This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

On the assembly of C1C^{1}-stationary points of a polyconvex functional and finite BOP-theory

M. Dengler Fliederweg 1, 72189 Vöhringen, Germany. [email protected]
Abstract.

In this work the following energy is considered

I(u)=B12|u|2+ρ(detu)dx,I(u)=\int\limits_{B}{\frac{1}{2}|\nabla u|^{2}+\rho(\det\nabla u)\;dx},

where B2B\subset\mathbb{R}^{2} denotes the unit ball, uW1,2(B,2)u\in W^{1,2}(B,\mathbb{R}^{2}) and ρ:0+\rho:\mathbb{R}\rightarrow\mathbb{R}_{0}^{+} smooth and convex with ρ(s)=0\rho(s)=0 for all s0s\leq 0 and ρ\rho becomes affine when ss exceeds some value s0>0.s_{0}>0. Additionally, we may impose (M{0})(M\in\mathbb{N}\setminus\{0\})-covering maps as boundary conditions in a suitable fashion.
For such situations we then construct radially symmetric MM-covering stationary points of the energy, which are at least C1C^{1} (in some circumstances even C),C^{\infty}), and verify more refined properties, which these stationary points need to satisfy. We do so by following the strategy first and foremost developed by P. Bauman, N. C. Owen, and D. Phillips (BOP) confirming and generalising that the method remains valid beyond the M=2M=2-case for an arbitrary M.M. Furthermore, as far as we know, this is the first treatise of BOP-theory in finite elasticity. The finiteness, not imposing such strict conditions, allows for a richer class of possible behaviours of the stationary points, making it more difficult to completely determine them.

Key words and phrases:
Calculus of Variations, elasticity, polyconvexity, regularity, BOP-theory, ODE
2020 Mathematics Subject Classification:
49N60, 73C50, 34A34, 34B15

1. Introduction

Let B2B\subset\mathbb{R}^{2} be the unit ball and define the functional I:W1,2(B,2)I:W^{1,2}(B,\mathbb{R}^{2})\rightarrow\mathbb{R} by

(1) I(u):=B12|u|2+ρ(detu)dxI(u):=\int\limits_{B}{\frac{1}{2}|\nabla u|^{2}+\rho(\det\nabla u)\;dx}

for all uW1,2(B,2).u\in W^{1,2}(B,\mathbb{R}^{2}). The function ρC()\rho\in C^{\infty}(\mathbb{R}) is defined by

(2) ρ(s)={0ifs0,ρ1(s)if0ss0,γs+κifs0s,\rho(s)=\left\{\begin{array}[]{ccc}0&{\mbox{if}}&s\leq 0,\\ \rho_{1}(s)&{\mbox{if}}&0\leq s\leq s_{0},\\ \gamma s+\kappa&{\mbox{if}}&s_{0}\leq s,\end{array}\right.

for some constants γ>0,\gamma>0, s00s_{0}\geq 0 and κγs0.\kappa\geq-\gamma s_{0}. Here ρ1:[0,s0]\rho_{1}:[0,s_{0}]\rightarrow\mathbb{R} is a smooth and convex function on [0,s0][0,s_{0}] satisfying the boundary conditions ρ1(0)=0\rho_{1}(0)=0 and ρ1(s0)=γs0+κ\rho_{1}(s_{0})=\gamma s_{0}+\kappa and the connections need to be in such a way that ρ\rho is smooth everywhere. Note that ρ\rho is convex on the whole real line. Hence, the complete integrand is polyconvex. Recall, again, we call W:2×2¯W:\mathbb{R}^{2\times 2}\rightarrow\overline{\mathbb{R}} polyconvex, if there exists a convex function g:5¯g:\mathbb{R}^{5}\rightarrow\overline{\mathbb{R}} s.t. W(ξ)=g(ξ,detξ)W(\xi)=g(\xi,\det\xi) for all ξ2×2.\xi\in\mathbb{R}^{2\times 2}. The behaviour of the functional depends mainly on the parameter γ.\gamma. If γ0\gamma\rightarrow 0 then the functional turns into the well known Dirichlet energy. In the regime 0<γ<10<\gamma<1 the functional is uniformly convex. If γ1\gamma\geq 1 then the functional is genuinely polyconvex.

Now we define the MM-covering map uM:BBu_{M}:B\rightarrow B for M,M\in\mathbb{N}, M1M\geq 1 via its representative

(3) uM:[0,1]×[0,2π)\displaystyle u_{M}:[0,1]\times[0,2\pi) \displaystyle\rightarrow B,\displaystyle B,
(4) (R,θ)\displaystyle(R,\theta) \displaystyle\mapsto R(cosMθ,sinMθ).\displaystyle R(\cos M\theta,\sin M\theta).

Furthermore, we will use the notation eMR:=eR(Mθ):=(cosMθ,sinMθ)Te_{MR}:=e_{R}(M\theta):=(\cos M\theta,\sin M\theta)^{T} and eMθ:=eθ(Mθ):=(sinMθ,cosMθ)Te_{M\theta}:=e_{\theta}(M\theta):=(-\sin M\theta,\cos M\theta)^{T} for all M{0}M\in\mathbb{N}\setminus\{0\} and we introduce the set of admissible functions

𝒜uM:={uW1,2(B,2):u=uMonB},\mathcal{A}_{u_{M}}:=\{u\in W^{1,2}(B,\mathbb{R}^{2}):u=u_{M}\;\;\mbox{on}\;\;\partial B\},

where the boundary condition must be understood in the trace sense. Moreover, 𝒜uM\mathcal{A}_{u_{M}}\not=\emptyset and the functional II attains its minimum in 𝒜uM.\mathcal{A}_{u_{M}}.

Notation: For a 2×22\times 2-matrix AA we denote the determinant by dA:=detAd_{A}:=\det A (where we drop the AA for simplicity) and the cofactor is given by

(5) cofA=(a22a21a12a11).\textnormal{cof}\;A=\begin{pmatrix}a_{22}&-a_{21}\\ -a_{12}&a_{11}\end{pmatrix}.

For two vectors an,bma\in\mathbb{R}^{n},b\in\mathbb{R}^{m} we define the tensor product abn×ma\otimes b\in\mathbb{R}^{n\times m} by (ab)i,j:=(abT)i,j=aibj(a\otimes b)_{i,j}:=(ab^{T})_{i,j}=a_{i}b_{j} for all 1in,1\leq i\leq n, 1jm.1\leq j\leq m.

As usual we are interested in the behaviour of the minimizers or more generally the class of stationary points:

Definition 1.1 (stationary point).

We call u𝒜uMu\in\mathcal{A}_{u_{M}} a stationary point of the functional (1) if it satisfies the Euler-Lagrange equation (ELE) in the weak form, which is given by

(6) B(u+ρ(du)cofu)φdx=0for allφW01,2(B,2).\int\limits_{B}{(\nabla u+\rho^{\prime}(d_{\nabla u})\textnormal{cof}\;\nabla u)\cdot\nabla\varphi\;dx}=0\;{\mbox{for all}}\;\varphi\in W_{0}^{1,2}(B,\mathbb{R}^{2}).

The set of radially symmetric MM-covering maps

𝒜rM={uW1,2(B,2)|r:[0,1]s.t.u(x)=r(R)eR(Mθ)andr(1)=1}𝒜uM\mathcal{A}_{r}^{M}=\{u\in W^{1,2}(B,\mathbb{R}^{2})|\exists r:[0,1]\rightarrow\mathbb{R}\;\mbox{s.t.}\;u(x)=r(R)e_{R}(M\theta)\;\mbox{and}\;r(1)=1\}\subset\mathcal{A}_{u_{M}}

will play a key-role in this paper. Again, 𝒜rM\mathcal{A}_{r}^{M}\not=\emptyset and the functional II attains its minimum in 𝒜rM,\mathcal{A}_{r}^{M}, as well. Now restricting the class of test functions to MM-covering radial symmetric maps, too, then the ELE becomes a boundary value problem (BVP) for r:r:

Definition 1.2 (BVP).

For any M{0}M\in\mathbb{N}\setminus\{0\} and γ(0,)\gamma\in(0,\infty) we call rL2((0,1),R1dR)r˙L2((0,1),RdR)r\in L^{2}((0,1),R^{-1}dR)\wedge\dot{r}\in L^{2}((0,1),RdR) a distributional solution of the BVP if it satisfies

(9) {M2rRr˙Rr¨=Mρ′′(d)d˙rin𝒟(0,1),r(0)=0,r(1)=1.\displaystyle\left\{\begin{array}[]{ccc}\frac{M^{2}r}{R}-\dot{r}-R\ddot{r}=M\rho^{\prime\prime}(d)\dot{d}r&{\mbox{in}}&\mathcal{D}^{\prime}(0,1),\\ r(0)=0,&r(1)=1.&\end{array}\right.

Furthermore, we will be interested in the concrete shapes of ρ\rho and rr and therefore we will need the following notions:

Definition 1.3 (lift-off functions).

Let hC()h\in C(\mathbb{R}) be a real valued function.

  1. (1)

    We call hh an immediate lift-off function, if h(0)=0h(0)=0 and h(R)>0h(R)>0 for any R>0.R>0.

  2. (2)

    We call hh a delayed lift-off function, if there is δ>0\delta>0 s.t. h0h\equiv 0 on [0,δ][0,\delta] and h(R)>0h(R)>0 for any R>δ.R>\delta.

This brings us in the position to give the central statement:

Theorem 1.4.

Let M{0},M\in\mathbb{N}\setminus\{0\}, γ(0,),\gamma\in(0,\infty), let II be the energy as given in (1), and let ρ\rho as defined in (2) be arbitrary.

Then the following statements are true:

  1. (1)

    Every map u=reMR𝒜rMu=re_{MR}\in\mathcal{A}_{r}^{M} with rr satisfying the BVP (9) distributionally is a stationary point of II in the full class 𝒜uM.\mathcal{A}_{u_{M}}.

  2. (2)

    If M=1M=1 then u=Idu=\mbox{Id} is the unique global minimizer of II in the full class 𝒜uM.\mathcal{A}_{u_{M}}.

  3. (3)

    If M2M\geq 2 then every map u=reMRu=re_{MR} with rr satisfying the BVP (9) distributionally possesses the following properties:

    1. (a)

      uC1(B¯,2).u\in C^{1}(\overline{B},\mathbb{R}^{2}).

    2. (b)

      rC1([0,1])C((0,1])r\in C^{1}([0,1])\cap C^{\infty}((0,1]) and r,r˙0r,\dot{r}\geq 0 for all R[0,1]R\in[0,1] and r(0)=r˙(0)=0.r(0)=\dot{r}(0)=0.

    3. (c)

      d:=detu=Mrr˙RC([0,1])C((0,1])d:=\det\nabla u=\frac{Mr\dot{r}}{R}\in C([0,1])\cap C^{\infty}((0,1]) and d0d\geq 0 in [0,1][0,1] with d(0)=0d(0)=0 and d˙0\dot{d}\geq 0 in (0,1].(0,1].

    4. (d)

      If ρ\rho is lifting-off delayed then r,dC([0,1])r,d\in C^{\infty}([0,1]) and u=reMRC(B¯,2).u=re_{MR}\in C^{\infty}(\overline{B},\mathbb{R}^{2}).

    5. (e)

      If ρ\rho is lifting-off immediately then rr is either a delayed lift-off solution with rC([0,1])r\in C^{\infty}([0,1]) or an immediate lift-off function with rC1([0,1])C((0,1]),r\in C^{1}([0,1])\cap C^{\infty}((0,1]), but not necessarily any better, and r(0)=r˙(0)=0.r(0)=\dot{r}(0)=0. If it is additionally assumed that u=reMRW2,2(B¯,2)u=re_{MR}\in W^{2,2}(\overline{B},\mathbb{R}^{2}) then r,dC([0,1])r,d\in C^{\infty}([0,1]) and u=reMRC(B¯,2).u=re_{MR}\in C^{\infty}(\overline{B},\mathbb{R}^{2}).

Remark 1.5.

Notice, that in theorem 1.4.(1) it is shown that the involved maps are stationary points of the functional II in the full class 𝒜uM\mathcal{A}_{u_{M}} however, for M2M\geq 2 it remains open, if theses constructed maps actually are the global minimizers of the energy II.

What does the literature tell us about the regularity of stationary points/minimizers of the energy II? This functional has recently been introduced in [17]. There it is shown that for arbitrary γ(0,)\gamma\in(0,\infty) any stationary point of the energy II subject to arbitrary L2L^{2}- boundary data needs to be locally Hölder-continuous and a higher-order regularity result is obtained. Moreover, it is shown that if II is uniformly elliptic (that is γ(0,1)\gamma\in(0,1)) any stationary point of the energy II must be locally smooth. Furthermore, the classical result by Acerbi and Fusco [1] guarantees that any minimizer/stationary point of II under suitable boundary conditions has to be smooth up to a nullset. Although, the fairly symmetric stationary points constructed here are at least of class C1,C^{1}, less symmetric stationary points with low regularity could still occur: Müller and Sverak [28], Kristensen and Taheri [27], and Szekelyhidi, Jr. [30] constructed, via Gromov’s convex integration method, smooth poly- and quasiconvex integrands s.t. the stationary point/ local minimizer is everywhere Lipschitz but nowhere C1C^{1}. Elastic situations subject to double (or MM-) covering boundary data have been intensely discussed in [3, 9, 11, 12, 4]. Additional everywhere regularity results can be found in [23, 15, 16, 6, 24, 25] and for a list of partial regularity results regarding poly- or quasiconvex integrands see [23, 18, 13, 19, 1, 27, 29, 14, 26, 21].

