This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

On Sharp Beckner’s Inequality for Axially Symmetric Functions on π•Š4\mathbb{S}^{4}

Tuoxin Li Department of Mathematics, University of British Columbia,Vancouver, Canada [email protected] ,Β  Juncheng Wei Department of Mathematics, University of British Columbia,Vancouver, Canada [email protected] Β andΒ  Zikai Ye Department of Mathematics, University of British Columbia,Vancouver, Canada [email protected]
Abstract.

We prove that axially symmetric solutions to the QQ-curvature type problem

α​P4​u+6​(1βˆ’e4​uβˆ«π•Š4e4​u)=0onβ€‹π•Š4\alpha P_{4}u+6(1-\frac{e^{4u}}{\int_{\mathbb{S}^{4}}e^{4u}})=0\ \ \ \ \ \mbox{on}\ \mathbb{S}^{4}

must be constants, provided that 12≀α<1\frac{1}{2}\leq\alpha<1. This result is sharp in view of the existence of nonconstant solutions to the equation by Gui,Hu and Xie [15] for 15<Ξ±<12\frac{1}{5}<\alpha<\frac{1}{2}. As a consequence, we prove a sharp Beckner’s inequality on π•Š4\mathbb{S}^{4} for axially symmetric functions with center of mass at the origin. This answers an open question in [15] in which the corresponding results were proved for Ξ±β‰₯0.517\alpha\geq 0.517. To close the gap, we make use of some quantitative properties of Gegenbauer polynomials. One of the key ingredients in our proof is the pointwise estimate of large parameters asymptotic expansions for Gegenbauer polynomials proved in Nemes and Daalhuis [23].

1. Introduction and Main Results

On π•Š4\mathbb{S}^{4}, the Beckner’s inequality ([3]), a higher order Moser-Trudinger inequality, says that the functional

Jα​(u):=Ξ±2​(βˆ«π•Š4|Δ​u|2​d​w+2β€‹βˆ«π•Š4|βˆ‡u|2​d​w)+6β€‹βˆ«π•Š4u​d​wβˆ’32​lnβ€‹βˆ«π•Š4e4​u​d​wJ_{\alpha}(u):=\frac{\alpha}{2}\left(\int_{\mathbb{S}^{4}}|\Delta u|^{2}\text{d}w+2\int_{\mathbb{S}^{4}}|\nabla u|^{2}\text{d}w\right)+6\int_{\mathbb{S}^{4}}u\text{d}w-\frac{3}{2}\ln\int_{\mathbb{S}^{4}}e^{4u}\text{d}w

is non-negative, for Ξ±=1\alpha=1 and all u∈H2​(π•Š4)u\in H^{2}(\mathbb{S}^{4}), where dww is the normalized Lebesgue measure on π•Š4\mathbb{S}^{4} with βˆ«π•Š4d​w=1\int_{\mathbb{S}^{4}}\text{d}w=1. On the other hand, an improved higher order Moser-Trudinger-Onofri type inequality holds if the center of the mass of uu is at the origin: for uu belonging to the set

β„’={u∈H2​(π•Š4):βˆ«π•Š4e4​u​xj​d​w=0,j=1,…,5},\mathcal{L}=\left\{u\in H^{2}(\mathbb{S}^{4})\ :\ \int_{\mathbb{S}^{4}}e^{4u}x_{j}\text{d}w=0,\ j=1,...,5\right\},

and for any Ξ±β‰₯12\alpha\geq\frac{1}{2}, there exists some constant C​(Ξ±)β‰₯0C(\alpha)\geq 0, such that Jα​(u)β‰₯βˆ’C​(Ξ±)J_{\alpha}(u)\geq-C(\alpha). Here xjx_{j}’s are the coordinate components of ℝ5\mathbb{R}^{5}. As in second order case ([6]), it is conjectured that C​(Ξ±)C(\alpha) can be chosen to be 0 for any Ξ±β‰₯12\alpha\geq\frac{1}{2}.

The Euler-Lagrange equation of JΞ±J_{\alpha} is the constant QQ-curvature-type equation on π•Š4\mathbb{S}^{4}

α​P4​u+6​(1βˆ’e4​uβˆ«π•Š4e4​u​d​w)=0​onβ€‹π•Š4,\alpha P_{4}u+6(1-\frac{e^{4u}}{\int_{\mathbb{S}^{4}}e^{4u}\text{d}w})=0\ \mbox{on}\ \mathbb{S}^{4}, (1.1)

where P4=Ξ”2βˆ’2​ΔP_{4}=\Delta^{2}-2\Delta is the Paneitz operator on π•Š4\mathbb{S}^{4}. The conjecture holds if the equation (1.1) admits only constant solutions. For Ξ±<1\alpha<1 and close to 11, it is proved by the second author and Xu [24] that all solutions to (1.1) are constants. It remains open for general α∈[12,1)\alpha\in[\frac{1}{2},1). For results and backgrounds on QQ-curvature problems, we refer to [8, 9, 10, 11, 15, 18, 20, 21, 24] and the references therein.

