This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

On the 33-adic valuation of the Narayana numbers

Russelle Guadalupe Institute of Mathematics, University of the Philippines-Diliman
Quezon City 1101, Philippines
[email protected]
Abstract.

We define the Narayana sequence {an}n0\{a_{n}\}_{n\geq 0} as the one satisfying the linear recurrence relation an=an1+an3a_{n}=a_{n-1}+a_{n-3} for n3n\geq 3, with initial values a0=0a_{0}=0 and a1=a2=1a_{1}=a_{2}=1. In this paper, we fully characterize the 33-adic valuation of an{a_{n}} and use this to determine all Narayana numbers that are factorials.

1. Introduction

The arithmetic properties of the linear recurrence sequences are one of the topics in number theory that are extensively studied. One example concerns about the Fibonacci sequence {Fn}n0\{F_{n}\}_{n\geq 0} defined by Fn=Fn1+Fn2F_{n}=F_{n-1}+F_{n-2} for n2n\geq 2, with initial values F0=0F_{0}=0 and F1=1F_{1}=1. The first few terms of this sequence are

0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,\ldots

For a prime pp, the pp-adic valuation (or the pp-adic order) νp(r)\nu_{p}(r) is the exponent of the highest power of pp which divides rr. The pp-adic valuation of the Fibonacci numbers was fully characterized (see [6, 9, 10, 15, 17]). In particular, Lengyel [9] showed that for n1n\geq 1,

ν2(Fn)={0, if n1,2(mod3);1, if n3(mod6);3, if n6(mod12);ν2(n)+2, if n0(mod12)\nu_{2}(F_{n})=\begin{cases}0,&\text{ if }n\equiv 1,2\pmod{3};\\ 1,&\text{ if }n\equiv 3\pmod{6};\\ 3,&\text{ if }n\equiv 6\pmod{12};\\ \nu_{2}(n)+2,&\text{ if }n\equiv 0\pmod{12}\\ \end{cases}

using congruence properties involving FnF_{n} (see [7, 14]). However, the behavior of the pp-adic valuation of linear recurrence sequences of higher order is much less known. A particular case involves a well-known generalization of the Fibonacci numbers, the Tribonacci sequence {Tn}n0\{T_{n}\}_{n\geq 0} defined by Tn=Tn1+Tn2+Tn3T_{n}=T_{n-1}+T_{n-2}+T_{n-3} for n3n\geq 3, with initial values T0=0T_{0}=0 and T1=T2=1T_{1}=T_{2}=1. The first few terms of this sequence are

0,1,1,2,4,7,13,24,44,81,149,274,504,927,1705,0,1,1,2,4,7,13,24,44,81,149,274,504,927,1705,\ldots

In 2014, Marques and Lengyel [13] proved that for n1n\geq 1,

ν2(Tn)={0, if n1,2(mod4);1, if n3,11(mod16);2, if n4,8(mod16);3, if n7(mod16);ν2(n)1, if n0(mod16);ν2(n+4)1, if n12(mod16);ν2((n+1)(n+17))3, if n15(mod16)\nu_{2}(T_{n})=\begin{cases}0,&\text{ if }n\equiv 1,2\pmod{4};\\ 1,&\text{ if }n\equiv 3,11\pmod{16};\\ 2,&\text{ if }n\equiv 4,8\pmod{16};\\ 3,&\text{ if }n\equiv 7\pmod{16};\\ \nu_{2}(n)-1,&\text{ if }n\equiv 0\pmod{16};\\ \nu_{2}(n+4)-1,&\text{ if }n\equiv 12\pmod{16};\\ \nu_{2}((n+1)(n+17))-3,&\text{ if }n\equiv 15\pmod{16}\end{cases}

and used the 22-adic valuation of TnT_{n} to show that 1,21,2 and 2424 are the only Tribonacci numbers that are factorials. Since then, several authors have worked on the 22-adic valuation of the generalized Fibonacci numbers (see [5, 11, 16, 18]). Another example is about the Tripell sequence {tn}n0\{t_{n}\}_{n\geq 0} defined by tn=2tn1+tn2+tn3t_{n}=2t_{n-1}+t_{n-2}+t_{n-3} for n3n\geq 3, with initial values t0=0,t1=1t_{0}=0,t_{1}=1 and t2=2t_{2}=2. The first few terms of this sequence are