In this paper we follow the method devised initially by P. Bauman, N.C. Owen and D. Phillips (BOP) in two striking papers [5, 4] and extended by Yan [32] and Yan and Bevan [8]. Indeed, BOP consider a infinite nonlinear elastic situation, where the integrand WW depends on dd in such a way, that W(d)+W(d)\rightarrow+\infty if d0+d\rightarrow 0^{+} or d+d\rightarrow+\infty and W(d)=+W(d)=+\infty if d0d\leq 0 and they obtain a higher-order regularity result showing that it is enough for an equilibrium solution to be of class C1,βC^{1,\beta} for some β(0,1]\beta\in(0,1] for it to be already fully smooth. In [32] it is then shown that the previous assumption can be relaxed to C1W2,2C^{1}\cap W^{2,2} and that this is optimal in a sense. Additionally, BOP construct a radial symmetric double covering singular equilibrium solution, which is C1C1,βC^{1}\setminus C^{1,\beta} for any β(0,1].\beta\in(0,1]. Bevan and Yan [8] then show, that this map is the unique minimizer in a substantial part of the admissible set. The latter assembly of the counterexample is important since, we follow this part very closely. For more regularity results in infinite nonlinear elasticity see [10, 7, 22].

Plan for the paper: In §.2 we start by developing the classical BOP-theory. The general goal of §.2 is to get an understanding of the regularity of rr and d.d. Initially, we discuss basic results of rr in lemma 2.1. In lemma 2.2 we obtain regularity and non-negativity for dd and d˙,\dot{d}, and then analogous results for rr and r˙\dot{r} in lemma 2.3. This is followed by two technical lemmas describing the behaviour of two important auxiliary functions zz and f.f. These are then used to obtain lemma 2.6, which is the central statement of §.2 discussing the notions of delayed and immediate lift-off solutions and their corresponding regularity. Lastly, lemma 2.7 shows point (1)(1) of theorem 1.4. In §.3 we then explore the solutions, starting-off, following the newer theory developed by Yan and Bevan, by discussing, in lemma 3.1, limit taking at the origin involving r¨.\ddot{r}. In §.3.1 for an arbitrary ρ\rho delayed lift-off solutions are investigated. Finally, §.3.2 and §.3.3 then distinguish between situations, where ρ\rho is lifting-off delayed, and such, where ρ\rho is immediately lifting-off and the corresponding solutions are analysed once again.

2. Classical BOP-theory

In this paragraph it is shown that functions are at least of class C1C^{1} on the whole interval [0,1][0,1]. Again, we use the method invented in [5, 4]. In particular, this section will follow very closely the latter one without us mentioning it all the time.

We start our discussion by recalling the ELE as given in (6). Plugging u=reMR𝒜rMu=re_{MR}\in\mathcal{A}_{r}^{M} and test functions of the form φ(x)=geNRwheregCc((0,1)),N{0}\varphi(x)=ge_{NR}\;\mbox{where}\;g\in C_{c}^{\infty}((0,1)),N\in\mathbb{N}\setminus\{0\} into (6) yields the BVP (9). The first statement makes this rigorous and establishes first simple results of the radial part r.r.

Lemma 2.1 (Elementary properties).

Let M,M\in\mathbb{N}, M1M\geq 1 and u𝒜rM.u\in\mathcal{A}_{r}^{M}.

  1. (i)

    Then u𝒜rMu\in\mathcal{A}_{r}^{M} if and only if rr is absolutely continuous on each compact subset of (0,1](0,1] and rL2((0,1),R1dR)r\in L^{2}((0,1),R^{-1}dR) and r˙L2((0,1),RdR).\dot{r}\in L^{2}((0,1),RdR).

  2. (ii)

    If MNM\not=N then WW is a Null-Lagrangian in the class of 𝒜rM\mathcal{A}_{r}^{M} and NN-covering test functions, i.e.

    B(u+ρ(d)cofu)φdx=0\int\limits_{B}{(\nabla u+\rho^{\prime}(d)\textnormal{cof}\;\nabla u)\cdot\nabla\varphi\;dx=0}

    holds for all u𝒜rMu\in\mathcal{A}_{r}^{M} and all test functions of the form φ(x)=g(R)eR(Nθ)\varphi(x)=g(R)e_{R}(N\theta) where gCc((0,1)),g\in C_{c}^{\infty}((0,1)), if MN.M\not=N.

  3. (iii)

    Assume, additionally, u𝒜rMu\in\mathcal{A}_{r}^{M} solves

    B(u+ρ(d)cofu)φdx=0\int\limits_{B}{(\nabla u+\rho^{\prime}(d)\textnormal{cof}\;\nabla u)\cdot\nabla\varphi\;dx=0}

    weakly, for any test functions of the form φ(x)=g(R)eR(Nθ)\varphi(x)=g(R)e_{R}(N\theta) where gCc((0,1)).g\in C_{c}^{\infty}((0,1)). Then rr satisfies the ODE

    (10) (M2rR+Mρ(d)r˙)=(Rr˙+Mρ(d)r)inD((0,1)).\left(\frac{M^{2}r}{R}+M\rho^{\prime}(d)\dot{r}\right)=\left(R\dot{r}+M\rho^{\prime}(d)r\right)^{\cdot}\;\mbox{in}\;D^{\prime}((0,1)).
  4. (iv)

    Assume rr solves (10). Then rC([0,1])r\in C([0,1]) and r(0)=0.r(0)=0.

  5. (v)

    Moreover, rC((0,1]).r\in C^{\infty}((0,1]).

Proof.

(i): It is straightforward to see that for every u𝒜rMu\in\mathcal{A}_{r}^{M} it holds that

uW1,22=B|u|2+|u|2dx=2π01r2R+M2r2R+r˙2RdR\|u\|_{W^{1,2}}^{2}=\int\limits_{B}{|u|^{2}+|\nabla u|^{2}\;dx}=2\pi\int\limits_{0}^{1}{r^{2}R+\frac{M^{2}r^{2}}{R}+\dot{r}^{2}R\;dR}

Since the LHS is finite the RHS needs to be finite, too, implying rL2((0,1),R1dR)r\in L^{2}((0,1),R^{-1}dR) and r˙L2((0,1),RdR).\dot{r}\in L^{2}((0,1),RdR).
Let [a,b](0,1].[a,b]\subset(0,1]. Since rL2((0,1],R1dR)r\in L^{2}((0,1],R^{-1}dR) it follows

(11) abr2𝑑Rbabr2dRR<.\int\limits_{a}^{b}{r^{2}\;dR}\leq b\int\limits_{a}^{b}{r^{2}\;\frac{dR}{R}}<\infty.

Hence, rLloc2((0,1]).r\in L_{loc}^{2}((0,1]). Similar r˙L2((0,1],RdR)\dot{r}\in L^{2}((0,1],RdR) leads to

(12) abr˙2𝑑R1aabr˙2R𝑑R<\int\limits_{a}^{b}{\dot{r}^{2}\;dR}\leq\frac{1}{a}\int\limits_{a}^{b}{\dot{r}^{2}\;RdR}<\infty

which implies r˙Lloc2((0,1])\dot{r}\in L_{loc}^{2}((0,1]) and rWloc1,2((0,1]).r\in W_{loc}^{1,2}((0,1]). Then rr agrees up to a set of measure zero with a function r~\tilde{r} on (0,1],(0,1], where r~\tilde{r} is absolutely continuous on any compact subset of (0,1](0,1] (as always we identify rr with r~\tilde{r}). The latter is a consequence of (12) and the fundamental theorem of calculus for Sobolev functions, see [2, U1.6, p.71-72].

(ii)-(iii): First we calculate some important quantities:

u=\displaystyle\nabla u= u,ReR+u,τeθ=r˙eMReR+MrReMθeθ\displaystyle{u,}_{R}\otimes e_{R}+u,_{\tau}\otimes e_{\theta}=\dot{r}e_{MR}\otimes e_{R}+\frac{Mr}{R}e_{M\theta}\otimes e_{\theta}
φ=\displaystyle\nabla\varphi= g˙eNReR+NgReNθeθ\displaystyle\dot{g}e_{NR}\otimes e_{R}+\frac{Ng}{R}e_{N\theta}\otimes e_{\theta}
cofu=\displaystyle\textnormal{cof}\;\nabla u= MrReMReR+r˙eMθeθ\displaystyle\frac{Mr}{R}e_{MR}\otimes e_{R}+\dot{r}e_{M\theta}\otimes e_{\theta}
d=\displaystyle d= detu=12ucofu=Mrr˙R\displaystyle\det\nabla u=\frac{1}{2}\nabla u\cdot\textnormal{cof}\;\nabla u=\frac{Mr\dot{r}}{R}
uφ=\displaystyle\nabla u\cdot\nabla\varphi= g˙r˙eMReNR+MNgrR2eMθeNθ\displaystyle\dot{g}\dot{r}e_{MR}\cdot e_{NR}+\frac{MNgr}{R^{2}}e_{M\theta}\cdot e_{N\theta}
cofuφ=\displaystyle\textnormal{cof}\;\nabla u\cdot\nabla\varphi= Mg˙rReMReNR+Ngr˙ReMθeNθ\displaystyle\frac{M\dot{g}r}{R}e_{MR}\cdot e_{NR}+\frac{Ng\dot{r}}{R}e_{M\theta}\cdot e_{N\theta}
eMReNR=\displaystyle e_{MR}\cdot e_{NR}= eMθeNθ=cos(Mθ)cos(Nθ)+sin(Mθ)sin(Nθ)=cos((MN)θ).\displaystyle e_{M\theta}\cdot e_{N\theta}=\cos(M\theta)\cos(N\theta)+\sin(M\theta)\sin(N\theta)=\cos((M-N)\theta).

Hence, the ELE (6) becomes

(13) 0102π(g˙r˙+Mrg˙Rρ(d)+MNgrR2+ρ(d)Ngr˙R)cos((MN)θ)𝑑θR𝑑R=0\int\limits_{0}^{1}\int\limits_{0}^{2\pi}{\left(\dot{g}\dot{r}+\frac{Mr\dot{g}}{R}\rho^{\prime}(d)+\frac{MNgr}{R^{2}}+\rho^{\prime}(d)\frac{Ng\dot{r}}{R}\right)\cos((M-N)\theta)\;d\theta RdR}=0

which is automatically true for all rr if MNM\not=N and for M=NM=N takes the form

(14) 2π01g˙(r˙R+Mρ(d)r)+g(M2rR+Mρ(d)r˙)dR=02\pi\int\limits_{0}^{1}{\dot{g}\left(\dot{r}R+M\rho^{\prime}(d)r\right)+g\left(\frac{M^{2}r}{R}+M\rho^{\prime}(d)\dot{r}\right)\;dR}=0

for all gCc((0,1)).g\in C_{c}^{\infty}((0,1)).

(iv): Now we show that for any rr with rL2((0,1),R1dR)r\in L^{2}((0,1),R^{-1}dR) and r˙L2((0,1),RdR),\dot{r}\in L^{2}((0,1),RdR), it must hold that limR0r(R)=0.\lim\limits_{R\rightarrow 0}r(R)=0. Suppose not, then wlog.​​ there exists a strictly montonic decreasing sequence {Rj}j\{R_{j}\}_{j\in\mathbb{N}} s.t. Rj0R_{j}\rightarrow 0 for jj\rightarrow\infty and |r(Rj)|>2ε|r(R_{j})|>2\varepsilon for any j.j\in\mathbb{N}. Then since r˙L2((0,1),RdR),\dot{r}\in L^{2}((0,1),RdR), we can find NN\in\mathbb{N} so large that for any nNn\geq N it holds 0Rnr˙2R𝑑R<ε2.\int\limits_{0}^{R_{n}}\dot{r}^{2}R\;dR<\varepsilon^{2}. Using the latter together with the fundamental theorem of calculus, and Hölder’s inequality, then for any nNn\geq N and any R[Rn/en,Rn]R\in[R_{n}/e_{n},R_{n}] with en:=11/ne_{n}:=1-1/n (Note, that wlog. we can assume Rn+1RnenR_{n+1}\leq\frac{R_{n}}{e_{n}} if not consider the sequence R~n+1:=min{Rn+1,Rnen}\widetilde{R}_{n+1}:=\min\{R_{n+1},\frac{R_{n}}{e_{n}}\}) we obtain

|r(R)r(Rn)|=|RRnr˙(R)𝑑R||RRn1R𝑑R|12|RRn|r˙(R)|2R𝑑R|12|lnen|12ε.|r(R)-r(R_{n})|=\left|\int_{R}^{R_{n}}\dot{r}(R^{\prime})\,dR^{\prime}\right|\leq\left|\int_{R}^{R_{n}}\frac{1}{R^{\prime}}\,dR^{\prime}\right|^{\frac{1}{2}}\cdot\left|\int_{R}^{R_{n}}\left|\dot{r}(R^{\prime})\right|^{2}R^{\prime}\,dR^{\prime}\right|^{\frac{1}{2}}\leq|\ln e_{n}|^{\frac{1}{2}}\varepsilon.

Therefore by the reverse triangle inequality we have |r(R)|>ε|r(R)|>\varepsilon for any R[Rn/en,Rn]R\in[R_{n}/e_{n},R_{n}]. Then

01r2R𝑑Rn=NRn/enRnr2R𝑑R>n=NRn/enRnε2R𝑑R=ε2n=N|ln(11n)|=+,\int_{0}^{1}{r^{2}\over R}\,dR\geq\sum\limits_{n=N}^{\infty}\int_{R_{n}/e_{n}}^{R_{n}}{r^{2}\over R}\,dR>\sum\limits_{n=N}^{\infty}\int_{R_{n}/e_{n}}^{R_{n}}{\varepsilon^{2}\over R}\,dR=\varepsilon^{2}\sum\limits_{n=N}^{\infty}\left|\ln\left(1-\frac{1}{n}\right)\right|=+\infty,

contradicting the integrability of r2R{r^{2}\over R} and showing that rC([0,1])r\in C([0,1]) with r(0):=0.r(0):=0.

