This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

[1]\fnmErdal \surBayram

\equalcont

These authors contributed equally to this work.

\equalcont

These authors contributed equally to this work.

[1]\orgdivTekirdağ Namık Kemal University, \orgnameFaculty of Science and Arts, Department of Mathematics,, \postcode59030, \cityTekirdağ, \countryTurkey

2]\orgdivFırat University, Faculty of Science, Department of Mathematics, Elazığ, Turkey

On Statistical Convergence Of Order α{\alpha} In Partial Metric Spaces

[email protected]    \fnmÇiğdem A. \surBektaş [email protected]    \fnmYavuz \surAltın [email protected] * [
Abstract

The present study introduces the notions of statistical convergence of order α\alpha and strong pp- Cesàro summability of order α\alpha in partial metric spaces. Also, we examine the inclusion relations between these concepts. In addition, we introduce the notion of λ\lambda-statistical convergence of order α\alpha in partial metric spaces while providing relations linked to these sequence spaces.

keywords:
Statistical convergence, Partial metric space, Cesàro summability.

1 Introduction

One of the two notions that constitute the concern of our study is the partial metric space, which is a generalization of the usual metric spaces as introduced by Matthews[13]. The main difference between the partial metric and the standard metric is that the distance of an arbitrary point does not need to be equal to zero. The partial metric in which was first used in computer science to be later applied to many other fields.

The second notion is statistical convergence, which is defined as a generalization of sequential convergence. In the first edition of Zygmund’s monograph, published in Warsaw, the definition of statistical convergence (as almost convergence) was given by Zygmund [19]. Steinhaus [18] and Fast [7] and later Schoenberg [17] introduced the concept of statistical convergence, independently.This subject has been studied by many mathematicians, (for example, see Altın et al. [1] , Bilalov and Nazarova [2], Kayan et al. [10], Küçükaslan et al. [11]). The concept of statistical convergence has been used in many areas of mathematics, such as Number theory, Probabilistic normed spaces, Ergodic theory, Fourier analysis, Measure theory, Trigonometric series, and others. Therefore, it is a very active and intensively studied subject in many contexts.

Before proceeding with results, for the convenience of the reader, let us recall the definitions and terminology that this work involves.

The definition of the partial metric space is as it follows:

Let XX be a non-empty set and ρ:X\rho:X ×X\times X\rightarrow\mathbb{R} be a function such that for all x,y,zX,x,y,z\in X,

i)i) 0ρ(x,x)ρ(x,y),0\leq\rho(x,x)\leq\rho(x,y),

ii)ii) If ρ(x,x)=ρ(x,y)=ρ(y,y)\rho(x,x)=\rho(x,y)=\rho(y,y) then x=y,x=y,

iii)iii) ρ(x,y)=ρ(y,x),\rho(x,y)=\rho(y,x),

iv)iv) ρ(x,z)ρ(x,y)+\rho(x,z)\leq\rho(x,y)+ ρ(y,z)ρ(y,y).\rho(y,z)-\rho(y,y).

Then ρ\rho is called a partial metric and the pair (X,ρ)(X,\rho) is called a partial metric space (see Matthews [13]).

We will now give the concepts of convergence and bounded in the partial metric space.

Let (X,ρ)(X,\rho) be a partial metric space and (xn)(x_{n}) be a sequence in X.X. Then

i)i) (xn)(x_{n}) is bounded if there exists aa real number M>0M>0 such that ρ(xn,xm)M\rho(x_{n},x_{m})\leq M for all n,mn,m\in\mathbb{N},

ii)ii) (xn)\left(x_{n}\right) is called convergent to xx in (X,ρ),(X,\rho), written as limnxn=x,\lim\limits_{n\rightarrow\infty}x_{n}=x, if

limnρ(xn,x)=limnρ(xn,xn)=ρ(x,x),see Nuray [16].\lim\limits_{n\rightarrow\infty}\rho(x_{n},x)=\lim\limits_{n\rightarrow\infty}\rho(x_{n},x_{n})=\rho(x,x),\text{see Nuray \cite[cite]{[\@@bibref{Number}{Nuray2022}{}{}]}.}

The statistical convergence depends on density of subsets of \mathbb{N}. The natural density of KK\subset\mathbb{N} which is the main tool for this convergence is defined by

δ(K)=limn1n|{kn:kK}|,\delta\left(K\right)=\lim_{n\rightarrow\infty}\frac{1}{n}\left|\left\{k\leq n:k\in K\right\}\right|,

where |{kn:kK}|\left|\left\{k\leq n:k\in K\right\}\right| denotes the number of elements of KK in which does not exceed nn (see Fridy [8]). Clearly, any finite subset of \mathbb{N} has zero natural density and δ(Kc)=1δ(K)\delta\left(K^{c}\right)=1-\delta\left(K\right). For a detailed description of the density of subsets of \mathbb{N}, reference can be made to Niven and Zuckerman [15].

A sequence (xk)\left(x_{k}\right) of complex numbers is said to be statistically convergent to a number LL if for every positive number ε,\varepsilon, δ({k: |xkL|ε})\delta\left(\left\{k\in\mathbb{N}\mathbf{:}\text{ }\left|x_{k}-L\right|\geq\varepsilon\right\}\right) has natural density zero. The number LL is called statistical limit of (xk)\left(x_{k}\right) and is written as Slimxk=LS-\lim x_{k}=L or xkL(S)x_{k}\rightarrow L\left(S\right) and the set of all statistically convergent sequences is denoted by S.S.

Leindler [12] introduced (V,λ)(V,\lambda)-summability by the help of sequence λ=(λn)\lambda=\left(\lambda_{n}\right) as in the following: Let λ=(λn)\lambda=\left(\lambda_{n}\right) be a non-decreasing sequence of positive numbers tending to \infty with λn+1λn+\lambda_{n+1}\leq\lambda_{n}+ 11, λ1=1\lambda_{1}=1. The generalized de la Vallee-Poussin mean is defined by

tn(x)=1λnkInxkt_{n}\left(x\right)=\frac{1}{\lambda_{n}}\sum\limits_{k\in I_{n}}x_{k}

where In=[nλn+1,n]I_{n}=[n-\lambda_{n}+1,n]. Accordingly, a sequence (xk)\left(x_{k}\right) of numbers is said to be (V,λ)(V,\lambda)-summable to a number LL if tn(x)Lt_{n}\left(x\right)\rightarrow L as nn\rightarrow\infty.

[C,1]={(xk):L,limn1nk=1n|xkL|=0}[C,1]=\left\{\left(x_{k}\right):\exists L\in\mathbb{R},\lim_{n\rightarrow\infty}\frac{1}{n}\sum\limits_{k=1}^{n}\left|x_{k}-L\right|=0\right\}

and

[V,λ]={(xk):L,limn1λnkIn|xkL|=0}[V,\lambda]=\left\{\left(x_{k}\right):\exists L\in\mathbb{R},\lim_{n\rightarrow\infty}\frac{1}{\lambda_{n}}\sum\limits_{k\in I_{n}}\left|x_{k}-L\right|=0\right\}

denote the sets of sequences (xk)\left(x_{k}\right) which are strongly Cesáro summable and strongly (V,λ)(V,\lambda)-summable to LL. It is noted that for λn=n\lambda_{n}=n, (V,λ)\left(V,\lambda\right)-summability reduces to (C,1)\left(C,1\right)-summability.

