This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

On signed graphs whose spectral radius does not exceed 2+5\sqrt{2+\sqrt{5}}

Dijian Wanga, Wenkuan Donga, Yaoping Houb, Deqiong Lic
aSchool of Science, Zhejiang University of Science and Technology,
Hangzhou, Zhejiang, 310023, P. R. China
bCollege of Mathematics and Statistics, Hunan Normal University,
Changsha, Hunan, 410081, P. R. China
cSchool of Mathematics and Statistics, Hunan University of Technology and Business,
Changsha, Hunan, 410205, P. R. China
Corresponding author: [email protected]
Abstract

The Hoffman program with respect to any real or complex square matrix MM associated to a graph GG stems from Hoffman’s pioneering work on the limit points for the spectral radius of adjacency matrices of graphs does not exceed 2+5\sqrt{2+\sqrt{5}}. A signed graph G˙=(G,σ)\dot{G}=(G,\sigma) is a pair (G,σ),(G,\sigma), where G=(V(G),E(G))G=(V(G),E(G)) is a simple graph and σ:E(G){+1,1}\sigma:E(G)\rightarrow\{+1,-1\} is the sign function. In this paper, we study the Hoffman program of signed graphs. Here, all signed graphs whose spectral radius does not exceed 2+5\sqrt{2+\sqrt{5}} will be identified.

AMS classification: 05C50

Keywords: Signed graphs; Spectral radius; Hoffman program.

1 Introduction

All graphs considered here are simple, undirected and finite. For a graph G=(V(G),E(G)),G=(V(G),E(G)), let A(G)A(G) denote the adjacency matrix of G,G, the eigenvalues of A(G)A(G) are all real and the spectral radius of GG is equal to the largest eigenvalue of A(G)A(G).

The Hoffman program is the identification of connected graphs whose spectral radius does not exceed some special limit points established by Hoffman [8]. The smallest limit point for the spectral radius of GG is 2, that is, identifies all connected graphs whose spectral radius does not exceed 2. This problem has already been completely solved by Smith [13]. They are known as Smith graphs. After that, the problem jumps to the next significant limit point, which is λ:=2+5=τ12+τ12\lambda^{\ast}:=\sqrt{2+\sqrt{5}}=\tau^{\frac{1}{2}}+\tau^{-\frac{1}{2}} (2.05817),(\approx 2.05817), where τ\tau is the golden mean. In [5], Cvetkovic´\acute{c}, Doob and Gutman determined the structures of graphs with spectral radius between 2 and 2+5\sqrt{2+\sqrt{5}}. Their description was completed by Brouwer and Neumaier [2]. In 2020, Jiang and Polyanskii [9] studied the forbidden subgraphs characterization for 𝒢λ\mathcal{G}^{\lambda} (where 𝒢λ\mathcal{G}^{\lambda} denotes the family of connected graphs of spectral radius λ\leq\lambda) with applications to estimate the maximum cardinality of equiangular lines in the nn-dimensional Euclidean space n.\mathbb{R}^{n}. For more on the results between Hoffman program and equiangular lines, see [9, 11, 13].

Refer to caption
Figure 1: The signed graphs S˙14,S˙16\dot{S}_{14},\dot{S}_{16} and T˙2k\dot{T}_{2k}.

A signed graph G˙=(G,σ)\dot{G}=(G,\sigma) is a pair (G,σ),(G,\sigma), where GG is a simple graph with nn vertices and mm edges, called the underlying graph, and σ:E(G){+1,1}\sigma:E(G)\rightarrow\{+1,-1\} is the sign function. An edge vivjv_{i}v_{j} is called positive (negative) if σ(vivj)=+1\sigma(v_{i}v_{j})=+1 (resp. σ(vivj)=1\sigma(v_{i}v_{j})=-1) and denoted by vi+vjv_{i}\mathop{\sim}\limits^{+}v_{j} (resp. vivjv_{i}\mathop{\sim}\limits^{-}v_{j}). An unsigned graph (or a graph) is a signed graph without negative edges. Given a signed graph G˙\dot{G}, its adjacency matrix is defined by A(G˙)=(σij),A(\dot{G})=(\sigma_{ij}), where σij=σ(vivj)\sigma_{ij}=\sigma(v_{i}v_{j}) if vivj,v_{i}\sim v_{j}, and σij=0\sigma_{ij}=0 otherwise. The eigenvalues, denoted by λ1(G˙)λn(G˙),\lambda_{1}(\dot{G})\geq\dots\geq\lambda_{n}(\dot{G}), of A(G˙)A(\dot{G}) are defined as the eigenvalues of G˙\dot{G}; they are all real since A(G˙)A(\dot{G}) is a real symmetric matrix. The spectral radius of G˙\dot{G} is defined by ρ(G˙)=max{|λi(G˙)|:1in}=max{λ1(G˙),λn(G˙)}.\rho(\dot{G})=max\{|\lambda_{i}(\dot{G})|:1\leq i\leq n\}=max\{\lambda_{1}(\dot{G}),-\lambda_{n}(\dot{G})\}.

The theory of limit points for the spectral radius of graph sequences studied by Hoffman is still valid in the context of signed graphs. Some interesting results on the Hoffman program of signed graphs can be found in [1, 14, 7, 10]. In [10], Jiang and Polyanskii studied the forbidden subgraphs characterization for families of signed graphs with eigenvalues bounded from below with applications to determine the maximum cardinality of a spherical two-distance set with two fixed angles in high dimensions. The smallest limit point for the spectral radius of G˙\dot{G} is also 2, see [14, Propostion 6.1]. Those signed graphs have been identified by McKee and Smyth [12]. Therefore, the natural next step is the next limit point: λ=2+5,\lambda^{\ast}=\sqrt{2+\sqrt{5}}, that is, identifies all connected signed graphs whose spectral radius does not exceed λ\lambda^{\ast}. In this paper, we study the Hoffman program of signed graphs and all signed graphs whose spectral radius does not exceed λ\lambda^{\ast} will be identified.

In this paper, positive edges are depicted as bold lines and negative edges are depicted as dashed lines. The rest of the paper is organized as follows. Our contribution is reported in Section 2.2. In Section 33, we give some preliminaries lemmas and theorems. In Section 44, we will prove the Theorem 2.4.

2 Main results

Let Ta,b,cT_{a,b,c} be the graph with a+b+c+1a+b+c+1 vertices consisting of three paths with a,b,a,b, and cc edges, respectively, where these paths have one end vertex in common, and let Qa,b,cQ_{a,b,c} be the graph with a+b+c+3a+b+c+3 vertices consisting of a path with a+b+ca+b+c edges and two extra edges affixed at v0v_{0} and w0.w_{0}. See Fig. 2.

For any fixed ρ>0,\rho>0, the symbol 𝒢ρ\mathcal{G}^{\rho} (resp. 𝒢Sρ\mathcal{G}_{S}^{\rho}) denotes the set of the connected (resp. signed) graphs whose spectral radius does not exceed ρ.\rho.

Refer to caption
Figure 2: The graphs Ta,b,cT_{a,b,c} and Qa,b,cQ_{a,b,c}.
Theorem 2.1.

[13, 2, 5] Let the graphs Ta,b,cT_{a,b,c} and Qa,b,cQ_{a,b,c} be depicted in Fig. 2. Then

(i)(i) 𝒢2={Cn,K1,4,T2,2,2,T1,3,3,Pn,T1,1,n1,T1,2,2,T1,2,3,T1,2,4,Q1,n5,1}.\mathcal{G}^{2}=\{C_{n},K_{1,4},T_{2,2,2},T_{1,3,3},P_{n},T_{1,1,n-1},T_{1,2,2},T_{1,2,3},T_{1,2,4},Q_{1,n-5,1}\}.

(ii)(ii) 𝒢λ=𝒢2{Ta,b,c|a=1,b=2,c>5;ora=1,b>2,c>3;ora=b=2,c>2;ora=2,b=c=3}{Qa,b,c|(a,b,c)𝒮;orca>0,bb(a,c),(a,c)(1,1)}\mathcal{G}^{\lambda^{\ast}}=\mathcal{G}^{2}\cup\{T_{a,b,c}|a=1,b=2,c>5;or~{}a=1,b>2,c>3;or~{}a=b=2,c>2;or~{}a=2,b=c=3\}\cup\{Q_{a,b,c}|(a,b,c)\in\mathcal{S};or~{}c\geq a>0,b\geq b^{\ast}(a,c),(a,c)\neq(1,1)\} where

𝒮={(1,1,2),(2,4,2),(2,5,3),(3,7,3),(3,8,4)}\mathcal{S}=\{(1,1,2),(2,4,2),(2,5,3),(3,7,3),(3,8,4)\}

and

b(a,c)={a+c+2for a>2;c+3for a=2;cfor a=1.b^{\ast}(a,c)=\begin{cases}a+c+2&\text{for $a>2$};\\ c+3&\text{for $a=2$};\\ c&\text{for $a=1$}.\end{cases}
Theorem 2.2.

[12] Signed graphs in 𝒢S2\mathcal{G}_{S}^{2} are the induced subgraphs of S˙14,\dot{S}_{14}, S˙16\dot{S}_{16} or T˙2k.\dot{T}_{2k}.

Refer to caption
Figure 3: The signed graphs T˙2k,\dot{T}_{2k}^{\prime}, T˙2k′′\dot{T}_{2k}^{\prime\prime} and T˙2k′′′\dot{T}_{2k}^{\prime\prime\prime}.
Refer to caption
Figure 4: The signed graphs in Definition 2.3.
Definition 2.3.

(1)(1) Let G˙\dot{G} be a connected signed graph, and let vv be a vertex in G˙.\dot{G}.

\bullet Denote (G˙,v,k)(\dot{G},v,k) the signed graph obtained from G˙\dot{G} by appending a T˙2k′′′\dot{T}_{2k}^{\prime\prime\prime} at v.v.

\bullet Denote [G˙,v,k][\dot{G},v,k] the signed graph obtained from G˙\dot{G} by appending a T˙2k′′\dot{T}_{2k}^{\prime\prime} at v.v.

(2)(2) Let G˙1,\dot{G}_{1}, G˙2\dot{G}_{2} be two connected disjoint signed graphs, and let v,v, uu be vertices in G˙1,\dot{G}_{1}, G˙2\dot{G}_{2} respectively.

\bullet Define (G˙1,v,k,u,G˙2)(\dot{G}_{1},v,k,u,\dot{G}_{2}) to be the signed graph obtained from G˙1\dot{G}_{1} and G˙2\dot{G}_{2} by joining them with a path of kk vertices connecting vv and u.u.

\bullet Define [G˙1,v,k,u,G˙2][\dot{G}_{1},v,k,u,\dot{G}_{2}] to be the signed graph obtained from G˙1\dot{G}_{1} and G˙2\dot{G}_{2} by joining them with a T˙2k′′′\dot{T}_{2k}^{\prime\prime\prime} connecting vv and u.u.

The above mentioned signed graphs are depicted in Figs. 3 and 4.

Refer to caption
Figure 5: The signed graphs in Theorem 2.4 (ii).(ii). The number denotes the spectral radius of the corresponding signed graph.

The main results of this paper are presented as following.

Theorem 2.4.

Signed graphs in 𝒢Sλ\mathcal{G}_{S}^{\lambda^{\ast}} are the induced subgraphs (up to switching isomorphic) of

(i)(i) S˙14,S˙16,T˙2k,\dot{S}_{14},\dot{S}_{16},\dot{T}_{2k},

(ii)(ii) 𝒞˙4[2,2,2,2],H˙1H˙8,G˙61G˙67,G˙80G˙83,Θ˙8,2,0,G˙10,\dot{\mathcal{C}}_{4}[2,2,2,2],\dot{H}_{1}-\dot{H}_{8},\dot{G}_{6}^{1}-\dot{G}_{6}^{7},\dot{G}_{8}^{0}-\dot{G}_{8}^{3},\dot{\Theta}_{8,2,0},\dot{G}_{10},

(iii)(iii) 𝒞˙k1,k2+1\dot{\mathcal{C}}_{k}^{1,\frac{k}{2}+1} (k(k is even)), G˙0k\dot{G}_{0}^{k} (k12(k\geq 12 and kk is even),), U˙6n1,n2\dot{U}^{n_{1},n_{2}}_{6} (n11(n_{1}\geq 1 and n21),n_{2}\geq 1), 𝒞˙4[n1,1,n3,1]\dot{\mathcal{C}}_{4}[n_{1},1,n_{3},1] (n11(n_{1}\geq 1 and n31),n_{3}\geq 1), S˙1n\dot{S}_{1}^{n} (n8),(n\geq 8), S˙2n\dot{S}_{2}^{n} (n10),(n\geq 10),

(iv)(iv) [G˙,v,s,u,H˙][\dot{G},v,s,u,\dot{H}] (s3)(s\geq 3), where (G˙,v),(\dot{G},v), (H˙,u){(G˙412,v12),(\dot{H},u)\in\{(\dot{G}_{4}^{12},v_{12}), (G˙29,v9),(Ta,1,a1,va1),(\dot{G}_{2}^{9},v_{9}),(T_{a,1,a-1},v_{a-1}), (Q˙n1,n1,vn1),(G˙510,v10),(P4,v2)},(\dot{Q}^{\prime}_{n_{1},n_{1}},v_{n_{1}}),(\dot{G}_{5}^{10},v_{10}),(P_{4},v_{2})\}, a3a\geq 3 and n11n_{1}\geq 1,

(v)(v) (Q˙1,0,v1,2,v2,P4),(\dot{Q}^{\prime}_{1,0},v_{1},2,v_{2},P_{4}), (Q˙a4,a4,va4,2,v2,P4),(\dot{Q}^{\prime}_{a_{4},a_{4}},v_{a_{4}},2,v_{2},P_{4}), (Q˙b,b,vb,2,va31,Ta3,1,a31)(\dot{Q}^{\prime}_{b,b},v_{b},2,v_{a_{3}-1},T_{a_{3},1,a_{3}-1}) (ba31)(b\geq a_{3}-1), (Q˙1,0,v1,2,va31,Ta3,1,a31)(\dot{Q}^{\prime}_{1,0},v_{1},2,v_{a_{3}-1},T_{a_{3},1,a_{3}-1}), (Q˙a1,a1,va1,2,v1,Q˙1,0),(\dot{Q}_{a_{1},a_{1}}^{\prime},v_{a_{1}},2,v_{1},\dot{Q}^{\prime}_{1,0}), (Q˙a3,a3,va3,2,va2,Q˙a2,a2),(\dot{Q}_{a_{3},a_{3}}^{\prime},v_{a_{3}},2,v_{a_{2}},\dot{Q}_{a_{2},a_{2}}^{\prime}), (G˙510,v10,2,(\dot{G}_{5}^{10},v_{10},2, v1,Q˙1,0),v_{1},\dot{Q}^{\prime}_{1,0}), (G˙510,v10,2,va4,Q˙a4,a4)(\dot{G}_{5}^{10},v_{10},2,v_{a_{4}},\dot{Q}^{\prime}_{a_{4},a_{4}}), (G˙29,v9,2,v2,P4),(\dot{G}_{2}^{9},v_{9},2,v_{2},P_{4}), (G˙29,v9,2,v2,T3,1,2),(\dot{G}_{2}^{9},v_{9},2,v_{2},T_{3,1,2}), (G˙29,v9,2,v3,T4,1,3)(\dot{G}_{2}^{9},v_{9},2,v_{3},T_{4,1,3}), (G˙29,v9,(\dot{G}_{2}^{9},v_{9}, 2,v1,Q˙1,0),2,v_{1},\dot{Q}^{\prime}_{1,0}), (G˙29,v9,2,va2,Q˙a2,a2),(\dot{G}_{2}^{9},v_{9},2,v_{a_{2}},\dot{Q}^{\prime}_{a_{2},a_{2}}), (G˙311,v11,2,v2,T3,1,2),(\dot{G}_{3}^{11},v_{11},2,v_{2},T_{3,1,2}), (G˙311,v11,2,v3,T4,1,3)(\dot{G}_{3}^{11},v_{11},2,v_{3},T_{4,1,3}), (G˙311,(\dot{G}_{3}^{11}, v11,2,va2,Q˙a2,a2)v_{11},2,v_{a_{2}},\dot{Q}^{\prime}_{a_{2},a_{2}}), (G˙412,v12,2,v1,Q˙1,0),(\dot{G}_{4}^{12},v_{12},2,v_{1},\dot{Q}^{\prime}_{1,0}), (G˙412,v12,2,va4,Q˙a4,a4)(\dot{G}_{4}^{12},v_{12},2,v_{a_{4}},\dot{Q}^{\prime}_{a_{4},a_{4}}), where aiia_{i}\geq i for i=1,2,3,4i=1,2,3,4.

The above mentioned signed graphs are depicted in Figs. 2, 5, 6 and 7.

Remark 2.5.

(1)(1) In Appendix A, we will prove that each signed graph of Theorem 2.4 (iii)(iii) and (iv)(iv) has spectral radius ρ(G˙)<λ\rho(\dot{G})<\lambda^{\ast}. See Lemma 4.21.

(2)(2) Each signed graph of Theorem 2.4 (v)(v) belongs to Lemma 3.5.

Refer to caption
Figure 6: The signed graphs in Theorem 2.4.

3 Preliminaries

The sign of a cycle C˙\dot{C} of G˙\dot{G} is σ(C˙)=eC˙σ(e)\sigma(\dot{C})=\prod_{e\in\dot{C}}\sigma(e), whose sign is +1+1 (resp. 1-1) is called positive (resp. negative) and denoted by C˙n+\dot{C}_{n}^{+} (resp. C˙n\dot{C}_{n}^{-}). A signed graph G˙\dot{G} is called balanced if all its cycles are positive; otherwise it is called unbalanced. If there is a vertex subset SV(G˙)S\subseteq V(\dot{G}), such that G˙S\dot{G}^{S} is obtained by reversing the sign of every edge with one end in SS and the other in V(G˙)SV(\dot{G})\setminus S, then we say that G˙\dot{G} and G˙S\dot{G}^{S} are switching equivalent and write G˙G˙S\dot{G}\sim\dot{G}^{S}. If G˙\dot{G} is isomorphic to a signed graph switching equivalent to G1˙\dot{G_{1}}, we say G˙\dot{G} is switching isomorphic to G1˙\dot{G_{1}}, denoted by G˙G1˙\dot{G}\simeq\dot{G_{1}}. Switching isomorphic signed graphs share the same spectrum. More basic results on the signed graphs, see [15].

Refer to caption
Figure 7: The graph PnP_{n} and the signed graphs G˙1n,\dot{G}_{1}^{n}, G˙2n,\dot{G}_{2}^{n}, G˙3n,\dot{G}_{3}^{n}, G˙4n\dot{G}_{4}^{n} and G˙5n\dot{G}_{5}^{n}.

As usual, dud_{u} is the degree of a vertex uu and Δ(G˙)=maxuV(G˙)du\Delta(\dot{G})=max_{u\in V(\dot{G})}d_{u}. Let NX(u)N_{X}(u) be the set of neighbours of a vertex uu in a set XX and dX(u)d_{X}(u) be the cardinality of NX(u)N_{X}(u). For UV(G˙),U\subset V(\dot{G}), G˙[U]\dot{G}[U] denotes the induced subgraph of G˙\dot{G} respect to the U.U. The signed graph C˙k1\dot{C}_{k}^{1} (resp. 𝒞˙k1\dot{\mathcal{C}}_{k}^{1}) is obtained by a balanced cycle C˙k+\dot{C}_{k}^{+} (resp. an unbalanced cycle C˙k\dot{C}_{k}^{-}) with one pendent edge. The signed graph 𝒞˙ki,j\dot{\mathcal{C}}_{k}^{i,j} (iji\neq j) is obtained by an unbalanced cycle C˙k\dot{C}_{k}^{-} with one pendent edge at vertex viv_{i} (in C˙k\dot{C}_{k}^{-}) and one pendent edge at vertex vjv_{j} (in C˙k\dot{C}_{k}^{-}).

A signed graph is called maximal with respect to some property 𝒫\mathcal{P} if it is not a proper induced subgraph of some other signed graph satisfying 𝒫.\mathcal{P}. In this context, we call a signed graph is maximal if it is not a proper induced subgraph of some other signed graphs whose spectral radius does not exceed λ\lambda^{\ast}.

Given a signed graph H˙\dot{H} and ρ(H˙)2\rho(\dot{H})\leq 2, a subset UU of V(H˙),V(\dot{H}), and a vertex ww not in V(H˙),V(\dot{H}), the signed graph H˙U(w)\dot{H}_{U}(w) is obtained by inserting the edges (the sign of edge is any) between ww and all vertices of U.U. We call that ww is a good vertex if 2<ρ(H˙U(w))λ2<\rho(\dot{H}_{U}(w))\leq\lambda^{\ast}.

The first lemma is interlacing theorem.

Lemma 3.1.

[3] Let AA be a symmetric matrix of order nn with eigenvalues λ1λ2λn\lambda_{1}\geq\lambda_{2}\geq\dots\geq\lambda_{n} and BB a principal submatrix of AA of order mm with eigenvalues μ1μ2μm.\mu_{1}\geq\mu_{2}\geq\dots\geq\mu_{m}. Then the eigenvalues of BB interlace the eigenvalues of A,A, that is, λiμiλnm+i\lambda_{i}\geq\mu_{i}\geq\lambda_{n-m+i} for i=1,,m.i=1,\dots,m.

Define 𝒢¯Sλ\overline{\mathcal{G}}_{S}^{\lambda^{\ast}} to be the set of the connected unbalanced signed graphs with spectral radius 2<ρ(G˙)λ.2<\rho(\dot{G})\leq\lambda^{\ast}. Note that the balanced signed graph and unsigned graph share the same spectrum, thus the main goal of this paper is to determine all signed graphs of the set 𝒢¯Sλ.\overline{\mathcal{G}}_{S}^{\lambda^{\ast}}. Some properties of the signed graph G˙\dot{G} of the set 𝒢¯Sλ\overline{\mathcal{G}}_{S}^{\lambda^{\ast}} are listed as following.

Lemma 3.2.

Let G˙𝒢Sλ\dot{G}\in\mathcal{G}_{S}^{\lambda^{\ast}}. Then Δ(G˙)4.\Delta(\dot{G})\leq 4.

Proof.

Note that ρ(G˙)2=max{λi(A(G˙)2)|i=1,,n},\rho(\dot{G})^{2}=max\{\lambda_{i}(A(\dot{G})^{2})|i=1,\dots,n\}, then ρ(G˙)2max{(A(G˙)2)ii|i=1,,n}=Δ(G˙).\rho(\dot{G})^{2}\geq max\{(A(\dot{G})^{2})_{ii}|i=1,\dots,n\}=\Delta(\dot{G}). Since Δ(G˙)ρ(G˙)2(λ)2<5,\Delta(\dot{G})\leq\rho(\dot{G})^{2}\leq(\lambda^{\ast})^{2}<5, then Δ(G˙)4.\Delta(\dot{G})\leq 4.

We designate that a signed graph H˙\dot{H} is an induced subgraph of G˙\dot{G} by writing H˙G˙\dot{H}\subset\dot{G}. If H˙\dot{H} is not an induced subgraph of G˙\dot{G}, then we say that G˙\dot{G} is H˙\dot{H}-free.

Lemma 3.3.

Let G˙𝒢¯Sλ\dot{G}\in\overline{\mathcal{G}}_{S}^{\lambda^{\ast}}. Then G˙\dot{G} is C˙3\dot{C}_{3}-free.

Proof.

Suppose on the contrary that C˙3G˙.\dot{C}_{3}\subset\dot{G}. By the table of the spectra of signed graphs with at most six vertices [4], we find that there is no signed graph G˙𝒢¯Sλ\dot{G}\in\overline{\mathcal{G}}_{S}^{\lambda^{\ast}} of order n6.n\leq 6. Next we consider n7.n\geq 7. Then G˙\dot{G} must contain an induced subgraph G˙1\dot{G}_{1} with order |V(G˙1)|=6|V(\dot{G}_{1})|=6 and ρ(G˙1)λ.\rho(\dot{G}_{1})\leq\lambda^{\ast}. By [4, page 19–40], we have G˙1T˙6.\dot{G}_{1}\sim\dot{T}_{6}. Since T˙6\dot{T}_{6} is 4-regular, then Δ(G˙)5,\Delta(\dot{G})\geq 5, which contradicts to Lemma 3.2. Hence, G˙\dot{G} is C˙3\dot{C}_{3}-free. ∎

Refer to caption
Figure 8: Forbidden signed graphs F˙1F˙11\dot{F}_{1}-\dot{F}_{11} (up to switching equivalence). The number denotes the spectral radius of corresponding signed graph.

We say that H˙\dot{H} is forbidden if ρ(H˙)>λ.\rho(\dot{H})>\lambda^{\ast}. Evidently, if H˙\dot{H} is forbidden, then G˙\dot{G} is H˙\dot{H}-free.

Lemma 3.4.

All (unsigned) graphs expect the graphs in the set 𝒢λ,\mathcal{G}^{\lambda^{\ast}}, the signed graph 𝒞˙2+11\dot{\mathcal{C}}_{2\ell+1}^{1} and the signed graphs F˙i\dot{F}_{i} (i=1,,11)(i=1,\dots,11) of Fig. 8 are forbidden.

Proof.

It is easily to see that all (unsigned) graphs expect the graphs in the set 𝒢λ,\mathcal{G}^{\lambda^{\ast}}, the signed graph 𝒞˙2+11\dot{\mathcal{C}}_{2\ell+1}^{1} (since ρ(𝒞˙2+11)=ρ(C˙2+11)\rho(\dot{\mathcal{C}}_{2\ell+1}^{1})=\rho(\dot{C}_{2\ell+1}^{1})) and the signed graphs F˙1F˙11\dot{F}_{1}-\dot{F}_{11} of Fig. 8 have spectral radius ρ(G˙)>λ.\rho(\dot{G})>\lambda^{\ast}. So all of them are forbidden by interlacing. ∎

Refer to caption
Figure 9: The signed graphs in Lemma 3.5.

The next lemma plays an important role in this paper. The proof is presented in Appendix A.

Lemma 3.5.

