This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

\jyear

2021

[1]\fnmHaode \surYan

1]\orgdivSchool of Mathematics, \orgaddress\streetSouthwest Jiaotong University, \cityChengdu, \postcode610031, \countryChina

On the cc-differential spectrum of power functions over finite fields

\fnmKun \surZhang [email protected]    [email protected] [
Abstract

Recently, a new concept called multiplicative differential was introduced by Ellingsen et al. Inspired by this pioneering work, power functions with low cc-differential uniformity were constructed. Wang et al. defined the cc-differential spectrum of a power function wang2021several . In this paper, we present some properties of the cc-differential spectrum of a power function. Then we apply these properties to investigate the cc-differential spectra of some power functions. A new class of APccN function is also obtained.

keywords:
cc-differential uniformity, Almost perfect cc-nonlinear, cc-differential spectrum
pacs:
[

MSC Classification]11T71, 94A60

1 Introduction

Differential cryptanalysis 1991Differential ; 1993DifferentialBS is the first statistical attack to decipher iterative block ciphers. Substitution boxes (S-boxes for short) play an crucial role in the field of symmetric block ciphers, which can be seen as cryptographic functions over finite fields. Let 𝔽q{\mathbb{F}_{q}} be the finite fields with qq elements. For a function F(x)F(x) from 𝔽q{\mathbb{F}}_{q} to itself, the main tools to handle FF regarding the differential attack are the Difference Distribution Table (DDT for short) and the differential uniformity ΔF\Delta_{F}, introduced by Nyberg NK1993 in 1994. For any a,b𝔽2na,b\in{\mathbb{F}}_{2^{n}}, the DDT entry at point (a,b)(a,b), denoted by δF(a,b)\delta_{F}(a,b), is defined as

δF(a,b)=|{x𝔽q:F(x+a)F(x)=b}|,{\delta_{F}}\left({a,b}\right)=\lvert\{x\in{\mathbb{F}}_{q}:~{}F(x+a)-F(x)=b\}\rvert,

where |S|\lvert S\rvert denotes the cardinality of a set SS. The differential uniformity of the function F(x)F(x), denoted by ΔF{\Delta_{F}}, is defined as

ΔF=maxa𝔽qmaxb𝔽qδF(a,b),{\Delta_{F}}=\max\limits_{a\in{\mathbb{F}}_{q}^{*}}\max\limits_{b\in{\mathbb{F}}_{q}}\delta_{F}(a,b),

where 𝔽q=𝔽q{0}{\mathbb{F}}_{q}^{*}={\mathbb{F}}_{q}\setminus\{0\}. When FF is used as an S-box inside a cryptosystem, the smaller the value ΔF\Delta_{F} is, the better FF to the resistance against differential attack. When ΔF=1\Delta_{F}=1, FF is called perfect nonlinear (PN for short) function. When ΔF=2\Delta_{F}=2, FF is called almost perfect nonlinear (APN for short) function. Note that PN functions over even characteristic finite fields do not exist. PN and APN functions play an important role in both theory and applications. The recent progress can be found in CM1997 ; DNiho ; DO1968 ; DWelch ; HRS ; HS ; ZW2009 ; ZKW2009 and their references. Power functions with low differential uniformity serve as good candidates for the design of S-boxes not only because of their strong resistance to differential attacks but also for the usually low implementation cost in hardware. When F(x)F(x) is a power function, i.e., F(x)=xdF(x)=x^{d} for an integer dd, one can easily see that δF(a,b)=δF(1,b/ad)\delta_{F}(a,b)=\delta_{F}(1,{b/{a^{d}}}) for all a𝔽qa\in{\mathbb{F}}_{q}^{*} and b𝔽qb\in{\mathbb{F}}_{q}. That is to say, the differential properties of F(x)F(x) is completely determined by the values of δF(1,b)\delta_{F}(1,b) as bb runs through 𝔽q{\mathbb{F}}_{q}. Therefore, Blondeau, Canteaut and Charpin first defined the difference spectrum of a power function in BCC . Denote

ωi=|{b𝔽q:δF(1,b)=i}|,  0iΔF,\omega_{i}=\lvert\left\{b\in{\mathbb{F}}_{q}:\delta_{F}(1,b)=i\right\}\rvert,\,\,0\leq i\leq\Delta_{F},

where ΔF\Delta_{F} is the differential uniformity of FF. The differential spectrum of FF is defined as the multi-set

DSF={ωi>0:0iΔF}.DS_{F}=\left\{\omega_{i}>0~{}:~{}0\leq i\leq\Delta_{F}\right\}.

The distribution of DDT of a power function can be deduced via its differential spectrum. Moreover, the differential spectrum is also an important notion for estimating its resistance against variants of differential cryptanalysis (BCC , bracken2010highly , charpin2014sparse ). However, it is difficult to completely determine the differential spectrum of a power function. For a known results on differential spectrum of power functions, the readers are referred to BCC ; BCC2 ; BP ; XYY ; Li ; Dobbertin2001 ; 2020XZL ; CHNC ; Yan ; LRF ; XY2017 ; YXLHXL . The distribution of DDT of a power function can be deduced via its differential spectrum.

In 2002BN , the authors used a new type of differential, namely multiplicative differential, that is quite useful from a practical perpective for ciphers that utilize modular multiplication as a primitive operation. It is an extension of differential cryptanalysis, and it cryptanalyzes some existing ciphers (like a variant of the well-known IDEA cipher). The authors argue that one should look at other types of differential for a cryptographic function FF, not only the usual (F(x+a),F(x))(F(x+a),F(x)) but (F(x+a),cF(x))(F(x+a),cF(x)). Moreover, they first introduced the cc-Differential Distribution Table (ccDDT for short) . For a function FF from 𝔽q{\mathbb{F}}_{{q}} to itself and c𝔽qc\in{\mathbb{F}}_{{q}}, the entry at point (a,b)(a,b) of the ccDDT, denoted by δFc(a,b){}_{c}\delta_{F}(a,b), is defined as

δFc(a,b)=#{x𝔽q:F(x+a)cF(x)=b}.{}_{c}\delta_{F}(a,b)=\#\{x\in{\mathbb{F}}_{q}:F(x+a)-cF(x)=b\}.

The corresponding cc-differential uniformity is defined as follows.

Definition 1.

(2020CEP ) Let 𝔽q{\mathbb{F}}_{q} denote the finite field with qq elements, where qq is a prime power. For a function F:𝔽q𝔽qF:{{\mathbb{F}}_{q}}\to{{\mathbb{F}}_{q}}, and a,b,c𝔽qa,b,c\in{\mathbb{F}}_{q}, we call

ΔFc=max{δFc(a,b):a,b𝔽q,anda0ifc=1}{}_{c}{\Delta_{F}}=\max\left\{{{}_{c}{\delta_{F}}\left(a,b\right):a,b\in{{\mathbb{F}}_{{q}}},\mathrm{and}~{}a\neq 0~{}\mathrm{if}~{}c=1}\right\}

the cc-differential uniformity of FF.

If ΔFc=δ{}_{c}{\Delta_{F}}=\delta, then we say that FF is differentially (c,δ)(c,\delta)-uniform. Similarly, the smaller the value ΔFc{}_{c}\Delta_{F} is, the better FF to the resistance against multiplicative differential attack. If the cc-differential uniformity of FF equals 11, then FF is called a perfect cc-nonlinear (PccN) function. PccN function over odd characteristic finite fields are also called cc-planar functions. If the cc-differential uniformity of FF is 22, then FF is called an almost perfect cc-nonlinear (APccN) function. It is easy to conclude, for c=1c=1 and a0a\neq 0, the cc-differential uniformity becomes the usual differential uniformity, and the PccN and APccN functions become PN and APN functions respectively. It is know that APN functions over finite fields of even characteristic have lowest differential uniformity. However, for the cc-differential uniformity, there exist PccN functions over even characteristic finite fields. There are a few functions with low cc-differential uniformity reported. The readers can refer to wang2021several ; 2021SomeZha ; tu2021class ; yan2021on1 ; 2021SYZ ; 2020CEP ; 2020MD ; hasan2021c ; WLZ ; BC .

Similarly, when F(x)F(x) is a power function, one easily sees that δFc(a,b){}_{c}{\delta_{F}(a,b)}=δFc(1,b/ad){}_{c}{\delta_{F}(1,{b/{a^{d}}})} for all a𝔽qa\in{\mathbb{F}}_{{q}}^{*} and b𝔽qb\in{\mathbb{F}}_{q}. That is to say, the cc-differential spectrum of F(x)F(x) is completely determined by the values of δFc(1,b){}_{c}\delta_{F}(1,b) as bb runs through 𝔽q{\mathbb{F}}_{q}. Therefore, the cc-differential spectrum of a power function can be defined as follows.

Definition 2.

(wang2021several ) Let F(x)=xdF\left(x\right)={x^{d}} be a power function over 𝔽q{\mathbb{F}}_{q} with cc-differential uniformity ΔFc{}_{c}\Delta_{F}. Denote by ωic=#{b𝔽q:δFc(1,b)=i.}{}_{c}{\omega_{i}}=\#\{{b\in{\mathbb{F}}_{q}:{{}_{c}{\delta_{F}}(1,b)=i}.}\} for each 0iΔFc0\leq i\leq{}_{c}{\Delta_{F}}. The cc-differential spectrum of FF is defined to be the multi-set

𝕊={ωic:0iΔFcandωic>0}.\mathbb{S}=\{{{}_{c}{\omega_{i}}:{0\leq i\leq{}_{c}{\Delta_{F}}}~{}\mathrm{and}{}~{}_{c}{\omega_{i}}>0}\}.

When c=1c=1, the cc-differential spectrum becomes the usual differential spectrum. As far as we know, only two classes of power functions have known cc-differential spectra. In wang2021several , the authors computed the cc-differential spectrum of Gold function. The cc-differential spectrum of xdx^{d} over 𝔽24m{\mathbb{F}}_{2^{4m}} was determined in tu2021class , where d=23m+22m+2m1d=2^{3m}+2^{2m}+2^{m}-1. We summarized the known results in Table 1 as well as the results obtained in this paper. The rest of this paper is organized as follows. Section II introduces some notation and useful lemmas. In Section III, we present the properties of cc-differential spectrum. In Section IV, we calculate the cc-differential spectrum of several power functions with low cc-differential uniformity. In Section V, we construct an infinite family of APccN power mappings over 𝔽5n{\mathbb{F}}_{{5^{n}}}, and determine its cc-differential spectrum. Section VI concludes this paper.

Table 1: Power functions F(x)=xdF(x)=x^{d} over 𝔽pn{\mathbb{F}}_{p^{n}} with known cc-differential spectrum
pp dd Condition ΔFc{}_{c}\Delta_{F} Ref.
2 23m+22m+2m12^{3m}+2^{2m}+2^{m}-1 n=4mn=4m, 0,1c𝔽2n0,1\neq c\in{\mathbb{F}}_{2^{n}}, c1+22m=1c^{1+2^{2m}}=1 22 tu2021class
odd pk+1p^{k}+1 1c𝔽pgcd(n,k)1\neq c\in{\mathbb{F}}_{p^{\gcd(n,k)}} and ngcd(n,k)\frac{n}{\gcd(n,k)} is odd, or c𝔽pgcd(n,k)c\notin{\mathbb{F}}_{p^{\gcd(n,k)}}, nn is even and k=n2k=\frac{n}{2} 22 wang2021several
2 2n22^{n}-2 c0c\neq 0, Trn(c)=Trn(c1)=1{\mathrm{Tr}}_{n}(c)={\mathrm{Tr}}_{n}(c^{-1})=1 22 Thm 7
2 2n22^{n}-2 c0c\neq 0, Trn(c)=0{\mathrm{Tr}}_{n}(c)=0 or Trn(c1)=0{\mathrm{Tr}}_{n}(c^{-1})=0 33 Thm 7
odd pn2p^{n}-2 c=4,41c=4,4^{-1}, or χ(c24c)=1\chi(c^{2}-4c)=-1 and χ(14c)=1\chi(1-4c)=-1 2 Thm 8
odd pn2p^{n}-2 c0,4,41c\neq 0,4,4^{-1}, χ(c24c)=1\chi(c^{2}-4c)=1 or χ(14c)=1\chi(1-4c)=1 3 Thm 8
3 3n+32\frac{3^{n}+3}{2} c=1c=-1, nn even 22 Thm 9
3 3n33^{n}-3 c=1c=-1, n=0(mod4)n=0({\bmod 4}) 6 Thm 10
3 3n33^{n}-3 c=1c=-1, n0(mod4)n\neq 0({\bmod 4}) 4 Thm 10
odd pk+12\frac{p^{k}+1}{2} c=1c=-1, gcd(n,k)=1\gcd(n,k)=1, kk odd p+12\frac{p+1}{2} Thm 11, 12
5 pn32\frac{p^{n}-3}{2} c=1c=-1 2 Thm 16
\botrule
00footnotetext: Trn(){\mathrm{Tr}}_{n}\left(\cdot\right) denotes the absolute trace mapping from 𝔽2n{\mathbb{F}}_{{2^{n}}} to 𝔽2{\mathbb{F}}_{2}.00footnotetext: χ()\chi\left(\cdot\right) denotes the quadratic multiplicative character on 𝔽pn{\mathbb{F}}_{{p^{n}}}^{*}.

2 Preliminaries

In this section, we first fix some notation and list some facts which will be used in this paper unless otherwise stated.

  • Let 𝔽q{\mathbb{F}}_{q} denote the finite field with qq elements.

  • 𝔽q=𝔽q{0}{\mathbb{F}}_{{q}}^{*}={\mathbb{F}}_{{q}}\setminus\{0\}, 𝔽q#=𝔽q\{0,1}{\mathbb{F}}_{{q}}^{\#}={{\rm{{\mathbb{F}}}}_{{q}}}\backslash\{0,-1\}.

  • Δc(x)=(x+1)dcxd\Delta_{c}(x)=(x+1)^{d}-cx^{d}, where c𝔽qc\in{\mathbb{F}}_{{q}}.