Mursaleen [14] introduced the λ\lambda-density of KK\subset\mathbb{N} as defined by

δλ(K)=limn1λn|{nλn+1kn:kK}|\delta_{\lambda}\left(K\right)=\lim_{n\rightarrow\infty}\frac{1}{\lambda_{n}}\left|\left\{n-\lambda_{n}+1\leq k\leq n:k\in K\right\}\right|

and λ\lambda-statistical convergence as it follows:

A sequence (xk)\left(x_{k}\right) of numbers is said to be λ\lambda-statistically convergent to a number LL provided that for every ε>0\varepsilon>0,

limn1λn|{nλn+1kn:|xkL|ε}|=0.\lim_{n\rightarrow\infty}\frac{1}{\lambda_{n}}\left|\left\{n-\lambda_{n}+1\leq k\leq n:\left|x_{k}-L\right|\geq\varepsilon\right\}\right|=0\text{.}

In this case, the number LL is called λ\lambda-statistical limit of the sequence (xk)\left(x_{k}\right).

The statistical convergence with degree 0<β<10<\beta<1 was introduced by Gadjiev and Orhan [9]. The statistical convergence of order α\alpha and strong pp-Cesàro summability of order α\alpha were later studied by Çolak [4]. Also Çolak and Bektaş [6] introduced λ\lambda-statistical convergence of order α\alpha, as in the following:

Let the sequence λ=(λn)\lambda=\left(\lambda_{n}\right) of real numbers be defined as above and 0<α10<\alpha\leq 1. The sequence x=(xk)wx=\left(x_{k}\right)\in w is said to be λ\lambda-statistically convergent of order α\alpha if there is a complex number LL such that

limn1λnα|{kIn:|xkL|ε}|=0,\lim_{n\rightarrow\infty}\frac{1}{\lambda_{n}^{\alpha}}\left|\left\{k\in I_{n}:\left|x_{k}-L\right|\geq\varepsilon\right\}\right|=0\text{,}

where In=[nλn+1,I_{n}=[n-\lambda_{n}+1, n]n] and λnα\lambda_{n}^{\alpha} is the coordinates of α\alpha th power of the sequence λ\lambda, that is, λα=(λnα)=(λ1α,λ2α,,λnα,)\lambda^{\alpha}=\left(\lambda_{n}^{\alpha}\right)=\left(\lambda_{1}^{\alpha},\lambda_{2}^{\alpha},...,\lambda_{n}^{\alpha},...\right).

Some new sequence spaces for λ\lambda and μ\mu different sequences of Λ\Lambda class were later defined by Çolak [5] and some inclusion theorems were examined.

In this study, we denote the class of all decreasing sequence of positive real numbers tending to ,\infty, such that λn+1λn+1\lambda_{n+1}\leq\lambda_{n}+1, λ1=1\lambda_{1}=1 by Λ\Lambda. Also, unless stated otherwise, by "for all nn0n\in\mathbb{N}_{n_{0}}" we mean "for all nn\in\mathbb{N} except finite numbers of positive integers", where n0={n0,n0+1,n0+2,}\mathbb{N}_{n_{0}}=\left\{n_{0},n_{0}+1,n_{0}+2,...\right\} for some n0={1,2,3,}n_{0}\in\mathbb{N}=\{1,2,3,...\}.

The concept of statistical convergence in partial metric spaces was given by Nuray [16] as it follows:

Let (xk)\left(x_{k}\right) be a sequence in partial metric space (X,ρ)(X,\rho). The sequence (xk)\left(x_{k}\right) is said to be ρ\rho- statistically convergent to xx if there exists a point LXL\in X such that

limn1n|{kn:|ρ(xk,x)ρ(x,x)|ε}|=0\underset{n\rightarrow\infty}{\lim}\frac{1}{n}\left|\left\{k\leq n:\left|\rho\left(x_{k},x\right)-\rho\left(x,x\right)\right|\geq\varepsilon\right\}\right|=0

for every ε>0\varepsilon>0. In addition, Nuray [16] also examined the relationship between the concept of statistical convergence in partial metric spaces and strong Cesàro summability.

2 Statistical Convergence of Order α\alpha in Partial Metric Spaces

In this section, we introduce the notions of statistical convergence of order α\alpha and strong pp- Cesàro summability of order α\alpha in partial metric spaces. Also, some relations between statistical convergence of order α\alpha and strongly pp- Cesàro summable sequences of order α\alpha are given.

Definition 2.1.

For given a real α(0,1],\alpha\in\left(0,1\right], the sequence (xk)\left(x_{k}\right) in the partial metric space (X,ρ)(X,\rho) is said to be ρ\rho- statistically convergent of order α\alpha, if there exists a point xXx\in X such that

limn1nα|{kn:|ρ(xk,x)ρ(x,x)|ε}|=0\underset{n\rightarrow\infty}{\lim}\frac{1}{n^{\alpha}}\left|\left\{k\leq n:\left|\rho\left(x_{k},x\right)-\rho\left(x,x\right)\right|\geq\varepsilon\right\}\right|=0

for every ε>0\varepsilon>0. In this case, it is stated that (xk)\left(x_{k}\right) is ρ\rho- statistically convergent of order α\alpha to xx which is denoted by Sραlimxk=xS_{\rho}^{\alpha}-\lim x_{k}=x or xkx(Sρα(X))x_{k}\rightarrow x\left(S_{\rho}^{\alpha}\left(X\right)\right).

Throughout this paper, Sρα(X)S_{\rho}^{\alpha}(X) will denote the class of sequences in partial metric space (X,ρ)(X,\rho) which are ρ\rho- statistically convergent of order α\alpha.

For the sake of simplicity, it will be considered that the sequence (xk)\left(x_{k}\right) and the element xx we use in the proofs are chosen from the partial metric space (X,ρ)(X,\rho), although we do not emphasize it every time.

Theorem 2.2.

For some reals α\alpha and β\beta such that 0<α<β10<\alpha<\beta\leq 1, the inclusion Sρα(X)Sρβ(X)S_{\rho}^{\alpha}(X)\subseteq S_{\rho}^{\beta}(X) holds.

Proof.

Suppose that 0<α<β10<\alpha<\beta\leq 1. Then, the inequality

0limn1nβ|{kn:|ρ(xk,x)ρ(x,x)|ε}|limn1nα|{kn:|ρ(xk,x)ρ(x,x)|ε}|0\leq\underset{n\rightarrow\infty}{\lim}\frac{1}{n^{\beta}}\left|\left\{k\leq n:\left|\rho\left(x_{k},x\right)-\rho\left(x,x\right)\right|\geq\varepsilon\right\}\right|\leq\underset{n\rightarrow\infty}{\lim}\frac{1}{n^{\alpha}}\left|\left\{k\leq n:\left|\rho\left(x_{k},x\right)-\rho\left(x,x\right)\right|\geq\varepsilon\right\}\right|

is provided for (xk)X\left(x_{k}\right)\subset X, xXx\in X and for every ε>0\varepsilon>0 and this clearly gives desired the inclusion Sρα(X)Sρβ(X).S_{\rho}^{\alpha}(X)\subseteq S_{\rho}^{\beta}(X).

That the inclusion may be strict can be seen by the following example.

Example 2.3.