The counterpart of this problem on π•Š2\mathbb{S}^{2} is the so-called Nirenberg problem

βˆ’Ξ±β€‹Ξ”β€‹u+1βˆ’e2​uβˆ«π•Š2e2​u=0onβ€‹π•Š2-\alpha\Delta u+1-\frac{e^{2u}}{\int_{\mathbb{S}^{2}}e^{2u}}=0\ \ \mbox{on}\ \mathbb{S}^{2}

and it has received lots of attention in the last four decades. We refer to [6, 7, 19] and the references therein. It is conjectured by A.Chang and P.Yang [6, 7] that the following functional

Ξ±β€‹βˆ«π•Š2|βˆ‡u|2​d​w+2β€‹βˆ«π•Š2u​d​wβˆ’lnβ€‹βˆ«π•Š2e2​u​d​w\alpha\int_{\mathbb{S}^{2}}|\nabla u|^{2}\text{d}w+2\int_{\mathbb{S}^{2}}u\text{d}w-\ln\int_{\mathbb{S}^{2}}e^{2u}\text{d}w

is non-negative for any Ξ±β‰₯12\alpha\geq\frac{1}{2} and uu with zero center of mass βˆ«π•Š2e2​u​x→​d​w=0\int_{\mathbb{S}^{2}}e^{2u}\vec{x}\text{d}w=0. Feldman, Froese,Ghoussoub and Gui [12] proved that the conjecture is true for axially symmetric functions when Ξ±>1625βˆ’Ο΅\alpha>\frac{16}{25}-\epsilon. Gui and the second author [17] proved that the conjecture is true for axially symmetric functions. Ghoussoub and Lin [13] showed that the conjecture is true for Ξ±>23βˆ’Ο΅\alpha>\frac{2}{3}-\epsilon. Finally, Gui and Moradifam [14] proved that the conjecture is indeed true. See [5, 4] for references and more general results on improved Moser-Trudinger-Onofri inequality on π•Š2\mathbb{S}^{2} and relations with SzegΓΆ limit theorem.

In this paper, we will study axially symmetric solution uu to (1.1) for α∈[12,1)\alpha\in[\frac{1}{2},1). As in [15], (1.1) becomes

α​[(1βˆ’x2)2​uβ€²]β€²β€²β€²+6βˆ’8​e4​uβˆ«βˆ’11(1βˆ’x2)​e4​u=0,x∈(βˆ’1,1),\alpha[(1-x^{2})^{2}u^{\prime}]^{\prime\prime\prime}+6-\frac{8e^{4u}}{\int_{-1}^{1}(1-x^{2})e^{4u}}=0,\ x\in(-1,1), (1.2)

which is the critical point of the functional

Iα​(u)\displaystyle I_{\alpha}(u) =Ξ±2β€‹βˆ«βˆ’11((1βˆ’x2)​|(1βˆ’x2)​uβ€²β€²|2+6​|(1βˆ’x2)​uβ€²|2)\displaystyle=\frac{\alpha}{2}\int_{-1}^{1}((1-x^{2})|(1-x^{2})u^{\prime\prime}|^{2}+6|(1-x^{2})u^{\prime}|^{2})
+6β€‹βˆ«βˆ’11(1βˆ’x2)​uβˆ’2​ln⁑(34β€‹βˆ«βˆ’11(1βˆ’x2)​e4​u)\displaystyle+6\int_{-1}^{1}(1-x^{2})u-2\ln(\frac{3}{4}\int_{-1}^{1}(1-x^{2})e^{4u})

restricted to the set

β„’r={u∈H2​(π•Š4):u=u​(x)​ andΒ β€‹βˆ«βˆ’11x​(1βˆ’x2)​e4​u​𝑑x=0}.\mathcal{L}_{r}=\{u\in H^{2}(\mathbb{S}^{4}):\ u=u(x)\text{ and }\int_{-1}^{1}x(1-x^{2})e^{4u}dx=0\}. (1.3)

Our main result is

Theorem 1.1.

If Ξ±β‰₯12\alpha\geq\frac{1}{2}, then the only critical point of the functional IΞ±I_{\alpha} restricted to β„’r\mathcal{L}_{r} are constant functions. As a consequence we have the following improved Beckner’s inequality for axially symmetric functions on π•Š4\mathbb{S}^{4}

infuβˆˆβ„’rIα​(u)=0,Ξ±β‰₯12.\inf_{u\in{\mathcal{L}_{r}}}I_{\alpha}(u)=0,\ \alpha\geq\frac{1}{2}.

The assumption on Ξ±\alpha in Theorem 1.1 is sharp. By bifurcation methods, Gui,Hu and Xie [15] proved that Theorem 1.1 fails for 15<Ξ±<12\frac{1}{5}<\alpha<\frac{1}{2}. They also showed that Theorem 1.1 holds for Ξ±β‰₯0.517\alpha\geq 0.517, using similar strategies as in [12, 17]. More precisely, they expanded G=(1βˆ’x2)​uβ€²G=(1-x^{2})u^{\prime} in terms of Gegenbauer polynomials and introduced a quantity DD (see (4.3)) and obtained an inequality for each nβ‰₯3n\geq 3. From these inequalities, they expected to go through similar induction procedure as in [17]. However, the estimates of Gegenbauer coefficients of GG they have obtained are not refined enough to make the induction procedure work for large modes. As a consequence, one cannot obtain the optimal constant Ξ±β‰₯12\alpha\geq\frac{1}{2} by their method. See the discussion in [Section 6, [15]] for more details.

We will use the same strategy, as in [17, 15], but with more refined estimates on Gegenbauer coefficients of GG. In particular we make use of pointwise estimates proved in [Corollary 5.3, Nemes and Daalhuis[23]]. By refining the behavior of Gegenbauer polynomial near x=Β±1x=\pm 1 and using the decaying properties away from x=Β±1x=\pm 1, we show that the induction procedure in [17] still works in this setting.

Under similar settings, this problem can be generalized to π•Šn,nβ‰₯3\mathbb{S}^{n},n\geq 3. Gui, Hu and Xie [16] showed that the counterparts of Theorem 1.1 fails for 1n+1≀α<12\frac{1}{n+1}\leq\alpha<\frac{1}{2}. When n=6, 8n=6,\ 8, they showed that for Ξ±β‰₯0.6168\alpha\geq 0.6168 (n=6n=6) and Ξ±β‰₯0.8261\alpha\geq 0.8261 (n=8n=8), all critical points are constants. Whether or not the optimal constant is Ξ±=12\alpha=\frac{1}{2} remains unknown. We believe that our estimates in this paper can give a unified proof for sharp Beckner’s inequality on π•Šn\mathbb{S}^{n}, at least in the axially symmetric case. We will return to this in a future work.