(v): Next we show that r˙C((0,1]).\dot{r}\in C((0,1]).
Let

(15) q(w,a,b)=bw+Mρ(Mwab)aq(w,a,b)=bw+M\rho^{\prime}\left(\frac{Mwa}{b}\right)a

with 1b>0,a,w.1\geq b>0,a,w\in\mathbb{R}. Then q(,a,b)q(\cdot,a,b) is a homeomorphism from \mathbb{R} to \mathbb{R} for all aa\in\mathbb{R} and b(0,1].b\in(0,1]. Indeed, for a=0,a=0, q(w,0,b)=bwq(w,0,b)=bw is a homeomorphism from \mathbb{R} to .\mathbb{R}. Now let b(0,1]b\in(0,1] and a>0.a>0. Then wbww\mapsto bw is strictly monotonically increasing and maps \mathbb{R} to \mathbb{R} continuously. Moreover, wMρ(Mwab)aw\mapsto M\rho^{\prime}\left(\frac{Mwa}{b}\right)a is monotonically increasing and continuous as well, hence, wq(w,a,b)w\mapsto q(w,a,b) is a homeomorphism on .\mathbb{R}. If a<0a<0 then wρ(Mwab)w\mapsto\rho^{\prime}\left(\frac{Mwa}{b}\right) decreases but wMρ(Mwab)aw\mapsto M\rho^{\prime}\left(\frac{Mwa}{b}\right)a still increases, and we can argue as above.
Assume that there exists R0(0,1]R_{0}\in(0,1] and a sequence RjR0R_{j}\rightarrow R_{0} for j,j\rightarrow\infty, s.t. r˙(Rj)±.\dot{r}(R_{j})\rightarrow\pm\infty. But then

q(r˙(Rj),r(Rj),Rj)=Rjr˙(Rj)+Mρ(Mr˙(Rj)r(Rj)Rj)r(Rj)±+c=±q(\dot{r}(R_{j}),r(R_{j}),R_{j})=R_{j}\dot{r}(R_{j})+M\rho^{\prime}\left(\frac{M\dot{r}(R_{j})r(R_{j})}{R_{j}}\right)r(R_{j})\rightarrow\pm\infty+c=\pm\infty

which is impossible, since Rq(r˙(R),r(R),R)R\rightarrow q(\dot{r}(R),r(R),R) is continuous on (0,1].(0,1]. Hence, r˙C((0,1]).\dot{r}\in C((0,1]).
As a last step we improve the regularity to C((0,1]).C^{\infty}((0,1]).
Using the ODE we can represent qq by

(16) q(r˙(R),r(R),R)=Rr˙(R)+Mρ(d)r(R)=cR1M2r(R)R+Mρ(d)r˙(R)dRq(\dot{r}(R),r(R),R)=R\dot{r}(R)+M\rho^{\prime}(d)r(R)=c-\int\limits_{R}^{1}{\frac{M^{2}r(R^{\prime})}{R}+M\rho^{\prime}(d)\dot{r}(R^{\prime})\;dR^{\prime}}

Then by the analysis above, qq is actually C1((0,1]).C^{1}((0,1]). Further the derivative w.r.t. ww is wq=b+M2ρ′′(Mwab)a2b>0\partial_{w}q=b+M^{2}\rho^{\prime\prime}(\frac{Mwa}{b})\frac{a^{2}}{b}>0 for all 1b>0,a,w.1\geq b>0,a,w\in\mathbb{R}. Then the implicit function theorem gives full regularity rC((0,1]).r\in C^{\infty}((0,1]).

Collecting these results, from now on, we will consider solutions rC([0,1])C((0,1])r\in C([0,1])\cap C^{\infty}((0,1]) to the boundary value problem

(19) {Lr=Mρ′′(d)d˙rin(0,1),r(0)=0,r(1)=1,\displaystyle\left\{\begin{array}[]{ccc}Lr=M\rho^{\prime\prime}(d)\dot{d}r&{\mbox{in}}&(0,1),\\ r(0)=0,&r(1)=1,&\end{array}\right.

where LL refers to the linear part of the considered ODE, i.e.

Lr(R):=M2rRr˙Rr¨Lr(R):=\frac{M^{2}r}{R}-\dot{r}-R\ddot{r}

for all R(0,1).R\in(0,1).

We keep following [4] so it might be good to outline the strategy: Firstly we will consider three auxiliary functions, namely the determinant dd, z,z, and ff as defined below, which depend on rr and r˙.\dot{r}. Studying their behaviour, in particular, close to the origin will then reduce the number of possibilities how d,d, z,z, and ff can behave. Then we can discuss these cases one-by-one and finally determine, among other things, the regularity of rr and r˙\dot{r}.

We start with the following observations on the determinant.

Lemma 2.2.

Let M,M1M\in\mathbb{N},\;M\geq 1 and assume that rr solves the BVP (19). Then dC((0,1])d\in C^{\infty}((0,1]) and d˙0\dot{d}\geq 0 in (0,1].(0,1]. Moreover, it holds that dC([0,1])d\in C([0,1]) and d0d\geq 0 in [0,1].[0,1].

Proof.

The smoothness of dd in (0,1](0,1] follows by the smoothness of rr in the same interval.

d˙=(Mrr˙R)=Mr˙2R+Mrr¨RMrr˙R2\dot{d}=\left(\frac{Mr\dot{r}}{R}\right)^{\cdot}=\frac{M\dot{r}^{2}}{R}+\frac{Mr\ddot{r}}{R}-\frac{Mr\dot{r}}{R^{2}}

Now by multiplying the strong form of the ODE (10) by rR\frac{r}{R} we can express the term rr¨r\ddot{r} as

(20) rr¨=M2r2R2rr˙RMρ′′(d)r2Rd˙.\displaystyle r\ddot{r}=\frac{M^{2}r^{2}}{R^{2}}-\frac{r\dot{r}}{R}-M\rho^{\prime\prime}(d)\frac{r^{2}}{R}\dot{d}.

Hence,

d˙=Mr˙2RMrr˙R2+M3r2R3Mrr˙R2M2ρ′′(d)r2R2d˙\dot{d}=\frac{M\dot{r}^{2}}{R}-\frac{Mr\dot{r}}{R^{2}}+\frac{M^{3}r^{2}}{R^{3}}-\frac{Mr\dot{r}}{R^{2}}-M^{2}\rho^{\prime\prime}(d)\frac{r^{2}}{R^{2}}\dot{d}

and rearranging the equation yields,

(21) d˙\displaystyle\dot{d} =\displaystyle= (1+M2ρ′′(d)r2R2)1[Mr˙2R2Mrr˙R2+M3r2R3]\displaystyle(1+M^{2}\rho^{\prime\prime}(d)\frac{r^{2}}{R^{2}})^{-1}\left[\frac{M\dot{r}^{2}}{R}-\frac{2Mr\dot{r}}{R^{2}}+\frac{M^{3}r^{2}}{R^{3}}\right]
=\displaystyle= M[(Rr˙r)2+(M21)r2]R3+M2ρ′′(d)r2R0.\displaystyle\frac{M[(R\dot{r}-r)^{2}+(M^{2}-1)r^{2}]}{R^{3}+M^{2}\rho^{\prime\prime}(d)r^{2}R}\geq 0.

Assume now that limR0d(R)[,0).\lim\limits_{R\rightarrow 0}d(R)\in[-\infty,0). By the smoothness of dd in (0,1],(0,1], there exists δ>0\delta>0 s.t. d(R)<0d(R)<0 for all R(0,δ).R\in(0,\delta). This implies that for all R(0,δ)R\in(0,\delta) either r(R)>0r(R)>0 and r˙(R)<0\dot{r}(R)<0 or r(R)<0r(R)<0 and r˙(R)>0.\dot{r}(R)>0. Consider the first case r,r˙>0r,-\dot{r}>0 on (0,δ).(0,\delta). By the mean value theorem we get that there exists a ξ(0,δ2)\xi\in(0,\frac{\delta}{2}) s.t. r˙(ξ)=2r(δ2)δ>0,\dot{r}(\xi)=\frac{2r(\frac{\delta}{2})}{\delta}>0, contradicting r˙(R)<0\dot{r}(R)<0 for all R(0,δ).R\in(0,\delta). (Analogously, for the other case). This proves limR0d(R)[0,+].\lim\limits_{R\rightarrow 0}d(R)\in[0,+\infty]. By d˙0\dot{d}\geq 0 and rr smooth in (0,1](0,1] dd cannot attain +.+\infty. Therefore, the limit d(0):=limR0d(R)[0,)d(0):=\lim\limits_{R\rightarrow 0}d(R)\in[0,\infty) exists and is nonnegative. Again by d˙0,\dot{d}\geq 0, dd remains nonnegative throughout the whole interval [0,1].[0,1].

As a consequence, the non-negativity and the monotonic growth of dd are transferred on to r.r.

Lemma 2.3.

Let M,M\in\mathbb{N}, M1M\geq 1 and rr solves the BVP (19). Then r(R)0r(R)\geq 0 for all R[0,1]R\in[0,1] and r˙(R)0\dot{r}(R)\geq 0 for all R(0,1].R\in(0,1].

Proof.

By Lemma 2.2 we know that

d=Mrr˙R=M(r2)2R0.d=\frac{Mr\dot{r}}{R}=\frac{M(r^{2})^{\cdot}}{2R}\geq 0.

Hence, (r2)0(r^{2})^{\cdot}\geq 0 for all R(0,1].R\in(0,1]. For the sake of a contradiction, assume that there exists R0(0,1]R_{0}\in(0,1] s.t. r(R0)<0.r(R_{0})<0. Then by the continuity of rr and since r2r^{2} grows monotonically, rr remains negative up to the boundary, i.e. r(R)r(R0)<0r(R)\leq r(R_{0})<0 for all R[R0,1].R\in[R_{0},1]. This is not compatible with the boundary condition r(1)=1r(1)=1 yielding r0r\geq 0 in [0,1].[0,1].
The second claim follows in a similar fashion. Again we make the assumption that there exists R0(0,1]R_{0}\in(0,1] s.t. r˙(R0)<0.\dot{r}(R_{0})<0. By continuity, there even exists an interval (R1,R2](R_{1},R_{2}] with 0<R1<R210<R_{1}<R_{2}\leq 1 s.t. r˙(R)<0\dot{r}(R)<0 for all R(R1,R2]R\in(R_{1},R_{2}] then by monotonicity of r2r^{2} we know that 0r(R2)r(R1)0\leq r(R_{2})-r(R_{1}) but on the other hand by the fundamental theorem of calculus we have

0r(R2)r(R1)=R1R2r˙(R)𝑑R<00\leq r(R_{2})-r(R_{1})=\int\limits_{R_{1}}^{R_{2}}{\dot{r}(R)\;dR}<0

leading again to a contradiction. Hence, r˙0\dot{r}\geq 0 in (0,1].(0,1].

Next we introduce the function z(x):=12|u(x)|2+f(detu(x))z(x):=\frac{1}{2}|\nabla u(x)|^{2}+f(\det\nabla u(x)) for all xB¯,x\in\overline{B}, where f(d):=dρ(d)ρ(d)f(d):=d\rho^{\prime}(d)-\rho(d) for all d.d\in\mathbb{R}. In the following lemma it is shown that zz satisfies a maximum principle in B¯{0}\overline{B}\setminus\{0\}. This follows closely [5, thm 3.23.33.2-3.3].

Lemma 2.4.

Let M,M2M\in\mathbb{N},\;M\geq 2 and assume rr solves the BVP (19). Then zz satisfies the strong maximum principle in (0,1].(0,1].

Proof.

It is enough to show that zz is a subsolution to an elliptic equation, i.e. Δz+cMρ′′(d)z˙0\Delta z+c_{M}\rho^{\prime\prime}(d)\dot{z}\geq 0 in (0,1],(0,1], where cM:=M2(M1).c_{M}:=\frac{M}{2(M-1)}. This is indeed enough to apply the strong maximum principle, see [20, §6.4.2 Thm 3].
Initially, note that for u𝒜rM,u\in\mathcal{A}_{r}^{M}, z(x)=z(R),z(x)=z(R), z(R)=r˙22+M2r22R2+f(d),z(R)=\frac{\dot{r}^{2}}{2}+\frac{M^{2}r^{2}}{2R^{2}}+f(d), f(d)=dρ(d)ρ(d)f(d)=d\rho^{\prime}(d)-\rho(d) and Δz=z˙R+z¨.\Delta z=\frac{\dot{z}}{R}+\ddot{z}.
Now in order to calculate Δz\Delta z we first need to calculate z˙\dot{z} and z¨.\ddot{z}. Taking the derivative of zz wrt. RR yields,

(22) z˙=r˙r¨+M2rr˙R2M2r2R3+ρ′′(d)dd˙\dot{z}=\dot{r}\ddot{r}+\frac{M^{2}r\dot{r}}{R^{2}}-\frac{M^{2}r^{2}}{R^{3}}+\rho^{\prime\prime}(d)d\dot{d}

where we used (f(d))=ρ′′(d)dd˙.(f(d))^{\cdot}=\rho^{\prime\prime}(d)d\dot{d}. The strong version of the ODE (10) is given by

(23) M2rR=r˙+Rr¨+Mρ′′(d)d˙r,\frac{M^{2}r}{R}=\dot{r}+R\ddot{r}+M\rho^{\prime\prime}(d)\dot{d}r,

which, when multiplied by r˙R\frac{\dot{r}}{R} leads to

(24) ρ′′(d)dd˙=M2rr˙R2r˙2Rr˙r¨.\rho^{\prime\prime}(d)d\dot{d}=\frac{M^{2}r\dot{r}}{R^{2}}-\frac{\dot{r}^{2}}{R}-\dot{r}\ddot{r}.