0,1,2,5,13,33,84,214,545,1388,3535,9003,22929,58396,0,1,2,5,13,33,84,214,545,1388,3535,9003,22929,58396,\ldots

In 2020, Bravo, Díaz, and Ramírez [4] proved that for n1n\geq 1,

ν3(tn)={0, if n1,2,3,4(mod6);ν3(n), if n0(mod6);ν3(n+1), if n5(mod6)\nu_{3}(t_{n})=\begin{cases}0,&\text{ if }n\equiv 1,2,3,4\pmod{6};\\ \nu_{3}(n),&\text{ if }n\equiv 0\pmod{6};\\ \nu_{3}(n+1),&\text{ if }n\equiv 5\pmod{6}\end{cases}

and applied the 33-adic valuation of tnt_{n} to show that 11 and 22 are the only Tripell numbers that are factorials.

Recall that the Narayana sequence {an}n0\{a_{n}\}_{n\geq 0} is defined by an=an1+an3a_{n}=a_{n-1}+a_{n-3} for n3n\geq 3, with initial values a0=0a_{0}=0 and a1=a2=1a_{1}=a_{2}=1. The first few terms of this sequence are

0,1,1,1,2,3,4,6,9,13,19,28,41,60,88,129,189,277,0,1,1,1,2,3,4,6,9,13,19,28,41,60,88,129,189,277,\ldots

Some properties of Narayana numbers and its generalizations can be found in [1, 2, 3].

In this paper, we apply Zhou’s [19] method of constructing identities of linear recurrence sequences to deduce several congruence properties involving ana_{n} and to prove our main result, which fully describes the 33-adic valuation of ana_{n}.

Theorem 1.1.

For integers n1n\geq 1, we have

ν3(an)={0, if n1,2,3,4,6(mod8);1, if n5,7,13,15(mod24);2, if n8(mod24);ν3(n+1)+1, if n23(mod24);ν3(n+3)+1, if n21(mod24);ν3(n)+2, if n0(mod24);ν3(n+8)+2, if n16(mod24).\nu_{3}(a_{n})=\begin{cases}0,&\text{ if }n\equiv 1,2,3,4,6\pmod{8};\\ 1,&\text{ if }n\equiv 5,7,13,15\pmod{24};\\ 2,&\text{ if }n\equiv 8\pmod{24};\\ \nu_{3}(n+1)+1,&\text{ if }n\equiv 23\pmod{24};\\ \nu_{3}(n+3)+1,&\text{ if }n\equiv 21\pmod{24};\\ \nu_{3}(n)+2,&\text{ if }n\equiv 0\pmod{24};\\ \nu_{3}(n+8)+2,&\text{ if }n\equiv 16\pmod{24}.\\ \end{cases}

One application of the pp-adic valuation of linear recurrence sequences is to give upper bounds of the solutions of the Diophantine equations involving factorials and these sequences. In this paper, we use Theorem 1.1 to determine all Narayana numbers that are factorials, as shown by the following result.

Theorem 1.2.

The only solutions to the Diophantine equation an=m!a_{n}=m! in positive integers nn and mm are (n,m){(1,1),(2,1),(3,1),(4,2),(7,3)}(n,m)\in\{(1,1),(2,1),(3,1),(4,2),(7,3)\}.

2. Preliminaries

In this section, we present some preliminary results that are used in the proofs of our main theorems. We begin with the bounds of the pp-adic valuation of a factorial, which is a consequence of Legendre’s formula (see [8]).

Lemma 2.1.

For any integer m1m\geq 1 and prime pp, we have

mp1logmlogp1νp(m!)m1p1,\dfrac{m}{p-1}-\left\lfloor\dfrac{\log m}{\log p}\right\rfloor-1\leq\nu_{p}(m!)\leq\dfrac{m-1}{p-1},

where x\lfloor x\rfloor denotes the largest integer less than or equal to xx.

Proof.

See [12, Lem. 2.4]. ∎

We next have the exponential growth of the Narayana sequence {an}\{a_{n}\}.

Lemma 2.2.

For all integers n1n\geq 1, we have αn3anαn1\alpha^{n-3}\leq a_{n}\leq\alpha^{n-1}, where α>1\alpha>1 is the real root of the characteristic polynomial f(x):=x3x21f(x):=x^{3}-x^{2}-1 given by

α=13(1+2939323+29+39323)1.4656.\alpha=\dfrac{1}{3}\left(1+\sqrt[3]{\dfrac{29-3\sqrt{93}}{2}}+\sqrt[3]{\dfrac{29+3\sqrt{93}}{2}}\right)\approx 1.4656.
Proof.

