,ω^ω~,\displaystyle\hat{\omega}=(x_{2}^{2}+x_{3}^{2}-u^{2},2ux_{2},2ux_{3})/(u^{2}+x_{2}^{2}+x_{3}^{2}),\quad|\hat{\omega}|=1,\quad\hat{\omega}\neq-\widetilde{\omega},
    L¯~,L¯~=X0,X0=0,L¯~,X0=(u2+x22+x32)(1+ω^ω~)>0.\displaystyle\langle\tilde{\underline{L}},\tilde{\underline{L}}\rangle=\langle X_{0},X_{0}\rangle=0,\quad-\langle\tilde{\underline{L}},X_{0}\rangle=(u^{2}+x_{2}^{2}+x_{3}^{2})(1+\hat{\omega}\cdot\widetilde{\omega})>0.

    Here we may note that =~\nabla=\tilde{\nabla}. In particular we see that L¯~\tilde{\underline{L}}, X0X_{0} are null vectors which are linearly independent. We thus can construct a null frame {X0,L¯~,e^1,e^2}\{X_{0},\tilde{\underline{L}},\hat{e}_{1},\hat{e}_{2}\} such that L¯~,e^j=X0,e^j=0\langle\tilde{\underline{L}},\hat{e}_{j}\rangle=\langle X_{0},\hat{e}_{j}\rangle=0, e^j,e^j=1\langle\hat{e}_{j},\hat{e}_{j}\rangle=1, e^1,e^2=0\langle\hat{e}_{1},\hat{e}_{2}\rangle=0 for j=1,2j=1,2. Notice that

    Z,S\displaystyle\langle Z,S\rangle =S,L¯~L1,SS,L1L¯~,S=0,Z,L¯~=S,L¯~L1,L¯~,\displaystyle=\langle S,\tilde{\underline{L}}\rangle\langle{L_{1}},S\rangle-\langle S,{L_{1}}\rangle\langle\tilde{\underline{L}},S\rangle=0,\quad\langle Z,\tilde{\underline{L}}\rangle=\langle S,\tilde{\underline{L}}\rangle\langle{L_{1}},\tilde{\underline{L}}\rangle,
    Z,L1\displaystyle\langle Z,{L_{1}}\rangle =S,L1L¯~,L1,Z~,L¯~=Z,L¯~L¯~,L1S,L¯~=0,\displaystyle=-\langle S,{L_{1}}\rangle\langle\tilde{\underline{L}},{L_{1}}\rangle,\quad\langle\widetilde{Z},\tilde{\underline{L}}\rangle=\langle Z,\tilde{\underline{L}}\rangle-\langle\tilde{\underline{L}},{L_{1}}\rangle\langle S,\tilde{\underline{L}}\rangle=0,
    Z~,X0\displaystyle\langle\widetilde{Z},X_{0}\rangle =ZL¯~,L1S,S,SL12S,L1S\displaystyle=\langle Z-\langle\tilde{\underline{L}},{L_{1}}\rangle S,\langle S,S\rangle{L_{1}}-2\langle S,{L_{1}}\rangle S\rangle
    =Z,L1S,S+L¯~,L1S,L1S,S=0.\displaystyle=\langle Z,{L_{1}}\rangle\langle S,S\rangle+\langle\tilde{\underline{L}},{L_{1}}\rangle\langle S,{L_{1}}\rangle\langle S,S\rangle=0.

    The above computation in particular shows that Z~span{e^1,e^2}\widetilde{Z}\in\text{span}\{\hat{e}_{1},\hat{e}_{2}\}. We hence can write that

    Z~=a1e^1+a2e^2.\widetilde{Z}=a_{1}\hat{e}_{1}+a_{2}\hat{e}_{2}.

    On the other hand, we also have

    L¯~,X0=L¯~,S,SL12S,L1S=L¯~,L1S,S2L¯~,SS,L1,\displaystyle\langle\tilde{\underline{L}},X_{0}\rangle=\langle\tilde{\underline{L}},\langle S,S\rangle{L_{1}}-2\langle S,{L_{1}}\rangle S\rangle=\langle\tilde{\underline{L}},{L_{1}}\rangle\langle S,S\rangle-2\langle\tilde{\underline{L}},S\rangle\langle S,{L_{1}}\rangle,
    Z~,Z~=Z,Z+L¯~,L12S,S=2S,L¯~L1,L¯~S,L1+L¯~,L12S,S=L¯~,X0L1,L¯~.\displaystyle\langle\widetilde{Z},\widetilde{Z}\rangle=\langle Z,Z\rangle+\langle\tilde{\underline{L}},{L_{1}}\rangle^{2}\langle S,S\rangle=-2\langle S,\tilde{\underline{L}}\rangle\langle{L_{1}},\tilde{\underline{L}}\rangle\langle S,{L_{1}}\rangle+\langle\tilde{\underline{L}},{L_{1}}\rangle^{2}\langle S,S\rangle=\langle\tilde{\underline{L}},X_{0}\rangle\langle{L_{1}},\tilde{\underline{L}}\rangle.

    Let

    p1=L¯~,X0,p2=L1,L¯~=1+ω~1.p_{1}=-\langle\tilde{\underline{L}},X_{0}\rangle,\quad p_{2}=-\langle{L_{1}},\tilde{\underline{L}}\rangle=1+\tilde{\omega}_{1}.

    Then the above computations show that

    p1>0,p20,p1p2=a12+a22.p_{1}>0,\quad p_{2}\geq 0,\quad p_{1}p_{2}=a_{1}^{2}+a_{2}^{2}.

    We therefore can compute that

    T[ϕ]L¯~X0+Z~|ϕ|22|ϕ|2L¯~,L1+L¯~,X0|ϕ|p+1p+1\displaystyle T[\phi]_{\tilde{\underline{L}}X_{0}}+\widetilde{Z}|\phi|^{2}-2|\phi|^{2}\langle\tilde{\underline{L}},{L_{1}}\rangle+\langle\tilde{\underline{L}},X_{0}\rangle\frac{|\phi|^{p+1}}{p+1}
    =\displaystyle= L¯~ϕX0ϕ12L¯~,X0(γϕγϕ+2p+1|ϕ|p+1)+Z~|ϕ|22|ϕ|2L¯~,L1+L¯~,X0|ϕ|p+1p+1\displaystyle\tilde{\underline{L}}\phi X_{0}\phi-\frac{1}{2}\langle\tilde{\underline{L}},X_{0}\rangle(\partial^{\gamma}\phi\partial_{\gamma}\phi+\frac{2}{p+1}|\phi|^{p+1})+\widetilde{Z}|\phi|^{2}-2|\phi|^{2}\langle\tilde{\underline{L}},{L_{1}}\rangle+\langle\tilde{\underline{L}},X_{0}\rangle\frac{|\phi|^{p+1}}{p+1}
    =\displaystyle= L¯~ϕX0ϕ12L¯~,X0(X0ϕX0ϕ+L¯~ϕL¯~ϕ)+12p1(|e^1ϕ|2+|e^2ϕ|2)+2(a1e^1ϕ+a2e^2ϕ)ϕ+2p2|ϕ|2\displaystyle\tilde{\underline{L}}\phi X_{0}\phi-\frac{1}{2}\langle\tilde{\underline{L}},X_{0}\rangle(\partial^{X_{0}}\phi X_{0}\phi+\partial^{\tilde{\underline{L}}}\phi\tilde{\underline{L}}\phi)+\frac{1}{2}p_{1}(|\hat{e}_{1}\phi|^{2}+|\hat{e}_{2}\phi|^{2})+2(a_{1}\hat{e}_{1}\phi+a_{2}\hat{e}_{2}\phi)\phi+2p_{2}|\phi|^{2}
    =\displaystyle= 12p1(|e^1ϕ+2p11a1ϕ|2+|e^2ϕ+2p11a2ϕ|2)0.\displaystyle\frac{1}{2}p_{1}(|\hat{e}_{1}\phi+2p_{1}^{-1}a_{1}\phi|^{2}+|\hat{e}_{2}\phi+2p_{1}^{-1}a_{2}\phi|^{2})\geq 0.