Substituting, ρ′′(d)dd˙\rho^{\prime\prime}(d)d\dot{d} in (22) via (24) yields,

z˙=M2r2R3+2M2rr˙R2r˙2R.\dot{z}=-\frac{M^{2}r^{2}}{R^{3}}+\frac{2M^{2}r\dot{r}}{R^{2}}-\frac{\dot{r}^{2}}{R}.

The second derivative of zz is then given by

z¨=2M2rr˙R3+3M2r2R4+2M2r˙2R2+2M2rr¨R24M2rr˙R32r˙r¨R+r˙2R2.\ddot{z}=-\frac{2M^{2}r\dot{r}}{R^{3}}+\frac{3M^{2}r^{2}}{R^{4}}+\frac{2M^{2}\dot{r}^{2}}{R^{2}}+\frac{2M^{2}r\ddot{r}}{R^{2}}-\frac{4M^{2}r\dot{r}}{R^{3}}-\frac{2\dot{r}\ddot{r}}{R}+\frac{\dot{r}^{2}}{R^{2}}.

and the Laplacian becomes

Δz=2M2r2R4+2Mr˙2R4+2Mrr¨R24Mrr˙R32r˙r¨R.\Delta z=-\frac{2M^{2}r^{2}}{R^{4}}+\frac{2M\dot{r}^{2}}{R^{4}}+\frac{2Mr\ddot{r}}{R^{2}}-\frac{4Mr\dot{r}}{R^{3}}-\frac{2\dot{r}\ddot{r}}{R}.

The equations (24) and (20) allow us to replace the terms with a second derivative r¨\ddot{r}

(25) Δz=2R4[M2r2(1+M)+R2r˙2(1+M)2MRrr˙]ρ′′(d)d˙(2M2r2R32dR).\Delta z=\frac{2}{R^{4}}[M^{2}r^{2}(1+M)+R^{2}\dot{r}^{2}(1+M)-2MRr\dot{r}]-\rho^{\prime\prime}(d)\dot{d}\left(\frac{2M^{2}r^{2}}{R^{3}}-\frac{2d}{R}\right).

Now define

(26) s(R):=M2r2(1+M)+R2r˙2(1+M)2RMrr˙.s(R):=M^{2}r^{2}(1+M)+R^{2}\dot{r}^{2}(1+M)-2RMr\dot{r}.

Completion of the square, yields

s(R)=(MrRr˙)2+M3r2+MR2r˙20.s(R)=(Mr-R\dot{r})^{2}+M^{3}r^{2}+MR^{2}\dot{r}^{2}\geq 0.

To deal with the ‘ρ′′\rho^{\prime\prime}-terms’ of (25) we use the form (21) of d˙\dot{d} to obtain

(2M2r2R32dR)d˙=\displaystyle\left(\frac{2M^{2}r^{2}}{R^{3}}-\frac{2d}{R}\right)\dot{d}= (2M2r2R32dR)M[(Rr˙r)2+(M21)r2]R3+M2ρ′′(d)r2R\displaystyle\left(\frac{2M^{2}r^{2}}{R^{3}}-\frac{2d}{R}\right)\frac{M[(R\dot{r}-r)^{2}+(M^{2}-1)r^{2}]}{R^{3}+M^{2}\rho^{\prime\prime}(d)r^{2}R}
=\displaystyle= 2M2[M3r4(2M+M2)Rr3r˙+(2+M)R2r2r˙2R3rr˙3]R3(R3+M2ρ′′(d)r2R)\displaystyle\frac{2M^{2}[M^{3}r^{4}-(2M+M^{2})Rr^{3}\dot{r}+(2+M)R^{2}r^{2}\dot{r}^{2}-R^{3}r\dot{r}^{3}]}{R^{3}(R^{3}+M^{2}\rho^{\prime\prime}(d)r^{2}R)}

Denoting the expression in the brackets by t(R),t(R), i.e.

t(R):=M3r4(2M+M2)Rr3r˙+(2+M)R2r2r˙2R3rr˙3t(R):=M^{3}r^{4}-(2M+M^{2})Rr^{3}\dot{r}+(2+M)R^{2}r^{2}\dot{r}^{2}-R^{3}r\dot{r}^{3}

we get

Δz\displaystyle\Delta z =\displaystyle= 2sR4ρ′′(d)2M2tR3(R3+M2ρ′′(d)r2R)\displaystyle\frac{2s}{R^{4}}-\rho^{\prime\prime}(d)\frac{2M^{2}t}{R^{3}(R^{3}+M^{2}\rho^{\prime\prime}(d)r^{2}R)}
=\displaystyle= 2R4[R3s+ρ′′(d)M2R(r2st)]R3+M2ρ′′(d)r2R.\displaystyle\frac{2}{R^{4}}\frac{[R^{3}s+\rho^{\prime\prime}(d)M^{2}R(r^{2}s-t)]}{R^{3}+M^{2}\rho^{\prime\prime}(d)r^{2}R}.

Since ρ′′(d)0\rho^{\prime\prime}(d)\geq 0 the denominator is nonnegative and we know that s0,s\geq 0, therefore, the first term is nonnegative. To complete the proof it is enough to show that

(27) 2R4M2R(r2st)R3+M2ρ′′(d)r2R+cMz˙20.\displaystyle\frac{2}{R^{4}}\frac{M^{2}R(r^{2}s-t)}{R^{3}+M^{2}\rho^{\prime\prime}(d)r^{2}R}+c_{M}\dot{z}^{2}\geq 0.

In order to prove (27) we show the slightly stronger statement

(28) 2M2(r2st)+cMz˙2R60.\displaystyle 2M^{2}(r^{2}s-t)+c_{M}\dot{z}^{2}R^{6}\geq 0.

Assume that (28) holds, adding the nonnegative term cMz˙2R3(M2ρ′′(d)r2R)c_{M}\dot{z}^{2}R^{3}(M^{2}\rho^{\prime\prime}(d)r^{2}R) to the left hand side and dividing by R3(R3+M2ρ′′(d)r2R)R^{3}(R^{3}+M^{2}\rho^{\prime\prime}(d)r^{2}R) yields

2M2(r2st)+cMz˙2R3(R3+M2ρ′′(d)r2R)R3(R3+M2ρ′′(d)r2R)0,\frac{2M^{2}(r^{2}s-t)+c_{M}\dot{z}^{2}R^{3}(R^{3}+M^{2}\rho^{\prime\prime}(d)r^{2}R)}{R^{3}(R^{3}+M^{2}\rho^{\prime\prime}(d)r^{2}R)}\geq 0,

which agrees with (27). First we compute the quantities

z˙R6=M4r4+R4r˙4+(4M4+2M2)R2r2r˙24M4Rrr˙\dot{z}R^{6}=M^{4}r^{4}+R^{4}\dot{r}^{4}+(4M^{4}+2M^{2})R^{2}r^{2}\dot{r}^{2}-4M^{4}Rr\dot{r}

and

2M2(r2st)=2M4r42M2R2r2r˙2+2M2R3rr˙3+2M4Rr3r˙.2M^{2}(r^{2}s-t)=2M^{4}r^{4}-2M^{2}R^{2}r^{2}\dot{r}^{2}+2M^{2}R^{3}r\dot{r}^{3}+2M^{4}Rr^{3}\dot{r}.

Then (28) becomes

2M2(r2st)+cMz˙R6\displaystyle 2M^{2}(r^{2}s-t)+c_{M}\dot{z}R^{6}
=cMR4r˙4+(2+cM)M4r4+(4M4cM+2M2cM2M2)R2r2r˙2\displaystyle=c_{M}R^{4}\dot{r}^{4}+(2+c_{M})M^{4}r^{4}+(4M^{4}c_{M}+2M^{2}c_{M}-2M^{2})R^{2}r^{2}\dot{r}^{2}
+2M2(12cM)R3rr˙3+2M4(12cM)Rr3r˙\displaystyle\hskip 14.22636pt+2M^{2}(1-2c_{M})R^{3}r\dot{r}^{3}+2M^{4}(1-2c_{M})Rr^{3}\dot{r}
=(2cM12)(M5/4rM1/4Rr˙)4+(cM(2cM12)M)R4r˙4\displaystyle=\left(\frac{2c_{M}-1}{2}\right)(M^{5/4}r-M^{1/4}R\dot{r})^{4}+\left(c_{M}-\left(\frac{2c_{M}-1}{2}\right)M\right)R^{4}\dot{r}^{4}
+((2+cM)M4(2cM12)M5)r4\displaystyle\hskip 14.22636pt+\left((2+c_{M})M^{4}-\left(\frac{2c_{M}-1}{2}\right)M^{5}\right)r^{4}
(29) +(4M4cM+2M2cM2M26(2cM12)M3)R2r2r˙2.\displaystyle\hskip 14.22636pt+\left(4M^{4}c_{M}+2M^{2}c_{M}-2M^{2}-6\left(\frac{2c_{M}-1}{2}\right)M^{3}\right)R^{2}r^{2}\dot{r}^{2}.

In the last step we completed the quartic form. Note that (2cM12)=cMM=12(M1)0.\left(\frac{2c_{M}-1}{2}\right)=\frac{c_{M}}{M}=\frac{1}{2(M-1)}\geq 0. Furthermore, the coefficients satisfy

cM(2cM12)M=\displaystyle c_{M}-\left(\frac{2c_{M}-1}{2}\right)M= cM(cMM)M=0,\displaystyle c_{M}-\left(\frac{c_{M}}{M}\right)M=0,
(2+cM)M4(2cM12)M5=\displaystyle(2+c_{M})M^{4}-\left(\frac{2c_{M}-1}{2}\right)M^{5}= M4((2+cM)(cMM)M)=2M40.\displaystyle M^{4}\left((2+c_{M})-\left(\frac{c_{M}}{M}\right)M\right)=2M^{4}\geq 0.

The last coefficient in (29) is nonnegative if it satisfies the following condition

4M4cM+2M2cM2M26(2cM12)M3=\displaystyle 4M^{4}c_{M}+2M^{2}c_{M}-2M^{2}-6\left(\frac{2c_{M}-1}{2}\right)M^{3}= 4M4cM+2M2cM2M26cMM2\displaystyle 4M^{4}c_{M}+2M^{2}c_{M}-2M^{2}-6c_{M}M^{2}
=\displaystyle= 4M4cM4M2cM2M20\displaystyle 4M^{4}c_{M}-4M^{2}c_{M}-2M^{2}\geq 0

equivalently,

1(2M22)cM=M(2M222M2),\displaystyle 1\leq(2M^{2}-2)c_{M}=M\left(\frac{2M^{2}-2}{2M-2}\right),

which is true for all M,M\in\mathbb{N}, M2.M\geq 2. This finishes the proof since all terms in (29) are nonnegative yielding 2M2(r2st)+cMz˙R602M^{2}(r^{2}s-t)+c_{M}\dot{z}R^{6}\geq 0 and with the discussion above Δz+(M2(M1))ρ′′(d)z˙0\Delta z+(\frac{M}{2(M-1)})\rho^{\prime\prime}(d)\dot{z}\geq 0 in (0,1](0,1].∎

The latter statement now allows to control the behaviour close to the origin. Indeed, zz is monotonic close to 0.0. This gives constraints on the quantity Rr˙r,\frac{R\dot{r}}{r}, which will be useful later.

Lemma 2.5.

Let M,M\in\mathbb{N}, M2.M\geq 2. and rr solves the BVP (19).

Then there exists δ>0\delta>0 s.t. zz is monotone on (0,δ).(0,\delta). Assume, additionally, r>0r>0 in (0,δ).(0,\delta). Then one of the following conditions holds identically in (0,δ):(0,\delta):

(30) z˙0\displaystyle\dot{z}\geq 0\; equivalently 0<M2MM21Rr˙rM2+MM21,\displaystyle\mbox{equivalently}\;0<M^{2}-M\sqrt{M^{2}-1}\leq\frac{R\dot{r}}{r}\leq M^{2}+M\sqrt{M^{2}-1},
(31) z˙0\displaystyle\dot{z}\leq 0\; and(rR)>0or\displaystyle\mbox{and}\;\left(\frac{r}{R}\right)^{\cdot}>0\;\mbox{or}
(32) z˙0\displaystyle\dot{z}\leq 0\; and(rR)<0.\displaystyle\mbox{and}\;\left(\frac{r}{R}\right)^{\cdot}<0.
Proof.

By lemma 2.4 we know either that z(x)z(x) is constant, in which case the monotonicity is given, or zz does not attain a maximum in B{0}.B\setminus\{0\}. It follows that Rz(R)R\mapsto z(R) can only have one local minimum in (0,1],(0,1], and therefore z˙\dot{z} can only change sign once. Hence, there exists a δ>0\delta>0 s.t. Rz(R)R\mapsto z(R) is monotone on (0,δ).(0,\delta).