A direct application of the rational roots theorem shows that f(x)f(x) is irreducible over \mathbb{Q}. Moreover, it has a real root α>1\alpha>1 and two conjugate complex roots lying inside the unit circle. We now use induction on nn. We note that the statement holds for n=1n=1 as 0.6823<α2a1=1α00.6823<\alpha^{-2}\leq a_{1}=1\leq\alpha^{0}. We now suppose that αm3amαm1\alpha^{m-3}\leq a_{m}\leq\alpha^{m-1} holds for all integers 1mn11\leq m\leq n-1. Using the recurrence formula for ana_{n}, we see that

αn4+αn6anαn2+αn4αn6(α2+1)anαn4(α2+1).\alpha^{n-4}+\alpha^{n-6}\leq a_{n}\leq\alpha^{n-2}+\alpha^{n-4}\implies\alpha^{n-6}(\alpha^{2}+1)\leq a_{n}\leq\alpha^{n-4}(\alpha^{2}+1).

Since α3=α2+1\alpha^{3}=\alpha^{2}+1, we get the desired inequality for all integers n1n\geq 1. ∎

We finally have the following identity involving ana_{n}, which plays a key role in the proofs of Theorem 1.1 and Theorem 1.2. We apply the method of constructing identities of linear recurrence sequences introduced by Zhou [19] to prove this identity.

Lemma 2.3.

For all integers m3m\geq 3 and n0n\geq 0, we have

am+n\displaystyle a_{m+n} =am1an+2+am3an+1+am2an\displaystyle=a_{m-1}a_{n+2}+a_{m-3}a_{n+1}+a_{m-2}a_{n}
=am1an+2+(amam1)an+1+am2an.\displaystyle=a_{m-1}a_{n+2}+(a_{m}-a_{m-1})a_{n+1}+a_{m-2}a_{n}.
Proof.

Observe that the identity holds for m=3m=3, so suppose m4m\geq 4. Consider the polynomial h(x)=xm+nxm+n1xm+n3h(x)=x^{m+n}-x^{m+n-1}-x^{m+n-3}, which is divisible by the characteristic polynomial f(x)f(x) of the sequence {an}n0\{a_{n}\}_{n\geq 0}. Then

h(x)(a1\displaystyle h(x)(a_{1} +a2x1++am3xm+4+am2xm+3)\displaystyle+a_{2}x^{-1}+\cdots+a_{m-3}x^{-m+4}+a_{m-2}x^{-m+3})
=a1xm+n+a2xm+n1+a3xm+n2++am3xn+4+am2xn+3\displaystyle=a_{1}x^{m+n}+a_{2}x^{m+n-1}+a_{3}x^{m+n-2}+\cdots+a_{m-3}x^{n+4}+a_{m-2}x^{n+3}
a1xm+n1a2xm+n2a3xm+n3am3xn+3am2xn+2\displaystyle-a_{1}x^{m+n-1}-a_{2}x^{m+n-2}-a_{3}x^{m+n-3}-\cdots-a_{m-3}x^{n+3}-a_{m-2}x^{n+2}
a1xm+n3a2xm+n4a3xm+n5am3xn+1am2xn\displaystyle-a_{1}x^{m+n-3}-a_{2}x^{m+n-4}-a_{3}x^{m+n-5}-\cdots-a_{m-3}x^{n+1}-a_{m-2}x^{n}
=a1xm+n(am2+am4)xn+2am3xn+1am2xn\displaystyle=a_{1}x^{m+n}-(a_{m-2}+a_{m-4})x^{n+2}-a_{m-3}x^{n+1}-a_{m-2}x^{n}
0(modf(x)).\displaystyle\equiv 0\pmod{f(x)}.

Thus, in view of [19, Thm. 2.3], we obtain am+n=am1an+2+am3an+1+am2ana_{m+n}=a_{m-1}a_{n+2}+a_{m-3}a_{n+1}+a_{m-2}a_{n}. ∎

3. Proof of Theorem 1.1

We first present the following congruence property of the Narayana numbers.

Proposition 3.1.