    This means that the above claim (9) always holds.

In view of the estimate (9), we then conclude that

JL¯~X,Y,χ[ϕ]f(u)L¯~,X0+2f(u)+1p+1|ϕ|p+1.\displaystyle J_{\tilde{\underline{L}}}^{X,Y,\chi}[\phi]\geq\frac{-f(u)\langle\tilde{\underline{L}},X_{0}\rangle+2f(u)+1}{p+1}|\phi|^{p+1}.

Now we compute L¯~,X0-\langle\tilde{\underline{L}},X_{0}\rangle under the coordinates (t~,x~)(\tilde{t},\tilde{x}) centered at q=(t0,r0,0,0)q=(t_{0},r_{0},0,0). We have

(t,x)=(t0+t~,r0+x~1,x~2,x~3)=(t0+t~,r0+r~ω~1,r~ω~2,r~ω~3).\displaystyle(t,x)=(t_{0}+\widetilde{t},r_{0}+\widetilde{x}_{1},\widetilde{x}_{2},\widetilde{x}_{3})=(t_{0}+\widetilde{t},r_{0}+\widetilde{r}\widetilde{\omega}_{1},\widetilde{r}\widetilde{\omega}_{2},\widetilde{r}\widetilde{\omega}_{3}).

Note that on the backward light cone 𝒩(q)\mathcal{N}^{-}(q), we also have t~=r~\widetilde{t}=-\widetilde{r}. We thus can compute that

L¯~,X0\displaystyle-\langle\tilde{\underline{L}},X_{0}\rangle =(u2+x22+x32)+(x22+x32u2)ω~1+2ux2ω~2+2ux3ω~3\displaystyle=(u^{2}+x_{2}^{2}+x_{3}^{2})+(x_{2}^{2}+x_{3}^{2}-u^{2})\widetilde{\omega}_{1}+2ux_{2}\widetilde{\omega}_{2}+2ux_{3}\widetilde{\omega}_{3}
=u2(1ω~1)+(x22+x32)(1+ω~1)+2ur~(ω~22+ω~32)\displaystyle=u^{2}(1-\widetilde{\omega}_{1})+(x_{2}^{2}+x_{3}^{2})(1+\widetilde{\omega}_{1})+2u\widetilde{r}(\widetilde{\omega}_{2}^{2}+\widetilde{\omega}_{3}^{2})
=u2(1ω~1)+r~2(1ω~12)(1+ω~1)+2ur~(1ω~12)\displaystyle=u^{2}(1-\widetilde{\omega}_{1})+\widetilde{r}^{2}(1-\widetilde{\omega}_{1}^{2})(1+\widetilde{\omega}_{1})+2u\widetilde{r}(1-\widetilde{\omega}_{1}^{2})
=(u+r~(1+ω~1))2(1ω~1)\displaystyle=(u+\widetilde{r}(1+\widetilde{\omega}_{1}))^{2}(1-\widetilde{\omega}_{1})
=(t0+t~r0x~1+r~+x~1))2(1ω~1)\displaystyle=(t_{0}+\tilde{t}-r_{0}-\widetilde{x}_{1}+\widetilde{r}+\widetilde{x}_{1}))^{2}(1-\widetilde{\omega}_{1})
=(t0r0)2(1ω~1)0\displaystyle=(t_{0}-r_{0})^{2}(1-\widetilde{\omega}_{1})\geq 0

on 𝒩(q)\mathcal{N}^{-}(q). For the case when u0u\leq 0, by the definition of f(u)f(u), we have the lower bound

f(u)L¯~,X0+2f(u)+1=3+(t0r0)2(1ω~1)1+|t0r0|p1(1ω~1)\displaystyle-f(u)\langle\tilde{\underline{L}},X_{0}\rangle+2f(u)+1=3+(t_{0}-r_{0})^{2}(1-\widetilde{\omega}_{1})\geq 1+|t_{0}-r_{0}|^{p-1}(1-\widetilde{\omega}_{1})

as 1<p21<p\leq 2 and |ω~1|1|\widetilde{\omega}_{1}|\leq 1. For the case when u>0u>0, note that on 𝒩(q)\mathcal{N}^{-}(q)

0<u=tx1=t0+t~r0r~ω~1=t0r0r~(1+ω~1)t0r0.\displaystyle 0<u=t-x_{1}=t_{0}+\tilde{t}-r_{0}-\tilde{r}\widetilde{\omega}_{1}=t_{0}-r_{0}-\tilde{r}(1+\widetilde{\omega}_{1})\leq t_{0}-r_{0}.

We therefore can bound that

f(u)L¯~,X0+2f(u)+1\displaystyle-f(u)\langle\tilde{\underline{L}},X_{0}\rangle+2f(u)+1 =1+2(1+u2)p32+(t0r0)2(1ω~1)(1+u2)p32\displaystyle=1+2(1+u^{2})^{\frac{p-3}{2}}+(t_{0}-r_{0})^{2}(1-\widetilde{\omega}_{1})(1+u^{2})^{\frac{p-3}{2}}
1+(1+(t0r0)2)(1ω~1)(1+u2)p32\displaystyle\geq 1+(1+(t_{0}-r_{0})^{2})(1-\widetilde{\omega}_{1})(1+u^{2})^{\frac{p-3}{2}}
1+|t0r0|p1(1ω~1).\displaystyle\geq 1+|t_{0}-r_{0}|^{p-1}(1-\widetilde{\omega}_{1}).

Here again we used the assumption that p<3p<3. Hence in any case, we have shown that

JL¯~X,Y,χ[ϕ]f(u)L¯~,X0+2f(u)+1p+1|ϕ|p+1|t0r0|p1(1ω~1)+1p+1|ϕ|p+1.\displaystyle J_{\tilde{\underline{L}}}^{X,Y,\chi}[\phi]\geq\frac{-f(u)\langle\tilde{\underline{L}},X_{0}\rangle+2f(u)+1}{p+1}|\phi|^{p+1}\geq\frac{|t_{0}-r_{0}|^{p-1}(1-\widetilde{\omega}_{1})+1}{p+1}|\phi|^{p+1}.