Let 𝒜˙1n1,n2,n3,n4,\dot{\mathcal{A}}_{1}^{n_{1},n_{2},n_{3},n_{4}}, 𝒜˙2n1,n2,n3,\dot{\mathcal{A}}_{2}^{n_{1},n_{2},n_{3}}, 𝒜˙3n1,n2,n3\dot{\mathcal{A}}_{3}^{n_{1},n_{2},n_{3}} (n1n2)(n_{1}\geq n_{2}), 𝒜˙in1,n2\dot{\mathcal{A}}_{i}^{n_{1},n_{2}} (i=4,,14),(i=4,\dots,14), 𝒜˙in1\dot{\mathcal{A}}_{i}^{n_{1}} (i=15,,19)(i=15,\dots,19) be the signed graphs depicted in Fig. 9. Then

(1)(1) if ρ(𝒜˙1n1,n2,n3,n4)λ\rho(\dot{\mathcal{A}}_{1}^{n_{1},n_{2},n_{3},n_{4}})\leq\lambda^{\ast}, then 𝒜˙1n1,n2,n3,n4\dot{\mathcal{A}}_{1}^{n_{1},n_{2},n_{3},n_{4}} is an induced subgraph of [P4,v2,s,v2,P4],[P_{4},v_{2},s,v_{2},P_{4}], [Ta3,1,a31,va31,s3,v2,P4][T_{a_{3},1,a_{3}-1},v_{a_{3}-1},s_{3},v_{2},P_{4}] or [Ta3,1,a31,va31,s,vb31,Tb3,1,b31][T_{a_{3},1,a_{3}-1},v_{a_{3}-1},s,v_{b_{3}-1},T_{b_{3},1,b_{3}-1}],

(2)(2) if ρ(𝒜˙2n1,n2,n3)λ\rho(\dot{\mathcal{A}}_{2}^{n_{1},n_{2},n_{3}})\leq\lambda^{\ast}, then 𝒜˙2n1,n2,n3\dot{\mathcal{A}}_{2}^{n_{1},n_{2},n_{3}} is an induced subgraph of (Q˙1,0,v1,2,v2,P4),(\dot{Q}^{\prime}_{1,0},v_{1},2,v_{2},P_{4}), (Q˙a4,a4,va4,2,v2,P4),(\dot{Q}^{\prime}_{a_{4},a_{4}},v_{a_{4}},2,v_{2},P_{4}), (Q˙1,0,v1,2,va31,Ta3,1,a31)(\dot{Q}^{\prime}_{1,0},v_{1},2,v_{a_{3}-1},T_{a_{3},1,a_{3}-1}), (Q˙a,a,va,2,va31,Ta3,1,a31)(\dot{Q}^{\prime}_{a,a},v_{a},2,v_{a_{3}-1},T_{a_{3},1,a_{3}-1}) ((where aa31),a\geq a_{3}-1), [Q˙a1,a1,va1,s,v2,P4][\dot{Q}^{\prime}_{a_{1},a_{1}},v_{a_{1}},s,v_{2},P_{4}] or [Q˙a1,a1,va1,s,va31,Ta3,1,a31],[\dot{Q}^{\prime}_{a_{1},a_{1}},v_{a_{1}},s,v_{a_{3}-1},T_{a_{3},1,a_{3}-1}],

(3)(3) if ρ(𝒜˙3n1,n2,n3)λ\rho(\dot{\mathcal{A}}_{3}^{n_{1},n_{2},n_{3}})\leq\lambda^{\ast}, then 𝒜˙3n1,n2,n3\dot{\mathcal{A}}_{3}^{n_{1},n_{2},n_{3}} is an induced subgraph of (Q˙a1,a1,va1,2,v1,Q˙1,0),(\dot{Q}_{a_{1},a_{1}}^{\prime},v_{a_{1}},2,v_{1},\dot{Q}^{\prime}_{1,0}), (Q˙a3,a3,va3,2,va2,Q˙a2,a2)(\dot{Q}_{a_{3},a_{3}}^{\prime},v_{a_{3}},2,v_{a_{2}},\dot{Q}_{a_{2},a_{2}}^{\prime}) or [Q˙a1,a1,va1,s,vb1,Q˙b1,b1],[\dot{Q}_{a_{1},a_{1}}^{\prime},v_{a_{1}},s,v_{b_{1}},\dot{Q}_{b_{1},b_{1}}^{\prime}],

(4)(4) if ρ(𝒜˙4n1,n2)λ\rho(\dot{\mathcal{A}}_{4}^{n_{1},n_{2}})\leq\lambda^{\ast}, then 𝒜˙4n1,n2\dot{\mathcal{A}}_{4}^{n_{1},n_{2}} is an induced subgraph of [G˙510,v10,s,v2,P4][\dot{G}_{5}^{10},v_{10},s,v_{2},P_{4}] or [G˙510,v10,s,va31,Ta3,1,a31][\dot{G}_{5}^{10},v_{10},s,v_{a_{3}-1},T_{a_{3},1,a_{3}-1}],

(5)(5) if ρ(𝒜˙5n1,n2)λ\rho(\dot{\mathcal{A}}_{5}^{n_{1},n_{2}})\leq\lambda^{\ast}, then 𝒜˙5n1,n2\dot{\mathcal{A}}_{5}^{n_{1},n_{2}} is an induced subgraph of (G˙510,v10,2,v1,Q˙1,0),(\dot{G}_{5}^{10},v_{10},2,v_{1},\dot{Q}^{\prime}_{1,0}), (G˙510,v10,2,va4,Q˙a4,a4)(\dot{G}_{5}^{10},v_{10},2,v_{a_{4}},\dot{Q}^{\prime}_{a_{4},a_{4}}) or [G˙510,v10,s,va1,Q˙a1,a1][\dot{G}_{5}^{10},v_{10},s,v_{a_{1}},\dot{Q}^{\prime}_{a_{1},a_{1}}],

(6)(6) if ρ(𝒜˙in1,n2)λ\rho(\dot{\mathcal{A}}_{i}^{n_{1},n_{2}})\leq\lambda^{\ast} (i=6,8)(i=6,8), then 𝒜˙in1,n2\dot{\mathcal{A}}_{i}^{n_{1},n_{2}} is an induced subgraph of (G˙29,v9,2,v2,P4),(\dot{G}_{2}^{9},v_{9},2,v_{2},P_{4}), [G˙29,v9,s,v2,P4],[\dot{G}_{2}^{9},v_{9},s,v_{2},P_{4}], (G˙29,v9,2,v2,T3,1,2),(\dot{G}_{2}^{9},v_{9},2,v_{2},T_{3,1,2}), (G˙29,v9,2,v3,T4,1,3)(\dot{G}_{2}^{9},v_{9},2,v_{3},T_{4,1,3}) or [G˙29,v9,s,va31,Ta3,1,a31],[\dot{G}_{2}^{9},v_{9},s,v_{a_{3}-1},T_{a_{3},1,a_{3}-1}],

(7)(7) if ρ(𝒜˙in1,n2)λ\rho(\dot{\mathcal{A}}_{i}^{n_{1},n_{2}})\leq\lambda^{\ast} (i=7,9)(i=7,9), then 𝒜˙in1,n2\dot{\mathcal{A}}_{i}^{n_{1},n_{2}} is an induced subgraph of (G˙29,v9,2,v1,Q˙1,0),(\dot{G}_{2}^{9},v_{9},2,v_{1},\dot{Q}^{\prime}_{1,0}), (G˙29,v9,2,va2,Q˙a2,a2)(\dot{G}_{2}^{9},v_{9},2,v_{a_{2}},\dot{Q}^{\prime}_{a_{2},a_{2}}) or [G˙29,v9,s,va1,Q˙a1,a1],[\dot{G}_{2}^{9},v_{9},s,v_{a_{1}},\dot{Q}^{\prime}_{a_{1},a_{1}}],

(8)(8) if ρ(𝒜˙10n1,n2)λ\rho(\dot{\mathcal{A}}_{10}^{n_{1},n_{2}})\leq\lambda^{\ast}, then 𝒜˙10n1,n2\dot{\mathcal{A}}_{10}^{n_{1},n_{2}} is an induced subgraph of [G˙311,v11,s,v2,P4],[\dot{G}_{3}^{11},v_{11},s,v_{2},P_{4}], (G˙311,v11,(\dot{G}_{3}^{11},v_{11}, 2,v2,T3,1,2),2,v_{2},T_{3,1,2}), (G˙311,v11,2,v3,T4,1,3)(\dot{G}_{3}^{11},v_{11},2,v_{3},T_{4,1,3}) or [G˙311,v11,s,va31,Ta3,1,a31],[\dot{G}_{3}^{11},v_{11},s,v_{a_{3}-1},T_{a_{3},1,a_{3}-1}],

(9)(9) if ρ(𝒜˙11n1,n2)λ\rho(\dot{\mathcal{A}}_{11}^{n_{1},n_{2}})\leq\lambda^{\ast}, then 𝒜˙11n1,n2\dot{\mathcal{A}}_{11}^{n_{1},n_{2}} is an induced subgraph of (G˙311,v11,2,v1,Q˙1,0),(\dot{G}_{3}^{11},v_{11},2,v_{1},\dot{Q}^{\prime}_{1,0}), (G˙311,v11,2,va2,Q˙a2,a2)(\dot{G}_{3}^{11},v_{11},2,v_{a_{2}},\dot{Q}^{\prime}_{a_{2},a_{2}}) or [G˙311,v11,s,va1,Q˙a1,a1],[\dot{G}_{3}^{11},v_{11},s,v_{a_{1}},\dot{Q}^{\prime}_{a_{1},a_{1}}],

(10)(10) if ρ(𝒜˙12n1,n2)λ\rho(\dot{\mathcal{A}}_{12}^{n_{1},n_{2}})\leq\lambda^{\ast}, then 𝒜˙12n1,n2\dot{\mathcal{A}}_{12}^{n_{1},n_{2}} is an induced subgraph of [G˙412,v12,s,v2,P4][\dot{G}_{4}^{12},v_{12},s,v_{2},P_{4}] or [G˙412,v12,s,va31,Ta3,1,a31],[\dot{G}_{4}^{12},v_{12},s,v_{a_{3}-1},T_{a_{3},1,a_{3}-1}],

(11)(11) if ρ(𝒜˙13n1,n2)λ\rho(\dot{\mathcal{A}}_{13}^{n_{1},n_{2}})\leq\lambda^{\ast}, then 𝒜˙13n1,n2\dot{\mathcal{A}}_{13}^{n_{1},n_{2}} is an induced subgraph of (G˙412,v12,2,v1,Q˙1,0),(\dot{G}_{4}^{12},v_{12},2,v_{1},\dot{Q}^{\prime}_{1,0}), (G˙412,v12,2,va4,Q˙a4,a4)(\dot{G}_{4}^{12},v_{12},2,v_{a_{4}},\dot{Q}^{\prime}_{a_{4},a_{4}}) or [G˙412,v12,s,va1,Q˙a1,a1],[\dot{G}_{4}^{12},v_{12},s,v_{a_{1}},\dot{Q}^{\prime}_{a_{1},a_{1}}],

(12)(12) if ρ(𝒜˙14n1,n2)λ\rho(\dot{\mathcal{A}}_{14}^{n_{1},n_{2}})\leq\lambda^{\ast}, then 𝒜˙14n1,n2[P4,v2,s]\dot{\mathcal{A}}_{14}^{n_{1},n_{2}}\subset[P_{4},v_{2},s] or 𝒜˙14n1,n2[Ta3,1,a31,va31,s]\dot{\mathcal{A}}_{14}^{n_{1},n_{2}}\subset[T_{a_{3},1,a_{3}-1},v_{a_{3}-1},s].

(13)(13) if ρ(𝒜˙in1)λ\rho(\dot{\mathcal{A}}_{i}^{n_{1}})\leq\lambda^{\ast} (i=15,16,17,18,19)(i=15,16,17,18,19), then 𝒜˙in1\dot{\mathcal{A}}_{i}^{n_{1}} is an induced subgraph of [G˙,v,s,u,H˙][\dot{G},v,s,u,\dot{H}], where (G˙,v),(\dot{G},v), (H˙,u){(G˙412,v12),(\dot{H},u)\in\{(\dot{G}_{4}^{12},v_{12}), (G˙29,v9),(G˙510,v10)},(\dot{G}_{2}^{9},v_{9}),(\dot{G}_{5}^{10},v_{10})\},

where b11,b_{1}\geq 1, b31,b_{3}\geq 1, aiia_{i}\geq i for i=1,2,3,4i=1,2,3,4 and s3s\geq 3.

Remark 3.6.

Each signed graph in Lemma 3.5 is one of the signed graphs of Theorem 2.4 (v)(v) or an induced subgraph of the signed graphs of Theorem 2.4 (iv).(iv).

Now we pay attention to the uncyclic and bicyclic signed graphs of the set 𝒢Sλ\mathcal{G}_{S}^{\lambda^{\ast}}.

Lemma 3.7.

Let G˙=(G,σ)𝒢¯Sλ\dot{G}=(G,\sigma)\in\overline{\mathcal{G}}_{S}^{\lambda^{\ast}} (GCn)(G\neq C_{n}) be a uncyclic signed graph with a kk-cycle. Then G˙\dot{G} 𝒞˙k1,k2+1,𝒞˙101,5,𝒞˙81,4,G˙80,U˙6,U˙6n1,n2,𝒜˙1n1,n2,n3,n4,𝒜˙2n1,n2,n3,𝒜˙4n1,n2,𝒜˙14n1,n2,𝒞˙4[2,2,2,2]\subset\dot{\mathcal{C}}_{k}^{1,\frac{k}{2}+1},\dot{\mathcal{C}}_{10}^{1,5},\dot{\mathcal{C}}_{8}^{1,4},\dot{G}_{8}^{0},\dot{U}_{6},\dot{U}_{6}^{n_{1},n_{2}},\dot{\mathcal{A}}_{1}^{n_{1},n_{2},n_{3},n_{4}},\dot{\mathcal{A}}_{2}^{n_{1},n_{2},n_{3}},\dot{\mathcal{A}}_{4}^{n_{1},n_{2}},\dot{\mathcal{A}}_{14}^{n_{1},n_{2}},\dot{\mathcal{C}}_{4}[2,2,2,2], 𝒞˙4[4,2,1,0]\dot{\mathcal{C}}_{4}[4,2,1,0], 𝒞˙4[2,3,1,0]\dot{\mathcal{C}}_{4}[2,3,1,0], 𝒞˙4[5,3,0,0]\dot{\mathcal{C}}_{4}[5,3,0,0], 𝒞˙4[n1,1,n3,1]\dot{\mathcal{C}}_{4}[n_{1},1,n_{3},1]. See Figs. 5, 6, 9 and 10.

Proof.

Let V(C˙k)={v1,v2,,vk}V(\dot{C}_{k})=\{v_{1},v_{2},\dots,v_{k}\} and let dv13d_{v_{1}}\geq 3 and u1u_{1} be the new neighbor of v1.v_{1}. By forbidding C˙1\dot{C}_{\ell}^{1} and 𝒞˙2+11\dot{\mathcal{C}}_{2\ell+1}^{1}, then the cycle C˙k\dot{C}_{k} is unbalanced and kk is even. In addition, by forbidding F˙1\dot{F}_{1}, if k6,k\geq 6, then dvi3d_{v_{i}}\leq 3 for all i=1,,k.i=1,\dots,k.

Case 1. k14.k\geq 14. Then dvi=2d_{v_{i}}=2 for i=2,3,,k2i=2,3,\dots,\frac{k}{2}, otherwise dvi3d_{v_{i}}\geq 3 and let uiviu_{i}\sim v_{i}, then Q2,i1,k23G˙vi+3Q_{2,i-1,\frac{k}{2}-3}\subset\dot{G}-v_{i+3} and ρ(G˙)ρ(Q2,i1,k23)>λ\rho(\dot{G})\geq\rho(Q_{2,i-1,\frac{k}{2}-3})>\lambda^{\ast}, which is a contradiction. Because of symmetry, we have dvj=2d_{v_{j}}=2 for j=k2+2,,k.j=\frac{k}{2}+2,\dots,k. If du12d_{u_{1}}\geq 2, let u2+u1,u_{2}\mathop{\sim}\limits^{+}u_{1}, then {v1,v2,v3,v4,v5,vk,vk1,vk2,u1,u2}\{v_{1},v_{2},v_{3},v_{4},v_{5},v_{k},v_{k-1},v_{k-2},u_{1},u_{2}\} induces the T2,3,4T_{2,3,4} and ρ(G˙)ρ(T2,3,4)>λ\rho(\dot{G})\geq\rho(T_{2,3,4})>\lambda^{\ast}, which is a contradiction. So du1=1.d_{u_{1}}=1. Therefore, G˙𝒞˙k1,k2+1\dot{G}\subset\dot{\mathcal{C}}_{k}^{1,\frac{k}{2}+1}.

Case 2. k=10k=10 or 12. Then du1=1d_{u_{1}}=1, otherwise du12d_{u_{1}}\geq 2 and let u2+u1,u_{2}\mathop{\sim}\limits^{+}u_{1}, then {v1,v2,v3,v4,v5,\{v_{1},v_{2},v_{3},v_{4},v_{5}, vk,vk1,vk2,u1,u2}v_{k},v_{k-1},v_{k-2},u_{1},u_{2}\} induces the T2,3,4T_{2,3,4} and ρ(G˙)ρ(T2,3,4)>λ\rho(\dot{G})\geq\rho(T_{2,3,4})>\lambda^{\ast}, which is a contradiction. So all vertices of V(G˙)V(C˙k)V(\dot{G})\setminus V(\dot{C}_{k}) are within distance 1 of the cycle C˙k.\dot{C}_{k}. By directed calculations, it is not hard to get that G˙𝒞˙101,5\dot{G}\sim\dot{\mathcal{C}}_{10}^{1,5}, 𝒞˙101,6,𝒞˙121,7\dot{\mathcal{C}}_{10}^{1,6},\dot{\mathcal{C}}_{12}^{1,7}.

Case 3. k=8k=8 or 6.6. If all vertices of V(G˙)V(C˙k)V(\dot{G})\setminus V(\dot{C}_{k}) are within distance 1 of the cycle C˙k,\dot{C}_{k}, a directed calculation leads that G˙𝒞˙61,4,𝒞˙81,4,𝒞˙81,5\dot{G}\subset\dot{\mathcal{C}}_{6}^{1,4},\dot{\mathcal{C}}_{8}^{1,4},\dot{\mathcal{C}}_{8}^{1,5} or U˙6.\dot{U}_{6}. Otherwise, we assume that du12d_{u_{1}}\geq 2 and let u2u_{2} be the new neighbor of u1.u_{1}. If k=8,k=8, by forbidding T3,3,3T_{3,3,3} and F˙2\dot{F}_{2}, then du2=1d_{u_{2}}=1 and du1=dvi=2d_{u_{1}}=d_{v_{i}}=2 for i=2,3,4,6,7,8,i=2,3,4,6,7,8, respectively. So G˙G˙80\dot{G}\subset\dot{G}_{8}^{0}. If k=6,k=6, then dv2=dv6=2d_{v_{2}}=d_{v_{6}}=2 (by forbidding F˙2\dot{F}_{2}). If dv3=3d_{v_{3}}=3 or dv5=3,d_{v_{5}}=3, let u3u_{3} (resp. u5u_{5}) be the new neighbor of v3v_{3} (resp. v5v_{5}), by forbidding F˙2\dot{F}_{2}, Q1,2,3,Q_{1,2,3}, Q2,2,2Q_{2,2,2}, F˙1\dot{F}_{1} and Q1,1,4,Q_{1,1,4}, we have du1=2d_{u_{1}}=2, du2=du3=du5=1d_{u_{2}}=d_{u_{3}}=d_{u_{5}}=1 and dv4=2d_{v_{4}}=2. Then G˙U˙6.\dot{G}\subset\dot{U}_{6}. See Fig. 10. Next we consider that dv3=dv5=2,d_{v_{3}}=d_{v_{5}}=2, then U˙6n1,n2G˙.\dot{U}_{6}^{n_{1},n_{2}}\subset\dot{G}. See Fig. 6. Since G˙\dot{G} is F˙2\dot{F}_{2}-free, then each vertex of U˙6n1,n2\dot{U}_{6}^{n_{1},n_{2}} expect the vertices of V(C˙6)V(\dot{C}_{6}) has degree at most 2. Hence, G˙U˙6n1,n2.\dot{G}\sim\dot{U}_{6}^{n_{1},n_{2}}.

Refer to caption
Figure 10: The signed graphs U˙6\dot{U}_{6}, 𝒞˙4[n1,n2,n3,n4]\dot{\mathcal{C}}_{4}[n_{1},n_{2},n_{3},n_{4}] and 𝒞˙4\dot{\mathcal{C}}_{4}^{\prime}.

Case 4. k=4.k=4. Then 𝒞˙4[n1,n2,n3,n4]G˙\dot{\mathcal{C}}_{4}[n_{1},n_{2},n_{3},n_{4}]\subset\dot{G}. Let n4=min{n1,n2,n3,n4}.n_{4}=min\{n_{1},n_{2},n_{3},n_{4}\}. If dv1=4,d_{v_{1}}=4, then n1=1,n_{1}=1, dv2=dv4=2d_{v_{2}}=d_{v_{4}}=2 (by forbidding F˙1\dot{F}_{1}) and at most one vertex of {t1,,tn3}\{t_{1},\dots,t_{n_{3}}\} has degree 3 (by forbidding F˙3\dot{F}_{3}). So, G˙𝒞˙4\dot{G}\sim\dot{\mathcal{C}}_{4}^{\prime} if dv3=4d_{v_{3}}=4 (where ρ(𝒞˙4)=2\rho(\dot{\mathcal{C}}_{4}^{\prime})=2) or G˙𝒜˙14n1,n2\dot{G}\subset\dot{\mathcal{A}}_{14}^{n_{1},n_{2}} if dv33d_{v_{3}}\leq 3. See Figs. 9 and 10. Next suppose that dvi3d_{v_{i}}\leq 3 for i=1,2,3,4.i=1,2,3,4. If there is one vertex expect v1,v2,v3,v4v_{1},v_{2},v_{3},v_{4} having degree greater than 2, without loss of generality, assume that dwi3d_{w_{i}}\geq 3 (1in11).1\leq i\leq n_{1}-1). By forbidding F˙1\dot{F}_{1}, F˙2\dot{F}_{2} and F˙3\dot{F}_{3}, then dwi=3d_{w_{i}}=3 and at most one vertex of V(G˙){v1,v3,w1,,wn1}V(\dot{G})\setminus\{v_{1},v_{3},w_{1},\dots,w_{n_{1}}\} has degree 3. If n23,n_{2}\geq 3, then ρ1(G˙)λ1(F˙8)>λ\rho_{1}(\dot{G})\geq\lambda_{1}(\dot{F}_{8})>\lambda^{\ast} (if n16n_{1}\geq 6), ρ1(G˙)λ1(F˙5)>λ\rho_{1}(\dot{G})\geq\lambda_{1}(\dot{F}_{5})>\lambda^{\ast} (if n1=5n_{1}=5) and ρ1(G˙)λ1(Q1,3,4)>λ\rho_{1}(\dot{G})\geq\lambda_{1}(Q_{1,3,4})>\lambda^{\ast} (if 2n142\leq n_{1}\leq 4), which is a contradiction. So n22.n_{2}\leq 2. Furthermore, if n2=2,n_{2}=2, then n3=0n_{3}=0 (by forbidding F˙2\dot{F}_{2}). Therefore, G˙𝒜˙1n1,n2,n3,n4\dot{G}\subset\dot{\mathcal{A}}_{1}^{n_{1},n_{2},n_{3},n_{4}} (if n2=0n_{2}=0), G˙𝒜˙2n1,n2,n3\dot{G}\subset\dot{\mathcal{A}}_{2}^{n_{1},n_{2},n_{3}} (if n2=1n_{2}=1) or G˙𝒜˙4n1,n2\dot{G}\subset\dot{\mathcal{A}}_{4}^{n_{1},n_{2}} (if n2=2n_{2}=2). If all vertices expect v1,v2,v3,v4v_{1},v_{2},v_{3},v_{4} have degree at most 2, then G˙\dot{G} is 𝒞˙4[n1,n2,n3,n4].\dot{\mathcal{C}}_{4}[n_{1},n_{2},n_{3},n_{4}]. If ni2n_{i}\geq 2 for i=1,2,3i=1,2,3, then n1=n2=n3=2n_{1}=n_{2}=n_{3}=2 by forbidding T3,3,3T_{3,3,3} and T2,3,4T_{2,3,4}. So G˙𝒞˙4[2,2,2,2]\dot{G}\subset\dot{\mathcal{C}}_{4}[2,2,2,2]. Otherwise, n21n_{2}\leq 1 or n31.n_{3}\leq 1. If n21,n_{2}\leq 1, then G˙𝒞˙4[n1,1,n3,1].\dot{G}\subset\dot{\mathcal{C}}_{4}[n_{1},1,n_{3},1]. If n31n_{3}\leq 1 and n22,n_{2}\geq 2, by forbidding F˙4,\dot{F}_{4}, F˙6,\dot{F}_{6}, F˙7,\dot{F}_{7}, F˙8\dot{F}_{8} and T2,3,4T_{2,3,4}, we have G˙𝒞˙4[n1,n2,n3,n4],\dot{G}\subset\dot{\mathcal{C}}_{4}[n_{1},n_{2},n_{3},n_{4}], where (n1,n2,n3,n4){(2,2,2,2),(4,2,1,0),(2,3,1,0),(5,3,0,0),(n1,2,0,0)}.(n_{1},n_{2},n_{3},n_{4})\in\{(2,2,2,2),(4,2,1,0),(2,3,1,0),(5,3,0,0),(n_{1},2,0,0)\}.

It is known that there are three types of bicyclic graphs in term of their base graph as described next. A bicyclic graph is said to be a bicyclic base graph if contains no pendent vertices.

The type θp,q,r\theta_{p,q,r} is the union of three internally disjoint paths Pp+2,P_{p+2}, Pq+2P_{q+2}, and Pr+2P_{r+2} which have the same two distinct end vertices, where pqr0.p\geq q\geq r\geq 0.

The type Bra,bB_{r}^{a,b} consists of two vertex disjoint cycles CaC_{a} and CbC_{b} joined by a path PrP_{r} having only its end vertices in common with the cycles, where a3,a\geq 3, b3b\geq 3 and r2.r\geq 2.

The type B0a,bB^{a,b}_{0} is the union of two cycles CaC_{a} and CbC_{b} with precisely one vertex in common, where a3a\geq 3 and b3.b\geq 3.

Lemma 3.8.

Let G˙𝒢Sλ\dot{G}\in\mathcal{G}_{S}^{\lambda^{\ast}} be a bicyclic signed base graph. Then G˙\dot{G} is switching equivalent to one of the ˙04,4,\dot{\mathcal{B}}_{0}^{4,4}, ˙r4,4,\dot{\mathcal{B}}^{4,4}_{r}, Θ˙3,3,1\dot{\Theta}_{3,3,1}, Θ˙p,1,1\dot{\Theta}_{p,1,1}, Θ˙2,2,0,\dot{\Theta}_{2,2,0}, Θ˙4,2,0,\dot{\Theta}_{4,2,0}, Θ˙6,2,0\dot{\Theta}_{6,2,0} or Θ˙8,2,0.\dot{\Theta}_{8,2,0}. See Fig. 11.

Proof.

For types B0a,bB_{0}^{a,b} and Bra,bB^{a,b}_{r}, by forbidding C˙1\dot{C}_{\ell}^{1}, 𝒞˙2+11\dot{\mathcal{C}}_{2\ell+1}^{1}, F˙1\dot{F}_{1} and F˙2,\dot{F}_{2}, then σ(C˙a)=σ(C˙b)=1\sigma(\dot{C}_{a})=\sigma(\dot{C}_{b})=-1 and a=b=4a=b=4. So G˙˙04,4\dot{G}\sim\dot{\mathcal{B}}_{0}^{4,4} or G˙˙r4,4.\dot{G}\sim\dot{\mathcal{B}}^{4,4}_{r}. For type θp,q,r,\theta_{p,q,r}, by forbidding C˙1\dot{C}_{\ell}^{1} and 𝒞˙2+11\dot{\mathcal{C}}_{2\ell+1}^{1}, then G˙Θ˙p,q,1\dot{G}\sim\dot{\Theta}_{p,q,1} (if q>1q>1, then pp and qq are odd) or G˙Θ˙p,q,0\dot{G}\sim\dot{\Theta}_{p,q,0} (pp and qq are even).

Case 1. G˙Θ˙p,q,1\dot{G}\sim\dot{\Theta}_{p,q,1}. If q3q\geq 3 and p5p\geq 5, then Q2,2,2G˙Q_{2,2,2}\subset\dot{G}, which contradicts to Lemma 3.4. Therefore, p=q=3p=q=3 or q=1q=1.

Case 2. G˙Θ˙p,q,0\dot{G}\sim\dot{\Theta}_{p,q,0}. If q4q\geq 4 (resp. p10p\geq 10), then Q2,1,2G˙Q_{2,1,2}\subset\dot{G} (resp. F˙4G˙\dot{F}_{4}\subset\dot{G}), which contradicts to Lemma 3.4. Therefore, q=2q=2 and p{2,4,6,8}.p\in\{2,4,6,8\}.