For all integers s1s\geq 1 and n1n\geq 1, we have

a8s3n\displaystyle a_{8s\cdot 3^{n}} 2s3n+2\displaystyle\equiv 2s\cdot 3^{n+2} (mod3n+3),\displaystyle\pmod{3^{n+3}},
(1) a8s3n+1\displaystyle a_{8s\cdot 3^{n}+1} 1+s3n+1+2s3n+2\displaystyle\equiv 1+s\cdot 3^{n+1}+2s\cdot 3^{n+2} (mod3n+3),\displaystyle\pmod{3^{n+3}},
a8s3n+2\displaystyle a_{8s\cdot 3^{n}+2} 1+2s3n+2\displaystyle\equiv 1+2s\cdot 3^{n+2} (mod3n+3).\displaystyle\pmod{3^{n+3}}.
Proof.

We first prove this for n=1n=1 using induction on ss. Note that the statement holds for the base case s=1s=1, as a2454(mod81),a2564(mod81)a_{24}\equiv 54\pmod{81},a_{25}\equiv 64\pmod{81} and a2655(mod81)a_{26}\equiv 55\pmod{81} by routine calculation. Suppose that the congruences (3.1) hold for s1s-1. Using the recurrence formula for ana_{n}, we compute a2163(mod81),a2210(mod81)a_{21}\equiv 63\pmod{81},a_{22}\equiv 10\pmod{81} and a239(mod81)a_{23}\equiv-9\pmod{81}. Applying Lemma 2.3, we get

a24s\displaystyle a_{24s} =a24+24(s1)=a23a24(s1)+2+a21a24(s1)+1+a22a24(s1)\displaystyle=a_{24+24(s-1)}=a_{23}a_{24(s-1)+2}+a_{21}a_{24(s-1)+1}+a_{22}a_{24(s-1)}
9(1+54(s1))+63(1+63(s1))+10(54(s1))(mod81)\displaystyle\equiv-9(1+54(s-1))+63(1+63(s-1))+10(54(s-1))\pmod{81}
3969+4023s54s(mod81).\displaystyle\equiv-3969+4023s\equiv 54s\pmod{81}.

Similarly, we obtain

a24s+1\displaystyle a_{24s+1} =a25+24(s1)=a24a24(s1)+2+a22a24(s1)+1+a23a24(s1)\displaystyle=a_{25+24(s-1)}=a_{24}a_{24(s-1)+2}+a_{22}a_{24(s-1)+1}+a_{23}a_{24(s-1)}
54(1+54(s1))+10(1+63(s1))9(54(s1))(mod81)\displaystyle\equiv 54(1+54(s-1))+10(1+63(s-1))-9(54(s-1))\pmod{81}
2996+3060s1+63s(mod81),\displaystyle\equiv-2996+3060s\equiv 1+63s\pmod{81},
a24s+2\displaystyle a_{24s+2} =a26+24(s1)=a25a24(s1)+2+a23a24(s1)+1+a24a24(s1)\displaystyle=a_{26+24(s-1)}=a_{25}a_{24(s-1)+2}+a_{23}a_{24(s-1)+1}+a_{24}a_{24(s-1)}
64(1+54(s1))9(1+63(s1))+54(54(s1))(mod81)\displaystyle\equiv 64(1+54(s-1))-9(1+63(s-1))+54(54(s-1))\pmod{81}
5750+5805s1+54s(mod81).\displaystyle\equiv-5750+5805s\equiv 1+54s\pmod{81}.

Thus, the congruences (3.1) are true for all s1s\geq 1 and n=1n=1. We now fix ss and show that (3.1) hold using induction on nn. Suppose that n2n\geq 2 and the congruences (3.1) are true for n1n-1. Then a8s3n11s3n(mod3n+2)a_{8s\cdot 3^{n-1}-1}\equiv-s\cdot 3^{n}\pmod{3^{n+2}} and a8s3n121+s3n(mod3n+2)a_{8s\cdot 3^{n-1}-2}\equiv 1+s\cdot 3^{n}\pmod{3^{n+2}}, so for some integers c0,c1c_{0},c_{1} and c2c_{2}, we have

