This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

On the annihilator variety of a highest weight Harish-Chandra module

Zhanqiang Bai Department of Mathematical Sciences, Soochow University, Suzhou 215006, China [email protected]  and  Jing Jiang School of mathematical Sciences, Shanghai Key Laboratory of Pure Mathematics and Mathematical Practice, East China Normal University, Shanghai 200241, China [email protected]
Abstract.

Let GG be a Hermitian type Lie group with maximal compact subgroup KK. Let L(λ)L(\lambda) be a highest weight Harish-Chandra module of GG with the infinitesimal character λ\lambda. By using some combinatorial algorithm, we obtain a description of the annihilator variety of L(λ)L(\lambda). As an application, when L(λ)L(\lambda) is unitarizable, we prove that the Gelfand-Kirillov dimension of L(λ)L(\lambda) only depends on the value of z=(λ,β)z=(\lambda,\beta^{\vee}), where β\beta is the highest root.

Key words and phrases:
associated variety; Gelfand-Kirillov dimension; Young tableau; nilpotent orbit
2020 Mathematics Subject Classification:
22E47, 17B10
*Corresponding author: [email protected]

1. Introduction

Let GG be a simple Lie group with complexified Lie algebra 𝔤\mathfrak{g} and KK be a maximal compact subgroup with complexified Lie algebra 𝔨\mathfrak{k} such that G/KG/K is a Hermitian symmetric space. We have a Cartan decomposition 𝔤=𝔨𝔭\mathfrak{g}=\mathfrak{k}\oplus\mathfrak{p} and a decomposition 𝔭=𝔭+𝔭\mathfrak{p}=\mathfrak{p}^{+}\oplus\mathfrak{p}^{-} into nonzero irreducible KK-subrepresentations. Then we have a triangular decomposition 𝔤=𝔨𝔭+𝔭\mathfrak{g}=\mathfrak{k}\oplus\mathfrak{p}^{+}\oplus\mathfrak{p}^{-} and 𝔮=𝔨𝔭+\mathfrak{q}=\mathfrak{k}\oplus\mathfrak{p}^{+} is a maximal parabolic subalgebra of 𝔤\mathfrak{g}. Let 𝔥\mathfrak{h} be a Cartan subalgebra of 𝔤\mathfrak{g}. Denote by Φ\Phi the root system associated with (𝔤,𝔥)(\mathfrak{g},\mathfrak{h}), fix a positive system Φ+\Phi^{+}, let λρ\mathbb{C}_{\lambda-\rho} be a finite-dimensional irreducible 𝔨\mathfrak{k}-module with highest weight λρ𝔥\lambda-\rho\in\mathfrak{h}^{*}, where ρ\rho is half the sum of positive roots. It can also be viewed as a 𝔮\mathfrak{q}-module with trivial 𝔭+\mathfrak{p}^{+}-action. The corresponding generalized Verma module N(λ)N(\lambda) is defined by

N(λ):=U(𝔤)U(𝔮)λρ.N(\lambda):=U(\mathfrak{g})\otimes_{U(\mathfrak{q})}\mathbb{C}_{\lambda-\rho}.

The simple quotient of N(λ)N(\lambda) is denoted by L(λ)L(\lambda), which is a highest weight module with highest weight λρ\lambda-\rho. From [EHW83], we call L(λ)L(\lambda) a highest weight Harish-Chandra module. The classification of unitarizable highest weight Harish-Chandra modules is given in [EHW83] and [Jak83] independently.

For a U(𝔤)U(\mathfrak{g})-module MM, let I(M)=Ann(M)I(M)=\mathrm{Ann}(M) be its annihilator ideal in U(𝔤)U(\mathfrak{g}) and J(M)J(M) be the corresponding graded ideal in S(𝔤)=gr(U(𝔤))S(\mathfrak{g})=\text{gr}(U(\mathfrak{g})). The zero set of J(M)J(M) in the dual vector space 𝔤\mathfrak{g}^{*} of 𝔤\mathfrak{g} is called the annihilator variety of MM, which is also called the associated variety of I(M)I(M). We usually denote it by V(Ann(M))V(\mathrm{Ann}(M)). The study of associated varieties of primitive ideals (or annihilator varieties of highest weight modules) is a very important problem since it is closely related with many research fields, such as representations of Weyl groups, Kazhdan-Lusztig cells and representations of Lie groups, see for example \citesBB,BV82,BMSZ-ABCD,GSK. Borho-Brylinski [BB82] proved that the associated variety of a primitive ideal II with a fixed regular integral infinitesimal character is the Zariski closure of the nilpotent orbit in 𝔤\mathfrak{g}^{*} attached to II, via the Springer correspondence. Joseph [Jos85] extended this result to a primitive ideal with a general infinitesimal character.

Recently Bai-Ma-Wang [BMW23] found some simple algorithms to characterize the nilpotent orbit appearing in the annihilator variety of a highest weight module for all classical type Lie algebras by using the Robinson-Schensted algorithm. In this paper, our first goal is to give the explicit description of V(Ann(L(λ)))V(\mathrm{Ann}(L(\lambda))) for all highest weight Harish-Chandra modules of classical types by using the partition algorithm in [BMW23]. See Theorem 3.3, Theorem 4.1, Theorem 4.3, Theorem 5.1 and Theorem 5.3.

The Gelfand-Kirillov (GK) dimension is an important invariant to measure the size of an infinite-dimensional U(𝔤)U(\mathfrak{g})-module MM, see [Jos78] and [Vog78]. From Joseph [Jos78], we know that dimV(Ann(L(λ)))=2GKdimL(λ)\dim V(\mathrm{Ann}(L(\lambda)))=2\mathrm{GKdim}L(\lambda). When there is only one nilpotent orbit with the dimension 2GKdimL(λ)2\mathrm{GKdim}L(\lambda), we can determine this nilpotent orbit appearing in V(Ann(L(λ)))V(\mathrm{Ann}(L(\lambda))) by the Gelfand-Kirillov dimension of L(λ)L(\lambda). In [BXX23], Bai-Xiao-Xie computed the Gelfand-Kirillov dimensions of highest weight Harish-Chandra modules of exceptional types. Then we can determine V(Ann(L(λ)))V(\mathrm{Ann}(L(\lambda))) by the Gelfand-Kirillov dimension of L(λ)L(\lambda) since there is only one nilpotent orbit with the dimension 2GKdimL(λ)2\mathrm{GKdim}L(\lambda) for these cases. See Theorem 6.1 and Theorem 6.2. Except for the cases of SU(p,q)SU(p,q), Sp(n,)Sp(n,\mathbb{R}) and SO(2n)SO^{*}(2n), our characterization of V(Ann(L(λ)))V(\mathrm{Ann}(L(\lambda))) is given in a function of z=(λ,β)z=(\lambda,\beta^{\vee}).

Our second goal of this paper is to prove that when L(λ)L(\lambda) is a unitary highest weight module with highest weight λρ=λ0+zξ\lambda-\rho=\lambda_{0}+z\xi, where z=(λ,β)z=(\lambda,\beta^{\vee}), (λ0+ρ,β)=0(\lambda_{0}+\rho,\beta)=0, ξ\xi is orthogonal to the root system Φ(𝔨)\Phi(\mathfrak{k}) and (ξ,β)=1(\xi,\beta^{\vee})=1, then GKdimL(λ){\rm GKdim}\>L(\lambda) is independent of the selection of λ0\lambda_{0}. In other words, GKdimL(λ){\rm GKdim}\>L(\lambda) only depends on the value of z=(λ,β)z=(\lambda,\beta^{\vee}). This result was firstly proved in [BH15] by using previous results in [Jos92]. In our paper, we use our characterization of V(Ann(L(λ)))V(\mathrm{Ann}(L(\lambda))) to give a new proof for this result. See Theorem 7.2.

The paper is organized as follows. In §2, we give some necessary preliminaries about Gelfand-Kirillov dimension, associated variety, annihilator variety and partition algorithm for highest weigh modules. In §3-6, we give the characterization of the annihilator variety V(Ann(L(λ)))V(\mathrm{Ann}(L(\lambda))) for a highest weight Harish-Chandra module of type An1A_{n-1}, type BnB_{n} and CnC_{n}, type DnD_{n}, type E6E_{6} and E7E_{7} respectively. In §7, we prove that when L(λ)L(\lambda) is a unitary highest weight module, then GKdimL(λ){\rm GKdim}\>L(\lambda) only depends on the value of z=(λ,β)z=(\lambda,\beta^{\vee}).

2. Preliminaries

In this section, we will give some brief preliminaries on GK dimension, associated variety, annihilator variety and partition algorithm for highest weight modules. See \citesVo78,VJ,BMW for more details.

2.1. Gelfand-Kirillov dimension and associated variety

Let 𝔤\mathfrak{g} be a simple complex Lie algebra and 𝔥\mathfrak{h} be a Cartan subalgebra. Let MM be a finitely generated U(𝔤)U(\mathfrak{g})-module. Fix a finite dimensional generating subspace M0M_{0} of MM. Let Un(𝔤)U_{n}(\mathfrak{g}) be the standard filtration of U(𝔤)U(\mathfrak{g}). Set Mn=Un(𝔤)M0M_{n}=U_{n}(\mathfrak{g})\cdot M_{0} and gr(M)=n=0grnM,{\rm gr}(M)=\bigoplus\limits_{n=0}^{\infty}{\rm gr}_{n}M, where grnM=Mn/Mn1{\rm gr}_{n}M=M_{n}/{M_{n-1}}. Thus gr(M){\rm gr}(M) is a graded module of gr(U(𝔤))S(𝔤){\rm gr}(U(\mathfrak{g}))\simeq S(\mathfrak{g}).

Definition 2.1.

The Gelfand-Kirillov dimension of MM is defined by

GKdimM=lim¯nlogdim(Un(𝔤)M0)logn.\operatorname{GKdim}M=\varlimsup\limits_{n\rightarrow\infty}\frac{\log\dim(U_{n}(\mathfrak{g})M_{0})}{\log n}.
Definition 2.2 ([Vog91]).

The associated variety of MM is defined by

V(M):={X𝔤f(X)=0forallfAnnS(𝔤)(grM)}.V(M):=\{X\in\mathfrak{g}^{*}\mid f(X)=0{\rm~{}for~{}all~{}}f\in\operatorname{Ann}_{S(\mathfrak{g})}(\operatorname{gr}M)\}.

The above two definitions are independent of the choice of M0M_{0}, and dimV(M)=GKdimM\dim V(M)={\rm GKdim}\>M (e.g., [NOT01]).

Definition 2.3.

Let 𝔤\mathfrak{g} be a finite-dimensional simple Lie algebra. Let II be a two-sided ideal in U(𝔤)U(\mathfrak{g}). Then gr(U(𝔤)/I)S(𝔤)/grI{\rm gr}(U(\mathfrak{g})/I)\simeq S(\mathfrak{g})/\text{gr}I is a graded S(𝔤)S(\mathfrak{g})-module. Its annihilator is grI{\rm gr}I. We define its associated variety by

V(I):=V(U(𝔤)/I)={X𝔤p(X)=0for all pgrI}.V(I):=V(U(\mathfrak{g})/I)=\{X\in\mathfrak{g}^{*}\mid p(X)=0\ \mbox{for all $p\in{\rm gr}I$}\}.

2.2. Associated varieties of highest weight Harish-Chandra modules

In [BH15], Bai-Hunziker have found the formula of the Gelfand-Kirillov dimensions of unitary highest weight modules. We adopt their notations here.

Let (,):𝔥×𝔥(-,-):\mathfrak{h}\times\mathfrak{h}^{*}\to\mathbb{C} be the canonical pairing. Let β\beta denote the highest positive root. Let ρ\rho be the half sum of positive roots. The dual Coxeter number hh^{\lor} of the root system Φ\Phi is defined by

h:=(ρ,β)+1.h^{\lor}:=(\rho,\beta^{\lor})+1.

where β\beta^{\lor} is the coroot of β\beta. Equivalently, hh^{\lor} can be defined as the sum of coefficients of highest short roots in Φ+\Phi^{+} when it is written as a sum of simple roots. Let rr be the \mathbb{R}-rank of GG, i.e., the dimension of a Cartan subgroup of the (real) group GG. And we have the following table.

Table 1. Some constants associated to G/KG/K
GG rr cc h1h^{\vee}-1
SU(p,q)SU(p,q), n=p+q1n=p+q-1 min{p,q}\min\{p,q\} 11 nn
Sp(n,)Sp(n,\mathbb{R}) nn 1/21/2 nn
SO(2n)SO^{*}(2n), n=2mn=2m mm 22 2n32n-3
SO(2n)SO^{*}(2n), n=2m+1n=2m+1 mm 22 2n32n-3
SO(2,2n1)SO(2,2n-1) 22 n3/2n-3/2 2n22n-2
SO(2,2n2)SO(2,2n-2) 22 n2n-2 2n32n-3
E6(14)E_{6(-14)} 22 33 1111
E7(25)E_{7(-25)} 33 44 1717

They also have proved that if L(λ)L(\lambda) is a unitary highest weight module with highest weight λρ\lambda-\rho, then there is an integer 0k(λ)r0\leqslant k(\lambda)\leqslant r such that the associated variety of L(λ)L(\lambda) is 𝒪¯k(λ)\overline{\mathcal{O}}_{k(\lambda)}. We list the two crucial theorems.

Proposition 2.4 ([BH15, Thm. 1.1 and Cor. 5.2]).

Suppose L(λ)L(\lambda) is a unitary highest weight module with highest weight λρ\lambda-\rho. Let 0k(λ)r0\leqslant k(\lambda)\leqslant r be the integer such that V(L(λ))=𝒪¯k(λ)V(L(\lambda))=\overline{\mathcal{O}}_{k(\lambda)}. Then k(λ)=rk(\lambda)=r if (λρ,β)>c(r1)-(\lambda-\rho,\beta^{\vee})>c(r-1) and k(λ)=(λρ,β)ck(\lambda)=\frac{-(\lambda-\rho,\beta^{\vee})}{c} if (λρ,β)c(r1)-(\lambda-\rho,\beta^{\vee})\leq c(r-1). Also we have

dim𝒪¯k(λ)=k(λ)(h1)k(λ)(k(λ)1)c.\operatorname{dim}\overline{\mathcal{O}}_{k(\lambda)}=k(\lambda)\left(h^{\vee}-1\right)-k(\lambda)(k(\lambda)-1)c.

In particular, dim𝔭+=r(h1)r(r1)c\operatorname{dim}\mathfrak{p}^{+}=r\left(h^{\vee}-1\right)-r(r-1)c.

Proposition 2.5 ([BH15, Thm. 6.2]).

Suppose L(λ)L(\lambda) is a unitary highest weight module with highest weight λρ\lambda-\rho. Define z(λ):=(λ,β)z(\lambda):=(\lambda,\beta^{\vee}) and zk=(ρ,β)kcz_{k}=(\rho,\beta^{\vee})-kc. Then

GKdimL(λ)={rzr1,ifz(λ)<zr1,kzk1,ifz(λ)=zkwith1kr1,0,ifz(λ)=z0.{\rm GKdim}\>L(\lambda)=\left\{\begin{array}[]{ll}rz_{r-1},&\textnormal{if}\>z(\lambda)<z_{r-1},\\ kz_{k-1},&\textnormal{if}\>z(\lambda)=z_{k}{\rm~{}with~{}}1\leqslant k\leqslant r-1,\\ 0,&\textnormal{if}\>z(\lambda)=z_{0}.\end{array}\right.

In [BXX23], Bai-Xiao-Xie have given the description of the associated variety of L(λ)L(\lambda), we recall some notations and results.

For a totally ordered set Γ\Gamma, we denote by Seqn(Γ)\mathrm{Seq}_{n}(\Gamma) the set of sequences x=(x1,x2,,xn)x=(x_{1},x_{2},\cdots,x_{n}) of length nn with xiΓx_{i}\in\Gamma. In our paper, we usually take Γ\Gamma to be \mathbb{Z} or a coset of \mathbb{Z} in \mathbb{C}. By using the Robinson-Schensted algorithm for xSeqn(Γ)x\in\mathrm{Seq}_{n}(\Gamma), we can get a Young tableau P(x)P(x). Denote 𝐩(x)=sh(P(x))=[p1,p2,,pN]{\bf p}(x)=\mathrm{sh}(P(x))=[p_{1},p_{2},...,p_{N}], where pip_{i} is the number of boxes in the ii-th row of P(x)P(x).

Definition 2.6.

Fix a positive integer nn, a partition of nn is a decreasing sequence 𝐩=[p1,p2,,pn]{\bf p}=[p_{1},p_{2},...,p_{n}] of nonnegative integers such that 1inpi=n\sum_{1\leq i\leq n}p_{i}=n. We say 𝐪=[q1,q2,,qN]{\bf q}=[q_{1},q_{2},\cdots,q_{N}] is the dual partition of a partition 𝐩=[p1,p2,,pN]{\bf p}=[p_{1},p_{2},\cdots,p_{N}] and write 𝐪=𝐩t{\bf q}={\bf p}^{t} if qiq_{i} is the length of ii-th column of the Young tableau PP with shape 𝐩{\bf p}.

For a Young diagram PP, use (k,l)(k,l) to denote the box in the kk-th row and the ll-th column. We say the box (k,l)(k,l) is even (resp. odd) if k+lk+l is even (resp. odd). Let pievp_{i}^{\mathrm{ev}} (resp. piodp_{i}^{\mathrm{od}}) be the number of even (resp. odd) boxes in the ii-th row of the Young diagram PP. One can easily check that

(2.7) piev={pi2, if i is odd,pi2, if i is even,piod={pi2, if i is odd,pi2, if i is even.p_{i}^{\mathrm{ev}}=\begin{cases}\left\lceil\frac{p_{i}}{2}\right\rceil,&\text{ if }i\text{ is odd},\\ \left\lfloor\frac{p_{i}}{2}\right\rfloor,&\text{ if }i\text{ is even},\end{cases}\quad p_{i}^{\mathrm{od}}=\begin{cases}\left\lfloor\frac{p_{i}}{2}\right\rfloor,&\text{ if }i\text{ is odd},\\ \left\lceil\frac{p_{i}}{2}\right\rceil,&\text{ if }i\text{ is even}.\end{cases}

Here for aa\in\mathbb{R}, a\lfloor a\rfloor is the largest integer nn such that nan\leq a, and a\lceil a\rceil is the smallest integer nn such that nan\geq a. For convenience, we set

𝐩ev=(p1ev,p2ev,)and𝐩od=(p1od,p2od,).{\bf p}^{\mathrm{ev}}=(p_{1}^{\mathrm{ev}},p_{2}^{\mathrm{ev}},\cdots)\quad\mbox{and}\quad{\bf p}^{\mathrm{od}}=(p_{1}^{\mathrm{od}},p_{2}^{\mathrm{od}},\cdots).
Example 2.8.

Let 𝐩=[6,5,4,3,2,1]{\bf p}=[6,5,4,3,2,1] be the shape of the Young diagram PP. Then odd and even boxes in PP are marked as follows.

EEOOEEOOEEOOOOEEOOEEOOEEOOEEOOOOEEOOEEOOOO

Then 𝐩ev=(3,2,2,1,1,0){\bf p}^{\mathrm{ev}}=(3,2,2,1,1,0) and 𝐩od=(3,3,2,2,1,1){\bf p}^{\mathrm{od}}=(3,3,2,2,1,1).

For convenience, x=(x1,x2,,xn)Seqn(Γ)x=(x_{1},x_{2},\cdots,x_{n})\in\mathrm{Seq}_{n}(\Gamma), set

x=\displaystyle{x}^{-}= (x1,x2,,xn1,xn,xn,xn1,,x2,x1).\displaystyle(x_{1},x_{2},\cdots,x_{n-1},x_{n},-x_{n},-x_{n-1},\cdots,-x_{2},-x_{1}).
Proposition 2.9 ([BXX23, Thm. 6.1, Thm. 6.2]).

Let L(λ)L(\lambda) be a highest weight Harish-Chandra module of GG with highest weight λρ\lambda-\rho and λ=(t1,,tn)𝔥\lambda=(t_{1},\cdots,t_{n})\in\mathfrak{h}^{*}. Set 𝐪=𝐪(λ)=(q1,q2,,q2n)=𝐩(λ)t{\bf q}={\bf q}(\lambda)=(q_{1},q_{2},\cdots,q_{2n})={\bf p}(\lambda)^{t} when GG is of type AA and 𝐪=𝐪(λ)=(q1,q2,,q2n)=𝐩(λ)t{\bf q}={\bf q}(\lambda^{-})=(q_{1},q_{2},\cdots,q_{2n})={\bf p}(\lambda^{-})^{t} when GG is of type B,CB,C or DD. Then V(L(λ))=𝒪¯k(λ)V(L(\lambda))=\overline{\mathcal{O}}_{k(\lambda)} with k(λ)k(\lambda) given as follows.