Let us consider the partial metric of real numbers defined ρ:×,ρ(x,y)=max{x,y}\rho:\mathbb{R}\times\mathbb{R}\rightarrow\mathbb{R},\rho\left(x,y\right)=\max\left\{x,y\right\}, and the sequence (xk)\left(x_{k}\right)\subset\mathbb{R} such that

xk={1k is a square0,          otherwise.x_{k}=\left\{\begin{array}[]{c}1\text{, \ \ \ \ }k\text{ is a square}\\ 0\text{, \ \ \ \ \ \ \ \ \ otherwise}\end{array}\right.\text{.}

Clearly, for ε>0,\varepsilon>0, |{kn:|ρ(xk,0)ρ(0,0)|ε}|n\left|\left\{k\leq n:\left|\rho\left(x_{k},0\right)-\rho\left(0,0\right)\right|\geq\varepsilon\right\}\right|\leq\sqrt{n} holds. This means that (xk)\left(x_{k}\right)\in Sρβ(λ,X)S_{\rho}^{\beta}(\lambda,X) for 12<β1\frac{1}{2}<\beta\leq 1 but (xk)\left(x_{k}\right)\notin Sρα(λ,X)S_{\rho}^{\alpha}(\lambda,X) for 0<α120<\alpha\leq\frac{1}{2}, that is Sρα(X)Sρβ(X)S_{\rho}^{\alpha}(X)\subset S_{\rho}^{\beta}(X).

Taking β=1\beta=1, we get the following result from the last inequality above.

Corollary 2.4.

For any 0<α10<\alpha\leq 1, if a sequence is ρ\rho- statistically convergent of order α\alpha to x,x, then it is ρ\rho-statistically convergent to xx, in other words, Sρα(X)Sρ(X)S_{\rho}^{\alpha}(X)\subseteq S_{\rho}(X).

From Theorem 2.2 we have the following results in which the proofs are easy.

Corollary 2.5.

For α,β(0,1]\alpha,\beta\in\left(0,1\right], the following statements hold:

i)i) Sρα(X)=Sρβ(X)S_{\rho}^{\alpha}(X)=S_{\rho}^{\beta}(X) α=β,\Longleftrightarrow\alpha=\beta,

ii)ii) Sρα(X)=Sρ(X)S_{\rho}^{\alpha}(X)=S_{\rho}(X) α=1.\Longleftrightarrow\alpha=1.

Definition 2.6.

Let qq be a positive real number and α(0,1]\alpha\in\left(0,1\right]. Then, in a partial metric space (X,ρ)(X,\rho), we say that the sequence (xk)\left(x_{k}\right) is strongly qq- Cesàro summable of order α\alpha to xXx\in X if

limn1nαk=1n|ρ(xk,x)ρ(x,x)|q=0.\underset{n\rightarrow\infty}{\lim}\frac{1}{n^{\alpha}}\sum\limits_{\begin{subarray}{c}k=1\end{subarray}}^{n}\left|\rho\left(x_{k},x\right)-\rho\left(x,x\right)\right|^{q}=0.

In this case, we write [C,q]limxk=x.\left[C,q\right]-\lim x_{k}=x.

In the following theorem, we examine the relationship between statistical convergence and Cesàro convergence in partial metric spaces.

Theorem 2.7.

Let α\alpha and θ\theta be fixed real numbers such that 0<α<θ10<\alpha<\theta\leq 1 and 0<q<.0<q<\infty. In the partial metric space (X,ρ)(X,\rho), if a sequence is strongly pp- Cesaro summable of order α\alpha to xX,x\in X, then it is statistically convergent of order θ\theta to x.x.

Proof.

For any ε>0,\varepsilon>0, we have

limn1nαk=1n|ρ(xk,x)ρ(x,x)|q\displaystyle\underset{n\rightarrow\infty}{\lim}\frac{1}{n^{\alpha}}\sum\limits_{k=1}^{n}\left|\rho\left(x_{k},x\right)-\rho\left(x,x\right)\right|^{q}
=limn1nα(k=1|ρ(xk,x)ρ(x,x)|εn|ρ(xk,x)ρ(x,x)|q+k=1|ρ(xk,x)ρ(x,x)|<εn|ρ(xk,x)ρ(x,x)|q)\displaystyle=\underset{n\rightarrow\infty}{\lim}\frac{1}{n^{\alpha}}\left(\sum\limits_{\begin{subarray}{c}{}_{\begin{subarray}{c}k=1\end{subarray}}\\ \left|\rho\left(x_{k},x\right)-\rho\left(x,x\right)\right|\geq\varepsilon\end{subarray}}^{n}\left|\rho\left(x_{k},x\right)-\rho\left(x,x\right)\right|^{q}+\sum\limits_{\begin{subarray}{c}{}_{\begin{subarray}{c}k=1\end{subarray}}\\ \left|\rho\left(x_{k},x\right)-\rho\left(x,x\right)\right|<\varepsilon\end{subarray}}^{n}\left|\rho\left(x_{k},x\right)-\rho\left(x,x\right)\right|^{q}\right)
limn1nαk=1|ρ(xk,x)ρ(x,x)|εn|ρ(xk,x)ρ(x,x)|q\displaystyle\geq\underset{n\rightarrow\infty}{\lim}\frac{1}{n^{\alpha}}\sum\limits_{\begin{subarray}{c}{}_{\begin{subarray}{c}k=1\end{subarray}}\\ \left|\rho\left(x_{k},x\right)-\rho\left(x,x\right)\right|\geq\varepsilon\end{subarray}}^{n}\left|\rho\left(x_{k},x\right)-\rho\left(x,x\right)\right|^{q}
limn1nα|{kn:|ρ(xk,x)ρ(x,x)|ε}|εq\displaystyle\geq\underset{n\rightarrow\infty}{\lim}\frac{1}{n^{\alpha}}\left|\left\{k\leq n:\left|\rho\left(x_{k},x\right)-\rho\left(x,x\right)\right|\geq\varepsilon\right\}\right|\varepsilon^{q}
(limn1nθ|{kn:|ρ(xk,x)ρ(x,x)|ε}|)εq0.\displaystyle\geq\left(\underset{n\rightarrow\infty}{\lim}\frac{1}{n^{\theta}}\left|\left\{k\leq n:\left|\rho\left(x_{k},x\right)-\rho\left(x,x\right)\right|\geq\varepsilon\right\}\right|\right)\varepsilon^{q}\geq 0.

This reveals that if the sequence (xk)\left(x_{k}\right) is strongly pp- Cesaro summable of order α\alpha to xX,x\in X, then it is statistically convergent of order θ\theta to x.x.

If we take θ=α\theta=\alpha in Theorem 2.7, we obtain the following result:

Corollary 2.8.

COROLLARY 2.8 Let α\alpha be a fixed real number such that 0<α10<\alpha\leq 1 and 0<q<0<q<\infty. If a sequence in the partial metric space (X,ρ)(X,\rho) is strongly pp- Cesaro summable of order α\alpha to xX,x\in X, then it is statistically convergent of order α\alpha to x.x.

Hence, from Corollary 2.8, we have the necessary part of Theorem 4.4 in Nuray [16] in case α=1\alpha=1 as if a sequence is strongly pp- Cesaro summable to xX,x\in X, then it is statistically convergent to xXx\in X.

3 λ\lambda- Statistical Convergence of Order α\alpha in Partial Metric Spaces

In this section, we introduce the notion of λ\lambda-statistical convergence of order α\alpha and [V,λ][V,\lambda]-summability of order α\alpha in partial metric spaces. In this setting, some inclusion results related these concepts are also included in this section.

Definition 3.1.