Hence, G˙Θ˙3,3,1\dot{G}\sim\dot{\Theta}_{3,3,1}, Θ˙p,1,1\dot{\Theta}_{p,1,1}, Θ˙2,2,0,\dot{\Theta}_{2,2,0}, Θ˙4,2,0,\dot{\Theta}_{4,2,0}, Θ˙6,2,0\dot{\Theta}_{6,2,0} or Θ˙8,2,0.\dot{\Theta}_{8,2,0}.

Refer to caption
Figure 11: The signed graphs ˙04,4,\dot{\mathcal{B}}_{0}^{4,4}, ˙r4,4,\dot{\mathcal{B}}^{4,4}_{r}, Θ˙p,q,1\dot{\Theta}_{p,q,1} and Θ˙p,q,0\dot{\Theta}_{p,q,0}.
Refer to caption
Figure 12: The graphs G1,G2G_{1},G_{2} and the signed graphs G˙1,G˙2,𝒳˙1,𝒳˙2\dot{G}_{1},\dot{G}_{2},\dot{\mathcal{X}}_{1},\dot{\mathcal{X}}_{2} and 𝒳˙3\dot{\mathcal{X}}_{3}.

Let G˙𝒢Sλ\dot{G}\in\mathcal{G}_{S}^{\lambda^{\ast}} be a signed graph with mn+1m\geq n+1 and C˙k\dot{C}_{k} be a cycle in G˙.\dot{G}. If each vertex outside of C˙k\dot{C}_{k} is adjacent to at most one vertex of C˙k\dot{C}_{k}, then C˙k\dot{C}_{k}\subset ˙r4,4\dot{\mathcal{B}}_{r}^{4,4} or C˙k˙04,4\dot{C}_{k}\subset\dot{\mathcal{B}}^{4,4}_{0} (by Lemma 3.8). So k=4k=4. Therefore, if k5,k\geq 5, then there is a vertex outside of C˙k\dot{C}_{k} adjacent to at least two vertices of C˙k.\dot{C}_{k}. Then we have

Lemma 3.9.

Let G˙=(G,σ)\dot{G}=(G,\sigma) be a signed graph obtained by a cycle C˙k\dot{C}_{k} and a vertex uu not in C˙k\dot{C}_{k} such that uu is adjacent to at least two vertices of C˙k\dot{C}_{k}. If ρ(G˙)λ,\rho(\dot{G})\leq\lambda^{\ast}, then G˙\dot{G} is switching equivalent to one of the Θ˙3,3,1,Θ˙k3,1,1,𝒳˙1\dot{\Theta}_{3,3,1},\dot{\Theta}_{k-3,1,1},\dot{\mathcal{X}}_{1}, 𝒳˙2\dot{\mathcal{X}}_{2} or 𝒳˙3.\dot{\mathcal{X}}_{3}. See Figs. 11 and 12.

Proof.

If dC˙k(u)=2,d_{\dot{C}_{k}}(u)=2, then G˙\dot{G} is bicyclic. By Lemma 3.8, then G˙Θ˙3,3,1\dot{G}\sim\dot{\Theta}_{3,3,1} or G˙Θ˙k3,1,1\dot{G}\sim\dot{\Theta}_{k-3,1,1}. Next assume that 3dC˙k(u)4,3\leq d_{\dot{C}_{k}}(u)\leq 4, then the underlying graph GG of G˙\dot{G} is G1G_{1} or G2.G_{2}. See Fig. 12. By forbidding C˙1\dot{C}_{\ell}^{1} and 𝒞˙2+11,\dot{\mathcal{C}}_{2\ell+1}^{1}, then the cycles 𝒞1,𝒞2,𝒞3,𝒞4\mathcal{C}_{1},\mathcal{C}_{2},\mathcal{C}_{3},\mathcal{C}_{4} in G1G_{1} and G2G_{2} are even and unbalanced. If σ(C˙k)=+1\sigma(\dot{C}_{k})=+1 and dC˙k(u)=3d_{\dot{C}_{k}}(u)=3, or σ(C˙k)=1\sigma(\dot{C}_{k})=-1 and dC˙k(u)=4d_{\dot{C}_{k}}(u)=4, then at least one of the cycles 𝒞1,𝒞2,𝒞3\mathcal{C}_{1},\mathcal{C}_{2},\mathcal{C}_{3} and 𝒞4\mathcal{C}_{4} is balanced, which is a contradiction. So, either σ(C˙k)=+1\sigma(\dot{C}_{k})=+1 and dC˙k(u)=4d_{\dot{C}_{k}}(u)=4, or σ(C˙k)=1\sigma(\dot{C}_{k})=-1 and dC˙k(u)=3.d_{\dot{C}_{k}}(u)=3. Then G˙G˙1\dot{G}\sim\dot{G}_{1} or G˙G˙2.\dot{G}\sim\dot{G}_{2}. If G˙G˙1\dot{G}\sim\dot{G}_{1}, then n1=n2=n3=n4=1n_{1}=n_{2}=n_{3}=n_{4}=1 (by forbidding 𝒞˙2+11\dot{\mathcal{C}}_{2\ell+1}^{1} and F˙1\dot{F}_{1}). If G˙G˙2\dot{G}\sim\dot{G}_{2}, then ni{1,3}n_{i}\in\{1,3\} for i=1,2,3i=1,2,3 and at most one of n1,n2n_{1},n_{2} and n3n_{3} is equal to 3 (by forbidding 𝒞˙2+11\dot{\mathcal{C}}_{2\ell+1}^{1}, Q2,2,2Q_{2,2,2} and F˙2\dot{F}_{2}). Hence, G˙𝒳˙i\dot{G}\sim\dot{\mathcal{X}}_{i} for i=1,2i=1,2 or 3. See Fig. 12. ∎

In the final of this section, we give an algorithm for searching the signed graph G˙\dot{G} with spectral radius 2<ρ(G˙)λ.2<\rho(\dot{G})\leq\lambda^{\ast}.

Algorithm 1:

Input: The adjacency matrix A0=A(G˙)=(aij)n×nA_{0}=A(\dot{G})=(a_{ij})_{n\times n} of a signed graph with order n,n, and a positive integer number k.k.

Output: The set of the matrices 𝒮k={Ak=A(G˙k)=(aij)(n+k)×(n+k)2<ρ(G˙k)λ}.\mathcal{S}_{k}=\{A_{k}=A(\dot{G}_{k})=(a_{ij})_{(n+k)\times(n+k)}\mid 2<\rho(\dot{G}_{k})\leq\lambda^{\ast}\}.

Step 1. For A0,A_{0}, constructing a vector set R1={r1=(r1,r2,,rn)rj{1,0,1},j=1,,n}R_{1}=\{\textbf{r}_{1}=(r_{1},r_{2},\dots,r_{n})\mid r_{j}\in\{-1,0,1\},j=1,\dots,n\}. (Restrict that i=1n|ri|4\sum_{i=1}^{n}|r_{i}|\leq 4 by Lemma 3.2).

(1.1) Traverse each vector r1\textbf{r}_{1} of R1R_{1} and construct a matrix A1=(A0r1Tr10),A_{1}=\begin{pmatrix}A_{0}&\textbf{r}_{1}^{T}\\ \textbf{r}_{1}&0\end{pmatrix},

(1.2) a1a_{1} \leftarrow max{|λi(A1)|i=1,n}max\{|\lambda_{i}(A_{1})|\mid i=1,n\},

(1.3) Traverse each matrix A1,A_{1}, and add A1A_{1} to the set 𝒮1\mathcal{S}_{1} if the sum of each row of the matrix |A1||A_{1}| is less than or equal to 4 (by Lemma 3.2) and a1λ,a_{1}\leq\lambda^{\ast},

Step 2. For each matrix A1A_{1} of 𝒮1,\mathcal{S}_{1}, constructing a vector set R2={r2=(r1,r2,,rn+1)rj{1,0,1},j=1,,n+1}R_{2}=\{\textbf{r}_{2}=(r_{1},r_{2},\dots,r_{n+1})\mid r_{j}\in\{-1,0,1\},j=1,\dots,n+1\}. (Restrict that i=1n+1|ri|4\sum_{i=1}^{n+1}|r_{i}|\leq 4 by Lemma 3.2).

(2.1) Traverse each vector r2\textbf{r}_{2} of R2R_{2} and construct a matrix A2=(A1r2Tr20),A_{2}=\begin{pmatrix}A_{1}&\textbf{r}_{2}^{T}\\ \textbf{r}_{2}&0\end{pmatrix},

(2.2) a2a_{2} \leftarrow max{|λi(A2)|i=1,n}max\{|\lambda_{i}(A_{2})|\mid i=1,n\},

(2.3) Traverse each matrix A2,A_{2}, and add A2A_{2} to the set 𝒮2\mathcal{S}_{2} if the sum of each row of the matrix |A2||A_{2}| is less than or equal to 4 (by Lemma 3.2) and a2λ,a_{2}\leq\lambda^{\ast},

\dots\dots

Step k. For each matrix Ak1A_{k-1} of 𝒮k1,\mathcal{S}_{k-1}, constructing a vector set Rk={rk=(r1,r2,,R_{k}=\{\textbf{r}_{k}=(r_{1},r_{2},\dots, rn+k1)rj{1,0,1},j=1,,n+k1}r_{n+k-1})\mid r_{j}\in\{-1,0,1\},j=1,\dots,n+k-1\}. (Restrict that i=1n+k1|ri|4\sum_{i=1}^{n+k-1}|r_{i}|\leq 4 by Lemma 3.2).

(k.1)(k.1) Traverse each vector rk\textbf{r}_{k} of RkR_{k} and construct a matrix Ak=(Ak1rkTrk0),A_{k}=\begin{pmatrix}A_{k-1}&\textbf{r}_{k}^{T}\\ \textbf{r}_{k}&0\end{pmatrix},

(k.2)(k.2) aka_{k} \leftarrow max{|λi(Ak)|i=1,n}max\{|\lambda_{i}(A_{k})|\mid i=1,n\},

(k.3)(k.3) Traverse each matrix Ak,A_{k}, and add AkA_{k} to the set 𝒮k\mathcal{S}_{k} if the sum of each row of the matrix |Ak||A_{k}| is less than or equal to 4 (by Lemma 3.2) and 2<akλ,2<a_{k}\leq\lambda^{\ast},

(k.4)(k.4) Output the 𝒮k.\mathcal{S}_{k}.

The whole algorithm is over.

Corollary 3.10.

Applying algorithm 1 to each signed graph of Theorem 2.4 (ii)(ii), we can check that all of them are maximal.

4 Signed graph whose spectral radius does not exceed 2+5\sqrt{2+\sqrt{5}}

In this section, we identify all signed graphs whose spectral radius does not exceed 2+5\sqrt{2+\sqrt{5}}. By Lemma 3.7, we assume that mn+1.m\geq n+1. We break into four subsections.

4.1 C˙kG˙\dot{C}_{k}\subset\dot{G} where kk is odd or k10k\geq 10

Firstly we consider that C˙kG˙\dot{C}_{k}\subset\dot{G} where kk is odd or k10k\geq 10.

Lemma 4.1.

Let G˙\dot{G} be one of the signed graphs X˙1,,X˙8\dot{X}_{1},\dots,\dot{X}_{8} where kk is odd or k10k\geq 10, see Fig. 13. Then ρ(G˙)λ\rho(\dot{G})\leq\lambda^{\ast} if and only if G˙X˙3\dot{G}\sim\dot{X}_{3} and k=10k=10.

Refer to caption
Figure 13: The signed graphs X˙1X˙8\dot{X}_{1}-\dot{X}_{8} where kk is odd or k10k\geq 10.
Proof.

If G˙X˙3\dot{G}\sim\dot{X}_{3} and k=10k=10, then G˙G˙10.\dot{G}\subset\dot{G}_{10}. Note that C˙1X˙1\dot{C}_{\ell}^{1}\subset\dot{X}_{1} (4<k4\leq\ell<k), Q2,2,2X˙2Q_{2,2,2}\subset\dot{X}_{2} or 𝒞˙2+11X˙2\dot{\mathcal{C}}_{2\ell+1}^{1}\subset\dot{X}_{2}, F9˙X˙3\dot{F_{9}}\subset\dot{X}_{3} (k12k\geq 12 and kk is even), 𝒞˙k1X˙3\dot{\mathcal{C}}_{k}^{1}\subset\dot{X}_{3} (kk is odd), C˙41X˙4,\dot{C}_{4}^{1}\subset\dot{X}_{4}, T2,3,4X˙5T_{2,3,4}\subset\dot{X}_{5} and C˙k1X˙j\dot{C}_{k}^{1}\subset\dot{X}_{j} for j=6,7,8.j=6,7,8. By Lemma 3.4, then ρ(X˙i)>λ\rho(\dot{X}_{i})>\lambda^{\ast} for i=1,,8i=1,\dots,8 expect the signed graph X˙3\dot{X}_{3} where k=10k=10. ∎

Lemma 4.2.

Let G˙𝒢¯Sλ\dot{G}\in\overline{\mathcal{G}}_{S}^{\lambda^{\ast}} be a signed graph with mn+1m\geq n+1. If C˙kG˙\dot{C}_{k}\subset\dot{G} where kk is odd or k10k\geq 10, then G˙Θ˙8,2,0,G˙10\dot{G}\subset\dot{\Theta}_{8,2,0},\dot{G}_{10} or G˙0k\dot{G}_{0}^{k} (k12(k\geq 12 and kk is even).). See Figs. 5 and 6.

Proof.

By Lemma 3.9, then Θ˙8,2,0G˙\dot{\Theta}_{8,2,0}\subset\dot{G} or Θ˙k3,1,1G˙\dot{\Theta}_{k-3,1,1}\subset\dot{G}. By Corollary 3.10, we know that Θ˙8,2,0\dot{\Theta}_{8,2,0} is maximal. Then we consider that Θ˙k3,1,1G˙\dot{\Theta}_{k-3,1,1}\subset\dot{G}. Let H˙\dot{H} be the induced subgraph of G˙\dot{G} such that Θ˙k3,1,1H˙\dot{\Theta}_{k-3,1,1}\subset\dot{H} and ρ(H˙)2\rho(\dot{H})\leq 2. Clearly, H˙T˙2k\dot{H}\subset\dot{T}_{2k}. We use the vertex label of Fig. 1 and let V(Θ˙k3,1,1)={v1,,vk,u1}V(\dot{\Theta}_{k-3,1,1})=\{v_{1},\dots,v_{k},u_{1}\}. Let ww be a good vertex in V(G˙)V(H˙)V(\dot{G})\setminus V(\dot{H}).

Claim 1. If wviw\sim v_{i} for one ii, then k=10k=10 and H˙U(w)X˙3\dot{H}_{U}(w)\sim\dot{X}_{3}.

Proof.

By Lemmas 3.4 and 3.9, then w+vi1w\mathop{\sim}\limits^{+}v_{i-1} and wvi+1w\mathop{\sim}\limits^{-}v_{i+1} for one ii (mod kk). It is not hard to get that i1i\neq 1 and uiV(H˙)u_{i}\not\in V(\dot{H}) (otherwise C˙41G˙\dot{C}_{4}^{1}\subset\dot{G} and ρ(G˙)ρ(C˙41)>λ\rho(\dot{G})\geq\rho(\dot{C}_{4}^{1})>\lambda^{\ast}). Since H˙U(w)\dot{H}_{U}(w) is not an induced subgraph of T˙2k,\dot{T}_{2k}, then one of the followings happens:

\bullet wujw\sim u_{j} for one ji±1,j\neq i\pm 1, then X˙1G˙\dot{X}_{1}\subset\dot{G} or X˙2G˙;\dot{X}_{2}\subset\dot{G};

\bullet w≁ujw\not\sim u_{j} for one j{i±1}j\in\{i\pm 1\}, then X˙3G˙;\dot{X}_{3}\subset\dot{G};

\bullet w+ujw\mathop{\sim}\limits^{+}u_{j} for one j{i±1}j\in\{i\pm 1\}, then X˙4G˙.\dot{X}_{4}\subset\dot{G}.

By Lemma 4.1, then ρ(H˙U(w))λ\rho(\dot{H}_{U}(w))\leq\lambda^{\ast} if and only if k=10k=10 and H˙U(w)X˙3\dot{H}_{U}(w)\sim\dot{X}_{3}. ∎

Claim 2. If w≁viw\not\sim v_{i} for all i=1,,ki=1,\dots,k, then wu1w\sim u_{1}. Moreover, H˙U(w)G˙0k\dot{H}_{U}(w)\sim\dot{G}_{0}^{k}.

Proof.

If w≁u1,w\not\sim u_{1}, then there is a path from the vertex ww to the vertex uiu_{i} of H˙.\dot{H}. And now X˙iG˙\dot{X}_{i}\subset\dot{G} for one i{5,6,7,8}i\in\{5,6,7,8\} and ρ(G˙)>λ\rho(\dot{G})>\lambda^{\ast} (by Lemma 4.1), which is a contradiction. So wu1.w\sim u_{1}. If uiV(H˙)u_{i}\in V(\dot{H}) for i1,i\neq 1, we also get that X˙iG˙\dot{X}_{i}\subset\dot{G} for one i{5,6,7,8}i\in\{5,6,7,8\}, which is a contradiction. Hence, H˙U(w)G˙0k\dot{H}_{U}(w)\sim\dot{G}_{0}^{k}. See Fig. 6. ∎

If k=10k=10, then H˙U(w)X˙3\dot{H}_{U}(w)\sim\dot{X}_{3} or H˙U(w)G˙010.\dot{H}_{U}(w)\sim\dot{G}_{0}^{10}. Applying algorithm 1 to A(H˙U(w))A(\dot{H}_{U}(w)), we obtain that G˙G˙10\dot{G}\subset\dot{G}_{10}.

If kk is odd, or kk is even and k12k\geq 12, then H˙U(w)G˙0k\dot{H}_{U}(w)\sim\dot{G}_{0}^{k}. If kk is odd, then 𝒞˙k1G˙,\dot{\mathcal{C}}_{k}^{1}\subset\dot{G}, which contradicts to Lemma 3.4. If kk is even and k12k\geq 12, then G˙0k\dot{G}_{0}^{k} is maximal, otherwise there is another vertex ww^{\prime} in V(G˙)V(H˙)V(\dot{G})\setminus V(\dot{H}), then wu1w^{\prime}\sim u_{1} (by Claims 1 and 2) and F˙1G˙\dot{F}_{1}\subset\dot{G}, which contradicts to Lemma 3.4. Hence, G˙G˙0k\dot{G}\sim\dot{G}_{0}^{k}. ∎

Remark 4.3.

By Lemma 4.2, we next state that the signed graph G˙\dot{G} is bipartite.

4.2 C˙8G˙\dot{C}_{8}\subset\dot{G}

Secondly we consider that G˙\dot{G} is C˙k\dot{C}_{k}-free where k10k\geq 10 and C˙8G˙\dot{C}_{8}\subset\dot{G}. By Lemma 3.9, then Θ˙5,1,1,Θ˙6,2,0,Θ˙3,3,1,𝒳˙2\dot{\Theta}_{5,1,1},\dot{\Theta}_{6,2,0},\dot{\Theta}_{3,3,1},\dot{\mathcal{X}}_{2} or 𝒳˙3\dot{\mathcal{X}}_{3} is an induced subgraph of G˙.\dot{G}. Let H˙\dot{H} be the induced subgraph of G˙\dot{G} such that Θ˙5,1,1H˙\dot{\Theta}_{5,1,1}\subset\dot{H}, Θ˙3,3,1H˙,\dot{\Theta}_{3,3,1}\subset\dot{H}, 𝒳˙2H˙\dot{\mathcal{X}}_{2}\subset\dot{H} or 𝒳˙3H˙\dot{\mathcal{X}}_{3}\subset\dot{H} and ρ(H˙)=2.\rho(\dot{H})=2.

Lemma 4.4.

Let G˙𝒢¯Sλ\dot{G}\in\overline{\mathcal{G}}_{S}^{\lambda^{\ast}} be a C˙k\dot{C}_{k}-free (k10)(k\geq 10) bipartite signed graph with mn+1m\geq n+1. If C˙8G˙\dot{C}_{8}\subset\dot{G}, then G˙G˙8i\dot{G}\subset\dot{G}_{8}^{i} for i=1,2,3.i=1,2,3. See Fig. 5.

Proof.

Applying algorithm 1 to A(Θ˙6,2,0)A(\dot{\Theta}_{6,2,0}), we obtain that G˙G˙81\dot{G}\subset\dot{G}_{8}^{1} or G˙G˙82.\dot{G}\subset\dot{G}_{8}^{2}. We next suppose that Θ˙5,1,1G˙,Θ˙3,3,1G˙,𝒳˙2G˙\dot{\Theta}_{5,1,1}\subset\dot{G},\dot{\Theta}_{3,3,1}\subset\dot{G},\dot{\mathcal{X}}_{2}\subset\dot{G} or 𝒳˙3G˙.\dot{\mathcal{X}}_{3}\subset\dot{G}.

Refer to caption
Figure 14: The signed graphs Θ˙5,1,11Θ˙5,1,110\dot{\Theta}_{5,1,1}^{1}-\dot{\Theta}_{5,1,1}^{10}.
Refer to caption
Figure 15: The signed graphs in the proof of Lemma 4.4.

If Θ˙5,1,1G˙\dot{\Theta}_{5,1,1}\subset\dot{G}, then Θ˙5,1,1H˙\dot{\Theta}_{5,1,1}\subset\dot{H}. So, H˙S˙16\dot{H}\subset\dot{S}_{16} or H˙T˙16.\dot{H}\subset\dot{T}_{16}. Then 9|V(H˙)|15.9\leq|V(\dot{H})|\leq 15. By Fig. 1, if |V(H˙)|=9,|V(\dot{H})|=9, then H˙\dot{H} is Θ˙5,1,1\dot{\Theta}_{5,1,1}; if |V(H˙)|=10,|V(\dot{H})|=10, then H˙Θ˙5,1,1i\dot{H}\sim\dot{\Theta}_{5,1,1}^{i} for i=1,,10i=1,\dots,10 (see Fig. 14); if |V(H˙)|=14|V(\dot{H})|=14 or 15,15, then H˙\dot{H} is switching isomorphic to one of the signed graphs of Fig. 15. Moreover, if 11|V(H˙)|13,11\leq|V(\dot{H})|\leq 13, then H˙\dot{H} contains one Θ˙5,1,1i\dot{\Theta}_{5,1,1}^{i} (i=1,,10i=1,\dots,10) as an induced subgraph. Now applying algorithm 1 to A(H˙)A(\dot{H}) where H˙\dot{H} is Θ˙5,1,1\dot{\Theta}_{5,1,1} or one of the signed graphs of Fig. 15, we get that there is no signed graph G˙\dot{G} with order |V(H˙)|+1|V(\dot{H})|+1 and 2<ρ(G˙)λ,2<\rho(\dot{G})\leq\lambda^{\ast}, and applying algorithm 1 to A(Θ˙5,1,1i)A(\dot{\Theta}_{5,1,1}^{i}) for i=1,,10i=1,\dots,10, we get that G˙G˙83\dot{G}\subset\dot{G}_{8}^{3}. If Θ˙3,3,1G˙\dot{\Theta}_{3,3,1}\subset\dot{G}, 𝒳˙2G˙\dot{\mathcal{X}}_{2}\subset\dot{G} or 𝒳˙3G˙\dot{\mathcal{X}}_{3}\subset\dot{G}, we can similarly get that G˙G˙83.\dot{G}\subset\dot{G}_{8}^{3}.

4.3 C˙6G˙\dot{C}_{6}\subset\dot{G}

Thirdly we consider that G˙\dot{G} is C˙k\dot{C}_{k}-free where k8k\geq 8 and C˙6G˙\dot{C}_{6}\subset\dot{G}. By Lemma 3.9, then Θ˙4,2,0G˙,Θ˙3,1,1G˙\dot{\Theta}_{4,2,0}\subset\dot{G},\dot{\Theta}_{3,1,1}\subset\dot{G} or 𝒳˙1G˙\dot{\mathcal{X}}_{1}\subset\dot{G}. Let H˙\dot{H} be the induced subgraph of G˙\dot{G} such that Θ˙4,2,0H˙,\dot{\Theta}_{4,2,0}\subset\dot{H}, Θ˙3,1,1H˙\dot{\Theta}_{3,1,1}\subset\dot{H} or 𝒳˙1H˙\dot{\mathcal{X}}_{1}\subset\dot{H} and ρ(H˙)2\rho(\dot{H})\leq 2.

Refer to caption
Figure 16: The signed graphs Θ˙4,2,01Θ˙4,2,04\dot{\Theta}_{4,2,0}^{1}-\dot{\Theta}_{4,2,0}^{4}, G˙6,\dot{G}_{6}^{\prime}, G˙6′′\dot{G}_{6}^{\prime\prime}, Θ˙3,1,11\dot{\Theta}_{3,1,1}^{1}Θ˙3,1,16\dot{\Theta}_{3,1,1}^{6}, S˙141S˙144\dot{S}_{14}^{1}-\dot{S}_{14}^{4}.
Lemma 4.5.

Let G˙𝒢¯Sλ\dot{G}\in\overline{\mathcal{G}}_{S}^{\lambda^{\ast}} be a C˙k\dot{C}_{k}-free (k8)(k\geq 8) bipartite signed graph with mn+1m\geq n+1. If C˙6G˙\dot{C}_{6}\subset\dot{G}, then G˙G˙61,G˙62,G˙63,G˙64,G˙65,G˙66,G˙67,G˙83,S˙1n\dot{G}\subset\dot{G}_{6}^{1},\dot{G}_{6}^{2},\dot{G}_{6}^{3},\dot{G}_{6}^{4},\dot{G}_{6}^{5},\dot{G}_{6}^{6},\dot{G}_{6}^{7},\dot{G}_{8}^{3},\dot{S}_{1}^{n} or S˙2n.\dot{S}_{2}^{n}. See Figs. 5 and 6.

Proof.

If Θ˙4,2,0H˙,\dot{\Theta}_{4,2,0}\subset\dot{H}, then H˙S˙14\dot{H}\subset\dot{S}_{14} or H˙S˙16\dot{H}\subset\dot{S}_{16}. Since G˙\dot{G} is C˙k\dot{C}_{k}-free (k8),(k\geq 8), by Fig. 1, then H˙Θ˙4,2,0i\dot{H}\subset\dot{\Theta}_{4,2,0}^{i} for i=1,2,3,4.i=1,2,3,4. See Fig. 16. Applying algorithm 1 to A(H˙)A(\dot{H}) where H˙Θ˙4,2,0i\dot{H}\subset\dot{\Theta}_{4,2,0}^{i} for i=1,2,3,4i=1,2,3,4, we get that G˙G˙83\dot{G}\subset\dot{G}^{3}_{8} or G˙G˙6i\dot{G}\subset\dot{G}^{i}_{6} for i=1,2,3,4,5,6i=1,2,3,4,5,6.

Refer to caption
Figure 17: The signed graphs H˙1nH˙3n\dot{H}_{1}^{n}-\dot{H}_{3}^{n}.

