This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

On systematic criteria for the global stability of nonlinear systems via the Koopman operator framework

Christian Mugisho Zagabe and Alexandre Mauroy C.M. Zagabe is with Department of mathematics, University of Namur, 5000 Namur, Belgium [email protected]A. Mauroy is with Department of mathematics, University of Namur, 5000 Namur, Belgium [email protected]
Abstract

We present novel sufficient conditions for the global stability of equilibria in the case of nonlinear dynamics with analytic vector fields. These conditions provide stability criteria that are directly expressed in terms of the Taylor expansion coefficients of the vector field (e.g. in terms of first order coefficients, maximal coefficient, sum of coefficients). Our main assumptions is that the flow be holomorphic, and the linearized system be locally exponentially stable and diagonalizable. These results are based on the properties of the Koopman operator defined on the Hardy space on the polydisc.

1 Introduction

In dynamical systems theory, characterizing global stability remains a challenge. The existence of a Lyapunov function guarantees global stability due to Lyapunov’s second method, but there are very few general constructive methods. For a linear system, on the other hand, the existence of a quadratic Lyapunov function is both a necessary and sufficient condition for global stability. In this context, the Koopman operator approach provides a “global linearization" of nonlinear dynamics (see e.g., [1, 8]), which is amenable to global stability analysis through linear methods [8]. For instance, specific Koopman eigenfunctions were used in [7] to obtain necessary and sufficient conditions for global stability of hyperbolic attractors, a result which mirrors well-known spectral stability results for linear systems. Moreover, a numerical method was proposed in [13] to compute Lyapunov functions from a finite dimensional approximation of the Koopman operator.

The present work follows the same path as the above-mentioned results based on the Koopman operator approach. However, it does not use Koopman eigenfunctions, which are usually unknown and have to be computed numerically, nor does it rely on possibly inaccurate approximations of the operator. Instead, our results provide sufficient conditions for global stability of equilibria associated with holomorphic flows, which can be directly verified with the system vector field. Under mild assumptions on the linearized dynamics (i.e. exponential stability, diagonalizable linear system), the specific case of polynomial vector fields is considered, along with more general analytic vector fields. Our theoretical findings are built upon our previous work based on the properties of the Koopman generator defined in the Hardy space of the polydisc [14]. But in contrast to previous work, they do not focus on switched nonlinear systems and provide stability conditions which are less conservative thanks to the use of re-scaled Hardy spaces. Moreover, the obtained criteria are more readily applicable since they are expressed in terms of simple quantities directly computed from Taylor coefficients (e.g. first order coefficients, maximal coefficient, discounted sum of coefficients).

The remainder of the paper is structured as follows. In Section 2, we provide a general introduction to the Koopman operator framework and some specific properties in the Hardy space on the polydisc. Our main results are presented in Section 3 and illustrated in Section 4 with two examples. Section 5 gives concluding remarks and perspectives. The proofs of our main results can be found in Appendix A and B.

Notations

For multi-index notations α=(α1,,αn)n\displaystyle\alpha=(\alpha_{1},...,\alpha_{n})\in\mathbb{N}^{n}, we define |α|=α1++αn\displaystyle|\alpha|=\alpha_{1}+\cdots+\alpha_{n} and zα=z1α1znαn\displaystyle z^{\alpha}=z_{1}^{\alpha_{1}}\cdots z_{n}^{\alpha_{n}}. The complex conjugate and real part of a complex number a\displaystyle a is denoted by a¯\displaystyle\bar{a} and (a)\displaystyle\Re(a), respectively. The Jacobian matrix of the vector field F\displaystyle F at z\displaystyle z is given by JF(z)\displaystyle JF(z). The complex polydisc centered at 0\displaystyle 0 and of radius ρ>0\displaystyle\rho>0 is defined by

𝔻n(ρ)={zn:|z1|<ρ,,|zn|<ρ}\displaystyle\mathbb{D}^{n}(\rho)=\left\{z\in\mathbb{C}^{n}:|z_{1}|<\rho,\cdots,|z_{n}|<\rho\right\}

and 𝔻n(ρ)\displaystyle\partial\mathbb{D}^{n}(\rho) and (𝔻(ρ))n\displaystyle\left(\partial\mathbb{D}(\rho)\right)^{n} is its boundary and distinguished boundary respectively. In particular, 𝔻n\displaystyle\mathbb{D}^{n} denotes the unit polydisc (i.e. with ρ=1\displaystyle\rho=1).

2 Preliminaries

We consider a continuous-time dynamical system

z˙=F(z),z𝔻n(ρ),\dot{z}=F(z),\quad z\in\mathbb{D}^{n}(\rho), (1)

with ρ>0\displaystyle\rho>0, where the vector field F\displaystyle F satisfies the following assumption.

Assumption 1.

The components Fl,l=1,,n\displaystyle F_{l},\,l=1,\cdots,n, of the vector field F\displaystyle F (i) are holomorphic on the closed polydisc 𝔻n(ρ)¯\displaystyle\overline{\mathbb{D}^{n}(\rho)}, (ii) belong to the Hardy space 2(𝔻n(ρ))\displaystyle\mathbb{H}^{2}(\mathbb{D}^{n}(\rho)) (defined in Section 2.1 below), and (iii) generate a flow φt\displaystyle\varphi^{t} that is holomorphic on 𝔻n(ρ)\displaystyle\mathbb{D}^{n}(\rho) and maps 𝔻n(ρ)\displaystyle\mathbb{D}^{n}(\rho) to itself.

Necessary and sufficient conditions on the vector field to ensure that Assumption 1(iii) is satisfied are given in [2] for the case of the unit polydisc.

Moreover, we will make the following additional standing assumption related to the type of dynamical behavior we investigate.

Assumption 2.

The vector field F\displaystyle F admits on 𝔻n(ρ)\displaystyle\mathbb{D}^{n}(\rho) a unique hyperbolic equilibrium at the origin (without loss of generality), i.e. F(0)=0\displaystyle F(0)=0, and the eigenvalues λ~j\displaystyle\tilde{\lambda}_{j} of the Jacobian matrix JF(0)\displaystyle JF(0) satisfy {λ~j}<0\displaystyle\Re\{\tilde{\lambda}_{j}\}<0.

In order to investigate the global stability properties of the above dynamical system, we will define the Koopman operator on a proper space adapted to the dynamics. Since we made the assumption of analyticity of vector fields and flows, it is natural to consider a space of analytic functions, and a prototypical choice is the Hardy space on the polydisc.