For given λ=(λn)Λ\lambda=\left(\lambda_{n}\right)\in\Lambda and α(0,1]\alpha\in\left(0,1\right], the sequence (xk)\left(x_{k}\right) in the partial metric space (X,ρ)(X,\rho) is said to be λρ\lambda\rho- statistically convergent of order α\alpha, if there exists a point xXx\in X such that

limn1λnα|{kIn:|ρ(xk,x)ρ(x,x)|ε}|=0\underset{n\rightarrow\infty}{\lim}\frac{1}{\lambda_{n}^{\alpha}}\left|\left\{k\in I_{n}:\left|\rho\left(x_{k},x\right)-\rho\left(x,x\right)\right|\geq\varepsilon\right\}\right|=0

holds for every ε>0\varepsilon>0. In this case, we write Sρα(λ)limxk=xS_{\rho}^{\alpha}(\lambda)-\lim x_{k}=x or xkx(Sρα(λ))x_{k}\rightarrow x\left(S_{\rho}^{\alpha}(\lambda)\right) and Sρα(λ,X)S_{\rho}^{\alpha}(\lambda,X) will denote the class of all λρ\lambda\rho- statistically convergent sequences which are λρ\lambda\rho- statistically convergent of order α\alpha in the partial metric space (X,ρ).(X,\rho).

Theorem 3.2.

Let 0<αβ1.0<\alpha\leq\beta\leq 1. Then Sρα(λ,X)Sρβ(λ,X)S_{\rho}^{\alpha}(\lambda,X)\subset S_{\rho}^{\beta}(\lambda,X) for some α\alpha and β\beta such that α<β.\alpha<\beta.

Proof.

If 0<αβ1,0<\alpha\leq\beta\leq 1, then

0limn1λnβ|{kIn:|ρ(xk,x)ρ(x,x)|ε}| limn1λnα|{kIn:|ρ(xk,x)ρ(x,x)|ε}|0\leq\underset{n\rightarrow\infty}{\lim}\frac{1}{\lambda_{n}^{\beta}}\left|\left\{k\in I_{n}:\left|\rho\left(x_{k},x\right)-\rho\left(x,x\right)\right|\geq\varepsilon\right\}\right|\leq\text{ }\underset{n\rightarrow\infty}{\lim}\frac{1}{\lambda_{n}^{\alpha}}\left|\left\{k\in I_{n}:\left|\rho\left(x_{k},x\right)-\rho\left(x,x\right)\right|\geq\varepsilon\right\}\right|

for every ε>0\varepsilon>0 and this gives Sρα(λ,X)Sρβ(λ,X).S_{\rho}^{\alpha}(\lambda,X)\subset S_{\rho}^{\beta}(\lambda,X).

The following example states that the inclusion in the previous theorem may be strict.

Example 3.3.

Let us consider the natural partial metric of real numbers, ρ:×,ρ(x,y)=min{x,y}\rho:\mathbb{R}\times\mathbb{R}\rightarrow\mathbb{R},\rho\left(x,y\right)=-\min\left\{x,y\right\}, and the sequence x=(xk)x=\left(x_{k}\right)\subset\mathbb{R} such that

xk={knλn+1kn0,                  otherwise.x_{k}=\left\{\begin{array}[]{c}k\text{, }n-\sqrt{\lambda_{n}}+1\leq k\leq n\\ 0\text{, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ otherwise}\end{array}\right.\text{.}

From Çolak [4], it is easily seen that xx\in Sρβ(λ,X)S_{\rho}^{\beta}(\lambda,X) for 12<β1\frac{1}{2}<\beta\leq 1 but xx\notin Sρα(λ,X)S_{\rho}^{\alpha}(\lambda,X) for 0<α120<\alpha\leq\frac{1}{2}.

Corollary 3.4.

i)i) Sρα(λ,X)=Sρβ(λ,X)S_{\rho}^{\alpha}(\lambda,X)=S_{\rho}^{\beta}(\lambda,X) α=β,\Longleftrightarrow\alpha=\beta,

ii)ii) Sρα(λ,X)=Sρ(λ,X)S_{\rho}^{\alpha}(\lambda,X)=S_{\rho}(\lambda,X) α=1\Longleftrightarrow\alpha=1

For α(0,1]\alpha\in\left(0,1\right] the inclusion Sρα(λ,X)Sρα(X)S_{\rho}^{\alpha}(\lambda,X)\subseteq S_{\rho}^{\alpha}(X) clearly hold. The following theorem gives a case where the reverse of this inclusion is also holds.

Theorem 3.5.

For α(0,1]\alpha\in\left(0,1\right] the inclusionSρα(X)Sρα(λ,X)S_{\rho}^{\alpha}(X)\subseteq S_{\rho}^{\alpha}(\lambda,X) holds if

limninfλnαnα>0.\lim_{n\rightarrow\infty}\inf\frac{\lambda_{n}^{\alpha}}{n^{\alpha}}>0. (3.1)
Proof.

For a given ε>0,\varepsilon>0, we obtain that

|{kn:|ρ(xk,x)ρ(x,x)|ε}||{kIn:|ρ(xk,x)ρ(x,x)|ε}|.\left|\left\{k\leq n:\left|\rho\left(x_{k},x\right)-\rho\left(x,x\right)\right|\geq\varepsilon\right\}\right|\geq\left|\left\{k\in I_{n}:\left|\rho\left(x_{k},x\right)-\rho\left(x,x\right)\right|\geq\varepsilon\right\}\right|.

Therefore,

limn1nα|{kn:|ρ(xk,x)ρ(x,x)|ε}|\displaystyle\underset{n\rightarrow\infty}{\lim}\frac{1}{n^{\alpha}}\left|\left\{k\leq n:\left|\rho\left(x_{k},x\right)-\rho\left(x,x\right)\right|\geq\varepsilon\right\}\right|  limn1nα|{kIn:|ρ(xk,x)ρ(x,x)|ε}|\displaystyle\geq\text{ }\underset{n\rightarrow\infty}{\lim}\frac{1}{n^{\alpha}}\left|\left\{k\in I_{n}:\left|\rho\left(x_{k},x\right)-\rho\left(x,x\right)\right|\geq\varepsilon\right\}\right|
=λnαnα.1λnα|{kIn:|ρ(xk,x)ρ(x,x)|ε}|0\displaystyle=\frac{\lambda_{n}^{\alpha}}{n^{\alpha}}.\frac{1}{\lambda_{n}^{\alpha}}\left|\left\{k\in I_{n}:\left|\rho\left(x_{k},x\right)-\rho\left(x,x\right)\right|\geq\varepsilon\right\}\right|\geq 0

Taking limit as nn\rightarrow\infty and using (3.1), we get xkx(Sρα(X))x_{k}\rightarrow x\left(S_{\rho}^{\alpha}(X)\right) implies xkx(Sρα(λ,X)).x_{k}\rightarrow x\left(S_{\rho}^{\alpha}(\lambda,X)\right).

Theorem 3.6.

Let λ=(λn)\lambda=\left(\lambda_{n}\right) and μ=(μn)\mu=\left(\mu_{n}\right) belong to Λ\Lambda such that λnμn\lambda_{n}\leq\mu_{n} for all nn0n\in\mathbb{N}_{n_{0}} and let α\alpha and β\beta be such that 0<αβ10<\alpha\leq\beta\leq 1. Then, the following statements hold:

(i)\left(i\right) If

limninfλnαμnβ>0\lim_{n\rightarrow\infty}\inf\frac{\lambda_{n}^{\alpha}}{\mu_{n}^{\beta}}>0 (3.2)

then Sρβ(μ,X)Sρα(λ,X)S_{\rho}^{\beta}(\mu,X)\subseteq S_{\rho}^{\alpha}(\lambda,X)

(ii)\left(ii\right) If

limnλnαμnβ=1 and limnμnμnβ=1\lim_{n\rightarrow\infty}\frac{\lambda_{n}^{\alpha}}{\mu_{n}^{\beta}}=1\text{ and }\lim_{n\rightarrow\infty}\frac{\mu_{n}}{\mu_{n}^{\beta}}=1 (3.3)

then Sρα(λ,X)=S_{\rho}^{\alpha}(\lambda,X)= Sρβ(μ,X)S_{\rho}^{\beta}(\mu,X).