The organization of this paper is as follows. In Section 2 we collect some properties of Gegenbauer polynomials and the expansions of G=(1βˆ’x2)​uβ€²G=(1-x^{2})u^{\prime} (proved in [15]). In Section 3 we give refined estimates on the Gegenbauer coefficients of GG (Theorem 3.1). In Section 4 we prove the main Theorem 1.1 by induction argument. Three technical lemmas (Lemmas 3.2, 3.4 and 3.5) are proved in the appendices.

2. Preliminaries and some basic estimates

In this section, we collect some properties of Gegenbauer polynomials and some known facts on equation (1.2).

Recall that the Gegenbauer polynomials of order Ξ½\nu and degree kk ([22]) is given by

Ckν​(x)=(βˆ’1)k2k​n!​Γ​(Ξ½+12)​Γ​(k+2​ν)Γ​(2​ν)​Γ​(Ξ½+k+12)​(1βˆ’x2)βˆ’Ξ½+12​dkd​xk​(1βˆ’x2)k+Ξ½βˆ’12.C_{k}^{\nu}(x)=\frac{(-1)^{k}}{2^{k}n!}\frac{\Gamma(\nu+\frac{1}{2})\Gamma(k+2\nu)}{\Gamma(2\nu)\Gamma(\nu+k+\frac{1}{2})}(1-x^{2})^{-\nu+\frac{1}{2}}\frac{d^{k}}{dx^{k}}(1-x^{2})^{k+\nu-\frac{1}{2}}.

The derivative of CkΞ½C_{k}^{\nu} satisfies

dd​x​Ckν​(x)=2​ν​Ckβˆ’1Ξ½+1​(x).\frac{d}{dx}C_{k}^{\nu}(x)=2\nu C_{k-1}^{\nu+1}(x). (2.1)

On π•Š4\mathbb{S}^{4} the corresponding Gegenbauer polynomial for bi-Laplacian is Ck32C_{k}^{\frac{3}{2}}. (On π•Š2\mathbb{S}^{2} it is Ck12C_{k}^{\frac{1}{2}}.) Let FkF_{k} be the normalization of Ck32C_{k}^{\frac{3}{2}} such that Fk​(1)=1F_{k}(1)=1. More precisely,

Fk:=2(k+1)​(k+2)​Ck32.F_{k}:=\frac{2}{(k+1)(k+2)}C_{k}^{\frac{3}{2}}.

The first few terms of FkF_{k} are given as follows

F0=1,F1=x,F2=54​x2βˆ’1,F3=74​x3βˆ’34​x.F_{0}=1,\ F_{1}=x,\ F_{2}=\frac{5}{4}x^{2}-1,\ F_{3}=\frac{7}{4}x^{3}-\frac{3}{4}x.

Also, FkF_{k} satisfies

(1βˆ’x2)​Fkβ€²β€²βˆ’4​x​Fkβ€²+Ξ»k​Fk=0,Ξ»k=k​(k+3)(1-x^{2})F_{k}^{\prime\prime}-4xF_{k}^{\prime}+\lambda_{k}F_{k}=0,\lambda_{k}=k(k+3) (2.2)

and

βˆ«βˆ’11(1βˆ’x2)​Fk​Fl=8(2​k+3)​(k+1)​(k+2)​δk​l.\int_{-1}^{1}(1-x^{2})F_{k}F_{l}=\frac{8}{(2k+3)(k+1)(k+2)}\delta_{kl}. (2.3)

As in [15, 17], we define the following key quantity

G​(x)=(1βˆ’x2)​uβ€²,G(x)=(1-x^{2})u^{\prime}, (2.4)

where uu is a solution to (1.2). Then GG satisfies the equation

α​((1βˆ’x2)​G)β€²β€²β€²+6βˆ’8γ​e4​u=0,\alpha((1-x^{2})G)^{\prime\prime\prime}+6-\frac{8}{\gamma}e^{4u}=0, (2.5)

where

Ξ³=βˆ«βˆ’11(1βˆ’x2)​e4​u.\gamma=\int_{-1}^{1}(1-x^{2})e^{4u}. (2.6)

We can expand GG in terms of the Gegenbauer polynomials FkF_{k}:

G=a0​F0+β​x+a2​F2​(x)+βˆ‘k=3∞ak​Fk​(x).G=a_{0}F_{0}+\beta x+a_{2}F_{2}(x)+\sum_{k=3}^{\infty}a_{k}F_{k}(x). (2.7)

Denote

g=(1βˆ’x2)​e4​uΞ³,a:=βˆ«βˆ’11(1βˆ’x2)​g.g=(1-x^{2})\frac{e^{4u}}{\gamma},\ a:=\int_{-1}^{1}(1-x^{2})g. (2.8)

We recall the following results from [15]:

Lemma 2.1 (Lemma 2.2 in [15]).

For g=(1βˆ’x2)​e4​uΞ³g=(1-x^{2})\frac{e^{4u}}{\gamma} and G=(1βˆ’x2)​uβ€²G=(1-x^{2})u^{\prime} as above, we have a0=0a_{0}=0 and

βˆ«βˆ’11(1βˆ’x2)​F1​G=415​β,\int_{-1}^{1}(1-x^{2})F_{1}G=\frac{4}{15}\beta, (2.9)
a=βˆ«βˆ’11(1βˆ’x2)​g=45​(1βˆ’Ξ±β€‹Ξ²),a=\int_{-1}^{1}(1-x^{2})g=\frac{4}{5}(1-\alpha\beta), (2.10)
βˆ«βˆ’11(1βˆ’x2)​Fk​G=βˆ’8α​λk​(Ξ»k+2)β€‹βˆ«βˆ’11(1βˆ’x2)​g​Fkβ€², ​kβ‰₯2,\int_{-1}^{1}(1-x^{2})F_{k}G=-\frac{8}{\alpha\lambda_{k}(\lambda_{k}+2)}\int_{-1}^{1}(1-x^{2})gF_{k}^{\prime},\text{ }k\geq 2, (2.11)
βˆ«βˆ’11|[(1βˆ’x2)​G]β€²|2=1615​(5βˆ’1Ξ±)​β.\int_{-1}^{1}|[(1-x^{2})G]^{\prime}|^{2}=\frac{16}{15}(5-\frac{1}{\alpha})\beta. (2.12)
Lemma 2.2 (Lemma 3.1 and Lemma 3.2 in [15]).