2.1 Hardy space of the polydisc

The Hardy space of holomorphic functions on the polydisc 𝔻n(ρ)\displaystyle\mathbb{D}^{n}(\rho) is the space

2(𝔻n(ρ))={f:𝔻n(ρ),holomorphic:f2<},\displaystyle\mathbb{H}^{2}(\mathbb{D}^{n}(\rho))=\left\{f:\mathbb{D}^{n}(\rho)\rightarrow\mathbb{C},\mbox{holomorphic}:\|f\|^{2}<\infty\right\},

where

f2=limr1(𝔻(ρ))n|f(rω)|2𝑑mn(ω)\displaystyle\|f\|^{2}=\lim_{r\rightarrow 1^{-}}\int_{(\partial\mathbb{D}(\rho))^{n}}|f\left(r\omega\right)|^{2}dm_{n}(\omega)

and mn\displaystyle m_{n} is the normalized Lebesgue measure on (𝔻(ρ))n\displaystyle(\partial\mathbb{D}(\rho))^{n}. The space is equipped with an inner product defined by

f,g=(𝔻(ρ))nf(ω)g¯(ω)𝑑mn(ω),\displaystyle\left\langle f,g\right\rangle=\int_{(\partial\mathbb{D}(\rho))^{n}}f\left(\omega\right)\bar{g}\left(\omega\right)dm_{n}(\omega),

so that the set of monomials {zα:αn}\displaystyle\left\{z^{\alpha}:\alpha\in\mathbb{N}^{n}\right\} is a standard orthonormal basis on 2(𝔻n(ρ))\displaystyle\mathbb{H}^{2}(\mathbb{D}^{n}(\rho)). In the sequel, the monomials will be denoted by ek(z)=zα(k)\displaystyle e_{k}(z)=z^{\alpha(k)}, where the map α:n\displaystyle\alpha:\mathbb{N}\to\mathbb{N}^{n}, kα(k)\displaystyle k\mapsto\alpha(k) refers to the lexicographic order111that is, ek1<ek2\displaystyle e_{k_{1}}<e_{k_{2}} if |α(k1)|<|α(k2)|\displaystyle|\alpha(k_{1})|<|\alpha(k_{2})|, or if |α(k1)|=|α(k2)|\displaystyle|\alpha(k_{1})|=|\alpha(k_{2})| and αj(k1)>αj(k2)\displaystyle\alpha_{j}(k_{1})>\alpha_{j}(k_{2}) for the smallest j\displaystyle j such that αj(k1)αj(k2)\displaystyle\alpha_{j}(k_{1})\neq\alpha_{j}(k_{2}). For f\displaystyle f and g\displaystyle g in 2(𝔻n(ρ))\displaystyle\mathbb{H}^{2}(\mathbb{D}^{n}(\rho)), with f=kfkek\displaystyle f=\sum_{k\in\mathbb{N}}f_{k}e_{k} and g=kgkek\displaystyle g=\sum_{k\in\mathbb{N}}g_{k}e_{k}, the isomorphism

kfkek(fk)k0\displaystyle\sum_{k\in\mathbb{N}}f_{k}e_{k}\mapsto(f_{k})_{k\geq 0}

between 2(𝔻n(ρ))\displaystyle\mathbb{H}^{2}(\mathbb{D}^{n}(\rho)) and the l2\displaystyle l^{2}-space allows to rewrite the norm and the inner product as

f2=kρ2|α(k)||fk|2andf,g=kρ2|α(k)|fkg¯k.\displaystyle\|f\|^{2}=\sum_{k\in\mathbb{N}}\rho^{2|\alpha(k)|}|f_{k}|^{2}\quad\mbox{and}\quad\left\langle f,g\right\rangle=\sum_{k\in\mathbb{N}}\rho^{2|\alpha(k)|}f_{k}\,\bar{g}_{k}.

By using the change of variables ϕ(z)=z=z/ρ\displaystyle\phi(z)=z^{\prime}=z/\rho on 𝔻n(ρ)\displaystyle\mathbb{D}^{n}(\rho) , the map ff=fϕ\displaystyle f\mapsto f^{\prime}=f\circ\phi defines an isometry between the two Hardy spaces 2(𝔻n(ρ))\displaystyle\mathbb{H}^{2}(\mathbb{D}^{n}(\rho)) and 2(𝔻n)\displaystyle\mathbb{H}^{2}(\mathbb{D}^{n}) where f2(𝔻n)2=k|fk|2\displaystyle\|f^{\prime}\|^{2}_{\mathbb{H}^{2}(\mathbb{D}^{n})}=\sum_{k\in\mathbb{N}}|f_{k}|^{2}. For more details on the Hardy space, we refer the reader to [9, 10, 11].

2.2 Koopman operator on 2(𝔻n(ρ))\displaystyle\mathbb{H}^{2}(\mathbb{D}^{n}(\rho))

The Koopman operator is defined here as the composition operator on 2(𝔻n(ρ))\displaystyle\mathbb{H}^{2}(\mathbb{D}^{n}(\rho)) with symbol φt\displaystyle\varphi^{t} (see e.g. [4, 5, 12]).

Definition 1 (Koopman semigroup [6]).

The semigroup of Koopman operators (in short, Koopman semigroup) on 2(𝔻n(ρ))\displaystyle\mathbb{H}^{2}(\mathbb{D}^{n}(\rho)) is the family of linear operators (Ut)t0\displaystyle\left(U^{t}\right)_{t\geq 0} defined by

Ut:2(𝔻n(ρ))2(𝔻n(ρ)),Utf=fφt.\displaystyle U^{t}:\mathbb{H}^{2}(\mathbb{D}^{n}(\rho))\rightarrow\mathbb{H}^{2}(\mathbb{D}^{n}(\rho)),\quad U^{t}f=f\circ\varphi^{t}.

Under a contraction assumption on the flow φt\displaystyle\varphi^{t}, one can prove the boundedness and the strong continuity of the Koopman semigroup. In this work, we focus on the evolution of the evaluation functionals kz\displaystyle k_{z} of the Hardy space (see [14] for the technical details), so that the above properties are not required.

Definition 2 (Koopman generator [6], chapter 7).

The Koopman generator associated with the vector field (1) is the linear operator

LF:𝒟(LF)2(𝔻n(ρ))2(𝔻n(ρ)),LFf:=FfL_{F}:\mathcal{D}(L_{F})\subset\mathbb{H}^{2}(\mathbb{D}^{n}(\rho))\rightarrow\mathbb{H}^{2}(\mathbb{D}^{n}(\rho)),\quad L_{F}f:=F\cdot\nabla f

with the domain

𝒟(LF)={f2(𝔻n(ρ)):Ff2(𝔻n(ρ))}.\displaystyle\mathcal{D}(L_{F})=\left\{f\in\mathbb{H}^{2}(\mathbb{D}^{n}(\rho)):F\cdot\nabla f\in\mathbb{H}^{2}(\mathbb{D}^{n}(\rho))\right\}.

Moreover, the expression of the Koopman generator in the basis of monomials can be obtained from the Taylor expansion

Fl(z)=|α|1al,αzα=k=1al,kzα(k)F_{l}(z)=\sum_{|\alpha|\geq 1}a_{l,\alpha}\,z^{\alpha}=\sum_{k=1}^{\infty}a_{l,k}\,z^{\alpha(k)} (2)

of the vector field (with a slight abuse of notation, we will use two different conventions for the subscripts of the Taylor coefficients, i.e. al,k=al,α(k)\displaystyle a_{l,k}=a_{l,\alpha(k)}). It is shown in [14] that

LFek,ej={l=1nαl(k)al,(α(j)α(k))lif |α(j)||α(k)|0if |α(j)|<|α(k)|.\left\langle L_{F}e_{k},e_{j}\right\rangle=\begin{cases}\sum_{l=1}^{n}\alpha_{l}(k)\,a_{l,(\alpha(j)-\alpha(k))_{l}}&\textrm{if }|\alpha(j)|\geq|\alpha(k)|\\ 0&\textrm{if }|\alpha(j)|<|\alpha(k)|.\end{cases} (3)

with

(α(j)α(k))l=(α1(j)α1(k),,αl(j)αl(k)+1,,αn(j)αn(k)).(\alpha(j)-\alpha(k))_{l}=(\alpha_{1}(j)-\alpha_{1}(k),\cdots,\alpha_{l}(j)-\alpha_{l}(k)+1,\cdots,\alpha_{n}(j)-\alpha_{n}(k)).