a8s3n12\displaystyle a_{8s\cdot 3^{n-1}-2} =1+s3n+(c1c0)3n+2,\displaystyle=1+s\cdot 3^{n}+(c_{1}-c_{0})\cdot 3^{n+2},
a8s3n11\displaystyle a_{8s\cdot 3^{n-1}-1} =s3n+(c2c1)3n+2,\displaystyle=-s\cdot 3^{n}+(c_{2}-c_{1})\cdot 3^{n+2},
a8s3n1\displaystyle a_{8s\cdot 3^{n-1}} =2s3n+1+c03n+2,\displaystyle=2s\cdot 3^{n+1}+c_{0}\cdot 3^{n+2},
a8s3n1+1\displaystyle a_{8s\cdot 3^{n-1}+1} =1+s3n+2s3n+1+c13n+2,\displaystyle=1+s\cdot 3^{n}+2s\cdot 3^{n+1}+c_{1}\cdot 3^{n+2},
a8s3n1+2\displaystyle a_{8s\cdot 3^{n-1}+2} =1+2s3n+1+c23n+2.\displaystyle=1+2s\cdot 3^{n+1}+c_{2}\cdot 3^{n+2}.

Using Lemma 2.3, we get

a2(8s3n1)\displaystyle a_{2(8s\cdot 3^{n-1})} =a(8s3n1+1)+(8s3n11)\displaystyle=a_{(8s\cdot 3^{n-1}+1)+(8s\cdot 3^{n-1}-1)}
=a8s3n1a8s3n1+1+a8s3n12a8s3n1+a8s3n11a8s3n11\displaystyle=a_{8s\cdot 3^{n-1}}a_{8s\cdot 3^{n-1}+1}+a_{8s\cdot 3^{n-1}-2}a_{8s\cdot 3^{n-1}}+a_{8s\cdot 3^{n-1}-1}a_{8s\cdot 3^{n-1}-1}
s3n+1+(2c0+s)3n+2(mod3n+3),\displaystyle\equiv s\cdot 3^{n+1}+(2c_{0}+s)\cdot 3^{n+2}\pmod{3^{n+3}},
a2(8s3n1)+1\displaystyle a_{2(8s\cdot 3^{n-1})+1} =a(8s3n1+2)+(8s3n11)\displaystyle=a_{(8s\cdot 3^{n-1}+2)+(8s\cdot 3^{n-1}-1)}
=a8s3n1+1a8s3n1+1+a8s3n11a8s3n1+a8s3n1a8s3n11\displaystyle=a_{8s\cdot 3^{n-1}+1}a_{8s\cdot 3^{n-1}+1}+a_{8s\cdot 3^{n-1}-1}a_{8s\cdot 3^{n-1}}+a_{8s\cdot 3^{n-1}}a_{8s\cdot 3^{n-1}-1}
1+2s3n+s3n+1+(2c1+s)3n+2(mod3n+3),\displaystyle\equiv 1+2s\cdot 3^{n}+s\cdot 3^{n+1}+(2c_{1}+s)\cdot 3^{n+2}\pmod{3^{n+3}},
a2(8s3n1)+2\displaystyle a_{2(8s\cdot 3^{n-1})+2} =a(8s3n1+2)+(8s3n1)\displaystyle=a_{(8s\cdot 3^{n-1}+2)+(8s\cdot 3^{n-1})}
=a8s3n1+1a8s3n1+2+a8s3n11a8s3n1+1+a8s3n1a8s3n1\displaystyle=a_{8s\cdot 3^{n-1}+1}a_{8s\cdot 3^{n-1}+2}+a_{8s\cdot 3^{n-1}-1}a_{8s\cdot 3^{n-1}+1}+a_{8s\cdot 3^{n-1}}a_{8s\cdot 3^{n-1}}
1+s3n+1+(2c2+s)3n+2(mod3n+3).\displaystyle\equiv 1+s\cdot 3^{n+1}+(2c_{2}+s)\cdot 3^{n+2}\pmod{3^{n+3}}.