Suppose now that δ>0\delta>0 s.t.​ the above holds and r(R)>0r(R)>0 for all R(0,δ)R\in(0,\delta) and recall z=r˙22+M2r22R2+f(d).z=\frac{\dot{r}^{2}}{2}+\frac{M^{2}r^{2}}{2R^{2}}+f(d). Then the derivative of zz is given by

z˙=r˙r¨+M2rr˙R2M2r2R3+(f(d))\displaystyle\dot{z}=\dot{r}\ddot{r}+\frac{M^{2}r\dot{r}}{R^{2}}-\frac{M^{2}r^{2}}{R^{3}}+(f(d))^{\cdot}

Using the definition of ff we obtain

(f(d))=(ρ(d)dρ(d))=ρ(d)d˙+ρ′′(d)dd˙ρ(d)d˙=ρ′′(d)dd˙.(f(d))^{\cdot}=(\rho^{\prime}(d)d-\rho(d))^{\cdot}=\rho^{\prime}(d)\dot{d}+\rho^{\prime\prime}(d)d\dot{d}-\rho^{\prime}(d)\dot{d}=\rho^{\prime\prime}(d)d\dot{d}.

On the other hand, since rr is a strong solution to the ODE (10) in (0,1],(0,1], all derivatives exist in a strong sense. In particular,

M2rR+Mρ(d)r˙=\displaystyle\frac{M^{2}r}{R}+M\rho^{\prime}(d)\dot{r}= (Rr˙+Mρ(d)r)\displaystyle\left(R\dot{r}+M\rho^{\prime}(d)r\right)^{\cdot}
=\displaystyle= r˙+Rr¨+Mρ(d)r˙+Mρ′′(d)d˙r.\displaystyle\dot{r}+R\ddot{r}+M\rho^{\prime}(d)\dot{r}+M\rho^{\prime\prime}(d)\dot{d}r.

Rearranging the above equations and multiplying it by r˙R\frac{\dot{r}}{R} yields

(f(d))=ρ′′(d)dd˙=M2rr˙R2r˙2Rr˙r¨.(f(d))^{\cdot}=\rho^{\prime\prime}(d)d\dot{d}=\frac{M^{2}r\dot{r}}{R^{2}}-\frac{\dot{r}^{2}}{R}-\dot{r}\ddot{r}.

Therefore,

(33) z˙(R)=r2R3[(Rr˙r)22M2(Rr˙r)+M2].\displaystyle\dot{z}(R)=-\frac{r^{2}}{R^{3}}\left[\left(\frac{R\dot{r}}{r}\right)^{2}-2M^{2}\left(\frac{R\dot{r}}{r}\right)+M^{2}\right].

This polynomial of variable Rr˙r\frac{R\dot{r}}{r} has roots at λ±=M2±MM21.\lambda_{\pm}=M^{2}\pm M\sqrt{M^{2}-1}. It is negative between these roots and positive otherwise. In particular, if z˙0\dot{z}\geq 0 then , from (33), it follows that M2MM21Rr˙rM2+MM21,M^{2}-M\sqrt{M^{2}-1}\leq\frac{R\dot{r}}{r}\leq M^{2}+M\sqrt{M^{2}-1}, which agrees with (30). Now for (31) and (32) from z˙0\dot{z}\leq 0 on (0,δ)(0,\delta) it follows Rr˙rM2MM21<1\frac{R\dot{r}}{r}\leq M^{2}-M\sqrt{M^{2}-1}<1 or Rr˙rM2+MM21>1.\frac{R\dot{r}}{r}\geq M^{2}+M\sqrt{M^{2}-1}>1. Then the calculation

Rr˙r\displaystyle\frac{R\dot{r}}{r} \displaystyle\gtrless 1\displaystyle 1
r˙R\displaystyle\Rightarrow\frac{\dot{r}}{R} \displaystyle\gtrless rR2\displaystyle\frac{r}{R^{2}}
(rR)\displaystyle\Rightarrow\left(\frac{r}{R}\right)^{\cdot} =\displaystyle= r˙RrR20\displaystyle\frac{\dot{r}}{R}-\frac{r}{R^{2}}\gtrless 0

shows (31) and (32).∎

Up to this point we have narrowed down the number of possibilities, how dd and zz can behave close to 0,0, enough so that there are only a few cases left, which now can be treated individually. The shape of dd and zz will demand certain conditions on r,r, which can either be matched by rr or will lead to contradictions, excluding these cases. This will reduce the number of types even further and leaves only the following restrictive statement:

Lemma 2.6.

Let M,M\in\mathbb{N}, M2M\geq 2 and suppose rr solves the BVP (19). Then d(0)=0.d(0)=0. Moreover, one of the two situations occurs:
i) rr is lifting-off delayed, i.e. there exists, 0<δ<10<\delta<1 s.t. r0r\equiv 0 on [0,δ].[0,\delta]. Then rC([0,1]).r\in C^{\infty}([0,1]).
ii) rr is lifting-off immediately, i.e. r,r˙>0r,\dot{r}>0 away from zero. Then rC1([0,1])r\in C^{1}([0,1]) and r˙(0)=0.\dot{r}(0)=0.

Proof.

We show that only d(0)=0d(0)=0 is possible and either r0r\equiv 0 near zero or r>0r>0 away from zero and z˙0.\dot{z}\geq 0. All other situations are excluded by contraposition.

Recall, that limR0d(R)\lim\limits_{R\rightarrow 0}d(R) exists and agrees with d(0)d(0) due to continuity, which was proven in lemma 2.2. Also notice that lemma 2.5 guarantees that limR0z(R)\lim\limits_{R\rightarrow 0}z(R) makes sense, however the limit might be +.+\infty. In particular, we know 0limR0z(R)+0\leq\lim\limits_{R\rightarrow 0}z(R)\leq+\infty by the definition of zz and the behaviour of f.f.

1. Case: limR0d(R)=:l(0,).\lim\limits_{R\rightarrow 0}d(R)=:l\in(0,\infty).
By continuity of dd on (0,1](0,1] there exists δ>0\delta>0 s.t. rr˙>0r\dot{r}>0 on (0,δ)(0,\delta) implying r,r˙>0r,\dot{r}>0 on (0,δ)(0,\delta) (even on (0,1](0,1], by monotonicity).
First, assume limR0z(R)=+.\lim\limits_{R\rightarrow 0}z(R)=+\infty. In this case only z˙0\dot{z}\leq 0 near zero is possible implying rR\frac{r}{R} to be monotone on (0,δ).(0,\delta). The mean value theorem guarantees the existence of the two sequences Rj0R_{j}^{\prime}\rightarrow 0 and Rj(0,Rj)R_{j}\in(0,R_{j}^{\prime}) for any jj\in\mathbb{N} s.t.

(34) limjr˙(Rj)=limjr(Rj)Rj=:m.\lim\limits_{j\rightarrow\infty}\dot{r}(R_{j})=\lim\limits_{j\rightarrow\infty}\frac{r(R_{j}^{\prime})}{R_{j}^{\prime}}=:m.

By lemma 2.5 we know that there are two different cases, either r˙>rR\dot{r}>\frac{r}{R} or r˙<rR\dot{r}<\frac{r}{R} on (0,δ).(0,\delta). In the first case by r˙>rR\dot{r}>\frac{r}{R} and (34) we have

l=limjd(Rj)=limjMr˙(Rj)r(Rj)RjlimjMr2(Rj)Rj2=Mm2.l=\lim\limits_{j\rightarrow\infty}d(R_{j}^{\prime})=\lim\limits_{j\rightarrow\infty}\frac{M\dot{r}(R_{j}^{\prime})r(R_{j}^{\prime})}{R_{j}^{\prime}}\geq\lim\limits_{j\rightarrow\infty}M\frac{r^{2}(R_{j}^{\prime})}{R_{j}^{\prime 2}}=Mm^{2}.

Hence, we know mlM<+m\leq\sqrt{\frac{l}{M}}<+\infty and together with the property r˙>rR\dot{r}>\frac{r}{R} on (0,δ)(0,\delta) it holds

limjz(Rj)=limj[r˙2(Rj)2+M2r2(Rj)2Rj2+f(d(Rj))][1M+M]l2+f(d(l))<+,\lim\limits_{j\rightarrow\infty}z(R_{j})=\lim\limits_{j\rightarrow\infty}\left[\frac{\dot{r}^{2}(R_{j})}{2}+\frac{M^{2}r^{2}(R_{j})}{2R_{j}^{2}}+f(d(R_{j}))\right]\leq\left[\frac{1}{M}+M\right]\frac{l}{2}+f(d(l))<+\infty,

contradicting limR0z(R)=+.\lim\limits_{R\rightarrow 0}z(R)=+\infty.

In the 2nd case, that is r˙<rR\dot{r}<\frac{r}{R} on (0,δ),(0,\delta), it holds

l=limjd(Rj)=limjMr˙(Rj)r(Rj)RjlimjMr˙2(Rj)=Mm2.l=\lim\limits_{j\rightarrow\infty}d(R_{j})=\lim\limits_{j\rightarrow\infty}\frac{M\dot{r}(R_{j})r(R_{j})}{R_{j}}\geq\lim\limits_{j\rightarrow\infty}M\dot{r}^{2}(R_{j})=Mm^{2}.

Again mlM<+m\leq\sqrt{\frac{l}{M}}<+\infty and together with the property r˙<rR\dot{r}<\frac{r}{R} on (0,δ)(0,\delta) we have

limjz(Rj)=limj[r˙2(Rj)2+M2r2(Rj)2Rj2+f(d(Rj))][1M+M]l2+f(d(l))<+,\lim\limits_{j\rightarrow\infty}z(R_{j}^{\prime})=\lim\limits_{j\rightarrow\infty}\left[\frac{\dot{r}^{2}(R_{j}^{\prime})}{2}+\frac{M^{2}r^{2}(R_{j}^{\prime})}{2R_{j}^{\prime 2}}+f(d(R_{j}^{\prime}))\right]\leq\left[\frac{1}{M}+M\right]\frac{l}{2}+f(d(l))<+\infty,

contradicting limR0z(R)=+.\lim\limits_{R\rightarrow 0}z(R)=+\infty.

Now assume the limit exists, i.e. limR0z(R)=:n[0,).\lim\limits_{R\rightarrow 0}z(R)=:n\in[0,\infty). For the sake of contradiction we show that the right limit of r˙\dot{r} exists in 0 and that it is nonzero.
Introduce the new variables ν1(R):=r˙(R)\nu_{1}(R):=\dot{r}(R) and ν2(R):=Mr(R)R.\nu_{2}(R):=\frac{Mr(R)}{R}. Then we can interpret the functions dd and zz as functions depending on these new variables d(ν1,ν2)=ν1ν2d(\nu_{1},\nu_{2})=\nu_{1}\nu_{2} and z(ν1,ν2)=ν122+ν222+f(ν1ν2)z(\nu_{1},\nu_{2})=\frac{\nu_{1}^{2}}{2}+\frac{\nu_{2}^{2}}{2}+f(\nu_{1}\nu_{2}) on the set 𝒱={(ν1,ν2):ν1>0,ν2>0}.\mathcal{V}=\{(\nu_{1},\nu_{2}):\nu_{1}>0,\nu_{2}>0\}.
Consider

K:={(ν1,ν2):l2d2l}{(ν1,ν2):s1zs+1}K:=\{(\nu_{1},\nu_{2}):\frac{l}{2}\leq d\leq 2l\}\cap\{(\nu_{1},\nu_{2}):s-1\leq z\leq s+1\}

here l>0l>0 and s>1s>1 are parameters, in particular, ss is not the function introduced in (26). KK is a compact subset of 𝒱\mathcal{V} due to the continuity of dd and z.z. In particular, {d=l}{z=s}\{d=l\}\cap\{z=s\} consists of at most two points {(a,b),(b,a)}𝒱.\{(a,b),(b,a)\}\subset\mathcal{V}.
Now again by the continuity of rr and r˙\dot{r} we know that for all ε>0\varepsilon>0 there exists R0(ε)>0R_{0}(\varepsilon)>0 s.t. for all 0<R<R0,0<R<R_{0}, (ν1(R),ν2(R))Bε(a,b)Bε(b,a)K.(\nu_{1}(R),\nu_{2}(R))\in B_{\varepsilon}(a,b)\cup B_{\varepsilon}(b,a)\subset K. Now we need to show that R(ν1(R),ν2(R))R\mapsto(\nu_{1}(R),\nu_{2}(R)) remains in one of these balls for all 0<R<R0.0<R<R_{0}. If a=ba=b this is immediately true. So suppose ab.a\not=b. Then we can choose ε>0\varepsilon>0 so small that the balls become disjoint, i.e. Bε(a,b)Bε(b,a)=.B_{\varepsilon}(a,b)\cup B_{\varepsilon}(b,a)=\emptyset. Recall that rC((0,1])r\in C^{\infty}((0,1]) therefore, the curve R(ν1(R),ν2(R))=(r˙(R),Mr(R)R)R\mapsto(\nu_{1}(R),\nu_{2}(R))=(\dot{r}(R),\frac{Mr(R)}{R}) is connected and remains in one ball, say Bε(a,b).B_{\varepsilon}(a,b). Since ε>0\varepsilon>0 was arbitrary, we see that

limR0r˙(R)=a(0,+)\displaystyle\lim\limits_{R\rightarrow 0}\dot{r}(R)=a\in(0,+\infty)

Hence, rC1([0,1])r\in C^{1}([0,1]) and r˙(0)>0.\dot{r}(0)>0.