  • δc(b)=#{x𝔽q:Δc(x)=b}{\delta_{c}}\left(b\right)=\#\left\{{x\in{{\mathbb{F}}_{{q}}}:{\Delta_{c}}\left(x\right)=b}\right\}.

  • χ\chi denotes the quadratic multiplicative character on 𝔽q{\mathbb{F}}_{{q}}, i.e.,

    χ(x)={1,ifxasquare,0,ifx=0,1,ifxanonsquare.\chi(x)=\left\{\begin{aligned} 1,~{}~{}&\mathrm{if}~{}{x}~{}\mathrm{a~{}square~{}},\\ 0,~{}~{}&\mathrm{if}~{}x=0,\\ -1,~{}~{}&\mathrm{if}~{}{x}~{}\mathrm{a~{}nonsquare~{}}.\end{aligned}\right.

    It is well-known that x𝔽qχ(x)=0\sum_{x\in{\mathbb{F}}_{q}}\chi(x)=0.

  • Si,j:={x𝔽q#:χ(x)=i,χ(x+1)=j}{S_{i,j}}:=\left\{{x\in{\mathbb{F}}_{{q}}^{\#}:\chi(x)=i,\chi(x+1)=j}\right\}, where i,j{±1}i,j\in\{\pm 1\}.

  • S1,1S1,1S1,1S1,1=𝔽q#{S_{1,1}}\cup{S_{-1,-1}}\cup{S_{1,-1}}\cup{S_{-1,1}}={\mathbb{F}}_{{q}}^{\#}.

Secondly, we introduce some lemmas which will be used in the sequel. To determine the greatest common divisor of integers, the following lemma plays an important role in the rest of this paper.

Lemma 1.

let p,k,np,k,n be integers greater than or equal to 11. Then

gcd(pk+1,pn1)={2gcd(2k,n)12gcd(k,n)1,ifp=2,2,ifngcd(n,k)isodd,pgcd(k,n)+1,ifngcd(n,k)iseven.\gcd\left({{p^{k}}+1,{p^{n}}-1}\right)=\left\{\begin{aligned} {}\frac{{{2^{\gcd\left({2k,n}\right)}}-1}}{{{2^{\gcd\left({k,n}\right)}}-1}},~{}~{}~{}&\mathrm{if}~{}{p}=2,\\ 2,~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}&\mathrm{if}~{}\frac{n}{{\gcd(n,k)}}~{}\mathrm{is}~{}\mathrm{odd},\\ {p^{\gcd\left({k,n}\right)}}+1,~{}~{}~{}~{}&\mathrm{if}~{}\frac{n}{{\gcd\left({n,k}\right)}}~{}\mathrm{is}~{}\mathrm{even}.\end{aligned}\right.

The following lemma can be used in solving equations over finite fields.

Lemma 2.

FF Let nn be a positive integer. We have:

(i) The equation x2+ax+b=0x^{2}+ax+b=0, with a,b𝔽2na,b\in{\mathbb{F}}_{2^{n}}, a0a\neq 0, has two solutions in 𝔽2n{\mathbb{F}}_{2^{n}} if Trn(ba2)=0{\mathrm{Tr}}_{n}(\frac{b}{a^{2}})=0, and zero solutions otherwise.

(ii) The equation x2+ax+b=0x^{2}+ax+b=0, with a,b𝔽pna,b\in{\mathbb{F}}_{p^{n}}, pp odd, has (two, respectively, one) solutions in 𝔽pn{\mathbb{F}}_{p^{n}} if and only if the discriminant a24ba^{2}-4b is a (nonzero, respectively, zero) square in 𝔽pn{\mathbb{F}}_{p^{n}}.

At last, we introduce the following result on the quadratic multiplicative character sums.

Lemma 3.

(FF, , Theorem 5.48) Let f(x)=a2x2+a1x+a0𝔽q[x]f(x)=a_{2}x^{2}+a_{1}x+a_{0}\in{\mathbb{F}}_{q}[x] with qq odd and a20a_{2}\neq 0. Put d=a124a0a2d=a^{2}_{1}-4a_{0}a_{2} and let χ\chi be the quadratic character of 𝔽q{\mathbb{F}}_{q}. Then

x𝔽qχ(f(x))={χ(a2),ifd0.(q1)χ(a2),ifd=0.\displaystyle\sum_{x\in{\mathbb{F}}_{q}}\chi(f(x))=\left\{\begin{array}[]{lllll}-\chi(a_{2}),~{}~{}~{}~{}~{}~{}~{}\mathrm{if}~{}d\neq 0.\\ (q-1)\chi(a_{2}),~{}\mathrm{if}~{}d=0.\end{array}\right.\ \

3 The properties of the cc-differential spectrum

The usual differential spectrum of a power function satisfies several identities (see BCC ). It is natural to wonder how it behaves with respect to the cc-differential spectrum of a power function. In this section, we give the following identities of the cc-differential spectrum.

Theorem 4.

Let F(x)=xdF\left(x\right)={x^{d}} be a power function over 𝔽q{\mathbb{F}}_{q} with cc-differential uniformity ΔFc{}_{c}{\Delta_{F}} for some 1c𝔽q1\neq c\in{\mathbb{F}}_{q}. Recall that ωic=#{b𝔽q:ΔFc(1,b)=i.}{{}_{c}\omega_{i}}=\#\left\{{b\in{\mathbb{F}}_{q}:{{}_{c}{\Delta_{F}}\left(1,b\right)=i}.}\right\} for each 0iΔFc0\leq i\leq{}_{c}{\Delta_{F}}. We have

i=0ΔFcωic=i=0ΔFciωic=q.\sum_{i=0}^{{}_{c}{\Delta_{F}}}{}_{c}\omega_{i}=\sum_{i=0}^{{}_{c}{\Delta_{F}}}i\cdot{}_{c}\omega_{i}=q. (2)

Moreover, we have

i=0ΔFci2ωic=N4c1q1gcd(d,q1),\sum\limits_{i=0}^{{}_{c}{\Delta_{F}}}{{i^{2}}\cdot{}_{c}{\omega_{i}}}=\frac{{{\rm{}}{{}_{c}N_{4}}-1}}{{q}-1}-\gcd(d,q-1), (3)

where

N4c=#{(x1,x2,x3,x4)(𝔽q)4:{x1x2+x3x4=0x1dcx2d+cx3dx4d=0}.{}_{c}N_{4}=\#\left\{{\left({{x_{1}},{x_{2}},{x_{3}},{x_{4}}}\right)\in({\mathbb{F}}_{q})^{4}:{\Bigg{\{}\begin{array}[]{l}{x_{1}}-{x_{2}}+{x_{3}}-{x_{4}}=0\\ x_{1}^{d}-cx_{2}^{d}+cx_{3}^{d}-x_{4}^{d}=0\end{array}}}\right\}. (4)

Proof: According to the definition of ωic{}_{c}\omega_{i}, we have

i=0ΔFcωic=i=0ΔFc#{b𝔽q:ΔFc(1,b)=i}=b𝔽q1=q.\sum\limits_{i=0}^{{}_{c}{\Delta_{F}}}{{{}_{c}\omega_{i}}}=\sum\limits_{i=0}^{{}_{c}{\Delta_{F}}}{\#\left\{{b\in{\mathbb{F}}_{q}:{{}_{c}{\Delta_{F}}\left(1,b\right)=i}}\right\}}=\sum\limits_{b\in{\mathbb{F}}_{q}}1=q.

and

i=0ΔFciωic\displaystyle\sum\limits_{i=0}^{{}_{c}{\Delta_{F}}}{i\cdot{{}_{c}\omega_{i}}} =i=0ΔFci#{b𝔽q:ΔFc(1,b)=i}\displaystyle=\sum\limits_{i=0}^{{}_{c}{\Delta_{F}}}{i\cdot\#\left\{{b\in{\mathbb{F}}_{q}:{{}_{c}{\Delta_{F}}(1,b)=i}}\right\}}
=b𝔽q#{x𝔽q:(x+1)dcxd=b}\displaystyle=\sum_{b\in{\mathbb{F}}_{q}}\#\{x\in{\mathbb{F}}_{q}:(x+1)^{d}-cx^{d}=b\}
=x𝔽q1\displaystyle=\sum\limits_{x\in{\mathbb{F}}_{q}}1
=q.\displaystyle=q.

Next we prove the last statement. For c1c\neq 1, we define

nc(α,β)=#{(x,y)(𝔽q)2:{xy=αxdcyd=β}.{}_{c}n({\alpha,\beta})=\#\Bigg{\{}{({{x},{y}})\in({\mathbb{F}}_{q})^{2}:{\bigg{\{}\begin{array}[]{l}{x}-{y}=\alpha\\ x^{d}-cy^{d}=\beta\end{array}}}\Bigg{\}}.

It is obvious that

N4c=α,β𝔽q(cn(α,β))2.{{}_{c}N_{4}}=\sum\limits_{\alpha,\beta\in{{\mathbb{F}}_{q}}}{{(_{c}n}({\alpha,\beta}))^{2}}.

Moreover, one can easily check that nc(0,0)=1{}_{c}n(0,0)=1. For β0\beta\neq 0, nc(0,β){}_{c}n(0,\beta) is equal to the number of solutions y𝔽qy\in{\mathbb{F}}_{q} of the equation yd=β1cy^{d}=\frac{\beta}{1-c}. Let γ\gamma be a primitive element of 𝔽q{\mathbb{F}}_{q}^{*} and β1c=γk\frac{\beta}{1-c}=\gamma^{k} for some integer kk. Let e=gcd(d,q1)e=\gcd(d,q-1). Then nc(0,β)=e{}_{c}n(0,\beta)=e if eke\mid k and nc(0,β)=0{}_{c}n(0,\beta)=0 otherwise. For α,β0\alpha,\beta\neq 0, we have nc(α,β)=nc(1,βαd){}_{c}n(\alpha,\beta)={}_{c}n(1,\frac{\beta}{\alpha^{d}}). We immediately obtain the following.

N4c\displaystyle{}{{}_{c}N_{4}} =α,β𝔽q(cn(α,β))2\displaystyle=\sum\limits_{\alpha,\beta\in{{\mathbb{F}}_{q}}}{{(_{c}n}({\alpha,\beta}))^{2}}
=(nc(0,0))2+β𝔽q(nc(0,β))2+α𝔽qβ𝔽q(nc(α,β))2\displaystyle={({}_{c}n}({0,0}))^{2}+\sum\limits_{\beta\in{\mathbb{F}}_{q}^{*}}({{}_{c}n}({0,\beta}))^{2}+\sum\limits_{\alpha\in{\mathbb{F}}_{q}^{*}}{{\sum\limits_{\beta\in{{\mathbb{F}}_{q}}}{({{}_{c}n}\left({\alpha,\beta}\right))^{2}}}}
=1+1kq1,eke2+α𝔽qβ𝔽q(nc(1,βαd))2\displaystyle=1+\sum_{1\leq k\leq q-1,e\mid k}e^{2}+\sum\limits_{\alpha\in{\mathbb{F}}^{*}_{q}}{{\sum\limits_{\beta\in{{\mathbb{F}}_{q}}}{({{}_{c}n}({1,\frac{\beta}{{{\alpha^{d}}}}}))^{2}}}}
=1+q1ee2+α𝔽qb𝔽q(nc(1,b))2\displaystyle=1+\frac{{q}-1}{e}{{e}^{2}}+\sum\limits_{\alpha\in{\mathbb{F}}_{q}^{*}}{{\sum\limits_{b\in{{\mathbb{F}}_{q}}}{({{}_{c}n}({1,b}))^{2}}}}
=1+(q1)e+α𝔽qb𝔽q(δc(b))2\displaystyle=1+\big{(}q-1\big{)}{e}+\sum\limits_{\alpha\in{\mathbb{F}}_{q}^{*}}{{\sum\limits_{b\in{{\mathbb{F}}_{q}}}{{{\big{(}{{\delta_{c}}(b)}\big{)}}^{2}}}}}
=1+(q1)e+(q1)i=0ΔFci2ωic.\displaystyle=1+\big{(}q-1\big{)}{{{e}}}+(q-1)\sum\limits_{i=0}^{{}_{c}{\Delta_{F}}}{{i^{2}}\cdot{{}_{c}\omega_{i}}}.

The fourth identity holds since for fixed a0a\neq 0, when β\beta runs through 𝔽q{\mathbb{F}}_{q}, so does βαd\frac{\beta}{\alpha^{d}}. We complete the proof.

4 The cc-differential spectrum of some power functions

In this section, we investigate the cc-differential spectra of some power functions with low cc-differential uniformity.

4.1 The cc-differential spectrum of the inverse function

Since there has been quite a bit of effort to investigate the inverse function over 𝔽2n{\mathbb{F}}_{2^{n}} as it is relevant in Rijndael and Advance Encryption Standard, it is natural to wonder how it behaves with respect to the cc-differential uniformity. In 2020CEP , the cc-differential uniformity of the inverse function x𝔽pn,xxpn2x\in{\mathbb{F}}_{p^{n}},x\mapsto x^{p^{n}-2} has been studied. We have the following lemmas.

Lemma 5 (2020CEP ).

Let nn be a positive integer, 1c𝔽2n1\neq c\in{\mathbb{F}}_{2^{n}} and F:𝔽2n𝔽2nF:{{\mathbb{F}}_{{2^{n}}}}\to{{\mathbb{F}}_{{2^{n}}}} be the inverse function defined by F(x)=x2n2F(x)=x^{2^{n}-2}. We have:

(i) If c=0c=0, then FF is PccN ;

(ii) If c0c\neq 0 and Trn(c)=Trn(1c)=1{\mathrm{Tr}}_{n}(c)={\mathrm{Tr}}_{n}(\frac{1}{c})=1, the cc-differential uniformity of FF is 22;

(iii) If c0c\neq 0 and Trn(c)=0{\mathrm{Tr}}_{n}(c)=0 or Trn(1c)=0{\mathrm{Tr}}_{n}(\frac{1}{c})=0, the cc-differential uniformity of FF is 33.

Lemma 6 (2020CEP ).