In particular, for monomials ek\displaystyle e_{k} and ej\displaystyle e_{j} of same total degree |α(j)|=|α(k)|\displaystyle|\alpha(j)|=|\alpha(k)|, we have

LFek,ej={l=1nαl(j)al,α(l)if j=kαl(k)al,α(r)if α(j)=(α1(k),,αl(k)1,,αr(k)+1,,αn(k)),0otherwise.\left\langle L_{F}e_{k},e_{j}\right\rangle=\begin{cases}\sum_{l=1}^{n}\,\alpha_{l}(j)\,a_{l,\alpha(l)}&\textrm{if }j=k\\ \alpha_{l}(k)\,a_{l,\alpha(r)}&\textrm{if }\alpha(j)=(\alpha_{1}(k),\cdots,\alpha_{l}(k)-1,\cdots,\\ &\qquad\qquad\qquad\qquad\alpha_{r}(k)+1,\cdots,\alpha_{n}(k)),\\ 0&\textrm{otherwise}.\end{cases} (4)

2.3 Stability result

We now present an intermediate result that we will use to prove our main stability results. It is adapted from [14], where a switched system was considered instead of (1).

Lemma 1.

Consider the nonlinear system (1) satisfying Assumptions 1 and 2 on the unit polydic. Moreover, assume that the Jacobian matrix JF(0)\displaystyle JF(0) is diagonal and there exists ρ]0,1]\displaystyle\rho\in]0,1] such that 𝔻n(ρ)\displaystyle\mathbb{D}^{n}\left(\rho\right) is forward invariant with respect to the flow. Let (bjk)j1,k1\displaystyle\left(b_{jk}\right)_{j\geq 1,k\geq 1} be a double sequence of positive real numbers such that bjkbkj>0\displaystyle b_{jk}b_{kj}>0 if LFek,ej0\displaystyle\langle L_{F}e_{k},e_{j}\rangle\neq 0 and such that k=1bjk1\displaystyle\sum_{k=1}^{\infty}b_{jk}\leq 1, and define the double sequence (Qjk)j2,1kj1\displaystyle\left(Q_{jk}\right)_{j\geq 2,1\leq k\leq j-1} with

Qjk=|LFek,ej|24|(LFej,ej)||(LFek,ek)|bjkbkjQ_{jk}=\dfrac{\left|\left\langle L_{F}e_{k},e_{j}\right\rangle\right|^{2}}{4\left|\Re\left(\left\langle L_{F}e_{j},e_{j}\right\rangle\right)\right|\left|\Re\left(\left\langle L_{F}e_{k},e_{k}\right\rangle\right)\right|b_{jk}b_{kj}} (5)

if LFek,ej0\displaystyle\left\langle L_{F}e_{k},e_{j}\right\rangle\neq 0 and Qjk=0\displaystyle Q_{jk}=0 otherwise. If the series

k=1+|α(k)|ϵkρ2|α(k)|\sum_{k=1}^{+\infty}|\alpha(k)|\,\epsilon_{k}\,\rho^{2|\alpha(k)|} (6)

is convergent with

ϵj>maxk=1,,j1ϵkQjk,\epsilon_{j}>\max_{\begin{subarray}{c}k=1,\dots,j-1\end{subarray}}\epsilon_{k}\,Q_{jk}, (7)

then the system (1) is GAS on 𝔻n(ρ)\displaystyle\mathbb{D}^{n}(\rho). Moreover the series

V(z)=k=1ϵk|zα(k)|2\displaystyle V(z)=\sum_{k=1}^{\infty}\epsilon_{k}\left|z^{\alpha(k)}\right|^{2}

is a Lyapunov function on 𝔻n(ρ)\displaystyle\mathbb{D}^{n}(\rho), i.e. F(z)V(z)<0\displaystyle F(z)\cdot\nabla V(z)<0 for all z𝔻n(ρ){0}\displaystyle z\in\mathbb{D}^{n}(\rho)\setminus\{0\}.

The proof follows on similar lines as in [14].

Remark 1.

The assumption that the Jacobian matrix JF(0)\displaystyle JF(0) is diagonal can be extended to a diagonalizability condition of JF(0)\displaystyle JF(0). Indeed, if there exits P\displaystyle P such that JF^(0)=P1JF(0)P\displaystyle J\widehat{F}(0)=P^{-1}JF(0)P is diagonal, a change of variables z^=P1z\displaystyle\widehat{z}=P^{-1}z in 𝔻n(ρ)\displaystyle\mathbb{D}^{n}(\rho) can be chosen so that the dynamics z^˙=F^(z^)=P1F(Pz^)\displaystyle\dot{\widehat{z}}=\widehat{F}(\widehat{z})=P^{-1}F(P\widehat{z}) in the new variables has a diagonal Jacobian matrix and is defined on an invariant set that is contained in 𝔻n(ρ)\displaystyle\mathbb{D}^{n}(\rho) (see the example in Section 4.1). Therefore, from this point on, we will assume without loss of generality that the Jacobian matrix JF(0)\displaystyle JF(0) is diagonal. Moreover, most of our results could be extended to upper triangular Jacobian matrices, a property which is always satisfied in n×n\displaystyle\mathbb{C}^{n\times n} up to a linear change of coordinates (Schur’s theorem). See [14] for this general case.

3 Global stability criteria

We are now in a position to present our main results. We will consider separately the case of polynomial vector fields and analytic vector fields.

3.1 Stability criterion for polynomial vector fields

Let us consider a dynamical system with a polynomial vector field

z˙l=Fl(z)=k=1ral,kzα(k),l=1,,n.\dot{z}_{l}=F_{l}(z)=\sum_{k=1}^{r}a_{l,k}\,z^{\alpha(k)},\quad l=1,\dots,n. (8)

We first define the following quantities associated with the polynomial vector field.

  • Let d\displaystyle d be the maximal degree of the polynomials Fl\displaystyle F_{l}, i.e.

    d=maxk{|α(k)|:al,k0 for some l}=|α(r)|d=\max_{k\in\mathbb{N}}\left\{|\alpha(k)|:a_{l,k}\neq 0\textrm{ for some }l\right\}=|\alpha(r)|
  • Let K\displaystyle K be the number of nonzero terms (without counting the term containing the monomial zl\displaystyle z_{l} in Fl\displaystyle F_{l}), i.e.

    K=l=1n#{kl:al,k0}K=\sum_{l=1}^{n}\#\left\{k\neq l:a_{l,k}\neq 0\right\} (9)

    where #\displaystyle\# is the cardinal of a set.

  • Let S\displaystyle S be the maximal polynomial coefficient over all components of the vector field (again discarding the terms containing the monomial zl\displaystyle z_{l} in Fl\displaystyle F_{l}), i.e.

    S=maxl=1,,nmaxk=1,,rkl|al,k|.S=\max_{l=1,\cdots,n}\max_{\begin{subarray}{c}k=1,\cdots,r\\ k\neq l\end{subarray}}\left|a_{l,k}\right|.
  • Let R\displaystyle R be the minimal real part of the diagonal entries of JF(0)\displaystyle JF(0), i.e.

    R=minl=1,,n|(al,l)|.R=\min_{l=1,\cdots,n}\left|\Re\left(a_{l,l}\right)\right|.

Then we have the following result.

Theorem 1.