Consider the rescaled function rε(R):=ε1r(εR)r_{\varepsilon}(R):=\varepsilon^{-1}r(\varepsilon R) for 0<ε<10<\varepsilon<1 with the derivatives r˙ε(R)=r˙(εR)\dot{r}_{\varepsilon}(R)=\dot{r}(\varepsilon R) and r¨ε(R)=εr¨(εR)\ddot{r}_{\varepsilon}(R)=\varepsilon\ddot{r}(\varepsilon R) for all R(0,1].R\in(0,1]. Since rr solves the ODE (10) strongly in (0,1)(0,1) so does the rescaled version. Indeed note that

drε(R)=\displaystyle d_{r_{\varepsilon}}(R)= Mrε(R)r˙ε(R)R=Mr(εR)r˙(εR)εR=dr(εR)and\displaystyle\frac{Mr_{\varepsilon}(R)\dot{r}_{\varepsilon}(R)}{R}=\frac{Mr(\varepsilon R)\dot{r}(\varepsilon R)}{\varepsilon R}=d_{r}(\varepsilon R)\;\;\mbox{and}
d˙rε(R)=\displaystyle\dot{d}_{r_{\varepsilon}}(R)= (dr(εR))=εd˙r(εR).\displaystyle(d_{r}(\varepsilon R))^{\cdot}=\varepsilon\dot{d}_{r}(\varepsilon R).

Hence,

r˙ε(R)+Rr¨ε(R)+Mρ′′(drε(R))d˙rε(R)rε(R)M2rε(R)R=\displaystyle\dot{r}_{\varepsilon}(R)+R\ddot{r}_{\varepsilon}(R)+M\rho^{\prime\prime}(d_{r_{\varepsilon}}(R))\dot{d}_{r_{\varepsilon}}(R)r_{\varepsilon}(R)-\frac{M^{2}r_{\varepsilon}(R)}{R}=
=r˙(εR)+(εR)r¨(εR)+Mρ′′(dr(εR))εd˙r(εR)ε1r(εR)M2r(εR)εR=0.\displaystyle=\dot{r}(\varepsilon R)+(\varepsilon R)\ddot{r}(\varepsilon R)+M\rho^{\prime\prime}(d_{r}(\varepsilon R))\varepsilon\dot{d}_{r}(\varepsilon R)\varepsilon^{-1}r(\varepsilon R)-\frac{M^{2}r(\varepsilon R)}{\varepsilon R}=0.

where the last equality holds since it agrees with the strong form of the ODE (10) evaluated at εR.\varepsilon R.
Now if ε0,\varepsilon\rightarrow 0, then the rescaled function rεr_{\varepsilon} converges uniformly to the linear map r0(R):=aRr_{0}(R):=aR, i.e. rεaRr_{\varepsilon}\rightarrow aR and r˙εa\dot{r}_{\varepsilon}\rightarrow a uniformly in [0,1].[0,1]. But then the weak form of the ODE of rεr_{\varepsilon} converges to the weak form of r0:r_{0}:

0\displaystyle 0 =\displaystyle= limε001g˙(r˙εR+Mρ(drε)rε)+g(M2rεR+Mρ(drε)r˙ε)dR\displaystyle\lim\limits_{\varepsilon\rightarrow 0}\int\limits_{0}^{1}{\dot{g}\left(\dot{r}_{\varepsilon}R+M\rho^{\prime}(d_{r_{\varepsilon}})r_{\varepsilon}\right)+g\left(\frac{M^{2}r_{\varepsilon}}{R}+M\rho^{\prime}(d_{r_{\varepsilon}})\dot{r}_{\varepsilon}\right)\;dR}
=\displaystyle= 01g˙(r˙0(R)R+Mρ(dr0)r0)+g(M2r0R+Mρ(dr0)r˙0)dR.\displaystyle\int\limits_{0}^{1}{\dot{g}\left(\dot{r}_{0}(R)R+M\rho^{\prime}(d_{r_{0}})r_{0}\right)+g\left(\frac{M^{2}r_{0}}{R}+M\rho^{\prime}(d_{r_{0}})\dot{r}_{0}\right)\;dR}.

Therefore, r0r_{0} is a weak solution to the ODE (10). Since r0r_{0} is smooth it also needs to satisfy (23), which is not true since plugging r0r_{0} into (23) yields

M2a=a,M^{2}a=a,

which is not satisfied since M2,a>0.M\geq 2,\;a>0.

2. Case: limR0d(R)=0.\lim\limits_{R\rightarrow 0}d(R)=0.
There are only two possible scenarios: Either r0r\equiv 0 in [0,δ][0,\delta] or r>0r>0 in (0,δ).(0,\delta).

If r0r\equiv 0 near zero then r˙0\dot{r}\equiv 0 in (0,δ](0,\delta] and we can easily see r˙(0)=0\dot{r}(0)=0 and r˙C1([0,1]).\dot{r}\in C^{1}([0,1]). Moreover, this argument works for all derivatives of rr yielding rC([0,1]).r\in C^{\infty}([0,1]).

Assume instead that rr lifts-off immediately, i.e. there exists δ>0\delta>0 s.t. r>0r>0 on (0,δ).(0,\delta). Then lemma 2.5 holds, assume first z˙0.\dot{z}\leq 0. Again, rR\frac{r}{R} is monotone on (0,δ)(0,\delta) and the mean value theorem implies the existence of of the two sequences Rj0R_{j}^{\prime}\rightarrow 0 and Rj(0,Rj)R_{j}\in(0,R_{j}^{\prime}) for any jj\in\mathbb{N} s.t.

limjr˙(Rj)=limjr(Rj)Rj=:m.\lim\limits_{j\rightarrow\infty}\dot{r}(R_{j})=\lim\limits_{j\rightarrow\infty}\frac{r(R_{j}^{\prime})}{R_{j}^{\prime}}=:m.

Assume now r˙>rR\dot{r}>\frac{r}{R} on (0,δ).(0,\delta). Then

0=limR0d(R)=limjMr˙(Rj)r(Rj)RjlimjMr2(Rj)Rj2=Mm2.0=\lim\limits_{R\rightarrow 0}d(R)=\lim\limits_{j\rightarrow\infty}\frac{M\dot{r}(R_{j}^{\prime})r(R_{j}^{\prime})}{R_{j}^{\prime}}\geq\lim\limits_{j\rightarrow\infty}\frac{Mr^{2}(R_{j}^{\prime})}{R_{j}^{\prime 2}}=Mm^{2}.

Hence, m=0.m=0. Now, by r˙>rR\dot{r}>\frac{r}{R} on (0,δ)(0,\delta) we get r˙(Rj)0\dot{r}(R_{j})\rightarrow 0 and r(Rj)Rj0\frac{r(R_{j})}{R_{j}}\rightarrow 0 and therefore limR0d(Rj)=0\lim\limits_{R\rightarrow 0}d(R_{j})=0 if j.j\rightarrow\infty. This yields

limjz(Rj)=limj[r˙2(Rj)2+M2r2(Rj)2Rj2+f(d(Rj))]=0.\lim\limits_{j\rightarrow\infty}z(R_{j})=\lim\limits_{j\rightarrow\infty}\left[\frac{\dot{r}^{2}(R_{j})}{2}+\frac{M^{2}r^{2}(R_{j})}{2R_{j}^{2}}+f(d(R_{j}))\right]=0.

Since z0z\geq 0 and by assumption z˙0\dot{z}\leq 0 on [0,δ)[0,\delta) we have z=0z=0 on [0,δ).[0,\delta). By the non-negativity of d0d\geq 0 and f(d)0f(d)\geq 0 (following from f(0)=0f(0)=0 and recalling (f(d))=ρ′′(d)dd˙0(f(d))^{\cdot}=\rho^{\prime\prime}(d)d\dot{d}\geq 0) we finally know that r=r˙=0r=\dot{r}=0 on [0,δ),[0,\delta), contradicting the assumption that rr lifts off immediately. One can argue similarly in the case when r˙<rR\dot{r}<\frac{r}{R} on (0,δ).(0,\delta).

Finally, assume z˙0.\dot{z}\geq 0. Then (30)(\ref{eq:3.23a}) holds, i.e. r˙rR\dot{r}\sim\frac{r}{R} on (0,δ).(0,\delta). Since d(R)0d(R)\rightarrow 0 for R0R\rightarrow 0

r˙(0)=limR0r˙(R)=limR0r(R)R=0\dot{r}(0)=\lim\limits_{R\rightarrow 0}\dot{r}(R)=\lim\limits_{R\rightarrow 0}\frac{r(R)}{R}=0

and again rC1([0,1])r\in C^{1}([0,1]) with r˙(0)=0.\dot{r}(0)=0.

We end this paragraph by showing that the constructed maps u=reMRu=re_{MR} s.t. rr solves the BVP (19) are stationary points of the functional (1).

Lemma 2.7.

Let u𝒜rMu\in\mathcal{A}_{r}^{M} with u=reMθu=re_{M\theta} s.t. rr solves the BVP (19). Then uu solves the ELE (6) weakly, i.e.

BξW(u)φdx=0for allφCc(B,2).\int\limits_{B}{\nabla_{\xi}W(\nabla u)\cdot\nabla\varphi\;dx}=0\;\;\mbox{for all}\;\;\varphi\in C_{c}^{\infty}(B,\mathbb{R}^{2}).
Proof.

Lemma 3.6 of [4] applies and shows that uu solves the ELE strongly in B{0},B\setminus\{0\}, this can be reformulated in the following sense, uu satisfies

BξW(u)φdx=0\int\limits_{B}{\nabla_{\xi}W(\nabla u)\cdot\nabla\varphi\;dx}=0

for all φCc(B,2)\varphi\in C_{c}^{\infty}(B,\mathbb{R}^{2}) with φ0\varphi\equiv 0 near the origin.
Now we can follow the strategy of Theorem 3.11 in [4] to upgrade this to arbitrary test functions. For this sake, take ηεC(B)\eta_{\varepsilon}\in C^{\infty}(B) s.t. ηε0\eta_{\varepsilon}\equiv 0 on BεB_{\varepsilon} and ηε1\eta_{\varepsilon}\equiv 1 on BB2ε,B\setminus B_{2\varepsilon}, 0ηε10\leq\eta_{\varepsilon}\leq 1 and there exists c>0c>0 s.t. |ηε|cε.|\nabla\eta_{\varepsilon}|\leq\frac{c}{\varepsilon}. Take an arbitrary test function ψCc(B,2)\psi\in C_{c}^{\infty}(B,\mathbb{R}^{2}) and set φ=ηεψ\varphi=\eta_{\varepsilon}\psi then φ\varphi vanishes close to the origin. Hence,

0\displaystyle 0 =BξW(u)φdx\displaystyle=\int\limits_{B}{\nabla_{\xi}W(\nabla u)\cdot\nabla\varphi\;dx}
=BξW(u)ηεψdx+BξW(u)(ηεψ)𝑑x\displaystyle=\int\limits_{B}{\nabla_{\xi}W(\nabla u)\cdot\eta_{\varepsilon}\nabla\psi\;dx}+\int\limits_{B}{\nabla_{\xi}W(\nabla u)\cdot(\nabla\eta_{\varepsilon}\otimes\psi)\;dx}

Then the first integral converges:

limε0BξW(u)ηεψdx=BξW(u)ψdx\lim\limits_{\varepsilon\rightarrow 0}\int\limits_{B}{\nabla_{\xi}W(\nabla u)\cdot\eta_{\varepsilon}\nabla\psi\;dx}=\int\limits_{B}{\nabla_{\xi}W(\nabla u)\cdot\nabla\psi\;dx}

by dominated convergence. Since, uC0\nabla u\in C^{0} there exists C>0C>0 s.t. ξW(u)C0C.\|\nabla_{\xi}W(\nabla u)\|_{C^{0}}\leq C. Then

|BξW(u)(ηεψ)𝑑x|CψC0B|ηε|𝑑xCεψC02(B2ε)\left|\int\limits_{B}{\nabla_{\xi}W(\nabla u)\cdot(\nabla\eta_{\varepsilon}\otimes\psi)\;dx}\right|\leq C\|\psi\|_{C^{0}}\int\limits_{B}{|\nabla\eta_{\varepsilon}|\;dx}\leq\frac{C}{\varepsilon}\|\psi\|_{C^{0}}\mathcal{L}^{2}(B_{2\varepsilon})

Hence, the second integral vanishes for ε0\varepsilon\rightarrow 0 and

BξW(u)ψdx=0\int\limits_{B}{\nabla_{\xi}W(\nabla u)\cdot\nabla\psi\;dx}=0

holds for every ψCc(B,2).\psi\in C_{c}^{\infty}(B,\mathbb{R}^{2}).

3. Advanced BOP-theory

In the following, we want to investigate if these stationary points are even more regular. A first step in that direction is the next lemma. This has been observed for the BOP-case by Yan and Bevan, see [8, Lem 3.(i)] and [32, Lem 1.(i)].

Lemma 3.1.

Let M,M\in\mathbb{N}, M1M\geq 1 and suppose rr solves the BVP (19). Then
(i) lim infR0r¨(R)0\liminf\limits_{R\rightarrow 0}\ddot{r}(R)\geq 0 and
(ii) limR0r¨(R)R=0.\lim_{R\rightarrow 0}\ddot{r}(R)R=0.

Proof.

(i) Assume not, then lim infR0r¨(R)<0.\liminf\limits_{R\rightarrow 0}\ddot{r}(R)<0. But then there exits a small interval s.t. r¨<0\ddot{r}<0 on (0,δ).(0,\delta). By the mean value theorem it follows the existence of some ξ(0,δ)\xi\in(0,\delta) , s.t.