In other words, we have the lower bound for the integral on the backward light cone 𝒩(q)\mathcal{N}^{-}(q)

𝒩(q)iJX,Y,χ[ϕ]𝑑vol=𝒩(q)JL¯~X,Y,χ[ϕ]𝑑σ𝒩(q)|t0r0|p1(1ω~1)+1p+1|ϕ|p+1𝑑σ,\displaystyle-\int_{\mathcal{N}^{-}(q)}i_{J^{X,Y,\chi}[\phi]}d\textnormal{vol}=\int_{\mathcal{N}^{-}(q)}J_{\tilde{\underline{L}}}^{X,Y,\chi}[\phi]d\sigma\geq\int_{\mathcal{N}^{-}(q)}\frac{|t_{0}-r_{0}|^{p-1}(1-\widetilde{\omega}_{1})+1}{p+1}|\phi|^{p+1}d\sigma,

which together with estimates (7), (8) implies that

𝒩(q)|t0r0|p1(1ω~1)+1p+1|ϕ|p+1𝑑xC0,2.\displaystyle\int_{\mathcal{N}^{-}(q)}\frac{|t_{0}-r_{0}|^{p-1}(1-\widetilde{\omega}_{1})+1}{p+1}|\phi|^{p+1}dx\leq C\mathcal{E}_{0,2}. (10)

To conclude estimate (3) of the proposition, we make use of the reflection symmetry additional to the spherical symmetry. More precisely, by changing variable x1x1x_{1}\rightarrow-x_{1} in the above argument, that is, setting u=t+x1u=t+x_{1} and L1=t1L_{1}=\partial_{t}-\partial_{1}, L¯1=t+1\underline{L}_{1}=\partial_{t}+\partial_{1} accordingly (the point qq is still fixed), we also have

𝒩(q)|t0+r0|p1(1+ω~1)+1p+1|ϕ|p+1𝑑xC0,2.\displaystyle\int_{\mathcal{N}^{-}(q)}\frac{|t_{0}+r_{0}|^{p-1}(1+\widetilde{\omega}_{1})+1}{p+1}|\phi|^{p+1}dx\leq C\mathcal{E}_{0,2}. (11)

Alternative interpretation is that the above estimate (10) also holds at the point q=(t0,r0,0,0)q^{-}=(t_{0},-r_{0},0,0) r0<0r_{0}<0 (with positive sign of ω~1\widetilde{\omega}_{1}). Then by spherical symmetry, the associated estimate is valid at point q=(t0,r0,0,0)q=(t_{0},r_{0},0,0), which is exactly the estimate (11). These two estimates lead to (3).


To finish the proof for the Proposition, it remains to show estimate (4), which will be mainly used to control the solution in the exterior region. Inspired by the method in [16], we make use of the Lorentz rotation in this region.

In the energy identity (5), choose the vector fields and function χ\chi as follows

X=x1t+t1,Y=0,χ=0.X=x_{1}\partial_{t}+t\partial_{1},\quad Y=0,\quad\chi=0.

Then πX=0\pi^{X}=0 and

div(Y)+T[ϕ]μνπμνX+χμϕμϕ+χϕϕ12χ|ϕ|2=0.\displaystyle div(Y)+T[\phi]^{\mu\nu}\pi^{X}_{\mu\nu}+\chi\partial_{\mu}\phi\partial^{\mu}\phi+\chi\phi\Box\phi-\frac{1}{2}\Box\chi|\phi|^{2}=0.

Let the domain 𝒟\mathcal{D} be 𝒥(q){x1t}\mathcal{J}^{-}(q)\cap\{x_{1}\geq t\} with boundary ((0,x0)(t0)𝒟)(𝒩(q)𝒟)({x1=t}𝒟)(\mathcal{B}_{(0,x_{0})}(t_{0})\cap\mathcal{D})\cup(\mathcal{N}^{-}(q)\cap\mathcal{D})\cup(\{x_{1}=t\}\cap\mathcal{D}). By using Stokes’ formula, we have the weighted energy conservation adapted to these boundaries. For the integral on the initial hypersurface (0,x0)(t0)\mathcal{B}_{(0,x_{0})}(t_{0}), we have

(0,x0)(t0)𝒟iJX,Y,χ[ϕ]𝑑vol\displaystyle\int_{\mathcal{B}_{(0,x_{0})}(t_{0})\cap\mathcal{D}}i_{J^{X,Y,\chi}[\phi]}d\textnormal{vol} =12(0,x0)(t0)𝒟x1(|tϕ|2+|ϕ|2+2p+1|ϕ|p+1)𝑑xC0,1.\displaystyle=\frac{1}{2}\int_{\mathcal{B}_{(0,x_{0})}(t_{0})\cap\mathcal{D}}x_{1}(|\partial_{t}\phi|^{2}+|\nabla\phi|^{2}+\frac{2}{p+1}|\phi|^{p+1})dx\leq C\mathcal{E}_{0,1}. (12)

On the null hypersurface {x1=t}𝒟\{x_{1}=t\}\cap\mathcal{D}, we have

X=x1t+t1=t(t+1)=tL1.X=x_{1}\partial_{t}+t\partial_{1}=t(\partial_{t}+\partial_{1})=tL_{1}.

Thus the surface measure is of the form

iJX,Y,χ[ϕ]dvol\displaystyle-i_{J^{X,Y,\chi}[\phi]}d\textnormal{vol} =(JX,Y,χ[ϕ])L1dσ=T[ϕ]XL1dσ=tT[ϕ]L1L1dσ=t|L1ϕ|2dσ.\displaystyle=(J^{X,Y,\chi}[\phi])_{L_{1}}d\sigma=T[\phi]_{XL_{1}}d\sigma=tT[\phi]_{L_{1}L_{1}}d\sigma=t|L_{1}\phi|^{2}d\sigma.

This in particular shows that

{x1=t}𝒟iJX,Y,χ[ϕ]dvol0.\displaystyle\int_{\{x_{1}=t\}\cap\mathcal{D}}-i_{J^{X,Y,\chi}[\phi]}d\textnormal{vol}\geq 0. (13)

Here keep in mind that we only consider the estimates in the future t0t\geq 0.

Finally for the integral on the backward light cone 𝒩(q)𝒟\mathcal{N}^{-}(q)\cap\mathcal{D}, similarly, we first can write the surface measure as

iJX,Y,χ[ϕ]dvol\displaystyle-i_{J^{X,Y,\chi}[\phi]}d\textnormal{vol} =(JX,Y,χ[ϕ])L¯~dσ=T[ϕ]XL¯~dσ.\displaystyle=-(J^{X,Y,\chi}[\phi])_{\tilde{\underline{L}}}d\sigma=T[\phi]_{X\tilde{\underline{L}}}d\sigma.

Now we need to write the vector field XX under the new null frame {L~,L¯~,e~1,e~2}\{\tilde{L},\tilde{\underline{L}},\tilde{e}_{1},\tilde{e}_{2}\} centered at the point qq. Note that

1=1~=ω~1r~+e^1(~ω~r~),e^1=(1,0,0).\displaystyle\partial_{1}=\tilde{\partial_{1}}=\tilde{\omega}_{1}\partial_{\tilde{r}}+\hat{e}_{1}\cdot(\tilde{\nabla}-\tilde{\omega}\partial_{\tilde{r}}),\quad\hat{e}_{1}=(1,0,0).