Thus, applying Lemma 2.3 again, we arrive at

a8s3n\displaystyle a_{8s\cdot 3^{n}} =a8s3n1+2(8s3n1)\displaystyle=a_{8s\cdot 3^{n-1}+2(8s\cdot 3^{n-1})}
=a8s3n11a2(8s3n1)+2+(a8s3n1a8s3n11)a2(8s3n1)+1+a8s3n12a2(8s3n1)\displaystyle=a_{8s\cdot 3^{n-1}-1}a_{2(8s\cdot 3^{n-1})+2}+(a_{8s\cdot 3^{n-1}}-a_{8s\cdot 3^{n-1}-1})a_{2(8s\cdot 3^{n-1})+1}+a_{8s\cdot 3^{n-1}-2}a_{2(8s\cdot 3^{n-1})}
s3n+(c2c1)3n+2+2s3n+1+s3n+(c0+c1c2)3n+2\displaystyle\equiv-s\cdot 3^{n}+(c_{2}-c_{1})\cdot 3^{n+2}+2s\cdot 3^{n+1}+s\cdot 3^{n}+(c_{0}+c_{1}-c_{2})\cdot 3^{n+2}
+s3n+1+(2c0+s)3n+2(mod3n+3),\displaystyle\phantom{hellohellohellohellohellohellohellohell}+s\cdot 3^{n+1}+(2c_{0}+s)\cdot 3^{n+2}\pmod{3^{n+3}},
2s3n+2(mod3n+3),\displaystyle\equiv 2s\cdot 3^{n+2}\pmod{3^{n+3}},
a8s3n+1\displaystyle a_{8s\cdot 3^{n}+1} =a2(8s3n1)+3+(8s3n12)\displaystyle=a_{2(8s\cdot 3^{n-1})+3+(8s\cdot 3^{n-1}-2)}
=a2(8s3n1)+2a8s3n1+a2(8s3n1)a8s3n11+a2(8s3n1)+1a8s3n12\displaystyle=a_{2(8s\cdot 3^{n-1})+2}a_{8s\cdot 3^{n-1}}+a_{2(8s\cdot 3^{n-1})}a_{8s\cdot 3^{n-1}-1}+a_{2(8s\cdot 3^{n-1})+1}a_{8s\cdot 3^{n-1}-2}
(2s3n+1+c03n+2)+1+2s3n+1+(3c1c0+s)3n+2(mod3n+3),\displaystyle\equiv(2s\cdot 3^{n+1}+c_{0}\cdot 3^{n+2})+1+2s\cdot 3^{n+1}+(3c_{1}-c_{0}+s)\cdot 3^{n+2}\pmod{3^{n+3}},
1+s3n+1+2s3n+2(mod3n+3),\displaystyle\equiv 1+s\cdot 3^{n+1}+2s\cdot 3^{n+2}\pmod{3^{n+3}},
a8s3n+2\displaystyle a_{8s\cdot 3^{n}+2} =a2(8s3n1)+3+(8s3n11)\displaystyle=a_{2(8s\cdot 3^{n-1})+3+(8s\cdot 3^{n-1}-1)}
=a2(8s3n1)+2a8s3n1+1+a2(8s3n1)a8s3n1+a2(8s3n1)+1a8s3n11\displaystyle=a_{2(8s\cdot 3^{n-1})+2}a_{8s\cdot 3^{n-1}+1}+a_{2(8s\cdot 3^{n-1})}a_{8s\cdot 3^{n-1}}+a_{2(8s\cdot 3^{n-1})+1}a_{8s\cdot 3^{n-1}-1}
1+s3n+(c1+2c2+2s)3n+2s3n+(c2c1)3n+2(mod3n+3),\displaystyle\equiv 1+s\cdot 3^{n}+(c_{1}+2c_{2}+2s)\cdot 3^{n+2}-s\cdot 3^{n}+(c_{2}-c_{1})\cdot 3^{n+2}\pmod{3^{n+3}},
1+2s3n+2(mod3n+3).\displaystyle\equiv 1+2s\cdot 3^{n+2}\pmod{3^{n+3}}.

Hence, by induction, the congruences (3.1) hold for all integers s1s\geq 1 and n1n\geq 1. ∎

We are now in a position to prove Theorem 1.1 by working on each case separately.

  1. (a)

    Suppose that nk(mod8)n\equiv k\pmod{8} with k{1,2,3,4,6}k\in\{1,2,3,4,6\}. We note that the sequence {an(mod3)}n0\{a_{n}\pmod{3}\}_{n\geq 0} is periodic with period 88, so anak(mod3)a_{n}\equiv a_{k}\pmod{3}. By routine calculation, we have ak0(mod3)a_{k}\not\equiv 0\pmod{3} for all k{1,2,3,4,6}k\in\{1,2,3,4,6\}, so ν3(an)=0\nu_{3}(a_{n})=0.