  1. (1)

    G=SU(p,np)G=SU(p,n-p). Then

    k(λ)={q2, if λ is integral,min{p,q}, otherwise.k(\lambda)=\left\{\begin{array}[]{ll}q_{2},&\textnormal{~{}if~{}$\lambda$~{}is~{}integral},\\ \min\{p,q\},&\textnormal{~{}otherwise}.\end{array}\right.
  2. (2)

    G=Sp(n,)G=Sp(n,\mathbb{R}) with n2n\geq 2. Then

    k(λ)={2q2od, if t1,2q2ev+1, if t112+,n, otherwise. k(\lambda)=\begin{cases}2q_{2}^{\mathrm{od}},&\textnormal{ if }t_{1}\in\mathbb{Z},\\ 2q_{2}^{\mathrm{ev}}+1,&\textnormal{ if }t_{1}\in\frac{1}{2}+\mathbb{Z},\\ n,&\textnormal{ otherwise. }\end{cases}
  3. (3)

    G=SO(2n)G=SO^{*}(2n) with n4n\geq 4. Then

    k(λ)={q2ev, if t112,n2, otherwise. k(\lambda)=\begin{cases}q_{2}^{\mathrm{ev}},&\textnormal{ if }t_{1}\in\frac{1}{2}\mathbb{Z},\\ \left\lfloor\frac{n}{2}\right\rfloor,&\textnormal{ otherwise. }\end{cases}
  4. (4)

    G=SO(2,2n1)G=SO(2,2n-1) with n3n\geq 3. Then

    k(λ)={0, if t1t2,t1>t2,1, if t1t212+,t1>0,2, otherwise. k(\lambda)=\begin{cases}0,&\textnormal{ if }t_{1}-t_{2}\in\mathbb{Z},t_{1}>t_{2},\\ 1,&\textnormal{ if }t_{1}-t_{2}\in\frac{1}{2}+\mathbb{Z},t_{1}>0,\\ 2,&\textnormal{ otherwise. }\end{cases}
  5. (5)

    G=SO(2,2n2)G=SO(2,2n-2) with n4n\geq 4. Then

    k(λ)={0, if t1t2,t1>t2,1, if t1t2,|tn|<t1t2,2, otherwise. k(\lambda)=\begin{cases}0,&\textnormal{ if }t_{1}-t_{2}\in\mathbb{Z},t_{1}>t_{2},\\ 1,&\textnormal{ if }t_{1}-t_{2}\in\mathbb{Z},-\left|t_{n}\right|<t_{1}\leq t_{2},\\ 2,&\textnormal{ otherwise. }\end{cases}
Proposition 2.10 ([BXX23, Thm. 7.1]).

Let L(λ)L(\lambda) be a highest weight Harish-Chandra module of E6(14)E_{6(-14)} or E7(25)E_{7(-25)}. If λ𝔥\lambda\in\mathfrak{h}^{\ast} is not integral, then V(L(λ))=𝒪¯k(λ)V(L(\lambda))=\overline{\mathcal{O}}_{k(\lambda)} with k(λ)=2k(\lambda)=2 (for E6(14)E_{6(-14)}) or 3 (for E7(25)E_{7(-25)}). In the case when λ\lambda is integral, k(λ)k(\lambda) is given as follows.

  1. (1)

    If G=E6(14)G=E_{6(-14)}, then

    k(λ)={0, if Ψλ+S2,1, if Ψλ+S1 and Ψλ+S2=,2, if Ψλ+S1=.k(\lambda)=\left\{\begin{array}[]{ll}\vspace{1ex}0,&\textnormal{~{}if~{}$\Psi_{\lambda}^{+}\cap S_{2}\neq\emptyset$},\\ \vspace{1ex}1,&\textnormal{~{}if~{}$\Psi_{\lambda}^{+}\cap S_{1}\neq\emptyset$~{}and~{}$\Psi_{\lambda}^{+}\cap S_{2}=\emptyset$},\\ 2,&\textnormal{~{}if~{}$\Psi_{\lambda}^{+}\cap S_{1}=\emptyset$}.\end{array}\right.

    Here S1={12(±(e1+e2+e3e4)e5e6e7+e8)}={β1,β2}S_{1}=\big{\{}\frac{1}{2}(\pm(e_{1}+e_{2}+e_{3}-e_{4})-e_{5}-e_{6}-e_{7}+e_{8})\}=\big{\{}\beta_{1},\beta_{2}\}, S2={12(e1e2e3e4e5e6e7+e8)}={α1}S_{2}=\big{\{}\frac{1}{2}(e_{1}-e_{2}-e_{3}-e_{4}-e_{5}-e_{6}-e_{7}+e_{8})\}=\big{\{}\alpha_{1}\} and Ψλ+={αΦ+|(λ,α)>0}\Psi_{\lambda}^{+}=\big{\{}\alpha\in\Phi^{+}|(\lambda,\alpha^{\vee})>0\}.

  2. (2)

    If G=E7(25)G=E_{7(-25)}, then

    k(λ)={0, if Ψλ+S3,1, if Ψλ+S2 and Ψλ+S3=,2, if Ψλ+S1 and Ψλ+S2=,3, if Ψλ+S1=.k(\lambda)=\left\{\begin{array}[]{ll}\vspace{1ex}0,&\textnormal{~{}if~{}$\Psi_{\lambda}^{+}\cap S_{3}\neq\emptyset$},\\ \vspace{1ex}1,&\textnormal{~{}if~{}$\Psi_{\lambda}^{+}\cap S_{2}\neq\emptyset$~{}and~{}$\Psi_{\lambda}^{+}\cap S_{3}=\emptyset$},\\ \vspace{1ex}2,&\textnormal{~{}if~{}$\Psi_{\lambda}^{+}\cap S_{1}\neq\emptyset$~{}and~{}$\Psi_{\lambda}^{+}\cap S_{2}=\emptyset$},\\ \vspace{1ex}3,&\textnormal{~{}if~{}$\Psi_{\lambda}^{+}\cap S_{1}=\emptyset$}.\end{array}\right.

    Here S1={12(±(e1e2e3+e4)e5+e6e7+e8),e5+e6}={β3,β4,β5}S_{1}=\big{\{}\frac{1}{2}(\pm(e_{1}-e_{2}-e_{3}+e_{4})-e_{5}+e_{6}-e_{7}+e_{8}),e_{5}+e_{6}\}=\big{\{}\beta_{3},\beta_{4},\beta_{5}\}, S2={±e1+e6}={β6,β7}S_{2}=\big{\{}\pm e_{1}+e_{6}\}=\big{\{}\beta_{6},\beta_{7}\}, S3={e5+e6}={β8}S_{3}=\big{\{}-e_{5}+e_{6}\}=\big{\{}\beta_{8}\} and Ψλ+={αΦ+|(λ,α)>0}\Psi_{\lambda}^{+}=\big{\{}\alpha\in\Phi^{+}|(\lambda,\alpha^{\vee})>0\}.

2.3. Annihilator variety

For a U(𝔤)U(\mathfrak{g})-module MM, let I(M)=Ann(M)I(M)=\mathrm{Ann}(M) be its annihilator ideal in U(𝔤)U(\mathfrak{g}) and J(M)J(M) be the corresponding graded ideal in S(𝔤)=gr(U(𝔤))S(\mathfrak{g})=\text{gr}(U(\mathfrak{g})). The zero set of J(M)J(M) in the dual vector space 𝔤\mathfrak{g}^{\ast} is called the annihilator variety of MM, and we denote it by V(Ann(M))V(\mathrm{Ann}(M)). Let GG be a connected semisimple finite dimensional complex algebraic group with Lie algebra 𝔤\mathfrak{g} and WW be the Weyl group of 𝔤\mathfrak{g}. We use LwL_{w} to denote the simple highest weight 𝔤\mathfrak{g}-module of highest weight wρρ-w\rho-\rho with wWw\in W. We denote Iw=Ann(Lw)I_{w}=\mathrm{Ann}(L_{w}), then by [BB85] V(Iw)=𝒪¯wV(I_{w})=\overline{\mathcal{O}}_{w} is irreducible, where 𝒪w{\mathcal{O}}_{w} is a nilpotent coadjoint orbit in 𝔤\mathfrak{g}^{\ast}.

Proposition 2.11 ([Jos85]).

Let 𝔤\mathfrak{g} be a reductive Lie algebra and II be a primitive ideal in U(𝔤)U(\mathfrak{g}).Then V(I)V(I) is the closure of a single nilpotent coadjoint orbit 𝒪I\mathcal{O}_{I} in 𝔤\mathfrak{g}^{*}. In particular, for a highest weight module L(λ)L(\lambda), we have V(Ann(L(λ)))=𝒪¯Ann(L(λ))V(\mathrm{Ann}(L(\lambda)))=\overline{\mathcal{O}}_{\mathrm{Ann}(L(\lambda))}.

From [Jos78, Prop. 2.7] and [Vog78], we have dimV(Iw)=2GKdim(Lw)\dim V(I_{w})=2\mathrm{GKdim}(L_{w}). In general, we have the following corollary.

Corollary 2.12.

Suppose L(λ)L(\lambda) is a highest weight Harish-Chandra module with V(L(λ))=𝒪¯k(λ)V(L(\lambda))=\overline{\mathcal{O}}_{k(\lambda)} for some 0k(λ)r0\leq k(\lambda)\leq r. Then dim𝒪Ann(L(λ))=2dim𝒪k(λ)=2dimV(L(λ))\dim{\mathcal{O}}_{\mathrm{Ann}(L(\lambda))}=2\dim{\mathcal{O}}_{k(\lambda)}=2\dim V(L(\lambda)).

In [BMW23] the authors give the annihilator varieties of classical Lie algebras, and we recall the notions and algorithms here.

For λ𝔥\lambda\in\mathfrak{h}^{*}, write λ=(t1,,tn)=i=1ntiei\lambda=\left(t_{1},\ldots,t_{n}\right)=\sum\limits_{i=1}^{n}t_{i}e_{i}, where tit_{i}\in\mathbb{C} and {ei1in}\left\{e_{i}\mid 1\leq i\leq n\right\} is the canonical basis of the Euclidean space n\mathbb{R}^{n}. We associate to λ\lambda a set S(λ)S(\lambda) of some Young tableaux as follows. Let λY:ti1,ti2,,tir\lambda_{Y}:t_{i_{1}},t_{i_{2}},\ldots,t_{i_{r}} be a maximal subsequence of t1,t2,,tnt_{1},t_{2},\ldots,t_{n} such that tik,1krt_{i_{k}},1\leq k\leq r are congruent to each other by \mathbb{Z}. Then the Young tableau P(λY)P\left(\lambda_{Y}\right) associated to the subsequence λY\lambda_{Y} by using RS algorithm is a Young tableau in S(λ)S(\lambda).

In case of 𝔤=𝔰𝔬(2n+1,)\mathfrak{g}=\mathfrak{so}(2n+1,\mathbb{C}), 𝔰𝔭(n,)\mathfrak{sp}(n,\mathbb{C}) and 𝔰𝔬(2n,)\mathfrak{so}(2n,\mathbb{C}), we need some more notations before we give the descriptions of V(Ann(L(λ)))V(\mathrm{Ann}(L(\lambda))).

Define [λ][\lambda] to be the set of maximal subsequence λY\lambda_{Y} of λ\lambda such that any two entries of λY\lambda_{Y} have an integral difference or sum. In this case, we set [λ]1[\lambda]_{1} (resp. [λ]2[\lambda]_{2}) to be the subset of [λ][\lambda] consisting of sequences with all entries belonging to \mathbb{Z} (resp. 12+\frac{1}{2}+\mathbb{Z}), Since there is at most one element in [λ]1[\lambda]_{1} and [λ]2[\lambda]_{2}, we denote them by λ(0)\lambda_{(0)} and λ(12)\lambda_{(\frac{1}{2})}. Set [λ]1,2=[λ]1[λ]2[\lambda]_{1,2}=[\lambda]_{1}\cup[\lambda]_{2} and [λ]3=[λ][λ]1,2[\lambda]_{3}=[\lambda]\setminus[\lambda]_{1,2}. For λY[λ]1,2\lambda_{Y}\in[\lambda]_{1,2} we can get a Young tableau P(λY)P(\lambda^{-}_{Y}) and P(λ~Y)P(\tilde{\lambda}_{Y}) for λY[λ]3\lambda_{Y}\in[\lambda]_{3}. We use PcQP{\stackrel{{\scriptstyle c}}{{\sqcup}}}Q to denote a new Young tableau whose columns are the union of columns of the Young tableaux PP and QQ. We use XX to denote the corresponding type of Lie algebras, i.e., X=B,CX=B,C or DD. Then we have the following result.

Proposition 2.13 ([BMW23], Thm. 5.4, 6.5, 6.6 and 7.14).

Suppose λ𝔥\lambda\in\mathfrak{h}^{\ast}, the annihilator variety of L(λ)L(\lambda) is given as follows.

  1. (1)

    If 𝔤=𝔰𝔩(n,)\mathfrak{g}=\mathfrak{sl}(n,\mathbb{C}), then

    V(Ann(L(λ)))=𝒪¯𝐩(λ),V(\operatorname{Ann}(L(\lambda)))=\overline{\mathcal{O}}_{{\bf p}(\lambda)},

    where 𝐩(λ){\bf p}(\lambda) is the partition of the Young tableau

    P(λ)=cP(λY)S(λ)P(λY).P(\lambda)=\underset{P\left(\lambda_{Y}\right)\in S(\lambda)}{\stackrel{{\scriptstyle c}}{{\sqcup}}}P\left(\lambda_{Y}\right).
  2. (2)

    If 𝔤=𝔰𝔬(2n+1,),𝔰𝔭(n,)\mathfrak{g}=\mathfrak{so}(2n+1,\mathbb{C}),\mathfrak{sp}(n,\mathbb{C}) or 𝔰𝔬(2n,)\mathfrak{so}(2n,\mathbb{C}), λ𝔥\lambda\in\mathfrak{h}^{*} and [λ]=[λ]1[λ]2[λ]3[\lambda]=[\lambda]_{1}\cup[\lambda]_{2}\cup[\lambda]_{3} with [λ]3={λY1,,λYm}[\lambda]_{3}=\{{\lambda}_{{Y}_{1}},\dots,{\lambda}_{{Y}_{m}}\}. Let

    1. (a)

      𝐩0\mathbf{p}_{0} be the XX-type special partition associated to [λ]1[\lambda]_{1};

    2. (b)

      𝐩12{\mathbf{p}}_{\frac{1}{2}} be the CC-type special partition (for type BB) or CC-type metaplectic special partition (for types CC and DD) associated to [λ]2[\lambda]_{2};

    3. (c)

      𝐩i\mathbf{p}_{i} be the AA-type partition associated to λ~Yi\tilde{\lambda}_{Y_{i}}.

    Let 𝐩X(λ){\bf p}_{{}_{X}}(\lambda) be the XX-collapse of

    𝐝λ:=𝐩0c𝐩12c(ci2𝐩i).\mathbf{d}_{\lambda}:=\mathbf{p}_{0}{\stackrel{{\scriptstyle c}}{{\sqcup}}}{\mathbf{p}}_{\frac{1}{2}}{\stackrel{{\scriptstyle c}}{{\sqcup}}}({{\stackrel{{\scriptstyle c}}{{\sqcup}}}}_{i}2\mathbf{p}_{i}).

    Then we have

    V(Ann(L(λ)))=𝒪¯𝐩X(λ).V(\mathrm{Ann}(L(\lambda)))=\overline{\mathcal{O}}_{{\bf p}_{{}_{X}}(\lambda)}.
Remark 2.14.

From [BMW23, §6], we know that 𝐩0\mathbf{p}_{0} will be the partition [1][1] in the case of type BB if [λ]1=[\lambda]_{1}=\emptyset.

Note that a CC-type metaplectic special partition 𝐩{\bf p} means that 𝐩=((𝐝t)D)t{\bf p}=(({\bf d}^{t})_{D})^{t}, where 𝐝{\bf d} is a special partition of type DD. From [BMW23], we can get a CC-type metaplectic special partition from the Young tableau P(λ(12))P(\lambda_{(\frac{1}{2})}^{-}) by using the H-algorithm defined in [BMW23, Chap. 8]. We can also get a special partition from the Young tableau P(λ)P(\lambda^{-}) or P(λ(12))P(\lambda_{(\frac{1}{2})}^{-}) by using the H-algorithm.

Roughly speaking, the H-algorithm is equivalent to the following: during the process of collapse and expansion, we can not move the odd boxes for types B and C (resp. even boxes for type D) and the moving even box can not meet another even box in the same row (resp. the moving odd box can not meet another odd box in the same row for type D).

Special partitions are given by the following characterizations.

Proposition 2.15 ([CM93, Thm. 5.1.1, 5.1.2, 5.1.3 &\& 5.1.4 and Prop. 6.3.7]).

The nilpotent orbits of classical types can be identified with some partitions as follows:

  1. (1)

    Nilpotent orbits in 𝔰𝔩(n,)\mathfrak{sl}(n,\mathbb{C}) are in one-to-one correspondence with the set of partitions of nn. Every partition is special.

  2. (2)

    Nilpotent orbits in 𝔰𝔬(2n+1,)\mathfrak{so}{(2n+1,\mathbb{C})} are in one-to-one correspondence with the set of partitions of 2n+12n+1 in which even parts occur with even multiplicity. A partition 𝐪\bf q of type BB is special if and only if its dual partition 𝐪t{\bf q}^{t} is a partition of type BB.

  3. (3)

    Nilpotent orbits in 𝔰𝔭(n,)\mathfrak{sp}{(n,\mathbb{C})} are in one-to-one correspondence with the set of partitions of 2n2n in which odd parts occur with even multiplicity. A partition 𝐪\bf q of type CC is special if and only if its dual partition 𝐪t{\bf q}^{t} is a partition of type CC.

  4. (4)

    Nilpotent orbits in 𝔰𝔬(2n,)\mathfrak{so}{(2n,\mathbb{C})} are in one-to-one correspondence with the set of partitions of 2n2n in which even parts occur with even multiplicity, except that each “very even” partition 𝐝{\bf d} (consisting of only even parts) correspond to two orbits, denoted by 𝒪𝐝I\mathcal{O}^{I}_{\bf d} and 𝒪𝐝II\mathcal{O}^{II}_{\bf d}. A partition 𝐪\bf q of type DD is special if and only if its dual partition 𝐪t{\bf q}^{t} is a partition of type CC.

3. Annihilator varieties for type An1A_{n-1}

In this section, we consider the case of type An1A_{n-1}.

Definition 3.1.

For 𝔤=𝔰𝔩(n,)\mathfrak{g}=\mathfrak{sl}(n,\mathbb{C}), we say λ𝔥\lambda\in\mathfrak{h}^{\ast} is (p,q)(p,q)-dominant if titj>0t_{i}-t_{j}\in\mathbb{Z}_{>0} for all i,ji,j such that 1i<jp1\leq i<j\leq p and p+1i<jp+qp+1\leq i<j\leq p+q, where λ=(t1,t2,,tn)\lambda=(t_{1},t_{2},\dots,t_{n}). In particular, t1>t2>>tpt_{1}>t_{2}>\dots>t_{p} and tp+1>tp+2>>tp+qt_{p+1}>t_{p+2}>\dots>t_{p+q}.

Proposition 3.2 ([BX19, Thm. 5.2]).

For 𝔤=𝔰𝔩(n,)\mathfrak{g}=\mathfrak{sl}(n,\mathbb{C}), assume that λ𝔥\lambda\in\mathfrak{h}^{\ast} is (p,q)(p,q)-dominant.

  1. (1)

    If tptp+1t_{p}-t_{p+1}\in\mathbb{Z}, that is, λ\lambda is an integral weight, then P(λ)P(\lambda) is a Young tableau with at most two columns. And in this case GKdimL(λ)=m(nm){\rm GKdim}\>L(\lambda)=m(n-m) where mm is the number of entries in the second column of P(λP(\lambda).

  2. (2)

    If tptp+1t_{p}-t_{p+1}\notin\mathbb{Z}, then S(λ)S(\lambda) consists of two Young tableaux with single column, and in this case GKdimL(λ)=pq{\rm GKdim}\>L(\lambda)=pq.