Then we have

X=x1t+t1\displaystyle X=x_{1}\partial_{t}+t\partial_{1} =x1t~+t(ω~1r~+e^1/ ~)=12(x1+tω~1)L~+12(x1tω~1)L¯~+te^1/ ~.\displaystyle=x_{1}\partial_{\tilde{t}}+t(\tilde{\omega}_{1}\partial_{\tilde{r}}+\hat{e}_{1}\cdot\tilde{\mbox{$\nabla\mkern-13.0mu/$\,}})=\frac{1}{2}(x_{1}+t\tilde{\omega}_{1})\tilde{L}+\frac{1}{2}(x_{1}-t\tilde{\omega}_{1})\tilde{\underline{L}}+t\hat{e}_{1}\cdot\tilde{\mbox{$\nabla\mkern-13.0mu/$\,}}.

Here / ~=~ω~r~\tilde{\mbox{$\nabla\mkern-13.0mu/$\,}}=\tilde{\nabla}-\tilde{\omega}\partial_{\tilde{r}}. Then we can compute the quadratic terms

T[ϕ]XL¯~=\displaystyle T[\phi]_{X\tilde{\underline{L}}}= 12(x1tω~1)|L¯~ϕ|2+12(x1+tω~1)(|/ ~ϕ|2+2p+1|ϕ|p+1)+t(L¯~ϕ)(e^1/ ~)ϕ.\displaystyle\frac{1}{2}(x_{1}-t\tilde{\omega}_{1})|{\tilde{\underline{L}}}\phi|^{2}+\frac{1}{2}(x_{1}+t\tilde{\omega}_{1})(|\tilde{\mbox{$\nabla\mkern-13.0mu/$\,}}\phi|^{2}+\frac{2}{p+1}|\phi|^{p+1})+t({\tilde{\underline{L}}}\phi)(\hat{e}_{1}\cdot\tilde{\mbox{$\nabla\mkern-13.0mu/$\,}})\phi.

Since

|(e^1/ ~)ϕ|=|((e^1ω~1ω~)/ ~)ϕ||e^1ω~1ω~||/ ~ϕ|=1ω~12|/ ~ϕ|,\displaystyle|(\hat{e}_{1}\cdot\tilde{\mbox{$\nabla\mkern-13.0mu/$\,}})\phi|=|((\hat{e}_{1}-\tilde{\omega}_{1}\tilde{\omega})\cdot\tilde{\mbox{$\nabla\mkern-13.0mu/$\,}})\phi|\leq|\hat{e}_{1}-\tilde{\omega}_{1}\tilde{\omega}||\tilde{\mbox{$\nabla\mkern-13.0mu/$\,}}\phi|=\sqrt{1-\tilde{\omega}_{1}^{2}}|\tilde{\mbox{$\nabla\mkern-13.0mu/$\,}}\phi|,

restricted to the region 𝒩(q)𝒟\mathcal{N}^{-}(q)\cap\mathcal{D} where x1t0x_{1}\geq t\geq 0, the pure quadratic terms are nonnegative

12(x1tω~1)|L¯~ϕ|2+12(x1+tω~1)|/ ~ϕ|2+tL¯~ϕ(e^1/ ~)ϕ\displaystyle\frac{1}{2}(x_{1}-t\tilde{\omega}_{1})|\tilde{\underline{L}}\phi|^{2}+\frac{1}{2}(x_{1}+t\tilde{\omega}_{1})|\tilde{\mbox{$\nabla\mkern-13.0mu/$\,}}\phi|^{2}+t{\tilde{\underline{L}}}\phi(\hat{e}_{1}\cdot\tilde{\mbox{$\nabla\mkern-13.0mu/$\,}})\phi
12t((1ω~1)|L¯~ϕ|2+(1+ω~1)|/ ~ϕ|221ω~12|L¯~ϕ||/ ~ϕ|)0.\displaystyle\geq\frac{1}{2}t\left((1-\tilde{\omega}_{1})|\tilde{\underline{L}}\phi|^{2}+(1+\tilde{\omega}_{1})|\tilde{\mbox{$\nabla\mkern-13.0mu/$\,}}\phi|^{2}-2\sqrt{1-\tilde{\omega}_{1}^{2}}|\tilde{\underline{L}}\phi||\tilde{\mbox{$\nabla\mkern-13.0mu/$\,}}\phi|\right)\geq 0.

In particular on 𝒩(q)𝒟\mathcal{N}^{-}(q)\cap\mathcal{D}, we have

T[ϕ]XL¯~\displaystyle T[\phi]_{X\tilde{\underline{L}}}\geq x1+tω~1p+1|ϕ|p+1.\displaystyle\frac{x_{1}+t\tilde{\omega}_{1}}{p+1}|\phi|^{p+1}.

This leads to the lower bound

𝒩(q)𝒟iJX,Y,χ[ϕ]dvol𝒩(q)𝒟x1+tω~1p+1|ϕ|p+1𝑑σ.\displaystyle\int_{\mathcal{N}^{-}(q)\cap\mathcal{D}}-i_{J^{X,Y,\chi}[\phi]}d\textnormal{vol}\geq\int_{\mathcal{N}^{-}(q)\cap\mathcal{D}}\frac{x_{1}+t\tilde{\omega}_{1}}{p+1}|\phi|^{p+1}d\sigma. (14)

For such choice of vector fields, we have the weighted energy conservation

𝒩(q)𝒟iJX,Y,χ[ϕ]𝑑vol+{x1=t}𝒟iJX,Y,χ[ϕ]𝑑vol+(0,x0)𝒟(t0)iJX,Y,χ[ϕ]𝑑vol=0.\displaystyle\int_{\mathcal{N}^{-}(q)\cap\mathcal{D}}i_{J^{X,Y,\chi}[\phi]}d\textnormal{vol}+\int_{\{x_{1}=t\}\cap\mathcal{D}}i_{J^{X,Y,\chi}[\phi]}d\textnormal{vol}+\int_{\mathcal{B}_{(0,x_{0})\cap\mathcal{D}}(t_{0})}i_{J^{X,Y,\chi}[\phi]}d\textnormal{vol}=0.

In view of the above estimates (12), (13), (14), we conclude that

𝒩(q)𝒟x1+tω~1p+1|ϕ|p+1𝑑σC0,1.\displaystyle\int_{\mathcal{N}^{-}(q)\cap\mathcal{D}}\frac{x_{1}+t\tilde{\omega}_{1}}{p+1}|\phi|^{p+1}d\sigma\leq C\mathcal{E}_{0,1}. (15)

Under the coordinates (t~,x~)(\tilde{t},\tilde{x}) centered at q=(t0,r0,0,0)q=(t_{0},r_{0},0,0), we have

(t,x)=(t0+t~,r0+x~1,x~2,x~3)=(t0+t~,r0+r~ω~1,r~ω~2,r~ω~3).\displaystyle(t,x)=(t_{0}+\widetilde{t},r_{0}+\widetilde{x}_{1},\widetilde{x}_{2},\widetilde{x}_{3})=(t_{0}+\widetilde{t},r_{0}+\widetilde{r}\widetilde{\omega}_{1},\widetilde{r}\widetilde{\omega}_{2},\widetilde{r}\widetilde{\omega}_{3}).