Proof.

(i)\left(i\right) Supposed that λnμn\lambda_{n}\leq\mu_{n} for all nn0n\in\mathbb{N}_{n_{0}} and (3.2) is satisfied. Since InJnI_{n}\subset J_{n}, for given ε>0,\varepsilon>0, we have

{kJn:|ρ(xk,x)ρ(x,x)|ε}{kIn:|ρ(xk,x)ρ(x,x)|ε}\left\{k\in J_{n}:\left|\rho\left(x_{k},x\right)-\rho\left(x,x\right)\right|\geq\varepsilon\right\}\supset\left\{k\in I_{n}:\left|\rho\left(x_{k},x\right)-\rho\left(x,x\right)\right|\geq\varepsilon\right\}

and so

1μnβ|{kJn:|ρ(xk,x)ρ(x,x)|ε}|λnαμnβ.1λnα|{kIn:|ρ(xk,x)ρ(x,x)|ε}|\frac{1}{\mu_{n}^{\beta}}\left|\left\{k\in J_{n}:\left|\rho\left(x_{k},x\right)-\rho\left(x,x\right)\right|\geq\varepsilon\right\}\right|\geq\frac{\lambda_{n}^{\alpha}}{\mu_{n}^{\beta}}.\frac{1}{\lambda_{n}^{\alpha}}\left|\left\{k\in I_{n}:\left|\rho\left(x_{k},x\right)-\rho\left(x,x\right)\right|\geq\varepsilon\right\}\right|

for all nn0n\in\mathbb{N}_{n_{0}}, where Jn=[nμn+1,n]J_{n}=[n-\mu_{n}+1,n]. By (3.2) as nn\rightarrow\infty we get Sρβ(μ,X)Sρα(λ,X)S_{\rho}^{\beta}(\mu,X)\subseteq S_{\rho}^{\alpha}(\lambda,X).

(ii)\left(ii\right) Supposed that (xk)Sρα(λ,X)\left(x_{k}\right)\in S_{\rho}^{\alpha}(\lambda,X) and (3.3) hold. Since InJnI_{n}\subset J_{n}, for ε>0\varepsilon>0 we have, for all nn0,n\in\mathbb{N}_{n_{0}},

0\displaystyle 0 1μnβ|{kJn:|ρ(xk,x)ρ(x,x)|ε}|\displaystyle\leq\frac{1}{\mu_{n}^{\beta}}\left|\left\{k\in J_{n}:\left|\rho\left(x_{k},x\right)-\rho\left(x,x\right)\right|\geq\varepsilon\right\}\right|
=1μnβ|{nμn+1k<nλn+1:|ρ(xk,x)ρ(x,x)|ε}|\displaystyle=\frac{1}{\mu_{n}^{\beta}}\left|\left\{n-\mu_{n}+1\leq k<n-\lambda_{n}+1:\left|\rho\left(x_{k},x\right)-\rho\left(x,x\right)\right|\geq\varepsilon\right\}\right|
 +1μnβ|{kIn:|ρ(xk,x)ρ(x,x)|ε}|\displaystyle\text{ \ \ \ \ }+\frac{1}{\mu_{n}^{\beta}}\left|\left\{k\in I_{n}:\left|\rho\left(x_{k},x\right)-\rho\left(x,x\right)\right|\geq\varepsilon\right\}\right|
(μnλnμnβ)+1μnβ|{kIn:|ρ(xk,x)ρ(x,x)|ε}|\displaystyle\leq\left(\frac{\mu_{n}-\lambda_{n}}{\mu_{n}^{\beta}}\right)+\frac{1}{\mu_{n}^{\beta}}\left|\left\{k\in I_{n}:\left|\rho\left(x_{k},x\right)-\rho\left(x,x\right)\right|\geq\varepsilon\right\}\right|
(μnλnαμnβ)+1μnβ|{kIn:|ρ(xk,x)ρ(x,x)|ε}|\displaystyle\leq\left(\frac{\mu_{n}-\lambda_{n}^{\alpha}}{\mu_{n}^{\beta}}\right)+\frac{1}{\mu_{n}^{\beta}}\left|\left\{k\in I_{n}:\left|\rho\left(x_{k},x\right)-\rho\left(x,x\right)\right|\geq\varepsilon\right\}\right|
(μnμnβλnαμnβ)+1λnα|{kIn:|ρ(xk,x)ρ(x,x)|ε}|\displaystyle\leq\left(\frac{\mu_{n}}{\mu_{n}^{\beta}}-\frac{\lambda_{n}^{\alpha}}{\mu_{n}^{\beta}}\right)+\frac{1}{\lambda_{n}^{\alpha}}\left|\left\{k\in I_{n}:\left|\rho\left(x_{k},x\right)-\rho\left(x,x\right)\right|\geq\varepsilon\right\}\right|

Thus, since lim𝑛μnμnβ=1\underset{n}{\lim}\frac{\mu_{n}}{\mu_{n}^{\beta}}=1 and lim𝑛λnαμnβ=1\underset{n}{\lim}\frac{\lambda_{n}^{\alpha}}{\mu_{n}^{\beta}}=1 by (3.3), first part of the sum in the right hand side of last inequality tend to 0 as nn\rightarrow\infty, because of that μnμnαλnαμnβ0\frac{\mu_{n}}{\mu_{n}^{\alpha}}-\frac{\lambda_{n}^{\alpha}}{\mu_{n}^{\beta}}\geq 0 for all nn0n\in\mathbb{N}_{n_{0}}. This means that Sρα(λ,X)S_{\rho}^{\alpha}(\lambda,X)\subset Sρβ(μ,X)S_{\rho}^{\beta}(\mu,X). On the other hand, since (3.3) implies (3.2) we have Sρα(λ,X)=S_{\rho}^{\alpha}(\lambda,X)= Sρβ(μ,X)S_{\rho}^{\beta}(\mu,X). ∎

By choosing the value of β\beta, as a result of Theorem 3.6, we can give the following two results.

Corollary 3.7.

Let λ=(λn)\lambda=\left(\lambda_{n}\right) and μ=(μn)\mu=\left(\mu_{n}\right) belong to Λ\Lambda such that λnμn\lambda_{n}\leq\mu_{n} for all nn0n\in\mathbb{N}_{n_{0}} and (3.2) holds. Then the following statements hold:

(i)\left(i\right) Sρα(μ,X)Sρα(λ,X)S_{\rho}^{\alpha}(\mu,X)\subseteq S_{\rho}^{\alpha}(\lambda,X) holds for each α(0,1]\alpha\in(0,1].

(ii)\left(ii\right) Sρ(μ,X)Sρα(λ,X)S_{\rho}(\mu,X)\subseteq S_{\rho}^{\alpha}(\lambda,X) holds for each α(0,1]\alpha\in(0,1].

Corollary 3.8.

Let λ=(λn)\lambda=\left(\lambda_{n}\right) and μ=(μn)\mu=\left(\mu_{n}\right) belong to Λ\Lambda such that λnμn\lambda_{n}\leq\mu_{n} for all nn0n\in\mathbb{N}_{n_{0}} and (3.3) holds. Then the following statements hold:

(i)\left(i\right) Sρα(λ,X)Sρα(μ,X)S_{\rho}^{\alpha}(\lambda,X)\subseteq S_{\rho}^{\alpha}(\mu,X) for each α(0,1]\alpha\in(0,1],

(ii)\left(ii\right) Sρα(λ,X)Sρ(μ,X)S_{\rho}^{\alpha}(\lambda,X)\subseteq S_{\rho}(\mu,X) for each α(0,1]\alpha\in(0,1].