  2. (b)

    Suppose that nk(mod24)n\equiv k\pmod{24} with k{5,7,13,15}k\in\{5,7,13,15\}. We note that the sequence {an(mod9)}n0\{a_{n}\pmod{9}\}_{n\geq 0} is periodic with period 2424, so anak(mod9)a_{n}\equiv a_{k}\pmod{9}. By routine calculation, we have a5=3,a7=6,a13=60a_{5}=3,a_{7}=6,a_{13}=60 and a15=129a_{15}=129, all of which are divisible by 33 but not by 99. Thus, we have ν3(an)=1\nu_{3}(a_{n})=1.

  3. (c)

    Suppose n8(mod24)n\equiv 8\pmod{24}. Then n=8s3m+8n=8s\cdot 3^{m}+8 for some integers m,s1m,s\geq 1 with 3s3\nmid s. Using the recurrence formula for ana_{n} and Proposition 3.1, we deduce that an9(mod3m+3)a_{n}\equiv 9\pmod{3^{m+3}}. Thus, we get ν3(an)=2\nu_{3}(a_{n})=2.

  4. (d)

    Suppose n23(mod24)n\equiv 23\pmod{24}. Then n=8s3m1n=8s\cdot 3^{m}-1 for some integers m,s1m,s\geq 1 with 3s3\nmid s, so that ν3(n+1)=m\nu_{3}(n+1)=m. Using the recurrence formula for ana_{n} and Proposition 3.1, we deduce that ans3m+1(mod3m+3)a_{n}\equiv-s\cdot 3^{m+1}\pmod{3^{m+3}}. Thus, we get ν3(an)=m+1=ν3(n+1)+1\nu_{3}(a_{n})=m+1=\nu_{3}(n+1)+1.

  5. (e)

    Suppose n21(mod24)n\equiv 21\pmod{24}. Then n=8s3m3n=8s\cdot 3^{m}-3 for some integers m,s1m,s\geq 1 with 3s3\nmid s, so that ν3(n+3)=m\nu_{3}(n+3)=m. Using the recurrence formula for ana_{n} and Proposition 3.1, we deduce that an(2s3m+2+s3m+1)(mod3m+3)a_{n}\equiv(2s\cdot 3^{m+2}+s\cdot 3^{m+1})\pmod{3^{m+3}}. Thus, we get ν3(an)=m+1=ν3(n+3)+1\nu_{3}(a_{n})=m+1=\nu_{3}(n+3)+1.

  6. (f)

    Suppose n0(mod24)n\equiv 0\pmod{24}. Then n=8s3mn=8s\cdot 3^{m} for some integers m,s1m,s\geq 1 with 3s3\nmid s, so that ν3(n)=m\nu_{3}(n)=m. By Proposition 3.1, we have an2s3m+2(mod3m+3)a_{n}\equiv 2s\cdot 3^{m+2}\pmod{3^{m+3}}. Thus, we get ν3(an)=m+2=ν3(n)+2\nu_{3}(a_{n})=m+2=\nu_{3}(n)+2.

  7. (g)

    Suppose n16(mod24)n\equiv 16\pmod{24}. Then n=8s3m8n=8s\cdot 3^{m}-8 for some integers m,s1m,s\geq 1 with 3s3\nmid s, so that ν3(n+8)=m\nu_{3}(n+8)=m. Using the recurrence formula for ana_{n} and Proposition 3.1, we deduce that an2s3m+2(mod3m+3)a_{n}\equiv-2s\cdot 3^{m+2}\pmod{3^{m+3}}. Thus, we get ν3(an)=m+2=ν3(n+8)+2\nu_{3}(a_{n})=m+2=\nu_{3}(n+8)+2.

This completes the proof of Theorem 1.1.

4. Proof of Theorem 1.2

We note that if m5m\leq 5, then the only solutions are the ones listed in Theorem 1.2, so we now suppose that m6m\geq 6. Applying Theorem 1.1 and Lemma 2.1 with p=3p=3, we obtain

m2logmlog31\displaystyle\dfrac{m}{2}-\left\lfloor\dfrac{\log m}{\log 3}\right\rfloor-1 ν3(an)ν3(n(n+1)(n+3)(n+8))+64ν3(n+δ)+6,\displaystyle\leq\nu_{3}(a_{n})\leq\nu_{3}(n(n+1)(n+3)(n+8))+6\leq 4\nu_{3}(n+\delta)+6,

for some δ{0,1,3,8}\delta\in\{0,1,3,8\}. This implies that

3m/8(logm)/(log3)/47/43ν3(n+δ)n+δn+83^{\lfloor m/8-\lfloor(\log m)/(\log 3)\rfloor/4-7/4\rfloor}\leq 3^{\nu_{3}(n+\delta)}\leq n+\delta\leq n+8

and taking logarithms leads to

(2) m814logmlog374log(n+8)log3.\displaystyle\left\lfloor\dfrac{m}{8}-\dfrac{1}{4}\left\lfloor\dfrac{\log m}{\log 3}\right\rfloor-\dfrac{7}{4}\right\rfloor\leq\dfrac{\log(n+8)}{\log 3}.