Consider a dynamical system with polynomial vector field (8) on the polydisc 𝔻n(μ)\displaystyle\mathbb{D}^{n}(\mu), which satisfies Assumptions 1 and 2 for some μ>0\displaystyle\mu>0 large enough. Moreover, assume that the Jacobian matrix JF(0)\displaystyle JF(0) is diagonal.

Then (8) is GAS on 𝔻n(ρ)\displaystyle\mathbb{D}^{n}(\rho) with

ρ<{RKSif KS/R1RKSd1if KS/R<1\rho<\begin{cases}\dfrac{R}{KS}&\textrm{if }KS/R\geq 1\\ \sqrt[d-1]{\dfrac{R}{KS}}&\textrm{if }KS/R<1\end{cases}

provided that μ>ρ\displaystyle\mu>\rho and 𝔻n(ρ)\displaystyle\mathbb{D}^{n}\left(\rho\right) is forward invariant with respect to the flow.

See Appendix A for the proof.

3.2 Stability criterion for analytic vector fields

In this section, we provide a result for dynamics with analytic vector fields, which we rewrite as

z˙l=Fl(z)=k=1al,kzα(k),l=1,,n,\dot{z}_{l}=F_{l}(z)=\sum_{k=1}^{\infty}a_{l,k}\,z^{\alpha(k)},\quad l=1,\dots,n, (10)

under the assumption that the Jacobian matrix JF(0)\displaystyle JF(0) is diagonal.

We first define the following quantities associated with the Taylor expansion (2) of the vector field.

  • Let Lμ\displaystyle L_{\mu} be the discounted (infinite) sum of Taylor coefficients of the vector field, i.e.

    Lμ=l=1nk=1μ|α(k)||al,k|.L_{\mu}=\sum_{l=1}^{n}\sum_{k=1}^{\infty}\mu^{|\alpha(k)|}\left|a_{l,k}\right|. (11)

    Note that Lμ\displaystyle L_{\mu} might not be a convergent series for all μ\displaystyle\mu, but is always convergent for μ1\displaystyle\mu\leq 1 under Assumption 1.

  • Let R\displaystyle R be the minimal real part of the diagonal entries of JF(0)\displaystyle JF(0), i.e.

    R=minl=1,,n|(al,l)|.R=\min_{l=1,\cdots,n}\left|\Re\left(a_{l,l}\right)\right|.

We have the following result.

Theorem 2.

Consider a dynamical system with analytic vector field (10), which satisfies Assumptions 1 and 2, and defined on the polydisc 𝔻n(μ)\displaystyle\mathbb{D}^{n}(\mu) with μ>0\displaystyle\mu>0 such that Lμ\displaystyle L_{\mu} is convergent. Moreover, assume that the Jacobian matrix JF(0)\displaystyle JF(0) is diagonal.

Then (10) is GAS on 𝔻n(ρ)\displaystyle\mathbb{D}^{n}(\rho) with

ρ<μRLμ,\rho<\frac{\mu R}{L_{\mu}}, (12)

provided that 𝔻n(ρ)\displaystyle\mathbb{D}^{n}\left(\rho\right) is forward invariant with respect to the flow.

See Appendix B for the proof.

Remark 2.

If the Jacobian matrix is not diagonal(izable), the above result can be extended to the case of an upper triangular Jacobian matrix with additional diagonal dominance conditions

|aq,r|2<1D2|(aq,q)||(ar,r)|,1q<rn\left|a_{q,r}\right|^{2}<\frac{1}{D^{2}}\left|\Re(a_{q,q})\right|\left|\Re(a_{r,r})\right|,\quad 1\leq q<r\leq n

and

|aq,r|<1D|(aq,q)|,1q<rn\left|a_{q,r}\right|<\frac{1}{D}\left|\Re(a_{q,q})\right|,\quad 1\leq q<r\leq n

where D\displaystyle D is the number of upper off-diagonal nonzero entries of JF(0)\displaystyle JF(0). See the proof of Corollary 3.9 in [14] for more details.

4 Examples

In this section, we estimate the region of attraction of equilibria by using our stability criteria. We consider examples inspired by [3], where the authors provide some guidelines to construct vector fields that generate holomorphic flows on the bidisc 𝔻2\displaystyle\mathbb{D}^{2}.

4.1 Polynomial vector field

Consider the vector field

F(z1,z2)={a(z11acz2)a(z21acz1+bz12),F(z_{1},z_{2})=\begin{cases}a\left(z_{1}-\frac{1}{ac}z_{2}\right)\\ a\left(z_{2}-\frac{1}{ac}z_{1}+bz_{1}^{2}\right),\end{cases} (13)

where a=1/4\displaystyle a=-1/4, c=8\displaystyle c=8 and b=1/50\displaystyle b=-1/50. The dynamics admit the equilibria (0,0)\displaystyle(0,0) and (75,150)\displaystyle\left(-75,150\right) so that (0,0)\displaystyle(0,0) is the unique equilibrium point on the polydisc 𝔻n(μ)\displaystyle\mathbb{D}^{n}\left(\mu\right) with μ<75\displaystyle\mu<75. The Jacobian matrix JF(0)\displaystyle JF(0) has negative eigenvalues a1/c=3/8\displaystyle a-1/c=-3/8 and a+1/c=1/8\displaystyle a+1/c=-1/8, and is diagonalizable by the matrix P=(1111)\displaystyle P=\begin{pmatrix}1&-1\\ 1&1\end{pmatrix}. Using the change of coordinates z^=P1z\displaystyle\widehat{z}=P^{-1}z, we have

F^(z^1,z^2)={(a1c)z^1+a2b2(z^122z^1z^2+z^22)(a+1c)z^2+a2b2(z^122z^1z^2+z^22).\widehat{F}(\widehat{z}_{1},\widehat{z}_{2})=\begin{cases}(a-\frac{1}{c})\widehat{z}_{1}+\frac{a^{2}b}{2}\left(\widehat{z}_{1}^{2}-2\widehat{z}_{1}\widehat{z}_{2}+\widehat{z}_{2}^{2}\right)\\ (a+\frac{1}{c})\widehat{z}_{2}+\frac{a^{2}b}{2}\left(\widehat{z}_{1}^{2}-2\widehat{z}_{1}\widehat{z}_{2}+\widehat{z}_{2}^{2}\right).\end{cases} (14)

The dynamics in the new variables is forward invariant in the polydisc 𝔻n(ρ^)\displaystyle\mathbb{D}^{n}\left(\widehat{\rho}\right), if we assume that ρ^=ρ]1,μ[\displaystyle\widehat{\rho}=\rho\in]1,\mu[ since

  • |z^1|=ρ(z^¯1F^1(z^))=3ρ2/8ρ2(z^1)/1600+ρ2(z^2)/800(z^¯1z^22)/1600<0\displaystyle|\widehat{z}_{1}|=\rho\Rightarrow\Re\left(\bar{\widehat{z}}_{1}\widehat{F}_{1}(\widehat{z})\right)=-3\rho^{2}/8-\rho^{2}\Re\left(\widehat{z}_{1}\right)/1600+\rho^{2}\Re\left(\widehat{z}_{2}\right)/800-\Re\left(\bar{\widehat{z}}_{1}\widehat{z}_{2}^{2}\right)/1600<0 as ρ<75\displaystyle\rho<75 and

  • |z^2|=ρ(z^¯2F^2(z^))=ρ2/8ρ2(z^2)/1600+ρ2(z^1)/800(z^¯2z^12)/1600<0\displaystyle|\widehat{z}_{2}|=\rho\Rightarrow\Re\left(\bar{\widehat{z}}_{2}\widehat{F}_{2}(\widehat{z})\right)=-\rho^{2}/8-\rho^{2}\Re\left(\widehat{z}_{2}\right)/1600+\rho^{2}\Re\left(\widehat{z}_{1}\right)/800-\Re\left(\bar{\widehat{z}}_{2}\widehat{z}_{1}^{2}\right)/1600<0 as ρ<75\displaystyle\rho<75.