Let pp be an odd prime. n1n\geq 1 be a positive integer, 1c𝔽pn1\neq c\in{\mathbb{F}}_{p^{n}} and F:𝔽pn𝔽pnF:{{\mathbb{F}}_{{p^{n}}}}\to{{\mathbb{F}}_{{p^{n}}}} be the inverse function defined by F(x)=xpn2F(x)=x^{p^{n}-2}. We have:

(i) If c=0c=0, then FF is PccN .

(ii) If c0,4,41c\neq 0,4,4^{-1}, χ(c24c)=1\chi(c^{2}-4c)=1, or χ(14c)=1\chi(1-4c)=1, the cc-differential uniformity of FF is 33.

(iii) If c=4,41c=4,4^{-1}, the cc-differential uniformity of FF is 22.

(iv) If c0c\neq 0, χ(c24c)=χ(14c)=1\chi(c^{2}-4c)=\chi(1-4c)=-1, the cc-differential uniformity of FF is 22.

The cc-differential spectrum of the inverse function is given in the following theorem.

Theorem 7.

Let F(x)=x2n2F(x)=x^{2^{n}-2} be a power function over 𝔽2n{\mathbb{F}}_{{2^{n}}}. When 0,1c𝔽2n0,1\neq c\in{\mathbb{F}}_{2^{n}}, the inverse function is APccN with cc-differential spectrum

𝕊={ω0c=2n12,ω1c=4,ω2c=2n12}\mathbb{S}=\{{}_{c}\omega_{0}=2^{n-1}-2,{}_{c}\omega_{1}=4,{}_{c}\omega_{2}=2^{n-1}-2\}

if Trn(c)=Trn(1c)=1{\mathrm{Tr}}_{n}(c)={\mathrm{Tr}}_{n}(\frac{1}{c})=1. Moreover, the inverse function is differentially (c,3)(c,3)-uniform with cc-differential spectrum

𝕊={ω0c=2n11,ω1c=3,ω2c=2n13,ω3c=1}\mathbb{S}=\{{}_{c}\omega_{0}=2^{n-1}-1,{}_{c}\omega_{1}=3,{}_{c}\omega_{2}=2^{n-1}-3,{}_{c}\omega_{3}=1\}

if Trn(c)=1{\mathrm{Tr}}_{n}(c)=1, Trn(1c)=0{\mathrm{Tr}}_{n}(\frac{1}{c})=0 or Trn(c)=0{\mathrm{Tr}}_{n}(c)=0, Trn(1c)=1{\mathrm{Tr}}_{n}(\frac{1}{c})=1, and is differentially (c,3)(c,3)-uniform with cc-differential spectrum

𝕊={ω0c=2n1,ω1c=2,ω2c=2n14,ω3c=2}\mathbb{S}=\{{}_{c}\omega_{0}=2^{n-1},{}_{c}\omega_{1}=2,{}_{c}\omega_{2}=2^{n-1}-4,{}_{c}\omega_{3}=2\}

if Trn(c)=Trn(1c)=0{\mathrm{Tr}}_{n}(c)={\mathrm{Tr}}_{n}(\frac{1}{c})=0.

Proof: For b𝔽2nb\in{\mathbb{F}}_{{2^{n}}}, we consider the cc-differential equation

(x+1)2n2+cx2n2=b.(x+1)^{2^{n}-2}+cx^{2^{n}-2}=b. (5)

In order to calculate the cc-differential spectrum, we first determine the values of ω1c{}_{c}\omega_{1} and ω3c{}_{c}\omega_{3}.

Case 1: b=0b=0. (5) has a unique solution x=cc+1x=\frac{c}{c+1}.

Case 2: b=1b=1. Then x=0x=0 is a solution of (5), and x=1x=1 is not a solution of (5) since c1c\neq 1. Assume that x0,1x\neq 0,1, by multiplying x(x+1)x(x+1) on both sides of (5), we get x2+cx+c=0x^{2}+cx+c=0. By Lemma 2 (i), this equation has two solutions iff Trn(1c)=0{\mathrm{Tr}}_{n}(\frac{1}{c})=0. Consequently, δc(1)=3\delta_{c}(1)=3 if Trn(1c)=0{\mathrm{Tr}}_{n}(\frac{1}{c})=0, and δc(1)=1\delta_{c}(1)=1 if Trn(1c)=1{\mathrm{Tr}}_{n}(\frac{1}{c})=1.

Case 3: b=cb=c. In this case, x=1x=1 is a solution of (5), while x=0x=0 is not a solution. Next we assume that x0,1x\neq 0,1. Similarly, we get x2+c1x+1=0x^{2}+c^{-1}x+1=0. By Lemma 2 (i), this equation has two solutions iff Trn(c)=0{\mathrm{Tr}}_{n}(c)=0. Consequently, δc(c)=3\delta_{c}(c)=3 if Trn(c)=0{\mathrm{Tr}}_{n}(c)=0, and δc(c)=1\delta_{c}(c)=1 if Trn(c)=1{\mathrm{Tr}}_{n}(c)=1.

Case 4: b0,1,cb\neq 0,1,c. In this case, x0,1x\neq 0,1. Multiplying x(x+1)x(x+1) on both sides of (5), we obtain

bx2+(1+b+c)x+c=0.bx^{2}+(1+b+c)x+c=0. (6)

When b=1+cb=1+c, (6) has unique solution x=(cc+1)2n1x=(\frac{c}{c+1})^{2^{n-1}}. By Lemma 2 (i), (6) has 0 or 2 solutions if 1+b+c01+b+c\neq 0. We have δc(1+c)=1\delta_{c}(1+c)=1, and δc(b)=0\delta_{c}(b)=0 or 22 when b0,1,c,1+cb\neq 0,1,c,1+c.

Summarizing the above, we obtain that

ω1c={4,ifTrn(c)=Trn(1c)=1,3,ifTrn(c)=1,Trn(1c)=0orTrn(c)=0,Trn(1c)=1,2,ifTrn(c)=Trn(1c)=0,{}_{c}\omega_{1}=\left\{\begin{aligned} {}4,~{}~{}~{}&\mathrm{if}~{}{\mathrm{Tr}}_{n}(c)={\mathrm{Tr}}_{n}(\frac{1}{c})=1,\\ 3,~{}~{}~{}&\mathrm{if}~{}{\mathrm{Tr}}_{n}(c)=1,{\mathrm{Tr}}_{n}(\frac{1}{c})=0~{}\mathrm{or}~{}{\mathrm{Tr}}_{n}(c)=0,{\mathrm{Tr}}_{n}(\frac{1}{c})=1,\\ 2,~{}~{}~{}&\mathrm{if}~{}{\mathrm{Tr}}_{n}(c)={\mathrm{Tr}}_{n}(\frac{1}{c})=0,\end{aligned}\right.

and

ω3c={0,ifTrn(c)=Trn(1c)=1,1,ifTrn(c)=1,Trn(1c)=0orTrn(c)=0,Trn(1c)=1,2,ifTrn(c)=Trn(1c)=0.{}_{c}\omega_{3}=\left\{\begin{aligned} {}0,~{}~{}~{}&\mathrm{if}~{}{\mathrm{Tr}}_{n}(c)={\mathrm{Tr}}_{n}(\frac{1}{c})=1,\\ 1,~{}~{}~{}&\mathrm{if}~{}{\mathrm{Tr}}_{n}(c)=1,{\mathrm{Tr}}_{n}(\frac{1}{c})=0~{}\mathrm{or}~{}{\mathrm{Tr}}_{n}(c)=0,{\mathrm{Tr}}_{n}(\frac{1}{c})=1,\\ 2,~{}~{}~{}&\mathrm{if}~{}{\mathrm{Tr}}_{n}(c)={\mathrm{Tr}}_{n}(\frac{1}{c})=0.\end{aligned}\right.

By solving the equation system (2), the desired result follows.

Next, we calculate the cc-differential spectrum of the inverse function over 𝔽pn{\mathbb{F}}_{p^{n}} when pp is odd. We have the following results.

Theorem 8.

Let pp be any odd prime. F(x)=xpn2F(x)=x^{p^{n}-2} be a power function over 𝔽pn{\mathbb{F}}_{p^{n}}. When 0,1,4,41c𝔽pn0,1,4,4^{-1}\neq c\in{\mathbb{F}}_{p^{n}}, the cc-differential spectrum of it is given as the following six cases:

(i) 𝕊={ω0c=pn32,ω1c=3,ω2c=pn32}\mathbb{S}=\{{}_{c}\omega_{0}=\frac{p^{n}-3}{2},{}_{c}\omega_{1}=3,{}_{c}\omega_{2}=\frac{p^{n}-3}{2}\} if χ(c24c)=χ(14c)=1\chi(c^{2}-4c)=\chi(1-4c)=-1 and χ(c)=1\chi(c)=-1;

(ii) 𝕊={ω0c=pn52,ω1c=5,ω2c=pn52}\mathbb{S}=\{{}_{c}\omega_{0}=\frac{p^{n}-5}{2},{}_{c}\omega_{1}=5,{}_{c}\omega_{2}=\frac{p^{n}-5}{2}\} if χ(c24c)=χ(14c)=1\chi(c^{2}-4c)=\chi(1-4c)=-1 and χ(c)=1\chi(c)=1;

(iii) 𝕊={ω0c=pn12,ω1c=2,ω2c=pn52,ω3c=1}\mathbb{S}=\{{}_{c}\omega_{0}=\frac{p^{n}-1}{2},{}_{c}\omega_{1}=2,{}_{c}\omega_{2}=\frac{p^{n}-5}{2},{}_{c}\omega_{3}=1\} if χ(c24c)χ(14c)=1\chi(c^{2}-4c)\chi(1-4c)=-1 and χ(c)=1\chi(c)=-1;

(iv) 𝕊={ω0c=pn32,ω1c=4,ω2c=pn72,ω3c=1}\mathbb{S}=\{{}_{c}\omega_{0}=\frac{p^{n}-3}{2},{}_{c}\omega_{1}=4,{}_{c}\omega_{2}=\frac{p^{n}-7}{2},{}_{c}\omega_{3}=1\} if χ(c24c)χ(14c)=1\chi(c^{2}-4c)\chi(1-4c)=-1 and χ(c)=1\chi(c)=1;

(v) 𝕊={ω0c=pn+12,ω1c=1,ω2c=pn72,ω3c=2}\mathbb{S}=\{{}_{c}\omega_{0}=\frac{p^{n}+1}{2},{}_{c}\omega_{1}=1,{}_{c}\omega_{2}=\frac{p^{n}-7}{2},{}_{c}\omega_{3}=2\} if χ(c24c)=χ(14c)=1\chi(c^{2}-4c)=\chi(1-4c)=1 and χ(c)=1\chi(c)=-1;

(vi) 𝕊={ω0c=pn12,ω1c=3,ω2c=pn92,ω3c=2}\mathbb{S}=\{{}_{c}\omega_{0}=\frac{p^{n}-1}{2},{}_{c}\omega_{1}=3,{}_{c}\omega_{2}=\frac{p^{n}-9}{2},{}_{c}\omega_{3}=2\} if χ(c24c)=χ(14c)=1\chi(c^{2}-4c)=\chi(1-4c)=1 and χ(c)=1\chi(c)=1.

Proof: For b𝔽pnb\in{\mathbb{F}}_{{p^{n}}}, we consider the cc-diffferential equation

(x+1)pn2cxpn2=b.(x+1)^{p^{n}-2}-cx^{p^{n}-2}=b. (7)

Similarly, we determine the values of ω1c{}_{c}\omega_{1} and ω3c{}_{c}\omega_{3}.

Case 1: b=0b=0. It can be easily seen that x=c1cx=\frac{c}{1-c} is the unique solution of (7), i.e. δc(0)=1\delta_{c}(0)=1.

Case 2: b=1b=1. Then x=0x=0 is a solution of (7), and x=1x=-1 is not a solution of (7). Assume that x0,1x\neq 0,-1, by multiplying x(x+1)x(x+1) on both sides of (7), we get x2+cx+c=0x^{2}+cx+c=0. The discriminant of this quadratic equation is c24cc^{2}-4c, which is not zero since c0,4c\neq 0,4. By Lemma 2(ii), this equation has two solutions if χ(c24c)=1\chi(c^{2}-4c)=1, and no solution if χ(c24c)=1\chi(c^{2}-4c)=-1. We obtain δc(1)=3\delta_{c}(1)=3 if χ(c24c)=1\chi(c^{2}-4c)=1, δc(1)=1\delta_{c}(1)=1 if χ(c24c)=1\chi(c^{2}-4c)=-1.

Case 3: b=cb=c. Then x=1x=-1 is a solution of (7), while x=0x=0 is not a solution. Next we assume that x0,1x\neq 0,-1. By multiplying x(x+1)x(x+1) on both sides of (7), we get cx2+(2c1)x+c=0cx^{2}+(2c-1)x+c=0. The discriminant of this quadratic equation is 14c1-4c, which is not zero since c0,41c\neq 0,4^{-1}. By Lemma 2(ii), this equation has two solutions if χ(14c)=1\chi(1-4c)=1, and no solution if χ(14c)=1\chi(1-4c)=-1. We obtain δc(c)=1\delta_{c}(c)=1 if χ(14c)=1\chi(1-4c)=-1 and δc(c)=3\delta_{c}(c)=3 if χ(14c)=1\chi(1-4c)=1.

Case 4: Let b0,1,cb\neq 0,1,c. Then x0,1x\neq 0,1. By multiplying x(x+1)x(x+1) on both sides of (7), we obtain

bx2+(b+c1)x+c=0.bx^{2}+(b+c-1)x+c=0. (8)

The equation (8) has a unique solution if and only if the discriminant (b+c1)24bc=0(b+c-1)^{2}-4bc=0. That is,

b22(c+1)b+(c1)2=0.b^{2}-2(c+1)b+(c-1)^{2}=0.

The above equation on bb is quadratic, and the discriminant is 16c16c. We assert that, if χ(c)=1\chi(c)=1, there exist two bb’s such that (8) has one solution, and if χ(c)=1\chi(c)=-1, such bb do not exist.