Note that t~=r~\widetilde{t}=-\widetilde{r} on 𝒩(q)\mathcal{N}^{-}(q). We then can write

0x1+tω~1=r0+r~ω~1+(t0r~)ω~1=r0+t0ω~10\leq x_{1}+t\tilde{\omega}_{1}=r_{0}+\widetilde{r}\widetilde{\omega}_{1}+(t_{0}-\widetilde{r})\tilde{\omega}_{1}=r_{0}+t_{0}\tilde{\omega}_{1}

on 𝒩(q)𝒟\mathcal{N}^{-}(q)\cap\mathcal{D}. The uniform bound (4) then follows from (15) by noting that

𝒩(q)𝒟=𝒩(q){x1t}.\mathcal{N}^{-}(q)\cap\mathcal{D}=\mathcal{N}^{-}(q)\cap\{x_{1}\geq t\}.

4 Asymptotic pointwise behaviors for the solutions

Following the framework developed in [18], we now use the weighted energy estimates through the backward light cone obtained in the previous section to control the nonlinearity. For this purpose, we need the following integration bound: for constants A>0,A>0, B>0B>0, γ>1\gamma>1, there holds

𝒮(t0r~,x0)(r~)((1+ω~1)A+B)γ𝑑ω~=2π11((1+ω~1)A+B)γ𝑑ω~1CA1B1γ\displaystyle\int_{\mathcal{S}_{(t_{0}-\tilde{r},x_{0})}(\tilde{r})}((1+\tilde{\omega}_{1})A+B)^{-\gamma}d\tilde{\omega}=2\pi\int_{-1}^{1}((1+\tilde{\omega}_{1})A+B)^{-\gamma}d\tilde{\omega}_{1}\leq CA^{-1}B^{1-\gamma} (16)

with constant CC depending only on γ\gamma.

Now we prove the main Theorem 1.1. For any point q=(t0,x0)q=(t_{0},x_{0}) in 1+3\mathbb{R}^{1+3}, recall the representation formula for linear wave equation

4πϕ(t0,x0)=ω~t0ϕ1(x0+t0ω~)𝑑ω~+t0(ω~t0ϕ0(x0+t0ω~)𝑑ω~)𝒩(q)|ϕ|p1ϕr~𝑑r~𝑑ω~.\begin{split}4\pi\phi(t_{0},x_{0})&=\int_{\tilde{\omega}}t_{0}\phi_{1}(x_{0}+t_{0}\tilde{\omega})d\tilde{\omega}+\partial_{t_{0}}\big{(}\int_{\tilde{\omega}}t_{0}\phi_{0}(x_{0}+t_{0}\tilde{\omega})d\tilde{\omega}\big{)}-\int_{\mathcal{N}^{-}(q)}|\phi|^{p-1}\phi\ \tilde{r}d\tilde{r}d\tilde{\omega}.\end{split} (17)

The first two terms are linear evolution, relying only on the initial data. Standard Sobolev embedding leads the decay estimate

|ω~t0ϕ1(x0+t0ω~)𝑑ω~+t0(ω~t0ϕ0(x0+t0ω~)𝑑ω~)|\displaystyle|\int_{\tilde{\omega}}t_{0}\phi_{1}(x_{0}+t_{0}\tilde{\omega})d\tilde{\omega}+\partial_{t_{0}}\big{(}\int_{\tilde{\omega}}t_{0}\phi_{0}(x_{0}+t_{0}\tilde{\omega})d\tilde{\omega}\big{)}| (1+t0+|x0|)11,2.\displaystyle\lesssim(1+t_{0}+|x_{0}|)^{-1}\sqrt{\mathcal{E}_{1,2}}.

We control the nonlinear term by using the weighted energy estimates derived in Proposition 3.1. Without lose of generality (or by spatial rotation), we can assume that x0=(r0,0,0)x_{0}=(r_{0},0,0) with r0=|x0|r_{0}=|x_{0}|. Let

u0=|t0r0|+1,v0=t0+r0+1.u_{0}=|t_{0}-r_{0}|+1,\quad v_{0}=t_{0}+r_{0}+1.

Since 0<p110<p-1\leq 1, it holds that

1+|t0r0|p1(1+|t0r0|)p1=u0p1,1+|t0+r0|p1(1+|t0+r0|)p1=v0p1.1+|t_{0}-r_{0}|^{p-1}\geq(1+|t_{0}-r_{0}|)^{p-1}=u_{0}^{p-1},\quad 1+|t_{0}+r_{0}|^{p-1}\geq(1+|t_{0}+r_{0}|)^{p-1}=v_{0}^{p-1}.

Therefore we have the lower bound

2(|t0r0|p1(1ω~1)+|t0+r0|p1(1+ω~1)+2)\displaystyle 2(|t_{0}-r_{0}|^{p-1}(1-\tilde{\omega}_{1})+|t_{0}+r_{0}|^{p-1}(1+\tilde{\omega}_{1})+2) 2(1+ω~1)v0p1+2(1ω~1)u0p1\displaystyle\geq 2(1+\widetilde{\omega}_{1})v_{0}^{p-1}+2(1-\widetilde{\omega}_{1})u_{0}^{p-1}
(1+ω~1)v0p1+2u0p1\displaystyle\geq(1+\widetilde{\omega}_{1})v_{0}^{p-1}+2u_{0}^{p-1}

for ω~1[1,1].\widetilde{\omega}_{1}\in[-1,1]. In view of Proposition 3.1, we derive that

𝒩(q)((1+ω~1)v0p1+u0p1)|ϕ|p+1𝑑σ\displaystyle\int_{\mathcal{N}^{-}(q)}((1+\widetilde{\omega}_{1})v_{0}^{p-1}+u_{0}^{p-1})|\phi|^{p+1}d\sigma (18)
2𝒩(q)(|t0r0|p1(1ω~1)+|t0+r0|p1(1+ω~1)+2)|ϕ|p+1𝑑σ\displaystyle\leq 2\int_{\mathcal{N}^{-}(q)}(|t_{0}-r_{0}|^{p-1}(1-\tilde{\omega}_{1})+|t_{0}+r_{0}|^{p-1}(1+\tilde{\omega}_{1})+2)|\phi|^{p+1}d\sigma
C0,2.\displaystyle\leq C\mathcal{E}_{0,2}.

We first consider the case when 1<p<2.1<p<2. In the exterior region when t0r0t_{0}\leq r_{0}, note that the backward light cone 𝒩(q)\mathcal{N}^{-}(q) entirely locates in the region {x1t}\{x_{1}\geq t\}. Moreover

4(1+r0+t0ω~1)=2(1+ω~1)v0+2(1ω~1)u0(1+ω~1)(v0+u0)+(1ω~1)u0=(1+ω~1)v0+2u0\displaystyle 4(1+r_{0}+t_{0}\widetilde{\omega}_{1})=2(1+\widetilde{\omega}_{1})v_{0}+2(1-\widetilde{\omega}_{1})u_{0}\geq(1+\widetilde{\omega}_{1})(v_{0}+u_{0})+(1-\widetilde{\omega}_{1})u_{0}=(1+\widetilde{\omega}_{1})v_{0}+2u_{0}

for ω~1[1,1].\widetilde{\omega}_{1}\in[-1,1]. Then by Proposition 3.1 as well as the standard energy estimate, we have

𝒩(q)((1+ω~1)v0+u0)|ϕ|p+1𝑑σ4𝒩(q)(1+r0+t0ω~1)|ϕ|p+1𝑑σC0,2.\displaystyle\int_{\mathcal{N}^{-}(q)}((1+\widetilde{\omega}_{1})v_{0}+u_{0})|\phi|^{p+1}d\sigma\leq 4\int_{\mathcal{N}^{-}(q)}(1+r_{0}+t_{0}\widetilde{\omega}_{1})|\phi|^{p+1}d\sigma\leq C\mathcal{E}_{0,2}.