Theorem 3.3.

Let L(λ)L(\lambda) be a Harish-Chandra module of SU(p,np)SU(p,n-p) with highest weight λρ𝔥\lambda-\rho\in\mathfrak{h}^{*}. Suppose q2q_{2} is the length of second column of the Young tableau P(λ)P(\lambda). Then V(Ann(L(λ)))=𝒪¯𝐩V(\mathrm{Ann}(L(\lambda)))=\overline{\mathcal{O}}_{{\bf p}} with

𝐩={[2q2,1n2q2], if λ is integral,[2r,1n2r], otherwise.{\bf p}=\left\{\begin{array}[]{ll}[2^{q_{2}},1^{n-2q_{2}}],&\textnormal{~{}if~{}$\lambda$~{}is~{}integral},\\ [2^{r},1^{n-2r}],&\textnormal{~{}otherwise}.\end{array}\right.
Proof.

From [EHW83], we know that λ𝔥\lambda\in\mathfrak{h}^{\ast} is (p,np)(p,n-p)-dominant.

  1. (1)

    When λ\lambda is not integral, S(λ)S(\lambda) has two Young tableaux and these two Young tableaux have only one column, so

    𝐩(λY1)=[1p] and 𝐩(λY2)=[1np].{\bf p}(\lambda_{Y_{1}})=[1^{p}]\text{~{}and~{}}{\bf p}(\lambda_{Y_{2}})=[1^{n-p}].

    By Proposition 2.13, 𝐩=𝐩(λ)=𝐩(λY1)c𝐩(λY2)=[2r,1n2r]{\bf p}={\bf p}(\lambda)={\bf p}(\lambda_{Y_{1}}){\stackrel{{\scriptstyle c}}{{\sqcup}}}{\bf p}(\lambda_{Y_{2}})=[2^{r},1^{n-2r}] is the corresponding partition for V(Ann(L(λ)))=𝒪¯𝐩V(\mathrm{Ann}(L(\lambda)))=\overline{\mathcal{O}}_{{\bf p}}, where r=min{p,np}r=\min\{p,n-p\}.

  2. (2)

    When λ\lambda is integral, P(λ)P(\lambda) is a Young tableau with at most two columns by Proposition 3.2. Thus by Proposition 2.13, we have V(Ann(L(λ)))=𝒪¯𝐩V(\mathrm{Ann}(L(\lambda)))=\overline{\mathcal{O}}_{{\bf p}}, where 𝐩=𝐩(λ)=[2q2,1n2q2]{\bf p}={\bf p}(\lambda)=[2^{q_{2}},1^{n-2q_{2}}] with q2q_{2} being the length of second column of the Young tableau P(λ)P(\lambda).

So far, we have completed the proof. ∎

Corollary 3.4.

Keep notations as above. When V(L(λ))=𝒪¯k(λ)V(L(\lambda))=\overline{\mathcal{O}}_{k(\lambda)}, we will have V(Ann(L(λ)))=𝒪¯𝐩V(\mathrm{Ann}(L(\lambda)))=\overline{\mathcal{O}}_{{\bf p}} with

𝐩=[2k(λ),1n2k(λ)].{\bf p}=[2^{k(\lambda)},1^{n-2k(\lambda)}].

4. Annihilator varieties for types BnB_{n} and CnC_{n}

In this section, we consider the case of types BnB_{n} and CnC_{n}.

Theorem 4.1.

Let L(λ)L(\lambda) be a Harish-Chandra module of SO(2,2n1)SO(2,2n-1) with highest weight λρ=λ0+zξ𝔥\lambda-\rho=\lambda_{0}+z\xi\in\mathfrak{h}^{*}. Denote λ0=(λ1,λ2,,λn)\lambda_{0}=(\lambda_{1},\lambda_{2},\cdots,\lambda_{n}), then V(Ann(L(λ)))=𝒪¯𝐩V(\mathrm{Ann}(L(\lambda)))=\overline{\mathcal{O}}_{{\bf p}} with

𝐩={[12n+1], if zλ2λ1+0,[22,12n3], if z>λ1n+12 and z12+,[3,12n2], otherwise.{\bf p}=\left\{\begin{array}[]{ll}[1^{2n+1}],&\textnormal{~{}if~{}$z\in\lambda_{2}-\lambda_{1}+\mathbb{Z}_{\geq 0}$},\\ [2^{2},1^{2n-3}],&\textnormal{~{}if~{}$z>-\lambda_{1}-n+\frac{1}{2}\textnormal{~{}and~{}}z\in\frac{1}{2}+\mathbb{Z}$},\\ [3,1^{2n-2}],&\textnormal{~{}otherwise}.\end{array}\right.
Proof.

From [EHW83] we know that λρ=λ0+zξ\lambda-\rho=\lambda_{0}+z\xi with λ0=(λ1,λ2,,λn)\lambda_{0}=(\lambda_{1},\lambda_{2},\cdots,\lambda_{n}), λ2λ3λn0\lambda_{2}\geq\lambda_{3}\geq\cdots\geq\lambda_{n}\geq 0, λiλj and 2λi\lambda_{i}-\lambda_{j}\in\mathbb{Z}\textnormal{~{}and~{}}2\lambda_{i}\in\mathbb{N} for 2i,jn2\leq i,\>j\leq n. By the normalization (λ0+ρ,β)=0(\lambda_{0}+\rho,\beta)=0, we have λ1+λ2=2n+2\lambda_{1}+\lambda_{2}=-2n+2.

  1. (1)

    When λ\lambda is integral, we have ξ=(1,0,,0)\xi=(1,0,\dots,0) and

    λ=(z+λ1+n12,λ2+n32,,λn+12):=(t1,,tn).\displaystyle\lambda=(z+\lambda_{1}+n-\frac{1}{2},\lambda_{2}+n-\frac{3}{2},\cdots,\lambda_{n}+\frac{1}{2}):=(t_{1},...,t_{n}).

    Thus we have t2>t3>>tn1>tn>0t_{2}>t_{3}>\cdots>t_{n-1}>t_{n}>0.

    When t1>t2t_{1}>t_{2} (equivalently zλ2λ1+0z\in\lambda_{2}-\lambda_{1}+\mathbb{Z}_{\geq 0}), L(λ)L(\lambda) will be finite-dimensional and V(Ann(L(λ)))=𝒪¯𝐩V(\mathrm{Ann}(L(\lambda)))=\overline{\mathcal{O}}_{{\bf p}} with the partition 𝐩=[12n+1]{\bf p}=[1^{2n+1}] corresponding to the trivial orbit of type BnB_{n}.

    When t1t2t_{1}\leq t_{2}, by using the Robinson-Schensted algorithm for λ\lambda^{-}, we can get a Young tableau P(λ)P(\lambda^{-}) which consists of at most three columns. When t2t1>tnt_{2}\geq t_{1}>-t_{n}, from the construction process, we can see that P(λ)P(\lambda^{-}) will be a Young tableau consisting of two columns with c1(P(λ))=2n2c_{1}(P(\lambda^{-}))=2n-2 and c2(P(λ))=2c_{2}(P(\lambda^{-}))=2. Thus 𝐩(λ)=[2,2,12n4]{\bf p}(\lambda^{-})=[2,2,1^{2n-4}]. In this case, the special partition of type BB corresponding to 𝐩(λ){\bf p}(\lambda^{-}) is 𝐩=[3,12n2]{\bf p}=[3,1^{2n-2}]. Therefore V(Ann(L(λ)))=𝒪¯𝐩V(\mathrm{Ann}(L(\lambda)))=\overline{\mathcal{O}}_{{\bf p}} by Proposition 2.13. When t1tnt_{1}\leq-t_{n}, P(λ)P(\lambda^{-}) will be a Young tableau consisting of three columns with c1(P(λ))=2n2c_{1}(P(\lambda^{-}))=2n-2, c2(P(λ))=1c_{2}(P(\lambda^{-}))=1 and c3(P(λ))=1c_{3}(P(\lambda^{-}))=1. Thus 𝐩(λ)=[3,12n3]{\bf p}(\lambda^{-})=[3,1^{2n-3}]. In this case, the special partition of type BB corresponding to 𝐩(λ){\bf p}(\lambda^{-}) is 𝐩=[3,12n2]{\bf p}=[3,1^{2n-2}].

  2. (2)

    When λ\lambda is half integral, we have tn>0t_{n}>0, t1t212+t_{1}-t_{2}\in\frac{1}{2}+\mathbb{Z}, 2tk2t_{k}\in\mathbb{Z} for 1kn1\leq k\leq n and titj>0t_{i}-t_{j}\in\mathbb{Z}_{>0} for 2i<jn2\leq i<j\leq n. Then we have t2>t3>>tn>tn>>t2t_{2}>t_{3}>...>t_{n}>-t_{n}>...>-t_{2}. We denote λY1=(t2,,tn)\lambda_{Y_{1}}=(t_{2},...,t_{n}) and λY2=(t1)\lambda_{Y_{2}}=(t_{1}). Thus λY1,λY2[λ]1,2\lambda_{Y_{1}},\lambda_{Y_{2}}\in[\lambda]_{1,2}. By using Robinson-Schensted algorithm, we can get a Young tableau P(λY1)P(\lambda_{Y_{1}}^{-}) with shape 𝐩(λY1)=[12n2]{\bf p}(\lambda_{Y_{1}}^{-})=[1^{2n-2}] and a Young tableau P(λY2)P(\lambda_{Y_{2}}^{-}) with shape

    𝐩(λY2)={[2], if t10,[1,1], if t1>0.{\bf p}(\lambda_{Y_{2}}^{-})=\left\{\begin{array}[]{ll}[2],&\textnormal{~{}if~{}}t_{1}\leq 0,\\ [1,1],&\textnormal{~{}if~{}}t_{1}>0.\end{array}\right.

    If t112+t_{1}\in\frac{1}{2}+\mathbb{Z} (equivalently z12+z\in\frac{1}{2}+\mathbb{Z}), we will have λY1[λ]1\lambda_{Y_{1}}\in[\lambda]_{1} and λY2[λ]2\lambda_{Y_{2}}\in[\lambda]_{2}. From Proposition 2.13, we have 𝐩0=[12n1]\mathbf{p}_{0}=[1^{2n-1}] and

    𝐩12={[1,1], if t1>0,[2], if t10.\mathbf{p}_{\frac{1}{2}}=\left\{\begin{array}[]{ll}[1,1],&\textnormal{~{}if~{}}t_{1}>0,\\ [2],&\textnormal{~{}if~{}}t_{1}\leq 0.\end{array}\right.

    Therefore by Proposition 2.13, we have V(Ann(L(λ)))=𝒪¯𝐩V(\mathrm{Ann}(L(\lambda)))=\overline{\mathcal{O}}_{{\bf p}} with

    𝐩=(𝐩0c𝐩12)B={[2,2,12n3], if t1>0,[3,12n2], if t10.{\bf p}=(\mathbf{p}_{0}{\stackrel{{\scriptstyle c}}{{\sqcup}}}{\mathbf{p}}_{\frac{1}{2}})_{B}=\left\{\begin{array}[]{ll}[2,2,1^{2n-3}],&\textnormal{~{}if~{}}t_{1}>0,\\ [3,1^{2n-2}],&\textnormal{~{}if~{}}t_{1}\leq 0.\end{array}\right.

    If t1t_{1}\in\mathbb{Z} (equivalently z12+z\in\frac{1}{2}+\mathbb{Z}), we will have λY1[λ]2\lambda_{Y_{1}}\in[\lambda]_{2} and λY2[λ]1\lambda_{Y_{2}}\in[\lambda]_{1}. From Proposition 2.13, we have 𝐩12=[12n2]\mathbf{p}_{\frac{1}{2}}=[1^{2n-2}] and

    𝐩0={[1,1,1], if t1>0,[3], if t10.\mathbf{p}_{0}=\left\{\begin{array}[]{ll}[1,1,1],&\textnormal{~{}if~{}}t_{1}>0,\\ [3],&\textnormal{~{}if~{}}t_{1}\leq 0.\end{array}\right.

    Therefore by Proposition 2.13, we have V(Ann(L(λ)))=𝒪¯𝐩V(\mathrm{Ann}(L(\lambda)))=\overline{\mathcal{O}}_{{\bf p}} with

    𝐩=(𝐩0c𝐩12)B={[2,2,12n3], if t1>0,[3,12n2], if t10.{\bf p}=(\mathbf{p}_{0}{\stackrel{{\scriptstyle c}}{{\sqcup}}}{\mathbf{p}}_{\frac{1}{2}})_{B}=\left\{\begin{array}[]{ll}[2,2,1^{2n-3}],&\textnormal{~{}if~{}}t_{1}>0,\\ [3,1^{2n-2}],&\textnormal{~{}if~{}}t_{1}\leq 0.\end{array}\right.

    Note that t1>0t_{1}>0 is equivalent to z>λ1n+12z>-\lambda_{1}-n+\frac{1}{2}.

  3. (3)

    When λ\lambda is not integral or half integral, we have λY1=(t2,,tn)[λ]1,2\lambda_{Y_{1}}=(t_{2},\cdots,t_{n})\in[\lambda]_{1,2} and λY2=(t1)[λ]3\lambda_{Y_{2}}=(t_{1})\in[\lambda]_{3}. By using Robinson-Schensted algorithm, we can get a Young tableau P(λY1)P(\lambda_{Y_{1}}^{-}) with shape 𝐩(λY1)=[12n2]{\bf p}(\lambda_{Y_{1}}^{-})=[1^{2n-2}] and a Young tableau P(λY2)P(\lambda_{Y_{2}}) with shape [1][1]. Thus we have 𝐩0=[12n1]\mathbf{p}_{0}=[1^{2n-1}] or 𝐩12=[12n2]{\mathbf{p}}_{\frac{1}{2}}=[1^{2n-2}], and 𝐩1=[1]\mathbf{p}_{1}=[1]. Therefore by Proposition 2.13, we have V(Ann(L(λ)))=𝒪¯𝐩V(\mathrm{Ann}(L(\lambda)))=\overline{\mathcal{O}}_{{\bf p}} with 𝐩=(𝐩0c2𝐩1)B=[3,12n2]{\bf p}=(\mathbf{p}_{0}{\stackrel{{\scriptstyle c}}{{\sqcup}}}{2\mathbf{p}}_{1})_{B}=[3,1^{2n-2}] or 𝐩=([1]c𝐩12c2𝐩1)B=[3,12n2]{\bf p}=([1]{\stackrel{{\scriptstyle c}}{{\sqcup}}}\mathbf{p}_{\frac{1}{2}}{\stackrel{{\scriptstyle c}}{{\sqcup}}}{2\mathbf{p}}_{1})_{B}=[3,1^{2n-2}].

This finishes the proof.

Remark 4.2.

From [EHW83, Lem. 3.17], we know that the generalized Verma module N(λ)N(\lambda) will be irreducible when λ\lambda is not integral or half integral. Thus we will have V(Ann(L(λ)))=V(Ann(N(λ)))=𝒪¯𝐩V(\mathrm{Ann}(L(\lambda)))=V(\mathrm{Ann}(N(\lambda)))=\overline{\mathcal{O}}_{{\bf p}} with 𝐩=[3,12n2]{\bf p}=[3,1^{2n-2}], which is just the Richardson nilpotent orbit G𝔭+G\cdot\mathfrak{p}^{+}, see [BZ17].

Theorem 4.3.

Let L(λ)L(\lambda) be a Harish-Chandra module of Sp(n,)Sp(n,\mathbb{R}) with highest weight λρ𝔥\lambda-\rho\in\mathfrak{h}^{*}. Suppose q2q_{2} is the length of second column of the Young tableau P(λ)P(\lambda^{-}). Denote λ0=(λ1,λ2,,λn)\lambda_{0}=(\lambda_{1},\lambda_{2},\cdots,\lambda_{n}), then V(Ann(L(λ)))=𝒪¯𝐩V(\mathrm{Ann}(L(\lambda)))=\overline{\mathcal{O}}_{{\bf p}} with

𝐩={[22q2od,12n4q2od], if z,[22q2ev+1,12n4q2ev2], if z12+,[2n], otherwise.{\bf p}=\left\{\begin{array}[]{ll}[2^{2q_{2}^{\mathrm{od}}},1^{2n-4q_{2}^{\mathrm{od}}}],&\textnormal{~{}if~{}}z\in\mathbb{Z},\\ [2^{2q_{2}^{\mathrm{ev}}+1},1^{2n-4q_{2}^{\mathrm{ev}}-2}],&\textnormal{~{}if~{}}z\in\frac{1}{2}+\mathbb{Z},\\ [2^{n}],&\textnormal{~{}otherwise.}\\ \end{array}\right.
Proof.

From [EHW83] we know that λρ=λ0+zξ\lambda-\rho=\lambda_{0}+z\xi with λ0=(λ1,λ2,,λn)\lambda_{0}=(\lambda_{1},\lambda_{2},\cdots,\lambda_{n}), λiλj\lambda_{i}-\lambda_{j}\in\mathbb{N} for i<ji<j. By the normalization (λ0+ρ,β)=0(\lambda_{0}+\rho,\beta)=0, we have λ1=n\lambda_{1}=-n.

Firstly we suppose that nn is even. Then we have the follows.

  1. (1)

    When λ\lambda is integral, we have ξ=(1,1,,1n)\xi=(\underbrace{1,1,\dots,1}_{n}) and

    λ=(λ1+z+n,λ2+z+n1,,λn+z+1):=(t1,t1,,tn).\lambda=(\lambda_{1}+z+n,\lambda_{2}+z+n-1,\cdots,\lambda_{n}+z+1):=(t_{1},t_{1},\cdots,t_{n}).

    Thus we have t1>t2>>tn1>tnt_{1}>t_{2}>\cdots>t_{n-1}>t_{n}.

    When t1t_{1}\in\mathbb{Z} (equivalently zz\in\mathbb{Z}), by using the Robinson-Schensted algorithm for λ\lambda^{-}, we can get a Young tableau P(λ)P(\lambda^{-}) which consists of at most two columns with c2(P(λ))=q2c_{2}(P(\lambda^{-}))=q_{2} and c1(P(λ))=2nq2c_{1}(P(\lambda^{-}))=2n-q_{2}. Thus 𝐩(λ)=[2q2,12n2q2]{\bf p}(\lambda^{-})=[2^{q_{2}},1^{2n-2q_{2}}]. In this case the special partition of type CC corresponding to 𝐩(λ){\bf p}(\lambda^{-}) is

    𝐩={[2q2,12n2q2], if q2=2k,[2q2+1,12n2q22], if q2=2k+1.{\bf p}=\left\{\begin{array}[]{ll}[2^{q_{2}},1^{2n-2q_{2}}],&\textnormal{~{}if~{}}q_{2}=2k,\\ [2^{q_{2}+1},1^{2n-2q_{2}-2}],&\textnormal{~{}if~{}}q_{2}=2k+1.\end{array}\right.

    Equivalently, 𝐩=[22q2od,12n4q2od]{\bf p}=[2^{2q_{2}^{\mathrm{od}}},1^{2n-4q_{2}^{\mathrm{od}}}] by (2.7). Therefore V(Ann(L(λ)))=𝒪¯𝐩V(\mathrm{Ann}(L(\lambda)))=\overline{\mathcal{O}}_{{\bf p}} by Proposition 2.13.

  2. (2)

    When λ\lambda is half integral (equivalently z12+z\in\frac{1}{2}+\mathbb{Z}), we have λ[λ]2\lambda\in[\lambda]_{2}. Similarly we can get a Young tableau P(λ)P(\lambda^{-}) which consists of at most two columns with c2(P(λ))=q2c_{2}(P(\lambda^{-}))=q_{2} and c1(P(λ))=2nq2c_{1}(P(\lambda^{-}))=2n-q_{2}. Thus 𝐩(λ)=[2q2,12n2q2]{\bf p}(\lambda^{-})=[2^{q_{2}},1^{2n-2q_{2}}]. In this case the CC-type metaplectic special partition 𝐩12{\mathbf{p}}_{\frac{1}{2}} corresponding to 𝐩(λ){\bf p}(\lambda^{-}) is

    𝐩12=[22q2ev+1,12n4q2ev2]={[2q2+1,12n2q22], if q2=2k,[2q2,12n2q2], if q2=2k+1.{\mathbf{p}}_{\frac{1}{2}}=[2^{2q_{2}^{\mathrm{ev}}+1},1^{2n-4q_{2}^{\mathrm{ev}}-2}]=\left\{\begin{array}[]{ll}[2^{q_{2}+1},1^{2n-2q_{2}-2}],&\textnormal{~{}if~{}}q_{2}=2k,\\ [2^{q_{2}},1^{2n-2q_{2}}],&\textnormal{~{}if~{}}q_{2}=2k+1.\end{array}\right.

    by (2.7).