By discussions as above, we summarize the values of ω1c{}_{c}{\omega_{1}} and ω3c{}_{c}{\omega_{3}} in the following table. By solving the equation system (2), the desired result follows.

Table 2: The values of ω1c{}_{c}{\omega_{1}} and ω3c{}_{c}{\omega_{3}}
ω1c{}_{c}{\omega_{1}} ω3c{}_{c}{\omega_{3}} χ(c24c)\chi(c^{2}-4c) χ(14c)\chi(1-4c) χ(c)\chi(c)
33 22 11 11 11
11 22 11 11 1-1
22 11 11 1-1 1-1
44 11 11 1-1 11
44 11 1-1 11 11
22 11 1-1 11 1-1
33 0 1-1 1-1 1-1
55 0 1-1 1-1 11
\botrule

4.2 The (1)(-1)-differential spectra of some power functions

The case that c=1c=-1 is a special case. Sometimes the (1)(-1)-differential uniformity of a power function is lower than its cc-differential uniformity for other cc. In this subsection, we compute the (1)(-1)-differential spectra of some power functions. We begin this subsection with a simple result.

In 2021SYZ , the authors reported that the power function x3n+32x^{\frac{3^{n}+3}{2}} over 𝔽3n{\mathbb{F}}_{3^{n}} is APccN if nn is even. We have the following theorem.

Theorem 9.

Let G(x)=x3n+32G\left(x\right)={x^{\frac{{{3^{n}}+3}}{2}}} on 𝔽3n{\mathbb{F}}_{3^{n}}, n2n\geq 2. The (1)(-1)-differential spectrum of G(x)G(x) is

𝕊={ω01=3n12,ω11=1,ω21=3n12}.\mathbb{S}=\left\{{{{}_{-1}\omega_{0}}=\frac{{{3^{n}}-1}}{2},{{}_{-1}\omega_{1}}=1,{{}_{-1}\omega_{2}}=\frac{{{3^{n}}-1}}{2}}\right\}.

Proof: To determine the (1)(-1)-differential spectrum of x3n+32x^{\frac{{{3^{n}}+3}}{2}}, we consider the equation

Δ1(x)=(x+1)3n+32+x3n+32=b\Delta_{-1}(x)={\left({x+1}\right)^{\frac{{{3^{n}}+3}}{2}}}+{x^{\frac{{{3^{n}}+3}}{2}}}=b (9)

for b𝔽3nb\in{\mathbb{F}}_{{3^{n}}}. Note that xx is a solution of (9) if and only if x1-x-1 is a solution of (9). When x=x1x=-x-1, then x=1x=1 and the corresponding b=1b=-1 satisfies that δ1(1)\delta_{-1}(-1) is odd. Then δ1(1)=1\delta_{-1}(-1)=1 since F(x)F(x) is APccN. We get ω11=1{}_{-1}\omega_{1}=1. Then by solving the equation (2), we complete the proof.

It was shown that x3n3x^{3^{n}-3} is an APN power mapping of 𝔽3n{\mathbb{F}}_{3^{n}} when n>1n>1 is odd HRS , is differentially 44-uniform when n=2(mod4)n=2\left({\bmod 4}\right) 2020XZL , and is differentially 55-uniform when n=0(mod4)n=0\left({\bmod 4}\right) 2020XZL . Moreover, 2021SYZ showed that this power function has low (1)(-1)-differential uniformity. In the following theorem, we determine the (1)(-1)-differential spectrum of x3n3x^{3^{n}-3} over 𝔽3n{\mathbb{F}}_{3^{n}}.

Theorem 10.

Let H(x)=x3n3H\left(x\right)={x^{3^{n}-3}} be a power function over 𝔽3n{{\mathbb{F}}_{{3^{n}}}}. When n=0(mod4)n=0\left({\bmod 4}\right), HH is differentially (1,6)(-1,6)-uniform with (1)(-1)-differential spectrum

𝕊={ω01=53n38,ω11=1,ω21=3n+34,ω41=3n178,ω61=1}.\begin{gathered}\mathbb{S}=\left\{{{{}_{-1}\omega_{0}}=\frac{{5\cdot{3^{n}}-3}}{8},{{}_{-1}\omega_{1}}=1,{{}_{-1}\omega_{2}}=\frac{{{3^{n}}+3}}{4},{{}_{-1}\omega_{4}}=\frac{{{3^{n}}-17}}{8},{{}_{-1}\omega_{6}}=1}\right\}.\hfill\\ \end{gathered}

When n=2(mod4)n=2\left({\bmod 4}\right), HH is differentially (1,4)(-1,4)-uniform with (1)(-1)-differential spectrum

𝕊={ω01=53n138,ω11=1,ω21=3n+74,ω41=3n98}.\mathbb{S}=\left\{{{{}_{-1}\omega_{0}}=\frac{{5\cdot{3^{n}}-13}}{8},{{}_{-1}\omega_{1}}=1,{{}_{-1}\omega_{2}}=\frac{{{3^{n}}+7}}{4},{{}_{-1}\omega_{4}}=\frac{{{3^{n}}-9}}{8}}\right\}.

When n=1,3(mod4)n=1,3\left({\bmod 4}\right), HH is differentially (1,4)(-1,4)-uniform with (1)(-1)-differential spectrum

𝕊={ω01=53n78,ω11=1,ω21=3n+14,ω41=3n38}.\mathbb{S}=\left\{{{{}_{-1}\omega_{0}}=\frac{{5\cdot{3^{n}}-7}}{8},{{}_{-1}\omega_{1}}=1,{{}_{-1}\omega_{2}}=\frac{{{3^{n}}+1}}{4},{{}_{-1}\omega_{4}}=\frac{{{3^{n}}-3}}{8}{\rm{}}}\right\}.

Proof: To determine the (1)(-1)-differential spectrum of this power function, we consider the equation

Δ1(x)=(x+1)3n3+x3n3=b\Delta_{-1}(x)=(x+1)^{3^{n}-3}+x^{3^{n}-3}=b (10)

for b𝔽3nb\in{\mathbb{F}}_{{3^{n}}}. Firstly we consider b=1b=1. Note that x=0x=0 and x=1x=-1 are both solutions of (10). For x0,1x\neq 0,-1, we multiply both sides of (10) by x2(x+1)2x^{2}(x+1)^{2} and obtain

x4x3x2+x1=0.x^{4}-x^{3}-x^{2}+x-1=0. (11)

Let y=x1y=x-1, then y1,1y\neq-1,1, and (11) becomes

y4y21=0.y^{4}-y^{2}-1=0. (12)

Next we prove that the solutions of (12) are all in 𝔽34𝔽32{\mathbb{F}}_{3^{4}}\setminus{\mathbb{F}}_{3^{2}}. Obviously, the solutions of (12) are in 𝔽34{\mathbb{F}}_{3^{4}}. If y𝔽32y\in{\mathbb{F}}_{3^{2}} is a solution of (12), then y0y\neq 0 and y4=±1y^{4}=\pm 1. If y4=1y^{4}=1 (respectively, y4=1y^{4}=-1), we can obtain y2=0y^{2}=0 by (12) (respectively, y2=1y^{2}=1), which is a contradiction. By the discussion as above, we conclude that δ1(1)=6\delta_{-1}(1)=6 when n=0(mod4)n=0\left({\bmod 4}\right) and δ1(1)=2\delta_{-1}(1)=2 otherwise.

For b1b\neq 1, we know that x=0x=0 and x=1x=-1 are not solutions of (10). When b=0b=0, the equation (10) becomes

x2+x1=0.x^{2}+x-1=0. (13)

It can be similarly proved that the solutions of (13) are in 𝔽32𝔽3{\mathbb{F}}_{3^{2}}\setminus{\mathbb{F}}_{3}. We conclude that δ1(0)=2\delta_{-1}(0)=2 if nn is even, and δ1(0)=0\delta_{-1}(0)=0 if nn is odd.

If b0,1b\neq 0,1, then x0,1x\neq 0,1. The differential equation (10) can be deduced as

bx4bx3+(b+1)x2+x1=0.bx^{4}-bx^{3}+(b+1)x^{2}+x-1=0. (14)

Let y=x1y=x-1, then (14) becomes

by4+(b+1)y2+b+1=0.by^{4}+(b+1)y^{2}+b+1=0. (15)

We consider the solutions of equation (15). Let z=y2z=y^{2}, then we have

bz2+(b+1)z+b+1=0.bz^{2}+(b+1)z+b+1=0. (16)

Note that (16) is a quadratic equation on zz, and the discriminant of this quadratic equation is Δ=b+1\Delta=b+1. We discuss in the following three cases.

Case (i) b=1b=-1. We get z=0z=0, then y=0y=0 and x=1x=1 consequently. So δ1(1)=1\delta_{-1}(-1)=1.

Case (ii) χ(b+1)=1\chi\left({b+1}\right)=1. Herein, χ\chi denotes the quadratic character on 𝔽3n{\mathbb{F}}_{3^{n}}. We know that (16) has two distinct nonzero solutions, namely z1z_{1} and z2z_{2}. Now we need to determine whether y2=ziy^{2}=z_{i} (i=1,2i=1,2) has solutions over 𝔽3n{\mathbb{F}}_{3^{n}}. If χ(z1)=χ(z2)=1\chi\left({z_{1}}\right)=\chi\left({z_{2}}\right)=1, then (15) has four solutions. If χ(z1z2)=1\chi\left({{z_{1}}{z_{2}}}\right)=-1, (15) has two solutions. If χ(z1)=χ(z2)=1\chi\left({z_{1}}\right)=\chi\left({z_{2}}\right)=-1, (15) has no solution.

Case (iii) χ(b+1)=1\chi\left({b+1}\right)=-1. Obviously, (15) has no solution.

Summarizing the discussion as above, (10) cannot have 33 or 55 solutions. We have, ω31=1ω5=0{}_{-1}\omega_{3}=_{-1}\omega_{5}=0. Moreover, ω11=1{}_{-1}\omega_{1}=1, ω61=1{}_{-1}\omega_{6}=1 if n=0(mod4)n=0\left({\bmod 4}\right) and ω61=0{}_{-1}\omega_{6}=0 otherwise. By (2), we know that ω01{}_{-1}\omega_{0}, ω21{}_{-1}\omega_{2} and ω41{}_{-1}\omega_{4} satisfy

{1ω0+1ω2+1ω4=3n11ω6,21ω2+41ω4=3n161ω6.\displaystyle\left\{\begin{array}[]{ll}_{-1}{\omega_{0}}{+_{-1}}{\omega_{2}}{+_{-1}}{\omega_{4}}&={3^{n}}-1{-_{-1}}{\omega_{6}},\\ {2_{-1}}{\omega_{2}}+{4_{-1}}{\omega_{4}}&={3^{n}}-1-{6_{-1}}{\omega_{6}}.\end{array}\right. (19)

Denote by N=#{b𝔽3n𝔽3:χ(b+1)=1,χ(b)=1}N=\#\{b\in{\mathbb{F}}_{3^{n}}\setminus{\mathbb{F}}_{3}~{}:~{}\chi(b+1)=1,\chi(b)=-1\}. Then ω21=N+1{}_{-1}\omega_{2}=N+1 when n=0,1,3(mod4)n=0,1,3\left({\bmod 4}\right), ω21=N+2{}_{-1}\omega_{2}=N+2 when n=2(mod4)n=2\left({\bmod 4}\right). By Lemma 3, we have

N\displaystyle N =14b𝔽3n𝔽3(χ(b+1)+1)(1χ(b))\displaystyle=\frac{1}{4}\sum\limits_{b\in{\mathbb{F}}_{3^{n}}\setminus{\mathbb{F}}_{3}}{(\chi(b+1)+1)}{({1-\chi(b)})}
=14(b𝔽3n(χ(b+1)+1)(1χ(b))3+χ(1))\displaystyle=\frac{1}{4}(\sum\limits_{b\in{\mathbb{F}}_{3^{n}}}{(\chi(b+1)+1)}{({1-\chi(b)})-3+\chi(-1))}
=14(b𝔽3nχ(b(b+1))+b𝔽3nχ(b+1)b𝔽3nχ(b)+b𝔽3n13+χ(1))\displaystyle=\frac{1}{4}(-\sum\limits_{b\in{\mathbb{F}}_{3^{n}}}\chi(b(b+1))+\sum\limits_{b\in{\mathbb{F}}_{3^{n}}}\chi(b+1)-\sum\limits_{b\in{\mathbb{F}}_{3^{n}}}\chi(b)+\sum\limits_{b\in{\mathbb{F}}_{3^{n}}}1-3+\chi(-1))
=3n2+χ(1)4.\displaystyle=\frac{3^{n}-2+\chi(-1)}{4}.

Then by solving (19), the desired result follows.

In 2021SYZ , the authors studied the (1)(-1)-differential uniformity of the power mapping xpk+12x^{\frac{p^{k}+1}{2}}, where pp is an odd prime. In the following two theorems, we determine the (1)(-1)-differential spectrum of xpk+12x^{\frac{p^{k}+1}{2}} with some conditions.

Theorem 11.

Let F(x)=xpk+12F(x)=x^{\frac{p^{k}+1}{2}} be a power function over 𝔽pn{\mathbb{F}}_{p^{n}}, where p1(mod4)p\equiv 1\left({\bmod~{}4}\right), gcd(n,k)=1\gcd(n,k)=1, and 2ngcd(2n,k)\frac{2n}{\gcd(2n,k)} is even. The (1)(-1)-differential spectrum of F(x)F(x) is given by

𝕊={ω01=(pn+1)(p1)2(p+1),ω11=pn32,ωp+341=2,ωp+121=pnpp+1}\mathbb{S}=\left\{{{}_{-1}{\omega_{0}}=\frac{{({p^{n}}+1)(p-1)}}{2(p+1)},{}_{-1}{\omega_{1}}=\frac{{{p^{n}}-3}}{2},{}_{-1}{\omega_{\frac{{p+3}}{4}}}=2,{}_{-1}{\omega_{\frac{{p+1}}{2}}}=\frac{{{p^{n}}-p}}{{p+1}}}\right\}

when nn is odd, and is given by

𝕊={ω01=(pn1)(p1)2(p+1),ω11=pn12,ωp+341=2,ωp+121=pnp2p+1}\mathbb{S}=\left\{{{}_{-1}{\omega_{0}}=\frac{{(p^{n}-1)(p-1)}}{2(p+1)},{}_{-1}{\omega_{1}}=\frac{{{p^{n}}-1}}{2},{}_{-1}{\omega_{\frac{{p+3}}{4}}}=2,{}_{-1}{\omega_{\frac{{p+1}}{2}}}=\frac{{{p^{n}}-p-2}}{{p+1}}}\right\}

when nn is even.