There holds

G′≀1Ξ±,G^{\prime}\leq\frac{1}{\alpha}, (2.13)
⌊GβŒ‹2≀(4Ξ±βˆ’6)β€‹βˆ«βˆ’11|[(1βˆ’x2)​G]β€²|2+16Ξ±β€‹βˆ«βˆ’11(1βˆ’x2)​G2,\lfloor G\rfloor^{2}\leq(\frac{4}{\alpha}-6)\int_{-1}^{1}|[(1-x^{2})G]^{\prime}|^{2}+\frac{16}{\alpha}\int_{-1}^{1}(1-x^{2})G^{2}, (2.14)

where

⌊GβŒ‹2=βˆ«βˆ’11(1βˆ’x2)​[(1βˆ’x2)2​Gβ€²]′′′​G.\lfloor G\rfloor^{2}=\int_{-1}^{1}(1-x^{2})[(1-x^{2})^{2}G^{\prime}]^{\prime\prime\prime}G. (2.15)

3. Refined Estimates on bkb_{k}’s

Let bk=akβ€‹βˆ«βˆ’11(1βˆ’x2)​Fk2b_{k}=a_{k}\sqrt{\int_{-1}^{1}(1-x^{2})F_{k}^{2}}, where aka_{k} is the kk-th coefficient in the expansion of GG (see (2.7)). The estimates of bkb_{k} play a key role in the proofs of [15, 17]. In [15], they used (2.11) and the fact that

|Fk′​(x)|≀|Fk′​(1)|=Ξ»k4|F_{k}^{\prime}(x)|\leq|F_{k}^{\prime}(1)|=\frac{\lambda_{k}}{4} (3.1)

to estimate bkb_{k} as follows

bk2\displaystyle b_{k}^{2} =ak2β€‹βˆ«βˆ’11(1βˆ’x2)​Fk2=1βˆ«βˆ’11(1βˆ’x2)​Fk2​[8α​λk​(Ξ»k+2)β€‹βˆ«βˆ’11(1βˆ’x2)​g​Fkβ€²]2\displaystyle=a_{k}^{2}\int_{-1}^{1}(1-x^{2})F_{k}^{2}=\frac{1}{\int_{-1}^{1}(1-x^{2})F_{k}^{2}}\left[\frac{8}{\alpha\lambda_{k}(\lambda_{k}+2)}\int_{-1}^{1}(1-x^{2})gF_{k}^{\prime}\right]^{2}
≀(2​k+3)​(k+1)​(k+2)8​[8α​λk​(Ξ»k+2)​λk4​a]2\displaystyle\leq\frac{(2k+3)(k+1)(k+2)}{8}\left[\frac{8}{\alpha\lambda_{k}(\lambda_{k}+2)}\frac{\lambda_{k}}{4}a\right]^{2}
=2​k+32​α2​(Ξ»k+2)​a2.\displaystyle=\frac{2k+3}{2\alpha^{2}(\lambda_{k}+2)}a^{2}.

As discussed in Section 6 of [15], the above estimates are not sufficient to deduce the induction

a=45​(1βˆ’Ξ±β€‹Ξ²)≀dΞ»ka=\frac{4}{5}(1-\alpha\beta)\leq\frac{d}{\lambda_{k}} (3.2)

as in [17]. With the bounds for bkb_{k} the induction (3.2) fails for large kk.

The above discussions motivate us to find more refined estimate on |Fkβ€²||F_{k}^{\prime}|, and hence on bkb_{k}, for large kk. A key observation is that Fkβ€²F_{k}^{\prime} attains its maximum only at Β±1\pm 1 and it decays rapidly away from Β±1\pm 1. See Figure 2 and Figure 2 below. As a result, we can improve aa to be aβˆ’0.089​λk​a2a-0.089\lambda_{k}a^{2}. For simplicity, in the rest of the paper, we will denote

F~kβ€²:=4Ξ»k​Fkβ€²=24Ξ»k​(Ξ»k+2)​Ckβˆ’152\widetilde{F}_{k}^{\prime}:=\frac{4}{\lambda_{k}}F_{k}^{\prime}=\frac{24}{\lambda_{k}(\lambda_{k}+2)}C_{k-1}^{\frac{5}{2}} (3.3)

so that F~k′​(1)=1\widetilde{F}_{k}^{\prime}(1)=1. One way to improve the estimate in (2.11) is to split the right hand integral in (2.11) into two parts. To this end, we define

a+:=∫01(1βˆ’x2)​g,aβˆ’:=βˆ«βˆ’10(1βˆ’x2)​g,a_{+}:=\int_{0}^{1}(1-x^{2})g,\ a_{-}:=\int_{-1}^{0}(1-x^{2})g, (3.4)

where we recall g=(1βˆ’x2)​e4​uΞ³,a=βˆ«βˆ’11(1βˆ’x2)​g=a++aβˆ’g=(1-x^{2})\frac{e^{4u}}{\gamma},\ a=\int_{-1}^{1}(1-x^{2})g=a_{+}+a_{-}. Without loss of generality, we may assume a+=λ​aa_{+}=\lambda a with 12≀λ≀1\frac{1}{2}\leq\lambda\leq 1.