For the vector field F^\displaystyle\widehat{F}, we compute d^=2\displaystyle\widehat{d}=2, K^=6\displaystyle\widehat{K}=6, S^=a2|b|=1/800\displaystyle\widehat{S}=a^{2}|b|=1/800 and R^=|a+1/c|=1/8\displaystyle\widehat{R}=|a+1/c|=1/8, so that K^S^/R^=3/50<1.\displaystyle\widehat{K}\widehat{S}/\widehat{R}=3/50<1. Hence, it follows from Theorem 1 that the nonlinear system (14) is GAS on 𝔻2(ρ^)\displaystyle\mathbb{D}^{2}(\widehat{\rho}) with ρ^<50/3\displaystyle\widehat{\rho}<50/3. Finally, this implies that (13) is GAS on P(𝔻2(ρ^))𝔻2(ρ^)=𝔻2(ρ)\displaystyle P(\mathbb{D}^{2}(\widehat{\rho}))\supset\mathbb{D}^{2}(\widehat{\rho})=\mathbb{D}^{2}(\rho) since P=2>1\displaystyle\|P\|_{\infty}=2>1 and with ρ=ρ^<50/3\displaystyle\rho=\widehat{\rho}<50/3.

4.2 Analytic vector field

Consider the vector field

F(z1,z2)={a(z12z22cz2)a(z2bz12(dz1)2),F(z_{1},z_{2})=\begin{cases}a\left(z_{1}-\dfrac{2z_{2}^{2}}{c-z_{2}}\right)\\ a\left(z_{2}-\dfrac{bz_{1}^{2}}{(d-z_{1})^{2}}\right),\end{cases} (15)

where a=1\displaystyle a=-1, b=4\displaystyle b=4, c=30\displaystyle c=30 and d=20\displaystyle d=20. The origin (0,0)\displaystyle(0,0) is the unique equilibrium point on the polydisc 𝔻n(μ)\displaystyle\mathbb{D}^{n}\left(\mu\right) with μ=10\displaystyle\mu=10. If we assume that ρ]1,μ[\displaystyle\rho\in]1,\mu[, 𝔻n(ρ)\displaystyle\mathbb{D}^{n}\left(\rho\right) is invariant with respect to the flow since

  • |z1|=ρ(z¯1F1(z))=ρ2+2(z¯1z2230z2)<0\displaystyle|z_{1}|=\rho\Rightarrow\Re\left(\bar{z}_{1}F_{1}(z)\right)=-\rho^{2}+2\Re\left(\dfrac{\bar{z}_{1}z_{2}^{2}}{30-z_{2}}\right)<0 since 1>2ρ30ρ\displaystyle 1>\dfrac{2\rho}{30-\rho} and it follows that

    ρ2>2ρ330ρ>2ρ3|30|z2||>2|z¯1z2230z2|2|(z¯1z2230z2)|\displaystyle\rho^{2}>\dfrac{2\rho^{3}}{30-\rho}>\dfrac{2\rho^{3}}{\left|30-|z_{2}|\right|}>2\left|\dfrac{\bar{z}_{1}z_{2}^{2}}{30-z_{2}}\right|\geq 2\left|\Re\left(\dfrac{\bar{z}_{1}z_{2}^{2}}{30-z_{2}}\right)\right|
  • |z2|=ρ(z¯2F2(z))=ρ2+4(z¯2z12(20z1)2)<0\displaystyle|z_{2}|=\rho\Rightarrow\Re\left(\bar{z}_{2}F_{2}(z)\right)=-\rho^{2}+4\Re\left(\dfrac{\bar{z}_{2}z_{1}^{2}}{(20-z_{1})^{2}}\right)<0 since 1>4(20ρ)2\displaystyle 1>\dfrac{4}{(20-\rho)^{2}} and it follows that

    ρ2>4ρ2|20ρ|2>4ρ2|20|z1||2>|4z¯2z1(20z1)2||(4z¯2z1(20z1)2)|.\rho^{2}>\dfrac{4\rho^{2}}{|20-\rho|^{2}}>\dfrac{4\rho^{2}}{\left|20-|z_{1}|\right|^{2}}>\left|\dfrac{4\bar{z}_{2}z_{1}}{(20-z_{1})^{2}}\right|\geq\left|\Re\left(\dfrac{4\bar{z}_{2}z_{1}}{(20-z_{1})^{2}}\right)\right|.

As

F1(z)=z1+2k=0z2k+230k+1 and F2(z)=z2+4k=0(k+1)z1k+220k+2,\displaystyle F_{1}(z)=-z_{1}+2\sum_{k=0}^{\infty}\dfrac{z_{2}^{k+2}}{30^{k+1}}\text{ and }F_{2}(z)=-z_{2}+4\sum_{k=0}^{\infty}\dfrac{(k+1)z_{1}^{k+2}}{20^{k+2}},

we obtain

Lμ=(10+2k=010k+230k+1)+(10+4k=0(k+1)10k+220k+2)=73/3,\displaystyle L_{\mu}=\left(10+2\sum_{k=0}^{\infty}\dfrac{10^{k+2}}{30^{k+1}}\right)+\left(10+4\sum_{k=0}^{\infty}\dfrac{(k+1)10^{k+2}}{20^{k+2}}\right)=73/3,

and R=1\displaystyle R=1. Hence, it follows from Theorem 2 that the nonlinear system (15) is GAS on 𝔻2(ρ)\displaystyle\mathbb{D}^{2}(\rho) with ρ<30/73\displaystyle\rho<30/73.

5 Conclusions and future work

We have obtained new sufficient conditions for global stability of nonlinear equilibria by leveraging the Koopman operator framework in the Hardy space of the polydisc. In particular, stability criteria were proposed, which provide an approximation of the region of attraction in the case of polynomial vector fields and more general analytic vector fields. These criteria are systematic in that they can be directly verified with the Taylor expansion coefficients of the vector field, so that they could be easily implemented in a toolbox.

We envision several perspectives for future work. Our Koopman operator based techniques could be applied to other types of dynamical systems (e.g. limit cycles dynamics, general attractors). Moreover, our criteria seem to be conservative in some cases, so that they could be adapted to yield stability results in larger polydiscs. More importantly, the relevance and possible extension of our stability results to n\displaystyle\mathbb{C}^{n} could be investigated.

Appendix A Proof of Theorem 1

The following proof is inspired by the proof of Corollary 3.8 in [14].