Now, we introduce [Vρα,λ][V_{\rho}^{\alpha},\lambda]-summability of order α\alpha for the partial metric spaces.

Definition 3.9.

For any α(0,1]\alpha\in\left(0,1\right], the sequence (xk)\left(x_{k}\right) in the partial metric space (X,ρ)(X,\rho) is called strongly [Vρα,λ][V_{\rho}^{\alpha},\lambda]-summable of order α\alpha to xXx\in X if

limn1λnαkIn|ρ(xk,x)ρ(x,x)|=0.\lim_{n\rightarrow\infty}\frac{1}{\lambda_{n}^{\alpha}}\sum\limits_{k\in I_{n}}\left|\rho\left(x_{k},x\right)-\rho\left(x,x\right)\right|=0\text{.}

holds. This is indicated by [Vρα,λ]limxk=x[V_{\rho}^{\alpha},\lambda]-\lim x_{k}=x and the set of all sequences with [Vρα,λ][V_{\rho}^{\alpha},\lambda]-summable of order α\alpha is denoted by [Vρα,λ][V_{\rho}^{\alpha},\lambda].

Theorem 3.10.

For given λ=(λn)\lambda=\left(\lambda_{n}\right), μ=(μn)Λ,\mu=\left(\mu_{n}\right)\in\Lambda, assume that λnμn\lambda_{n}\leq\mu_{n} for all nn0n\in\mathbb{N}_{n_{0}} and 0<αβ10<\alpha\leq\beta\leq 1 holds. Then, the following statements hold:

(i)\left(i\right) If (3.2) holds, then [Vρβ,μ][Vρα,λ][V_{\rho}^{\beta},\mu]\subseteq[V_{\rho}^{\alpha},\lambda].

(ii)\left(ii\right) If (3.3) holds, then [Vρβ,μ]=[Vρα,λ][V_{\rho}^{\beta},\mu]=[V_{\rho}^{\alpha},\lambda].

Proof.

(i)\left(i\right) Suppose that λnμn\lambda_{n}\leq\mu_{n} for all nn0n\in\mathbb{N}_{n_{0}}. Clearly, InJnI_{n}\subset J_{n} holds so that we may write, for all nn0n\in\mathbb{N}_{n_{0}},

1μnβkJn|ρ(xk,x)ρ(x,x)|1μnβkIn|ρ(xk,x)ρ(x,x)|0\frac{1}{\mu_{n}^{\beta}}\sum\limits_{k\in J_{n}}\left|\rho\left(x_{k},x\right)-\rho\left(x,x\right)\right|\geq\frac{1}{\mu_{n}^{\beta}}\sum\limits_{k\in I_{n}}\left|\rho\left(x_{k},x\right)-\rho\left(x,x\right)\right|\geq 0

This gives

1μnβkJn|ρ(xk,x)ρ(x,x)|λnαμnβ1λnαkIn|ρ(xk,x)ρ(x,x)|0.\frac{1}{\mu_{n}^{\beta}}\sum\limits_{k\in J_{n}}\left|\rho\left(x_{k},x\right)-\rho\left(x,x\right)\right|\geq\frac{\lambda_{n}^{\alpha}}{\mu_{n}^{\beta}}\frac{1}{\lambda_{n}^{\alpha}}\sum\limits_{k\in I_{n}}\left|\rho\left(x_{k},x\right)-\rho\left(x,x\right)\right|\geq 0\text{.}

Hence, as nn\rightarrow\infty by (3.2) we have [Vρβ,μ][V_{\rho}^{\beta},\mu]\subset [Vρα,λ][V_{\rho}^{\alpha},\lambda].

(ii)\left(ii\right) Suppose that (xk)[Vρα,λ]\left(x_{k}\right)\in[V_{\rho}^{\alpha},\lambda] and (3.3) holds. Since (xk)\left(x_{k}\right) is bounded, there exists some M>0M>0 such that |ρ(xk,x)ρ(x,x)|M\left|\rho\left(x_{k},x\right)-\rho\left(x,x\right)\right|\leq M for all kk\in\mathbb{N}. Now, since λnμn\lambda_{n}\leq\mu_{n}, so is 1μnβ\frac{1}{\mu_{n}^{\beta}}\leq 1λnα\frac{1}{\lambda_{n}^{\alpha}}, and InJnI_{n}\subset J_{n} for each nn0n\in\mathbb{N}_{n_{0}}, we have, for every nn0,n\in\mathbb{N}_{n_{0}},

0\displaystyle 0 1μnβkJn|ρ(xk,x)ρ(x,x)|=1μnβkJnIn|ρ(xk,x)ρ(x,x)|+1μnβkIn|ρ(xk,x)ρ(x,x)|\displaystyle\leq\frac{1}{\mu_{n}^{\beta}}\sum\limits_{k\in J_{n}}\left|\rho\left(x_{k},x\right)-\rho\left(x,x\right)\right|=\frac{1}{\mu_{n}^{\beta}}\sum\limits_{k\in J_{n}-I_{n}}\left|\rho\left(x_{k},x\right)-\rho\left(x,x\right)\right|+\frac{1}{\mu_{n}^{\beta}}\sum\limits_{k\in I_{n}}\left|\rho\left(x_{k},x\right)-\rho\left(x,x\right)\right|
(μnλnμnβ)M+1μnβkIn|ρ(xk,x)ρ(x,x)|\displaystyle\leq\left(\frac{\mu_{n}-\lambda_{n}}{\mu_{n}^{\beta}}\right)M+\frac{1}{\mu_{n}^{\beta}}\sum\limits_{k\in I_{n}}\left|\rho\left(x_{k},x\right)-\rho\left(x,x\right)\right|
(μnλnαμnβ)M+1μnβkIn|ρ(xk,x)ρ(x,x)|\displaystyle\leq\left(\frac{\mu_{n}-\lambda_{n}^{\alpha}}{\mu_{n}^{\beta}}\right)M+\frac{1}{\mu_{n}^{\beta}}\sum\limits_{k\in I_{n}}\left|\rho\left(x_{k},x\right)-\rho\left(x,x\right)\right|
(μnμnβλnαμnβ)M+1λnαkIn|ρ(xk,x)ρ(x,x)|\displaystyle\leq\left(\frac{\mu_{n}}{\mu_{n}^{\beta}}-\frac{\lambda_{n}^{\alpha}}{\mu_{n}^{\beta}}\right)M+\frac{1}{\lambda_{n}^{\alpha}}\sum\limits_{k\in I_{n}}\left|\rho\left(x_{k},x\right)-\rho\left(x,x\right)\right|

Therefore, [Vρα,λ,p][Vρβ,μ,p][V_{\rho}^{\alpha},\lambda,p]\subseteq[V_{\rho}^{\beta},\mu,p]. Since (3.3) implies (3.2), we have the equality [Vββ,μ]=[Vρα,λ][V_{\beta}^{\beta},\mu]=[V_{\rho}^{\alpha},\lambda] by (i)\left(i\right). ∎

Again, by choosing the value of β\beta, the following two results follows directly from the last theorem.

Corollary 3.11.

Let λ=(λn)\lambda=\left(\lambda_{n}\right) and μ=(μn)\mu=\left(\mu_{n}\right) belong to Λ\Lambda such that λnμn\lambda_{n}\leq\mu_{n} for all nn0n\in\mathbb{N}_{n_{0}} and (3.2) holds. Then the following statements hold:

(i)\left(i\right) [Vρα,μ][Vρα,λ][V_{\rho}^{\alpha},\mu]\subset[V_{\rho}^{\alpha},\lambda] for each α(0,1]\alpha\in(0,1],

(ii)\left(ii\right) [V,μ][Vρα,λ][V,\mu]\subset[V_{\rho}^{\alpha},\lambda] for each α(0,1]\alpha\in(0,1].