Proof: Since 2ngcd(2n,k)\frac{2n}{\gcd(2n,k)} is even and gcd(n,k)=1\gcd(n,k)=1, then kk is odd. We consider the (1)(-1)-differential function Δ1(x)=(x+1)d+xd\Delta_{-1}\left(x\right)={\left({x+1}\right)^{d}}+{x^{d}} on 𝔽pn{\mathbb{F}}_{p^{n}}. There exist α,β𝔽p2n\alpha,\beta\in{\mathbb{F}}_{p^{2n}} such that x+1=α2x+1={\alpha^{2}}, x=β2x={\beta^{2}}. Let αβ=θ𝔽p2n\alpha-\beta=\theta\in{\mathbb{F}}_{{p^{2n}}}^{*}, then α+β=θ1\alpha+\beta={\theta^{-1}}, α=12(θ+θ1)\alpha=\frac{1}{2}(\theta+{\theta^{-1}}), β=12(θθ1)\beta=-\frac{1}{2}(\theta-{\theta^{-1}}), and x=14(θθ1)2x=\frac{1}{4}{\left({\theta-{\theta^{-1}}}\right)^{2}}. We can obtain that θ2(pn+1)=1\theta^{2(p^{n}+1)}=1 or θ2(pn1)=1\theta^{2(p^{n}-1)}=1 since x𝔽pnx\in{\mathbb{F}}_{p^{n}}. Note that x=0x=0 if and only if θ2=1\theta^{2}=1, and x=1x=-1 if and only if θ2=1\theta^{2}=-1. For θ2±1\theta^{2}\neq\pm 1, we can check that ±θ,±θ1\pm\theta,\pm\theta^{-1} are pairwise distinct. We mention that for x0,1x\neq 0,-1, each xx corresponds to four distinct θ\theta’s (±θ,±θ1)(\pm\theta,\pm\theta^{-1}). Moreover, we have

Δ1(x)\displaystyle\Delta_{-1}\left(x\right) =αpk+1+βpk+1\displaystyle={\alpha^{{p^{k}}+1}}+{\beta^{{p^{k}}+1}}
=14(θ+θ1)pk+1+14(θθ1)pk+1\displaystyle=\frac{1}{4}{\left({\theta+{\theta^{-1}}}\right)^{{p^{k}}+1}}+\frac{1}{4}{\left({\theta-{\theta^{-1}}}\right)^{{p^{k}}+1}}
=12(θpk+1+θpk1).\displaystyle=\frac{1}{2}({\theta^{{p^{k}}+1}}+{\theta^{-{p^{k}}-1}}).

Although we can choose different θ\theta, Δ1(x)=12(θpk+1+θpk1)\Delta_{-1}\left(x\right)=\frac{1}{2}({\theta^{{p^{k}}+1}}+{\theta^{-{p^{k}}-1}}) always holds, no matter which θ\theta is chosen. To determine the (1)(-1)-differential spectrum of this function, we need to investigate the image of the Δ1(x)\Delta_{-1}(x). Let Im(Δ1)S\mathrm{Im}(\Delta_{-1})\mid_{S} denote the image set of the differential function Δ1(x)\Delta_{-1}(x) restricted on some set SS, i.e., Im(Δ1)S={Δ1(x):x=14(θθ1)2,θS}\mathrm{Im}(\Delta_{-1})\mid_{S}=\{\Delta_{-1}(x):x=\frac{1}{4}(\theta-\theta^{-1})^{2},\theta\in S\}. We define

S1={θ:θ2(pn+1)=1},S2={θ:θ2(pn1)=1}.{S_{1}}=\left\{{\theta:{{\theta^{2\left({{p^{n}}+1}\right)}}=1}}\right\},{S_{2}}=\left\{{\theta:{{\theta^{2\left({{p^{n}}-1}\right)}}=1}}\right\}.

Then we have

S1={γi:i=pn12j,0j2pn+1},S2={γi:i=pn+12j,0j2pn3},{S_{1}}=\left\{{{\gamma^{i}}:{i=\frac{{{p^{n}}-1}}{2}j,0\leq j\leq 2{p^{n}}+1}}\right\},{S_{2}}=\left\{{{\gamma^{i}}:{i=\frac{{{p^{n}}+1}}{2}j,0\leq j\leq 2{p^{n}}-3}}\right\},

where γ\gamma is a generator of 𝔽p2n{\mathbb{F}}_{{p^{2n}}}^{*}. Define

Ci={θpk+1:θSi},i=1,2.{C_{i}}=\left\{{{\theta^{{p^{k}}+1}}:{\theta\in{S_{i}}}}\right\},i=1,2.

Then, C1=γgcd((pn1)(pk+1)2,p2n1){C_{1}}=\left\langle{{\gamma^{\gcd(\frac{{({p^{n}}-1)({p^{k}}+1)}}{2},{p^{2n}}-1)}}}\right\rangle, C2=γgcd((pn+1)(pk+1)2,p2n1){C_{2}}=\left\langle{{\gamma^{\gcd(\frac{{({p^{n}}+1)({p^{k}}+1)}}{2},{p^{2n}}-1)}}}\right\rangle and C1C2={±1}C_{1}\cap C_{2}=\{\pm 1\}. Let ϕ\phi be a mapping defined on C1C2C_{1}\cup C_{2} with ϕ(u)=12(u+u1)\phi(u)=\frac{1}{2}(u+u^{-1}). It is easy to see that ϕ\phi is a 22-to-11 mapping on (C1C2){±1}(C_{1}\cup C_{2})\setminus\{\pm 1\}, and

Im(ϕ)C1{±1}Im(ϕ)C2{±1}=.\mathrm{Im}(\phi)\mid_{C_{1}\setminus\{\pm 1\}}\cap\mathrm{Im}(\phi)\mid_{C_{2}\setminus\{\pm 1\}}=\emptyset.

We consider the following two cases.

Case 1: nn is odd. In this case we have gcd((pn1)(pk+1)2,p2n1)=(pn1)(p+1)2\gcd(\frac{{({p^{n}}-1)({p^{k}}+1)}}{2},p^{2n}-1)=\frac{(p^{n}-1)(p+1)}{2} and gcd((pn+1)(pk+1)2,p2n1)=pn+1\gcd(\frac{{({p^{n}}+1)({p^{k}}+1)}}{2},p^{2n}-1)=p^{n}+1. Then C1=γ(pn1)(p+1)2{C_{1}}=\left\langle{\gamma^{\frac{(p^{n}-1)(p+1)}{2}}}\right\rangle, C2=γpn+1{C_{2}}=\left\langle{\gamma^{p^{n}+1}}\right\rangle. Then the function θpk+1\theta^{p^{k}+1} is (p+1)(p+1)-to-1 on S1S_{1} and 22-to-11 on S2S_{2}.

For any bIm(ϕ)C1{±1}b\in\mathrm{Im}(\phi)\mid_{C_{1}\setminus\{\pm 1\}}, there are two uu’s in C1{±1}C_{1}\setminus\{\pm 1\} such that ϕ(u)=b\phi(u)=b. Each uu corresponds (p+1)(p+1) θ\theta’s in S1S_{1}. Hence the (1)(-1)-differential equation Δ1(x)=b\Delta_{-1}(x)=b has p+12\frac{p+1}{2} solutions. The number of such bb is pn+1p+11\frac{p^{n}+1}{p+1}-1 since #{C1{±1}}=2(pn+1p+11)\#\{{C_{1}\setminus\{\pm 1\}}\}=2(\frac{p^{n}+1}{p+1}-1). For bIm(ϕ)C1{±1}b\in\mathrm{Im}(\phi)\mid_{C_{1}\setminus\{\pm 1\}}, we can discuss it similarly.

For b=1b=1 (respectively, b=1b=-1), there is a unique u=1u=1 (respectively, u=1u=-1) such that ϕ(u)=b\phi(u)=b. Each uu corresponds (p+1)(p+1) θ\theta’s in S1S_{1} and two θ\theta’s in S2S_{2}, i.e. θ{θp+1=1:θS1}{θ2=1:θS2}\theta\in\{\theta^{p+1}=1:\theta\in S_{1}\}\cup\{\theta^{2}=1:\theta\in S_{2}\} (respectively, θ{θp+1=1:θS1}{θ2=1:θS2}\theta\in\{\theta^{p+1}=-1:\theta\in S_{1}\}\cup\{\theta^{2}=-1:\theta\in S_{2}\}). Note that four of them satisfy θ2=1\theta^{2}=1 (respectively, θ2=1\theta^{2}=-1), the other (p1)(p-1) θ\theta’s do not satisfy θ2=±1\theta^{2}=\pm 1 since p1(mod4)p\equiv 1\left({\bmod~{}4}\right). Based on the corresponding relation of xx and θ\theta, we conclude that Δ1(x)=1\Delta_{-1}(x)=1 has p14+1\frac{p-1}{4}+1 solutions. Summarizing the discussions as above, we have the following table.

Table 3:
Set 𝕊\mathbb{S} #𝕊\#~{}\mathbb{S} #{x𝔽pn:Δ1(x)=b.},b𝕊\#\{{x\in{{\mathbb{F}}_{{p^{n}}}}:{{\Delta_{-1}}(x)=b}.}\},b\in\mathbb{S}
Im(ϕ)C1{±1}\mathrm{Im}(\phi)\mid_{C_{1}\setminus\{\pm 1\}} pnpp+1\frac{p^{n}-p}{p+1} p+12\frac{p+1}{2}
Im(ϕ)C2{±1}\mathrm{Im}(\phi)\mid_{C_{2}\setminus\{\pm 1\}} pn32\frac{p^{n}-3}{2} 11
{1}\{1\} 11 p+34\frac{p+3}{4}
{1}\{-1\} 11 p+34\frac{p+3}{4}
𝔽pn{\mathbb{F}}_{{p^{n}}}\setminus the above (pn+1)(p1)2(p+1)\frac{{({p^{n}}+1)(p-1)}}{2(p+1)} 0
\botrule

Case 2: nn is even. In this case we have gcd((pn1)(pk+1)2,p2n1)=pn1\gcd(\frac{(p^{n}-1)(p^{k}+1)}{2},p^{2n}-1)=p^{n}-1 and gcd((pn+1)(pk+1)2,p2n1)=(pn+1)(p+1)2\gcd(\frac{(p^{n}+1)(p^{k}+1)}{2},p^{2n}-1)=\frac{(p^{n}+1)(p+1)}{2}, then C1=γpn1{C_{1}}=\left\langle{\gamma^{p^{n}-1}}\right\rangle, C2=γ(pn+1)(p+1)2{C_{2}}=\left\langle{\gamma^{\frac{(p^{n}+1)(p+1)}{2}}}\right\rangle. Then the function θpk+1\theta^{p^{k}+1} is 22-to-11 on S1S_{1} and (p+1)(p+1)-to-11 on S2S_{2}. By a similar discussion, we obtain the following table. We finish the proof.

Table 4:
Set 𝕊\mathbb{S} #𝕊\#~{}\mathbb{S} #{x𝔽pn:Δ1(x)=b.},b𝕊\#\{{x\in{{\mathbb{F}}_{{p^{n}}}}:{{\Delta_{-1}}(x)=b}.}\},b\in\mathbb{S}
Im(ϕ)C1{±1}\mathrm{Im}(\phi)\mid_{C_{1}\setminus\{\pm 1\}} pn12\frac{p^{n}-1}{2} 11
Im(ϕ)C2{±1}\mathrm{Im}(\phi)\mid_{C_{2}\setminus\{\pm 1\}} pnp2p+1\frac{p^{n}-p-2}{p+1} p+12\frac{p+1}{2}
{1}\{1\} 11 p+34\frac{p+3}{4}
{1}\{-1\} 11 p+34\frac{p+3}{4}
𝔽pn{\mathbb{F}}_{{p^{n}}}\setminus the above (pn1)(p1)2(p+1)\frac{{({p^{n}}-1)(p-1)}}{2(p+1)} 0
\botrule
Theorem 12.

Let F(x)=xpk+12F(x)=x^{\frac{p^{k}+1}{2}} be a power function over 𝔽pn{\mathbb{F}}_{p^{n}}, where p>7p>7, p3(mod4)p\equiv 3\left({\bmod~{}4}\right), gcd(n,k)=1\gcd(n,k)=1, and 2ngcd(2n,k)\frac{2n}{\gcd(2n,k)} is even. If nn is odd, the (1)(-1)-differential spectrum of F(x)F(x) is

𝕊={ω01=pn(3p1)(p+5)4(p+1),1ω2=pn34,1ωp+14=1, ωp+541=1,1ωp+12=pnpp+1}.\begin{gathered}\mathbb{S}=\left\{{{}_{-1}{\omega_{0}}=\frac{{{p^{n}}(3p-1)-(p+5)}}{{4(p+1)}}{,_{-1}}{\omega_{2}}=\frac{{{p^{n}}-3}}{4}{,_{-1}}{\omega_{\frac{{p+1}}{4}}}=1,}\right.\hfill\\ ~{}~{}~{}~{}~{}~{}{\text{ }}\left.{{}_{-1}{\omega_{\frac{{p+5}}{4}}}=1{,_{-1}}{\omega_{\frac{{p+1}}{2}}}=\frac{{{p^{n}}-p}}{{p+1}}}\right\}.\hfill\\ \end{gathered}

If nn is even, the (1)(-1)-differential spectrum of F(x)F(x) is

S={ω01=(pn1)(3p1)4(p+1),1ω2=pn14,1ωp+14=1, ωp+541=1,1ωp+12=pnp2p+1 }.\begin{gathered}S=\left\{{{}_{-1}{\omega_{0}}=\frac{{({p^{n}}-1)(3p-1)}}{{4(p+1)}}{,_{-1}}{\omega_{2}}=\frac{{{p^{n}}-1}}{4}{,_{-1}}{\omega_{\frac{{p+1}}{4}}}=1,}\right.\hfill\\ ~{}~{}~{}~{}~{}~{}{\text{ }}\left.{{}_{-1}{\omega_{\frac{{p+5}}{4}}}=1{,_{-1}}{\omega_{\frac{{p+1}}{2}}}=\frac{{{p^{n}}-p-2}}{{p+1}}{\text{ }}}\right\}.\hfill\\ \end{gathered}

The proof is similar to that of Theorem 11 and we omit it.