Let us consider the change of variable z=z/μ\displaystyle z^{\prime}=z/\mu which yields a rescaled dynamics on the unit polydisc 𝔻n\displaystyle\mathbb{D}^{n} with the vector field

Fl(z)=k=1rμ|α(k)|1al,kzα(k).F^{\prime}_{l}(z^{\prime})=\sum_{k=1}^{r}\mu^{|\alpha(k)|-1}a_{l,k}z^{\prime\alpha(k)}. (16)

The Jacobian JF(0)\displaystyle JF^{\prime}(0) is also diagonal and K=K\displaystyle K^{\prime}=K (see (9)). In the new coordinates, the inner products (3) and (4) are given by

LFek,ej={μ|α(j)||α(k)|l=1nαl(k)al,(α(j)α(k))lif |α(j)|>|α(k)|l=1nαl(k)al,lif j=k0otherwise.\left\langle L_{F^{\prime}}e_{k}^{\prime},e_{j}^{\prime}\right\rangle=\begin{cases}\mu^{|\alpha(j)|-|\alpha(k)|}\sum_{l=1}^{n}\alpha_{l}(k)\,a_{l,(\alpha(j)-\alpha(k))_{l}}&\text{if }|\alpha(j)|>|\alpha(k)|\\ \sum_{l=1}^{n}\alpha_{l}(k)\,a_{l,l}&\text{if }j=k\\ 0&\text{otherwise}.\end{cases} (17)

Our result is proved through Lemma 1 with the sequence

{bjj=(1ξ)bjk=ξ2Kif jk with LFek,ej0 or LFej,ek0bjk=0,if jk with LFek,ej=0 or LFej,ek=0,\begin{cases}b_{jj}=(1-\xi)\\ b_{jk}=\dfrac{\xi}{2K}&\textrm{if }j\neq k\textrm{ with }\left\langle L_{F^{\prime}}e_{k}^{\prime},e_{j}^{\prime}\right\rangle\neq 0\,\textrm{ or }\left\langle L_{F^{\prime}}e_{j}^{\prime},e_{k}^{\prime}\right\rangle\neq 0\\ b_{jk}=0,&\textrm{if }j\neq k\textrm{ with }\left\langle L_{F^{\prime}}e_{k}^{\prime},e_{j}^{\prime}\right\rangle=0\,\textrm{ or }\left\langle L_{F^{\prime}}e_{j}^{\prime},e_{k}^{\prime}\right\rangle=0,\end{cases} (18)

with ξ]0,1[\displaystyle\xi\in]0,1[. It is clear from (3) that, for a fixed j\displaystyle j and for all k{j}\displaystyle k\in\mathbb{N}\setminus\{j\}, there are at most K\displaystyle K nonzero values LFek,ej\displaystyle\langle L_{F^{\prime}}e_{k}^{\prime},e_{j}^{\prime}\rangle and at most K\displaystyle K nonzero values LFej,ek\displaystyle\langle L_{F^{\prime}}e_{j}^{\prime},e_{k}^{\prime}\rangle, so that the sequence (18) satisfies k=1bjk1\displaystyle\sum_{k=1}^{\infty}b_{jk}\leq 1. The elements Qjk\displaystyle Q_{jk} of the double sequence (5) are given by

Qjk=K2|LFek,ej|2ξ2|(LFej,ej)||(LFek,ek)|j<k.Q_{jk}=\dfrac{K^{2}\left|\left\langle L_{F^{\prime}}e_{k}^{\prime},e_{j}^{\prime}\right\rangle\right|^{2}}{\xi^{2}\,\left|\Re\left(\left\langle L_{F^{\prime}}e_{j}^{\prime},e_{j}^{\prime}\right\rangle\right)\right|\left|\Re\left(\left\langle L_{F^{\prime}}e_{k}^{\prime},e_{k}^{\prime}\right\rangle\right)\right|}\quad j<k. (19)

Moreover, using (17), we obtain the inequalities

|LFek,ej|\displaystyle\displaystyle\left|\left\langle L_{F^{\prime}}e_{k}^{\prime},e_{j}^{\prime}\right\rangle\right| \displaystyle\displaystyle\leq μ|α(j)||α(k)|l=1nαl(k)|al,(α(j)α(k))l|\displaystyle\displaystyle\mu^{|\alpha(j)|-|\alpha(k)|}\sum_{l=1}^{n}\alpha_{l}(k)\left|a_{l,(\alpha(j)-\alpha(k))_{l}}\right|
\displaystyle\displaystyle\leq Sμ|α(j)||α(k)||α(k)|\displaystyle\displaystyle S\mu^{|\alpha(j)|-|\alpha(k)|}\left|\alpha(k)\right|

and

|(LFej,ej)|=l=1nαl(j)|(al,α(l))|R|α(j)|.\left|\Re\left(\left\langle L_{F^{\prime}}e_{j}^{\prime},e_{j}^{\prime}\right\rangle\right)\right|=\sum_{l=1}^{n}\,\alpha_{l}(j)\left|\Re\left(a_{l,\alpha(l)}\right)\right|\\ \geq R\left|\alpha(j)\right|.

It follows from the above inequalities and from (19) that

QjkK2S2μ2(|α(j)||α(k)|)|α(k)|2ξ2R2|α(j)||α(k)|K2S2ξ2R2μ2(|α(j)||α(k)|)Q_{jk}\leq\dfrac{K^{2}S^{2}\mu^{2(|\alpha(j)|-|\alpha(k)|)}\left|\alpha(k)\right|^{2}}{\xi^{2}R^{2}\left|\alpha(j)\right|\left|\alpha(k)\right|}\leq\dfrac{K^{2}S^{2}}{\xi^{2}R^{2}}\mu^{2\left(|\alpha(j)|-|\alpha(k)|\right)}

where we used |α(j)||α(k)|\displaystyle\left|\alpha(j)\right|\geq\left|\alpha(k)\right|.

If KS/R1\displaystyle KS/R\geq 1, we set μ=1\displaystyle\mu=1. In this case, we have

QjkK2S2ξ2R2=defQ\displaystyle Q_{jk}\leq\dfrac{K^{2}S^{2}}{\xi^{2}R^{2}}\stackrel{{\scriptstyle\text{def}}}{{=}}Q

for some ξ]0,1[\displaystyle\xi\in]0,1[. It follows that (7) is satisfied with

ϵjmaxk𝒦j{ϵkQ}\epsilon_{j}\sim\max_{k\in\mathcal{K}_{j}}\left\{\epsilon_{k}\,Q\right\} (20)

with 𝒦j={k{1,,j1}:LFek,ej0}\displaystyle\mathcal{K}_{j}=\{k\in\{1,\dots,j-1\}:\left\langle L_{F^{\prime}}e_{k}^{\prime},e_{j}^{\prime}\right\rangle\neq 0\}. Hence, the sequence (20) yields ϵj=𝒪(Q|α(j)|)\displaystyle\epsilon_{j}=\mathcal{O}(Q^{|\alpha(j)|}) for j>1\displaystyle j>1. It follows that (6) is convergent with a radius ρ<1/Q\displaystyle\rho<1/\sqrt{Q}, or equivalently ρ<R/(KS)\displaystyle\rho<R/(KS) for some ξ]0,1[\displaystyle\xi\in]0,1[ large enough. Finally Lemma 1 implies that the dynamics (8) is GAS on 𝔻n(ρ)\displaystyle\mathbb{D}^{n}(\rho).