Under the coordinates centered at qq, the surface measure dσd\sigma can be written as r~2dr~dω~\tilde{r}^{2}d\tilde{r}d\tilde{\omega}. By using the integration bound (16) with γ=p\gamma=p, we can estimate that

|𝒩(q)|ϕ|p1ϕr~𝑑r~𝑑ω~|\displaystyle|\int_{\mathcal{N}^{-}(q)}|\phi|^{p-1}\phi\ \tilde{r}d\tilde{r}d\tilde{\omega}|
(𝒩(q)((1+ω~1)v0+u0)|ϕ|p+1r~2𝑑r~𝑑ω~)pp+1(𝒩(q)((1+ω~1)v0+u0)pr~1p𝑑r~𝑑ω~)1p+1\displaystyle\lesssim\left(\int_{\mathcal{N}^{-}(q)}((1+\widetilde{\omega}_{1})v_{0}+u_{0})|\phi|^{p+1}\ \tilde{r}^{2}d\tilde{r}d\tilde{\omega}\right)^{\frac{p}{p+1}}\cdot\left(\int_{\mathcal{N}^{-}(q)}((1+\widetilde{\omega}_{1})v_{0}+u_{0})^{-p}\tilde{r}^{1-p}d\tilde{r}d\tilde{\omega}\right)^{\frac{1}{p+1}}
(0,2)pp+1(0t0v01u01pr~1p𝑑r~)1p+1\displaystyle\lesssim(\mathcal{E}_{0,2})^{\frac{p}{p+1}}\left(\int_{0}^{t_{0}}v_{0}^{-1}u_{0}^{1-p}\tilde{r}^{1-p}d\tilde{r}\right)^{\frac{1}{p+1}}
(0,2)pp+1(v01u01pt02p)1p+1\displaystyle\lesssim(\mathcal{E}_{0,2})^{\frac{p}{p+1}}\left(v_{0}^{-1}u_{0}^{1-p}t_{0}^{2-p}\right)^{\frac{1}{p+1}}
(0,2)pp+1(u0v0)1pp+1.\displaystyle\lesssim(\mathcal{E}_{0,2})^{\frac{p}{p+1}}(u_{0}v_{0})^{\frac{1-p}{p+1}}.

In particular, the solution ϕ\phi verifies the following decay estimate in the exterior region

|ϕ(t0,x0)|v01(1,2)12+(u0v0)1pp+1(0,2)pp+1(u0v0)1pp+1(1,212+0,2pp+1).\displaystyle|\phi(t_{0},x_{0})|\lesssim v_{0}^{-1}(\mathcal{E}_{1,2})^{\frac{1}{2}}+(u_{0}v_{0})^{\frac{1-p}{p+1}}(\mathcal{E}_{0,2})^{\frac{p}{p+1}}\lesssim(u_{0}v_{0})^{\frac{1-p}{p+1}}(\mathcal{E}_{1,2}^{\frac{1}{2}}+\mathcal{E}_{0,2}^{\frac{p}{p+1}}).

In the interior region when t0r0t_{0}\geq r_{0}, we rely on the following improved weighted energy estimate

𝒩(q)((1+ω~1)(v0p1+r~u0p2)+u0p1)|ϕ|p+1𝑑σC0,2.\displaystyle\int_{\mathcal{N}^{-}(q)}((1+\widetilde{\omega}_{1})(v_{0}^{p-1}+\tilde{r}u_{0}^{p-2})+u_{0}^{p-1})|\phi|^{p+1}d\sigma\leq C\mathcal{E}_{0,2}. (19)

In fact, from the above weighted energy estimate (18), we conclude that

𝒩(q){(1+ω~1)r~2u0}(1+ω~1)r~u0p2|ϕ|p+1𝑑σ2𝒩(q)u0p1|ϕ|p+1𝑑σC0,2.\displaystyle\int_{\mathcal{N}^{-}(q)\cap\{(1+\widetilde{\omega}_{1})\tilde{r}\leq 2u_{0}\}}(1+\widetilde{\omega}_{1})\tilde{r}u_{0}^{p-2}|\phi|^{p+1}d\sigma\leq 2\int_{\mathcal{N}^{-}(q)}u_{0}^{p-1}|\phi|^{p+1}d\sigma\leq C\mathcal{E}_{0,2}. (20)

On the other hand, for the point (t,x)𝒩(q)(t,x)\in\mathcal{N}^{-}(q) such that (1+ω~1)r~2u0(1+\widetilde{\omega}_{1})\tilde{r}\geq 2u_{0}, note that

(t,x)=(t0+t~,r0+x~1,x~2,x~3)=(t0r~,r0+r~ω~1,r~ω~2,r~ω~3),0r~=t~t0\displaystyle(t,x)=(t_{0}+\widetilde{t},r_{0}+\widetilde{x}_{1},\widetilde{x}_{2},\widetilde{x}_{3})=(t_{0}-\widetilde{r},r_{0}+\widetilde{r}\widetilde{\omega}_{1},\widetilde{r}\widetilde{\omega}_{2},\widetilde{r}\widetilde{\omega}_{3}),\quad 0\leq\widetilde{r}=-\widetilde{t}\leq t_{0}

In particular we have

x1t=r0t0+(1+ω~1)r~1u0+2u0>0.x_{1}-t=r_{0}-t_{0}+(1+\widetilde{\omega}_{1})\tilde{r}\geq 1-u_{0}+2u_{0}>0.

This shows that

𝒩(q){(1+ω~1)r~2u0}𝒩(q){x1t}.\mathcal{N}^{-}(q)\cap\{(1+\widetilde{\omega}_{1})\tilde{r}\geq 2u_{0}\}\subset\mathcal{N}^{-}(q)\cap\{x_{1}\geq t\}.

Moreover note that

r0+t0ω~1=r0t0+(1+ω~1)t0=1u0+(1+ω~1)t012(1+ω~1)r~+(1+ω~1)r~=12(1+ω~1)r~.\displaystyle r_{0}+t_{0}\tilde{\omega}_{1}=r_{0}-t_{0}+(1+\widetilde{\omega}_{1})t_{0}=1-u_{0}+(1+\widetilde{\omega}_{1})t_{0}\geq-\frac{1}{2}(1+\widetilde{\omega}_{1})\tilde{r}+(1+\widetilde{\omega}_{1})\tilde{r}=\frac{1}{2}(1+\widetilde{\omega}_{1})\tilde{r}.