5 A new class of APccN power permutations and their cc-differential spectra

Very recently, the usual differential properties of the power permutation F(x)=x5n32F(x)=x^{\frac{5^{n}-3}{2}} over 𝔽5n{\mathbb{F}}_{{5^{n}}} were studied in YHDLCM . In this section, we prove that F(x)F(x) is APccN when c=1c=-1. The (1)(-1)-differential spectrum of F(x)F(x) is also given. First, we investigate the (1)(-1)-differential uniformity of x5n32x^{\frac{5^{n}-3}{2}}. We introduce the following lemma. The proof is very similar to that of Lemma 33 in YHDLCM and we omit it.

Lemma 13.

Let b𝔽5n\{±1}b\in{{\mathbb{F}}_{{5^{n}}}}\backslash\left\{{\pm 1}\right\} be a nonzero nonsquare element. If both of the two quadratic equations x2+xb1=0x^{2}+x-b^{-1}=0 and y2+y+b1=0y^{2}+y+b^{-1}=0 have solutions in 𝔽5n{\mathbb{F}}_{{5^{n}}}, then the solution z𝔽5nz\in{\mathbb{F}}_{{5^{n}}} of the quadratic equation

z2+(12b1)zb1=0z^{2}+(1-2b^{-1})z-b^{-1}=0

satisfies χ(z(z+1))=1\chi(z(z+1))=-1.

Based on the above lemma, we have the following theorem.

Theorem 14.

Denote by ΔF1{}_{-1}\Delta_{F} the (1)(-1)-differential uniformity of F(x)=xdF(x)=x^{d} over 𝔽5n{\mathbb{F}}_{{5^{n}}}, where d=5n32d=\frac{5^{n}-3}{2}. We have ΔF1=2{}_{-1}\Delta_{F}=2.

Proof: For b𝔽5nb\in{\mathbb{F}}_{{5^{n}}}, we consider the (1)(-1)-differential equation

(x+1)d+xd=b(x+1)^{d}+x^{d}=b (20)

over 𝔽5n{\mathbb{F}}_{{5^{n}}}. It is obvious that when b=0b=0, (20) has a unique solution x=12x=-\frac{1}{2} since dd is odd and gcd(d,5n1)=1\gcd(d,5^{n}-1)=1. In the following, we may assume that b0b\neq 0. Recall that χ\chi denotes the quadratic multiplicative character of 𝔽5n{\mathbb{F}}_{{5^{n}}}. For all x𝔽pn#x\in{\mathbb{F}}_{{p^{n}}}^{\#}, (20) becomes

χ(x+1)(x+1)1+χ(x)x1=b.\chi(x+1)(x+1)^{-1}+\chi(x)x^{-1}=b. (21)

Depending on the values of χ(x)\chi(x) and χ(x+1)\chi(x+1), we have four quadratic equations. By solving these four equations, we obtain Table 5.

Table 5: Simplification of (21) in four cases
Case χ(x)\chi\left(x\right) χ(x+1)\chi\left(x+1\right) Equation x1,x2x_{1},x_{2} x1x2x_{1}x_{2}
I\rm I 1 1 x2+(12b1)xb1=0x^{2}+(1-2b^{-1})x-b^{-1}=0 (12b1)±1b22\frac{-(1-2b^{-1})\pm\sqrt{1-b^{-2}}}{2} b1-b^{-1}
II\rm II 1 -1 x2+xb1=0x^{2}+x-b^{-1}=0 1±1b12\frac{-1\pm\sqrt{1-b^{-1}}}{2} b1-b^{-1}
III\rm III -1 1 x2+x+b1=0x^{2}+x+b^{-1}=0 1±1+b12\frac{-1\pm\sqrt{1+b^{-1}}}{2} b1-b^{-1}
IV\rm IV 1-1 1-1 x2+(1+2b1)x+b1=0x^{2}+(1+2b^{-1})x+b^{-1}=0 (1+2b1)±1b22\frac{-(1+2b^{-1})\pm\sqrt{1-b^{-2}}}{2} b1b^{-1}
\botrule

Next we discuss the possible solutions of (21) for a given b±1b\neq\pm 1. Note that χ(1)=1\chi(-1)=1, if bb is a square element, then χ(b1)=χ(b1)=1\chi(-b^{-1})=\chi(b^{-1})=1. In both Cases II\rm II and III\rm III, if xx is a solution, then χ(x(x+1))=1\chi(x(x+1))=-1. So (21) has no solution in S1,1S_{1,-1} and S1,1S_{-1,1}. Now we consider Cases I\rm I and IV\rm IV. Let x1,2=(12b1)±1b22x_{1,2}=\frac{-(1-2b^{-1})\pm\sqrt{1-b^{-2}}}{2} and x3,4=(1+2b1)±1b22x_{3,4}=\frac{-(1+2b^{-1})\pm\sqrt{1-b^{-2}}}{2} be solutions of x2+(12b1)xb1=0x^{2}+(1-2b^{-1})x-b^{-1}=0 and x2+(1+2b1)x+b1=0x^{2}+(1+2b^{-1})x+b^{-1}=0, respectively. Then x3=(x2+1)x_{3}=-(x_{2}+1) and x4=(x1+1)x_{4}=-(x_{1}+1). We assert that the number of solutions of (21) in Cases I and IV is at most two since χ(x1+1)=χ(x2+1)=1\chi(x_{1}+1)=\chi(x_{2}+1)=1 but χ(x3)=χ(x4)=1\chi(x_{3})=\chi(x_{4})=-1. Then (21) has at most two solutions when bb is a square element.

If bb is a nonsquare element, then χ(b1)=χ(b1)=1\chi(-b^{-1})=\chi(b^{-1})=-1. We also consider the solutions of (21) in each case. In Case I\rm I, the product of two solutions of equation x2+(12b1)xb1=0x^{2}+(1-2b^{-1})x-b^{-1}=0 is b1-b^{-1}, which is a nonsquare element, this means (21) has at most one solution in S1,1S_{1,1}. Similarly, we can prove that (21) has at most one solution in S1,1S_{-1,-1}. Now we consider Case II\rm II. Let x5x_{5} and x51-x_{5}-1 be the two solutions of the quadratic equation x2+xb1=0x^{2}+x-b^{-1}=0. It is easy to check that x5S1,1x_{5}\in S_{1,-1} if and only if x51S1,1-x_{5}-1\in S_{1,-1}. This implies that (21) has at most one solution in S1,1S_{1,-1}. Similarly, we can prove that (21) has at most one solution in S1,1S_{-1,1}. If (21) has solutions in Cases I\rm I and III\rm III simultaneously, then the discriminates of quadratic euqations x2+(12b1)xb1=0x^{2}+(1-2b^{-1})x-b^{-1}=0 and x2+x+b1=0x^{2}+x+b^{-1}=0 are both square elements, i.e., χ(1b2)=χ(1+b1)=1\chi(1-b^{-2})=\chi(1+b^{-1})=1. Then χ(1b1)=1\chi(1-b^{-1})=1, which implies that the equation x2+x+b1=0x^{2}+x+b^{-1}=0 has two solutions in 𝔽5n{\mathbb{F}}_{{5^{n}}}. This contradicts Lemma 13, since the solution xx in Case I\rm I satisfies χ(x(x+1))=1\chi(x(x+1))=1. Then (21)(\ref{p=5simplification}) cannot have solutions in Cases I\rm I and III\rm III simultaneously. Similarly, we can prove that (21) has no solution in Cases IV\rm IV and III\rm III simultaneously. Since Case II\rm II has solutions if and only if Case III\rm III has solutions, we conclude that for b𝔽5n\{±1}b\in{{\mathbb{F}}_{{5^{n}}}}\backslash\left\{{\pm 1}\right\} (20) has solutions in at most two cases, i.e., δ1(b)2\delta_{-1}(b)\leq 2.

For b=1b=1, one can easy check that x=0x=0 is a solution of (20). Then we consider (21) in the four cases. It is obvious that Cases II\rm II and III\rm III has no solution. In Case I\rm I, (21) becomes x2x1=0x^{2}-x-1=0. This quadratic equation has a unqiue solution x=2x=-2. We know that χ(2)=1\chi(-2)=-1 for odd nn and χ(2)=1\chi(-2)=1 for even nn. Then Case I\rm I has one solution when nn is even and no solution when nn is odd. In Case IV\rm IV, (21) becomes x22x+1=0x^{2}-2x+1=0. This quadratic equation has a unique solution x=1x=1. Therefore (21) has no solution in S1,1S_{-1,-1} when b=1b=1. We conclude that δ1(1)=2\delta_{-1}(1)=2 for even nn and δ1(1)=1\delta_{-1}(1)=1 for odd nn. For b=1b=-1, we can similarly obtain that δ1(1)=2\delta_{-1}(-1)=2 for even nn and δ1(1)=1\delta_{-1}(-1)=1 for odd nn. The proof is finished.

Next we will determine the (1)(-1)-differential spectrum of F(x)=x5n32F(x)=x^{\frac{5^{n}-3}{2}}. It is sufficient to determine N41{}_{-1}N_{4}, which denotes the number of solutions in (𝔽5n)4({\mathbb{F}}_{{5^{n}}})^{4} of the equation system (4) when c=1c=-1. Moreover, we need the value of the character sum

Γ5,n=x𝔽5nχ(x(x1)(x+1)),{\Gamma_{5,n}}=\sum_{x\in{\mathbb{F}}_{5^{n}}}\chi{(x(x-1)(x+1))},

where χ\chi is the quadratic multiplicative character over 𝔽5n{\mathbb{F}}_{{5^{n}}}. It was proved in YHDLCM that

Γ5,n=(1)n+1k=0n2(1)k(n2k)22k+1,{\Gamma_{5,n}}={\left({-1}\right)^{n+1}}\sum\limits_{k=0}^{\left\lfloor{\frac{n}{2}}\right\rfloor}{{{\left({-1}\right)}^{k}}\binom{n}{2k}{2^{2k+1}}}, (22)

which is always an integer. We have the following lemma on the value of N41{}_{-1}N_{4}, which is the number of the solutions (x1,x2,x3,x4)(𝔽5n)4(x_{1},x_{2},x_{3},x_{4})\in({\mathbb{F}}_{{5^{n}}})^{4} of the equation system

{x1x2+x3x4=0x1d+x2dx3dx4d=0.\Bigg{\{}\begin{array}[]{l}{x_{1}}-{x_{2}}+{x_{3}}-{x_{4}}=0\\ x_{1}^{d}+x_{2}^{d}-x_{3}^{d}-x_{4}^{d}=0\end{array}. (23)
Lemma 15.

We have

N41={1+4(5n1)+(5n1)(14Γ5,n+75n174),ifniseven,1+2(5n1)+(5n1)(14Γ5,n+75n174),ifnisodd,{{}_{-1}N_{4}}=\left\{\begin{array}[]{l}1+4\left({{5^{n}}-1}\right)+({5^{n}}-1)\left({-\frac{1}{4}{\Gamma_{5,n}}+\frac{{7\cdot{5^{n}}-17}}{4}}\right),~{}\mathrm{if}~{}n~{}\mathrm{is}~{}\mathrm{even},\\ 1+2\left({{5^{n}}-1}\right)+({5^{n}}-1)\left({-\frac{1}{4}{\Gamma_{5,n}}+\frac{{7\cdot{5^{n}}-17}}{4}}\right),~{}\mathrm{if}~{}n~{}\mathrm{is}~{}\mathrm{odd},\end{array}\right.

where Γ5,n\Gamma_{5,n} was given in (22).

Proof: Since dd is odd, the number of solutions (x1,x2,x3,x4)(𝔽5n)4(x_{1},x_{2},x_{3},x_{4})\in({\mathbb{F}}_{{5^{n}}})^{4} of the equation system

{x1+x2+x3+x4=0x1dx2dx3d+x4d=0\left\{\begin{array}[]{l}{x_{1}}+{x_{2}}+{x_{3}}+{x_{4}}=0\\ {x^{d}_{1}}-{x^{d}_{2}}-{x^{d}_{3}}+{x^{d}_{4}}=0\end{array}\right. (24)

is also N41{}_{-1}N_{4}. For a solution (x1,x2,x3,x4)(x_{1},x_{2},x_{3},x_{4}) of (24), first we consider that there exists xi=0x_{i}=0 for some 0i40\leq i\leq 4. It is easy to see that (0,0,0,0)(0,0,0,0) is a solution of (24), and (24) has no solution containing only three zeros. If there are only two zeros in (x1,x2,x3,x4)(x_{1},x_{2},x_{3},x_{4}), one can get that (x,0,0,x)(x,0,0,-x) and (0,x,x,0)(0,x,-x,0) are solutions of (24), where x𝔽5nx\in{\mathbb{F}}_{{5^{n}}}^{*}. That is, (24) has 2(5n1)2(5^{n}-1) solutions containing only two zeros. We consider that there is only one zero in (x1,x2,x3,x4)(x_{1},x_{2},x_{3},x_{4}). If x4=0x_{4}=0, then x1,x2x_{1},x_{2} and x3x_{3} are nonzero and they satisfy

{x1+x2+x3=0x1dx2dx3d=0.\left\{\begin{array}[]{l}{x_{1}}+{x_{2}}+{x_{3}}=0\\ x^{d}_{1}-x^{d}_{2}-x^{d}_{3}=0.\end{array}\right.