The following theorem gives the key refined estimate for bkb_{k}.

Theorem 3.1.

Let Ak:=βˆ«βˆ’11(1βˆ’x2)​g​F~kβ€²A_{k}:=\int_{-1}^{1}(1-x^{2})g\widetilde{F}_{k}^{\prime}. If a≀5Ξ»na\leq\frac{5}{\lambda_{n}}, then for all 2≀k≀n2\leq k\leq n,

|Ak|≀{(0.081+0.919​λ)​aβˆ’0.089​λ2​λk​a2Β if ​k​ is even,aβˆ’0.089​λk​(2​λ2βˆ’2​λ+1)​a2Β if ​k​ is odd.|A_{k}|\leq\begin{cases}(0.081+0.919\lambda)a-0.089\lambda^{2}\lambda_{k}a^{2}&\text{ if }k\text{ is even},\\ a-0.089\lambda_{k}(2\lambda^{2}-2\lambda+1)a^{2}&\text{ if }k\text{ is odd}.\end{cases} (3.5)

As a consequence, bkb_{k} satisfies

bk2≀2​k+32​α2​(Ξ»k+2)​{[(0.081+0.919​λ)​aβˆ’0.089​λ2​λk​a2]2Β if ​k​ is even,[aβˆ’0.089​λk​(2​λ2βˆ’2​λ+1)​a2]2Β if ​k​ is odd.b_{k}^{2}\leq\frac{2k+3}{2\alpha^{2}(\lambda_{k}+2)}\begin{cases}{[}(0.081+0.919\lambda)a-0.089\lambda^{2}\lambda_{k}a^{2}]^{2}&\text{ if }k\text{ is even},\\ {[}a-0.089\lambda_{k}(2\lambda^{2}-2\lambda+1)a^{2}]^{2}&\text{ if }k\text{ is odd}.\end{cases} (3.6)
Remark 3.1.

The reason that we have to expand the estimate of bkb_{k} to the next order term is that for large kk, the induction region is a​λk∼O​(1)a\lambda_{k}\sim O(1) and hence the next order term should not be neglected.

Before we prove Theorem 3.1, we can first consider some cases where kk is small. In fact, using the fact that βˆ«βˆ’11x​(1βˆ’x2)​e4​u=0\int_{-1}^{1}x(1-x^{2})e^{4u}=0 we can obtain much better estimates for small kk’s. The proof is left to Appendix A.

Lemma 3.2.

Let AkA_{k} be as in Theorem 3.1. Then

|A2|\displaystyle|A_{2}| ≀\displaystyle\leq a+​1βˆ’2​a+a+1,\displaystyle a_{+}\sqrt{1-\frac{2a_{+}}{a+1}}, (3.7)
|A3|\displaystyle|A_{3}| ≀\displaystyle\leq max⁑{aβˆ’73​a2a+1​(2​λ2βˆ’2​λ+1),a6},\displaystyle\max\{a-\frac{7}{3}\frac{a^{2}}{a+1}(2\lambda^{2}-2\lambda+1),\frac{a}{6}\}, (3.8)
|A4|\displaystyle|A_{4}| ≀\displaystyle\leq A1,1+βˆ’3​(A1,1+)2+19​aβˆ’,\displaystyle A_{1,1}^{+}-3(A_{1,1}^{+})^{2}+\frac{1}{9}a_{-}, (3.9)
|A5|\displaystyle|A_{5}| ≀\displaystyle\leq aβˆ’6​(a+2+aβˆ’2)a+1+33​(a+3+aβˆ’3)4​(a+1)2.\displaystyle a-\frac{6(a_{+}^{2}+a_{-}^{2})}{a+1}+\frac{33(a_{+}^{3}+a_{-}^{3})}{4(a+1)^{2}}. (3.10)
Remark 3.2.

It is easy to see that the estimate of |A2||A_{2}| (3.7) becomes the worst when Ξ»=1\lambda=1; while the estimate of |A3||A_{3}| (3.8) becomes the worst when Ξ»=12\lambda=\frac{1}{2}. The same is true for |A4||A_{4}| and |A5||A_{5}| provided that aa is suitably small. More generally, in (3.5) and (3.6), one can easily show that the estimates become the worst when Ξ»=1\lambda=1 if kk is even, and when Ξ»=12\lambda=\frac{1}{2} if kk is odd. In fact, we can say more about this. See Lemma 4.1 below.

Now we derive some estimates about gg. By definition, g=(1βˆ’x2)​e4​uΞ³g=(1-x^{2})\frac{e^{4u}}{\gamma},

βˆ«βˆ’11g=1,βˆ«βˆ’11x​g=0​ andΒ β€‹βˆ«βˆ’11(1βˆ’x2)​g=a.\int_{-1}^{1}g=1,\ \int_{-1}^{1}xg=0\text{ and }\int_{-1}^{1}(1-x^{2})g=a.

From the second integral in the above, we have

∫01gβˆ’βˆ«01(1βˆ’x)​g=∫01x​g=βˆ’βˆ«βˆ’10x​g=βˆ«βˆ’10gβˆ’βˆ«βˆ’10(1+x)​g.\int_{0}^{1}g-\int_{0}^{1}(1-x)g=\int_{0}^{1}xg=-\int_{-1}^{0}xg=\int_{-1}^{0}g-\int_{-1}^{0}(1+x)g. (3.11)