If Θ˙3,1,1H˙\dot{\Theta}_{3,1,1}\subset\dot{H}, then H˙S˙14\dot{H}\subset\dot{S}_{14} or H˙T˙12\dot{H}\subset\dot{T}_{12}. So, 7|V(H˙)|13.7\leq|V(\dot{H})|\leq 13. By Fig. 1, if n=7,n=7, then H˙\dot{H} is Θ˙3,1,1;\dot{\Theta}_{3,1,1}; if |V(H˙)|=8|V(\dot{H})|=8, then H˙Θ˙3,1,1i\dot{H}\sim\dot{\Theta}_{3,1,1}^{i} for i=1,,6i=1,\dots,6; if |V(H˙)|=12|V(\dot{H})|=12 or 13, then H˙S˙14i\dot{H}\sim\dot{S}_{14}^{i} for i=1,2,3,4i=1,2,3,4. See Fig. 16. Moreover, if 9|V(H˙)|11,9\leq|V(\dot{H})|\leq 11, then H˙\dot{H} contains one Θ˙3,1,1i\dot{\Theta}_{3,1,1}^{i} (i=1,,6i=1,\dots,6) as an induced subgraph. Now applying algorithm 1 to A(Θ˙3,1,1)A(\dot{\Theta}_{3,1,1}) and A(S˙14i)A(\dot{S}_{14}^{i}) for i=1,2,3,4i=1,2,3,4, then there is no signed graph G˙\dot{G} with order |V(H˙)|+1|V(\dot{H})|+1 and 2<ρ(G˙)λ,2<\rho(\dot{G})\leq\lambda^{\ast}, and applying algorithm 1 to A(Θ˙3,1,1i)A(\dot{\Theta}_{3,1,1}^{i}) for i=1,,6i=1,\dots,6, we can get all signed graphs G˙𝒢¯Sλ\dot{G}\in\overline{\mathcal{G}}_{S}^{\lambda^{\ast}} (where Θ˙3,1,1iG˙\dot{\Theta}_{3,1,1}^{i}\subset\dot{G}) of order n12,n\leq 12, which are the induced subgraphs of G˙67\dot{G}_{6}^{7} or S˙112\dot{S}_{1}^{12}. Notice that |V(G˙67)|=11|V(\dot{G}_{6}^{7})|=11. See Figs. 5 and 6. If n13,n\geq 13, then S˙112G˙\dot{S}_{1}^{12}\subset\dot{G}. Set V(G˙)V(S˙112)={v13,,vn}.V(\dot{G})\setminus V(\dot{S}_{1}^{12})=\{v_{13},\dots,v_{n}\}. Since S˙112\dot{S}_{1}^{12} is the unique signed graph of order 12 such that Θ˙3,1,1G˙\dot{\Theta}_{3,1,1}\subset\dot{G} and 2<ρ(G˙)λ2<\rho(\dot{G})\leq\lambda^{\ast}, then vj≁viv_{j}\not\sim v_{i} for each j13j\geq 13 and all i11.i\leq 11. By forbidding F˙2\dot{F}_{2}, then dvi2d_{v_{i}}\leq 2 for all i12i\geq 12. Hence, G˙S˙1n\dot{G}\sim\dot{S}_{1}^{n} and S˙1n\dot{S}_{1}^{n} is maximal.

If 𝒳˙1H˙\dot{\mathcal{X}}_{1}\subset\dot{H}, then H˙S˙14\dot{H}\subset\dot{S}_{14} or H˙S˙16.\dot{H}\subset\dot{S}_{16}. From above discussions, we can suppose that H˙\dot{H} is {Θ˙4,2,0,Θ˙3,1,1}\{\dot{\Theta}_{4,2,0},\dot{\Theta}_{3,1,1}\}-free. By Fig. 1, then H˙G˙6\dot{H}\subset\dot{G}_{6}^{\prime}, H˙G˙6′′\dot{H}\subset\dot{G}_{6}^{\prime\prime} or H˙S˙211\dot{H}\subset\dot{S}_{2}^{11}. See Figs. 16 and 6. Similarly, applying algorithm 1 to A(H˙)A(\dot{H}), then all signed graphs G˙𝒢¯Sλ\dot{G}\in\overline{\mathcal{G}}_{S}^{\lambda^{\ast}} of order n14n\leq 14 can be found, which are the induced subgraphs of H˙i14\dot{H}^{14}_{i} (i=1,2,3i=1,2,3) or S˙214.\dot{S}_{2}^{14}. See Figs. 17 and 6. If n15,n\geq 15, then S˙214G˙\dot{S}_{2}^{14}\subset\dot{G} or H˙i14G˙\dot{H}^{14}_{i}\subset\dot{G} (i=1,2,3i=1,2,3).

Case 1. S˙214G˙.\dot{S}_{2}^{14}\subset\dot{G}. Set V(G˙)V(S˙214)={v15,,vn}.V(\dot{G})\setminus V(\dot{S}_{2}^{14})=\{v_{15},\dots,v_{n}\}. Since H˙114,H˙214,H˙314\dot{H}^{14}_{1},\dot{H}^{14}_{2},\dot{H}^{14}_{3} and S˙214\dot{S}_{2}^{14} are the only four signed graphs of order n=14n=14 such that 𝒳˙1G˙\dot{\mathcal{X}}_{1}\subset\dot{G} and 2<ρ(G˙)λ2<\rho(\dot{G})\leq\lambda^{\ast}, then vj≁viv_{j}\not\sim v_{i} for each j15j\geq 15 and all i9.i\leq 9. By forbidding F˙2\dot{F}_{2}, then dvi2d_{v_{i}}\leq 2 for all i10i\geq 10. Hence, G˙S˙2n\dot{G}\sim\dot{S}_{2}^{n} and S˙2n\dot{S}_{2}^{n} is maximal.

Case 2. H˙i14G˙\dot{H}^{14}_{i}\subset\dot{G} for i=1,2i=1,2 or 33. We will prove that G˙S˙2n.\dot{G}\subset\dot{S}_{2}^{n}. Set V(G˙)V(H˙314)={v15,,vn}.V(\dot{G})\setminus V(\dot{H}^{14}_{3})=\{v_{15},\dots,v_{n}\}. If there is a vertex vjv_{j} (j15j\geq 15) adjacent to some vertices of {v1,,v13},\{v_{1},\dots,v_{13}\}, then G˙[{v1,,v13,vj}]S˙214\dot{G}[\{v_{1},\dots,v_{13},v_{j}\}]\simeq\dot{S}_{2}^{14} and S˙214G˙\dot{S}_{2}^{14}\subset\dot{G}. By case 1, then G˙S˙2n\dot{G}\subset\dot{S}_{2}^{n}. Otherwise, vj≁viv_{j}\not\sim v_{i} for each j15j\geq 15 and all i13i\leq 13. By forbidding F˙2\dot{F}_{2}, then dvi2d_{v_{i}}\leq 2 for all i9i\geq 9. Hence, G˙H˙3n\dot{G}\subset\dot{H}_{3}^{n} and G˙S˙2n.\dot{G}\subset\dot{S}_{2}^{n}. The proofs of the cases H˙114G˙\dot{H}^{14}_{1}\subset\dot{G} or H˙214G˙\dot{H}^{14}_{2}\subset\dot{G} are similar. ∎

4.4 G˙\dot{G} is C˙k\dot{C}_{k}-free where k=3k=3 or k5k\geq 5

In last subsection we shall consider that G˙\dot{G} is C˙k\dot{C}_{k}-free where k=3k=3 or k5k\geq 5, i.e., k4.k\neq 4. For convenience, let H˙\dot{H} be the induced subgraph of G˙\dot{G} such that ρ(H˙)2\rho(\dot{H})\leq 2. Since H˙\dot{H} may not be unique, we choose one that the order of H˙\dot{H} is maximal.

4.4.1 Θ˙2,2,0G˙\dot{\Theta}_{2,2,0}\subset\dot{G}

Refer to caption
Figure 18: The signed graphs 𝒜˙1𝒜˙10\dot{\mathcal{A}}_{1}-\dot{\mathcal{A}}_{10}.
Refer to caption
Figure 19: The signed graphs B˙1B˙19\dot{B}_{1}-\dot{B}_{19}.

First of all, we focus on that the order of G˙\dot{G} is less than or equal to 14.14.

Lemma 4.6.

Let G˙𝒢¯Sλ\dot{G}\in\overline{\mathcal{G}}_{S}^{\lambda^{\ast}} be a C˙k\dot{C}_{k}-free (where k=3k=3 or k5k\geq 5) bipartite signed graph of order n14n\leq 14. If Θ˙2,2,0G˙\dot{\Theta}_{2,2,0}\subset\dot{G}, then G˙\dot{G} is the induced subgraph of H˙1,,H˙5,B˙1,,B˙19\dot{H}_{1},\dots,\dot{H}_{5},\dot{B}_{1},\dots,\dot{B}_{19} ((up to switching equivalence)). See Figs. 5 and 19.

Proof.

If Θ˙2,2,0G˙\dot{\Theta}_{2,2,0}\subset\dot{G}, then Θ˙2,2,0H˙\dot{\Theta}_{2,2,0}\subset\dot{H}. Obviously, H˙S˙14\dot{H}\subset\dot{S}_{14} or H˙S˙16.\dot{H}\subset\dot{S}_{16}. By Fig. 1, then H˙𝒜˙i\dot{H}\subset\dot{\mathcal{A}}_{i} for i=1,,10i=1,\dots,10 and |V(H˙)|10.|V(\dot{H})|\leq 10. See Fig. 18. Applying algorithm 1 to A(H˙),A(\dot{H}), then all signed graphs G˙𝒢¯Sλ\dot{G}\in\overline{\mathcal{G}}_{S}^{\lambda^{\ast}} of order n14n\leq 14 can be found, which are the induced subgraphs of H˙1,,H˙5,B˙1,,B˙19\dot{H}_{1},\dots,\dot{H}_{5},\dot{B}_{1},\dots,\dot{B}_{19} (up to switching equivalence). ∎

Remark 4.7.

(1)(1) By algorithm 1, we can check that the signed graphs B˙1,B˙2,B˙3\dot{B}_{1},\dot{B}_{2},\dot{B}_{3} and B˙4\dot{B}_{4} are maximal C˙k\dot{C}_{k}-free (where k=3k=3 or k5k\geq 5) signed graphs.

(2)(2) B˙1G˙83,\dot{B}_{1}\subset\dot{G}_{8}^{3}, B˙2G˙83\dot{B}_{2}\subset\dot{G}_{8}^{3}, B˙3G˙66,\dot{B}_{3}\subset\dot{G}_{6}^{6}, B˙4G˙10\dot{B}_{4}\subset\dot{G}_{10}, B˙i[G˙412,v12,s]\dot{B}_{i}\subset[\dot{G}^{12}_{4},v_{12},s] for i=5,,8i=5,\dots,8 and B˙i[G˙29,v9,s]\dot{B}_{i}\subset[\dot{G}_{2}^{9},v_{9},s] for i=9,,19i=9,\dots,19.

(3)(3) If n15,n\geq 15, then G˙\dot{G} is {H˙1,,H˙5,B˙1,,B˙4}\{\dot{H}_{1},\dots,\dot{H}_{5},\dot{B}_{1},\dots,\dot{B}_{4}\}-free. Furthermore, let VV^{\prime} be the vertex subset of V(G˙)V(Θ˙2,2,0)V(\dot{G})\setminus V(\dot{\Theta}_{2,2,0}) with order 88, then G˙[V(Θ˙2,2,0)V]\dot{G}[V(\dot{\Theta}_{2,2,0})\cup V^{\prime}] is disconnected or switching equivalent to B˙i\dot{B}_{i} for one i=5,,19.i=5,\dots,19.

Secondly, we consider that n15n\geq 15. By Lemma 4.6, then G˙imi\dot{G}_{i}^{m_{i}} (i=1,2,3i=1,2,3 or 44) is an induced subgraph of G˙,\dot{G}, where m19,m_{1}\geq 9, m210,m_{2}\geq 10, m312m_{3}\geq 12 and m414.m_{4}\geq 14. See Fig. 6. Without loss of generality, assume that the choice of mim_{i} is largest. Let

V(G˙1m1)=V1V2,whereV1={v1,,v8}andV2={v9,,vm1},V(G˙2m2)=V1V2,whereV1={v1,,v9}andV2={v10,,vm2},V(G˙3m3)=V1V2,whereV1={v1,,v11}andV2={v12,,vm3},V(G˙4m4)=V1V2,whereV1={v1,,v12}andV2={v13,,vm4}.\begin{split}&V(\dot{G}_{1}^{m_{1}})=V_{1}\cup V_{2},~{}\text{where}~{}V_{1}=\{v_{1},\dots,v_{8}\}~{}\text{and}~{}V_{2}=\{v_{9},\dots,v_{m_{1}}\},\\ &V(\dot{G}_{2}^{m_{2}})=V_{1}\cup V_{2},~{}\text{where}~{}V_{1}=\{v_{1},\dots,v_{9}\}~{}\text{and}~{}V_{2}=\{v_{10},\dots,v_{m_{2}}\},\\ &V(\dot{G}_{3}^{m_{3}})=V_{1}\cup V_{2},~{}\text{where}~{}V_{1}=\{v_{1},\dots,v_{11}\}~{}\text{and}~{}V_{2}=\{v_{12},\dots,v_{m_{3}}\},\\ &V(\dot{G}_{4}^{m_{4}})=V_{1}\cup V_{2},~{}\text{where}~{}V_{1}=\{v_{1},\dots,v_{12}\}~{}\text{and}~{}V_{2}=\{v_{13},\dots,v_{m_{4}}\}.\end{split} (4.1)
Lemma 4.8.

Let x1x_{1} and x2x_{2} be two vertices in V(G˙)V(G˙imi)V(\dot{G})\setminus V(\dot{G}_{i}^{m_{i}}) (i=1,2,3(i=1,2,3 or 4)4). Then dV1(x1)=0d_{V_{1}}(x_{1})=0 or dV2(x1)=0.d_{V_{2}}(x_{1})=0. Furthermore, if x1vix_{1}\sim v_{i} and x2vjx_{2}\sim v_{j} where viV1v_{i}\in V_{1} and vjV2,v_{j}\in V_{2}, then x1≁x2x_{1}\not\sim x_{2}.

Proof.

Suppose on the contrary that dV1(x1)1d_{V_{1}}(x_{1})\geq 1 and dV2(x1)1.d_{V_{2}}(x_{1})\geq 1. Then x1vix_{1}\sim v_{i} and x1vjx_{1}\sim v_{j} where viV1v_{i}\in V_{1} and vjV2.v_{j}\in V_{2}. If j15j\geq 15, then {vi,vi+1,,vj,x1}\{v_{i},v_{i+1},\dots,v_{j},x_{1}\} induces a cycle C˙\dot{C}_{\ell} (5)(\ell\geq 5), which is a contradiction. If j14,j\leq 14, then G˙\dot{G} contains a C˙\dot{C}_{\ell} (5)(\ell\geq 5) or G˙[{v1,,v13,x1}]\dot{G}[\{v_{1},\dots,v_{13},x_{1}\}] is not switching equivalent to B˙i\dot{B}_{i} for i=5,,19,i=5,\dots,19, which is a contradiction. So dV1(x1)=0d_{V_{1}}(x_{1})=0 or dV2(x1)=0.d_{V_{2}}(x_{1})=0. Furthermore, if x1vix_{1}\sim v_{i} and x2vjx_{2}\sim v_{j} where viV1v_{i}\in V_{1} and vjV2,v_{j}\in V_{2}, and if x1x2x_{1}\sim x_{2}, then G˙[{v1,,v12,x1,x2}]\dot{G}[\{v_{1},\dots,v_{12},x_{1},x_{2}\}] contains a C˙\dot{C}_{\ell} (5)(\ell\geq 5) or is not switching equivalent to B˙i\dot{B}_{i} for i=5,,19,i=5,\dots,19, which is a contradiction. So x1≁x2x_{1}\not\sim x_{2}. ∎

Then we let

V(G˙)V(G˙imi)=U0U1U2,where i=1,2,3 or 4,\begin{split}V(\dot{G})\setminus V(\dot{G}_{i}^{m_{i}})=U_{0}\cup U_{1}\cup U_{2},~{}\text{where $i=1,2,3$ or 4,}\end{split} (4.2)

where each vertex in U0U_{0} is adjacent to no vertex of V(G˙imi),V(\dot{G}_{i}^{m_{i}}), each vertex in U1U_{1} is adjacent to some vertices of V1V_{1} and each vertex in U2U_{2} is adjacent to some vertices of V2.V_{2}.

Set |Ui|=ai|U_{i}|=a_{i} for i=0,1,2i=0,1,2, then we have

Lemma 4.9.

(1)(1) If U0U_{0} is nonempty, then a0=1a_{0}=1 and there is a vertex w2w_{2} in U2U_{2} such that G˙[V(G˙imi){w2}U0]𝒜˙2i+5n1,n2\dot{G}[V(\dot{G}_{i}^{m_{i}})\cup\{w_{2}\}\cup U_{0}]\sim\dot{\mathcal{A}}_{2i+5}^{n_{1},n_{2}} for i=1,2,3,4i=1,2,3,4. See Fig. 9.

(2)(2) If G˙imiG˙\dot{G}_{i}^{m_{i}}\subset\dot{G} for i=1,2i=1,2, then G˙[V1U1]G˙410\dot{G}[V_{1}\cup U_{1}]\subset\dot{G}_{4}^{10}; if G˙imiG˙\dot{G}_{i}^{m_{i}}\subset\dot{G} for i=3,4i=3,4, then G˙[V1U1]G˙412.\dot{G}[V_{1}\cup U_{1}]\subset\dot{G}_{4}^{12}.

Proof.

(1) Let w1w_{1} be a vertex in U0.U_{0}. Then there is a shortest path Pw1vj=w1wvjP_{w_{1}v_{j}}=w_{1}\dots w_{\ell}v_{j} (2\ell\geq 2) from w1w_{1} to a vertex vjV(G˙imi)v_{j}\in V(\dot{G}_{i}^{m_{i}}). If vjV1,v_{j}\in V_{1}, we can find a connected induced subgraph G˙\dot{G}^{\prime} of G˙\dot{G} with order |V(G˙)|=14|V(\dot{G}^{\prime})|=14 and is not switching equivalent to B˙i\dot{B}_{i} for i=5,,19,i=5,\dots,19, which contradicts to Remark 4.7 (3). Then vjV2.v_{j}\in V_{2}. Since G˙\dot{G} is {F1˙,F˙2,G˙imi+1}\{\dot{F_{1}},\dot{F}_{2},\dot{G}_{i}^{m_{i}+1}\}-free, then =2\ell=2 and dV2(w)=2d_{V_{2}}(w_{\ell})=2. Therefore, G˙[V(G˙imi){w1,w2}]𝒜˙2i+5n1,n2\dot{G}[V(\dot{G}_{i}^{m_{i}})\cup\{w_{1},w_{2}\}]\sim\dot{\mathcal{A}}_{2i+5}^{n_{1},n_{2}} for i=1,2,3,4.i=1,2,3,4. If a02,a_{0}\geq 2, then there is another vertex w1w1w_{1}^{\prime}\neq w_{1} in U0U_{0} and a vertex w2w_{2}^{\prime} in U2U_{2} such that G˙[V(G˙imi){w1,w2}]𝒜˙2i+5n1,n2\dot{G}[V(\dot{G}_{i}^{m_{i}})\cup\{w_{1}^{\prime},w_{2}^{\prime}\}]\sim\dot{\mathcal{A}}_{2i+5}^{n_{1},n_{2}}. And now we can check that F˙1G˙,\dot{F}_{1}\subset\dot{G}, F2˙G˙\dot{F_{2}}\subset\dot{G} or F˙3G˙,\dot{F}_{3}\subset\dot{G}, which contradicts to Lemma 3.4. Hence, a0=1.a_{0}=1.

(2) Choose 14(|V1|+a1)14-(|V_{1}|+a_{1}) vertices (say vertex set V1V_{1}^{\prime}) from V2U0U2V_{2}\cup U_{0}\cup U_{2} such that G˙[V1V1]\dot{G}[V_{1}\cup V_{1}^{\prime}] is connected. By Remark 4.7 (3), then G˙[V1V1U1]B˙i\dot{G}[V_{1}\cup V_{1}^{\prime}\cup U_{1}]\sim\dot{B}_{i} for one i=5,,19.i=5,\dots,19. It is not hard to see that if G˙imiG˙\dot{G}_{i}^{m_{i}}\subset\dot{G} for i=1,2i=1,2, then G˙[V1U1]G˙410\dot{G}[V_{1}\cup U_{1}]\subset\dot{G}_{4}^{10}; if G˙imiG˙\dot{G}_{i}^{m_{i}}\subset\dot{G} for i=3,4i=3,4, then G˙[V1U1]G˙412.\dot{G}[V_{1}\cup U_{1}]\subset\dot{G}_{4}^{12}.

Refer to caption
Figure 20: The signed graph Θ˙2,2,0t\dot{\varTheta}_{2,2,0}^{t}.

The next lemma deals with the case that Θ˙2,2,0tG˙\dot{\varTheta}_{2,2,0}^{t}\subset\dot{G}. See Fig. 20. Note that 𝒜˙63,tΘ˙2,2,0tu2.\dot{\mathcal{A}}_{6}^{3,t}\sim\dot{\varTheta}_{2,2,0}^{t}-u_{2}. By Lemma 3.5 (6), we have t6.t\geq 6. Then we let

V(G˙)V(Θ˙2,2,0t)=X0X1X2X3,V(\dot{G})\setminus V(\dot{\varTheta}_{2,2,0}^{t})=X_{0}\cup X_{1}\cup X_{2}\cup X_{3},

where each vertex in X0X_{0} is adjacent to no vertices of V(Θ˙2,2,0t),V(\dot{\varTheta}_{2,2,0}^{t}), each vertex in X1X_{1} is adjacent to some vertices of {v1,,v6,w1,w2}\{v_{1},\dots,v_{6},w_{1},w_{2}\}, each vertex in X2X_{2} is adjacent to some vertices of {u1,,u6,wt1,wt}\{u_{1},\dots,u_{6},w_{t-1},w_{t}\} and each vertex in X3X_{3} is adjacent to some vertices of {w3,,wt2}.\{w_{3},\dots,w_{t-2}\}. By Lemma 4.8, then X1X2=X_{1}\cap X_{2}=\emptyset, X1X3=X_{1}\cap X_{3}=\emptyset, X2X3=X_{2}\cap X_{3}=\emptyset and there is no edge between three parts X1X_{1}, X2X_{2} and X3.X_{3}. If X0,X_{0}\neq\emptyset, let u0X0,u_{0}\in X_{0}, Lemma 4.9 (1) implies that there is a path Pu0zi=u0u1wiP_{u_{0}z_{i}}=u_{0}u_{1}w_{i} (where u1X3u_{1}\in X_{3}) from the vertex u0u_{0} to the vertex wiw_{i}. Then F˙3G˙,\dot{F}_{3}\subset\dot{G}, which contradicts to Lemma 3.4. So X0=.X_{0}=\emptyset.

Lemma 4.10.

Let G˙𝒢¯Sλ\dot{G}\in\overline{\mathcal{G}}_{S}^{\lambda^{\ast}} be a C˙k\dot{C}_{k}-free (k4)(k\neq 4) bipartite signed graph of order n15n\geq 15. If Θ˙2,2,0tG˙\dot{\varTheta}_{2,2,0}^{t}\subset\dot{G}, then G˙\dot{G} is the induced subgraph of H˙6\dot{H}_{6}, H˙7\dot{H}_{7}, H˙8\dot{H}_{8}, [G˙29,v9,s,v9,G˙29][\dot{G}_{2}^{9},v_{9},s,v_{9},\dot{G}_{2}^{9}], [G˙412,v12,s,v9,G˙29][\dot{G}_{4}^{12},v_{12},s,v_{9},\dot{G}_{2}^{9}] or [G˙412,v12,s,v12,G˙412].[\dot{G}_{4}^{12},v_{12},s,v_{12},\dot{G}_{4}^{12}]. See Figs. 5 and 7.

Proof.

By Lemma 4.9 (2), then G˙[V(Θ˙2,2,0t)X1X2](G˙imi,vmi,s1,vmj,G˙jmj)\dot{G}[V(\dot{\varTheta}_{2,2,0}^{t})\cup X_{1}\cup X_{2}]\sim(\dot{G}_{i}^{m_{i}},v_{m_{i}},s_{1},v_{m_{j}},\dot{G}_{j}^{m_{j}}), where (G˙imi,vmi),(\dot{G}_{i}^{m_{i}},v_{m_{i}}), (G˙jmj,vmj){(G˙18,v8),(G˙29,v9),(G˙311,v11),(\dot{G}_{j}^{m_{j}},v_{m_{j}})\in\{(\dot{G}_{1}^{8},v_{8}),(\dot{G}_{2}^{9},v_{9}),(\dot{G}_{3}^{11},v_{11}), (G˙412,v12)}(\dot{G}_{4}^{12},v_{12})\}, s13s_{1}\geq 3 if i=4i=4 or j=4j=4 (by forbidding F˙10\dot{F}_{10} and F˙11\dot{F}_{11}) and s12s_{1}\geq 2 otherwise (by Lemma 3.5 (6) and (8)).

Let X3={xi1,,xi}X_{3}=\{x_{i_{1}},\dots,x_{i_{\ell}}\}, then dΘ˙2,2,0t(xij)=2d_{\dot{\varTheta}_{2,2,0}^{t}}(x_{i_{j}})=2 (by forbidding F˙3\dot{F}_{3}). Up to switching equivalence, let xj+wjx_{j}\mathop{\sim}\limits^{+}w_{j} and xjwj+2x_{j}\mathop{\sim}\limits^{-}w_{j+2} for j=i1,,i,j=i_{1},\dots,i_{\ell}, where j3j\geq 3 and j+2t2j+2\leq t-2. Since G˙\dot{G} is {F˙3,C˙k,C˙41}\{\dot{F}_{3},\dot{C}_{k},\dot{C}^{1}_{4}\}-free (k4k\neq 4), then ij1ij2i_{j_{1}}\neq i_{j_{2}} if j1j2j_{1}\neq j_{2}, xij1xij2x_{i_{j_{1}}}\mathop{\sim}\limits^{-}x_{i_{j_{2}}} if |ij1ij2|=1|i_{j_{1}}-i_{j_{2}}|=1 and xij1≁xij2x_{i_{j_{1}}}\not\sim x_{i_{j_{2}}} if |ij1ij2|2|i_{j_{1}}-i_{j_{2}}|\geq 2. So, G˙[V(Θ˙2,2,0t)X3][G˙18,v8,s2,v8,G˙18]\dot{G}[V(\dot{\varTheta}_{2,2,0}^{t})\cup X_{3}]\subset[\dot{G}_{1}^{8},v_{8},s_{2},v_{8},\dot{G}_{1}^{8}] (s23s_{2}\geq 3).

If s1=2,s_{1}=2, then G˙H˙i\dot{G}\subset\dot{H}_{i} for i=6,7,8i=6,7,8. If s13,s_{1}\geq 3, then G˙[G˙imi,vmi,s,vmj,G˙jmj]\dot{G}\subset[\dot{G}_{i}^{m_{i}},v_{m_{i}},s,v_{m_{j}},\dot{G}_{j}^{m_{j}}] (s3s\geq 3), where i,j{1,2,3,4}.i,j\in\{1,2,3,4\}. By Lemma 3.5 (6), (8) and (10), then mi,mj8m_{i},m_{j}\geq 8 if i,j=1;i,j=1; mi,mj9m_{i},m_{j}\geq 9 if i,j=2;i,j=2; mi,mj11m_{i},m_{j}\geq 11 if i,j=3;i,j=3; mi,mj12m_{i},m_{j}\geq 12 if i,j=4.i,j=4. Hence, G˙\dot{G} is the induced subgraph of [G˙29,v9,s,v9,G˙29][\dot{G}_{2}^{9},v_{9},s,v_{9},\dot{G}_{2}^{9}], [G˙412,v12,s,v9,G˙29][\dot{G}_{4}^{12},v_{12},s,v_{9},\dot{G}_{2}^{9}] or [G˙412,v12,s,v12,G˙412][\dot{G}_{4}^{12},v_{12},s,v_{12},\dot{G}_{4}^{12}]. ∎

Next we assume that G˙\dot{G} is Θ˙2,2,0t\dot{\varTheta}_{2,2,0}^{t}-free.

Lemma 4.11.