From Lemma 2.2, we have αn3an=m!<(m/2)m\alpha^{n-3}\leq a_{n}=m!<(m/2)^{m}, so that n<3+mlog(m/2)/logαn<3+m\log(m/2)/\log\alpha. Plugging this in eq. 2 yields

m814logmlog374log(11+mlog(m/2)/logα)log3.\left\lfloor\dfrac{m}{8}-\dfrac{1}{4}\left\lfloor\dfrac{\log m}{\log 3}\right\rfloor-\dfrac{7}{4}\right\rfloor\leq\dfrac{\log(11+m\log(m/2)/\log\alpha)}{\log 3}.

Thus, we deduce that m68m\leq 68 and n630n\leq 630. A simple computational search using Mathematica shows that there are no solutions in the range m[6,68]m\in[6,68] and n[1,630]n\in[1,630]. This completes the proof of Theorem 1.2.

References

  • [1] J.-P. Allouche and T. Johnson, Narayana’s cows and delayed morphisms, Journées d’Informatique Musicale (île de Tatihou, France), May 1996.
  • [2] C. Ballot, On a family of recurrences that includes the Fibonacci and the Narayana recurrences, arXiv:1704.04476 (2017), 1–18.
  • [3] G. Bilgici, The generalized order-kk Narayana’s cows numbers, Math. Slovaca 66 (2016), 795–802.
  • [4] J. J. Bravo, M. Díaz, and J. L. Ramírez, The 22-adic and 33-adic valuation of the Tripell sequence and an application, Turkish J. Math. 44 (2020), 131–141.
  • [5] M. Bunder and J. Tonien, Generalized Fibonacci numbers and their 22-adic order, Integers 20 (2020), #A105.
  • [6] J. H. Halton, On the divisibility properties of Fibonacci numbers, Fibonacci Quart. 4 (1966), 217–240.
  • [7] E. T. Jacobson, Distribution of the Fibonacci numbers mod 2k2^{k}, Fibonacci Quart. 30 (1992), 211–215.
  • [8] A. M. Legendre, Théorie des nombres (Tome I), Firmin Didot Fréres, Paris, 1830.
  • [9] T. Lengyel, The order of the Fibonacci and Lucas numbers, Fibonacci Quart. 33 (1995), 234–239.
  • [10] by same author, Divisibility properties by multisection, Fibonacci Quart. 41 (2003), 72–79.
  • [11] T. Lengyel and D. Marques, The 22-adic order of some generalized Fibonacci numbers, Integers 17 (2017), #A5.
  • [12] D. Marques, The order of appearance of product of consecutive Fibonacci numbers, Fibonacci Quart. 50 (2012), 132–139.
  • [13] D. Marques and T. Lengyel, The 22-adic order of the Tribonacci numbers and the equation Tn=m!{T}_{n}=m!, J. Integer Seq. 17 (2014), Article 14.10.1.
  • [14] H. Niederreiter, Distribution of Fibonacci numbers mod 5k5^{k}, Fibonacci Quart. 10 (1972), 373–374.
  • [15] D. W. Robinson, The Fibonacci matrix modulo mm, Fibonacci Quart. 1 (1963), no. 2, 29 – 36.
  • [16] B. Sobolewski, The 2-adic valuation of generalized Fibonacci sequences with an application to certain Diophantine equations, J. Number Theory 180 (2017), 730–742.
  • [17] J. Vinson, The relation of the period modulo mm to the rank of apparition of mm in the Fibonacci sequence, Fibonacci Quart. 1 (1963), no. 2, 37 – 46.
  • [18] P. T. Young, 22-adic valuations of generalized Fibonacci numbers of odd order, Integers 18 (2018), #A1.
  • [19] C. Zhou, Constructing identities involving kkth-order F-L numbers by using the characteristic polynomial, Applications of Fibonacci Numbers (F. T. Howard, ed.), vol. 8, Springer Netherlands, Dordrecht, 1999, pp. 369–379.