Since

|∫01(1βˆ’x)​g|β‰€βˆ«01(1βˆ’x2)​g=a+,|βˆ«βˆ’10(1+x)​g|β‰€βˆ«01(1βˆ’x2)​g=aβˆ’,\left|\int_{0}^{1}(1-x)g\right|\leq\int_{0}^{1}(1-x^{2})g=a_{+},\ \left|\int_{-1}^{0}(1+x)g\right|\leq\int_{0}^{1}(1-x^{2})g=a_{-},

we have

|∫01gβˆ’βˆ«βˆ’10g|≀a,\left|\int_{0}^{1}g-\int_{-1}^{0}g\right|\leq a,

hence

1βˆ’a2β‰€βˆ«01g,βˆ«βˆ’10g≀1+a2.\frac{1-a}{2}\leq\int_{0}^{1}g,\int_{-1}^{0}g\leq\frac{1+a}{2}. (3.12)

Moreover,

∫01x​g≀min⁑{∫01g,βˆ«βˆ’10g}≀12,\int_{0}^{1}xg\leq\min\{\int_{0}^{1}g,\int_{-1}^{0}g\}\leq\frac{1}{2}, (3.13)

and

∫01(1+x)​g=1βˆ’βˆ«βˆ’10(1+x)​g<1.\int_{0}^{1}(1+x)g=1-\int_{-1}^{0}(1+x)g<1. (3.14)

To prove Theorem 3.1, we need some point-wise estimates on F~kβ€²=24Ξ»k​(Ξ»k+2)​Ckβˆ’152\tilde{F}_{k}^{\prime}=\frac{24}{\lambda_{k}(\lambda_{k}+2)}C_{k-1}^{\frac{5}{2}}. The following Lemma gives us the asymptotic behavior of Gegenbauer polynomials.

Lemma 3.3 (Corollary 5.3 of Nemes and Daalhuis [23] ).

Let 0<ΞΆ<Ο€0<\zeta<\pi and Nβ‰₯2N\geq 2 be an integer. Then

Ckβˆ’152​(cos⁑΢)=2Γ​(Ξ»)​(2​sin⁑΢)52​(βˆ‘n=0Nβˆ’1tn​(2)​Γ​(k+4)Γ​(k+n+52)​cos⁑(Ξ΄kβˆ’1,n)sinn⁑΢+RN​(ΞΆ,kβˆ’1)),C_{k-1}^{\frac{5}{2}}(\cos{\zeta})=\frac{2}{\Gamma(\lambda)(2\sin{\zeta})^{\frac{5}{2}}}\left(\sum_{n=0}^{N-1}t_{n}(2)\frac{\Gamma(k+4)}{\Gamma(k+n+\frac{5}{2})}\frac{\cos{(\delta_{k-1,n})}}{\sin^{n}{\zeta}}+R_{N}(\zeta,k-1)\right), (3.15)

where Ξ΄k,n=(k+n+52)β€‹ΞΆβˆ’(52βˆ’n)​π2\delta_{k,n}=(k+n+\frac{5}{2})\zeta-(\frac{5}{2}-n)\frac{\pi}{2}, tn​(ΞΌ)=(12βˆ’ΞΌ)n​(12+ΞΌ)n(βˆ’2)n​n!t_{n}(\mu)=\frac{(\frac{1}{2}-\mu)_{n}(\frac{1}{2}+\mu)_{n}}{(-2)^{n}n!}, and (x)n=Γ​(x+n)Γ​(x)(x)_{n}=\frac{\Gamma(x+n)}{\Gamma(x)} is the Pochhammer symbol. The remainder term RR satisfies the estimate

|RN​(ΞΆ,k)|≀|tN​(2)|​Γ​(k+5)Γ​(k+N+72)​1sinN⁑΢⋅{|sec⁑΢|Β if ​0<΢≀π4​ or ​3​π4≀΢<Ο€,2​sin⁑΢ if ​π4<ΞΆ<3​π4.|R_{N}(\zeta,k)|\leq|t_{N}(2)|\frac{\Gamma(k+5)}{\Gamma(k+N+\frac{7}{2})}\frac{1}{\sin^{N}{\zeta}}\cdot\begin{cases}|\sec{\zeta}|&\text{ if }0<\zeta\leq\frac{\pi}{4}\text{ or }\frac{3\pi}{4}\leq\zeta<\pi,\\ 2\sin{\zeta}&\text{ if }\frac{\pi}{4}<\zeta<\frac{3\pi}{4}.\end{cases} (3.16)

Using the pointwise estimate (3.15), we can prove the following lower and upper bounds for F~kβ€²\widetilde{F}_{k}^{\prime}. The proofs are left to Appendix B.

Lemma 3.4.

For all kβ‰₯6k\geq 6, we have

F~kβ€²β‰₯βˆ’0.081,0≀x≀1.\displaystyle\widetilde{F}_{k}^{\prime}\geq-0.081,\quad 0\leq x\leq 1.
Lemma 3.5.

Let d=10d=10 and b=0.11b=0.11. Then for all kβ‰₯6k\geq 6,

F~k′≀{b,0≀x≀1βˆ’dΞ»k,1βˆ’Ξ»kd​(1βˆ’b)​(1βˆ’x),1βˆ’dΞ»k≀x≀1.\displaystyle\widetilde{F}_{k}^{\prime}\leq\left\{\begin{aligned} &b,\quad&0\leq x\leq 1-\frac{d}{\lambda_{k}},\\ &1-\frac{\lambda_{k}}{d}(1-b)(1-x),\quad&1-\frac{d}{\lambda_{k}}\leq x\leq 1.\end{aligned}\right.

The above two lemmas can be illustrated by the following two figures (Figure 1 and Figure 2): F~kβ€²\widetilde{F}_{k}^{\prime} decays rapidly away from 11 and its minimum is very small.

Refer to caption
Figure 1. Graph of F~10β€²\widetilde{F}_{10}^{\prime}
Refer to caption
Figure 2. F~30β€²\widetilde{F}_{30}^{\prime} on (0.8,1)(0.8,1)

With the aid of Lemma 3.4 and Lemma 3.5, we can prove Theorem 3.1 and get a refined estimate on bkb_{k}.

Proof of Theorem 3.1.