    Therefore V(Ann(L(λ)))=𝒪¯𝐩V(\mathrm{Ann}(L(\lambda)))=\overline{\mathcal{O}}_{{\bf p}} with 𝐩=(𝐩12)C=𝐩12{\bf p}=({\mathbf{p}}_{\frac{1}{2}})_{C}={\mathbf{p}}_{\frac{1}{2}} by Proposition 2.13.

  3. (3)

    When λ\lambda is not integral or half integral, we have λ[λ]3\lambda\in[\lambda]_{3}. By Proposition 2.13, we have 𝐩1=p(λ~)=p(λ)=[1n]{\bf p}_{1}=p(\tilde{\lambda})=p(\lambda)=[1^{n}]. Therefore V(Ann(L(λ)))=𝒪¯𝐩V(\mathrm{Ann}(L(\lambda)))=\overline{\mathcal{O}}_{{\bf p}} with 𝐩=(2𝐩1)C=[2n]{\bf p}=(2\mathbf{p}_{1})_{C}=[2^{n}] by Proposition 2.13.

When nn is odd, the argument is similar to the case when nn is even. We omit the details here.

This finishes the proof. ∎

Corollary 4.4.

Keep notations as above. When V(L(λ))=𝒪¯k(λ)V(L(\lambda))=\overline{\mathcal{O}}_{k(\lambda)}, we will have V(Ann(L(λ)))=𝒪¯𝐩V(\mathrm{Ann}(L(\lambda)))=\overline{\mathcal{O}}_{{\bf p}} with

𝐩=[2k(λ),12n2k(λ)].{\bf p}=[2^{k(\lambda)},1^{2n-2k(\lambda)}].
Remark 4.5.

From [EHW83, Lem. 3.17], we know that the generalized Verma module N(λ)N(\lambda) will be irreducible when λ\lambda is not integral or half integral. Thus we will have V(Ann(L(λ)))=V(Ann(N(λ)))=𝒪¯𝐩V(\mathrm{Ann}(L(\lambda)))=V(\mathrm{Ann}(N(\lambda)))=\overline{\mathcal{O}}_{{\bf p}} with 𝐩=[2n]{\bf p}=[2^{n}], which is just the Richardson nilpotent orbit G𝔭+G\cdot\mathfrak{p}^{+}, see [BZ17].

5. Annihilator varieties for type DnD_{n}

In this section, we consider the case of type DnD_{n}.

Theorem 5.1.

Let L(λ)L(\lambda) be a Harish-Chandra module of SO(2,2n2)SO(2,2n-2) with highest weight λρ=λ0+zξ𝔥\lambda-\rho=\lambda_{0}+z\xi\in\mathfrak{h}^{*}. Denote λ0=(λ1,λ2,,λn)\lambda_{0}=(\lambda_{1},\lambda_{2},\cdots,\lambda_{n}), then V(Ann(L(λ)))=𝒪¯𝐩V(\mathrm{Ann}(L(\lambda)))=\overline{\mathcal{O}}_{{\bf p}} with

𝐩={[12n], if zλ2λ1+0,[22,12n4], if z+λ1λ2 and |λn|λ1n+1<zλ2λ11,[3,12n3], otherwise.{\bf p}=\left\{\begin{array}[]{ll}[1^{2n}],&\textnormal{~{}if~{}}z\in\lambda_{2}-\lambda_{1}+\mathbb{Z}_{\geq 0},\\ [2^{2},1^{2n-4}],&\textnormal{~{}if~{}}z+\lambda_{1}-\lambda_{2}\in\mathbb{Z}\textnormal{~{}and~{}}-|\lambda_{n}|-\lambda_{1}-n+1<z\leq\lambda_{2}-\lambda_{1}-1,\\ [3,1^{2n-3}],&\textnormal{~{}otherwise.}\\ \end{array}\right.
Proof.

From [EHW83] we know that λρ=λ0+zξ\lambda-\rho=\lambda_{0}+z\xi with λ0=(λ1,λ2,,λn)\lambda_{0}=(\lambda_{1},\lambda_{2},\cdots,\lambda_{n}), λ2λ3λn1|λn|\lambda_{2}\geq\lambda_{3}\geq\cdots\lambda_{n-1}\geq|\lambda_{n}|, λiλj and 2λi\lambda_{i}-\lambda_{j}\in\mathbb{N}\textnormal{~{}and~{}}2\lambda_{i}\in\mathbb{N} for 2i<jn2\leq i<j\leq n. By the normalization (λ0+ρ,β)=0(\lambda_{0}+\rho,\beta)=0, we have λ1+λ2=2n+3\lambda_{1}+\lambda_{2}=-2n+3.

  1. (1)

    When λ\lambda is integral, we have ξ=(1,0,,0)\xi=(1,0,\dots,0) and

    λ=(z+λ1+n1,λ2+n2,,λn1+1,λn):=(t1,,tn).\displaystyle\lambda=(z+\lambda_{1}+n-1,\lambda_{2}+n-2,\cdots,\lambda_{n-1}+1,\lambda_{n}):=(t_{1},...,t_{n}).

    Thus we have t2>t3>>tn1>|tn|t_{2}>t_{3}>\cdots>t_{n-1}>|t_{n}|.

    When t1>t2t_{1}>t_{2} (equivalently zλ2λ1+0z\in\lambda_{2}-\lambda_{1}+\mathbb{Z}_{\geq 0}), L(λ)L(\lambda) will be finite-dimensional and V(Ann(L(λ)))=𝒪¯𝐩V(\mathrm{Ann}(L(\lambda)))=\overline{\mathcal{O}}_{{\bf p}} with the partition 𝐩=[12n]{\bf p}=[1^{2n}] corresponding to the trivial orbit of type DnD_{n}.

    When t1t2t_{1}\leq t_{2}, by using the Robinson-Schensted algorithm for λ\lambda^{-}, we can get a Young tableau P(λ)P(\lambda^{-}) which consists of at most four columns. When |tn|<t1t2-|t_{n}|<t_{1}\leq t_{2} (equivalently |λn|λ1n+1<zλ2λ11-|\lambda_{n}|-\lambda_{1}-n+1<z\leq\lambda_{2}-\lambda_{1}-1), from the construction process, we can see that P(λ)P(\lambda^{-}) will be a Young tableau consisting of two columns with shape 𝐩(λ)=[22,12n4]{\bf p}(\lambda^{-})=[2^{2},1^{2n-4}] or [23,12n6][2^{3},1^{2n-6}]. In this case, the special partition of type DD corresponding to 𝐩(λ){\bf p}(\lambda^{-}) is 𝐩=[22,12n4]{\bf p}=[2^{2},1^{2n-4}]. Therefore V(Ann(L(λ)))=𝒪¯𝐩V(\mathrm{Ann}(L(\lambda)))=\overline{\mathcal{O}}_{{\bf p}} by Proposition 2.13.

    When t1|tn|t_{1}\leq-|t_{n}|, P(λ)P(\lambda^{-}) will be a Young tableau with shape 𝐩(λ)=[3,12n3]{\bf p}(\lambda^{-})=[3,1^{2n-3}] or 𝐩(λ)=[4,12n4]{\bf p}(\lambda^{-})=[4,1^{2n-4}]. In this case, the special partition of type DD corresponding to 𝐩(λ){\bf p}(\lambda^{-}) is 𝐩=[3,12n3]{\bf p}=[3,1^{2n-3}]. Therefore V(Ann(L(λ)))=𝒪¯𝐩V(\mathrm{Ann}(L(\lambda)))=\overline{\mathcal{O}}_{{\bf p}} by Proposition 2.13.

  2. (2)

    When λ\lambda is half integral, we have λY1=(t2,,tn)[λ]1\lambda_{Y_{1}}=(t_{2},\cdots,t_{n})\in[\lambda]_{1} and λY2=(t1)[λ]2\lambda_{Y_{2}}=(t_{1})\in[\lambda]_{2} (when z12+z\in\frac{1}{2}+\mathbb{Z}), or λY1[λ]2\lambda_{Y_{1}}\in[\lambda]_{2} and λY2=(t1)[λ]1\lambda_{Y_{2}}=(t_{1})\in[\lambda]_{1} (when z12+z\in\frac{1}{2}+\mathbb{Z}). Then we can get a Young tableau P(λY1)P(\lambda_{Y_{1}}^{-}) with shape 𝐩(λY1)=[12n2]{\bf p}(\lambda_{Y_{1}}^{-})=[1^{2n-2}] or [2,12n4][2,1^{2n-4}], and a Young tableau P(λY2)P(\lambda_{Y_{2}}^{-}) with shape

    𝐩(λY2)={[2], if t10,[1,1], if t1>0.{\bf p}(\lambda_{Y_{2}}^{-})=\left\{\begin{array}[]{ll}[2],&\textnormal{~{}if~{}}t_{1}\leq 0,\\ [1,1],&\textnormal{~{}if~{}}t_{1}>0.\end{array}\right.
    1. (a)

      If t112+t_{1}\in\frac{1}{2}+\mathbb{Z} (equivalently z12+z\in\frac{1}{2}+\mathbb{Z}), we will have λY1[λ]1\lambda_{Y_{1}}\in[\lambda]_{1} and λY2[λ]2\lambda_{Y_{2}}\in[\lambda]_{2}. From Proposition 2.13, we have 𝐩0=[12n2]\mathbf{p}_{0}=[1^{2n-2}] and the CC-type metaplectic special partition 𝐩12{\mathbf{p}}_{\frac{1}{2}} corresponding to p(λY2)p(\lambda_{Y_{2}}^{-}) is 𝐩12=[2]{\mathbf{p}}_{\frac{1}{2}}=[2]. Therefore V(Ann(L(λ)))=𝒪¯𝐩V(\mathrm{Ann}(L(\lambda)))=\overline{\mathcal{O}}_{{\bf p}} with 𝐩=(𝐩0c𝐩12)B=[3,12n3]{\bf p}=(\mathbf{p}_{0}{\stackrel{{\scriptstyle c}}{{\sqcup}}}{\mathbf{p}}_{\frac{1}{2}})_{B}=[3,1^{2n-3}] by Proposition 2.13.

    2. (b)

      If t1t_{1}\in\mathbb{Z} (equivalently z12+z\in\frac{1}{2}+\mathbb{Z}), we will have λY1[λ]2\lambda_{Y_{1}}\in[\lambda]_{2} and λY2[λ]1\lambda_{Y_{2}}\in[\lambda]_{1}. From Proposition 2.13, the CC-type metaplectic special partition corresponding to p(λY1)p(\lambda_{Y_{1}}^{-}) is 𝐩12=[2,12n4]\mathbf{p}_{\frac{1}{2}}=[2,1^{2n-4}] and 𝐩0=[1,1]\mathbf{p}_{0}=[1,1] if t1>0t_{1}>0 or 𝐩0=[2]\mathbf{p}_{0}=[2] if t10t_{1}\leq 0. Therefore V(Ann(L(λ)))=𝒪¯𝐩V(\mathrm{Ann}(L(\lambda)))=\overline{\mathcal{O}}_{{\bf p}} with 𝐩=(𝐩0c𝐩12)B=[3,12n3]{\bf p}=(\mathbf{p}_{0}{\stackrel{{\scriptstyle c}}{{\sqcup}}}{\mathbf{p}}_{\frac{1}{2}})_{B}=[3,1^{2n-3}] by Proposition 2.13.

  3. (3)

    When λ\lambda is not integral or half integral, we have λY1=(t2,,tn)[λ]1,2\lambda_{Y_{1}}=(t_{2},\cdots,t_{n})\in[\lambda]_{1,2} and λY2=(t1)[λ]3\lambda_{Y_{2}}=(t_{1})\in[\lambda]_{3} (equivalently z12z\notin\frac{1}{2}\mathbb{Z}). Then we can get a Young tableau P(λY1)P(\lambda_{Y_{1}}^{-}) with shape 𝐩(λY1)=[12n2]{\bf p}(\lambda_{Y_{1}}^{-})=[1^{2n-2}] or [2,12n4][2,1^{2n-4}], and a Young tableau P(λY2)P(\lambda_{Y_{2}}) with shape [1][1].

    1. (a)

      If λY1[λ]1\lambda_{Y_{1}}\in[\lambda]_{1}, we will have 𝐩0=[12n2]\mathbf{p}_{0}=[1^{2n-2}]. From P(λY2)P(\lambda_{Y_{2}}), we can get a partition 𝐩1=[1]{\bf p}_{1}=[1]. Therefore V(Ann(L(λ)))=𝒪¯𝐩V(\mathrm{Ann}(L(\lambda)))=\overline{\mathcal{O}}_{{\bf p}} with 𝐩=(𝐩0c2𝐩1)B=[3,12n3]{\bf p}=(\mathbf{p}_{0}{\stackrel{{\scriptstyle c}}{{\sqcup}}}{2\mathbf{p}}_{1})_{B}=[3,1^{2n-3}] by Proposition 2.13.

    2. (b)

      If λY1[λ]2\lambda_{Y_{1}}\in[\lambda]_{2}, the CC-type metaplectic special partition corresponding to 𝐩(λY1){\bf p}(\lambda_{Y_{1}}^{-}) is 𝐩12=[2,12n4]\mathbf{p}_{\frac{1}{2}}=[2,1^{2n-4}]. From P(λY2)P(\lambda_{Y_{2}}), we can get a partition 𝐩1=[1]{\bf p}_{1}=[1]. Therefore V(Ann(L(λ)))=𝒪¯𝐩V(\mathrm{Ann}(L(\lambda)))=\overline{\mathcal{O}}_{{\bf p}} with 𝐩=(𝐩12c2𝐩1)B=[3,12n3]{\bf p}=(\mathbf{p}_{\frac{1}{2}}{\stackrel{{\scriptstyle c}}{{\sqcup}}}{2\mathbf{p}}_{1})_{B}=[3,1^{2n-3}] by Proposition 2.13.

This finishes the proof.

Remark 5.2.

From [EHW83, Lem. 3.17], we know that the generalized Verma module N(λ)N(\lambda) will be irreducible when λ\lambda is not integral. Thus we will have V(Ann(L(λ)))=V(Ann(N(λ)))=𝒪¯𝐩V(\mathrm{Ann}(L(\lambda)))=V(\mathrm{Ann}(N(\lambda)))=\overline{\mathcal{O}}_{{\bf p}} with 𝐩=[3,12n3]{\bf p}=[3,1^{2n-3}], which is just the Richardson nilpotent orbit G𝔭+G\cdot\mathfrak{p}^{+}, see [BZ17].

Theorem 5.3.

Let L(λ)L(\lambda) be a Harish-Chandra module of SO(2n)SO^{\ast}(2n) with highest weight λρ=λ0+zξ𝔥\lambda-\rho=\lambda_{0}+z\xi\in\mathfrak{h}^{*}. Suppose q2q_{2} is the length of second column of the Young tableau P(λ)P(\lambda^{-}). Denote λ0=(λ1,λ2,,λn)\lambda_{0}=(\lambda_{1},\lambda_{2},\cdots,\lambda_{n}), then V(Ann(L(λ)))=𝒪¯𝐩V(\mathrm{Ann}(L(\lambda)))=\overline{\mathcal{O}}_{{\bf p}} with

𝐩={[22q2ev,12n4q2ev], if z,[2n], if n2,[2n1,1,1], if n2+1.{\bf p}=\left\{\begin{array}[]{ll}[2^{2q_{2}^{\mathrm{ev}}},1^{2n-4q_{2}^{\mathrm{ev}}}],&\textnormal{~{}if~{}}z\in\mathbb{Z},\\ [2^{n}],&\textnormal{~{}if~{}}n\in 2\mathbb{Z},\\ [2^{n-1},1,1],&\textnormal{~{}if~{}}n\in 2\mathbb{Z}+1.\end{array}\right.
Proof.

From [EHW83] we know that λρ=λ0+zξ\lambda-\rho=\lambda_{0}+z\xi with λ0=(λ1,λ2,,λn)\lambda_{0}=(\lambda_{1},\lambda_{2},\cdots,\lambda_{n}), and λiλj\lambda_{i}-\lambda_{j}\in\mathbb{N} for iji\leq j. By the normalization (λ0+ρ,β)=0(\lambda_{0}+\rho,\beta)=0, we have λ1+λ2=2n+3\lambda_{1}+\lambda_{2}=-2n+3 and 2λi2\lambda_{i}\in\mathbb{Z} for 1in1\leq i\leq n.

  1. (1)

    When λ\lambda is integral (equivalently zz\in\mathbb{Z}), we have ξ=(12,12,,12n)\xi=(\underbrace{\frac{1}{2},\frac{1}{2},\dots,\frac{1}{2}}_{n}) and

    λ=(12z+λ1+n1,12z+λ2+n2,,12z+λn1+1,12z+λn):=(t1,t2,,tn).\lambda=(\frac{1}{2}z+\lambda_{1}+n-1,\frac{1}{2}z+\lambda_{2}+n-2,\cdots,\frac{1}{2}z+\lambda_{n-1}+1,\frac{1}{2}z+\lambda_{n}):=(t_{1},t_{2},\cdots,t_{n}).

    Thus we have t1>t2>>tnt_{1}>t_{2}>\cdots>t_{n}.

    By using the Robinson-Schensted algorithm for λ\lambda^{-}, we can get a Young tableau P(λ)P(\lambda^{-}) which consists of at most two columns with c1(P(λ))=2nq2c_{1}(P(\lambda^{-}))=2n-q_{2} and c2(P(λ))=q2c_{2}(P(\lambda^{-}))=q_{2}. Thus 𝐩(λ)=[2q2,12n2q2]{\bf p}(\lambda^{-})=[2^{q_{2}},1^{2n-2q_{2}}]. In this case the special partition of type DD corresponding to 𝐩(λ){\bf p}(\lambda^{-}) is 𝐩=[22q2ev,12n4q2ev]{\bf p}=[2^{2q_{2}^{\mathrm{ev}}},1^{2n-4q_{2}^{\mathrm{ev}}}] by (2.7). Therefore V(Ann(L(λ)))=𝒪¯𝐩V(\mathrm{Ann}(L(\lambda)))=\overline{\mathcal{O}}_{{\bf p}} by Proposition 2.13.

  2. (2)

    When λ\lambda is not integral (equivalently zz\notin\mathbb{Z}), we will have λ[λ]3\lambda\in[\lambda]_{3}. From Proposition 2.13 we have 𝐩1=p(λY1)=[1n]{\bf p}_{1}=p(\lambda_{Y_{1}})=[1^{n}]. Therefore V(Ann(L(λ)))=𝒪¯𝐩V(\mathrm{Ann}(L(\lambda)))=\overline{\mathcal{O}}_{{\bf p}} with

    𝐩=(2𝐩1)D={[2n], if n2,[2n1,1,1], if n2+1.{\bf p}=(2\mathbf{p}_{1})_{D}=\left\{\begin{array}[]{ll}[2^{n}],&\textnormal{~{}if~{}}n\in 2\mathbb{Z},\\ [2^{n-1},1,1],&\textnormal{~{}if~{}}n\in 2\mathbb{Z}+1.\end{array}\right.

    by Proposition 2.13.

Corollary 5.4.

Keep notations as above. When V(L(λ))=𝒪¯k(λ)V(L(\lambda))=\overline{\mathcal{O}}_{k(\lambda)}, we will have V(Ann(L(λ)))=𝒪¯𝐩V(\mathrm{Ann}(L(\lambda)))=\overline{\mathcal{O}}_{{\bf p}} with

𝐩=[22k(λ),12n4k(λ)].{\bf p}=[2^{2k(\lambda)},1^{2n-4k(\lambda)}].
Remark 5.5.

From [EHW83, Lem. 3.17], we know that the generalized Verma module N(λ)N(\lambda) will be irreducible when λ\lambda is not integral. Thus when nn is even, we will have

V(Ann(L(λ)))=V(Ann(N(λ)))=𝒪¯𝐩V(\mathrm{Ann}(L(\lambda)))=V(\mathrm{Ann}(N(\lambda)))=\overline{\mathcal{O}}_{{\bf p}}

with 𝐩=[2n]{\bf p}=[2^{n}], which is just the Richardson nilpotent orbit G𝔭+G\cdot\mathfrak{p}^{+}, see [BZ17].