If KS/R<1\displaystyle KS/R<1, we can choose μ>1\displaystyle\mu>1. In this case, we have

μ2(|α(j)||α(k)|)μ2(d|α(1)|)=μ2(d1)\displaystyle\mu^{2\left(|\alpha(j)|-|\alpha(k)|\right)}\leq\mu^{2\left(d-|\alpha(1)|\right)}=\mu^{2\left(d-1\right)}

and therefore

QjkK2S2μ2(d1)ξ2R2=defQ<1\displaystyle Q_{jk}\leq\dfrac{K^{2}S^{2}\mu^{2\left(d-1\right)}}{\xi^{2}R^{2}}\stackrel{{\scriptstyle\text{def}}}{{=}}Q<1

for some ξ]0,1[\displaystyle\xi\in]0,1[ and with 1<μ<R/(KS)d1\displaystyle 1<\mu<\sqrt[d-1]{R/(KS)}. It follows that (7) is satisfied with

ϵjmaxk𝒦j{ϵkQ}=1\epsilon_{j}\sim\max_{k\in\mathcal{K}_{j}}\left\{\epsilon_{k}\,Q\right\}=1

for j1\displaystyle j\geq 1. Then, (6) is convergent with a radius ρ<1\displaystyle\rho^{\prime}<1 and Lemma 1 implies that the new dynamics z˙=F(z)\displaystyle\dot{z}^{\prime}=F^{\prime}(z) is GAS on 𝔻n(ρ)\displaystyle\mathbb{D}^{n}(\rho^{\prime}) (note that the invariance of the new dynamics on 𝔻n(ρ)\displaystyle\mathbb{D}^{n}(\rho^{\prime}) directly follows from the invariance of the original dynamics on 𝔻n(ρ)\displaystyle\mathbb{D}^{n}(\rho)). Hence, the orifinal dynamics (8) is GAS on 𝔻n(ρ)\displaystyle\mathbb{D}^{n}(\rho), with ρ=μρ<R/(KS)d1\displaystyle\rho=\mu\rho^{\prime}<\sqrt[d-1]{R/(KS)}.

Appendix B Proof of Theorem 2

The following proof is inspired by the proof of Corollary 3.9 in [14].

Let us consider the change of variable z=z/μ\displaystyle z^{\prime}=z/\mu which yields a rescaled dynamics on the unit polydisc 𝔻n\displaystyle\mathbb{D}^{n} with the vector field F(z)\displaystyle F^{\prime}(z^{\prime}) (see (16) in the previous proof). In this case, the Jacobian matrix JF(0)\displaystyle JF^{\prime}(0) is also diagonal.

Our result is proved through Lemma 1 with the sequence

{bjj=(1κ)bjk=0if jk with |α(j)|=|α(k)| and LFek,ej0 or ifLFej,ek=0bjk=κ2|LFek,ej|l=1|LFel,ej|if|α(k)|<|α(j)|bjk=κ2|LFej,ek|l=1|LFej,el|if|α(k)|>|α(j)|\begin{cases}b_{jj}=(1-\kappa)\\ b_{jk}=0&\textrm{if }j\neq k\textrm{ with }|\alpha(j)|=|\alpha(k)|\textrm{ and }\left\langle L_{F^{\prime}}e_{k}^{\prime},e_{j}^{\prime}\right\rangle\neq 0\\ &\qquad\qquad\qquad\qquad\qquad\qquad\,\,\,\textrm{ or if}\left\langle L_{F^{\prime}}e_{j}^{\prime},e_{k}^{\prime}\right\rangle=0\\ b_{jk}=\dfrac{\kappa}{2}\dfrac{\left|\left\langle L_{F^{\prime}}e_{k}^{\prime},e_{j}^{\prime}\right\rangle\right|}{\sum_{l=1}^{\infty}\left|\left\langle L_{F^{\prime}}e_{l}^{\prime},e_{j}^{\prime}\right\rangle\right|}&\mbox{if}\,|\alpha(k)|<|\alpha(j)|\\ b_{jk}=\dfrac{\kappa}{2}\dfrac{\left|\left\langle L_{F^{\prime}}e_{j}^{\prime},e_{k}^{\prime}\right\rangle\right|}{\sum_{l=1}^{\infty}\left|\left\langle L_{F^{\prime}}e_{j}^{\prime},e_{l}^{\prime}\right\rangle\right|}&\mbox{if}\,|\alpha(k)|>|\alpha(j)|\end{cases}

with κ]0,1[\displaystyle\kappa\in]0,1[. The sequence bjk\displaystyle b_{jk} satisfies

k=1bjk<(1κ)+κ2k=1j|LFek,ej|l=1|LFel,ej|+κ2k=j+1|LFej,ek|l=1|LFej,el|<1.\sum_{k=1}^{\infty}b_{jk}<(1-\kappa)+\dfrac{\kappa}{2}\dfrac{\sum_{k=1}^{j}\left|\left\langle L_{F^{\prime}}e_{k}^{\prime},e_{j}^{\prime}\right\rangle\right|}{\sum_{l=1}^{\infty}\left|\left\langle L_{F^{\prime}}e_{l}^{\prime},e_{j}^{\prime}\right\rangle\right|}+\dfrac{\kappa}{2}\dfrac{\sum_{k=j+1}^{\infty}\left|\left\langle L_{F^{\prime}}e_{j}^{\prime},e_{k}^{\prime}\right\rangle\right|}{\sum_{l=1}^{\infty}\left|\left\langle L_{F^{\prime}}e_{j}^{\prime},e_{l}^{\prime}\right\rangle\right|}<1.

The elements Qjk\displaystyle Q_{jk} of the double sequence (5) are given by

Qjk={l=1|LFel,ej|l=1|LFek,el|κ2|(LFej,ej)||(LFek,ek)|if |α(k)||α(j)| and LFek,ej00otherwise.Q_{jk}=\begin{cases}\dfrac{\sum_{l=1}^{\infty}\left|\left\langle L_{F^{\prime}}e_{l}^{\prime},e_{j}^{\prime}\right\rangle\right|\sum_{l=1}^{\infty}\left|\left\langle L_{F^{\prime}}e_{k}^{\prime},e_{l}^{\prime}\right\rangle\right|}{\kappa^{2}\left|\Re\left(\left\langle L_{F^{\prime}}e_{j}^{\prime},e_{j}^{\prime}\right\rangle\right)\right|\left|\Re\left(\left\langle L_{F^{\prime}}e_{k}^{\prime},e_{k}^{\prime}\right\rangle\right)\right|}&\textrm{if }|\alpha(k)|\neq|\alpha(j)|\\ &\textrm{ and }\left\langle L_{F^{\prime}}e_{k}^{\prime},e_{j}^{\prime}\right\rangle\neq 0\\ 0&\textrm{otherwise.}\end{cases} (21)

We note that l=1|LFel,ej|\displaystyle\sum_{l=1}^{\infty}\left|\left\langle L_{F^{\prime}}e_{l}^{\prime},e_{j}^{\prime}\right\rangle\right| and l=1|LFek,el|\displaystyle\sum_{l=1}^{\infty}\left|\left\langle L_{F^{\prime}}e_{k}^{\prime},e_{l}^{\prime}\right\rangle\right| are finite according to the assumptions. It is easy to see that Qjk>1\displaystyle Q_{jk}>1 for |α(j)|>|α(k)|\displaystyle|\alpha(j)|>|\alpha(k)|.