By results of [15], which is restated in (4.4) below, we have Ξ²β‰₯1613\beta\geq\frac{16}{13} and hence a<0.31a<0.31. It is then straightforward to check that for 2≀k≀52\leq k\leq 5, the estimates for |Ak||A_{k}| in LemmaΒ 3.2 is better than that in TheoremΒ 3.1, so in what follows we may assume kβ‰₯6k\geq 6.

Define I=(0,1βˆ’dΞ»k)I=(0,1-\frac{d}{\lambda_{k}}), I​I=(1βˆ’dΞ»k,1)II=(1-\frac{d}{\lambda_{k}},1), and aI=∫I(1βˆ’x2)​ga_{I}=\int_{I}(1-x^{2})g, aI​I=∫I​I(1βˆ’x2)​ga_{II}=\int_{II}(1-x^{2})g. Then there holds

∫01(1βˆ’x2)​F~k′​g\displaystyle\int_{0}^{1}(1-x^{2})\widetilde{F}_{k}^{\prime}g =∫I(1βˆ’x2)​F~k′​g+∫I​I(1βˆ’x2)​F~k′​g\displaystyle=\int_{I}(1-x^{2})\widetilde{F}_{k}^{\prime}g+\int_{II}(1-x^{2})\widetilde{F}_{k}^{\prime}g
β‰€βˆ«I(1βˆ’x2)​b​g+∫I​I(1βˆ’x2)​(1βˆ’Ξ»kd​(1βˆ’b)​(1βˆ’x))​g\displaystyle\leq\int_{I}(1-x^{2})bg+\int_{II}(1-x^{2})(1-\frac{\lambda_{k}}{d}(1-b)(1-x))g
=b​aI+aI​Iβˆ’Ξ»kd​(1βˆ’b)β€‹βˆ«I​I(1βˆ’x2)​(1βˆ’x)​g\displaystyle=ba_{I}+a_{II}-\frac{\lambda_{k}}{d}(1-b)\int_{II}(1-x^{2})(1-x)g
≀b​aI+aI​Iβˆ’Ξ»kd​(1βˆ’b)​(∫I​I(1βˆ’x2)​g)2∫I​I(1+x)​g\displaystyle\leq ba_{I}+a_{II}-\frac{\lambda_{k}}{d}(1-b)\frac{(\int_{II}(1-x^{2})g)^{2}}{\int_{II}(1+x)g}
≀b​aI+aI​Iβˆ’Ξ»kd​(1βˆ’b)​aI​I2\displaystyle\leq ba_{I}+a_{II}-\frac{\lambda_{k}}{d}(1-b)a_{II}^{2}
=b​a++(1βˆ’b)​(aI​Iβˆ’Ξ»kd​aI​I2),\displaystyle=ba_{+}+(1-b)(a_{II}-\frac{\lambda_{k}}{d}a_{II}^{2}),

where we have used (3.14).

By assumption, aI​I≀a+≀a≀5Ξ»k=d2​λka_{II}\leq a_{+}\leq a\leq\frac{5}{\lambda_{k}}=\frac{d}{2\lambda_{k}}, so we have

∫01(1βˆ’x2)​F~k′​g≀a++(1βˆ’b)​(a+βˆ’Ξ»kd​a+2)=a+βˆ’Ξ»kd​(1βˆ’b)​a+2.\int_{0}^{1}(1-x^{2})\widetilde{F}_{k}^{\prime}g\leq a_{+}+(1-b)(a_{+}-\frac{\lambda_{k}}{d}a_{+}^{2})=a_{+}-\frac{\lambda_{k}}{d}(1-b)a_{+}^{2}.

On the other hand, by Lemma 3.5,

∫01(1βˆ’x2)​F~k′​gβ‰₯βˆ’0.081β€‹βˆ«01(1βˆ’x2)​g=βˆ’0.081​a+.\int_{0}^{1}(1-x^{2})\widetilde{F}_{k}^{\prime}g\geq-0.081\int_{0}^{1}(1-x^{2})g=-0.081a_{+}.

Therefore

βˆ’0.081​a+β‰€βˆ«01(1βˆ’x2)​F~k′​g≀a+βˆ’Ξ»kd​(1βˆ’b)​a+2.-0.081a_{+}\leq\int_{0}^{1}(1-x^{2})\widetilde{F}_{k}^{\prime}g\leq a_{+}-\frac{\lambda_{k}}{d}(1-b)a_{+}^{2}. (3.17)

Similarly, under the same assumption, if kk is odd, then

βˆ’0.081​aβˆ’β‰€βˆ«βˆ’10(1βˆ’x2)​F~k′​g≀aβˆ’βˆ’Ξ»kd​(1βˆ’b)​aβˆ’2;-0.081a_{-}\leq\int_{-1}^{0}(1-x^{2})\widetilde{F}_{k}^{\prime}g\leq a_{-}-\frac{\lambda_{k}}{d}(1-b)a_{-}^{2}; (3.18)

while if kk is even, then

βˆ’(aβˆ’βˆ’Ξ»kd​(1βˆ’b)​aβˆ’2)β‰€βˆ«βˆ’10(1βˆ’x2)​F~k′​g≀0.081​aβˆ’.-(a_{-}-\frac{\lambda_{k}}{d}(1-b)a_{-}^{2})\leq\int_{-1}^{0}(1-x^{2})\widetilde{F}_{k}^{\prime}g\leq 0.081a_{-}. (3.19)

Theorem 3.1 then follows from (3.17)-(3.19). ∎

4. proof of Theorem 1.1

In this section, we will prove Theorem 1.1 by induction argument, thanks to the better estimates in Theorem 3.1.

We claim that Ξ²=0\beta=0, which yields that (1βˆ’x2)​G(1-x^{2})G is constant by (2.12). Since GG is bounded on (βˆ’1,1)(-1,1), we get G≑0G\equiv 0 and we are done.