When G=SO(2n)G=SO^{\ast}(2n), from Proposition 2.15, we know that each very even partition 𝐩{\bf p} corresponds to two special nilpotent orbits 𝒪¯𝐩I\overline{\mathcal{O}}_{{\bf p}}^{I} and 𝒪¯𝐩II\overline{\mathcal{O}}_{{\bf p}}^{II}. Note that in SO(2n)SO^{\ast}(2n), 𝐩=[2n]{\bf p}=[2^{n}] is a very even partition when nn is even, which corresponds to two nilpotent orbits. In fact, the Levi subalgebra 𝔨\mathfrak{k} of our parabolic subalgebra 𝔮=𝔨𝔭+\mathfrak{q}=\mathfrak{k}\oplus\mathfrak{p}^{+} is of type II by [CM93, Lem. 7.3.2]. From [CM93, Lem. 7.3.3], we know that the numeral of 𝒪\mathcal{O} appeared in V(Ann(L(λ)))V(\mathrm{Ann}(L(\lambda))) is II if nn is even. In other words, we have

V(Ann(L(λ)))=𝒪¯[2n]I when n is  even.V(\mathrm{Ann}(L(\lambda)))=\overline{\mathcal{O}}_{[2^{n}]}^{I}\text{~{}when~{} $n$ ~{}is~{} even}.

6. Annihilator varieties for types E6E_{6} and E7E_{7}

In this section, we consider annihilator varieties of highest weight Harish-Chandra modules for two exceptional groups of type E6(14)E_{6(-14)} and E7(25)E_{7(-25)}. We recall some notations from [Car85] and [CM93].

Let 𝔤\mathfrak{g} be a semisimple Lie algebra. Let 𝔩\mathfrak{l} be a Levi subalgebra of 𝔤\mathfrak{g} and 𝔭𝔩\mathfrak{p}_{\mathfrak{l}} be a distinguished parabolic subalgebra of the semisimple algebra [𝔩,𝔩][\mathfrak{l},\mathfrak{l}]. From [CM93, Thm. 8.2.12], we know that a nilpotent orbit is corresponding to an ordered pair (𝔩,𝔭𝔩)(\mathfrak{l},\mathfrak{p}_{\mathfrak{l}}). From [BC76], we denote this orbit by the label XN(ai)X_{N}(a_{i}), where XNX_{N} is the Cartan type of the semisimple part of 𝔩\mathfrak{l} and ii is the number of simple roots in any Levi subalgebra of 𝔭𝔩\mathfrak{p}_{\mathfrak{l}}. If i=0i=0, one writes XNX_{N} rather than XN(a0)X_{N}(a_{0}). When 𝔤\mathfrak{g} is of type E7E_{7}, it has two non-conjugate isomorphic Levi subalgebras. One subalgebra is chosen arbitrarily and labeled with a prime, and the other one has a double prime.

In the following tables we give four pieces of information about the nilpotent orbits which will be used: Bala-Carter label, dimension, fundamental group and whether the orbit is special or not. The Bala-Carter label 𝒦=sXN\mathcal{K}=sX_{N} denotes ss copies of XNX_{N}.

Table 2. Some nilpotent orbits in type E6E_{6}
label𝒦{\rm label}~{}\mathcal{K} dim𝒪\dim\mathcal{O} π1(𝒪)\pi_{1}(\mathcal{O}) specialorbit{\rm special~{}orbit}
0 0 11 yes
A1A_{1} 2222 11 yes{\rm yes}
2A12A_{1} 3232 11 yes{\rm yes}
3A13A_{1} 4040 11 no{\rm no}
A2A_{2} 4242 S2S_{2} yes{\rm yes}
Table 3. Some nilpotent orbits in type E7E_{7}
label𝒦{\rm label}~{}\mathcal{K} dim𝒪\dim\mathcal{O} π1(𝒪)\pi_{1}(\mathcal{O}) specialorbit{\rm special~{}orbit}
0 0 11 yes
A1A_{1} 3434 11 yes{\rm yes}
2A12A_{1} 5252 11 yes{\rm yes}
(3A1)′′(3A_{1})^{\prime\prime} 5454 /2\mathbb{Z}/2\mathbb{Z} yes{\rm yes}
(3A1)(3A_{1})^{\prime} 6464 11 no{\rm no}
A2A_{2} 6666 S2S_{2} yes{\rm yes}
Theorem 6.1.

Let L(λ)L(\lambda) be a highest weight Harish-Chandra module of the exceptional Lie group E6(14)E_{6(-14)} with highest weight λρ=λ0+zξ𝔥\lambda-\rho=\lambda_{0}+z\xi\in\mathfrak{h}^{*} and V(L(λ))=𝒪¯k(λ)V(L(\lambda))=\overline{\mathcal{O}}_{k(\lambda)}. Denote λ0=(λ1,λ2,,λ8)\lambda_{0}=(\lambda_{1},\lambda_{2},\cdots,\lambda_{8}), then V(Ann(L(λ)))=𝒪¯𝒦V(\mathrm{Ann}(L(\lambda)))=\overline{\mathcal{O}}_{\mathcal{K}} with

𝒦={0, if z>(λ0,α1)1 and λ is integral,A1, if 4+min{(λ0,β1,2)}<z(λ0,α1)1 and λ is integral,2A1, otherwise.\mathcal{K}=\left\{\begin{array}[]{ll}\vspace{1ex}0,&\textnormal{~{}if~{}}z>-(\lambda_{0},\alpha_{1})-1\textnormal{~{}and~{}}\lambda\textnormal{~{}is~{}integral},\\ \vspace{1ex}A_{1},&\textnormal{~{}if~{}}-4+\min\{-(\lambda_{0},\beta_{1,2})\}<z\leq-(\lambda_{0},\alpha_{1})-1\textnormal{~{}and~{}}\lambda\textnormal{~{}is~{}integral},\\ \vspace{1ex}2A_{1},&\textnormal{~{}otherwise.}\\ \end{array}\right.

Here β1,2\beta_{1,2} means the root β1\beta_{1} and β2\beta_{2} in Proposition 2.10 (1).

Proof.

From [EHW83] we know that λρ=λ0+zξ\lambda-\rho=\lambda_{0}+z\xi with λ0=(λ1,λ2,,λ8)\lambda_{0}=(\lambda_{1},\lambda_{2},\cdots,\lambda_{8}), |λ1|λ2λ5|\lambda_{1}|\leq\lambda_{2}\leq\cdots\lambda_{5}, λiλj\lambda_{i}-\lambda_{j}\in\mathbb{Z} and 2λi2\lambda_{i}\in\mathbb{Z} for i,j5i,j\leq 5. By the normalization (λ0+ρ,β)=0(\lambda_{0}+\rho,\beta)=0, we have (λ0,β)=11(\lambda_{0},\beta)=-11.

  1. (1)

    When λ\lambda is integral, we have ξ=(0,0,0,0,0,23,23,23)\xi=(0,0,0,0,0,-\frac{2}{3},-\frac{2}{3},\frac{2}{3})

    1. (a)

      When Ψλ+S2\Psi_{\lambda}^{+}\cap S_{2}\neq\emptyset, equivalently (λ,α1)>0(\lambda,\alpha_{1}^{\vee})>0, we will have k(λ)=0k(\lambda)=0 by Proposition 2.10. By Corollary 2.12 and Table 2, we can get that the label of the corresponding nilpotent orbit is 𝒦=0\mathcal{K}=0.

      Hence (λ,α1)>0(\lambda,\alpha_{1}^{\vee})>0 if and only if z>(λ0,α1)1z>-(\lambda_{0},\alpha_{1})-1. In this case the label 𝒦=0\mathcal{K}=0.

    2. (b)

      When Ψλ+S1=\Psi_{\lambda}^{+}\cap S_{1}=\emptyset, equivalently, (λ,βi)0(\lambda,\beta_{i}^{\vee})\leq 0 for i=1,2i=1,2, we will have k(λ)=2k(\lambda)=2 by Proposition 2.10. By Corollary 2.12 and Table 2, we can get that the label of the corresponding nilpotent orbit is 𝒦=2A1\mathcal{K}=2A_{1}.

      Hence (λ,βi)0(\lambda,\beta_{i}^{\vee})\leq 0 if and only if z4+min{(λ0,βi)}z\leq-4+\min\{-(\lambda_{0},\beta_{i})\} for i=1,2i=1,2. In this case the label 𝒦=2A1\mathcal{K}=2A_{1}.

    3. (c)

      When Ψλ+S1\Psi_{\lambda}^{+}\cap S_{1}\neq\emptyset and Ψλ+S2=\Psi_{\lambda}^{+}\cap S_{2}=\emptyset, equivalently, z>4+min{(λ0,βi)}z>-4+\min\{-(\lambda_{0},\beta_{i})\} and z(λ0,α1)1z\leq-(\lambda_{0},\alpha_{1})-1, we will have k(λ)=2k(\lambda)=2 by Proposition 2.10. By Corollary 2.12 and Table 2, we can get that the label of the corresponding nilpotent orbit is 𝒦=A1\mathcal{K}=A_{1}.

      Hence when 4+min{(λ0,βi)}<z(λ0,α1)1-4+\min\{-(\lambda_{0},\beta_{i})\}<z\leq-(\lambda_{0},\alpha_{1})-1, the label 𝒦=A1\mathcal{K}=A_{1}.

  2. (2)

    When λ\lambda is non-integral, we will have k(λ)=2k(\lambda)=2 by Proposition 2.10. By Corollary 2.12 and Table 2, we can get that the label of the corresponding nilpotent orbit is 𝒦=2A1\mathcal{K}=2A_{1}.

Theorem 6.2.

Let L(λ)L(\lambda) be a highest weight Harish-Chandra module of the exceptional Lie group E7(25)E_{7(-25)} with highest weight λρ=λ0+zξ𝔥\lambda-\rho=\lambda_{0}+z\xi\in\mathfrak{h}^{*} and V(L(λ))=𝒪¯k(λ)V(L(\lambda))=\overline{\mathcal{O}}_{k(\lambda)}. Denote λ0=(λ1,λ2,,λ8)\lambda_{0}=(\lambda_{1},\lambda_{2},\cdots,\lambda_{8}), then V(Ann(L(λ)))=𝒪¯𝒦V(\mathrm{Ann}(L(\lambda)))=\overline{\mathcal{O}}_{\mathcal{K}} with

𝒦={0,if z>(λ0,β8)1 and λ is integral,A1,if (λ0,β6,7)5<z(λ0,β8)1 and λ is integral,2A1,if 9+min{(λ0,β3,4,5)}<z(λ0,β6,7)5 and λ is integral,(3A1)′′,otherwise.\mathcal{K}=\left\{\begin{array}[]{ll}\vspace{1ex}0,&\textnormal{if~{}}z>-(\lambda_{0},\beta_{8})-1\textnormal{~{}and~{}}\lambda\textnormal{~{}is~{}integral},\\ \vspace{1ex}A_{1},&\textnormal{if~{}}-(\lambda_{0},\beta_{6,7})-5<z\leq-(\lambda_{0},\beta_{8})-1\textnormal{~{}and~{}}\lambda\textnormal{~{}is~{}integral},\\ \vspace{1ex}2A_{1},&\textnormal{if~{}}-9+\min\{-(\lambda_{0},\beta_{3,4,5})\}<z\leq-(\lambda_{0},\beta_{6,7})-5\textnormal{~{}and~{}}\lambda\textnormal{~{}is~{}integral},\\ (3A_{1})^{\prime\prime},&\textnormal{otherwise.}\\ \end{array}\right.

Here β3,4,5\beta_{3,4,5} means the root β3\beta_{3}, β4\beta_{4} and β5\beta_{5} in Proposition 2.10 (2). Similarly β6,7\beta_{6,7} means the root β6\beta_{6} and β7\beta_{7} in Proposition 2.10 (2).

Proof.

The argument is similar to the case of E6(14)E_{6(-14)}. So we omit the details here. ∎

7. The Gelfand-Kirillov dimension of a unitary highest weight module

Proposition 2.5 indicates that if L(λ)L(\lambda) is a unitary highest weight module, then GKdimL(λ){\rm GKdim}\>L(\lambda) only depends on the value z=(λ,β)z=(\lambda,\beta^{\vee}). The proof of Proposition 2.5 used some results from Joseph [Jos92]. In this section, we will prove this result by another method.

Lemma 7.1 ([Bai+24, Lem. 5.4]).

Suppose μ=(t1,,tn,s1,,sm)\mu=(t_{1},\cdots,t_{n},s_{1},\cdots,s_{m}) is a (n,m)(n,m)-dominant sequence with tns1t_{n}\leq s_{1}. Then applying R-S algorithm to μ\mu, we can get a Young tableau P(μ)P(\mu) with two columns, and the number of boxes in the second column is precisely the largest integer kk for which we have

tnk+1s1,tnk+2s2,,tn1sk1,tnsk.t_{n-k+1}\leq s_{1},\>t_{n-k+2}\leq s_{2},\>\cdots,\>t_{n-1}\leq s_{k-1},\>t_{n}\leq s_{k}.

Now we recall two root systems Q(λ0)Q(\lambda_{0}) and R(λ0)R(\lambda_{0}) given in [EHW83]. Their constructions are as follows. Let Φc(λ0)={αΦ(𝔨)|(λ0,α)=0}\Phi_{c}(\lambda_{0})=\{\alpha\in\Phi(\mathfrak{k})|(\lambda_{0},\alpha)=0\}. Consider the subroot system Ψ1\Psi_{1} of Φ\Phi, which is generated by ±β\pm\beta and Φc(λ0)\Phi_{c}(\lambda_{0}). Let Q(λ0)Q(\lambda_{0}) be the simple component of Ψ1\Psi_{1} which contains β.-\beta. If Φ\Phi has two root lengths and there exist short roots αΦ(𝔨)\alpha^{\prime}\in\Phi(\mathfrak{k}) which are not orthogonal to Q(λ0)Q(\lambda_{0}) and satisfy (λ0,α)=1(\lambda_{0},\alpha^{\prime\vee})=1, then let Ψ2\Psi_{2} be the root system generated by ±β\pm\beta, Φc(λ0)\Phi_{c}(\lambda_{0}) and all such α\alpha. Let R(λ0)R(\lambda_{0}) be the simple component of Ψ2\Psi_{2} which contains β-\beta. If Φ\Phi has only one root length or no such α\alpha exists, we let R(λ0)=Q(λ0)R(\lambda_{0})=Q(\lambda_{0}).

Theorem 7.2.

When L(λ)L(\lambda) is a unitary highest weight module and z=zk=(ρ,β)kcz=z_{k}=(\rho,\beta^{\vee})-kc, we will have V(L(λ))=𝒪¯k(λ)V(L(\lambda))=\overline{\mathcal{O}}_{k(\lambda)}, where k(λ)=rk(\lambda)=r if krk\geq r and k(λ)=kk(\lambda)=k if 0kr10\leq k\leq r-1.

When L(λ)L(\lambda) is a unitary highest weight module, we will have V(L(λ))=𝒪¯k(λ)V(L(\lambda))=\overline{\mathcal{O}}_{k(\lambda)} with k(λ)k(\lambda) given in Proposition 2.9. From [EHW83], we can write λρ=λ0+zξ\lambda-\rho=\lambda_{0}+z\xi, where ξ\xi is the fundamental weight perpendicular to the compact roots such that (ξ,β)=1(\xi,\beta^{\vee})=1 and λ0=(λ1,λ2,,λn)\lambda_{0}=(\lambda_{1},\lambda_{2},\cdots,\lambda_{n}) with (λ0+ρ,β)=0(\lambda_{0}+\rho,\beta^{\vee})=0.

Now z=z(λ)=(λ,β)=zk=(ρ,β)kcz=z(\lambda)=(\lambda,\beta^{\vee})=z_{k}=(\rho,\beta^{\vee})-kc, we want to prove that k(λ)=rk(\lambda)=r if krk\geq r and k(λ)=kk(\lambda)=k if 0kr10\leq k\leq r-1.

In the following, we will give the proof of our Theorem 7.2 in a case-by-case way. The idea of our proof is uniform. For G=SU(p,q),Sp(n,)G=SU(p,q),Sp(n,\mathbb{R}) and SO(2n)SO^{*}(2n), we use Lemma 7.1 to prove our result. For other cases, we use our characterizations of annihilator varieties of L(λ)L(\lambda) since they are given in a distribution of the value of z=z(λ)=(λ,β)z=z(\lambda)=(\lambda,\beta^{\vee}).

7.1. Proof for G=SU(p,q)G=SU(p,q)

For SU(p,q)SU(p,q) with p+q=np+q=n, from [EHW83] the root system Q(λ0)=R(λ0)Q(\lambda_{0})=R(\lambda_{0}) is of type 𝔰𝔲(p,q)\mathfrak{su}(p^{\prime},q^{\prime}) with ppp^{\prime}\leq p and qqq^{\prime}\leq q. Then we have λ1=λ2==λp>λp+1\lambda_{1}=\lambda_{2}=\cdots=\lambda_{p^{\prime}}>\lambda_{p^{\prime}+1} and λn=λn1==λnq+1<λnq\lambda_{n}=\lambda_{n-1}=\cdots=\lambda_{n-q^{\prime}+1}<\lambda_{n-q^{\prime}}.

From [EHW83] we know that L(λ)L(\lambda) is unitarizable if and only if zmax{p,q}z\leq\max\{p^{\prime},q^{\prime}\} or zz\in\mathbb{Z} with zp+q1z\leq p^{\prime}+q^{\prime}-1. In this case, we have c=1c=1, 2ρ=(n1,n3,,n+3,n+1)2\rho=(n-1,n-3,...,-n+3,-n+1), (ρ,β)=n1(\rho,\beta^{\vee})=n-1, λ1λn+n1=0\lambda_{1}-\lambda_{n}+n-1=0 and nξ=(q,,q,p,,p)n\xi=(q,...,q,-p,...,-p) with pp copies of qq and qq copies of p-p.

We define an equivalent relation, such that λλ\lambda\sim\lambda^{\prime} if and only if q2(λ)=q2(λ)q_{2}(\lambda)=q_{2}(\lambda^{\prime}) where q2(λ)q_{2}(\lambda) denotes the number of boxes in the second column of the Young tableau P(λ)P(\lambda). We denote e=(1,1,,1)e=(1,1,...,1) with nn copies of 11 and e0=(1,,1,0,,0)e_{0}=(1,...,1,0,...,0) with pp copies of 11 and qq copies of 0. By using R-S algorithm, we have

λ=λ0+zξ+ρλ0+zξ+ρ+zpne=λ0+ρ+ze0λ0+ρ+ze0+n12e.\lambda=\lambda_{0}+z\xi+\rho\sim\lambda_{0}+z\xi+\rho+\frac{zp}{n}e=\lambda_{0}+\rho+ze_{0}\sim\lambda_{0}+\rho+ze_{0}+\frac{n-1}{2}e.

Thus

λλ0+ρ+ze0+n12e\displaystyle\lambda\sim\lambda_{0}+\rho+ze_{0}+\frac{n-1}{2}e
=(λn+z,λn+z1,,λn+zp+1,λp+1+z+np1,,λp+z+np,\displaystyle=(\lambda_{n}+z,\lambda_{n}+z-1,...,\lambda_{n}+z-p^{\prime}+1,\lambda_{p^{\prime}+1}+z+n-p^{\prime}-1,...,\lambda_{p}+z+n-p,
λp+1+np1,,λnq+q,λn+q1,,λn+1,λn)\displaystyle\quad\quad\lambda_{p+1}+n-p-1,...,\lambda_{n-q^{\prime}}+q^{\prime},\lambda_{n}+q^{\prime}-1,...,\lambda_{n}+1,\lambda_{n})
:=(s1,,sp,sp+1,,sn).\displaystyle:=(s_{1},...,s_{p},s_{p+1},...,s_{n}).

We may assume pqp\leq q. Then (s1,,sp)(s_{1},...,s_{p}) is a strictly decreasing sequence smaller that λn+z\lambda_{n}+z and (sp+1,,sn)(s_{p+1},...,s_{n}) is a strictly decreasing sequence larger than λn\lambda_{n}.

Thus we have

{sp+msn+qm,if 1mqsisn+zi+1,if 1ip.\left\{\begin{array}[]{ll}s_{p+m}\geq s_{n}+q-m,&{\rm~{}if~{}}\>1\leq m\leq q\\ s_{i}\leq s_{n}+z-i+1,&{\rm~{}if~{}}\>1\leq i\leq p.\end{array}\right.