Let yi=xix3y_{i}=\frac{x_{i}}{x_{3}} for i=1,2i=1,2, we have y1+y2+1=0y_{1}+y_{2}+1=0 and y1dy2d1=0{y^{d}_{1}}-{y^{d}_{2}}-1=0 with y1,y20y_{1},y_{2}\neq 0. Then y2=y11y_{2}=-y_{1}-1 and (y1+1)d+y1d=1(y_{1}+1)^{d}+y^{d}_{1}=1. By the proof of Theorem 14, we know that equation (y1+1)d+y1d=1(y_{1}+1)^{d}+y^{d}_{1}=1 has δ1(1)1\delta_{-1}(1)-1 nonzero solutions in 𝔽5n{\mathbb{F}}_{{5^{n}}}. Similarly, we can determine the number of solutions of (24) with only xi=0x_{i}=0, i=1,2i=1,2 and 33. Then (24) has 4(5n1)(δ1(1)1)4(5^{n}-1)(\delta_{-1}(1)-1) solutions containing only one zero. We conclude that (24) has 1+(5n1)(4δ1(1)2)1+(5^{n}-1)(4\delta_{-1}(1)-2) solutions containing zeros.

Next we consider xi0x_{i}\neq 0 for 1i41\leq i\leq 4. Let yi=xix4y_{i}=\frac{x_{i}}{x_{4}} for i=1,2,3i=1,2,3. Then yi0y_{i}\neq 0 and satisfy

{y1+y2+y3+1=0y1dy2dy3d+1=0.\left\{\begin{array}[]{l}{y_{1}}+{y_{2}}+{y_{3}}+1=0\\ {y^{d}_{1}}-{y^{d}_{2}}-{y^{d}_{3}}+1=0.\end{array}\right. (25)

We denote by n41{}_{-1}n_{4} the number of solutions of (25). It can be seen that

N41=1+(5n1)(4δ1(1)2)+(5n1)n41.{}_{-1}N_{4}=1+(5^{n}-1)(4\delta_{-1}(1)-2)+(5^{n}-1){}_{-1}n_{4}. (26)

Recall that yid=χ(yi)yi1{y^{d}_{i}}=\chi(y_{i})y^{-1}_{i}, we discuss (25) in the following cases.

Case 1. y1,y2y_{1},y_{2} and y3y_{3} are all square elements. Then (25) becomes

{y1+y2+y3+1=0y11y21y31+1=0.\left\{\begin{array}[]{l}{y_{1}}+{y_{2}}+{y_{3}}+1=0\\ {y^{-1}_{1}}-{y^{-1}_{2}}-{y^{-1}_{3}}+1=0.\end{array}\right. (27)

We denote by n(1,1,1)n_{(1,1,1)} the number of solution of (27). Next, we determine n(1,1,1)n_{(1,1,1)}. If y1=1y_{1}=-1, then y2=y3y_{2}=-y_{3}, (1,y2,y2)(-1,y_{2},-y_{2}) is a solution of (27) when y2y_{2} is a square element. If y11y_{1}\neq-1, then y2y3=(y2+y3)(y21+y31)1=(y1+1)(y11+1)1=y1y_{2}y_{3}=(y_{2}+y_{3})({{y^{-1}_{2}}+{y^{-1}_{3}}})^{-1}=-(y_{1}+1)({{y^{-1}_{1}}+1})^{-1}=-y_{1}. Combining with the first equation of (27), we obtain y3=y2+1y21y_{3}=\frac{y_{2}+1}{y_{2}-1} since y21y_{2}\neq 1. Consequently, y1=y2(y2+1)y21y_{1}=-\frac{y_{2}(y_{2}+1)}{y_{2}-1}. If (y1,y2,y3)(y_{1},y_{2},y_{3}) is a desired solution, then χ(y2+1y21)=χ(y221)=1\chi(\frac{y_{2}+1}{y_{2}-1})=\chi({y^{2}_{2}}-1)=1 and χ(y2)=1\chi(y_{2})=1. The number of such y2y_{2} is

14y20,±1(χ(y2)+1)(χ(y221)+1)=14(5n6+y2𝔽5nχ(y23y2)+y2𝔽5nχ(y2)+y2𝔽5nχ(y221))=14(Γ5,n+5n7).\begin{array}[]{l}\frac{1}{4}\sum\limits_{{y_{2}}\neq 0,\pm 1}{({\chi({{y_{2}}})+1})({\chi({{y^{2}_{2}}-1})+1})}\\ =\frac{1}{4}({5^{n}}-6+{\sum\limits_{{y_{2}}\in{{\mathbb{F}}_{{5^{n}}}}}{\chi({y^{3}_{2}-{y_{2}}})}+\sum\limits_{{y_{2}}\in{{\mathbb{F}}_{{5^{n}}}}}{\chi({{y_{2}}})}+\sum\limits_{{y_{2}}\in{{\mathbb{F}}_{{5^{n}}}}}{\chi({y_{2}^{2}-1})}})\\ =\frac{1}{4}({{\Gamma_{5,n}}+{5^{n}}-7}).\end{array}

Note that there may exist y2y_{2} with χ(y2)=χ(y221)=1\chi(y_{2})=\chi({y^{2}_{2}}-1)=1, such that y1=y2(y2+1)y21=1y_{1}=-\frac{y_{2}(y_{2}+1)}{y_{2}-1}=-1, i.e., y2=±2y_{2}=\pm 2. Two solutions (1,2,2)(-1,2,-2) and (1,2,2)(-1,-2,2) should be subtracted, this only occurs when nn is even. We obtain

n(1,1,1)={35n94+14Γ5,n,ifnisodd.35n174+14Γ5,n,ifniseven.{n_{(1,1,1)}}=\left\{\begin{array}[]{l}\frac{{3\cdot{5^{n}}-9}}{4}+\frac{1}{4}{\Gamma_{5,n}},~{}~{}\mathrm{if}~{}n~{}\mathrm{is}~{}\mathrm{odd}.\\ \frac{{3\cdot{5^{n}}-17}}{4}+\frac{1}{4}{\Gamma_{5,n}},~{}\mathrm{if}~{}n~{}\mathrm{is}~{}\mathrm{even}.\end{array}\right.

Case 2. Two of y1,y2y_{1},y_{2} and y3y_{3} are square element, the other one is a nonsquare element. We first assume that χ(y1)=χ(y2)=1\chi(y_{1})=\chi(y_{2})=1 and χ(y3)=1\chi(y_{3})=-1. Then (25) becomes

{y1+y2+y3+1=0y11y21+y31+1=0.\left\{\begin{array}[]{l}{y_{1}}+{y_{2}}+{y_{3}}+1=0\\ {y^{-1}_{1}}-{y^{-1}_{2}}+{y^{-1}_{3}}+1=0.\end{array}\right. (28)

We denote by n(1,1,1)n_{(1,1,-1)} the number of solution of (28). Next, we determine n(1,1,1)n_{(1,1,-1)}. Note that (28) has no solution when y2=±1y_{2}=\pm 1. If y2±1y_{2}\neq\pm 1, we can obtain y1+y30y_{1}+y_{3}\neq 0, moreover, y1y3=(y1+y3)(y11+y31)1=(1+y2)y2y21=y2(y21)y21y_{1}y_{3}=(y_{1}+y_{3})({{y^{-1}_{1}}+{y^{-1}_{3}}})^{-1}=\left({1+{y_{2}}}\right)\frac{{{y_{2}}}}{{{y_{2}}-1}}=\frac{y_{2}(y_{2}-1)}{y_{2}-1}. It is mentioned that χ(y2+1y21)=1\chi(\frac{y_{2}+1}{y_{2}-1})=-1 since χ(y1)=χ(y2)=1\chi(y_{1})=\chi(y_{2})=1 and χ(y3)=1\chi(y_{3})=-1. Moreover, y1y_{1} satisfies the following quadratic equation

y12+(y2+1)y1+y2(y2+1)y21=0.{y^{2}_{1}}+(y_{2}+1)y_{1}+\frac{y_{2}(y_{2}+1)}{y_{2}-1}=0. (29)

The discriminate of (29) is Δ=(y2+1)2+y2(y2+1)y21=(y2+1)(y22)2y21\Delta=(y_{2}+1)^{2}+\frac{y_{2}(y_{2}+1)}{y_{2}-1}=\frac{(y_{2}+1)(y_{2}-2)^{2}}{y_{2}-1}. If (29) has solutions in 𝔽5n{\mathbb{F}}_{{5^{n}}}, then y2y_{2} must be 22 since χ(y2+1y21)=1\chi(\frac{y_{2}+1}{y_{2}-1})=-1. Consequently, y1=y3=1y_{1}=y_{3}=1. Note that χ(y3)=1\chi(y_{3})=-1, we conclude that n(1,1,1)=0n_{(1,1,-1)}=0. Next we assume that χ(y1)=χ(y3)=1\chi(y_{1})=\chi(y_{3})=1 and χ(y2)=1\chi(y_{2})=-1. Then (25) becomes

{y1+y2+y3+1=0y11+y21y31+1=0.\left\{\begin{array}[]{l}{y_{1}}+{y_{2}}+{y_{3}}+1=0\\ {y^{-1}_{1}}+{y^{-1}_{2}}-{y^{-1}_{3}}+1=0.\end{array}\right. (30)

We denote by n(1,1,1)n_{(1,-1,1)} the number of solution of (30). Similarly, we can get that n(1,1,1)=0n_{(1,-1,1)}=0. Next, we assume that χ(y2)=χ(y3)=1\chi(y_{2})=\chi(y_{3})=1 and χ(y1)=1\chi(y_{1})=-1. Then (25) becomes

{y1+y2+y3+1=0y11y21y31+1=0.\left\{\begin{array}[]{l}{y_{1}}+{y_{2}}+{y_{3}}+1=0\\ -{y^{-1}_{1}}-{y^{-1}_{2}}-{y^{-1}_{3}}+1=0.\end{array}\right. (31)

We denote by n(1,1,1)n_{(-1,1,1)} the number of solution of (31). Let z1=y2y3z_{1}=\frac{y_{2}}{y_{3}}, z2=y1y3z_{2}=\frac{y_{1}}{y_{3}} and z3=1y3z_{3}=\frac{1}{y_{3}}. Then χ(z1)=χ(z3)=1\chi(z_{1})=\chi(z_{3})=1 and χ(z2)=1\chi(z_{2})=-1. From (31) we obtain

{z1+z2+z3+1=0z11+z21z31+1=0.\left\{\begin{array}[]{l}{z_{1}}+{z_{2}}+{z_{3}}+1=0\\ {z^{-1}_{1}}+{z^{-1}_{2}}-{z^{-1}_{3}}+1=0.\end{array}\right. (32)

The number of solutions of (32) is n(1,1,1)n_{(1,-1,1)}, i.e., n(1,1,1)=n(1,1,1)=0n_{(-1,1,1)}=n_{(1,-1,1)}=0.

Case 3. Two of y1,y2y_{1},y_{2} and y3y_{3} are nonsquare element, the other one is a square element. We first assume that χ(y1)=1\chi(y_{1})=1 and χ(y2)=χ(y3)=1\chi(y_{2})=\chi(y_{3})=-1. Then (25) becomes

{y1+y2+y3+1=0y11+y21+y31+1=0.\left\{\begin{array}[]{l}{y_{1}}+{y_{2}}+{y_{3}}+1=0\\ {y^{-1}_{1}}+{y^{-1}_{2}}+{y^{-1}_{3}}+1=0.\end{array}\right. (33)

We denote by n(1,1,1)n_{(1,-1,-1)} the number of solution of (33). Next, we determine n(1,1,1)n_{(1,-1,-1)}. Note that y31y_{3}\neq-1, since χ(y3)=1\chi(y_{3})=-1. Then y1+y20y_{1}+y_{2}\neq 0, moreover, y1y2=(y1+y2)(y11+y21)1=(y31)(y311)1=y3y_{1}y_{2}=(y_{1}+y_{2})({y^{-1}_{1}}+{y^{-1}_{2}})^{-1}=(-y_{3}-1)({-y^{-1}_{3}}-1)^{-1}=y_{3}. Then we obtain (y1+1)(y2+1)=0(y_{1}+1)(y_{2}+1)=0 from the first equation of (33). If (33) has solutions in 𝔽5n{\mathbb{F}}_{{5^{n}}}, then y1y_{1} must be 1-1 since χ(y2)=1\chi(y_{2})=-1. Equation system (33) has solutions with types (1,y2,y2)(-1,y_{2},-y_{2}), where χ(y2)=1\chi(y_{2})=-1. Then we have n(1,1,1)=5n12n_{(1,-1,-1)}=\frac{5^{n}-1}{2}.