0>r¨(ξ)=r˙(δ)δ0,0>\ddot{r}(\xi)=\frac{\dot{r}(\delta)}{\delta}\geq 0,

which is a contradiction.
(ii) Recall the ODE

r¨(R)R=M2rRr˙Mρ′′(d)d˙r\ddot{r}(R)R=\frac{M^{2}r}{R}-\dot{r}-M\rho^{\prime\prime}(d)\dot{d}r

Then

0lim infR0r¨(R)Rlim supR0r¨(R)Rlim supR0M2r(R)R=0.0\leq\liminf\limits_{R\rightarrow 0}{\ddot{r}(R)R}\leq\limsup\limits_{R\rightarrow 0}{\ddot{r}(R)R}\leq\limsup\limits_{R\rightarrow 0}{\frac{M^{2}r(R)}{R}}=0.

This shows the second claim. ∎

3.1. Delayed lift-off solution for arbitrary ρ\rho

From now on, we will distinguish between the different shapes of the solutions to the BVP (19). For this recall, that rr is an immediate lift-off solution if r,r˙>0r,\dot{r}>0 away from zero. We will denote such solutions by r0,r_{0}, while we will call delayed lift-off solutions by rδr_{\delta} for 0<δ<1.0<\delta<1. As a reminder, rδr_{\delta} is a delayed lift-off solution if there is 0<δ<10<\delta<1 s.t. r0r\equiv 0 on [0,δ].[0,\delta]. The δ\delta indicates the point such that rδ0r_{\delta}\equiv 0 in [0,δ][0,\delta] but also rδ(R)>0r_{\delta}(R)>0 for all R(δ,1].R\in(\delta,1]. The first statement will be that an immediate lift-off solution rδr_{\delta} is zero up to δ\delta and that it needs to solve the BVP (37) below. This fact will be crucial for the uniqueness result in lemma 3.3.

Lemma 3.2.

Let 0<γ<.0<\gamma<\infty. If for some δ>0,\delta>0, rδr_{\delta} solves the BVP (19) then

rδ(R)={0in(0,δ],r~δ,0in(δ,1],r_{\delta}(R)=\left\{\begin{array}[]{ccc}0&{\mbox{in}}&(0,\delta],\\ \tilde{r}_{\delta,0}&{\mbox{in}}&(\delta,1],\end{array}\right.

where r~δ,0C((δ,1))C0([δ,1])\tilde{r}_{\delta,0}\in C^{\infty}((\delta,1))\cap C^{0}([\delta,1]) is the unique solution of

(37) {Lr=Mρ′′(d)d˙rin(δ,1),r(δ)=0,r(1)=1.\displaystyle\left\{\begin{array}[]{ccc}Lr=M\rho^{\prime\prime}(d)\dot{d}r&{\mbox{in}}&(\delta,1),\\ r(\delta)=0,&r(1)=1.&\end{array}\right.
Proof.

Assume rδr_{\delta} is a solution to the BVP (19). Then, rδ=0r_{\delta}=0 on [0,δ][0,\delta] by definition and rδ|[δ,1]C([δ,1])r_{\delta}|_{[\delta,1]}\in C^{\infty}([\delta,1]) is the unique solution to

{Lr=Mρ′′(d)d˙rin(δ,1),r(k)(δ)=0for allk,r(1)=1\left\{\begin{array}[]{ccc}Lr=M\rho^{\prime\prime}(d)\dot{d}r&{\mbox{in}}&(\delta,1),\\ r^{(k)}(\delta)=0\;\;\mbox{for all}\;\;k\in\mathbb{N},&r(1)=1&\end{array}\right.

Hence, rδ|[δ,1]r_{\delta}|_{[\delta,1]} solves (37).∎

Furthermore, we demonstrate that such a solution, if it exists, needs to be unique.

Lemma 3.3.

Let 0<γ<.0<\gamma<\infty. Assume there exists a solution to the BVP (19) of the form rδr_{\delta}, δ>0.\delta>0. Then there exists a unique δ>0\delta>0 in the sense that

rδ(R)={0in(0,δ],r~δ,0in(δ,1]r_{\delta}(R)=\left\{\begin{array}[]{ccc}0&{\mbox{in}}&(0,\delta],\\ \tilde{r}_{\delta,0}&{\mbox{in}}&(\delta,1]\end{array}\right.

and r~δ,0\tilde{r}_{\delta,0} lifts off immediately, i.e. r~δ,0(R)>0\tilde{r}_{\delta,0}(R)>0 for all R(δ,1].R\in(\delta,1].

Proof.

We can always choose δ\delta to be maximal in the sense that rδ0r_{\delta}\equiv 0 on [0,δ][0,\delta] and r~δ,0\tilde{r}_{\delta,0} lifts off immediately. For the uniqueness assume that rδr_{\delta} and rδr_{\delta^{\prime}} are two solutions to (19) for 0<δδ<10<\delta\leq\delta^{\prime}<1. Then both need to satisfy

{Lr=Mρ′′(d)d˙rin(δ,1),r(δ)=0,r(1)=1.\left\{\begin{array}[]{ccc}Lr=M\rho^{\prime\prime}(d)\dot{d}r&{\mbox{in}}&(\delta,1),\\ r(\delta)=0\;,&r(1)=1.&\end{array}\right.

The Picard-Lindelöf Theorem111see, [31] Theorem 2.5, Corollary 2.6. yields, rδrδr_{\delta}\equiv r_{\delta^{\prime}} on [δ,1][\delta,1], trivially on the complete interval [0,1].[0,1]. Hence, δ=δ\delta=\delta^{\prime} by maximality.∎

Conclusion: For arbitrary behaviour of ρ\rho and 0<γ<0<\gamma<\infty the above discussion shows that (smooth) delayed lift-off solutions to the BVP (19) either do not exist or there is at most one. The latter lemma shows that the representation and δ\delta may vary, but the solution remains the same.

3.2. Delayed lift-off ρ\rho

Lets assume ρ\rho itself is a delayed lift-off function, i.e. there exists s~>0\tilde{s}>0 s.t. ρ0\rho\equiv 0 on [0,s~][0,\tilde{s}]. Since, d(0)=0d(0)=0 and dd is continuous there exists a small interval [0,δ)[0,\delta) s.t. Rρ(d(R))0.R\mapsto\rho(d(R))\equiv 0. So the ρ\rho-term of the considered functional (1) vanishes reducing the functional to the Dirichlet energy, at least close to the origin. It is then well known, that stationary points to the Dirichlet energy are harmonic functions and therefore smooth. Giving hope, that in case of a delayed lift-off ρ,\rho, all solutions are indeed smooth. The following result states that this is exactly true. Notice, that it will be enough to consider immediate lift-off solutions r0r_{0} since, by the previous discussion, we already know that delayed lift-off solutions have to be smooth.

Lemma 3.4.

Let 0<γ<0<\gamma<\infty and assume there exists s~>0\tilde{s}>0 s.t. ρ(s)=0\rho(s)=0 for all s[0,s~]s\in[0,\tilde{s}] and ρ(s)>0\rho(s)>0 for all s>s~.s>\tilde{s}. Further suppose there exists a solution of the BVP (19) of the form r0.r_{0}.
If r0r_{0} solves (19) then there exists a unique δ=δ(s~,r0,r˙0)>0\delta=\delta(\tilde{s},r_{0},\dot{r}_{0})>0 and some 0<a<10<a<1 s.t.

(40) r0(R)={a(Rδ)Min(0,δ],r~δ,ain(δ,1]\displaystyle r_{0}(R)=\left\{\begin{array}[]{ccc}a\left(\frac{R}{\delta}\right)^{M}&{\mbox{in}}&(0,\delta],\\ \tilde{r}_{\delta,a}&{\mbox{in}}&(\delta,1]\end{array}\right.

and r~δ,a\tilde{r}_{\delta,a} the unique smooth solution of

(43) {Lr=Mρ′′(d)d˙rin(δ,1),r(δ)=a,r(1)=1.\displaystyle\left\{\begin{array}[]{ccc}Lr=M\rho^{\prime\prime}(d)\dot{d}r&{\mbox{in}}&(\delta,1),\\ r(\delta)=a,&r(1)=1.&\end{array}\right.

and r~δ,a\tilde{r}_{\delta,a} is not in the kernel of LL for at least a short period of time, i.e. there exists ε>0\varepsilon>0 s.t. Lr~δ,a(R)>0L\tilde{r}_{\delta,a}(R)>0 for all R(δ,δ+ε].R\in(\delta,\delta+\varepsilon]. Moreover, (a(Rδ)M)(k)(δ)=r~δ,a(k)(δ)(a\left(\frac{R}{\delta}\right)^{M})^{(k)}(\delta)=\tilde{r}_{\delta,a}^{(k)}(\delta) for all k.k\in\mathbb{N}.

Proof.

Since d(0)=0d(0)=0 and dC([0,1])d\in C([0,1]) and the delay of ρ\rho there exists a unique δ=δ(s~,r0,r˙0)>0\delta=\delta(\tilde{s},r_{0},\dot{r}_{0})>0 s.t. Rρ(d(R))0R\mapsto\rho(d(R))\equiv 0 for all R[0,δ]R\in[0,\delta] and ρ(d(R))>0\rho(d(R))>0 for all R>δ.R>\delta. Then d(R)>0d(R)>0 for δ<R1\delta<R\leq 1 and there exists an ε>0\varepsilon>0 s.t. d˙(R)>0\dot{d}(R)>0 for R(δ,δ+ε].R\in(\delta,\delta+\varepsilon]. Hence, Lr~δ,a(R)=Mρ′′(d)d˙r>0L\tilde{r}_{\delta,a}(R)=M\rho^{\prime\prime}(d)\dot{d}r>0 for R(δ,δ+ε].R\in(\delta,\delta+\varepsilon]. Then r0r_{0} needs to solve the following ODE

{Lr=0in(0,δ),r(0)=0,r(δ)=a\left\{\begin{array}[]{ccc}Lr=0&{\mbox{in}}&(0,\delta),\\ r(0)=0,&r(\delta)=a&\end{array}\right.

for some 0<a<1.0<a<1. Indeed aa can not exceed 11 (a>1)(a>1) since r˙0\dot{r}\geq 0 and r(1)=1.r(1)=1. If a=1a=1 then r1r\equiv 1 in [δ,1][\delta,1] implying d0d\equiv 0 in [0,1],[0,1], a contradiction. a=0a=0 is excluded by the assumption that the solution r0r_{0} is an immediate lift-off function.
Then r0|[δ,1]r_{0}|_{[\delta,1]} solves (LABEL:eq:3.3.5) uniquely and r0r_{0} takes the form (40). Since r0C((0,1])r_{0}\in C^{\infty}((0,1]) all derivatives of r0r_{0} need to agree at δ,\delta, i.e. (a(Rδ)M)(k)(δ)=r~δ,a(k)(δ)(a\left(\frac{R}{\delta}\right)^{M})^{(k)}(\delta)=\tilde{r}_{\delta,a}^{(k)}(\delta) for all k.k\in\mathbb{N}.

Remark 3.5.

By construction δ\delta depends not only on s~\tilde{s} but also on r0,r˙0r_{0},\dot{r}_{0}. For every r0r_{0} the δ\delta may vary, destroying any chance for a uniqueness result similar to Lemma 3.3.

Conclusion: We can not guarantee the existence of solutions to the ODE of the form r0.r_{0}. But if they exist, they have to be smooth. Moreover, combining this with our knowledge of delayed-lift off solutions, we are able to conclude that in case of a delayed ρ\rho all stationary points in the class 𝒜rM\mathcal{A}_{r}^{M} are smooth.

3.3. Immediate lift-off ρ\rho

If ρ\rho is an immediate lift-off function (ρ(s)>0\rho(s)>0 for all s>0s>0), then we are not (yet) able to show, that r0r_{0} solutions need to be any smoother then C1.C^{1}. However, as a next statement we show that under the additional assumption u=r0eMRW2,2(B¯,2)u=r_{0}e_{MR}\in W^{2,2}(\overline{B},\mathbb{R}^{2}) full smoothness of r,dr,d, and uu can be obtained. Additionally, we then describe a necessary condition (44), which needs to be satisfied for any smooth enough r0.r_{0}. As a consequence, the limit of the quantity Rr˙0r0\frac{R\dot{r}_{0}}{r_{0}} if RR tends to 0,0, playing a key role in lemma 2.5, can then finally be determined.

Lemma 3.6.

(Higher-order regularity) Let 0<γ<0<\gamma<\infty and ρ(d)>0\rho(d)>0 for all d>0.d>0. Assume there exists a solution to the BVP (19) of the form r0r_{0} and assume u=r0eMRW2,2(B¯,2).u=r_{0}e_{MR}\in W^{2,2}(\overline{B},\mathbb{R}^{2}).

Then r0C([0,1]),r_{0}\in C^{\infty}([0,1]), the corresponding dC([0,1]),d\in C^{\infty}([0,1]), and u=r0eMRC(B¯,2).u=r_{0}e_{MR}\in C^{\infty}(\overline{B},\mathbb{R}^{2}). In particular, it holds that r0C1,α([0,1])r_{0}\in C^{1,\alpha}([0,1]) for any α(0,1)\alpha\in(0,1) and there exists δ>0\delta>0 s.t.

(44) M2Cα,Mρ′′(dr0)R2αRr˙0r0+R2r¨0r0<M2for allR(0,δ)M^{2}-C_{\alpha,M}\rho^{\prime\prime}(d_{r_{0}})R^{2\alpha}\leq\frac{R\dot{r}_{0}}{r_{0}}+\frac{R^{2}\ddot{r}_{0}}{r_{0}}<M^{2}\;\;\mbox{for all}\;\;R\in(0,\delta)

and as a consequence we have

DM:=limR0Rr˙0r0=M.D_{M}:=\lim\limits_{R\rightarrow 0}\frac{R\dot{r}_{0}}{r_{0}}=M.
Proof.