Note that zk=(ρ,β)kc=n1kz_{k}=(\rho,\beta^{\vee})-kc=n-1-k, so we have

{zk0kr=p}={n1,n2,,q,q1}.\{z_{k}\mid 0\leq k\leq r=p\}=\{n-1,n-2,\dots,q,q-1\}.

Now suppose that L(λ)L(\lambda) is a unitary highest weight module, then we have the follows.

  1. (1)

    When p+q1q1p^{\prime}+q^{\prime}-1\leq q-1, we will have z=zkp+q1q1=zrz=z_{k}\leq p^{\prime}+q^{\prime}-1\leq q-1=z_{r}. So we can get

    {s1=sn+zsn+q1sp+1,s2sp+2,spsn+z+1psn+qpsp+p,sp+1sn+z(p+1)+1=sn+zpsn+q1psp+p+1,sps2p.\left\{\begin{array}[]{ll}s_{1}=s_{n}+z\leq s_{n}+q-1\leq s_{p+1},\\ s_{2}\leq s_{p+2},\\ \quad\quad\vdots\\ s_{p^{\prime}}\leq s_{n}+z+1-p^{\prime}\leq s_{n}+q-p^{\prime}\leq s_{p+p^{\prime}},\\ s_{p^{\prime}+1}\leq s_{n}+z-(p^{\prime}+1)+1=s_{n}+z-p^{\prime}\leq s_{n}+q-1-p^{\prime}\leq s_{p+p^{\prime}+1},\\ \quad\quad\vdots\\ s_{p}\leq s_{2p}.\end{array}\right.

    Thus we have k(λ)=q2(λ)pk(\lambda)=q_{2}(\lambda)\geq p by Lemma 7.1 and Proposition 2.9. Since k(λ)r=min{p,q}=pk(\lambda)\leq r=\min\{p,q\}=p, we must have k(λ)=p=kk(\lambda)=p=k.

  2. (2)

    When p+q1qp^{\prime}+q^{\prime}-1\geq q and qz=zk=n1kp+q1q\leq z=z_{k}=n-1-k\leq p^{\prime}+q^{\prime}-1 for some 1kr1=p11\leq k\leq r-1=p-1, similarly we can get

    {sp+msn+qm,1mqsisn+zi+1,1ip.\left\{\begin{array}[]{ll}s_{p+m}\geq s_{n}+q-m,&1\leq m\leq q\\ s_{i}\leq s_{n}+z-i+1,&1\leq i\leq p.\end{array}\right.

    When zq+2=pk+1ipz-q+2=p-k+1\leq i\leq p, we have qz+i1=k+ip1q-z+i-1=k+i-p\geq 1 and

    sisn+zi+1=sn+q(qz+i1)sp+qz+i1=sk+i.s_{i}\leq s_{n}+z-i+1=s_{n}+q-(q-z+i-1)\leq s_{p+q-z+i-1}=s_{k+i}.

    So

    {spk+1sp+1,spsp+qz+p1=sp+nz1=sp+k.\left\{\begin{array}[]{ll}s_{p-k+1}\leq s_{p+1},\\ \quad\quad\vdots\\ s_{p}\leq s_{p+q-z+p-1}=s_{p+n-z-1}=s_{p+k}.\end{array}\right.

    Thus we have k(λ)=q2(λ)kk(\lambda)=q_{2}(\lambda)\geq k by Lemma 7.1.

    If q2(λ)>kq_{2}(\lambda)>k, we will have spksp+1,,spsp+k+1s_{p-k}\leq s_{p+1},\cdots,s_{p}\leq s_{p+k+1}. From z=zk=n1kp+q1z=z_{k}=n-1-k\leq p^{\prime}+q^{\prime}-1, we can get

    nkp+qqq+pkp.n-k\leq p^{\prime}+q^{\prime}\Rightarrow q-q^{\prime}+p-k\leq p^{\prime}.

    Now we choose a positive integer 1i0k1\leq i_{0}\leq k such that

    i0qq(p+1+i0>nq) and pk+i0p.i_{0}\geq q-q^{\prime}~{}(\Leftrightarrow p+1+i_{0}>n-q^{\prime})\text{~{}and~{}}p-k+i_{0}\leq p^{\prime}.

    Then we have

    spk+i0sp+1+i0=λn+n(p+1+i0)=λn+np1i0.s_{p-k+i_{0}}\leq s_{p+1+i_{0}}=\lambda_{n}+n-(p+1+i_{0})=\lambda_{n}+n-p-1-i_{0}.

    On the other hand, we have

    spk+i0=λn+z(pk+i0)+1=λn+npi0.s_{p-k+i_{0}}=\lambda_{n}+z-(p-k+i_{0})+1=\lambda_{n}+n-p-i_{0}.

    Therefore we get contradiction! So we must have k(λ)=q2(λ)=kk(\lambda)=q_{2}(\lambda)=k.

  3. (3)

    When p+q1qp^{\prime}+q^{\prime}-1\geq q and z=zk=n1kq1z=z_{k}=n-1-k\leq q-1, by similar arguments as in (1) we can show that k(λ)=p=kk(\lambda)=p=k.

7.2. Proof for G=Sp(n,)G=Sp(n,\mathbb{R})

For Sp(n,)Sp(n,\mathbb{R}), from [EHW83] the root system Q(λ0)Q(\lambda_{0}) is of type 𝔰𝔭(q,)\mathfrak{sp}(q,\mathbb{R}) and R(λ0)R(\lambda_{0}) is of type 𝔰𝔭(r,)\mathfrak{sp}(r,\mathbb{R}) with rqr\geq q. Then from [EHW83] we have λ1==λq=n>λq+1λn\lambda_{1}=\cdots=\lambda_{q}=-n>\lambda_{q+1}\geq\cdots\geq\lambda_{n} and λq+1==λr=λ11=n1>λr+1\lambda_{q+1}=\cdots=\lambda_{r}=\lambda_{1}-1=-n-1>\lambda_{r+1}. From Table 1, we have c=12c=\frac{1}{2} and (ρ,β)=n(\rho,\beta^{\vee})=n.

From [EHW83] we know that L(λ)L(\lambda) is unitarizable if and only if z12(r+1)z\leq\frac{1}{2}(r+1) or 2z2z\in\mathbb{Z} with z12(q+r)z\leq\frac{1}{2}(q+r). Thus

λ=λ0+zξ+ρ=\displaystyle\lambda=\lambda_{0}+z\xi+\rho= (z,z1,,zq+1,zq1,,zr,\displaystyle(z,z-1,\cdots,z-q+1,z-q-1,\cdots,z-r,
z+λr+1+nr,,z+λn+1)\displaystyle z+\lambda_{r+1}+n-r,\cdots,z+\lambda_{n}+1)
:=\displaystyle:= (s1,s2,,sq,sq+1,,sr,sr+1,,sn),\displaystyle(s_{1},s_{2},\cdots,s_{q},s_{q+1},\cdots,s_{r},s_{r+1},\cdots,s_{n}),

then (s1,s2,,sn)(s_{1},s_{2},\cdots,s_{n}) and (sn,sn1,,s1)(-s_{n},-s_{n-1},\cdots,-s_{1}) are strictly decreasing sequences.

Note that zk=(ρ,β)kc=nk2z_{k}=(\rho,\beta^{\vee})-kc=n-\frac{k}{2}, so we have

{zk0kr=n}={n,n12,,n2+12,n2}.\{z_{k}\mid 0\leq k\leq r=n\}=\left\{n,n-\frac{1}{2},\cdots,\frac{n}{2}+\frac{1}{2},\frac{n}{2}\right\}.

Now suppose that L(λ)L(\lambda) is a unitary highest weight module, then we have the follows.

  1. (1)

    When nn is even and 12(q+r)12(n1), in  other  words,z12(n1)=zn+1\frac{1}{2}(q+r)\leq\frac{1}{2}(n-1),\text{~{}in ~{}other ~{}words},z\leq\frac{1}{2}(n-1)=z_{n+1}, we will have

    {sms1+nm,if 1mq,sls1+2zl+1,ifq+1ln,snis1+ni1,if 0inq1,sj=s1+j1,if 1jq.\left\{\begin{array}[]{ll}s_{m}\leq-s_{1}+n-m,&{\rm~{}if~{}}\>1\leq m\leq q,\\ s_{l}\leq-s_{1}+2z-l+1,&{\rm~{}if~{}}\>q+1\leq l\leq n,\\ -s_{n-i}\geq-s_{1}+n-i-1,&{\rm~{}if~{}}\>0\leq i\leq n-q-1,\\ -s_{j}=-s_{1}+j-1,&{\rm~{}if~{}}\>1\leq j\leq q.\end{array}\right.

    Then we have the follows.

    {sns1+n1s1,sn1s1+n2s2,sq+1s1+q1snq,sq=s1+q1=s1+n1(nq+1)+1s1+2z(nq+1)+1snq+1,s2=s1+1=s1+n1n+2s1+2z(n1)+1sn1,s1=s1+n1n+1s1+2zn+1sn.\left\{\begin{array}[]{ll}&-s_{n}\geq-s_{1}+n-1\geq s_{1},\\ &-s_{n-1}\geq-s_{1}+n-2\geq s_{2},\\ &\quad\quad\vdots\\ &-s_{q+1}\geq-s_{1}+q-1\geq s_{n-q},\\ &-s_{q}=-s_{1}+q-1=-s_{1}+n-1-(n-q+1)+1\\ &\quad\quad\geq-s_{1}+2z-(n-q+1)+1\geq s_{n-q+1},\\ &\quad\quad\vdots\\ &-s_{2}=-s_{1}+1=-s_{1}+n-1-n+2\geq-s_{1}+2z-(n-1)+1\geq s_{n-1},\\ &-s_{1}=-s_{1}+n-1-n+1\geq-s_{1}+2z-n+1\geq s_{n}.\end{array}\right.

    Recall that

    2q2od={q2+1, if q2 is odd,q2, if q2 is even,2q2ev+1={q2, if q2 is odd,q2+1, if q2 is even.2q_{2}^{\mathrm{od}}=\begin{cases}q_{2}+1,&\text{ if }q_{2}\text{ is odd},\\ q_{2},&\text{ if }q_{2}\text{ is even},\end{cases}\quad 2q_{2}^{\mathrm{ev}}+1=\begin{cases}q_{2},&\text{ if }q_{2}\text{ is odd},\\ q_{2}+1,&\text{ if }q_{2}\text{ is even}.\end{cases}

    Thus k(λ)q2(λ)nk(\lambda)\geq q_{2}(\lambda)\geq n by Lemma 7.1 and Proposition 2.9. We must have k(λ)=nk(\lambda)=n since k(λ)r=nk(\lambda)\leq r=n.

  2. (2)

    When zz\in\mathbb{Z} and n2z=zk=nk212(q+r)\frac{n}{2}\leq z=z_{k}=n-\frac{k}{2}\leq\frac{1}{2}(q+r) for 1kn1\leq k\leq n, we will have

    {sms1+nm+1,if 1mq,sls1+2zl+1,ifq+1ln,snis1+ni1,if 0inq1,sj=s1+j1,if 1jq.\left\{\begin{array}[]{ll}s_{m}\geq-s_{1}+n-m+1,&{\rm~{}if~{}}\>1\leq m\leq q,\\ s_{l}\leq-s_{1}+2z-l+1,&{\rm~{}if~{}}\>q+1\leq l\leq n,\\ -s_{n-i}\geq-s_{1}+n-i-1,&{\rm~{}if~{}}\>0\leq i\leq n-q-1,\\ -s_{j}=-s_{1}+j-1,&{\rm~{}if~{}}\>1\leq j\leq q.\end{array}\right.
    1. (a)

      When q+1nk+2nq+1\leq n-k+2\leq n (equivalently 2knq+12\leq k\leq n-q+1) and nn is even, we have the follows.

      (7.3) {sn(k1)+1s1+2z(nk+2)+1=s1+n1sn,sn(k1)+2s1+2z(nk+3)+1=s1+n2sn1,sn1s1+2z(n1)+1=s1+n(k3)1snk+3,sns1+2zn+1sn(k2)=snk+2.\displaystyle\begin{cases}&s_{n-(k-1)+1}\leq-s_{1}+2z-(n-k+2)+1=-s_{1}+n-1\leq-s_{n},\\ &s_{n-(k-1)+2}\leq-s_{1}+2z-(n-k+3)+1=-s_{1}+n-2\leq-s_{n-1},\\ &\quad\quad\vdots\\ &s_{n-1}\leq-s_{1}+2z-(n-1)+1=-s_{1}+n-(k-3)-1\leq-s_{n-k+3},\\ &s_{n}\leq-s_{1}+2z-n+1\leq-s_{n-(k-2)}=-s_{n-k+2}.\end{cases}

      Thus we have q2(λ)k1q_{2}(\lambda)\geq k-1 by Lemma 7.1.

      If q2(λ)k+1q_{2}(\lambda)\geq k+1, by Lemma 7.1 we will have snk+isnis_{n-k+i}\leq-s_{n-i} for 0ik0\leq i\leq k. From z=zk=nk2q+r2z=z_{k}=n-\frac{k}{2}\leq\frac{q+r}{2}, we can get 2nkq+r2n-k\leq q+r. Now we choose a positive integer 0i0k0\leq i_{0}\leq k such that

      nk+i0q and ni0r.n-k+i_{0}\leq q\text{~{}and~{}}n-i_{0}\leq r.
      1. (i)

        When nk+i0q and ni0qn-k+i_{0}\leq q\text{~{}and~{}}n-i_{0}\leq q, we have

        snk+i0=z(nk+i0)+1sni0=(z(ni0)+1),s_{n-k+i_{0}}=z-(n-k+i_{0})+1\leq-s_{n-i_{0}}=-(z-(n-i_{0})+1),

        which implies that 111\leq-1. Therefore we get a contradiction!

      2. (ii)

        When nk+i0q and q<ni0rn-k+i_{0}\leq q\text{~{}and~{}}q<n-i_{0}\leq r, we have

        snk+i0=z(nk+i0)+1sni0=(z(ni0)),s_{n-k+i_{0}}=z-(n-k+i_{0})+1\leq-s_{n-i_{0}}=-(z-(n-i_{0})),

        which implies that 101\leq 0. Therefore we get a contradiction!

      To sum up, k+1k+1 does not satisfy Lemma 7.1 and we must have k1q2(λ)kk-1\leq q_{2}(\lambda)\leq k.

      If q2(λ)=k1q_{2}(\lambda)=k-1, z=zk=nk2z=z_{k}=n-\frac{k}{2}\in\mathbb{Z} implies that kk is even. Thus q2(λ)=k1q_{2}(\lambda)=k-1 is odd and k(λ)=2q2od=q2+1=kk(\lambda)=2q_{2}^{\mathrm{od}}=q_{2}+1=k by Proposition 2.9.

      If q2(λ)=kq_{2}(\lambda)=k, by Proposition 2.9 we have k(λ)=2q2od=q2=kk(\lambda)=2q_{2}^{\mathrm{od}}=q_{2}=k since q2(λ)=kq_{2}(\lambda)=k is even.

      Similarly the result is the same when nn is odd, and we omit the process here.

    2. (b)

      When 2nk+2q2\leq n-k+2\leq q (equivalently nq+2knn-q+2\leq k\leq n) and nn is even, we have the follows.

      (7.4) {sn(k1)+1=s1+nk+1=s1+2zn+1sn,sn(k1)+2=s1+nk+2=s1+2z(n1)+1sn1,sn1s1+n2=s1+2z(nk+3)+1snk+3,sns1+n1=s1+2z(nk+2)+1snk+2.\displaystyle\begin{cases}&-s_{n-(k-1)+1}=-s_{1}+n-k+1=-s_{1}+2z-n+1\geq s_{n},\\ &-s_{n-(k-1)+2}=-s_{1}+n-k+2=-s_{1}+2z-(n-1)+1\geq s_{n-1},\\ &\quad\quad\vdots\\ &-s_{n-1}\geq-s_{1}+n-2=-s_{1}+2z-(n-k+3)+1\geq s_{n-k+3},\\ &-s_{n}\geq-s_{1}+n-1=-s_{1}+2z-(n-k+2)+1\geq s_{n-k+2}.\end{cases}

      Then we have q2(λ)k1q_{2}(\lambda)\geq k-1 by Lemma 7.1. Similarly in this case, we can obtain k(λ)=kk(\lambda)=k by Proposition 2.9. The result is the same when nn is odd, and we omit the process here.

    3. (c)

      When z=z1=n1212(q+r)nz=z_{1}=n-\frac{1}{2}\leq\frac{1}{2}(q+r)\leq n, we will have q=n1<r=nq=n-1<r=n or q=r=nq=r=n. Thus λ\lambda is half-integral and λ1==λn1=n>λn=n1\lambda_{1}=\cdots=\lambda_{n-1}=-n>\lambda_{n}=-n-1 or λ1==λn=n\lambda_{1}=\cdots=\lambda_{n}=-n. So sn1=32>sn=n12+λn+1=12s_{n-1}=\frac{3}{2}>s_{n}=n-\frac{1}{2}+\lambda_{n}+1=-\frac{1}{2} or 12\frac{1}{2}. By using R-S algorithm, we have q2(λ)=1q_{2}(\lambda)=1 if sn=12s_{n}=-\frac{1}{2} and q2(λ)=0q_{2}(\lambda)=0 if sn=12s_{n}=\frac{1}{2}. Therefore k(λ)=1=kk(\lambda)=1=k by Proposition 2.9.

    4. (d)

      When z=z0=n12(q+r)nz=z_{0}=n\leq\frac{1}{2}(q+r)\leq n, we will have q=r=nq=r=n. Thus λ\lambda will be dominant integral since λ1==λn=n\lambda_{1}=\cdots=\lambda_{n}=-n and sn=n+λn+1=1s_{n}=n+\lambda_{n}+1=1. Therefore k(λ)=0=kk(\lambda)=0=k by Proposition 2.9.

  3. (3)

    When z12+z\in\frac{1}{2}+\mathbb{Z} and n2z=zk=nk212(q+r)\frac{n}{2}\leq z=z_{k}=n-\frac{k}{2}\leq\frac{1}{2}(q+r) for 1kn1\leq k\leq n, we still have q2(λ)=k1q_{2}(\lambda)=k-1 by (7.3) and (7.4). In this case q2(λ)=k1q_{2}(\lambda)=k-1 and k(λ)=2q2ev+1=kk(\lambda)=2q_{2}^{\mathrm{ev}}+1=k by Proposition 2.9.

To sum up, we have k(λ)=kk(\lambda)=k, where k(λ)k(\lambda) is given in Proposition 2.9. Therefore we have completed the proof of the case when G=Sp(n,)G=Sp(n,\mathbb{R}).

7.3. Proof for G=SO(2n)G=SO^{\ast}(2n)

For SO(2n)SO^{\ast}(2n), from [EHW83] the root system Q(λ0)=R(λ0)Q(\lambda_{0})=R(\lambda_{0}) is of type 𝔰𝔲(1,q)\mathfrak{su}(1,q) with 1qn11\leq q\leq n-1 or 𝔰𝔬(2p)\mathfrak{so}^{\ast}(2p) with 3pn3\leq p\leq n. From Table 1, we have c=2c=2 and (ρ,β)=2n3(\rho,\beta^{\vee})=2n-3. (λ0+ρ,β)=0(\lambda_{0}+\rho,\beta^{\vee})=0 implies that λ1+λ2=2n+3\lambda_{1}+\lambda_{2}=-2n+3.

  1. (1)

    When Q(λ0)=R(λ0)Q(\lambda_{0})=R(\lambda_{0}) is of type 𝔰𝔲(1,q)\mathfrak{su}(1,q) with 1qn11\leq q\leq n-1, we have

    λ1>λ2=λ3==λq+1>λq+2λn.\lambda_{1}>\lambda_{2}=\lambda_{3}=\cdots=\lambda_{q+1}>\lambda_{q+2}\geq\cdots\geq\lambda_{n}.