Let G˙𝒢¯Sλ\dot{G}\in\overline{\mathcal{G}}_{S}^{\lambda^{\ast}} be a {C˙k,Θ˙2,2,0t}\{\dot{C}_{k},\dot{\varTheta}_{2,2,0}^{t}\}-free (k4)(k\neq 4) bipartite signed graph of order n15n\geq 15. If Θ˙2,2,0G˙\dot{\Theta}_{2,2,0}\subset\dot{G}, then G˙\dot{G} is the induced subgraph of 𝒜˙in1,n2\dot{\mathcal{A}}_{i}^{n_{1},n_{2}} (i=8,9,10,11,12,13)(i=8,9,10,11,12,13), 𝒜˙in1\dot{\mathcal{A}}_{i}^{n_{1}} (i=16,17,18,19)(i=16,17,18,19) or [G˙,v,s,u,H˙][\dot{G},v,s,u,\dot{H}], where (G˙,v){(G˙412,v12),(\dot{G},v)\in\{(\dot{G}_{4}^{12},v_{12}), (G˙29,v9)}(\dot{G}_{2}^{9},v_{9})\} and (H˙,u){(Ta,1,a1,va1),(\dot{H},u)\in\{(T_{a,1,a-1},v_{a-1}), (Q˙n1,n1,vn1),(G˙510,v10),(P4,v2)}(\dot{Q}^{\prime}_{n_{1},n_{1}},v_{n_{1}}),(\dot{G}_{5}^{10},v_{10}),(P_{4},v_{2})\}, s3s\geq 3, a3a\geq 3 and n11.n_{1}\geq 1.

Proof.

Recall that G˙imi\dot{G}_{i}^{m_{i}} (i=1,2,3i=1,2,3 or 44) is an induced subgraph of G˙.\dot{G}. Here, we only consider that G˙4m4G˙.\dot{G}_{4}^{m_{4}}\subset\dot{G}. The proofs of the cases G˙imiG˙\dot{G}_{i}^{m_{i}}\subset\dot{G} for i=1,2,3i=1,2,3 are similar. We use the vertex partitions of Eqs. (4.1) and (4.2). By Lemma 4.9 (2), then U1=.U_{1}=\emptyset. Since G˙\dot{G} is Θ˙2,2,0t\dot{\varTheta}_{2,2,0}^{t}-free, then each vertex in U2U_{2} is adjacent to at most two vertices of V2.V_{2}. Then let U2=U21U22,U_{2}=U_{21}\cup U_{22}, where each vertex in U2iU_{2i} (i=1i=1 or 2) is adjacent to ii vertices of V2.V_{2}. Furthermore, set U21={uj1,,ujp}U_{21}=\{u_{j_{1}},\dots,u_{j_{p}}\} (13j1jpm4113\leq{j_{1}}\leq\dots\leq{j_{p}}\leq m_{4}-1) where uj+vju_{j}\mathop{\sim}\limits^{+}v_{j} for j=j1,,jpj=j_{1},\dots,j_{p}, and U22={ui1,,uiq}U_{22}=\{u^{\prime}_{i_{1}},\dots,u^{\prime}_{i_{q}}\} (13i1iqm42)13\leq{i_{1}}\leq\dots\leq{i_{q}}\leq m_{4}-2) where ui+viu^{\prime}_{i}\mathop{\sim}\limits^{+}v_{i} and uivi+2u^{\prime}_{i}\mathop{\sim}\limits^{-}v_{i+2} for i=i1,,iq.i=i_{1},\dots,i_{q}. Since G˙\dot{G} is {Θ˙2,2,0t,F˙3,C˙k,C˙41,G˙4m4+1}\{\dot{\varTheta}_{2,2,0}^{t},\dot{F}_{3},\dot{C}_{k},\dot{C}_{4}^{1},\dot{G}_{4}^{m_{4}+1}\}-free (k4k\neq 4), we have

(A1)(\textbf{A1}) G˙[U21]\dot{G}[U_{21}] is K1K_{1} or K2K_{2}^{-}. If G˙[U21]\dot{G}[U_{21}] is K2K_{2}^{-}, then 1m4j221\leq m_{4}-j_{2}\leq 2 (by forbidding F˙8\dot{F}_{8}),

(A2)(\textbf{A2}) ij1ij2i_{j_{1}}\neq i_{j_{2}} if j1j2j_{1}\neq j_{2}, uij1uij2u^{\prime}_{i_{j_{1}}}\mathop{\sim}\limits^{-}u^{\prime}_{i_{j_{2}}} if |ij1ij2|=1|i_{j_{1}}-i_{j_{2}}|=1 and uij1≁uij2u^{\prime}_{i_{j_{1}}}\not\sim u^{\prime}_{i_{j_{2}}} if |ij1ij2|2|i_{j_{1}}-i_{j_{2}}|\geq 2.

Then G˙[V(G˙4m4)U21]𝒜˙12n1,n2\dot{G}[V(\dot{G}_{4}^{m_{4}})\cup U_{21}]\sim\dot{\mathcal{A}}_{12}^{n_{1},n_{2}}, 𝒜˙130,n2\dot{\mathcal{A}}_{13}^{0,n_{2}} or 𝒜˙19n1\dot{\mathcal{A}}_{19}^{n_{1}} and G˙[V(G˙4m4)U22][G˙412,v12,s]\dot{G}[V(\dot{G}_{4}^{m_{4}})\cup U_{22}]\subset[\dot{G}_{4}^{12},v_{12},s].

Case 1. U0U_{0} is empty. If U21U_{21} or U22U_{22} is empty, then we are done. If U21U_{21} and U22U_{22} are not empty, according to (A1), we break into two subcases:

Subcase 1.1. G˙[U21]=K1\dot{G}[U_{21}]=K_{1}. Then U21={uj1}U_{21}=\{u_{j_{1}}\}, iqj11i_{q}\leq j_{1}-1 and iqj12i_{q}\neq j_{1}-2 (otherwise F1˙G˙\dot{F_{1}}\subset\dot{G} or F3˙G˙\dot{F_{3}}\subset\dot{G}, which contradicts to Lemma 3.4).

Subsubcase 1.1.1. iq=j13.i_{q}=j_{1}-3. By (A2)(\textbf{A2}), then G˙[G˙412,v12,s1,v2,P].\dot{G}\subset[\dot{G}_{4}^{12},v_{12},s_{1},v_{2},P_{\ell}]. By forbidding Q1,1,3,Q_{1,1,3}, then 4.\ell\leq 4. So, G˙[G˙412,v12,s,v2,P4]\dot{G}\subset[\dot{G}_{4}^{12},v_{12},s,v_{2},P_{4}].

Subsubcase 1.1.2. iqj14.i_{q}\leq j_{1}-4. By (A2)(\textbf{A2}), then G˙[G˙412,v12,s1,vc,Tc,1,a].\dot{G}\subset[\dot{G}_{4}^{12},v_{12},s_{1},v_{c},T_{c,1,a}]. If a=1a=1 or 2, then G˙[G˙412,v12,s,v2,P4]\dot{G}\subset[\dot{G}_{4}^{12},v_{12},s,v_{2},P_{4}]. If a3a\geq 3, by forbidding Q1,c+1,aQ_{1,c+1,a} (where ca2c\leq a-2), then ca1c\geq a-1. So, G˙[G˙412,v12,s,va1,Ta1,1,a]\dot{G}\subset[\dot{G}_{4}^{12},v_{12},s,v_{a-1},T_{a-1,1,a}].

Subsubcase 1.1.3. iq=j11.i_{q}=j_{1}-1. Then uiq+vj11u^{\prime}_{i_{q}}\mathop{\sim}\limits^{+}v_{j_{1}-1} and uiqvj1+1.u^{\prime}_{i_{q}}\mathop{\sim}\limits^{-}v_{j_{1}+1}. If uiquj1,u^{\prime}_{i_{q}}\sim u_{j_{1}}, then uiquj1u^{\prime}_{i_{q}}\mathop{\sim}\limits^{-}u_{j_{1}} and j1=m41j_{1}=m_{4}-1 (by forbidding C˙41\dot{C}_{4}^{1}). By (A2)(\textbf{A2}), then G˙[G˙412,v12,s].\dot{G}\subset[\dot{G}_{4}^{12},v_{12},s]. If uiq≁uj1,u^{\prime}_{i_{q}}\not\sim u_{j_{1}}, by forbidding C˙41\dot{C}_{4}^{1} and F˙1\dot{F}_{1}, then G˙[G˙412,v12,s1,vn2,Q˙n1,n2]\dot{G}\subset[\dot{G}_{4}^{12},v_{12},s_{1},v_{n_{2}},\dot{Q}^{\prime}_{n_{1},n_{2}}]. By Lemma 3.5 (2), then n21n_{2}\geq 1 if n1=0n_{1}=0 and n2n1n_{2}\geq n_{1} if n11n_{1}\geq 1. So, G˙[G˙412,v12,s,vn1,Q˙n1,n1]\dot{G}\subset[\dot{G}_{4}^{12},v_{12},s,v_{n_{1}},\dot{Q}^{\prime}_{n_{1},n_{1}}] (n11)(n_{1}\geq 1).

Subcase 1.2. G˙[U21]=K2\dot{G}[U_{21}]=K_{2}^{-}. Then U21={uj1,uj2},U_{21}=\{u_{j_{1}},u_{j_{2}}\}, j2=j1+1j_{2}=j_{1}+1 and uj1uj2.u_{j_{1}}\mathop{\sim}\limits^{-}u_{j_{2}}. Since G˙\dot{G} is {Θ˙2,2,0t,F˙1}\{\dot{\varTheta}_{2,2,0}^{t},\dot{F}_{1}\}-free, then iqj13.i_{q}\leq j_{1}-3. If j2=m41,j_{2}=m_{4}-1, then G˙[G˙412,v12,s,vn2,Q˙0,n2]\dot{G}\subset[\dot{G}_{4}^{12},v_{12},s,v_{n_{2}},\dot{Q}^{\prime}_{0,n_{2}}], which has been done in subsubcase 1.1.3. If j2=m42,j_{2}=m_{4}-2, then G˙[G˙412,v12,s,vn1,G˙5n1].\dot{G}\subset[\dot{G}_{4}^{12},v_{12},s,v_{n_{1}},\dot{G}_{5}^{n_{1}}]. By Lemma 3.5 (4), then n110n_{1}\geq 10. So, G˙[G˙412,v12,s,v10,G˙510]\dot{G}\subset[\dot{G}_{4}^{12},v_{12},s,v_{10},\dot{G}_{5}^{10}] (s3)(s\geq 3).

Case 2. U0U_{0} is nonempty. Then |U21|=0|U_{21}|=0 as G˙\dot{G} is {F˙1,F˙3}\{\dot{F}_{1},\dot{F}_{3}\}-free. Similarly, by (A2) and forbidding Θ˙2,2,0t,F˙1,C˙41\dot{\varTheta}_{2,2,0}^{t},\dot{F}_{1},\dot{C}_{4}^{1}, then G˙[G˙412,v12,s,vn2,Q˙n1,n2],\dot{G}\subset[\dot{G}_{4}^{12},v_{12},s,v_{n_{2}},\dot{Q}^{\prime}_{n_{1},n_{2}}], which has been done in subsubcase 1.1.3.

This completes the proof. ∎

4.4.2 G˙\dot{G} is Θ˙2,2,0\dot{\Theta}_{2,2,0}-free

Lastly it remains that G˙\dot{G} is Θ˙2,2,0\dot{\Theta}_{2,2,0}-free. First we suppose that H˙T˙2k.\dot{H}\subset\dot{T}_{2k}. Notice that if H˙T˙2k,\dot{H}\subset\dot{T}_{2k}^{\prime}, then H˙T˙2n\dot{H}\subset\dot{T}_{2n}^{\prime} for all nk.n\geq k. Without loss of generality, we assume that H˙T˙2t\dot{H}\subset\dot{T}_{2t}^{\prime}, where tt is maximal. Up to switching isomorphic, let V(H˙)=V1U1V(\dot{H})=V_{1}\cup U_{1} where V1={v1,v2,,vt}V_{1}=\{v_{1},v_{2},\dots,v_{t}\} and U1={uk1,,uk}U_{1}=\{u_{k_{1}},\dots,u_{k_{\ell}}\} (1k1<<kt1\leq k_{1}<\dots<k_{\ell}\leq t). Let ww be a good vertex in V(G˙)V(H˙).V(\dot{G})\setminus V(\dot{H}). If t=3t=3 or 4, applying algorithm 1 to A(H˙)A(\dot{H}), then there is no signed graph G˙\dot{G} with order |V(H˙)|+1|V(\dot{H})|+1 and 2<ρ(G˙)λ.2<\rho(\dot{G})\leq\lambda^{\ast}. Next we let t5.t\geq 5.

Before giving the main result of this subsubsection, we need some preliminary lemmas.

Lemma 4.12.

dV1(w)1d_{V_{1}}(w)\leq 1 and dU1(w)1d_{U_{1}}(w)\leq 1.

Proof.

Since G˙\dot{G} is {Θ˙2,2,0,C˙41}\{\dot{\Theta}_{2,2,0},\dot{C}_{4}^{1}\}-free, then dV1(w)2.d_{V_{1}}(w)\leq 2. If dV1(w)=2d_{V_{1}}(w)=2, then w+vi1w\mathop{\sim}\limits^{+}v_{i-1} and wvi+1w\mathop{\sim}\limits^{-}v_{i+1} (switching at ww if necessary). Since G˙\dot{G} is {C˙41,Θ˙2,2,0,Ck˙}\{\dot{C}_{4}^{1},\dot{\Theta}_{2,2,0},\dot{C_{k}}\}-free (k4)(k\neq 4), then uiU1u_{i}\not\in U_{1}, w≁ujw\not\sim u_{j} for all ji±1j\neq i\pm 1 and wui±1w\mathop{\sim}\limits^{-}u_{i\pm 1} if ui±1U1u_{i\pm 1}\in U_{1}. So H˙U(w)G˙[V(H˙){ui}]\dot{H}_{U}(w)\simeq\dot{G}[V(\dot{H})\cup\{u_{i}\}] and H˙U(w)T˙2t\dot{H}_{U}(w)\subset\dot{T}_{2t}^{\prime}, which is a contradiction. Hence, dV1(w)1.d_{V_{1}}(w)\leq 1. Similarly, we have dU1(w)1.d_{U_{1}}(w)\leq 1.

Then we let

V(G˙)V(H˙)=V0V1U1Y,V(\dot{G})\setminus V(\dot{H})=V_{0}\cup V_{1}^{\prime}\cup U_{1}^{\prime}\cup Y,

where each vertex in V0V_{0} is adjacent to no vertex of V1U1V_{1}\cup U_{1}, each vertex in V1V_{1}^{\prime} is adjacent to exactly one vertex of V1V_{1} and no vertex of U1U_{1}, each vertex in U1U_{1}^{\prime} is adjacent to exactly one vertex of U1U_{1} and no vertex of V1V_{1}, each vertex in YY is adjacent to exactly one vertex of V1V_{1} and exactly one vertex of U1U_{1}.

Lemma 4.13.

If wY,w\in Y, then

(i)(i) w+vt2w\mathop{\sim}\limits^{+}v_{t-2}, wutw\mathop{\sim}\limits^{-}u_{t} and uiU1u_{i}\not\in U_{1} for i=t1,t2,t3,t4,i=t-1,t-2,t-3,t-4, or

(ii)(ii) w+v3w\mathop{\sim}\limits^{+}v_{3}, w+u1w\mathop{\sim}\limits^{+}u_{1} and uiU1u_{i}\not\in U_{1} for i=2,3,4,5i=2,3,4,5.

Proof.

Let wviw\sim v_{i} and wuj.w\sim u_{j}. Since G˙\dot{G} is C˙k\dot{C}_{k}-free (k4),(k\neq 4), then j=ij=i or j=i±2.j=i\pm 2. If i=j,i=j, then w+viw\mathop{\sim}\limits^{+}v_{i} and wuiw\mathop{\sim}\limits^{-}u_{i} (switching at ww if necessary). By forbidding C˙41\dot{C}_{4}^{1}, then i=t1i=t-1. If utU1u_{t}\not\in U_{1} (resp. utU1u_{t}\in U_{1}), then H˙U(w)T˙2t\dot{H}_{U}(w)\subset\dot{T}_{2t}^{\prime} (resp. G˙[{vt1,vt,ut1,ut,w}]θ1,1,1\dot{G}[\{v_{t-1},v_{t},u_{t-1},u_{t},w\}]\sim\theta_{1,1,1}), which is a contradiction. So j=i±2.j=i\pm 2. If j=i+2j=i+2, since G˙\dot{G} is {C˙41,Θ˙2,2,0,F˙1}\{\dot{C}_{4}^{1},\dot{\Theta}_{2,2,0},\dot{F}_{1}\}-free, then t=i+2t=i+2, w+vt2w\mathop{\sim}\limits^{+}v_{t-2}, wutw\mathop{\sim}\limits^{-}u_{t} and uiU1u_{i}\not\in U_{1} for i=t1,t2,t3.i=t-1,t-2,t-3. If ut4U1,u_{t-4}\in U_{1}, then G˙[vt,vt1,vt2,vt3,vt4,ut,ut4,w]𝒜˙20,1,0.\dot{G}[v_{t},v_{t-1},v_{t-2},v_{t-3},v_{t-4},u_{t},u_{t-4},w]\sim\dot{\mathcal{A}}_{2}^{0,1,0}. By Lemma 3.5 (2), then ρ(G˙)ρ(𝒜˙20,1,0)>λ,\rho(\dot{G})\geq\rho(\dot{\mathcal{A}}_{2}^{0,1,0})>\lambda^{\ast}, which is a contradiction. So ut4U1.u_{t-4}\not\in U_{1}. If j=i2,j=i-2, because of symmetry, then i=3i=3, w+v3w\mathop{\sim}\limits^{+}v_{3}, w+u1w\mathop{\sim}\limits^{+}u_{1} and uiU1u_{i}\not\in U_{1} for i=2,3,4,5i=2,3,4,5. ∎

Lemma 4.14.

V0V_{0} is empty.

Proof.

For a contradiction, assume that wV0w\in V_{0}. Then there is a shortest path Pwxi+1=ww1wxi+1P_{wx_{i+1}}=ww_{1}\dots w_{\ell}x_{i+1} (1\ell\geq 1) from ww to xi+1V(H˙)x_{i+1}\in V(\dot{H}) where x=vx=v or uu. Since tt is maximal, then +1i\ell+1\leq i and +1t(i+1)\ell+1\leq t-(i+1). By forbidding T2,3,4T_{2,3,4}, then =1,\ell=1, i=2i=2 and t5;t\geq 5; or =1,\ell=1, i=t3i=t-3 and t5;t\geq 5; or =1,\ell=1, i=3i=3 and t=7.t=7. By forbidding F˙1\dot{F}_{1} and F2˙\dot{F_{2}}, if x=v,x=v, then V0={w},V_{0}=\{w\}, U1=U_{1}=\emptyset or U1={ui+1},U_{1}=\{u_{i+1}\}, V1={w1},V_{1}^{\prime}=\{w_{1}\}, Y=Y=\emptyset and |U1|1;|U_{1}^{\prime}|\leq 1; if x=u,x=u, then V0={w},V_{0}=\{w\}, U1={ui+1},U_{1}=\{u_{i+1}\}, U1={w1},U_{1}^{\prime}=\{w_{1}\}, Y=Y=\emptyset and |V1|1|V_{1}^{\prime}|\leq 1. Therefore, G˙\dot{G} is a tree or unicyclic, which has been done in Theorem 2.1 and Lemma 3.7. Hence, V0V_{0} is empty. ∎

Lemma 4.15.

If wV1w\in V_{1}^{\prime}, then

(i)(i) if wv2w\sim v_{2}, then u2U1u_{2}\in U_{1} and uiU1u_{i}\not\in U_{1} for i=1,3,4,5,i=1,3,4,5,

(ii)(ii) if wvt1w\sim v_{t-1}, then ut1U1u_{t-1}\in U_{1} and uiU1u_{i}\not\in U_{1} for i=t,t2,t3,t4,i=t,t-2,t-3,t-4,

(ii)(ii) if wviw\sim v_{i} (3it2),(3\leq i\leq t-2), then ui±1U1u_{i\pm 1}\not\in U_{1} and one of the following holds: (1)(1) k1=ik_{1}=i and k2i+2;k_{2}\geq i+2; (2)(2) k1i+2;k_{1}\geq i+2; (3)(3) k=ik_{\ell}=i and k1i2;k_{\ell-1}\leq i-2; (4)(4) ki2.k_{\ell}\leq i-2.

Proof.

(i)(i) By forbidding F˙1\dot{F}_{1}, then u1U1u_{1}\not\in U_{1}. Since H˙U(w)\dot{H}_{U}(w) is not an induced subgraph of T˙2t,\dot{T}^{\prime}_{2t}, then u2U1.u_{2}\in U_{1}. By forbidding F˙1\dot{F}_{1} and C˙41,\dot{C}_{4}^{1}, then u4U1u_{4}\not\in U_{1} and u3U1u_{3}\not\in U_{1}. If u5U1,u_{5}\in U_{1}, then G˙[v1,v2,v3,v4,v5,u2,u5,w]𝒜˙20,1,0.\dot{G}[v_{1},v_{2},v_{3},v_{4},v_{5},u_{2},u_{5},w]\sim\dot{\mathcal{A}}_{2}^{0,1,0}. By Lemma 3.5 (2), then ρ(G˙)ρ(𝒜˙20,1,0)>λ,\rho(\dot{G})\geq\rho(\dot{\mathcal{A}}_{2}^{0,1,0})>\lambda^{\ast}, which is a contradiction. Hence, u5U1.u_{5}\not\in U_{1}.

(ii)(ii) The proof is similar to (ii).

(iii)(iii) By forbidding F˙1\dot{F}_{1}, then ui±1U1u_{i\pm 1}\not\in U_{1}. By forbidding F˙3\dot{F}_{3}, it is impossible that kj1i2k_{j_{1}}\leq i-2 and kj2i+2k_{j_{2}}\geq i+2 for 1j1<j21\leq j_{1}<j_{2}\leq\ell. So, k1ik_{1}\geq i or ki.k_{\ell}\leq i. If k1=i,k_{1}=i, then k2i+2k_{2}\geq i+2. Otherwise, k1i+2.k_{1}\geq i+2. If k=i,k_{\ell}=i, then k1i2k_{\ell-1}\leq i-2. Otherwise, ki2.k_{\ell}\leq i-2.

Now we are going to give the main result of this subsubsection. Set V1={vi1,,vip}V_{1}^{\prime}=\{v^{\prime}_{i_{1}},\dots,v^{\prime}_{i_{p}}\} where vi+viv^{\prime}_{i}\mathop{\sim}\limits^{+}v_{i} for each i=i1,,ipi=i_{1},\dots,i_{p}, and U1={uj1,,ujq}U_{1}^{\prime}=\{u^{\prime}_{j_{1}},\dots,u^{\prime}_{j_{q}}\} where uj+uju^{\prime}_{j}\mathop{\sim}\limits^{+}u_{j} for each j=j1,,jq.j=j_{1},\dots,j_{q}. If is1=js2i_{s_{1}}=j_{s_{2}} for one 1s1p1\leq s_{1}\leq p and one 1s2q,1\leq s_{2}\leq q, by forbidding F˙1\dot{F}_{1}, F˙2\dot{F}_{2} and C˙41,\dot{C}_{4}^{1}, we have |U1|=|V1|=|U1|=1|U_{1}|=|V_{1}^{\prime}|=|U_{1}^{\prime}|=1 and |Y|=0.|Y|=0. So, G˙𝒞˙4[n1,1,tn1,1]\dot{G}\sim\dot{\mathcal{C}}_{4}[n_{1},1,t-n_{1},1] (see Lemma 3.7). Otherwise, is1js2i_{s_{1}}\neq j_{s_{2}} for all s1=1,,ps_{1}=1,\dots,p and all s2=1,,q.s_{2}=1,\dots,q. Then there is a switching isomorphic of G˙\dot{G} such that uj≁uju^{\prime}_{j}\not\sim u_{j} and uj+vju^{\prime}_{j}\mathop{\sim}\limits^{+}v_{j} for all j=j1,,jq,j=j_{1},\dots,j_{q}, that is, U1U_{1}^{\prime} becomes empty and V1={vi1,,vip,uj1,,ujq}.V_{1}^{\prime}=\{v^{\prime}_{i_{1}},\dots,v^{\prime}_{i_{p}},u^{\prime}_{j_{1}},\dots,u^{\prime}_{j_{q}}\}.

Lemma 4.16.

Let G˙𝒢¯Sλ\dot{G}\in\overline{\mathcal{G}}_{S}^{\lambda^{\ast}} be a {C˙k,Θ˙2,2,0}\{\dot{C}_{k},\dot{\Theta}_{2,2,0}\}-free (k4)(k\neq 4) bipartite signed graph with mn+1m\geq n+1. Then G˙\dot{G} is an induced subgraph of 𝒜˙3n1,n2,n3,\dot{\mathcal{A}}_{3}^{n_{1},n_{2},n_{3}}, 𝒜˙5n1,n2\dot{\mathcal{A}}_{5}^{n_{1},n_{2}} or [G˙,v,s,u,H˙][\dot{G},v,s,u,\dot{H}], where (G˙,v),(H˙,u){(P4,v2),(Ta,1,a1,va1),(\dot{G},v),(\dot{H},u)\in\{(P_{4},v_{2}),(T_{a,1,a-1},v_{a-1}), (Q˙n1,n1,vn1),(G˙510,v10)}(\dot{Q}^{\prime}_{n_{1},n_{1}},v_{n_{1}}),(\dot{G}_{5}^{10},v_{10})\}, s3,s\geq 3, a3a\geq 3 and n11.n_{1}\geq 1.

Proof.

Since G˙\dot{G} is {Θ˙2,2,0,C˙k}\{\dot{\Theta}_{2,2,0},\dot{C}_{k}\}-free (k4),(k\neq 4), then G˙[V1]=t1K2t2K1\dot{G}[V_{1}^{\prime}]=t_{1}K_{2}^{-}\cup t_{2}K_{1}, where t1+t22t_{1}+t_{2}\leq 2 (by forbidding F˙3\dot{F}_{3}). By Lemma 4.13, we break into three cases.

Case 1. |Y|=0.|Y|=0.

Subcase 1.1. G˙[V1]=K1.\dot{G}[V_{1}^{\prime}]=K_{1}. Then V1={vi1}.V_{1}^{\prime}=\{v^{\prime}_{i_{1}}\}. Since tt is maximal, then 2i1t12\leq i_{1}\leq t-1. Recall that |V(H˙)||V(\dot{H})| is maximal. By Lemma 4.15, then we have

Subsubcase 1.1.1. i1=2i_{1}=2 or i1=t1.i_{1}=t-1. Then G˙[Q˙1,0,v1,s][Q˙1,1,v1,s]\dot{G}\subset[\dot{Q}^{\prime}_{1,0},v_{1},s]\subset[\dot{Q}^{\prime}_{1,1},v_{1},s].

Subsubcase 1.1.2. 3i1t2.3\leq i_{1}\leq t-2. If k1=i1k_{1}=i_{1} or k=i1,k_{\ell}=i_{1}, then G˙[Q˙n1,n2,vn2,s]\dot{G}\subset[\dot{Q}^{\prime}_{n_{1},n_{2}},v_{n_{2}},s] (n11n_{1}\geq 1), where n2=n1n_{2}=n_{1} (by Lemma 3.5 (2)). If k1=i1+2k_{1}=i_{1}+2 or k=i12,k_{\ell}=i_{1}-2, then G˙[P,v2,s]\dot{G}\subset[P_{\ell},v_{2},s], where =4\ell=4 (by forbidding Q1,1,3Q_{1,1,3}). If k1i1+3k_{1}\geq i_{1}+3 or ki13,k_{\ell}\leq i_{1}-3, then G˙[Ta,1,b,vb,s]\dot{G}\subset[T_{a,1,b},v_{b},s] (a3a\geq 3 and b1b\geq 1), where b=a1b=a-1 (by Lemma 3.5 (1)).