Corollary 3.12.

Let λ=(λn)\lambda=\left(\lambda_{n}\right) and μ=(μn)\mu=\left(\mu_{n}\right) belong to Λ\Lambda such that λnμn\lambda_{n}\leq\mu_{n} for all nn0n\in\mathbb{N}_{n_{0}} and (3.3) holds. Then the following statements hold:

(i)\left(i\right) [Vρα,λ][Vρα,μ][V_{\rho}^{\alpha},\lambda]\subseteq[V_{\rho}^{\alpha},\mu] for each α(0,1]\alpha\in(0,1],

(ii)\left(ii\right) [Vρα,λ][V,μ][V_{\rho}^{\alpha},\lambda]\subseteq[V,\mu] for each α(0,1]\alpha\in(0,1].

Theorem 3.13.

Let α,β(0,1]\alpha,\beta\in(0,1] be real numbers such that αβ\alpha\leq\beta, and λ=(λn)\lambda=\left(\lambda_{n}\right), μ=(μn)Λ\mu=\left(\mu_{n}\right)\in\Lambda such that λnμn\lambda_{n}\leq\mu_{n} for all nn0n\in\mathbb{N}_{n_{0}}. Then the following statements hold:

(i)\left(i\right) Let (3.2) holds, then if a sequence is [Vρβ,μ][V_{\rho}^{\beta},\mu]-summable of order β\beta, to xXx\in X, then it is Sρα(λ,X)S_{\rho}^{\alpha}(\lambda,X)-statistically convergent of order α\alpha, to xx.

(ii)\left(ii\right) Let (3.3) holds, then if a sequence is Sρα(λ,X)S_{\rho}^{\alpha}(\lambda,X)-statistically convergent of order α\alpha, to xXx\in X, then it is [Vρβ,μ][V_{\rho}^{\beta},\mu]-summable of order β\beta, to xx.

Proof.

(i)\left(i\right) For any sequence (xk)X\left(x_{k}\right)\subset X and ε>0\varepsilon>0, we have

kJn|ρ(xk,x)ρ(x,x)|\displaystyle\sum_{k\in J_{n}}\left|\rho\left(x_{k},x\right)-\rho\left(x,x\right)\right|
=kJn|ρ(xk,x)ρ(x,x)|ε|ρ(xk,x)ρ(x,x)|+kJn|ρ(xk,x)ρ(x,x)|<ε|ρ(xk,x)ρ(x,x)|\displaystyle=\sum_{\begin{subarray}{c}k\in J_{n}\\ \left|\rho\left(x_{k},x\right)-\rho\left(x,x\right)\right|\geq\varepsilon\end{subarray}}\left|\rho\left(x_{k},x\right)-\rho\left(x,x\right)\right|+\sum_{\begin{subarray}{c}k\in J_{n}\\ \left|\rho\left(x_{k},x\right)-\rho\left(x,x\right)\right|<\varepsilon\end{subarray}}\left|\rho\left(x_{k},x\right)-\rho\left(x,x\right)\right|
kIn|ρ(xk,x)ρ(x,x)|ε|ρ(xk,x)ρ(x,x)|+kIn|ρ(xk,x)ρ(x,x)|<ε|ρ(xk,x)ρ(x,x)|\displaystyle\geq\sum_{\begin{subarray}{c}k\in I_{n}\\ \left|\rho\left(x_{k},x\right)-\rho\left(x,x\right)\right|\geq\varepsilon\end{subarray}}\left|\rho\left(x_{k},x\right)-\rho\left(x,x\right)\right|+\sum_{\begin{subarray}{c}k\in I_{n}\\ \left|\rho\left(x_{k},x\right)-\rho\left(x,x\right)\right|<\varepsilon\end{subarray}}\left|\rho\left(x_{k},x\right)-\rho\left(x,x\right)\right|
kIn|ρ(xk,x)ρ(x,x)|ε|ρ(xk,x)ρ(x,x)|\displaystyle\geq\sum_{\begin{subarray}{c}k\in I_{n}\\ \left|\rho\left(x_{k},x\right)-\rho\left(x,x\right)\right|\geq\varepsilon\end{subarray}}\left|\rho\left(x_{k},x\right)-\rho\left(x,x\right)\right|
|{kIn:|ρ(xk,x)ρ(x,x)|ε}|.ε0.\displaystyle\geq\left|\left\{k\in I_{n}:\left|\rho\left(x_{k},x\right)-\rho\left(x,x\right)\right|\geq\varepsilon\right\}\right|.\varepsilon\geq 0.

and so that

1μnβkJn|ρ(xk,x)ρ(x,x)|\displaystyle\frac{1}{\mu_{n}^{\beta}}\sum_{k\in J_{n}}\left|\rho\left(x_{k},x\right)-\rho\left(x,x\right)\right| 1μnβ|{kIn:|ρ(xk,x)ρ(x,x)|ε}|.ε\displaystyle\geq\frac{1}{\mu_{n}^{\beta}}\left|\left\{k\in I_{n}:\left|\rho\left(x_{k},x\right)-\rho\left(x,x\right)\right|\geq\varepsilon\right\}\right|.\varepsilon
λnαμnβ1λnα|{kIn:|ρ(xk,x)ρ(x,x)|ε}|.ε0.\displaystyle\geq\frac{\lambda_{n}^{\alpha}}{\mu_{n}^{\beta}}\frac{1}{\lambda_{n}^{\alpha}}\left|\left\{k\in I_{n}:\left|\rho\left(x_{k},x\right)-\rho\left(x,x\right)\right|\geq\varepsilon\right\}\right|.\varepsilon\geq 0.

Since (3.2) holds, it means that if (xk)\left(x_{k}\right) is [Vρβ,μ][V_{\rho}^{\beta},\mu]-summable of order β\beta, to xx, then it is Sρα(λ,X)S_{\rho}^{\alpha}(\lambda,X)-statistically convergent of order α\alpha, to xx.

(ii)\left(ii\right) Suppose that Sρβ(λ)limxk=xS_{\rho}^{\beta}(\lambda)-\lim x_{k}=x. Consequently, since (xk)(x_{k}) is bounded there exists some M>0M>0 such that |ρ(xk,x)ρ(x,x)|M\left|\rho\left(x_{k},x\right)-\rho\left(x,x\right)\right|\leq M for all kk\in\mathbb{N}. Then, for every ε>0\varepsilon>0, we have