Since p2p\leq 2 and u01u_{0}\geq 1, by Proposition 3.1, we can show that

𝒩(q){(1+ω~1)r~2u0}(1+ω~1)r~u0p2|ϕ|p+1𝑑σ\displaystyle\int_{\mathcal{N}^{-}(q)\cap\{(1+\widetilde{\omega}_{1})\tilde{r}\geq 2u_{0}\}}(1+\widetilde{\omega}_{1})\tilde{r}u_{0}^{p-2}|\phi|^{p+1}d\sigma 𝒩(q){(1+ω~1)r~2u0}(1+ω~1)r~|ϕ|p+1𝑑σ\displaystyle\leq\int_{\mathcal{N}^{-}(q)\cap\{(1+\widetilde{\omega}_{1})\tilde{r}\geq 2u_{0}\}}(1+\widetilde{\omega}_{1})\tilde{r}|\phi|^{p+1}d\sigma (21)
2𝒩(q){x1t}|r0+t0ω~1||ϕ|p+1𝑑σ\displaystyle\leq 2\int_{\mathcal{N}^{-}(q)\cap\{x_{1}\geq t\}}|r_{0}+t_{0}\tilde{\omega}_{1}||\phi|^{p+1}d\sigma
C0,2.\displaystyle\leq C\mathcal{E}_{0,2}.

The improved estimate (19) then follows from (18), (20) and (21).

Now using the integration bound (16) with γ=p\gamma=p, we can show that

|𝒩(q)|ϕ|p1ϕr~𝑑r~𝑑ω~|\displaystyle|\int_{\mathcal{N}^{-}(q)}|\phi|^{p-1}\phi\ \tilde{r}d\tilde{r}d\tilde{\omega}|
\displaystyle\lesssim (𝒩(q)((1+ω~1)(v0p1+r~u0p2)+u0p1)|ϕ|p+1r~2dr~dω~)pp+1\displaystyle\left(\int_{\mathcal{N}^{-}(q)}((1+\widetilde{\omega}_{1})(v_{0}^{p-1}+\tilde{r}u_{0}^{p-2})+u_{0}^{p-1})|\phi|^{p+1}\ \tilde{r}^{2}d\tilde{r}d\tilde{\omega}\right)^{\frac{p}{p+1}}\cdot
(𝒩(q)((1+ω~1)(v0p1+r~u0p2)+u0p1)pr~1p𝑑r~𝑑ω~)1p+1\displaystyle\left(\int_{\mathcal{N}^{-}(q)}((1+\widetilde{\omega}_{1})(v_{0}^{p-1}+\tilde{r}u_{0}^{p-2})+u_{0}^{p-1})^{-p}\tilde{r}^{1-p}d\tilde{r}d\tilde{\omega}\right)^{\frac{1}{p+1}}
\displaystyle\lesssim (0,2)pp+1(0t0(v0p1+r~u0p2)1u0(p1)2r~1p𝑑r~)1p+1\displaystyle(\mathcal{E}_{0,2})^{\frac{p}{p+1}}\left(\int_{0}^{t_{0}}(v_{0}^{p-1}+\tilde{r}u_{0}^{p-2})^{-1}u_{0}^{-(p-1)^{2}}\tilde{r}^{1-p}d\tilde{r}\right)^{\frac{1}{p+1}}
\displaystyle\lesssim (0,2)pp+1(v0(p1)2u0(p2)2u0(p1)2)1p+1\displaystyle(\mathcal{E}_{0,2})^{\frac{p}{p+1}}\left(v_{0}^{-(p-1)^{2}}u_{0}^{(p-2)^{2}}u_{0}^{-(p-1)^{2}}\right)^{\frac{1}{p+1}}
=\displaystyle= (0,2)pp+1v0(p1)2p+1u032pp+1.\displaystyle(\mathcal{E}_{0,2})^{\frac{p}{p+1}}v_{0}^{-\frac{(p-1)^{2}}{p+1}}u_{0}^{\frac{3-2p}{p+1}}.

Here we used the fact that for positive constants A>0A>0, B>0B>0, it holds that

0+(A+r~B)1r~1p𝑑r~=A1(A/B)2p0+(1+z)1z1p𝑑z=CpA1pBp2\displaystyle\int_{0}^{+\infty}(A+\tilde{r}B)^{-1}\tilde{r}^{1-p}d\tilde{r}=A^{-1}(A/B)^{2-p}\int_{0}^{+\infty}(1+z)^{-1}z^{1-p}dz=C_{p}A^{1-p}B^{p-2}

for some constant CpC_{p} depending only on pp.

Therefore the solution ϕ\phi satisfies the following estimate in the interior region

|ϕ(t0,x0)|v011,212+v0(p1)2p+1u032pp+10,2pp+1v0(p1)2p+1u032pp+1(1,212+0,2pp+1).\displaystyle|\phi(t_{0},x_{0})|\lesssim v_{0}^{-1}\mathcal{E}_{1,2}^{\frac{1}{2}}+v_{0}^{-\frac{(p-1)^{2}}{p+1}}u_{0}^{\frac{3-2p}{p+1}}\mathcal{E}_{0,2}^{\frac{p}{p+1}}\lesssim v_{0}^{-\frac{(p-1)^{2}}{p+1}}u_{0}^{\frac{3-2p}{p+1}}(\mathcal{E}_{1,2}^{\frac{1}{2}}+\mathcal{E}_{0,2}^{\frac{p}{p+1}}).

By our convention, the implicit constant relies only on pp. Recall the definition of u0u_{0}, v0v_{0}, r0r_{0}. We have shown the desired pointwise estimates for the solution of the main Theorem 1.1 for all 1<p<21<p<2.


Finally to finish the proof for the main Theorem, it remains to discuss the end point case when p=2p=2. Fix time T>0T>0. Define

M=sup0tT,x3|ϕ(t,x)|.\displaystyle M=\sup\limits_{0\leq t\leq T,x\in\mathbb{R}^{3}}|\phi(t,x)|.

In view of Remark 1.2, MM is finite for all T>0T>0. Choose small constant ϵ\epsilon such that 0<ϵ<120<\epsilon<\frac{1}{2}. From the weighted energy estimate (18) as well as the integration bound (16), similarly we can show that