In the following we will suppress r0r_{0} in favour of r.r.

By the higher-order regularity result [17, Thm 1.4] we know that u=reMRW2,2(B¯,2)u=re_{MR}\in W^{2,2}(\overline{B},\mathbb{R}^{2}) and dC1([0,1]),d\in C^{1}([0,1]), is enough to imply full local smoothness u=reMRCloc(B,2)u=re_{MR}\in C_{loc}^{\infty}(B,\mathbb{R}^{2}) which guarantees smoothness at the origin, the smoothness can then be extended by limit taking of r,r, dd and their derivatives up to the harmless boundary at R=1,R=1, showing the claim.

Now for the second part of the statement we first note that ρ(d)>0\rho(d)>0 for all d>0d>0 implies that there exists a δ>0\delta>0 s.t. Rρ′′(d(R))>0R\mapsto\rho^{\prime\prime}(d(R))>0 for all R(0,δ).R\in(0,\delta). This yields

(45) 0<Mρ′′(d)=Lrd˙r,on(0,δ).0<M\rho^{\prime\prime}(d)=\frac{Lr}{\dot{d}r},\;\;\mbox{on}\;\;(0,\delta).

Since, r,r˙>0r,\dot{r}>0 in (0,1](0,1] we can infer d˙>0\dot{d}>0 and Lr>0Lr>0 on (0,δ).(0,\delta). Since, rC1,α([0,1])r\in C^{1,\alpha}([0,1]) there exists cα>0c_{\alpha}>0 and δ>0\delta>0 s.t.

(46) |r¨(R)|cαRα1,for allR(0,δ).|\ddot{r}(R)|\leq c_{\alpha}R^{\alpha-1},\;\;\mbox{for all}\;\;R\in(0,\delta).

Assume not. Then for all δ>0,\delta>0, c>0c>0 there exists R(0,δ)R\in(0,\delta) s.t.

(47) |r¨(R)|>cRα1.|\ddot{r}(R)|>cR^{\alpha-1}.

Fix δ>0.\delta>0. Then for all c>0c>0 take Rc(0,δ)R_{c}\in(0,\delta) s.t. the latter inequality holds. By continuity of r¨\ddot{r} in (0,1],(0,1], there exists an ε>0\varepsilon>0 s.t. (47) holds even for all R(Rcε,Rc+ε).R^{\prime}\in(R_{c}-\varepsilon,R_{c}+\varepsilon). By integration we get

|r˙(Rc+ε)r˙(Rc)|=RcRc+ε|r¨(R)|𝑑R>cα((Rc+ε)αRcα).|\dot{r}(R_{c}+\varepsilon)-\dot{r}(R_{c})|=\int\limits_{R_{c}}^{R_{c}+\varepsilon}{|\ddot{r}(R^{\prime})|\;dR^{\prime}}>\frac{c}{\alpha}((R_{c}+\varepsilon)^{\alpha}-R_{c}^{\alpha}).

Hence, for all c>0c>0 we can find Rc(0,δ)R_{c}\in(0,\delta) s.t. r˙\dot{r} is not Hölder continuous at RcR_{c} with Hölder constant cα.\frac{c}{\alpha}. Since c>0c>0 is arbitrary this contradicts rC1,α([0,1]).r\in C^{1,\alpha}([0,1]).

Then (46) implies

0<d˙r=M(rr˙2R+r2r¨Rr2r˙R2)MrR(r˙2+r|r¨|)cα2α2MrRR2α0<\dot{d}r=M\left(\frac{r\dot{r}^{2}}{R}+\frac{r^{2}\ddot{r}}{R}-\frac{r^{2}\dot{r}}{R^{2}}\right)\leq M\frac{r}{R}\left(\dot{r}^{2}+r|\ddot{r}|\right)\leq c_{\alpha}^{2}\alpha^{-2}M\frac{r}{R}R^{2\alpha}

for all R(0,δ).R\in(0,\delta). Together with (45) we get

0<RrLrCα,Mρ′′(d)R2(k1+α)on(0,δ),0<\frac{R}{r}Lr\leq C_{\alpha,M}\rho^{\prime\prime}(d)R^{2(k-1+\alpha)}\;\;\mbox{on}\;\;(0,\delta),

where Cα,M:=M2cα2α2>0.C_{\alpha,M}:=M^{2}c_{\alpha}^{2}\alpha^{-2}>0. Using the explicit form of Lr>0Lr>0 yields the claimed inequalities

M2Cα,Mρ′′(d)R2αRr˙r+R2r¨r<M2near  0.M^{2}-C_{\alpha,M}\rho^{\prime\prime}(d)R^{2\alpha}\leq\frac{R\dot{r}}{r}+\frac{R^{2}\ddot{r}}{r}<M^{2}\;\;\mbox{near}\;\;0.

Taking the limit R0R\rightarrow 0 yields

limR0(Rr˙r+R2r¨r)=M2.\lim\limits_{R\rightarrow 0}\left(\frac{R\dot{r}}{r}+\frac{R^{2}\ddot{r}}{r}\right)=M^{2}.

With the notation DM:=limR0Rr˙rD_{M}:=\lim\limits_{R\rightarrow 0}\frac{R\dot{r}}{r} and EM:=limR0Rr¨r˙E_{M}:=\lim\limits_{R\rightarrow 0}\frac{R\ddot{r}}{\dot{r}} we get by L’Hôpital’s rule

DM=limR0Rr˙r=limR0Rr¨+r˙r˙=1+EMD_{M}=\lim\limits_{R\rightarrow 0}\frac{R\dot{r}}{r}=\lim\limits_{R\rightarrow 0}\frac{R\ddot{r}+\dot{r}}{\dot{r}}=1+E_{M}

and

M2\displaystyle M^{2} =limR0(Rr˙r+R2r¨r)=DM+limR0(Rr˙rRr¨r˙)\displaystyle=\lim\limits_{R\rightarrow 0}\left(\frac{R\dot{r}}{r}+\frac{R^{2}\ddot{r}}{r}\right)=D_{M}+\lim\limits_{R\rightarrow 0}\left(\frac{R\dot{r}}{r}\frac{R\ddot{r}}{\dot{r}}\right)
=DM+DMEM=DM+DM(DM1)=DM2,\displaystyle=D_{M}+D_{M}E_{M}=D_{M}+D_{M}(D_{M}-1)=D_{M}^{2},

hence DM=M.D_{M}=M.

Remark 3.7.

The necessary condition given in (44) is relevant to our discussion, since Improving the lower bound, in up to the point where it matches the upper one, would show that rr can’t be of class C1,α.C^{1,\alpha}. However, we don’t know if it is indeed true or how to show it.

Conclusion: In this case there are two possibilities: There is at most one smooth delayed lift-off solution rδr_{\delta} for some δ>0\delta>0 or there could be an immediate C1C^{1}-lift-off solution of the form r0,r_{0}, remaining open if the regularity of r0r_{0} must be any better.

Proof of theorem 1.4:

  1. (1)

    See lemma 2.7.

  2. (2)

    The M=1M=1-case is worth mentioning, however fairly standard and amounts to the statement that the integrand is strictly quasiconvex.

    1. (a)

      Consequence of (b).

    2. (b)

      Follows from the lemmatas 2.1, 2.3, and 2.6.

    3. (c)

      See the lemmatas 2.2 and 2.6.

    4. (d)

      See the lemmatas 2.6 and 3.4.

    5. (e)

      See the lemmatas 2.6 and 3.6, completing the proof of the theorem and the paper.

References

  • [1] Emilio Acerbi and Nicola Fusco. A regularity theorem for minimizers of quasiconvex integrals. Arch. Rat. Mech. Anal., 99(261):261–281, 1987.
  • [2] H. W. Alt. Lineare Funktionalanalysis. Springer-Verlag GmbH, April 2012.
  • [3] John M. Ball. Some Open Problems in Elasticity, chapter I.1, pages 3–59. Springer-Verlag, NY, 2002.
  • [4] P. Bauman, N. C. Owen, and D. Phillips. Maximal smoothness of solutions to certain Euler–Lagrange equations from nonlinear elasticity. Proc. R. Soc. Ed. Sec. A., 119(3-4):241–263, 1991.
  • [5] P. Bauman, N. C. Owen, and D. Phillips. Maximum Principles and a priori estimates for a class of problems from nonlinear elasticity. Annales de l'Institut Henri Poincare (C) Non Linear Analysis, 8(2):119–157, mar 1991.
  • [6] P. Bauman, N. C. Owen, and D. Phillips. Maximum Principles and a priori estimates for an incompressible material in nonlinear elasticity. Communications in Partial Differential Equations, 17(7):1185–1212, 1992.
  • [7] J. Bevan and S. Käbisch. Twists and shear maps in nonlinear elasticity: explicit solutions and vanishing Jacobians. Proc. R. Soc. Ed. Sec. A., 2019.
  • [8] J. Bevan and X. Yan. Minimizers with topological singularities in two dimensional elasticity. ESAIM: Control, Optimisation and Calculus of Variations, 14(1):192–209, sep 2007.
  • [9] Jonathan J. Bevan. On double-covering stationary points of a constrained Dirichlet energy. Annales de l'Institut Henri Poincare (C) Non Linear Analysis, 31(2):391–411, 2014.
  • [10] Jonathan J. Bevan. A condition for the Hölder regularity of local minimizers of a nonlinear elastic energy in two dimensions. Arch. Rat. Mech. Anal., 225(1):249–285, 2017.
  • [11] Jonathan J. Bevan and Jonathan H. B. Deane. Energy minimizing N-covering maps in two dimensions. Calc. Var. Par. Dif. Eq., 60(4), 2021.
  • [12] Jonathan J. Bevan and Marcel Dengler. A uniqueness criterion and a counterexample to regularity in an incompressible variational problem. arxiv:2205.07694, 2022.
  • [13] Sungwon Cho and Xiaodong Yan. On the singular set for Lipschitzian critical points of polyconvex functionals. Journal of Mathematical Analysis and Applications, 336(1):372–398, 2007.
  • [14] Sergio Conti and Franz Gmeineder. Quasiconvexity and Partial Regularity, arXiv:2009.13820, 2020.
  • [15] Judith Campos Cordero. Regularity and Uniqueness in the Calculus of Variations. PhD thesis, Oxford University, 2014.
  • [16] Giovanni Cupini, Francesco Leonetti, and Elvira Mascolo. Local Boundedness for Minimizers of Some Polyconvex Integrals. Arch. Ration. Mech. Anal., 224:269–289, 2017.
  • [17] Marcel Dengler. Everywhere regularity results for a polyconvex functional in finite elasticity. arXiv:2205.07694, 2022.
  • [18] Luca Esposito and Giuseppe Mingione. Partial Regularity for Minimizers of Degenerate Polyconvex Energies. Journal of Convex Analysis, 8(1):1–38., 2001.
  • [19] L. C. Evans. Quasiconvexity and partial regularity in the Calculus of Variations. Arch. Rat. Mech. Anal., 95(3), 1986.
  • [20] L. C. Evans. Partial Differential Equations: Second Edition (Graduate Studies in Mathematics). American Mathematical Society, 2010.
  • [21] L.C. Evans and R.F. Gariepy. On the partial regularity of energy-minimizing, area-preserving maps. Calculus of Variations and Partial Differential Equations, 9(4):357–372, dec 1999.
  • [22] Martin Fuchs and Jürgen Reuling. Partial regularity for certain classes for polyconvex functionals related to nonlinear elasticity. Manuscripta mathematica, 87(1):13–26, 1995.
  • [23] Nicola Fusco and John E. Hutchinson. Partial regularity and everywhere continuity for a model problem from non-linear elasticity. Austral. Math. Soc. (Series A), 57:158–169., 1994.
  • [24] Aram L. Karakhanyan. Sufficient conditions for regularity of area-preserving deformations. Manuscripta Mathematica, 138(3-4):463–476, 2011.
  • [25] Aram L. Karakhanyan. Regularity for energy-minimizing area-preserving deformations. Journal of Elasticity, 114(2):213–223, 2013.
  • [26] Jan Kristensen and Giuseppe Mingione. The Singular Set of Lipschitzian Minima of Multiple Integrals. Arch. Rat. Mech. Anal., page 341–369, 2007.
  • [27] Jan Kristensen and Ali Taheri. Partial Regularity of Strong Local Minimizers in the Multi-Dimensional Calculus of Variations. Arch. Rat. Mech. Anal., 170(1):63–89, nov 2003.
  • [28] S. Müller and V. Šverák. Convex integration for Lipschitz mappings and counterexamples to regularity. Annals of Mathematics, 157(3):715–742, may 2003.
  • [29] Sabine Schemm and Thomas Schmidt. Partial regularity of strong local minimizers of quasiconvex integrals with (p,q)(p,q)-growth. Pro. Roy. Soc. Ed. Sec. A Math., 139(3):595–621, 2009.
  • [30] L. Szekelyhidi, Jr. The Regularity of Critical Points of Polyconvex Functionals. Arch. Rat. Mech. Anal., 172(1):133–152, apr 2004.
  • [31] G. Teschl. Ordinary Differential Equations and Dynamical Systems (Graduate Studies in Mathematics). American Mathematical Society, 2012.
  • [32] X. Yan. Maximal Smoothness for solutions to equilibrium equations in 2D nonlinear elasticity. Proc. Amer. Math. Soc., 135(6):1717–1724, 2006.

Acknowledgements: The author is appreciative to the Department of Mathematics at the University of Surrey and was funded by the Engineering & Physical Sciences Research Council (EPRSC). Thanks to Jonathan J. Bevan and Bin Cheng for comments and discussions.