Subcase 1.2. G˙[V1]=2K1.\dot{G}[V_{1}^{\prime}]=2K_{1}. Then V1={vi1,vi2}.V_{1}^{\prime}=\{v^{\prime}_{i_{1}},v^{\prime}_{i_{2}}\}. Similar to subcase 1.1, then G˙𝒜˙3n1,n2,n3\dot{G}\subset\dot{\mathcal{A}}_{3}^{n_{1},n_{2},n_{3}} or G˙[G˙,v,s,u,H˙]\dot{G}\subset[\dot{G},v,s,u,\dot{H}], where (G˙,v),(H˙,u){(Ta,1,a1,va1),(Q˙n1,n1,vn1),(\dot{G},v),(\dot{H},u)\in\{(T_{a,1,a-1},v_{a-1}),(\dot{Q}^{\prime}_{n_{1},n_{1}},v_{n_{1}}), (P4,v2)}(P_{4},v_{2})\} (a3a\geq 3 and n11n_{1}\geq 1).

Subcase 1.3. G˙[V1]=K2.\dot{G}[V_{1}^{\prime}]=K_{2}^{-}. Then V1={vi1,vi2},V_{1}^{\prime}=\{v^{\prime}_{i_{1}},v^{\prime}_{i_{2}}\}, i2=i1+1i_{2}=i_{1}+1 and vi1vi2.v^{\prime}_{i_{1}}\mathop{\sim}\limits^{-}v^{\prime}_{i_{2}}. Without loss of generality, we may assume that i1t2.i_{1}\leq\lfloor\frac{t}{2}\rfloor. Since |V(H˙)||V(\dot{H})| is maximal, then i24i_{2}\geq 4. By Lemma 4.15, then k1i2+2k_{1}\geq i_{2}+2. So, Qi21,k1i21,1G˙.Q_{i_{2}-1,k_{1}-i_{2}-1,1}\subset\dot{G}. By forbidding Qi21,b,1Q_{i_{2}-1,b,1} (where bi22b\leq i_{2}-2), then k12i2k_{1}\geq 2i_{2}. If i2=5i_{2}=5 or i26i_{2}\geq 6, then F˙8G˙\dot{F}_{8}\subset\dot{G} or F˙4G˙\dot{F}_{4}\subset\dot{G}, respectively, which contradicts to Lemma 3.4. So, i2=4i_{2}=4 and G˙[G510,v10,s].\dot{G}\subset[G_{5}^{10},v_{10},s].

Subcase 1.4. G˙[V1]=K2K1.\dot{G}[V_{1}^{\prime}]=K_{2}^{-}\cup K_{1}. Then V1={vi1,vi2,vi3},V_{1}^{\prime}=\{v^{\prime}_{i_{1}},v^{\prime}_{i_{2}},v^{\prime}_{i_{3}}\}, where i2=i1+1i_{2}=i_{1}+1 and vi1vi2.v^{\prime}_{i_{1}}\mathop{\sim}\limits^{-}v^{\prime}_{i_{2}}. By subcases 1.1 and 1.3, then G˙𝒜˙5n1,n2\dot{G}\subset\dot{\mathcal{A}}_{5}^{n_{1},n_{2}} or G˙[G510,v10,s,v,G˙]\dot{G}\subset[G_{5}^{10},v_{10},s,v,\dot{G}], where (G˙,v){(P4,v2),(\dot{G},v)\in\{(P_{4},v_{2}), (Ta,1,a1,va1),(Q˙n1,n1,vn1)}(T_{a,1,a-1},v_{a-1}),(\dot{Q}^{\prime}_{n_{1},n_{1}},v_{n_{1}})\} (a3a\geq 3 and n11n_{1}\geq 1).

Subcase 1.5. G˙[V1]=2K2.\dot{G}[V_{1}^{\prime}]=2K_{2}^{-}. Similar to subcase 1.3, then G˙[G510,v10,s,v10,G510].\dot{G}\subset[G_{5}^{10},v_{10},s,v_{10},G_{5}^{10}].

Case 2. |Y|=1.|Y|=1. By forbidding F˙1\dot{F}_{1} and F˙3\dot{F}_{3}, then t1+t21.t_{1}+t_{2}\leq 1.

Subcase 2.1. |V1|=0|V_{1}^{\prime}|=0. By Lemma 4.13, then G˙[Q˙1,0,v1,s][Q˙1,1,v1,s].\dot{G}\subset[\dot{Q}^{\prime}_{1,0},v_{1},s]\subset[\dot{Q}^{\prime}_{1,1},v_{1},s].

Subcase 2.2. G˙[V1]=K1.\dot{G}[V_{1}^{\prime}]=K_{1}. By subcases 1.1 and 2.1, then G˙𝒜˙30,n2,n3\dot{G}\subset\dot{\mathcal{A}}_{3}^{0,n_{2},n_{3}} or G˙[Q˙1,1,v1,s,v,G˙],\dot{G}\subset[\dot{Q}^{\prime}_{1,1},v_{1},s,v,\dot{G}], where (G˙,v){(Ta,1,a1,va1),(Q˙n1,n1,vn1),(P4,v2)}(\dot{G},v)\in\{(T_{a,1,a-1},v_{a-1}),(\dot{Q}^{\prime}_{n_{1},n_{1}},v_{n_{1}}),(P_{4},v_{2})\} (a3a\geq 3 and n11n_{1}\geq 1).

Subcase 2.3. G˙[V1]=K2.\dot{G}[V_{1}^{\prime}]=K_{2}^{-}. By subcases 1.3 and 2.1, then G˙𝒜˙50,n2\dot{G}\subset\dot{\mathcal{A}}_{5}^{0,n_{2}} or G˙[Q˙1,1,v1,s,v10,G˙510]\dot{G}\subset[\dot{Q}^{\prime}_{1,1},v_{1},s,v_{10},\dot{G}_{5}^{10}].

Case 3. |Y|=2.|Y|=2. Then k1=1k_{1}=1 and k=t.k_{\ell}=t. By forbidding F˙1\dot{F}_{1} and F˙3\dot{F}_{3}, then V1V_{1}^{\prime} is empty. If |U1|=2,|U_{1}|=2, then G˙𝒜˙30,0,n3\dot{G}\sim\dot{\mathcal{A}}_{3}^{0,0,n_{3}}. If |U1|3,|U_{1}|\geq 3, then 6k2<<k1t56\leq k_{2}<\dots<k_{\ell-1}\leq t-5 (by Lemma 4.13). So G˙[Q˙1,0,v1,s,v1,Q˙1,0][Q˙1,1,v1,s,v1,Q˙1,1]\dot{G}\subset[\dot{Q}^{\prime}_{1,0},v_{1},s,v_{1},\dot{Q}^{\prime}_{1,0}]\subset[\dot{Q}^{\prime}_{1,1},v_{1},s,v_{1},\dot{Q}^{\prime}_{1,1}].

This completes the proof. ∎

Remark 4.17.

Finally, it remains the case that H˙\dot{H} is an induced subgraph of S˙14\dot{S}_{14} or S˙16\dot{S}_{16} but not an induced subgraph of T˙2k\dot{T}_{2k}. Since mn+1,m\geq n+1, then ˙r4,4,\dot{\mathcal{B}}_{r}^{4,4}, ˙04,4\dot{\mathcal{B}}^{4,4}_{0} or Θ˙1,1,1\dot{\Theta}_{1,1,1} is an induced subgraph of G˙.\dot{G}. More importantly, ˙r4,4,\dot{\mathcal{B}}_{r}^{4,4}, ˙04,4\dot{\mathcal{B}}^{4,4}_{0} or Θ˙1,1,1\dot{\Theta}_{1,1,1} is also an induced subgraph of H˙.\dot{H}. From Fig. 1, it is not too hard to get that there is no such signed graph H˙\dot{H}.

Proof of Theorem 2.4. Summarizing with all results of Theorems 2.1 and 2.2, Lemmas 3.5, 3.7, 4.2, 4.4, 4.5, 4.6, 4.10, 4.11, 4.16 and 4.21, we complete the proof of Theorem 2.4. ∎

Acknowledgments

This project is supported by the National Natural Science Foundation of China (No.119
71164, 12001185, 12100557) and the Zhejiang Provincial Natural Science Foundation of China (LQ21A010004).

References

  • [1] F. Belardo, S. Cioaba˘\breve{a}, J. Koolen, J. F. Wang, Open problems in the spectral theory of signed graphs, Art Discrete Appl. Math. 1 (2018) #\#P2.10.
  • [2] A. E. Brouwer, A. Neumaier, The graphs with spectral radius between 2 and 2+5\sqrt{2+\sqrt{5}}, Linear Algebra Appl. 114/115 (1989) 273–276.
  • [3] A. E. Brouwer, W. H. Haemers, Spectra of graphs, Springer, 2011.
  • [4] F. C. Bussemaker, P. J. Cameron, J. J. Seidel, S. V. Tsaranov, Tables of signed graphs, Eut Report 91-WSK-01, Eindhoven, 1991.
  • [5] D. Cvetkovic´,\acute{c}, M. Doob, I. Gutman, On graphs whose spectral radius does not exceed 2+5\sqrt{2+\sqrt{5}}, Ars Combinat. 14 (1982) 225–239.
  • [6] M. K. Gill, B. D. Acharya, A recurrence formula for computing the characteristic polynomial of a sigraph, J. Comb. Inf. Syst. Sci. 5 (1980) 68–72.
  • [7] G. Greaves, J. Koolen, A. Munemasa, Y. Sano, T. Taniguchi, Edge-signed graphs with smallest eigenvalue greater than 2-2, J. Combin. Theory Ser. B 110 (2015) 90–111.
  • [8] A. J. Hoffman, On limit points of spectral radii of non-negative symmetric integral matrices, in: Y. Alavi, et al. (Eds.), Lecture Notes Math, vol. 303, Springer-Verlag, Berlin, 1972, pp. 165–172.
  • [9] Z. L. Jiang, A. Polyanskii, Forbidden subgraphs of bounded spectral radius with applications to equiangular lines, Israel J. Math. 236 (2020) 393–421.
  • [10] Z. L. Jiang, A. Polyanskii, Forbidden induced subgraphs of graphs and signed graphs with eigenvalues bounded from below, arXiv: 2111.10366v1.
  • [11] P. W. H. Lemmens, J. J. Seidel, Equiangular lines, J. Algebra 24 (1973) 494–512.
  • [12] J. McKee, C. Smyth, Integer symmetric matrices having all their eigenvalues in the interval [2,2],[-2,2], J. Algebra 317 (2007) 260–290.
  • [13] J. H. Smith, Some properties of the spectrum of a graph, Combinatorial Structures and their Applications, Gordon and Breach, New York, 1970, pp. 403–406.
  • [14] J. F. Wang, J. Wang, M. Brunetti, The hoffman program of graphs: old and new, arXiv: 2012.13079v1.
  • [15] T. Zaslavsky, Signed graphs, Discrete Appl. Math. 4 (1982) 47–74.

Appendix A

Gill and Acharya [6] obtained the following recurrence formula for the characteristic polynomial of a signed graph.

Lemma 4.18.

[6] Let G˙\dot{G} be a signed graph and vv be its arbitrary vertex. Then

ϕG˙(x)=xϕG˙v(x)vuE(G˙)ϕG˙vu(x)2C˙C˙(v)σ(C˙)ϕG˙C˙(x),\phi_{\dot{G}}(x)=x\phi_{\dot{G}-v}(x)-\sum_{vu\in E(\dot{G})}\phi_{\dot{G}-v-u}(x)-2\sum_{\dot{C}\in\dot{C}(v)}\sigma(\dot{C})\phi_{\dot{G}-\dot{C}}(x),

where C˙(v)\dot{C}(v) denotes the set of signed cycles passing through v,v, and G˙C˙\dot{G}-\dot{C} denotes the signed graph obtained from G˙\dot{G} by deleting C˙\dot{C}.

Denote pnp_{n} and qnq_{n} the characteristic polynomials of PnP_{n} and Cn,C_{n}, respectively. Then

p0(x)=1,p1(x)=x,pn(x)=xpn1(x)pn2(x),qn+1(x)=pn+1(x)pn1(x)2,p_{0}(x)=1,~{}p_{1}(x)=x,~{}p_{n}(x)=xp_{n-1}(x)-p_{n-2}(x),~{}q_{n+1}(x)=p_{n+1}(x)-p_{n-1}(x)-2,

for all n2.n\geq 2. Moreover, the recursion gives

pn(x)=θ2n+21θn+2θn,qn(x)=θn+θn2,whereθ=θ(x):=x+x242.p_{n}(x)=\frac{\theta^{2n+2}-1}{\theta^{n+2}-\theta^{n}},~{}~{}q_{n}(x)=\theta^{n}+\theta^{-n}-2,~{}~{}\text{where}~{}~{}\theta=\theta(x):=\frac{x+\sqrt{x^{2}-4}}{2}. (4.3)

Then

ϕTa,1,b(x)=xpa+b+1papb,ϕQa,b,c(x)=x2pa+b+c+1xpa+bpcxpapb+c+papb1pc.\begin{split}&\phi_{T_{a,1,b}}(x)=xp_{a+b+1}-p_{a}p_{b},\\ &\phi_{Q_{a,b,c}}(x)=x^{2}p_{a+b+c+1}-xp_{a+b}p_{c}-xp_{a}p_{b+c}+p_{a}p_{b-1}p_{c}.\end{split} (4.4)

Let T˙2k\dot{T}_{2k} be the signed graph depicted in Fig. 1 with the adjacency matrix Aσ,A_{\sigma}, and let V(T˙2k)=V1V2V(\dot{T}_{2k})=V_{1}\cup V_{2} be a partition of the vertex set. Then

Aσ=[A1BBTA2],where Ai (i=1,2) is the adjacency matrix of T˙2k[Vi]. A_{\sigma}=\begin{bmatrix}A_{1}&B\\ B^{T}&A_{2}\end{bmatrix},~{}~{}\text{where $A_{i}$ ($i=1,2$) is the adjacency matrix of $\dot{T}_{2k}[V_{i}].$ }

It is known that the spectrum of T˙2k\dot{T}_{2k} is {2k,2k}\{2^{k},-2^{k}\} (see [12, Theorem 1]). Then

(Aσ)2=[(A1)2+BBTA1B+BA2BTA1+A2BTBTB+(A2)2]=4I2kandBTA1+A2BT=0.({A_{\sigma}})^{2}=\begin{bmatrix}(A_{1})^{2}+BB^{T}&A_{1}B+BA_{2}\\ B^{T}A_{1}+A_{2}B^{T}&B^{T}B+({A_{2}})^{2}\\ \end{bmatrix}=4I_{2k}~{}~{}\text{and}~{}~{}B^{T}A_{1}+A_{2}B^{T}=\textbf{0}.
Lemma 4.19.

If μ±2\mu\neq\pm 2 is an eigenvalue of T˙2k[V1],\dot{T}_{2k}[V_{1}], then μ-\mu is an eigenvalue of T˙2k[V2].\dot{T}_{2k}[V_{2}].

Proof.

Let β\beta be the eigenvector corresponding to the eigenvalue μ±2\mu\neq\pm 2 of T˙2k[V1].\dot{T}_{2k}[V_{1}]. If BTβ=0,B^{T}\beta=\textbf{0}, then

Aσ[β0]=[A1BBTA2][β0]=[A1βBTβ]=[A1β0]=μ[β0].A_{\sigma}\begin{bmatrix}\beta\\ \textbf{0}\\ \end{bmatrix}=\begin{bmatrix}A_{1}&B\\ B^{T}&A_{2}\\ \end{bmatrix}\begin{bmatrix}\beta\\ \textbf{0}\\ \end{bmatrix}=\begin{bmatrix}A_{1}\beta\\ B^{T}\beta\\ \end{bmatrix}=\begin{bmatrix}A_{1}\beta\\ \textbf{0}\\ \end{bmatrix}=\mu\begin{bmatrix}\beta\\ \textbf{0}\\ \end{bmatrix}.

This gives that μ\mu is an eigenvalue of AσA_{\sigma} and μ=±2,\mu=\pm 2, which contradicts to hypothesis. So BTβ0.B^{T}\beta\neq\textbf{0}. Since BTA1+A2BT=0,B^{T}A_{1}+A_{2}B^{T}=\textbf{0}, then A2BTβ=BTA1β=BTμβ=μBTβ.A_{2}B^{T}\beta=-B^{T}A_{1}\beta=-B^{T}\mu\beta=-\mu B^{T}\beta. Hence, μ-\mu is an eigenvalue of T˙2k[V2].\dot{T}_{2k}[V_{2}].

Corollary 4.20.

(i)(i) ϕT˙2s(x)=x2(x±2)s1,\phi_{\dot{T}_{2s}^{\prime}}(x)=x^{2}(x\pm 2)^{s-1}, (ii)(ii) ϕT˙2s′′(x)=x(x±2)(x±2)s2,\phi_{\dot{T}_{2s}^{\prime\prime}}(x)=x(x\pm\sqrt{2})(x\pm 2)^{s-2}, (iii)(iii) ϕT˙2s′′′(x)=(x±2)2(x±2)s3.\phi_{\dot{T}_{2s}^{\prime\prime\prime}}(x)=(x\pm\sqrt{2})^{2}(x\pm 2)^{s-3}.

Proof.

Note that V(T˙2(s+1))=V(T˙2s)V(2K1),V(\dot{T}_{2(s+1)})=V(\dot{T}_{2s}^{\prime})\cup V(2K_{1}), V(T˙2(s+1))=V(T˙2s′′)V(P3,σ)V(\dot{T}_{2(s+1)})=V(\dot{T}_{2s}^{\prime\prime})\cup V(P_{3},\sigma) and V(T˙2(s+1))=V(T˙2s′′′)V(C˙4).V(\dot{T}_{2(s+1)})=V(\dot{T}_{2s}^{\prime\prime\prime})\cup V(\dot{C}_{4}^{-}). By Lemma 3.1, then ±2\pm 2 is an eigenvalue of T˙2s\dot{T}_{2s}^{\prime} (resp. T˙2s′′\dot{T}_{2s}^{\prime\prime}, T˙2s′′′\dot{T}_{2s}^{\prime\prime\prime}) with multiplicity at least s1s-1 (resp. s2s-2, s3s-3).

(ii) It is known that the spectrum of 2K12K_{1} is {02}.\{0^{2}\}. By Lemma 4.19, then 0 is an eigenvalue of T˙2s\dot{T}_{2s}^{\prime} with multiplicity 22. Therefore, ϕT˙2s(x)=x2(x±2)s1.\phi_{\dot{T}_{2s}^{\prime}}(x)=x^{2}(x\pm 2)^{s-1}.

The proofs of (iiii) and (iiiiii) are similar since the spectrum of (P3,σ)(P_{3},\sigma) is {±2,0}\{\pm\sqrt{2},0\} and the spectrum of C˙4\dot{C}_{4}^{-} is {±22}\{\pm\sqrt{2}^{2}\}. ∎

Let the pair (G˙,v)(\dot{G},v) be defined in Theorem 2.4 (iviv) and (v)(v), then

ϕ[G˙,v,s](x)=xϕT˙2s′′(x)ϕG˙v(x)ϕT˙2(s1)(x)ϕG˙v(x)ϕT˙2s′′(x)uvE(G˙)ϕG˙vu(x)=x2(x±2)(x±2)s2ϕG˙v(x)x2(x±2)s2ϕG˙v(x)x(x±2)(x±2)s2uvE(G˙)ϕG˙vu(x)(by Corollary 4.20)=(x±2)s2(x2(x±2)ϕG˙v(x)x2ϕG˙v(x)x(x±2)uvE(G˙)ϕG˙vu(x))=(x±2)s2ϕ[G˙,v,2](x),\begin{split}\phi_{[\dot{G},v,s]}(x)&=x\phi_{\dot{T}_{2s}^{\prime\prime}}(x)\phi_{\dot{G}-v}(x)-\phi_{\dot{T}_{2(s-1)}^{\prime}}(x)\phi_{\dot{G}-v}(x)-\phi_{\dot{T}_{2s}^{\prime\prime}}(x)\sum_{uv\in E(\dot{G})}\phi_{\dot{G}-v-u}(x)\\ &=x^{2}(x\pm\sqrt{2})(x\pm 2)^{s-2}\phi_{\dot{G}-v}(x)-x^{2}(x\pm 2)^{s-2}\phi_{\dot{G}-v}(x)\\ &~{}~{}~{}-x(x\pm\sqrt{2})(x\pm 2)^{s-2}\sum_{uv\in E(\dot{G})}\phi_{\dot{G}-v-u}(x)~{}~{}\text{(by Corollary \ref{lemma4.2})}\\ &=(x\pm 2)^{s-2}(x^{2}(x\pm\sqrt{2})\phi_{\dot{G}-v}(x)-x^{2}\phi_{\dot{G}-v}(x)-x(x\pm\sqrt{2})\sum_{uv\in E(\dot{G})}\phi_{\dot{G}-v-u}(x))\\ &=(x\pm 2)^{s-2}\phi_{[\dot{G},v,2]}(x),\end{split} (4.5)

and ϕ[G˙,v,s](λ)=(52)s2ϕ[G˙,v,2](λ).\phi_{[\dot{G},v,s]}(\lambda^{\ast})=(\sqrt{5}-2)^{s-2}\phi_{[\dot{G},v,2]}(\lambda^{\ast}). Similarly, we have

ϕ(G˙,v,s)(λ)=(52)s3ϕ(G˙,v,3)(λ),ϕ[G˙,v,s,u,H˙](λ)=(52)s3ϕ[G˙,v,3,u,H˙](λ).\begin{split}&\phi_{(\dot{G},v,s)}(\lambda^{\ast})=(\sqrt{5}-2)^{s-3}\phi_{(\dot{G},v,3)}(\lambda^{\ast}),\\ &\phi_{[\dot{G},v,s,u,\dot{H}]}(\lambda^{\ast})=(\sqrt{5}-2)^{s-3}\phi_{[\dot{G},v,3,u,\dot{H}]}(\lambda^{\ast}).\\ \end{split} (4.6)

By Lemma 4.18 and Eqs. (4.3)-(4.6), we can obtain the characteristic polynomials of all signed graphs G˙\dot{G} of Theorem 2.4 (iii)(iii) and (iv)(iv). More importantly, by computations (using Wolfram Mathematica 12), we get that ϕG˙(λ)>0\phi_{\dot{G}}(\lambda^{\ast})>0. See Tables 1 and 2. (In Table 1, a1=251a_{1}=2\sqrt{\sqrt{5}-1} and a2=52a_{2}=\sqrt{\sqrt{5}-2}). Then we have

Lemma 4.21.

Let G˙\dot{G} be one of the signed graphs of Theorem 2.4 (iii)(iii) and (iv)(iv) with nn vertices. Then ρ(G˙)<λ.\rho(\dot{G})<\lambda^{\ast}.

Proof.

Let G˙\dot{G} be one of the signed graphs of Theorem 2.4 (iii)(iii) and (iv)(iv), then we can get that G˙\dot{G} is bipartite and G˙\dot{G} contains an induced subgraph G˙1\dot{G}_{1} with order |V(G˙1)|=n1|V(\dot{G}_{1})|=n-1 and λ1(G˙1)<λ\lambda_{1}(\dot{G}_{1})<\lambda^{\ast}. (For example, if G˙\dot{G} is [G˙412,v12,s,v12,G˙412],[\dot{G}_{4}^{12},v_{12},s,v_{12},\dot{G}_{4}^{12}], let G˙1=G˙v12,\dot{G}_{1}=\dot{G}-v_{12}, then λ1(G˙1)=λ1(G˙412,v12,s)=λ1(G˙412,v12,3)<λ\lambda_{1}(\dot{G}_{1})=\lambda_{1}(\dot{G}_{4}^{12},v_{12},s)=\lambda_{1}(\dot{G}_{4}^{12},v_{12},3)<\lambda^{\ast}.) Then λ2(G˙)λ1(G˙1)<λ\lambda_{2}(\dot{G})\leq\lambda_{1}(\dot{G}_{1})<\lambda^{\ast} by interlacing theorem. Since ϕG˙(λ)>0\phi_{\dot{G}}(\lambda^{\ast})>0 (by Tables 1 and 2), then ρ(G˙)=λ1(G˙)<λ.\rho(\dot{G})=\lambda_{1}(\dot{G})<\lambda^{\ast}.

Finally we are going to give the proof of Lemma 3.5.

Proof of Lemma 3.5. Let G˙\dot{G} be a signed graph in Lemma 3.5. We can check that G˙\dot{G} is bipartite and G˙\dot{G} contains an induced subgraph G˙1\dot{G}_{1} with order |V(G˙1)|=n1|V(\dot{G}_{1})|=n-1 and λ1(G˙1)<λ\lambda_{1}(\dot{G}_{1})<\lambda^{\ast}. Then λ2(G˙)λ1(G˙1)<λ\lambda_{2}(\dot{G})\leq\lambda_{1}(\dot{G}_{1})<\lambda^{\ast} by interlacing theorem. So if ϕG˙(λ)>0\phi_{\dot{G}}(\lambda^{\ast})>0, then ρ(G˙)<λ.\rho(\dot{G})<\lambda^{\ast}. Now we just need to prove that ϕG˙(λ)>0.\phi_{\dot{G}}(\lambda^{\ast})>0. Obviously, if G˙\dot{G} is an induced subgraph of the signed graphs of Theorem 2.4 (iv)(iv), then ρ(G˙)<λ\rho(\dot{G})<\lambda^{\ast} by Lemma 4.21.

(1) If n13n_{1}\geq 3, by forbidding Qn1,n2+1,1Q_{n_{1},n_{2}+1,1} (where n2n12n_{2}\leq n_{1}-2), then n2n11.n_{2}\geq n_{1}-1. Similarily, if n43,n_{4}\geq 3, then n3n41.n_{3}\geq n_{4}-1. Therefore, if n12n_{1}\leq 2 and n42,n_{4}\leq 2, then 𝒜˙1n1,n2,n3,n4[P4,v2,s,v2,P4];\dot{\mathcal{A}}_{1}^{n_{1},n_{2},n_{3},n_{4}}\subset[P_{4},v_{2},s,v_{2},P_{4}]; if n13n_{1}\geq 3 and n43,n_{4}\geq 3, then 𝒜˙1n1,n2,n3,n4[Ta3,1,a31,va31,s,vb31,Tb3,1,b31];\dot{\mathcal{A}}_{1}^{n_{1},n_{2},n_{3},n_{4}}\subset[T_{a_{3},1,a_{3}-1},v_{a_{3}-1},s,v_{b_{3}-1},T_{b_{3},1,b_{3}-1}]; if n12n_{1}\leq 2 and n43,n_{4}\geq 3, or n13n_{1}\geq 3 and n42,n_{4}\leq 2, then 𝒜˙1n1,n2,n3,n4[Ta3,1,a31,va31,s,v2,P4],\dot{\mathcal{A}}_{1}^{n_{1},n_{2},n_{3},n_{4}}\subset[T_{a_{3},1,a_{3}-1},v_{a_{3}-1},s,v_{2},P_{4}], where s,a3,b33.s,a_{3},b_{3}\geq 3.