Moreover, with (3), (4) and (11), we obtain

l=1|LFel,ej|\displaystyle\displaystyle\sum_{l=1}^{\infty}\left|\left\langle L_{F^{\prime}}e_{l}^{\prime},e_{j}^{\prime}\right\rangle\right| \displaystyle\displaystyle\leq l=1p=1nαp(l)|ap,(α(j)α(l))p|\displaystyle\displaystyle\sum_{l=1}^{\infty}\sum_{p=1}^{n}\alpha_{p}(l)\left|a_{p,(\alpha(j)-\alpha(l))_{p}}^{\prime}\right|
\displaystyle\displaystyle\leq l=1|α(l)|p=1n|ap,(α(j)α(l))p|\displaystyle\displaystyle\sum_{l=1}^{\infty}\left|\alpha(l)\right|\sum_{p=1}^{n}\left|a_{p,(\alpha(j)-\alpha(l))_{p}}^{\prime}\right|
\displaystyle\displaystyle\leq |α(j)|l=1p=1n|ap,(α(j)α(l))p|\displaystyle\displaystyle\left|\alpha(j)\right|\sum_{l=1}^{\infty}\sum_{p=1}^{n}\left|a_{p,(\alpha(j)-\alpha(l))_{p}}^{\prime}\right|
=\displaystyle\displaystyle= |α(j)|l=1μ|α(j)||α(l)|p=1n|ap,(α(j)α(l))p|\displaystyle\displaystyle\left|\alpha(j)\right|\sum_{l=1}^{\infty}\mu^{|\alpha(j)|-|\alpha(l)|}\sum_{p=1}^{n}\left|a_{p,(\alpha(j)-\alpha(l))_{p}}\right|
\displaystyle\displaystyle\leq Lμ|α(j)|,\displaystyle\displaystyle L_{\mu}\left|\alpha(j)\right|,

and

l=1|LFek,el|\displaystyle\displaystyle\sum_{l=1}^{\infty}\left|\left\langle L_{F^{\prime}}e_{k}^{\prime},e_{l}^{\prime}\right\rangle\right| \displaystyle\displaystyle\leq l=1p=1nαp(k)|ap,(α(l)α(k))p|\displaystyle\displaystyle\sum_{l=1}^{\infty}\sum_{p=1}^{n}\alpha_{p}(k)\left|a_{p,(\alpha(l)-\alpha(k))_{p}}^{\prime}\right|
\displaystyle\displaystyle\leq |α(k)|l=1p=1n|ap,(α(l)α(k))p|\displaystyle\displaystyle\left|\alpha(k)\right|\sum_{l=1}^{\infty}\sum_{p=1}^{n}\left|a_{p,(\alpha(l)-\alpha(k))_{p}}^{\prime}\right|
=\displaystyle\displaystyle= |α(k)|l=1μ|α(l)||α(k)|p=1n|ap,(α(l)α(k))p|\displaystyle\displaystyle\left|\alpha(k)\right|\sum_{l=1}^{\infty}\mu^{|\alpha(l)|-|\alpha(k)|}\sum_{p=1}^{n}\left|a_{p,(\alpha(l)-\alpha(k))_{p}}\right|
\displaystyle\displaystyle\leq Lμ|α(k)|.\displaystyle\displaystyle L_{\mu}\left|\alpha(k)\right|.

It follows from the above inequalities and from (21) that

QjkLμ2|α(j)||α(k)|κ2R2|α(j)||α(k)|=Lμ2κ2R2=defQ\displaystyle Q_{jk}\leq\dfrac{L_{\mu}^{2}\left|\alpha(j)\right|\left|\alpha(k)\right|}{\kappa^{2}R^{2}\left|\alpha(j)\right|\left|\alpha(k)\right|}=\dfrac{L_{\mu}^{2}}{\kappa^{2}R^{2}}\stackrel{{\scriptstyle\text{def}}}{{=}}Q

so that (7) is satisfied with

ϵjmaxk𝒦j{ϵkQ}\epsilon_{j}\sim\max_{k\in\mathcal{K}_{j}}\left\{\epsilon_{k}\,Q\right\} (22)

with

𝒦j={k1,,j1:LFek,ej0 for |α(k)|<|α(j)|}.\displaystyle\mathcal{K}_{j}=\{k\in{1,\dots,j-1}:\left\langle L_{F^{\prime}}e_{k}^{\prime},e_{j}^{\prime}\right\rangle\neq 0\textrm{ for }|\alpha(k)|<|\alpha(j)|\}.

Hence, the sequence (22) yields ϵj=𝒪(Q|α(j)|)\displaystyle\epsilon_{j}=\mathcal{O}(Q^{|\alpha(j)|}). It follows that (6) is convergent with a radius ρ<1/Q\displaystyle\rho^{\prime}<1/\sqrt{Q} or equivalently ρ<R/Lμ\displaystyle\rho^{\prime}<R/L_{\mu} with κ]0,1[\displaystyle\kappa\in]0,1[ large enough. Then Lemma 1 implies that the dynamics z˙=F(z)\displaystyle\dot{z}^{\prime}=F^{\prime}(z) is GAS on 𝔻n(ρ)\displaystyle\mathbb{D}^{n}(\rho^{\prime}) (note that the invariance of the new dynamics on 𝔻n(ρ)\displaystyle\mathbb{D}^{n}(\rho^{\prime}) directly follows from the invariance of the original dynamics on 𝔻n(ρ)\displaystyle\mathbb{D}^{n}(\rho)). Hence, the original dynamics (10) is GAS on 𝔻n(ρ)\displaystyle\mathbb{D}^{n}(\rho), with ρ=μρ<μR/Lμ\displaystyle\rho=\mu\rho^{\prime}<\mu R/L_{\mu}.

References

  • [1] M. Budisic, R. Mohr and I. Mezić, Applied Koopmanism, Chaos: An interdisciplinary Journal of Nonlinear Science, 2012.
  • [2] R.-Y. Chen and Z.-H. Zhou, Parametric representation of infinitesimal generators on the polydisk, Complex Analysis and Operator Theory, 10 (2016), pp. 725-735.
  • [3] M. Contreras, C. De Fabritiis, and S. Díaz-Madrigal, Semigroups of holomorphic functions in the polydisk, Proceedings of the American Mathematical Society, 139 (2011), 707 pp. 1617–1624.
  • [4] B. D. Figura, Composition Operators on Hardy Space in Several Complex Variables, JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 109, 340-354 (1985).
  • [5] F. Jafari, On Bounded and Compact Operators in Polydiscs, Canadian J. Math. Vol. XLLII, No. 5, 1990, pp 869-889.
  • [6] A. Lasota and M. C. Mackey. Chaos, Fractals, and Noise: Stochastic Aspects of Dynamics. Springler-Verlag, 1994.
  • [7] A. Mauroy and I. Mezić, Global stability analysis using the eigenfunctions of the Koopman operator, IEEE Transactions on Automatic Control, vol. 61, pp. 3356-3369, 2016.
  • [8] A. Mauroy, I. Mezić and Y. Susuki, The Koopman Operator in Systems and Control Concepts, Methodologies and Applications, Springer, 2020.
  • [9] W. Rudin, Function Theory in Polydiscs, Benjamin, New York, 1969.
  • [10] W. Rudin, Function Theory in the Unit Ball of n\displaystyle\mathbb{C}^{n}, Springer-Verlag, New York, 1980.
  • [11] J.H Shapiro, Composition Operators and Classical Function Theory., Springer Science+Business Media New York, 1993.
  • [12] A. G. Siskasis, Semigroups of Composition Operators On Spaces of Analytic Functions, a Review1991 Mathematics Subject Classification. Primary 47D03, 47B38; Secondary 47B37, 30C45.
  • [13] A. Mauroy, A. Sootla, and I. Mezić. Koopman Framework for Global Stability Analysis. In A. Mauroy, Y. Susuki, and I. Mezić, editors, Koopman operator in systems and control, pages 35–58. Springer, 2020.
  • [14] C. M. Zagabe and A. Mauroy, Uniform global stability of switched nonlinear systems in the Koopman operator framework, https://doi.org/10.48550/arXiv.2301.05529.