    From [EHW83] we know that L(λ)L(\lambda) is unitarizable if and only if zqz\leq q. Thus we can write

    λ\displaystyle\lambda =λ0+zξ+ρ\displaystyle=\lambda_{0}+z\xi+\rho
    =(12z+λ1+n1,12z+λ2+n2,,12z+λq+1+nq1,\displaystyle=(\frac{1}{2}z+\lambda_{1}+n-1,\frac{1}{2}z+\lambda_{2}+n-2,\cdots,\frac{1}{2}z+\lambda_{q+1}+n-q-1,
    12z+λq+2+nq2,,12z+λn)\displaystyle\quad\>\frac{1}{2}z+\lambda_{q+2}+n-q-2,\cdots,\frac{1}{2}z+\lambda_{n})
    =(12zλ2n+2,12z+λ2+n2,,12z+λ2+nq1,\displaystyle=(\frac{1}{2}z-\lambda_{2}-n+2,\frac{1}{2}z+\lambda_{2}+n-2,\cdots,\frac{1}{2}z+\lambda_{2}+n-q-1,
    12z+λq+2+nq2,,12z+λn)\displaystyle\quad\>\frac{1}{2}z+\lambda_{q+2}+n-q-2,\cdots,\frac{1}{2}z+\lambda_{n})
    :=(t1,,tq+1,tq+2,,tn).\displaystyle:=(t_{1},\cdots,t_{q+1},t_{q+2},\cdots,t_{n}).

    So (t1,t2,,tn)(t_{1},t_{2},\cdots,t_{n}) and (tn,tn1,,t1)(-t_{n},-t_{n-1},\cdots,-t_{1}) are strictly decreasing sequences, and it is not difficult to get

    {t1>t1+z+1,tit1+z+2i,if 2in,tjt1+j1,if 1jn.\left\{\begin{array}[]{ll}t_{1}>-t_{1}+z+1,\\ t_{i}\leq-t_{1}+z+2-i,&{\rm~{}if~{}}\>2\leq i\leq n,\\ -t_{j}\geq-t_{1}+j-1,&{\rm~{}if~{}}\>1\leq j\leq n.\end{array}\right.

    When L(λ)L(\lambda) is a unitary highest weight module and nn is even, we have the follows.

    1. (a)

      When z<qn1=zr1z<q\leq n-1=z_{r-1}, we have L(λ)=N(λ)L(\lambda)=N(\lambda) by [EHW83]. Thus k(λ)=n2=kk(\lambda)=\frac{n}{2}=k.

    2. (b)

      When z=q<n1=zr1z=q<n-1=z_{r-1}, we have

      {t1=12zλ2n+212zλnn+212zλn=tn,t2=12z+λ2+n2=12zλ12n+3+n212zλn11=tn1,tnt1.\displaystyle\begin{cases}&t_{1}=\frac{1}{2}z-\lambda_{2}-n+2\leq\frac{1}{2}z-\lambda_{n}-n+2\leq-\frac{1}{2}z-\lambda_{n}=-t_{n},\\ &t_{2}=\frac{1}{2}z+\lambda_{2}+n-2=\frac{1}{2}z-\lambda_{1}-2n+3+n-2\leq-\frac{1}{2}z-\lambda_{n-1}-1=-t_{n-1},\\ &\quad\quad\vdots\\ &t_{n}\leq-t_{1}.\end{cases}

      Thus k(λ)=q2ev=[q22]n2k(\lambda)=q^{\mathrm{ev}}_{2}=[\frac{q_{2}}{2}]\geq\frac{n}{2} by Lemma 7.1 and Proposition 2.9. We must have k(λ)=n2=rk(\lambda)=\frac{n}{2}=r since k(λ)r=[n2]=n2k(\lambda)\leq r=[\frac{n}{2}]=\frac{n}{2} and nn is even.

    3. (c)

      When z=zk=2n32k=qn1z=z_{k}=2n-3-2k=q\leq n-1 for 1kr1=n211\leq k\leq r-1=\frac{n}{2}-1, we will have z=zr1=n1=qz=z_{r-1}=n-1=q and λ1>λ2=λ3==λn\lambda_{1}>\lambda_{2}=\lambda_{3}=\cdots=\lambda_{n}. Thus we can get

      {t2=12z+λ2+n2=12zλ1n+112zλn=tn,tnt2.\displaystyle\begin{cases}&t_{2}=\frac{1}{2}z+\lambda_{2}+n-2=\frac{1}{2}z-\lambda_{1}-n+1\leq-\frac{1}{2}z-\lambda_{n}=-t_{n},\\ &\quad\quad\vdots\\ &t_{n}\leq-t_{2}.\end{cases}

      Thus q2(λ)n1q_{2}(\lambda)\geq n-1 by Lemma 7.1. Note that

      t1=12zλ2n+2=12zλn+1=tn+1>tn.t_{1}=\frac{1}{2}z-\lambda_{2}-n+2=-\frac{1}{2}z-\lambda_{n}+1=-t_{n}+1>-t_{n}.

      So we can not have q2(λ)=nq_{2}(\lambda)=n. Thus q2(λ)=n1q_{2}(\lambda)=n-1 and k(λ)=q2ev=[q22]n2k(\lambda)=q^{\mathrm{ev}}_{2}=[\frac{q_{2}}{2}]\geq\frac{n}{2} by Lemma 7.1 and Proposition 2.9.

      Thus k(λ)=q2ev=[q22]=kk(\lambda)=q^{\mathrm{ev}}_{2}=[\frac{q_{2}}{2}]=k by Lemma 7.1 and Proposition 2.9.

    The argument is similar when nn is odd, so we omit the details here. Therefore, when Q(λ0)=R(λ0)Q(\lambda_{0})=R(\lambda_{0}) is of type 𝔰𝔲(1,q)\mathfrak{su}(1,q) with 1qn11\leq q\leq n-1, we have k(λ)=kk(\lambda)=k.

  2. (2)

    When Q(λ0)=R(λ0)Q(\lambda_{0})=R(\lambda_{0}) is of type 𝔰𝔬(2p)\mathfrak{so}^{\ast}(2p) with 3pn3\leq p\leq n, we have

    λ1=λ2==λp=n+32>λp+1λn.\lambda_{1}=\lambda_{2}=\cdots=\lambda_{p}=-n+\frac{3}{2}>\lambda_{p+1}\geq\cdots\geq\lambda_{n}.

    From [EHW83] we know that L(λ)L(\lambda) is unitarizable if and only if

    z{p, if p is odd,p1, if p is even,z\leq\begin{cases}p,&\text{ if }p\text{ is odd},\\ p-1,&\text{ if }p\text{ is even},\end{cases}

    or z=2p32j2p3z=2p-3-2j\leq 2p-3 for some integer 0j[p2]20\leq j\leq[\frac{p}{2}]-2.

    Thus we can write

    λ\displaystyle\lambda =λ0+zξ+ρ\displaystyle=\lambda_{0}+z\xi+\rho
    =(12z+λ1+n1,,12z+λp+np,12z+λp+1+np1,,12z+λn)\displaystyle=(\frac{1}{2}z+\lambda_{1}+n-1,\cdots,\frac{1}{2}z+\lambda_{p}+n-p,\frac{1}{2}z+\lambda_{p+1}+n-p-1,\cdots,\frac{1}{2}z+\lambda_{n})
    =(12z+12,,12z+32p,12z+λp+1+np1,,12z+λn)\displaystyle=(\frac{1}{2}z+\frac{1}{2},\cdots,\frac{1}{2}z+\frac{3}{2}-p,\frac{1}{2}z+\lambda_{p+1}+n-p-1,\cdots,\frac{1}{2}z+\lambda_{n})
    :=(t1,,tp,tp+1,,tn).\displaystyle:=(t_{1},\cdots,t_{p},t_{p+1},\cdots,t_{n}).

    So (t1,t2,,tn)(t_{1},t_{2},\cdots,t_{n}) and (tn,tn1,,t1)(-t_{n},-t_{n-1},\cdots,-t_{1}) are strictly decreasing sequences, and it is not difficult to get

    {tit1+z+2i,if 1in,tjt1+j1,if 1jn.\left\{\begin{array}[]{ll}t_{i}\leq-t_{1}+z+2-i,&{\rm~{}if~{}}\>1\leq i\leq n,\\ -t_{j}\geq-t_{1}+j-1,&{\rm~{}if~{}}\>1\leq j\leq n.\end{array}\right.

    Suppose pp and nn are even. Then we have the follows.

    1. (a)

      When z<p1n1=zr1z<p-1\leq n-1=z_{r-1}, by similar arguments as in the case of 𝔰𝔲(1,q)\mathfrak{su}(1,q) we have q2(λ)=nq_{2}(\lambda)=n. Thus k(λ)=q2ev=[q22]=[n2]=rk(\lambda)=q^{\mathrm{ev}}_{2}=[\frac{q_{2}}{2}]=[\frac{n}{2}]=r by Lemma 7.1 and Proposition 2.9.

    2. (b)

      When zp1z\geq p-1 and z=zk=2n32k2p3z=z_{k}=2n-3-2k\leq 2p-3 for some 1kr1=n211\leq k\leq r-1=\left\lfloor\frac{n}{2}\right\rfloor-1, we have

      {tn(2k+1)+1t1+z+2(n2k)=t1+zn+2k+2tn,tn(2k+1)+2t1+z+2(n2k+1)=t1+n2tn1,tn1t1+z+2(n1)=t1+n2ktn(2k+1)+2,tnt1+z+2n=t1+n2k1tn(2k+1)+1.\displaystyle\begin{cases}&t_{n-(2k+1)+1}\leq-t_{1}+z+2-(n-2k)=-t_{1}+z-n+2k+2\leq-t_{n},\\ &t_{n-(2k+1)+2}\leq-t_{1}+z+2-(n-2k+1)=-t_{1}+n-2\leq-t_{n-1},\\ &\quad\quad\vdots\\ &t_{n-1}\leq-t_{1}+z+2-(n-1)=-t_{1}+n-2k\leq-t_{n-(2k+1)+2},\\ &t_{n}\leq-t_{1}+z+2-n=-t_{1}+n-2k-1\leq-t_{n-(2k+1)+1}.\end{cases}

      Thus we have q2(λ)2k+1q_{2}(\lambda)\geq 2k+1 by Lemma 7.1.

      If q2(λ)2k+2q_{2}(\lambda)\geq 2k+2, by Lemma 7.1 we will have tn2k2+itni+1t_{n-2k-2+i}\leq-t_{n-i+1} for 1i2k+21\leq i\leq 2k+2. From z=zk=2n32k2p3z=z_{k}=2n-3-2k\leq 2p-3, we can get

      2n2k1<2pn2k2+n+1<2p.2n-2k-1<2p\Rightarrow n-2k-2+n+1<2p.

      Now we choose a positive integer 1i02k+21\leq i_{0}\leq 2k+2 such that

      n+1i0p and n2k2+i0p.n+1-i_{0}\leq p~{}\text{~{}and~{}}n-2k-2+i_{0}\leq p.

      Then we have

      tn2k2+i0=12z+12(n2k2+i01)\displaystyle t_{n-2k-2+i_{0}}=\frac{1}{2}z+\frac{1}{2}-(n-2k-2+i_{0}-1)
      tn+1i0=(12z+12(n+1i01)),\displaystyle\leq-t_{n+1-i_{0}}=-(\frac{1}{2}z+\frac{1}{2}-(n+1-i_{0}-1)),

      which implies that

      z2n+2k+4010.z-2n+2k+4\leq 0\Rightarrow 1\leq 0.

      Therefore we get contradiction! So we must have q2(λ)=2k+1q_{2}(\lambda)=2k+1.

      Thus k(λ)=q2ev=[q22]=kk(\lambda)=q^{\mathrm{ev}}_{2}=[\frac{q_{2}}{2}]=k by Lemma 7.1 and Proposition 2.9.

    The argument is similar when nn is odd, so we omit the details here.

7.4. Proof for G=SO(2,2n2)G=SO(2,2n-2)

For SO(2,2n2)SO(2,2n-2), from [EHW83] the root system Q(λ0)=R(λ0)Q(\lambda_{0})=R(\lambda_{0}) is of type 𝔰𝔲(1,p)\mathfrak{su}(1,p) with 1pn11\leq p\leq n-1 or 𝔰𝔬(2,2n2)\mathfrak{so}(2,2n-2). From Table 1, we have c=n2c=n-2 and (ρ,β)=2n3(\rho,\beta^{\vee})=2n-3. (λ0+ρ,β)=0(\lambda_{0}+\rho,\beta^{\vee})=0 implies that λ1+λ2=2n+3\lambda_{1}+\lambda_{2}=-2n+3.

  1. (1)

    When Q(λ0)=R(λ0)Q(\lambda_{0})=R(\lambda_{0}) is of type 𝔰𝔲(1,p)\mathfrak{su}(1,p) with 1pn11\leq p\leq n-1, we have

    |λn|λn1λp+2<λp+1=λp==λ212>0.|\lambda_{n}|\leq\lambda_{n-1}\leq\cdots\leq\lambda_{p+2}<\lambda_{p+1}=\lambda_{p}=\cdots=\lambda_{2}\in\frac{1}{2}\mathbb{Z}_{>0}.

    From [EHW83] we know that L(λ)L(\lambda) is unitarizable if and only if zpz\leq p. From Theorem 5.1, we have k(λ)=2k(\lambda)=2 if and only if λ\lambda is not integral or

    z|λn|λ1n+1=|λn|+λ2+2n3n+1=|λn|+λ2+n2.z\leq-|\lambda_{n}|-\lambda_{1}-n+1=-|\lambda_{n}|+\lambda_{2}+2n-3-n+1=-|\lambda_{n}|+\lambda_{2}+n-2.

    Now when z<n1=z1z<n-1=z_{1}, zz will be not integral, or zz\in\mathbb{Z} and zn2|λn|+λ2+n2z\leq n-2\leq-|\lambda_{n}|+\lambda_{2}+n-2. Thus we have k(λ)=2k(\lambda)=2. Note that when pn2p\leq n-2, we always have zpn1z\leq p\leq n-1.

    Now when z=n1=z1z=n-1=z_{1}, we must have p=n1p=n-1 since zpn1z\leq p\leq n-1. Then we have λ2==λn1=|λn|12>0\lambda_{2}=\cdots=\lambda_{n-1}=|\lambda_{n}|\in\frac{1}{2}\mathbb{Z}_{>0}. From Theorem 5.1, we have k(λ)=1k(\lambda)=1 if and only if λ\lambda is integral and

    |λn|λ1n+1=|λn|+λ2+n2<zλ2λ11,-|\lambda_{n}|-\lambda_{1}-n+1=-|\lambda_{n}|+\lambda_{2}+n-2<z\leq\lambda_{2}-\lambda_{1}-1,

    equivalently we have

    n2<z2λ2+2n4.n-2<z\leq 2\lambda_{2}+2n-4.

    Thus when z=n1=z1z=n-1=z_{1}, we will have k(λ)=1k(\lambda)=1.

  2. (2)

    When Q(λ0)=R(λ0)Q(\lambda_{0})=R(\lambda_{0}) is of type 𝔰𝔬(2,2n2)\mathfrak{so}(2,2n-2), we have

    λ2=λ3==λn=0.\lambda_{2}=\lambda_{3}=\cdots=\lambda_{n}=0.

    From [EHW83] we know that L(λ)L(\lambda) is unitarizable if and only if zn1=z1z\leq n-1=z_{1} or z=2n3=z0z=2n-3=z_{0}. In this case, we have λ1=2n+3\lambda_{1}=-2n+3.

    From Theorem 5.1, we have k(λ)=2k(\lambda)=2 if and only if λ\lambda is not integral or

    z|λn|λ1n+1=n2.z\leq-|\lambda_{n}|-\lambda_{1}-n+1=n-2.

    Now when z<n1=z1z<n-1=z_{1}, zz will be not integral, or zz\in\mathbb{Z} and zn2z\leq n-2. Thus we have k(λ)=2k(\lambda)=2.

    From Theorem 5.1, we have k(λ)=1k(\lambda)=1 if and only if λ\lambda is integral and

    |λn|λ1n+1<zλ2λ11,-|\lambda_{n}|-\lambda_{1}-n+1<z\leq\lambda_{2}-\lambda_{1}-1,

    equivalently we have

    n2<z2n4.n-2<z\leq 2n-4.

    Thus when z=n1=z1z=n-1=z_{1}, we will have k(λ)=1k(\lambda)=1.

    From Theorem 5.1, we have k(λ)=0k(\lambda)=0 if and only if λ\lambda is integral and

    zλ2λ1=2n3.z\geq\lambda_{2}-\lambda_{1}=2n-3.

    Thus when z=2n3=z0z=2n-3=z_{0}, we will have k(λ)=0k(\lambda)=0.

Now we complete the proof for all cases.

7.5. Proof for G=SO(2,2n1)G=SO(2,2n-1)

For SO(2,2n1)SO(2,2n-1), from [EHW83] the root system Q(λ0)=R(λ0)Q(\lambda_{0})=R(\lambda_{0}) is of type 𝔰𝔲(1,p)\mathfrak{su}(1,p) with 1pn11\leq p\leq n-1 or 𝔰𝔬(2,2n1)\mathfrak{so}(2,2n-1), or Q(λ0)=𝔰𝔲(1,n1)Q(\lambda_{0})=\mathfrak{su}(1,n-1) and R(λ0)=𝔰𝔬(2,2n1)R(\lambda_{0})=\mathfrak{so}(2,2n-1). From Table 1, we have c=n32c=n-\frac{3}{2} and (ρ,β)=2n2(\rho,\beta^{\vee})=2n-2. (λ0+ρ,β)=0(\lambda_{0}+\rho,\beta^{\vee})=0 implies that λ1+λ2=2n+2\lambda_{1}+\lambda_{2}=-2n+2.

  1. (1)

    When Q(λ0)=R(λ0)Q(\lambda_{0})=R(\lambda_{0}) is of type 𝔰𝔲(1,p)\mathfrak{su}(1,p) with 1pn11\leq p\leq n-1, we have

    0λnλn1λp+2<λp+1=λp==λ2.0\leq\lambda_{n}\leq\lambda_{n-1}\leq\cdots\leq\lambda_{p+2}<\lambda_{p+1}=\lambda_{p}=\cdots=\lambda_{2}.

    From [EHW83] we know that L(λ)L(\lambda) is unitarizable if and only if zpz\leq p.

    From Theorem 4.1, we have k(λ)=2k(\lambda)=2 if and only if z12z\notin\frac{1}{2}\mathbb{Z}, or zz\in\mathbb{Z} and z<λ2λ1z<\lambda_{2}-\lambda_{1}, or z12+z\in\frac{1}{2}+\mathbb{Z} and zλ1n+12z\leq-\lambda_{1}-n+\frac{1}{2}.

    Now zp<n12=z1z\leq p<n-\frac{1}{2}=z_{1}, we will have z12z\notin\frac{1}{2}\mathbb{Z}, or zz\in\mathbb{Z} and z<n12<2n2λ2λ1z<n-\frac{1}{2}<2n-2\leq\lambda_{2}-\lambda_{1}, or z12+z\in\frac{1}{2}+\mathbb{Z} and zn32<λ2+n32=λ1n+12z\leq n-\frac{3}{2}<\lambda_{2}+n-\frac{3}{2}=-\lambda_{1}-n+\frac{1}{2}. Thus we have k(λ)=2k(\lambda)=2 by Theorem 4.1.

  2. (2)

    When Q(λ0)=R(λ0)Q(\lambda_{0})=R(\lambda_{0}) is of type 𝔰𝔬(2,2n1)\mathfrak{so}(2,2n-1), we have

    λ2=λ3==λn=0.\lambda_{2}=\lambda_{3}=\cdots=\lambda_{n}=0.

    From [EHW83] we know that L(λ)L(\lambda) is unitarizable if and only if zn12=z1z\leq n-\frac{1}{2}=z_{1} or z=2n2=z0z=2n-2=z_{0}. In this case, we have λ1=2n+2\lambda_{1}=-2n+2.

    From Theorem 4.1, we have k(λ)=2k(\lambda)=2 if and only if z12z\notin\frac{1}{2}\mathbb{Z}, or zz\in\mathbb{Z} and z<λ2λ1=2n2z<\lambda_{2}-\lambda_{1}=2n-2, or z12+z\in\frac{1}{2}+\mathbb{Z} and zλ1n+12=n32z\leq-\lambda_{1}-n+\frac{1}{2}=n-\frac{3}{2}.

    Now when z<n12=z1z<n-\frac{1}{2}=z_{1}, we will have z12z\notin\frac{1}{2}\mathbb{Z}, or zz\in\mathbb{Z} and z<n12<2n2z<n-\frac{1}{2}<2n-2, or z12+z\in\frac{1}{2}+\mathbb{Z} and zn32z\leq n-\frac{3}{2}. Thus we have k(λ)=2k(\lambda)=2.

    From Theorem 4.1, we have k(λ)=1k(\lambda)=1 if and only if z12+z\in\frac{1}{2}+\mathbb{Z} and z>λ1n+12=n32z>-\lambda_{1}-n+\frac{1}{2}=n-\frac{3}{2}. Thus when z=z1=n12>n32z=z_{1}=n-\frac{1}{2}>n-\frac{3}{2}, we will have k(λ)=1k(\lambda)=1.