(2) By Lemma 4.18 and Eq. (4.4), then

ϕ𝒜˙2n1,n2,n3(x)=x3pn1+n2+n3+4x2(pn1+n3+3pn2+pn1+1pn2+n3+22pn1pn2+n3+1)+x(pn1+1pn3+1pn2pn1pn2+n3+4pn1+3pn2+n3+12pn1pn2pn3)+pn1pn2pn3+3+pn1+3pn2pn3.\begin{split}\phi_{\dot{\mathcal{A}}_{2}^{n_{1},n_{2},n_{3}}}(x)=&x^{3}p_{n_{1}+n_{2}+n_{3}+4}-x^{2}(p_{n_{1}+n_{3}+3}p_{n_{2}}+p_{n_{1}+1}p_{n_{2}+n_{3}+2}-2p_{n_{1}}p_{n_{2}+n_{3}+1})\\ &+x(p_{n_{1}+1}p_{n_{3}+1}p_{n_{2}}-p_{n_{1}}p_{n_{2}+n_{3}+4}-p_{n_{1}+3}p_{n_{2}+n_{3}+1}-2p_{n_{1}}p_{n_{2}}p_{n_{3}})\\ &+p_{n_{1}}p_{n_{2}}p_{n_{3}+3}+p_{n_{1}+3}p_{n_{2}}p_{n_{3}}.\end{split} (4.7)

If n3n1+n2+2n_{3}\geq n_{1}+n_{2}+2 and n22n_{2}\leq 2, then 𝒜˙2n1,n2,n3[Q˙a1,a1,va1,s,v2,P4]\dot{\mathcal{A}}_{2}^{n_{1},n_{2},n_{3}}\subset[\dot{Q}^{\prime}_{a_{1},a_{1}},v_{a_{1}},s,v_{2},P_{4}] (a11)(a_{1}\geq 1).

If n3n1+n2+2n_{3}\geq n_{1}+n_{2}+2 and n23n_{2}\geq 3, and if n1=0n_{1}=0 and n3=n2+2n_{3}=n_{2}+2, then 𝒜˙20,n2,n2+2(Q˙1,0,v1,2,va31,Ta3,1,a31)\dot{\mathcal{A}}_{2}^{0,n_{2},n_{2}+2}\sim(\dot{Q}^{\prime}_{1,0},v_{1},2,v_{a_{3}-1},T_{a_{3},1,a_{3}-1}) (where ρ(𝒜˙20,n2,n2+2)<λ\rho(\dot{\mathcal{A}}_{2}^{0,n_{2},n_{2}+2})<\lambda^{\ast} by Table 3 (3)); otherwise, 𝒜˙2n1,n2,n3[Q˙a1,a1,va1,s,va31,Ta3,1,a31]\dot{\mathcal{A}}_{2}^{n_{1},n_{2},n_{3}}\subset[\dot{Q}^{\prime}_{a_{1},a_{1}},v_{a_{1}},s,v_{a_{3}-1},T_{a_{3},1,a_{3}-1}], where a11a_{1}\geq 1, a33a_{3}\geq 3 and s3s\geq 3.

Next we consider that n3n1+n2+1.n_{3}\leq n_{1}+n_{2}+1.

Case 1. n2=1.n_{2}=1.

Subcase 1.1. n11.n_{1}\leq 1. If n3=0,n_{3}=0, by computations, we have ϕ𝒜˙20,1,0(λ)<0\phi_{\dot{\mathcal{A}}_{2}^{0,1,0}}(\lambda^{\ast})<0 and ϕ𝒜˙21,1,0(λ)<0.\phi_{\dot{\mathcal{A}}_{2}^{1,1,0}}(\lambda^{\ast})<0. Then n31n_{3}\geq 1 and 𝒜˙2n1,1,n3[Q˙1,1,v1,s].\dot{\mathcal{A}}_{2}^{n_{1},1,n_{3}}\subset[\dot{Q}^{\prime}_{1,1},v_{1},s].

Subcase 1.2. n12.n_{1}\geq 2. By forbidding Qn1+1,n3+2,1Q_{n_{1}+1,n_{3}+2,1} (where n3n12n_{3}\leq n_{1}-2), then n3n11.n_{3}\geq n_{1}-1. By Table 3 (1), we have ϕ𝒜˙2n1,1,n11(λ)<0\phi_{\dot{\mathcal{A}}_{2}^{n_{1},1,n_{1}-1}}(\lambda^{\ast})<0. Then n3n1n_{3}\geq n_{1} and 𝒜˙2n1,1,n3[Q˙n1,n1,vn1,s].\dot{\mathcal{A}}_{2}^{n_{1},1,n_{3}}\subset[\dot{Q}^{\prime}_{n_{1},n_{1}},v_{n_{1}},s].

Case 2. n2=2.n_{2}=2. Then n3n1+3n_{3}\leq n_{1}+3. Furthermore, by forbidding Q2,n3+1,2Q_{2,n_{3}+1,2} (where n32n_{3}\leq 2), then n33.n_{3}\geq 3.

Subcase 2.1. n1=0.n_{1}=0. Then n3=3n_{3}=3. Note that ρ(𝒜˙20,2,3)=2.057<λ\rho(\dot{\mathcal{A}}_{2}^{0,2,3})=2.057<\lambda^{\ast}, then 𝒜˙20,2,3(Q˙1,0,v1,2,v2,P4).\dot{\mathcal{A}}_{2}^{0,2,3}\sim(\dot{Q}^{\prime}_{1,0},v_{1},2,v_{2},P_{4}).

Subcase 2.2. 1n13.1\leq n_{1}\leq 3. If n3n1+2,n_{3}\leq n_{1}+2, by computations, we have ϕ𝒜˙2n1,2,n3(λ)<0\phi_{\dot{\mathcal{A}}_{2}^{n_{1},2,n_{3}}}(\lambda^{\ast})<0. Then n3n1+3n_{3}\geq n_{1}+3. So 𝒜˙2n1,2,n3[Q˙n1,n1,vn1,s,v2,P4]\dot{\mathcal{A}}_{2}^{n_{1},2,n_{3}}\subset[\dot{Q}^{\prime}_{n_{1},n_{1}},v_{n_{1}},s,v_{2},P_{4}] where s3s\geq 3.

Subcase 2.3. n14.n_{1}\geq 4. By forbidding Qn1+1,n3+2,2Q_{n_{1}+1,n_{3}+2,2} (where n3n1+1n_{3}\leq n_{1}+1), then n3n1+2.n_{3}\geq n_{1}+2. If n3=n1+2n_{3}=n_{1}+2, then ϕ𝒜˙2n1,2,n1+2(λ)>0\phi_{\dot{\mathcal{A}}_{2}^{n_{1},2,n_{1}+2}}(\lambda^{\ast})>0 (by Table 3 (2)) and 𝒜˙2n1,2,n1+2(Q˙n1,n1,vn1,2,v2,P4)\dot{\mathcal{A}}_{2}^{n_{1},2,n_{1}+2}\sim(\dot{Q}^{\prime}_{n_{1},n_{1}},v_{n_{1}},2,v_{2},P_{4}). If n3n1+3n_{3}\geq n_{1}+3, then 𝒜˙2n1,2,n3[Q˙n1,n1,vn1,s,v2,P4]\dot{\mathcal{A}}_{2}^{n_{1},2,n_{3}}\subset[\dot{Q}^{\prime}_{n_{1},n_{1}},v_{n_{1}},s,v_{2},P_{4}] where s3s\geq 3.

Case 3. n23.n_{2}\geq 3. By forbidding the graph Qa,b,c𝒢λ,Q_{a,b,c}\not\in\mathcal{G}^{\lambda^{\ast}}, we obtain that if n2=3n_{2}=3 and 1n131\leq n_{1}\leq 3, or n2=4n_{2}=4 and n1=2,n_{1}=2, then n3n1+n2;n_{3}\geq n_{1}+n_{2}; otherwise, n3n1+n2+1n_{3}\geq n_{1}+n_{2}+1.

Subcase 3.1. n2=3n_{2}=3 and n1=1n_{1}=1. Then 4n35.4\leq n_{3}\leq 5. By computations, we have ϕ𝒜˙21,3,4(λ)<0\phi_{\dot{\mathcal{A}}_{2}^{1,3,4}}(\lambda^{\ast})<0 and ϕ𝒜˙21,3,5(λ)<0\phi_{\dot{\mathcal{A}}_{2}^{1,3,5}}(\lambda^{\ast})<0.

Subcase 3.2. n2=3n_{2}=3 and n1=2n_{1}=2. Then 5n36.5\leq n_{3}\leq 6. By computations, we have ϕ𝒜˙22,3,5(λ)<0\phi_{\dot{\mathcal{A}}_{2}^{2,3,5}}(\lambda^{\ast})<0 and ϕ𝒜˙22,3,6(λ)>0.\phi_{\dot{\mathcal{A}}_{2}^{2,3,6}}(\lambda^{\ast})>0. So 𝒜˙22,3,6(Q˙2,2,v2,2,v2,T3,1,2)\dot{\mathcal{A}}_{2}^{2,3,6}\sim(\dot{Q}^{\prime}_{2,2},v_{2},2,v_{2},T_{3,1,2}).

Subcase 3.3. n2=3n_{2}=3 and n1=3n_{1}=3. Then 6n37.6\leq n_{3}\leq 7. By computations, we have ϕ𝒜˙23,3,6(λ)<0\phi_{\dot{\mathcal{A}}_{2}^{3,3,6}}(\lambda^{\ast})<0 and ϕ𝒜˙23,3,7(λ)>0.\phi_{\dot{\mathcal{A}}_{2}^{3,3,7}}(\lambda^{\ast})>0. So 𝒜˙23,3,7(Q˙3,3,v3,2,v2,T3,1,2)\dot{\mathcal{A}}_{2}^{3,3,7}\sim(\dot{Q}^{\prime}_{3,3},v_{3},2,v_{2},T_{3,1,2}).

Subcase 3.4. n2=4n_{2}=4 and n1=2n_{1}=2. Then 6n376\leq n_{3}\leq 7. By computations, we have ϕ𝒜˙22,4,6(λ)<0\phi_{\dot{\mathcal{A}}_{2}^{2,4,6}}(\lambda^{\ast})<0 and ϕ𝒜˙22,4,7(λ)<0\phi_{\dot{\mathcal{A}}_{2}^{2,4,7}}(\lambda^{\ast})<0.

Subcase 3.5. n23n_{2}\geq 3 and n3=n1+n2+1n_{3}=n_{1}+n_{2}+1. Let n1=n2+k.n_{1}=n_{2}+k. Then

ϕ𝒜˙2n2+k,n2,2n2+k+1(λ)=2n2(5+1)k2n2f(k,n2),\phi_{\dot{\mathcal{A}}_{2}^{n_{2}+k,n_{2},2n_{2}+k+1}}(\lambda^{\ast})=2^{n_{2}}(\sqrt{5}+1)^{-k-2n_{2}}f(k,n_{2}),

where f(k,n2)=2k(5+1)n2+1((5+35+1)(5+12)k+2(25+1)n2+11)f(k,n_{2})=2^{k}(\sqrt{5}+1)^{n_{2}+1}((\frac{\sqrt{5}+3}{\sqrt{5}+1})(\frac{\sqrt{5}+1}{2})^{k}+2(\frac{2}{\sqrt{5}+1})^{n_{2}+1}-1). If k2,k\leq-2, then f(k,n2)<0f(k,n_{2})<0 and ϕ𝒜˙2n2+k,n2,2n2+k+1(λ)<0\phi_{\dot{\mathcal{A}}_{2}^{n_{2}+k,n_{2},2n_{2}+k+1}}(\lambda^{\ast})<0 as (5+35+1)(5+12)k(5+35+1)(5+12)20.618(\frac{\sqrt{5}+3}{\sqrt{5}+1})(\frac{\sqrt{5}+1}{2})^{k}\leq(\frac{\sqrt{5}+3}{\sqrt{5}+1})(\frac{\sqrt{5}+1}{2})^{-2}\approx 0.618 and 2(25+1)n2+12(25+1)40.2918.2(\frac{2}{\sqrt{5}+1})^{n_{2}+1}\leq 2(\frac{2}{\sqrt{5}+1})^{4}\approx 0.2918. If k1,k\geq-1, then f(k,n2)>0f(k,n_{2})>0 and ϕ𝒜˙2n2+k,n2,2n2+k+1(λ)>0\phi_{\dot{\mathcal{A}}_{2}^{n_{2}+k,n_{2},2n_{2}+k+1}}(\lambda^{\ast})>0 as (5+35+1)(5+12)k(5+35+1)(5+12)1=1.(\frac{\sqrt{5}+3}{\sqrt{5}+1})(\frac{\sqrt{5}+1}{2})^{k}\geq(\frac{\sqrt{5}+3}{\sqrt{5}+1})(\frac{\sqrt{5}+1}{2})^{-1}=1. So, 𝒜˙2n1,n2,n3(Q˙n1,n1,vn1,2,vn21,Tn2,1,n21),\dot{\mathcal{A}}_{2}^{n_{1},n_{2},n_{3}}\subset(\dot{Q}^{\prime}_{n_{1},n_{1}},v_{n_{1}},2,v_{n_{2}-1},T_{n_{2},1,n_{2}-1}), where n1n21.n_{1}\geq n_{2}-1. We complete the proof of (2).(2).

(33) Let n1=n2+kn_{1}=n_{2}+k where k0.k\geq 0. By forbidding Q2,b,2Q_{2,b,2} (where b3b\leq 3), we have n33.n_{3}\geq 3.

Case 1. n1=n2=0.n_{1}=n_{2}=0. By computations, we have ϕ𝒜˙30,0,3(λ)<0\phi_{\dot{\mathcal{A}}_{3}^{0,0,3}}(\lambda^{\ast})<0 and ϕ𝒜˙30,0,4(λ)>0.\phi_{\dot{\mathcal{A}}_{3}^{0,0,4}}(\lambda^{\ast})>0. Then n34n_{3}\geq 4. So 𝒜˙30,0,4(Q˙1,0,v1,2,v1,Q˙1,0)(Q˙1,1,v1,2,v1,Q˙1,0)\dot{\mathcal{A}}_{3}^{0,0,4}\sim(\dot{Q}^{\prime}_{1,0},v_{1},2,v_{1},\dot{Q}^{\prime}_{1,0})\subset(\dot{Q}^{\prime}_{1,1},v_{1},2,v_{1},\dot{Q}^{\prime}_{1,0}) (if n3=4n_{3}=4) or 𝒜˙30,0,n3[Q˙1,0,v1,s,v1,Q˙1,0][Q˙1,1,v1,s,v1,Q˙1,1]\dot{\mathcal{A}}_{3}^{0,0,n_{3}}\subset[\dot{Q}^{\prime}_{1,0},v_{1},s,v_{1},\dot{Q}^{\prime}_{1,0}]\subset[\dot{Q}^{\prime}_{1,1},v_{1},s,v_{1},\dot{Q}^{\prime}_{1,1}] where s3s\geq 3 (if n35n_{3}\geq 5).

Case 2. n1=1.n_{1}=1.

Subcase 2.1. n2=0.n_{2}=0. By computations, we have ϕ𝒜˙31,0,3(λ)<0\phi_{\dot{\mathcal{A}}_{3}^{1,0,3}}(\lambda^{\ast})<0 and ϕ𝒜˙31,0,4(λ)>0.\phi_{\dot{\mathcal{A}}_{3}^{1,0,4}}(\lambda^{\ast})>0. Then n34n_{3}\geq 4. So 𝒜˙31,0,4(Q˙1,1,v1,2,v1,Q˙1,0)\dot{\mathcal{A}}_{3}^{1,0,4}\sim(\dot{Q}^{\prime}_{1,1},v_{1},2,v_{1},\dot{Q}^{\prime}_{1,0}) (if n3=4n_{3}=4) or 𝒜˙31,0,n3[Q˙1,1,v1,s,v1,Q˙1,0][Q˙1,1,v1,s,v1,Q˙1,1]\dot{\mathcal{A}}_{3}^{1,0,n_{3}}\subset[\dot{Q}^{\prime}_{1,1},v_{1},s,v_{1},\dot{Q}^{\prime}_{1,0}]\subset[\dot{Q}^{\prime}_{1,1},v_{1},s,v_{1},\dot{Q}^{\prime}_{1,1}] where s3s\geq 3 (if n35n_{3}\geq 5).

Subcase 2.2. n2=1.n_{2}=1. By computations, we have ϕ𝒜˙31,1,3(λ)<0\phi_{\dot{\mathcal{A}}_{3}^{1,1,3}}(\lambda^{\ast})<0 and ϕ𝒜˙31,1,4(λ)<0.\phi_{\dot{\mathcal{A}}_{3}^{1,1,4}}(\lambda^{\ast})<0. Then n35.n_{3}\geq 5. So 𝒜˙31,1,n3[Q˙1,1,v1,s,v1,Q˙1,1]\dot{\mathcal{A}}_{3}^{1,1,n_{3}}\subset[\dot{Q}^{\prime}_{1,1},v_{1},s,v_{1},\dot{Q}^{\prime}_{1,1}] where s3s\geq 3.

Case 3. n1=2.n_{1}=2.

Subcase 3.1. n2=0.n_{2}=0. By computations, we have ϕ𝒜˙32,0,3(λ)<0,\phi_{\dot{\mathcal{A}}_{3}^{2,0,3}}(\lambda^{\ast})<0, ϕ𝒜˙32,0,4(λ)<0\phi_{\dot{\mathcal{A}}_{3}^{2,0,4}}(\lambda^{\ast})<0 and ϕ𝒜˙32,0,5(λ)>0.\phi_{\dot{\mathcal{A}}_{3}^{2,0,5}}(\lambda^{\ast})>0. Then n35.n_{3}\geq 5. So 𝒜˙32,0,5(Q˙2,2,v2,2,v1,Q˙1,0)\dot{\mathcal{A}}_{3}^{2,0,5}\sim(\dot{Q}^{\prime}_{2,2},v_{2},2,v_{1},\dot{Q}^{\prime}_{1,0}) (if n3=5n_{3}=5) or 𝒜˙32,0,n3[Q˙2,2,v2,s,v1,Q˙1,0][Q˙2,2,v2,s,v1,Q˙1,1]\dot{\mathcal{A}}_{3}^{2,0,n_{3}}\subset[\dot{Q}^{\prime}_{2,2},v_{2},s,v_{1},\dot{Q}^{\prime}_{1,0}]\subset[\dot{Q}^{\prime}_{2,2},v_{2},s,v_{1},\dot{Q}^{\prime}_{1,1}] where s3s\geq 3 (if n36n_{3}\geq 6).

Subcase 3.2. 1n22.1\leq n_{2}\leq 2. By computations, if n3n1+n2+2,n_{3}\leq n_{1}+n_{2}+2, then ϕ𝒜˙32,n2,n3(λ)<0.\phi_{\dot{\mathcal{A}}_{3}^{2,n_{2},n_{3}}}(\lambda^{\ast})<0. Then n3n1+n2+3n_{3}\geq n_{1}+n_{2}+3. So 𝒜˙32,n2,n3[Q˙2,2,v2,s,vn2,Q˙n2,n2]\dot{\mathcal{A}}_{3}^{2,n_{2},n_{3}}\subset[\dot{Q}^{\prime}_{2,2},v_{2},s,v_{n_{2}},\dot{Q}^{\prime}_{n_{2},n_{2}}] where s3s\geq 3.

Case 4. n13.n_{1}\geq 3.

Subcase 4.1. n2=0.n_{2}=0. By forbidding Qn1+1,n3+2,2Q_{n_{1}+1,n_{3}+2,2} (where n3n1+1n_{3}\leq n_{1}+1), we have n3n1+2.n_{3}\geq n_{1}+2. Since ϕ𝒜˙3n1,0,n1+2(λ)<0\phi_{\dot{\mathcal{A}}_{3}^{n_{1},0,n_{1}+2}}(\lambda^{\ast})<0 and ϕ𝒜˙3n1,0,n1+3(λ)>0\phi_{\dot{\mathcal{A}}_{3}^{n_{1},0,n_{1}+3}}(\lambda^{\ast})>0 (by Table 3 (4) and (5)), then n3n1+3n_{3}\geq n_{1}+3. So 𝒜˙3n1,0,n1+3(Q˙n1,n1,vn1,2,v1,Q˙1,0)\dot{\mathcal{A}}_{3}^{n_{1},0,n_{1}+3}\sim(\dot{Q}^{\prime}_{n_{1},n_{1}},v_{n_{1}},2,v_{1},\dot{Q}^{\prime}_{1,0}) (if n3=n1+3n_{3}=n_{1}+3) or 𝒜˙3n1,0,n3[Q˙n1,n1,vn1,s,v1,Q˙1,0][Q˙n1,n1,vn1,s,v1,Q˙1,1]\dot{\mathcal{A}}_{3}^{n_{1},0,n_{3}}\subset[\dot{Q}^{\prime}_{n_{1},n_{1}},v_{n_{1}},s,v_{1},\dot{Q}^{\prime}_{1,0}]\subset[\dot{Q}^{\prime}_{n_{1},n_{1}},v_{n_{1}},s,v_{1},\dot{Q}^{\prime}_{1,1}] where s3s\geq 3 (if n3n1+4n_{3}\geq n_{1}+4).

Subcase 4.2. n2=1.n_{2}=1. By forbidding Qn1+1,n3+3,2Q_{n_{1}+1,n_{3}+3,2} (where n3n1+2n_{3}\leq n_{1}+2), we have n3n1+3.n_{3}\geq n_{1}+3. Since ϕ𝒜˙3n1,1,n1+3(λ)<0\phi_{\dot{\mathcal{A}}_{3}^{n_{1},1,n_{1}+3}}(\lambda^{\ast})<0 and ϕ𝒜˙3n1,1,n1+4(λ)>0\phi_{\dot{\mathcal{A}}_{3}^{n_{1},1,n_{1}+4}}(\lambda^{\ast})>0 (by Table 3 (6) and (7)), then n3n1+4n_{3}\geq n_{1}+4. So 𝒜˙3n1,1,n3[Q˙n1,n1,vn1,s,v1,Q˙1,1]\dot{\mathcal{A}}_{3}^{n_{1},1,n_{3}}\subset[\dot{Q}^{\prime}_{n_{1},n_{1}},v_{n_{1}},s,v_{1},\dot{Q}^{\prime}_{1,1}] where s3s\geq 3.

Subcase 4.3. n22.n_{2}\geq 2. If n1=3n_{1}=3 and n2=2,n_{2}=2, by forbidding Q4,n3+3,3Q_{4,n_{3}+3,3} (where n34n_{3}\leq 4), we have n35.n_{3}\geq 5. By computations, we have ϕ𝒜˙33,2,5(λ)<0\phi_{\dot{\mathcal{A}}_{3}^{3,2,5}}(\lambda^{\ast})<0,ϕ𝒜˙33,2,6(λ)<0\phi_{\dot{\mathcal{A}}_{3}^{3,2,6}}(\lambda^{\ast})<0 and ϕ𝒜˙33,2,7(λ)>0.\phi_{\dot{\mathcal{A}}_{3}^{3,2,7}}(\lambda^{\ast})>0. Then n37.n_{3}\geq 7. So 𝒜˙33,2,7(Q˙3,3,v3,2,v2,Q˙2,2)\dot{\mathcal{A}}_{3}^{3,2,7}\sim(\dot{Q}^{\prime}_{3,3},v_{3},2,v_{2},\dot{Q}^{\prime}_{2,2}) (if n3=7n_{3}=7) or 𝒜˙33,2,n3[Q˙3,3,v3,s,v2,Q˙2,2]\dot{\mathcal{A}}_{3}^{3,2,n_{3}}\subset[\dot{Q}^{\prime}_{3,3},v_{3},s,v_{2},\dot{Q}^{\prime}_{2,2}] where s3s\geq 3 (if n38n_{3}\geq 8). Otherwise, either n14n_{1}\geq 4 and n2=2,n_{2}=2, or n13n_{1}\geq 3 and n23.n_{2}\geq 3. By forbidding Qn1+1,n3+3,n2+1Q_{n_{1}+1,n_{3}+3,n_{2}+1} (where n3n1+n2n_{3}\leq n_{1}+n_{2}), we have n3n1+n2+1.n_{3}\geq n_{1}+n_{2}+1. If n3=n1+n2+1n_{3}=n_{1}+n_{2}+1, then ϕ𝒜˙3n1,n2,n1+n2+1(λ)=22(5+1)n1n212((5+1)n12n2+2n1(5+1)n2+(35)2n1+n2)<0.\phi_{\dot{\mathcal{A}}_{3}^{n_{1},n_{2},n_{1}+n_{2}+1}}(\lambda^{\ast})=-2\sqrt{2}(\sqrt{5}+1)^{-n_{1}-n_{2}-\frac{1}{2}}((\sqrt{5}+1)^{n_{1}}2^{n_{2}}+2^{n_{1}}(\sqrt{5}+1)^{n_{2}}+(3-\sqrt{5})2^{n_{1}+n_{2}})<0. Therefore, n3n1+n2+2n_{3}\geq n_{1}+n_{2}+2.

If n3=n1+n2+2n_{3}=n_{1}+n_{2}+2, then ϕ𝒜˙3n1,n2,n1+n2+2(λ)=(5+1)k2n21f(n2,k)\phi_{\dot{\mathcal{A}}_{3}^{n_{1},n_{2},n_{1}+n_{2}+2}}(\lambda^{\ast})=(\sqrt{5}+1)^{-k-2n_{2}-1}f(n_{2},k), where f(n2,k)=(5+1)k+2n2+1+(53)22n2+k+22n2+2(5+1)n2((5+1)k+2k).f(n_{2},k)=(\sqrt{5}+1)^{k+2n_{2}+1}+(\sqrt{5}-3)2^{2n_{2}+k+2}-2^{n_{2}+2}(\sqrt{5}+1)^{n_{2}}((\sqrt{5}+1)^{k}+2^{k}). Since

f(n2,k)>(5+1)k+2n2+1(5+1)n22k+n2+22n2+2(5+1)k+n22k+2n2+2>(5+1)n2((5+1)k+n2+1((5+1)k+2k+1)2n2+2)=(5+1)n2g(n2,k),\begin{split}f(n_{2},k)&>(\sqrt{5}+1)^{k+2n_{2}+1}-(\sqrt{5}+1)^{n_{2}}2^{k+n_{2}+2}-2^{n_{2}+2}(\sqrt{5}+1)^{k+n_{2}}-2^{k+2n_{2}+2}\\ &>(\sqrt{5}+1)^{n_{2}}((\sqrt{5}+1)^{k+n_{2}+1}-((\sqrt{5}+1)^{k}+2^{k+1})2^{n_{2}+2})=(\sqrt{5}+1)^{n_{2}}g(n_{2},k),\end{split}

then ϕ𝒜˙3n1,n2,n1+n2+2(λ)>(5+1)kn21g(n2,k)\phi_{\dot{\mathcal{A}}_{3}^{n_{1},n_{2},n_{1}+n_{2}+2}}(\lambda^{\ast})>(\sqrt{5}+1)^{-k-n_{2}-1}g(n_{2},k). If k=0,k=0, then n1=n23n_{1}=n_{2}\geq 3 and g(n2,0)=(5+1)n2+132n2+2>0g(n_{2},0)=(\sqrt{5}+1)^{n_{2}+1}-3\cdot 2^{n_{2}+2}>0. If k1,k\geq 1, then g(n2,k)>(5+1)k((5+1)n2+12n2+3)>0g(n_{2},k)>(\sqrt{5}+1)^{k}((\sqrt{5}+1)^{n_{2}+1}-2^{n_{2}+3})>0 for n22.n_{2}\geq 2. So, ϕ𝒜˙3n1,n2,n1+n2+2(λ)>0\phi_{\dot{\mathcal{A}}_{3}^{n_{1},n_{2},n_{1}+n_{2}+2}}(\lambda^{\ast})>0.