|𝒩(q)|ϕ|ϕr~dr~dω~|\displaystyle|\int_{\mathcal{N}^{-}(q)}|\phi|\phi\ \tilde{r}d\tilde{r}d\tilde{\omega}| Mϵ𝒩(q)|ϕ|2ϵr~𝑑r~𝑑ω~\displaystyle\leq M^{\epsilon}\int_{\mathcal{N}^{-}(q)}|\phi|^{2-\epsilon}\ \tilde{r}d\tilde{r}d\tilde{\omega}
Mϵ(𝒩(q)((1+ω~1)v0+u0)|ϕ|3r~2𝑑r~𝑑ω~)2ϵ3\displaystyle\lesssim M^{\epsilon}\left(\int_{\mathcal{N}^{-}(q)}((1+\widetilde{\omega}_{1})v_{0}+u_{0})|\phi|^{3}\ \tilde{r}^{2}d\tilde{r}d\tilde{\omega}\right)^{\frac{2-\epsilon}{3}}
(𝒩(q)((1+ω~1)v0+u0)2ϵ1+ϵr~12ϵ1+ϵ𝑑r~𝑑ω~)1+ϵ3\displaystyle\quad\cdot\left(\int_{\mathcal{N}^{-}(q)}((1+\widetilde{\omega}_{1})v_{0}+u_{0})^{-\frac{2-\epsilon}{1+\epsilon}}\tilde{r}^{-\frac{1-2\epsilon}{1+\epsilon}}d\tilde{r}d\tilde{\omega}\right)^{\frac{1+\epsilon}{3}}
Mϵ0,22ϵ3(0t0v01u012ϵ1+ϵr~12ϵ1+ϵ𝑑r~)1+ϵ3\displaystyle\lesssim M^{\epsilon}\mathcal{E}_{0,2}^{\frac{2-\epsilon}{3}}\left(\int_{0}^{t_{0}}v_{0}^{-1}u_{0}^{-\frac{1-2\epsilon}{1+\epsilon}}\tilde{r}^{-\frac{1-2\epsilon}{1+\epsilon}}d\tilde{r}\right)^{\frac{1+\epsilon}{3}}
Mϵ0,22ϵ3(v01u012ϵ1+ϵt03ϵ1+ϵ)1+ϵ3\displaystyle\lesssim M^{\epsilon}\mathcal{E}_{0,2}^{\frac{2-\epsilon}{3}}\left(v_{0}^{-1}u_{0}^{-\frac{1-2\epsilon}{1+\epsilon}}t_{0}^{\frac{3\epsilon}{1+\epsilon}}\right)^{\frac{1+\epsilon}{3}}
Mϵ0,22ϵ3(u0v0)12ϵ3.\displaystyle\lesssim M^{\epsilon}\mathcal{E}_{0,2}^{\frac{2-\epsilon}{3}}(u_{0}v_{0})^{-\frac{1-2\epsilon}{3}}.

Since 0<ϵ<1/20<\epsilon<1/2, this shows that

|ϕ(t0,x0)|v011,212+Mϵ0,22ϵ3(u0v0)12ϵ31,212+Mϵ0,22ϵ3.\displaystyle|\phi(t_{0},x_{0})|\lesssim v_{0}^{-1}\mathcal{E}_{1,2}^{\frac{1}{2}}+M^{\epsilon}\mathcal{E}_{0,2}^{\frac{2-\epsilon}{3}}(u_{0}v_{0})^{-\frac{1-2\epsilon}{3}}\lesssim\mathcal{E}_{1,2}^{\frac{1}{2}}+M^{\epsilon}\mathcal{E}_{0,2}^{\frac{2-\epsilon}{3}}.

Hence taking supreme in terms of t0,t_{0}, x0x_{0} and in view of the definition for MM, we derive that

M1,212+Mϵ0,22ϵ3,\displaystyle M\lesssim\mathcal{E}_{1,2}^{\frac{1}{2}}+M^{\epsilon}\mathcal{E}_{0,2}^{\frac{2-\epsilon}{3}},

from which we conclude that

M1,212+0,22ϵ3(1ϵ).\displaystyle M\lesssim\mathcal{E}_{1,2}^{\frac{1}{2}}+\mathcal{E}_{0,2}^{\frac{2-\epsilon}{3(1-\epsilon)}}.

Here we note that p=2p=2. This leads to the pointwise estimate for the solution for the case p=2p=2

|ϕ(t0,x0)|v011,212+Mϵ0,22ϵ3(u0v0)12ϵ3(u0v0)12ϵ3(1,212+0,22ϵ3(1ϵ)).\displaystyle|\phi(t_{0},x_{0})|\lesssim v_{0}^{-1}\mathcal{E}_{1,2}^{\frac{1}{2}}+M^{\epsilon}\mathcal{E}_{0,2}^{\frac{2-\epsilon}{3}}(u_{0}v_{0})^{-\frac{1-2\epsilon}{3}}\lesssim(u_{0}v_{0})^{-\frac{1-2\epsilon}{3}}(\mathcal{E}_{1,2}^{\frac{1}{2}}+\mathcal{E}_{0,2}^{\frac{2-\epsilon}{3(1-\epsilon)}}).

From the proof, we see that the implicit constant relies only on pp and ϵ\epsilon. We thus finished the proof for the main Theorem 1.1.

References

  • [1] J. Baez, I. Segal, and Z. Zhou. The global Goursat problem and scattering for nonlinear wave equations. J. Funct. Anal., 93(2):239–269, 1990.
  • [2] R. Bieli and N. Szpak. Large data pointwise decay for defocusing semilinear wave equations. 2010. arXiv:1002.3623.
  • [3] M. Dafermos and I. Rodnianski. A new physical-space approach to decay for the wave equation with applications to black hole spacetimes. In XVIth International Congress on Mathematical Physics, pages 421–432. World Sci. Publ., Hackensack, NJ, 2010.
  • [4] F.Merle, P. Raphael, I. Rodnianski, and J. Szeftel. On blow up for the energy super critical defocusing non linear Schrödinger equations . 2019. arXiv:1912.11005.
  • [5] J. Ginibre and G. Velo. The global Cauchy problem for the nonlinear Klein-Gordon equation. Math. Z., 189(4):487–505, 1985.
  • [6] J. Ginibre and G. Velo. Conformal invariance and time decay for nonlinear wave equations. I, II. Ann. Inst. H. Poincaré Phys. Théor., 47(3):221–261, 263–276, 1987.
  • [7] R. Glassey and H. Pecher. Time decay for nonlinear wave equations in two space dimensions. Manuscripta Math., 38(3):387–400, 1982.
  • [8] M. Grillakis. Regularity and asymptotic behaviour of the wave equation with a critical nonlinearity. Ann. of Math. (2), 132(3):485–509, 1990.
  • [9] K. Hidano. Scattering problem for the nonlinear wave equation in the finite energy and conformal charge space. J. Funct. Anal., 187(2):274–307, 2001.
  • [10] L. Kapitanski. Global and unique weak solutions of nonlinear wave equations. Math. Res. Lett., 1(2):211–223, 1994.
  • [11] H. Lindblad and T. Tao. Asymptotic decay for a one-dimensional nonlinear wave equation. Anal. PDE, 5(2):411–422, 2012.
  • [12] C. S. Morawetz. The limiting amplitude principle. Comm. Pure Appl. Math., 15:349–361, 1962.
  • [13] H. Pecher. Decay of solutions of nonlinear wave equations in three space dimensions. J. Funct. Anal., 46(2):221–229, 1982.
  • [14] W. Strauss. Decay and asymptotics for cmu=F(u)cmu=F(u). J. Functional Analysis, 2:409–457, 1968.
  • [15] D. Wei and S. Yang. On the global behaviors for defocusing semilinear wave equations in 1+2\mathbb{R}^{1+2}. Analysis & PDE. to appear.
  • [16] D. Wei and S. Yang. Asymptotic decay for defocusing semilinear wave equations in 1+1\mathbb{R}^{1+1}. Ann. PDE, 7(9):3, 2021.
  • [17] S. Yang. Global behaviors for defocusing semilinear wave equations. Ann. Sci. Éc. Norm. Supér. (4). to appear.
  • [18] S. Yang. Pointwise decay for semilinear wave equations in 1+3\mathbb{R}^{1+3}. 2019. arXiv:1908.00607.

School of Mathematical Sciences, Peking University, Beijing, China

Beijing International Center for Mathematical Research, Peking University, Beijing, China