    From Theorem 4.1, we have k(λ)=0k(\lambda)=0 if and only if zz\in\mathbb{Z} and zλ2λ1=2n2z\geq\lambda_{2}-\lambda_{1}=2n-2. Thus when z=z0=2n2z=z_{0}=2n-2, we will have k(λ)=0k(\lambda)=0.

  3. (3)

    When Q(λ0)=𝔰𝔲(1,n1)Q(\lambda_{0})=\mathfrak{su}(1,n-1) and R(λ0)=𝔰𝔬(2,2n1)R(\lambda_{0})=\mathfrak{so}(2,2n-1), we have

    λ2=λ3==λn=12.\lambda_{2}=\lambda_{3}=\cdots=\lambda_{n}=\frac{1}{2}.

    From [EHW83] we know that L(λ)L(\lambda) is unitarizable if and only if zn12z\leq n-\frac{1}{2}.

    From Theorem 4.1, we have k(λ)=2k(\lambda)=2 if and only if z12z\notin\frac{1}{2}\mathbb{Z}, or zz\in\mathbb{Z} and z<λ2λ1=2n1z<\lambda_{2}-\lambda_{1}=2n-1, or z12+z\in\frac{1}{2}+\mathbb{Z} and zλ1n+12=n1z\leq-\lambda_{1}-n+\frac{1}{2}=n-1.

    Now when z<n12=z1z<n-\frac{1}{2}=z_{1}, we will have z12z\notin\frac{1}{2}\mathbb{Z}, or zz\in\mathbb{Z} and z<n12<2n1z<n-\frac{1}{2}<2n-1, or z12+z\in\frac{1}{2}+\mathbb{Z} and zn32<n1z\leq n-\frac{3}{2}<n-1. Thus we have k(λ)=2k(\lambda)=2.

    From Theorem 4.1, we have k(λ)=1k(\lambda)=1 if and only if z12+z\in\frac{1}{2}+\mathbb{Z} and z>λ1n+12=n1z>-\lambda_{1}-n+\frac{1}{2}=n-1. Thus when z=z1=n12>n1z=z_{1}=n-\frac{1}{2}>n-1, we will have k(λ)=1k(\lambda)=1.

Now we complete the proof of all cases.

7.6. Proof for G=E6(14)G=E_{6(-14)}

For E6(14)E_{6(-14)}, from [EHW83, §12] the root system Q(λ0)=R(λ0)Q(\lambda_{0})=R(\lambda_{0}) is of type 𝔰𝔲(1,p)\mathfrak{su}(1,p) with 1p51\leq p\leq 5, 𝔰𝔬(2,8)\mathfrak{so}(2,8) or 𝔢6(14)\mathfrak{e}_{6(-14)}. For all cases, we have λ6=λ7=λ8:=b\lambda_{6}=\lambda_{7}=-\lambda_{8}:=b by [Bou02]. From Table 1, we have c=3c=3 and (ρ,β)=11(\rho,\beta^{\vee})=11. (λ0+ρ,β)=0(\lambda_{0}+\rho,\beta^{\vee})=0 implies that λ1++λ5λ6λ7+λ8=22\lambda_{1}+\cdots+\lambda_{5}-\lambda_{6}-\lambda_{7}+\lambda_{8}=-22.

  1. (1)

    When Q(λ0)=R(λ0)Q(\lambda_{0})=R(\lambda_{0}) is of type 𝔰𝔲(1,5)\mathfrak{su}(1,5), we have

    λ1=λ2=λ3=λ4=λ5:=a120.-\lambda_{1}=\lambda_{2}=\lambda_{3}=\lambda_{4}=\lambda_{5}:=a\in\frac{1}{2}\mathbb{Z}_{\geq 0}.

    From [EHW83] we know that L(λ)L(\lambda) is unitarizable if and only if z5z\leq 5. In this case, we have 3a3b=223a-3b=-22 since λ1++λ5λ6λ7+λ8=22\lambda_{1}+\cdots+\lambda_{5}-\lambda_{6}-\lambda_{7}+\lambda_{8}=-22.

    From Theorem 6.1, we have

    (λ0,β1,2)=12(a+3b)=12(a+3a+22)=2a+11-(\lambda_{0},\beta_{1,2})=\frac{1}{2}(a+3b)=\frac{1}{2}(a+3a+22)=2a+11

    and k(λ)=2k(\lambda)=2 if and only if λ\lambda is not integral or zz\in\mathbb{Z} and

    z4+min{(λ0,β1,2)}=7+2a.z\leq-4+\min\{-(\lambda_{0},\beta_{1,2})\}=7+2a.

    Now we have z5<7+2az\leq 5<7+2a, so k(λ)=2k(\lambda)=2.

    The proof for other cases of type 𝔰𝔲(1,p)\mathfrak{su}(1,p) with 1p41\leq p\leq 4 is similar, and we omit the details here.

  2. (2)

    When Q(λ0)=R(λ0)Q(\lambda_{0})=R(\lambda_{0}) is of type 𝔰𝔬(2,8)\mathfrak{so}(2,8), we have

    λ1=λ2=λ3=λ4=0<λ5>0.\lambda_{1}=\lambda_{2}=\lambda_{3}=\lambda_{4}=0<\lambda_{5}\in\mathbb{Z}_{>0}.

    From [EHW83] we know that L(λ)L(\lambda) is unitarizable if and only if z4z\leq 4 or z=7z=7. In this case, we have λ53b=22\lambda_{5}-3b=-22.

    From Theorem 6.1, we have

    (λ0,β1,2)=12(a+3b)=12(λ5+3b)=12(λ5+λ5+22)=λ5+11-(\lambda_{0},\beta_{1,2})=\frac{1}{2}(a+3b)=\frac{1}{2}(\lambda_{5}+3b)=\frac{1}{2}(\lambda_{5}+\lambda_{5}+22)=\lambda_{5}+11

    and k(λ)=2k(\lambda)=2 if and only if λ\lambda is not integral or zz\in\mathbb{Z} and

    z4+min{(λ0,β1,2)}=7+λ5.z\leq-4+\min\{-(\lambda_{0},\beta_{1,2})\}=7+\lambda_{5}.

    Now we have z7<7+λ5z\leq 7<7+\lambda_{5}, so k(λ)=2k(\lambda)=2.

  3. (3)

    When Q(λ0)=R(λ0)Q(\lambda_{0})=R(\lambda_{0}) is of type 𝔢6(14)\mathfrak{e}_{6(-14)}, we have

    λ1=λ2=λ3=λ4=λ5=0.\lambda_{1}=\lambda_{2}=\lambda_{3}=\lambda_{4}=\lambda_{5}=0.

    From [EHW83] we know that L(λ)L(\lambda) is unitarizable if and only if z8=z1z\leq 8=z_{1} or z=11=z0z=11=z_{0}. In this case, we have 3b=223b=22.

    From Theorem 6.1, we have

    (λ0,β1,2)=12(0+3b)=11-(\lambda_{0},\beta_{1,2})=\frac{1}{2}(0+3b)=11

    and k(λ)=2k(\lambda)=2 if and only if λ\lambda is not integral or zz\in\mathbb{Z} and

    z4+min{(λ0,β1,2)}=7.z\leq-4+\min\{-(\lambda_{0},\beta_{1,2})\}=7.

    Now when z<8=z1z<8=z_{1}, zz will be not integral, or zz\in\mathbb{Z} and z7z\leq 7. Thus we have k(λ)=2k(\lambda)=2.

    From Theorem 6.1, we have

    (λ0,α1)=12(0+3b)=11-(\lambda_{0},\alpha_{1})=\frac{1}{2}(0+3b)=11

    and k(λ)=1k(\lambda)=1 if and only if zz\in\mathbb{Z} and

    7=4+min{(λ0,β1,2)}<z(λ0,α1)1=10.7=-4+\min\{-(\lambda_{0},\beta_{1,2})\}<z\leq-(\lambda_{0},\alpha_{1})-1=10.

    Thus when z=z1=8z=z_{1}=8, we will have k(λ)=1k(\lambda)=1.

    From Theorem 6.1, we have k(λ)=0k(\lambda)=0 if and only if zz\in\mathbb{Z} and

    z>(λ0,α1)1=10.z>-(\lambda_{0},\alpha_{1})-1=10.

    Thus when z=z0=11z=z_{0}=11, we will have k(λ)=0k(\lambda)=0.

Now we complete the proof for all cases.

7.7. Proof for G=E7(25)G=E_{7(-25)}

For E7(25)E_{7(-25)}, from [EHW83, §13] the root system Q(λ0)=R(λ0)Q(\lambda_{0})=R(\lambda_{0}) is of type 𝔰𝔲(1,p)\mathfrak{su}(1,p) with 1p61\leq p\leq 6, 𝔰𝔬(2,10)\mathfrak{so}(2,10) or 𝔢7(25)\mathfrak{e}_{7(-25)}. For all cases, we have λ7=λ8\lambda_{7}=-\lambda_{8} by [Bou02]. From Table 1, we have c=4c=4 and (ρ,β)=17(\rho,\beta^{\vee})=17. (λ0+ρ,β)=0(\lambda_{0}+\rho,\beta^{\vee})=0 implies that λ8=172\lambda_{8}=-\frac{17}{2}.

  1. (1)

    When Q(λ0)=R(λ0)Q(\lambda_{0})=R(\lambda_{0}) is of type 𝔰𝔲(1,6)\mathfrak{su}(1,6), we have

    0<λ1=λ2=λ3=λ4=λ5:=a12 and λ8(i=27λi)+λ1=0.0<\lambda_{1}=\lambda_{2}=\lambda_{3}=\lambda_{4}=\lambda_{5}:=a\in\frac{1}{2}\mathbb{Z}\text{~{}and~{}}\lambda_{8}-(\sum\limits_{i=2}^{7}\lambda_{i})+\lambda_{1}=0.

    From [EHW83] we know that L(λ)L(\lambda) is unitarizable if and only if z6z\leq 6. In this case we have λ6=173a\lambda_{6}=-17-3a.

    From Theorem 6.2 we have k(λ)=3k(\lambda)=3 if and only if λ\lambda is not integral or zz\in\mathbb{Z} and

    z9+min{(λ0,β3,4,5)}=8+2a.z\leq-9+\min\{-(\lambda_{0},\beta_{3,4,5})\}=8+2a.

    Now we have z6<8+2az\leq 6<8+2a, so k(λ)=3k(\lambda)=3.

    The proof for other cases of type 𝔰𝔲(1,p)\mathfrak{su}(1,p) with 1p51\leq p\leq 5 is similar, and we omit the details here.

  2. (2)

    When Q(λ0)=R(λ0)Q(\lambda_{0})=R(\lambda_{0}) is of type 𝔰𝔬(2,10)\mathfrak{so}(2,10), we have

    λ1=λ2=λ3=λ4=0<λ5 and λ8(i=27λi)+λ1=0.\lambda_{1}=\lambda_{2}=\lambda_{3}=\lambda_{4}=0<\lambda_{5}\in\mathbb{N}^{\ast}\text{~{}and~{}}\lambda_{8}-(\sum\limits_{i=2}^{7}\lambda_{i})+\lambda_{1}=0.

    From [EHW83] we know that L(λ)L(\lambda) is unitarizable if and only if z5=z3z\leq 5=z_{3} or z=9=z2z=9=z_{2}. In this case λ5+λ6=λ8λ7=17\lambda_{5}+\lambda_{6}=\lambda_{8}-\lambda_{7}=-17.

    From Theorem 6.2 we have

    (λ0,β3,4)=12(λ5+λ6λ7+λ8)=λ5+17,(λ0,β5)=(λ5+λ6)=17-(\lambda_{0},\beta_{3,4})=-\frac{1}{2}(-\lambda_{5}+\lambda_{6}-\lambda_{7}+\lambda_{8})=\lambda_{5}+17,-(\lambda_{0},\beta_{5})=-(\lambda_{5}+\lambda_{6})=17

    and k(λ)=3k(\lambda)=3 if and only if λ\lambda is not integral or zz\in\mathbb{Z} and

    z9+min{(λ0,β3,4,5)}=8.z\leq-9+\min\{-(\lambda_{0},\beta_{3,4,5})\}=8.

    Now when z<9=z2z<9=z_{2}, zz will be not integral, or zz\in\mathbb{Z} and z8z\leq 8. Thus we have k(λ)=3k(\lambda)=3.

    From Theorem 6.2 we have k(λ)=2k(\lambda)=2 if and only if zz\in\mathbb{Z} and

    8=9+min{(λ0,β3,4,5)}<z(λ0,β6,7)5=λ5+12.8=-9+\min\{-(\lambda_{0},\beta_{3,4,5})\}<z\leq-(\lambda_{0},\beta_{6,7})-5=\lambda_{5}+12.

    Thus when z=9=z2z=9=z_{2}, we will have k(λ)=2k(\lambda)=2.

  3. (3)

    When Q(λ0)=R(λ0)Q(\lambda_{0})=R(\lambda_{0}) is of type 𝔢7(25)\mathfrak{e}_{7(-25)}, we have

    λ1=λ2=λ3=λ4=λ5=0 and λ8(i=27λi)+λ1=0.\lambda_{1}=\lambda_{2}=\lambda_{3}=\lambda_{4}=\lambda_{5}=0\text{~{}and~{}}\lambda_{8}-(\sum\limits_{i=2}^{7}\lambda_{i})+\lambda_{1}=0.

    From [EHW83] we know that L(λ)L(\lambda) is unitarizable if and only if z9=z2z\leq 9=z_{2} or z=13=z1z=13=z_{1} or z=17=z0z=17=z_{0}. In this case we have λ6=17\lambda_{6}=-17.

    From Theorem 6.2 we have k(λ)=3k(\lambda)=3 if and only if zz is not integral or zz\in\mathbb{Z} and

    z9+min{(λ0,β3,4,5)}=8.z\leq-9+\min\{-(\lambda_{0},\beta_{3,4,5})\}=8.

    Now when z<9=z2z<9=z_{2}, zz will be not integral, or zz\in\mathbb{Z} and z8z\leq 8, hence we have k(λ)=3k(\lambda)=3.

    From Theorem 6.2 we have k(λ)=2k(\lambda)=2 if and only if zz\in\mathbb{Z} and

    8=9+min{(λ0,β3,4,5)}<z(λ0,β6,7)5=12.8=-9+\min\{-(\lambda_{0},\beta_{3,4,5})\}<z\leq-(\lambda_{0},\beta_{6,7})-5=12.

    Thus when z=9=z2z=9=z_{2}, we will have k(λ)=2k(\lambda)=2.

    From Theorem 6.2 we have k(λ)=1k(\lambda)=1 if and only if zz\in\mathbb{Z} and

    12=(λ0,β6,7)5<z(λ0,β8)1=16.12=-(\lambda_{0},\beta_{6,7})-5<z\leq-(\lambda_{0},\beta_{8})-1=16.

    Thus when z=13=z1z=13=z_{1}, we will have k(λ)=1k(\lambda)=1.

    From Theorem 6.2 we have k(λ)=0k(\lambda)=0 if and only if zz\in\mathbb{Z} and

    z(λ0,β8)1=16.z\geq-(\lambda_{0},\beta_{8})-1=16.

    Thus when z=17=z0z=17=z_{0}, we will have k(λ)=0k(\lambda)=0.

So far, we have completed the proof of all cases of Theorem 7.2.

Acknowledgments

Z. Bai was supported in part by the National Natural Science Foundation of China (No. 12171344) and the National Key R&D\textrm{R}\,\&\,\textrm{D} Program of China (No. 2018YFA0701700 and No. 2018YFA0701701).

References

  • [BH15] Z.. Bai and M. Hunziker “The Gelfand-Kirillov dimension of a unitary highest weight module” In Sci. China Math. 58.12, 2015, pp. 2489–2498
  • [BMW23] Z.. Bai, J.. Ma and Y.. Wang “A combinatorial characterization of the annihilator varieties of highest weight modules for classical Lie algebras” In arXiv: 2304.03475, 2023
  • [BXX23] Z.. Bai, W. Xiao and X. Xie “Gelfand-Kirillov dimensions and associated varieties of highest weight modules” In Int. Math. Res. Not. IMRN no. 10, 2023, pp. 8101–8142
  • [BX19] Z.. Bai and X. Xie “Gelfand-Kirillov dimensions of highest weight Harish-Chandra modules for SU(p,q)SU(p,q) In Int. Math. Res. Not. IMRN no. 14, 2019, pp. 4392–4418
  • [Bai+24] Z.. Bai, M. Hunziker, X. Xie and R. Zierau “On the associated variety of a highest weight Harish-Chandra module” In arXiv:2402.08886, 2024
  • [BC76] P. Bala and R.. Carter “Classes of unipotent elements in simple algebraic groups. I” In Math. Proc. Cambridge Philos. Soc. 79.3, 1976, pp. 401–425
  • [BV82] D. Barbasch and D.. Vogan “Primitive ideals and orbital integrals in complex classical groups” In Math. Ann. 259.2, 1982, pp. 153–199
  • [Bar+23] D. Barbasch, J.-J. Ma, B. Sun and C.-B. Zhu “Special unipotent representations of real classical groups: construction and unitarity” In arXiv:1712.05552v5,, 2023
  • [BZ17] L. Barchini and R. Zierau “Characteristic cycles of highest weight Harish-Chandra modules for Sp(2n,𝐑){\rm Sp}(2n,{\bf R}) In Transform. Groups 22.3, 2017, pp. 591–630
  • [BB82] W. Borho and J.-L. Brylinski “Differential operators on homogeneous spaces. I. Irreducibility of the associated variety for annihilators of induced modules” In Invent. Math. 69.3, 1982, pp. 437–476
  • [BB85] W. Borho and J.-L. Brylinski “Differential operators on homogeneous spaces. III. Characteristic varieties of Harish-Chandra modules and of primitive ideals” In Invent. Math. 80.1, 1985, pp. 1–68
  • [Bou02] N. Bourbaki “Lie groups and Lie algebras” Translated from the 1968 French original by Andrew Pressley, Elements of Mathematics (Berlin) Springer-Verlag, Berlin, 2002, pp. xii+300
  • [Car85] R.. Carter “Finite groups of Lie type” Conjugacy classes and complex characters, A Wiley-Interscience Publication, Pure and Applied Mathematics (New York) John Wiley & Sons, Inc., New York, 1985, pp. xii+544
  • [CM93] David H. Collingwood and William M. McGovern “Nilpotent orbits in semisimple Lie algebras”, Van Nostrand Reinhold Mathematics Series Van Nostrand Reinhold Co., New York, 1993, pp. xiv+186
  • [EHW83] T.. Enright, R. Howe and N. Wallach “A classification of unitary highest weight modules” In Representation theory of reductive groups (Park City, Utah, 1982) 40, Progr. Math. Birkhäuser Boston, Boston, MA, 1983, pp. 97–143
  • [GSK21] D. Gourevitch, E. Sayag and I. Karshon “Annihilator varieties of distinguished modules of reductive Lie algebras” In Forum Math. Sigma 9, 2021, pp. Paper No. e52\bibrangessep30
  • [Jak83] H.. Jakobsen “Hermitian symmetric spaces and their unitary highest weight modules” In J. Funct. Anal. 52.3, 1983, pp. 385–412
  • [Jos78] A. Joseph “Gelfand-Kirillov dimension for the annihilators of simple quotients of Verma modules” In J. London Math. Soc. (2) 18.1, 1978, pp. 50–60
  • [Jos85] A. Joseph “On the associated variety of a primitive ideal” In J. Algebra 93.2, 1985, pp. 509–523
  • [Jos92] A. Joseph “Annihilators and associated varieties of unitary highest weight modules” In Ann. Sci. École Norm. Sup. (4) 25.1, 1992, pp. 1–45
  • [NOT01] K. Nishiyama, H. Ochiai and K. Taniguchi “Bernstein degree and associated cycles of Harish-Chandra modules—Hermitian symmetric case” Nilpotent orbits, associated cycles and Whittaker models for highest weight representations In Astérisque, 2001, pp. 13–80
  • [Vog78] D.. Vogan “Gelfand-Kirillov dimension for Harish-Chandra modules” In Invent. Math. 48.1, 1978, pp. 75–98
  • [Vog91] D.. Vogan “Associated varieties and unipotent representations” In Harmonic analysis on reductive groups (Brunswick, ME, 1989) 101, Progr. Math. Birkhäuser Boston, Boston, MA, 1991, pp. 315–388