Hence, 𝒜˙3n1,n2,n1+n2+2(Q˙n1,n1,vn1,2,vn2,Q˙n2,n2)\dot{\mathcal{A}}_{3}^{n_{1},n_{2},n_{1}+n_{2}+2}\sim(\dot{Q}^{\prime}_{n_{1},n_{1}},v_{n_{1}},2,v_{n_{2}},\dot{Q}^{\prime}_{n_{2},n_{2}}) (if n3=n1+n2+2n_{3}=n_{1}+n_{2}+2) or 𝒜˙3n1,n2,n3[Q˙n1,n1,vn1,s,vn2,Q˙n2,n2]\dot{\mathcal{A}}_{3}^{n_{1},n_{2},n_{3}}\subset[\dot{Q}^{\prime}_{n_{1},n_{1}},v_{n_{1}},s,v_{n_{2}},\dot{Q}^{\prime}_{n_{2},n_{2}}] where s3s\geq 3 (if n3n1+n2+3n_{3}\geq n_{1}+n_{2}+3). We complete the proof of (3).(3).

The proofs of (4)(11)(4)-(11) are similar, and all values ϕ𝒜˙in1,n2(λ)\phi_{\dot{\mathcal{A}}_{i}^{n_{1},n_{2}}}(\lambda^{\ast}) (i=4,,13i=4,\dots,13) are presented in Table 3, where a3=51,a4=175+22,a5=735+151,a_{3}=\sqrt{\sqrt{5}-1},a_{4}=\sqrt{17\sqrt{5}+22},a_{5}=\sqrt{73\sqrt{5}+151}, a6=17522,a_{6}=\sqrt{17\sqrt{5}-22}, a7=5511,a8=735151,a9=5511,a10=1855409,a_{7}=\sqrt{5\sqrt{5}-11},a_{8}=\sqrt{73\sqrt{5}-151},a_{9}=\sqrt{5\sqrt{5}-11},a_{10}=\sqrt{185\sqrt{5}-409}, a11=2135+29,a12=313375+751.a_{11}=\frac{2}{\sqrt{13\sqrt{5}+29}},a_{12}=\frac{31}{\sqrt{337\sqrt{5}+751}}.

(12) If n13,n_{1}\geq 3, by forbidding Q1,n2+1,n1Q_{1,n_{2}+1,n_{1}} (where n2n12n_{2}\leq n_{1}-2), then n2n11n_{2}\geq n_{1}-1. So 𝒜˙14n1,n2[P4,v2,s]\dot{\mathcal{A}}_{14}^{n_{1},n_{2}}\subset[P_{4},v_{2},s] (if n12n_{1}\leq 2) or 𝒜˙14n1,n2[Tn1,1,n11,vn11,s]\dot{\mathcal{A}}_{14}^{n_{1},n_{2}}\subset[T_{n_{1},1,n_{1}-1},v_{n_{1}-1},s] (if n13n_{1}\geq 3), where s3.s\geq 3.

(13) By computations, we have ϕ𝒜˙16n1(λ)<0\phi_{\dot{\mathcal{A}}_{16}^{n_{1}}}(\lambda^{\ast})<0 and ϕ𝒜˙17n1(λ)<0\phi_{\dot{\mathcal{A}}_{17}^{n_{1}}}(\lambda^{\ast})<0 for n18n_{1}\leq 8 and ϕ𝒜˙15n1(λ)<0,\phi_{\dot{\mathcal{A}}_{15}^{n_{1}}}(\lambda^{\ast})<0, ϕ𝒜˙18n1(λ)<0\phi_{\dot{\mathcal{A}}_{18}^{n_{1}}}(\lambda^{\ast})<0 and ϕ𝒜˙19n1(λ)<0\phi_{\dot{\mathcal{A}}_{19}^{n_{1}}}(\lambda^{\ast})<0 for n110.n_{1}\leq 10. Therefore, 𝒜˙15n1\dot{\mathcal{A}}_{15}^{n_{1}} is an induced subgraph of [G˙510,v10,s,v10,G˙510],[\dot{G}_{5}^{10},v_{10},s,v_{10},\dot{G}_{5}^{10}], 𝒜˙in1\dot{\mathcal{A}}_{i}^{n_{1}} (i=16,17i=16,17) is an induced subgraph of [G˙29,v9,s,v10,G˙510],[\dot{G}_{2}^{9},v_{9},s,v_{10},\dot{G}_{5}^{10}], 𝒜˙in1\dot{\mathcal{A}}_{i}^{n_{1}} (i=18,19i=18,19) is an induced subgraph of [G˙412,v12,s,v10,G˙510].[\dot{G}_{4}^{12},v_{12},s,v_{10},\dot{G}_{5}^{10}].

Table 1: ϕG˙(x)\phi_{\dot{G}}(x) and ϕG˙(λ)\phi_{\dot{G}}(\lambda^{\ast}) where G˙\dot{G} belongs to Theorem 2.4 (iiiiii) and (iv)(iv)
ϕQ˙n1,n2(x)=xpn1+n2+3pn1+2pn2pn1pn2+2+2pn1pn2\phi_{\dot{Q}_{n_{1},n_{2}}}(x)=xp_{n_{1}+n_{2}+3}-p_{n_{1}+2}p_{n_{2}}-p_{n_{1}}p_{n_{2}+2}+2p_{n_{1}}p_{n_{2}}
ϕQ˙n1,n2(x)=xϕQ˙n1,n2(x)pn1+n2+3\phi_{\dot{Q}^{\prime}_{n_{1},n_{2}}}(x)=x\phi_{\dot{Q}_{n_{1},n_{2}}}(x)-p_{n_{1}+n_{2}+3}
ϕ𝒞˙k1,k2+1(x)=x(x(pkpk2+2)pk1)ϕTk21,1,k21(x)\phi_{\dot{\mathcal{C}}_{k}^{1,\frac{k}{2}+1}}(x)=x(x(p_{k}-p_{k-2}+2)-p_{k-1})-\phi_{T_{\frac{k}{2}-1,1,\frac{k}{2}-1}}(x)
ϕ𝒞˙k1,k2+1(λ)=(5+3)2k2(5+1)1k2>0\phi_{\dot{\mathcal{C}}_{k}^{1,\frac{k}{2}+1}}(\lambda^{\ast})=(\sqrt{5}+3)2^{\frac{k}{2}}(\sqrt{5}+1)^{1-\frac{k}{2}}>0
ϕC˙4[n1,1,n3,1](x)=xϕQ˙n1,n3(x)ϕTn1+1,1,n3+1(x)\phi_{\dot{C}_{4}[n_{1},1,n_{3},1]}(x)=x\phi_{\dot{Q}^{\prime}_{n_{1},n_{3}}}(x)-\phi_{T_{n_{1}+1,1,n_{3}+1}}(x)
ϕC˙4[n1,1,n3,1](λ)=212(n1+n3+2)(5+1)n12n32+1>0\phi_{\dot{C}_{4}[n_{1},1,n_{3},1]}(\lambda^{\ast})=2^{\frac{1}{2}(n_{1}+n_{3}+2)}(\sqrt{5}+1)^{-\frac{n_{1}}{2}-\frac{n_{3}}{2}+1}>0
ϕU˙6n1,n2(x)=xϕTn2,1,n1+3(x)pn1+n2+4ϕTn2,1,2(x)pn1+2pn1pn2\phi_{\dot{U}_{6}^{n_{1},n_{2}}}(x)=x\phi_{T_{n_{2},1,n_{1}+3}}(x)-p_{n_{1}+n_{2}+4}-\phi_{T_{n_{2},1,2}}(x)p_{n_{1}}+2p_{n_{1}}p_{n_{2}}
ϕU˙6n1,n2(λ)=212(n1+n2+2)(5+1)n12n22+1>0\phi_{\dot{U}_{6}^{n_{1},n_{2}}}(\lambda^{\ast})=2^{\frac{1}{2}(n_{1}+n_{2}+2)}(\sqrt{5}+1)^{-\frac{n_{1}}{2}-\frac{n_{2}}{2}+1}>0
ϕG˙0k(x)=x2qk(qk+2xpk1)+2x2+2xpk3\phi_{\dot{G}_{0}^{k}}(x)=x^{2}q_{k}-(q_{k}+2xp_{k-1})+2x^{2}+2xp_{k-3}
ϕG˙0k(λ)=2(1(25+1)k2)>0\phi_{\dot{G}_{0}^{k}}(\lambda^{\ast})=2(1-(\frac{2}{\sqrt{5}+1})^{\frac{k}{2}})>0 (k(k is even)
ϕS˙1n(x)=xpn8ϕS˙17(x)q6pn8pn9ϕS˙17(x)\phi_{\dot{S}_{1}^{n}}(x)=xp_{n-8}\phi_{\dot{S}_{1}^{7}}(x)-q_{6}p_{n-8}-p_{n-9}\phi_{\dot{S}_{1}^{7}}(x)
ϕS˙1n(λ)=(55+11)122n2+2(5+1)12(n1)>0\phi_{\dot{S}_{1}^{n}}(\lambda^{\ast})=(5\sqrt{5}+11)^{\frac{1}{2}}2^{\frac{n}{2}+2}(\sqrt{5}+1)^{\frac{1}{2}(-n-1)}>0
ϕS˙2n(x)=xpn11ϕS˙210(x)pn11ϕS˙29(x)pn12ϕS˙210(x)\phi_{\dot{S}_{2}^{n}}(x)=xp_{n-11}\phi_{\dot{S}_{2}^{10}}(x)-p_{n-11}\phi_{\dot{S}_{2}^{9}}(x)-p_{n-12}\phi_{\dot{S}_{2}^{10}}(x)
ϕS˙2n(λ)=2n2+2(5+1)n2>0\phi_{\dot{S}_{2}^{n}}(\lambda^{\ast})=2^{\frac{n}{2}+2}(\sqrt{5}+1)^{-\frac{n}{2}}>0
ϕ[G˙412,v12,3,vn1,Q˙n1,n1](λ)=(319457142)(5+1)n1+(129252889)2n1+3(5+1)n1+1(52)5/2>0\phi_{[\dot{G}_{4}^{12},v_{12},3,v_{n_{1}},\dot{Q}_{n_{1},n_{1}}^{\prime}]}(\lambda^{\ast})=\frac{(3194\sqrt{5}-7142)(\sqrt{5}+1)^{n_{1}}+(1292\sqrt{5}-2889)2^{n_{1}+3}}{(\sqrt{5}+1)^{n_{1}+1}(\sqrt{5}-2)^{5/2}}>0
ϕ[G˙29,v9,3,vn1,Q˙n1,n1](λ)=4((945)(5+1)n1+(29135)2n1)(5+1)n1+1>0\phi_{[\dot{G}_{2}^{9},v_{9},3,v_{n_{1}},\dot{Q}_{n_{1},n_{1}}^{\prime}]}(\lambda^{\ast})=\frac{4((9-4\sqrt{5})(\sqrt{5}+1)^{n_{1}}+(29-13\sqrt{5})2^{n_{1}})}{(\sqrt{5}+1)^{n_{1}+1}}>0
ϕ[G˙510,v10,3,vn1,Q˙n1,n1](λ)=2(5+1)n1+12n1+3(3055+682)1/2(5+1)n1+1>0\phi_{[\dot{G}_{5}^{10},v_{10},3,v_{n_{1}},\dot{Q}_{n_{1},n_{1}}^{\prime}]}(\lambda^{\ast})=\frac{2(\sqrt{5}+1)^{n_{1}+1}-2^{n_{1}+3}}{(305\sqrt{5}+682)^{1/2}(\sqrt{5}+1)^{n_{1}+1}}>0
ϕ[Q˙n1,n1,vn1,3,vn2,Q˙n2,n2](λ)=8((5+1)n1+n2+12a1((5+1)n12n2+2n1(5+1)n2)+a22n1+n2+52)(5+1)n1+n2+72\phi_{[\dot{Q}^{\prime}_{n_{1},n_{1}},v_{n_{1}},3,v_{n_{2}},\dot{Q}_{n_{2},n_{2}}^{\prime}]}(\lambda^{\ast})=\frac{8((\sqrt{5}+1)^{n_{1}+n_{2}+\frac{1}{2}}-a_{1}((\sqrt{5}+1)^{n_{1}}2^{n_{2}}+2^{n_{1}}(\sqrt{5}+1)^{n_{2}})+a_{2}2^{n_{1}+n_{2}+\frac{5}{2}})}{(\sqrt{5}+1)^{n_{1}+n_{2}+\frac{7}{2}}}
ϕ[Ta,1,a1,va,3,vn1,Q˙n1,n1](λ)=2a+2((5+1)n1(51)2n1)(5+1)an11\phi_{[T_{a,1,a-1},v_{a},3,v_{n_{1}},\dot{Q}_{n_{1},n_{1}}^{\prime}]}(\lambda^{\ast})=2^{a+2}((\sqrt{5}+1)^{n_{1}}-(\sqrt{5}-1)2^{n_{1}})(\sqrt{5}+1)^{-a-n_{1}-1}
ϕ[P4,v2,3,vn1,Q˙n1,n1](λ)=(2(35)(5+1)n1(52)2n1+3)(5+1)n1+1>0\phi_{[P_{4},v_{2},3,v_{n_{1}},\dot{Q}_{n_{1},n_{1}}^{\prime}]}(\lambda^{\ast})=\frac{(2(3-\sqrt{5})(\sqrt{5}+1)^{n_{1}}-(\sqrt{5}-2)2^{n_{1}+3})}{(\sqrt{5}+1)^{n_{1}+1}}>0
ϕ[G˙412,v12,3,va1,Ta,1,a1](λ)0.0669(25+1)a>0\phi_{[\dot{G}_{4}^{12},v_{12},3,v_{a-1},T_{a,1,a-1}]}(\lambda^{\ast})\approx 0.0669(\frac{2}{\sqrt{5}+1})^{a}>0
ϕ[G˙29,v9,3,va1,Ta,1,a1](λ)=(5511)2n1+1(5+1)a>0\phi_{[\dot{G}_{2}^{9},v_{9},3,v_{a-1},T_{a,1,a-1}]}(\lambda^{\ast})=(5\sqrt{5}-11)2^{n_{1}+1}(\sqrt{5}+1)^{-a}>0
ϕ[G˙510,v10,3,va1,Ta,1,a1](λ)0.28(25+1)a>0\phi_{[\dot{G}_{5}^{10},v_{10},3,v_{a-1},T_{a,1,a-1}]}(\lambda^{\ast})\approx 0.28(\frac{2}{\sqrt{5}+1})^{a}>0
ϕ[Tb,1,b1,vb1,3,va1,Ta,1,a1](λ)=2a+b+1(5+1)ab+1>0\phi_{[T_{b,1,b-1},v_{b-1},3,v_{a-1},T_{a,1,a-1}]}(\lambda^{\ast})=2^{a+b+1}(\sqrt{5}+1)^{-a-b+1}>0
ϕ[P4,v2,3,va1,Ta,1,a1](λ)=2a+3(5+1)a1>0\phi_{[P_{4},v_{2},3,v_{a-1},T_{a,1,a-1}]}(\lambda^{\ast})=2^{a+3}(\sqrt{5}+1)^{-a-1}>0
Table 2: ϕG˙(λ)\phi_{\dot{G}}(\lambda^{\ast}) where G˙\dot{G} belongs to Theorem 2.4 (iv)(iv)
ϕ[G˙412,v12,3,v12,G˙412](λ)0.0007\phi_{[\dot{G}_{4}^{12},v_{12},3,v_{12},\dot{G}_{4}^{12}]}(\lambda^{\ast})\approx 0.0007 ϕ[G˙29,v9,3,v9,G˙29](λ)0.02\phi_{[\dot{G}_{2}^{9},v_{9},3,v_{9},\dot{G}_{2}^{9}]}(\lambda^{\ast})\approx 0.02 ϕ[G˙510,v10,3,v2,P4](λ)0.03\phi_{[\dot{G}_{5}^{10},v_{10},3,v_{2},P_{4}]}(\lambda^{\ast})\approx 0.03
ϕ[G˙412,v12,3,v9,G˙29](λ)0.004\phi_{[\dot{G}_{4}^{12},v_{12},3,v_{9},\dot{G}_{2}^{9}]}(\lambda^{\ast})\approx 0.004 ϕ[G˙29,v9,3,v10,G˙510](λ)0.015\phi_{[\dot{G}_{2}^{9},v_{9},3,v_{10},\dot{G}_{5}^{10}]}(\lambda^{\ast})\approx 0.015 ϕ[P4,v2,3,v2,P4](λ)0.05\phi_{[P_{4},v_{2},3,v_{2},P_{4}]}(\lambda^{\ast})\approx 0.05
ϕ[G˙412,v12,3,v10,G˙510](λ)0.003\phi_{[\dot{G}_{4}^{12},v_{12},3,v_{10},\dot{G}_{5}^{10}]}(\lambda^{\ast})\approx 0.003 ϕ[G˙29,v9,3,v2,P4](λ)0.033\phi_{[\dot{G}_{2}^{9},v_{9},3,v_{2},P_{4}]}(\lambda^{\ast})\approx 0.033
ϕ[G˙412,v12,3,v2,P4](λ)0.006\phi_{[\dot{G}_{4}^{12},v_{12},3,v_{2},P_{4}]}(\lambda^{\ast})\approx 0.006 ϕ[G˙510,v10,3,v10,G˙510](λ)0.01\phi_{[\dot{G}_{5}^{10},v_{10},3,v_{10},\dot{G}_{5}^{10}]}(\lambda^{\ast})\approx 0.01
Table 3: ϕG˙(λ)\phi_{\dot{G}}(\lambda^{\ast}) where G˙\dot{G} belongs to Lemma 3.5
(1)(1) ϕ𝒜˙2n1,1,n11(λ)=(51)122n1+12(5+1)n1<0\phi_{\dot{\mathcal{A}}_{2}^{n_{1},1,n_{1}-1}}(\lambda^{\ast})=-(\sqrt{5}-1)^{\frac{1}{2}}2^{n_{1}+\frac{1}{2}}\left(\sqrt{5}+1\right)^{-n_{1}}<0
(2)(2) ϕ𝒜˙2n1,2,n1+2(λ)=22(5+1)n132((5+1)n152n1+1)>0\phi_{\dot{\mathcal{A}}_{2}^{n_{1},2,n_{1}+2}}(\lambda^{\ast})=2\sqrt{2}(\sqrt{5}+1)^{-n_{1}-\frac{3}{2}}((\sqrt{5}+1)^{n_{1}}-\sqrt{5}\cdot 2^{n_{1}+1})>0 (n14)(n_{1}\geq 4)
(3)(3) ϕ𝒜˙20,n2,n2+2(λ)=(51)122n2+32(5+1)n2+3(5+2)12(2(5+1))12>0\phi_{\dot{\mathcal{A}}_{2}^{0,n_{2},n_{2}+2}}(\lambda^{\ast})=\frac{(\sqrt{5}-1)^{\frac{1}{2}}2^{n_{2}+\frac{3}{2}}}{(\sqrt{5}+1)^{n_{2}}}+3(\sqrt{5}+2)^{\frac{1}{2}}-(2(\sqrt{5}+1))^{\frac{1}{2}}>0
(4)(4) ϕ𝒜˙3n1,0,n1+2(λ)=(25+3)2n1+5(5+1)n145+2<0\phi_{\dot{\mathcal{A}}_{3}^{n_{1},0,n_{1}+2}}(\lambda^{\ast})=-(2\sqrt{5}+3)2^{n_{1}+5}(\sqrt{5}+1)^{-n_{1}-4}-\sqrt{5}+2<0 (n13)(n_{1}\geq 3)
(5)(5) ϕ𝒜˙3n1,0,n1+3(λ)=(5+1)n132(210(5+1)n1+(54)2n1+52)>0\phi_{\dot{\mathcal{A}}_{3}^{n_{1},0,n_{1}+3}}(\lambda^{\ast})=(\sqrt{5}+1)^{-n_{1}-\frac{3}{2}}(2\sqrt{10}(\sqrt{5}+1)^{n_{1}}+(\sqrt{5}-4)2^{n_{1}+\frac{5}{2}})>0
(6)(6) ϕ𝒜˙3n1,1,n1+3(λ)=(5513)(25+1)n1+52<0\phi_{\dot{\mathcal{A}}_{3}^{n_{1},1,n_{1}+3}}(\lambda^{\ast})=(5\sqrt{5}-13)(\frac{2}{\sqrt{5}+1})^{n_{1}}+\sqrt{5}-2<0
(7)(7) ϕ𝒜˙3n1,1,n1+4(λ)=(57)(12(5+1))n152+352>0\phi_{\dot{\mathcal{A}}_{3}^{n_{1},1,n_{1}+4}}(\lambda^{\ast})=(\sqrt{5}-7)(\frac{1}{2}(\sqrt{5}+1))^{-n_{1}-\frac{5}{2}}+3\sqrt{\sqrt{5}-2}>0
(8)(8) ϕ𝒜˙4n1,n2(λ)=a32n1(5+1)n2+a42n1+n2+32a5(5+1)n12n2212(n1+n2+2)(5+1)12(n1+n21)\phi_{\dot{\mathcal{A}}_{4}^{n_{1},n_{2}}}(\lambda^{\ast})=\frac{a_{3}\cdot 2^{n_{1}}(\sqrt{5}+1)^{n_{2}}+a_{4}\cdot 2^{n_{1}+n_{2}+\frac{3}{2}}-a_{5}(\sqrt{5}+1)^{n_{1}}2^{n_{2}}}{2^{\frac{1}{2}(n_{1}+n_{2}+2)}(\sqrt{5}+1)^{\frac{1}{2}(n_{1}+n_{2}-1)}}
(9)(9) ϕ𝒜˙5n1,n2(λ)=((45+7)(5+1)n1+(55+1)2n1)2n2+82n1+8(5+1)n2(53)(2(5+1))12(n1+n2+7)\phi_{\dot{\mathcal{A}}_{5}^{n_{1},n_{2}}}(\lambda^{\ast})=\frac{((4\sqrt{5}+7)(\sqrt{5}+1)^{n_{1}}+(5\sqrt{5}+1)2^{n_{1}})2^{n_{2}+8}-2^{n_{1}+8}(\sqrt{5}+1)^{n_{2}}}{(\sqrt{5}-3)(2(\sqrt{5}+1))^{\frac{1}{2}(n_{1}+n_{2}+7)}}
(10)(10) ϕ𝒜˙6n1,n2(λ)=(51)2n1+1(5+1)n2+3((51)2n1(5+1)n1)2n2+2(51)(2(5+1))12(n1+n2)\phi_{\dot{\mathcal{A}}_{6}^{n_{1},n_{2}}}(\lambda^{\ast})=\frac{(\sqrt{5}-1)2^{n_{1}+1}(\sqrt{5}+1)^{n_{2}}+3((\sqrt{5}-1)2^{n_{1}}-(\sqrt{5}+1)^{n_{1}})2^{n_{2}+2}}{(\sqrt{5}-1)(2(\sqrt{5}+1))^{\frac{1}{2}(n_{1}+n_{2})}}
(11)(11) ϕ𝒜˙7n1,n2(λ)=(51)2n1+4(5+1)n2+3((53)2n1(5+1)n1)2n2+5(51)(2(5+1))12(n1+n2+3)\phi_{\dot{\mathcal{A}}_{7}^{n_{1},n_{2}}}(\lambda^{\ast})=\frac{(\sqrt{5}-1)2^{n_{1}+4}(\sqrt{5}+1)^{n_{2}}+3((\sqrt{5}-3)2^{n_{1}}-(\sqrt{5}+1)^{n_{1}})2^{n_{2}+5}}{(\sqrt{5}-1)(2(\sqrt{5}+1))^{\frac{1}{2}(n_{1}+n_{2}+3)}}
(12)(12) ϕ𝒜˙8n1,n2(λ)=3(5+1)n1+12n2+52n1+6(5+1)n232n1+n2+7(53)(2(5+1))12(n1+n2+5)\phi_{\dot{\mathcal{A}}_{8}^{n_{1},n_{2}}}(\lambda^{\ast})=\frac{3(\sqrt{5}+1)^{n_{1}+1}2^{n_{2}+5}-2^{n_{1}+6}(\sqrt{5}+1)^{n_{2}}-3\cdot 2^{n_{1}+n_{2}+7}}{(\sqrt{5}-3)(2(\sqrt{5}+1))^{\frac{1}{2}(n_{1}+n_{2}+5)}}
(13)(13) ϕ𝒜˙9n1,n2(λ)=a32n1(5+1)n23((5+1)n1+12+(52)2n1+32)2n22n12+n221(5+1)12(n1+n2+3)\phi_{\dot{\mathcal{A}}_{9}^{n_{1},n_{2}}}(\lambda^{\ast})=\frac{a_{3}\cdot 2^{n_{1}}(\sqrt{5}+1)^{n_{2}}-3((\sqrt{5}+1)^{n_{1}+\frac{1}{2}}+(\sqrt{\sqrt{5}-2})2^{n_{1}+\frac{3}{2}})2^{n_{2}}}{2^{\frac{n_{1}}{2}+\frac{n_{2}}{2}-1}(\sqrt{5}+1)^{\frac{1}{2}(n_{1}+n_{2}+3)}}
(14)(14) ϕ𝒜˙10n1,n2(λ)=a6(5+1)n1(2n2+1)+a72n1+12(5+1)n2+a82n1+n2+32(53)(2(5+1))12(n1+n2)\phi_{\dot{\mathcal{A}}_{10}^{n_{1},n_{2}}}(\lambda^{\ast})=-\frac{a_{6}(\sqrt{5}+1)^{n_{1}}(-2^{n_{2}+1})+a_{7}\cdot 2^{n_{1}+\frac{1}{2}}(\sqrt{5}+1)^{n_{2}}+a_{8}\cdot 2^{n_{1}+n_{2}+\frac{3}{2}}}{(\sqrt{5}-3)(2(\sqrt{5}+1))^{\frac{1}{2}(n_{1}+n_{2})}}
(15)(15) ϕ𝒜˙11n1,n2(λ)=a6(5+1)n12n2+4a92n1+72(5+1)n2+a102n1+n2+92(53)(2(5+1))12(n1+n2+3)\phi_{\dot{\mathcal{A}}_{11}^{n_{1},n_{2}}}(\lambda^{\ast})=\frac{a_{6}(\sqrt{5}+1)^{n_{1}}2^{n_{2}+4}-a_{9}\cdot 2^{n_{1}+\frac{7}{2}}(\sqrt{5}+1)^{n_{2}}+a_{10}\cdot 2^{n_{1}+n_{2}+\frac{9}{2}}}{(\sqrt{5}-3)(2(\sqrt{5}+1))^{\frac{1}{2}(n_{1}+n_{2}+3)}}
(16)(16) ϕ𝒜˙12n1,n2(λ)=(52)((45+7)(5+1)n1(2n2)+2n1(5+1)n2+(35+13)2n1+n2)(2(5+1))12(n1+n2)\phi_{\dot{\mathcal{A}}_{12}^{n_{1},n_{2}}}(\lambda^{\ast})=\frac{(\sqrt{5}-2)((4\sqrt{5}+7)(\sqrt{5}+1)^{n_{1}}(-2^{n_{2}})+2^{n_{1}}(\sqrt{5}+1)^{n_{2}}+(3\sqrt{5}+13)2^{n_{1}+n_{2}})}{(2(\sqrt{5}+1))^{\frac{1}{2}(n_{1}+n_{2})}}
(17)(17) ϕ𝒜˙13n1,n2(λ)=a112(2n1(5+1)n2(45+7)(5+1)n12n2)a122n1+n2+2212(n1+n21)(5+1)12(n1+n2+2)\phi_{\dot{\mathcal{A}}_{13}^{n_{1},n_{2}}}(\lambda^{\ast})=\frac{a_{11}\cdot 2(2^{n_{1}}(\sqrt{5}+1)^{n_{2}}-(4\sqrt{5}+7)(\sqrt{5}+1)^{n_{1}}2^{n_{2}})-a_{12}\cdot 2^{n_{1}+n_{2}+2}}{2^{\frac{1}{2}(n_{1}+n_{2}-1)}(\sqrt{5}+1)^{\frac{1}{2}(n_{1}+n_{2}+2)}}