0\displaystyle 0 1μnβkJn|ρ(xk,x)ρ(x,x)|=1μnβkJnIn|ρ(xk,x)ρ(x,x)|+1μnβkIn|ρ(xk,x)ρ(x,x)|\displaystyle\leq\frac{1}{\mu_{n}^{\beta}}\sum\limits_{k\in J_{n}}\left|\rho\left(x_{k},x\right)-\rho\left(x,x\right)\right|=\frac{1}{\mu_{n}^{\beta}}\sum\limits_{k\in J_{n}-I_{n}}\left|\rho\left(x_{k},x\right)-\rho\left(x,x\right)\right|+\frac{1}{\mu_{n}^{\beta}}\sum\limits_{k\in I_{n}}\left|\rho\left(x_{k},x\right)-\rho\left(x,x\right)\right|
(μnλnμnβ)M+1μnβkIn|ρ(xk,x)ρ(x,x)|\displaystyle\leq\left(\frac{\mu_{n}-\lambda_{n}}{\mu_{n}^{\beta}}\right)M+\frac{1}{\mu_{n}^{\beta}}\sum\limits_{k\in I_{n}}\left|\rho\left(x_{k},x\right)-\rho\left(x,x\right)\right|
(μnλnαμnβ)M+1μnβkIn|ρ(xk,x)ρ(x,x)|+1μnβkIn|φ(xkl)|<ε|ρ(xk,x)ρ(x,x)|\displaystyle\leq\left(\frac{\mu_{n}-\lambda_{n}^{\alpha}}{\mu_{n}^{\beta}}\right)M+\frac{1}{\mu_{n}^{\beta}}\sum\limits_{k\in I_{n}}\left|\rho\left(x_{k},x\right)-\rho\left(x,x\right)\right|+\frac{1}{\mu_{n}^{\beta}}\sum\limits_{\begin{subarray}{c}k\in I_{n}\\ \left|\varphi\left(x_{k}-l\right)\right|<\varepsilon\end{subarray}}\left|\rho\left(x_{k},x\right)-\rho\left(x,x\right)\right|
(μnμnβλnαμnβ)M+Mλnα|{kIn:|ρ(xk,x)ρ(x,x)|ε}|+λnμnβε\displaystyle\leq\left(\frac{\mu_{n}}{\mu_{n}^{\beta}}-\frac{\lambda_{n}^{\alpha}}{\mu_{n}^{\beta}}\right)M+\frac{M}{\lambda_{n}^{\alpha}}\left|\left\{k\in I_{n}:\left|\rho\left(x_{k},x\right)-\rho\left(x,x\right)\right|\geq\varepsilon\right\}\right|+\frac{\lambda_{n}}{\mu_{n}^{\beta}}\varepsilon

for all nn0n\in\mathbb{N}_{n_{0}}. Using (3.3) we obtain that [Vβ,λ]limxk=x[V^{\beta},\lambda]-\lim x_{k}=x, whenever Sρα(λ)limxk=xS_{\rho}^{\alpha}(\lambda)-\lim x_{k}=x. ∎

Similarly, by choosing the value of β\beta, we obtain next results.

Corollary 3.14.

Let λ=(λn)\lambda=\left(\lambda_{n}\right) and μ=(μn)\mu=\left(\mu_{n}\right) belong to Λ\Lambda such that λnμn\lambda_{n}\leq\mu_{n} for all nn0n\in\mathbb{N}_{n_{0}} and (3.2) holds. Then the following statements hold:

(i)\left(i\right) [Vρα,μ]Sρβ(λ)[V_{\rho}^{\alpha},\mu]\subset S_{\rho}^{\beta}(\lambda) for each α(0,1]\alpha\in(0,1],

(ii)\left(ii\right) [V,μ]Sρα(λ)[V,\mu]\subset S_{\rho}^{\alpha}(\lambda) for each α(0,1]\alpha\in(0,1].

Corollary 3.15.

Let λ=(λn)\lambda=\left(\lambda_{n}\right) and μ=(μn)\mu=\left(\mu_{n}\right) belong to Λ\Lambda such that λnμn\lambda_{n}\leq\mu_{n} for all nn0n\in\mathbb{N}_{n_{0}} and (3.3) holds. Then the following statements hold:

(i)\left(i\right) Sρα(λ)[Vρα,μ]S_{\rho}^{\alpha}(\lambda)\subset[V_{\rho}^{\alpha},\mu] for each α(0,1]\alpha\in(0,1],

(ii)\left(ii\right) Sρα(λ)[V,μ]S_{\rho}^{\alpha}(\lambda)\subset[V,\mu] for each α(0,1]\alpha\in(0,1].

References

  • [1] Y. ALTIN, H. ALTINOK, and R. ÇOLAK, Statistical convergence of order α\alpha for difference sequences, Quaestiones Mathematicae, 38, 4, 505–514, 2015. doi: 10.2989/16073606.2014.981685.
  • [2] B. BILALOV, T. NAZAROVA, On statistical convergence in metric space, Journal of Mathematics Research, 7, 1, 37–43, 2015. doi: 10.5539/jmr.v7n1p37.
  • [3] J. S. CONNOR, The statistical and strong pp-Cesàro convergence of sequences, Analysis, 8, 1-2, 47–63, 1988. doi: 10.1524/anly.1988.8.12.47.
  • [4] R. ÇOLAK, Statistical convergence of order α\alpha, Modern Methods in Analysis and Its Applications, edited by M. Mursaleen, 121-129. New Delhi, India: Anamaya Publication, 2010.
  • [5] R. ÇOLAK, λ\lambda-statistical convergence, Paper presented at the annual meeting fot the Conference on summability and applications, Commerce University,Istanbul, May 12-13, 2011.
  • [6] R. ÇOLAK and Ç. A. BEKTAŞ, λ\lambda-statistical convergence of order α\alpha, Acta Mathematica Scientia, 31, 3, 953–959, 2011. doi: 10.1016/S0252-9602(11)60288-9.
  • [7] H. FAST, Sur la convergence statistique, Colloquium Mathematicae, 2, 3-4, 241–244, 1951. doi: 10.4064/cm-2-3-4-241-244.
  • [8] J. A. FRIDY, On statistical convergence, Analysis, 5, 4, 301–313. doi: 10.1524/anly.1985.5.4.301.
  • [9] A. D. GADJIEV and C. ORHAN, Some approximation theorems via statistical convergence, Rocky Mountain Journal of Mathematics, 32, 1, 129-138, 2002. doi: 10.1216/rmjm/1030539612.
  • [10] E. KAYAN, R. ÇOLAK and Y. ALTIN, dd-statistical convergence of order α\alpha and dd-statistical boundedness of order α\alpha in metric spaces, University Politehnica of Bucharest The Scientific Bulletin Series A, 80, 2, 229–238, 2018.
  • [11] M. KÜÇÜKASLAN, U. DEĞER and O. DOVGOSHEY, On the statistical convergence of metric-valued sequences, Ukrainian Mathematical Journal, 66, 5, 796–805, 2018. doi: 10.1007/s11253-014-0974-z.
  • [12] L. LEINDER, Über die verallgemeinerte de la Vallée-Poussinsche summierbarkeit allgemeiner Orthogonalreihen, Acta Mathematica Academiae Scientiarum Hungarica, 16, 3-4, 375–387, 1965. doi: 10.1007/BF01904844.
  • [13] S. G. MATTHEWS, Partial metric topology, Annals of the New York Academy of Sciences, 728, 183-197, 1994. doi: 10.1111/j.1749-6632.1994.tb44144.x.
  • [14] M. MURSALEEN, λ\lambda-statistical convergence, Mathematica Slovaca, 50, 1, 111–115, 2000.
  • [15] I. NIVEN and H. S. ZUCKERMAN, An introduction to the Theory of Numbers: Fourth Edition, New York: John Wiley & Sons, 1980.
  • [16] F. NURAY, Statistical convergence in partial metric spaces, Korean Journal of Mathematics, 30, 1, 155–160, 2022. doi: 10.11568/kjm.2022.30.1.155.
  • [17] I. J. SCHOENBERG, The integrability of certain functions and related summability methods, The American Mathematical Monthly, 66, 361–375, 1959. doi: 10.1080/00029890.1959.11989303.
  • [18] H. STEINHAUS, Sur la convergence ordinaire et la convergence asymptotique, Colloquium Mathematicum, 2, 73-74, 1951.
  • [19] A. ZYGMUND, Trigonometric Series, Cambridge: Cambridge University Press, 1979.