Then we assume that χ(y2)=1\chi(y_{2})=1 and χ(y1)=χ(y3)=1\chi(y_{1})=\chi(y_{3})=-1. Then (25) becomes

{y1+y2+y3+1=0y11y21+y31+1=0.\left\{\begin{array}[]{l}{y_{1}}+{y_{2}}+{y_{3}}+1=0\\ -{y^{-1}_{1}}-{y^{-1}_{2}}+{y^{-1}_{3}}+1=0.\end{array}\right. (34)

We denote by n(1,1,1)n_{(-1,1,-1)} the number of solution of (34). Next, we determine n(1,1,1)n_{(-1,1,-1)}. It is similar to Case 11. We obtain y1y2=y3y_{1}y_{2}=-y_{3} and y2=y1+1y11y_{2}=\frac{y_{1}+1}{y_{1}-1} since y1±1y_{1}\neq\pm 1. Consequently, y3=y1(y1+1)y11y_{3}=-\frac{y_{1}(y_{1}+1)}{y_{1}-1}. If (y1,y2,y3)(y_{1},y_{2},y_{3}) is a desired solution, then χ(y1+1y11)=χ(y121)=1\chi(\frac{y_{1}+1}{y_{1}-1})=\chi({y^{2}_{1}}-1)=1 and χ(y1)=1\chi(y_{1})=-1. The number of such y1y_{1} is

14y10,±1(χ(y1)1)(χ(y121)+1)=14(y1𝔽5nχ(y13y1)+y1𝔽5nχ(y1)y1𝔽5nχ(y121)5n+2)=14(Γ5,n5n+3).\begin{array}[]{l}-\frac{1}{4}\sum\limits_{{y_{1}}\neq 0,\pm 1}{({\chi({{y_{1}}})-1})({\chi({{y^{2}_{1}}-1})+1})}\\ =-\frac{1}{4}({\sum\limits_{{y_{1}}\in{{\mathbb{F}}_{{5^{n}}}}}{\chi({y_{1}^{3}-{y_{1}}})}+\sum\limits_{{y_{1}}\in{{\mathbb{F}}_{{5^{n}}}}}{\chi({{y_{1}}})}-\sum\limits_{{y_{1}}\in{{\mathbb{F}}_{{5^{n}}}}}{\chi({y_{1}^{2}-1})-{5^{n}}+2}})\\ =-\frac{1}{4}({{\Gamma_{5,n}}-{5^{n}}+3}).\end{array}

We obtain n(1,1,1)=14Γ5,n+5n34n_{(-1,1,-1)}=-\frac{1}{4}{\Gamma_{5,n}}+\frac{{{5^{n}}-3}}{4}. Then we assume that χ(y3)=1\chi(y_{3})=1 and χ(y1)=χ(y2)=1\chi(y_{1})=\chi(y_{2})=-1. Then (25) becomes

{y1+y2+y3+1=0y11y21+y311=0.\left\{\begin{array}[]{l}{y_{1}}+{y_{2}}+{y_{3}}+1=0\\ {y^{-1}_{1}}-{y^{-1}_{2}}+{y^{-1}_{3}}-1=0.\end{array}\right. (35)

We denote by n(1,1,1)n_{(-1,-1,1)} the number of solution of (35). Similarly, we can get that n(1,1,1)=14Γ5,n+5n34n_{(-1,-1,1)}=-\frac{1}{4}{\Gamma_{5,n}}+\frac{{{5^{n}}-3}}{4}.

Case 4. y1,y2y_{1},y_{2} and y3y_{3} are all nonsquare elements, i.e., χ(y1)=χ(y2)=χ(y3)=1\chi(y_{1})=\chi(y_{2})=\chi(y_{3})=-1. Then (25) becomes

{y1+y2+y3+1=0y11+y21+y31+1=0.\left\{\begin{array}[]{l}{y_{1}}+{y_{2}}+{y_{3}}+1=0\\ -{y^{-1}_{1}}+{y^{-1}_{2}}+{y^{-1}_{3}}+1=0.\end{array}\right. (36)

We denote by n(1,1,1)n_{(-1,-1,-1)} the number of solution of (36). Next, we determine n(1,1,1)n_{(-1,-1,-1)}. Note that y11y_{1}\neq-1, since χ(y1)=1\chi(y_{1})=-1. It is similar to Case 22. Since χ(y1)=χ(y2)=χ(y3)=1\chi(y_{1})=\chi(y_{2})=\chi(y_{3})=-1, we can get that (36) has no solution in 𝔽5n{\mathbb{F}}_{{5^{n}}}.

By discussions as above, n41=i,j,k{±1}n(i,j,k){{}_{-1}n_{4}}=\sum\limits_{{i,j,k}\in\{\pm 1\}}{{n_{\left({i,j,k}\right)}}} and then N41{}_{-1}N_{{}_{4}} follows by (26) and the value of δ1(1)\delta_{-1}(1).

Then we can determine the (1)(-1)-differential spectrum of F(x)=x5n32F(x)=x^{\frac{5^{n}-3}{2}}.

Theorem 16.

The power function F(x)=x5n32F(x)=x^{\frac{5^{n}-3}{2}} over 𝔽5n{\mathbb{F}}_{{5^{n}}} when c=1c=-1 is APccN with (1)(-1)-differential spectrum

𝕊={ω01=18Γ5,n+35n58,1ω1=14Γ5,n+5n+54, ω21=18Γ5,n+35n58 }.\begin{gathered}\mathbb{S}=\left\{{{}_{-1}{\omega_{0}}=-\frac{1}{8}{\Gamma_{5,n}}+\frac{{3\cdot{5^{n}}-5}}{8}{,_{-1}}{\omega_{1}}=\frac{1}{4}{\Gamma_{5,n}}+\frac{{{5^{n}}+5}}{4},}\right.\hfill\\ ~{}~{}~{}~{}~{}~{}{\text{ }}\left.{{}_{-1}{\omega_{2}}=-\frac{1}{8}{\Gamma_{5,n}}+\frac{{3\cdot{5^{n}}-5}}{8}{\text{ }}}\right\}.\hfill\\ \end{gathered}

when nn is even, and with (1)(-1)-differential spectrum

𝕊={ω01=18Γ5,n+35n138,1ω1=14Γ5,n+5n+134, ω21=18Γ5,n+35n138 }.\begin{gathered}\mathbb{S}=\left\{{{}_{-1}{\omega_{0}}=-\frac{1}{8}{\Gamma_{5,n}}+\frac{{3\cdot{5^{n}}-13}}{8}{,_{-1}}{\omega_{1}}=\frac{1}{4}{\Gamma_{5,n}}+\frac{{{5^{n}}+13}}{4}}\right.,\hfill\\ ~{}~{}~{}~{}~{}~{}{\text{ }}\left.{{}_{-1}{\omega_{2}}=-\frac{1}{8}{\Gamma_{5,n}}+\frac{{3\cdot{5^{n}}-13}}{8}{\text{ }}}\right\}.\hfill\\ \end{gathered}

when nn is odd, where Γ5,n\Gamma_{5,n} is determined in (22).

Proof: By (3) and Lemma 15, we obtian that the elements in the (1)(-1)-differential spectrum satisfy

i=0ΔFci2ωi1={14Γ5,n+75n54,ifniseven.14Γ5,n+75n134,ifnisodd.\sum\limits_{i=0}^{{}_{c}{\Delta_{F}}}{{i^{2}}\cdot{{}_{-1}\omega_{i}}}=\left\{\begin{array}[]{l}-\frac{1}{4}{\Gamma_{5,n}}+\frac{{7\cdot{5^{n}}-5}}{4},~{}~{}\mathrm{if}~{}n~{}\mathrm{is}~{}\mathrm{even}.\\ -\frac{1}{4}{\Gamma_{5,n}}+\frac{{7\cdot{5^{n}}-13}}{4},~{}\mathrm{if}~{}n~{}\mathrm{is}~{}\mathrm{odd}.\end{array}\right.

Then by solving the equation (2) in Lemma 4. The proof is finished.

6 concluding remarks

In this paper, we mainly studied the cc-differential spectra of power functions over finite fields. Some basic properties of the cc-differential spectrum of a power function were given. The cc-differential spectra of some classes of power functions were determined. Moreover, we proposed a class of APccN function over 𝔽5n{\mathbb{F}}_{{5^{n}}} with c=1c=-1. Our future work is to find more power functions with low cc-differential uniformity and to determine their cc-differential spectra. It is worth finding applications of these functions in sequences, coding theory and combinatorial designs.

References

  • (1) C. Bracken, G. Leander, A highly nonlinear differentially 44 uniform power mapping that permutes fields of even degree, Finite Fields Appl., 16(4) (2010) 231-242.
  • (2) C. Blondeau, A. Canteaut, P. Charpin, Differential properties of power functions, Int. J. Inf. Coding Theory, 1(2) (2010) 149-170.
  • (3) C. Blondeau, A. Canteaut, P. Charpin, Differential properties of xx2t1x\mapsto x^{2^{t}-1}, IEEE Trans. Inf. Theory, 57(12) (2011) 8127-8137.
  • (4) C. Blondeau, L. Perrin, More differentially 66-uniform power functions, Des. Codes Cryptogr., 73(2) (2014) 487-505.
  • (5) D. Bartoli, M. Calderini, On construction and (non) existence of cc-(almost) perfect nonlinear functions, Finite Fields Appl., 72 (2021) 101835.
  • (6) D. Bartoli, M. Timpanella, On a generalization of planar functions, Journal of Algebraic Combinatorics, 52 (2020) 187-213.
  • (7) E. Biham, A. Shamir, Differential cryptanalysis of DES-like cryptosystems, J. Cryptol., 4(1) (1991) 3-72.
  • (8) E. Biham, A. Shamir, Differential cryptanalysis of the data encryption standard, Springer, (1993).
  • (9) N. Borisov, M. Chew, R. Johnson, D. Wagner, Multiplicative differentials, International Workshop on Fast Software Encryption, 2365 (2002) 17-33.
  • (10) R.S. Coulter, R. Matthews, Planar functions and planes of Lenz-Barlotti class II, Des. Codes Cryptogr., 10(2) (1997) 167-184.
  • (11) S.-T. Choi, S. Hong, J.-S. No, H. Chung, Differential spectrum of some power functions in odd prime characteristic, Finite Fields Appl., 21 (2013) 11-29.
  • (12) P. Charpin, G. M. Kyureghyan, V. Suder, Sparse permutations with low differential uniformity, Finite Fields Appl., 28 (2014) 214-243.
  • (13) H. Dobbertin, Almost perfect nonlinear power functions on GF(2n)GF(2^{n}): The Welch case, IEEE Trans. Inf. Theory, 45(4) (1999) 1271-1275.
  • (14) H. Dobbertin, Almost perfect nonlinear power functions on GF(2n)GF(2^{n}): The Niho case, IEEE Trans. Inf. Theory, 151(1-2) (1999) 57-72.
  • (15) H. Dobbertin, T. Helleseth, P. V. Kumar, H. Martinsen, Ternary mm-sequences with three-valued cross-correlation function: New decimations of Welch and Niho type, IEEE Trans. Inf. Theory, 47(4) (2001) 1473-1481.
  • (16) P. Dembowski, T. G. Ostrom, Planes of order nn with collineation groups of order n2n^{2}, Math. Z, 103(3) (1968) 239-258.
  • (17) P. Ellingsen, P. Felke, C. Riera, P. Stănică, A. Tkachenko, C-differentials, multiplicative uniformity, and (almost) perfect c-nonlinearity, IEEE Trans. Inf. Theory, 66(9) (2020) 5781-5789.
  • (18) S.U. Hasan, M. Pal, C. Riera, P. Stănică, On the cc-differential uniformity of certain maps over finite fields, Des. Codes Cryptogr., 89(2) (2021) 221-239.
  • (19) T. Helleseth, C. Rong, D, Sandberg, New families of almost perfect nonlinear power mappings, IEEE Trans. Inf. Theory, 45(2) (1999) 475-485.
  • (20) T. Helleseth, D. Sandberg, Some power mappings with low differential uniformity, Applicable Algebra in Eng. Commun. Comput., 8 (1997) 363–370.
  • (21) N. Li, Y. N. Wu, X. Y. Zeng, X. H. Tang, On the differential spectrum of a class of power functions over finite fields, arXiv:2012.04316.
  • (22) L. Lei, W. Ren, C. L. Fan, The differential spectrum of a class of power functions over finite fields, Adv. Math. Commun., doi: 10.3934/amc.2020080.
  • (23) R. Lidl, H. Niederreite, Finite Fields, Encyclopedia of Mathematics and Its Applications. vol. 20. Cambridge university press, Cambridge, (1997).
  • (24) S. Mesnager, C. Riera, P. Stănică, H. D. Yan, Z. C. Zhou, Investigations on cc-(almost) perfect nonlinear functions, IEEE Trans. Inf. Theory, 67(10) (2021) 6916-6925.
  • (25) K. Nyberg, Differentially uniform mappings for cryptography, In: T. Helleseth (ed.) Advances in cryptology—EUROCRYPT’93. Norway. 1993. LNCS, vol. 765, pp. 55-64. Springer, Berlin, (1994).
  • (26) Z. R. Tu, X. Y. Zeng, Y. P. Jiang, X. H. Tang, A class of APccN power functions over finite fields of even characteristic, arXiv:2107.06464.
  • (27) X. Q. Wang, D. B. Zheng, Several classes of PccN power functions over finite fields, arXiv:2104.12942.
  • (28) Y. N. Wu, N. Li, X. Y. Zeng, New PccN and APccN functions over finite fields, arXiv:2010.05396.
  • (29) M. S. Xiong, H. D. Yan, P. Z. Yuan, On a conjecture of differentially 88-uniform power functions, Des. Codes Cryptogr., 86(8) (2018) 1601-1621.
  • (30) M. S. Xiong, H. D. Yan, A note on the differential spectrum of a differentially 44-uniform power function, Finite Fields Appl., 48 (2017) 117-125.
  • (31) Y. X. Xia, X. L. Zhang, C. L. Li, T. Helleseth, The differential spectrum of a ternary power mapping, Finite Fields Appl., 64 (2020) 101660.
  • (32) H. D. Yan, On 1-1-differential uniformity of ternary APN power functions, arXiv:2101.10543.
  • (33) H. D. Yan, C. J. Li, Differential spectra of a class of power permutations with characteristic 55, Des. Codes Cryptogr., 89 (2021) 1181-1191.
  • (34) H. D. Yan, Y. B. Xia, C. L. Li, T. Helleseth, J. Q. Luo, The Differential Spectrum of the Power Mapping xpn3x^{p^{n}-3}, arXiv:2108.03088.
  • (35) H. D. Yan, Z. C. Zhou, J. Wen, J. M. Weng, T. Helleseth, Q. Wang, Differential spectrum of Kasami power permutations over odd characteristic finite fields, IEEE Trans. Inf. Theory, 65(10) (2019) 6819-6826.
  • (36) Z. B. Zha, L. Hu, Some classes of power functions with low cc-differential uniformity over finite fields, Des. Codes Cryptogr., 89(1) (2021) 1193-1210.
  • (37) Z. B. Zha, G. M. Kyureghyan, X. Q. Wang, Perfect nonlinear binomials and their semifields, Finite Fields Appl., 15(2) (2009) 125-133.
  • (38) Z. B. Zha, X. Q. Wang, New families of perfect nonlinear polynomial functions, J. Algebra, 332 (2009) 3912-3918.