So it suffices to show that Ξ²=0\beta=0. We will argue by contradiction. If Ξ²β‰ 0\beta\neq 0, then 0<Ξ²<1Ξ±0<\beta<\frac{1}{\alpha} since a=βˆ«βˆ’11(1βˆ’x2)​g=45​(1βˆ’Ξ±β€‹Ξ²)>0a=\int_{-1}^{1}(1-x^{2})g=\frac{4}{5}(1-\alpha\beta)>0. It then suffices to show a=0a=0. We will achieve this by proving

a=45​(1βˆ’Ξ±β€‹Ξ²)≀5Ξ»n,βˆ€nβ‰₯3.a=\frac{4}{5}(1-\alpha\beta)\leq\frac{5}{\lambda_{n}},\ \forall n\geq 3. (4.1)

As in [17], we will prove (4.1) by induction.

To begin with, following [15], we introduce the following quantity

D:=βˆ‘k=3∞[Ξ»k​(Ξ»k+2)βˆ’(10βˆ’43​α)​(Ξ»k+2)βˆ’16Ξ±]​bk2.D:=\sum_{k=3}^{\infty}\left[\lambda_{k}(\lambda_{k}+2)-(10-\frac{4}{3\alpha})(\lambda_{k}+2)-\frac{16}{\alpha}\right]b_{k}^{2}. (4.2)

Let G2:=βˆ‘k=3∞ak​Fk​(x)G_{2}:=\sum\limits_{k=3}^{\infty}a_{k}F_{k}(x). Then by (2.12) and Lemma 2.2, we get

D\displaystyle D =βˆ«βˆ’11(1βˆ’x2)​[(1βˆ’x2)2​G2β€²]′′′​G2βˆ’(10βˆ’43​α)β€‹βˆ«βˆ’11|((1βˆ’x2)​G2)β€²|2βˆ’16Ξ±β€‹βˆ«βˆ’11G22\displaystyle=\int_{-1}^{1}(1-x^{2})[(1-x^{2})^{2}G_{2}^{\prime}]^{\prime\prime\prime}G_{2}-(10-\frac{4}{3\alpha})\int_{-1}^{1}|((1-x^{2})G_{2})^{\prime}|^{2}-\frac{16}{\alpha}\int_{-1}^{1}G_{2}^{2}
β‰€βŒŠGβŒ‹2βˆ’(10βˆ’43​α)β€‹βˆ«βˆ’11|((1βˆ’x2)​G)β€²|2βˆ’16Ξ±β€‹βˆ«βˆ’11G2+(36+8Ξ±)​β2β€‹βˆ«βˆ’11F12\displaystyle\leq\lfloor G\rfloor^{2}-(10-\frac{4}{3\alpha})\int_{-1}^{1}|((1-x^{2})G)^{\prime}|^{2}-\frac{16}{\alpha}\int_{-1}^{1}G^{2}+(36+\frac{8}{\alpha})\beta^{2}\int_{-1}^{1}F_{1}^{2}
≀(163β€‹Ξ±βˆ’16)β€‹βˆ«βˆ’11|((1βˆ’x2)​G)β€²|2+(36+8Ξ±)​4​β215\displaystyle\leq(\frac{16}{3\alpha}-16)\int_{-1}^{1}|((1-x^{2})G)^{\prime}|^{2}+(36+\frac{8}{\alpha})\frac{4\beta^{2}}{15}
≀16​β15​[(9+2Ξ±)​β+(163β€‹Ξ±βˆ’16)​(5βˆ’1Ξ±)].\displaystyle\leq\frac{16\beta}{15}\left[(9+\frac{2}{\alpha})\beta+(\frac{16}{3\alpha}-16)(5-\frac{1}{\alpha})\right]. (4.3)

Since Dβ‰₯0D\geq 0, Ξ±β‰₯12\alpha\geq\frac{1}{2} and 0<Ξ²<1Ξ±0<\beta<\frac{1}{\alpha}, we obtain

Ξ²β‰₯1613​(1βˆ’13​α)​(5βˆ’1Ξ±)β‰₯1613.\beta\geq\frac{16}{13}(1-\frac{1}{3\alpha})(5-\frac{1}{\alpha})\geq\frac{16}{13}. (4.4)

On the other hand, fix any integer nβ‰₯3n\geq 3, we have

D\displaystyle D =βˆ‘k=3∞[Ξ»k​(Ξ»k+2)βˆ’(10βˆ’43​α)​(Ξ»k+2)βˆ’16Ξ±]​bk2\displaystyle=\sum_{k=3}^{\infty}\left[\lambda_{k}(\lambda_{k}+2)-(10-\frac{4}{3\alpha})(\lambda_{k}+2)-\frac{16}{\alpha}\right]b_{k}^{2}
β‰₯βˆ‘k=3n[Ξ»k​(Ξ»k+2)βˆ’(10βˆ’43​α)​(Ξ»k+2)βˆ’16Ξ±]​bk2\displaystyle\geq\sum_{k=3}^{n}\left[\lambda_{k}(\lambda_{k}+2)-(10-\frac{4}{3\alpha})(\lambda_{k}+2)-\frac{16}{\alpha}\right]b_{k}^{2}
+(Ξ»n+1βˆ’10+45​α)β€‹βˆ‘k=n+1∞(Ξ»k+2)​bk2\displaystyle+(\lambda_{n+1}-10+\frac{4}{5\alpha})\sum_{k=n+1}^{\infty}(\lambda_{k}+2)b_{k}^{2}
β‰₯βˆ‘k=3n(Ξ»kβˆ’Ξ»n+1βˆ’415​α)​(Ξ»k+2)​bk2+(Ξ»n+1βˆ’10+45​α)β€‹βˆ‘k=3∞(Ξ»k+2)​bk2\displaystyle\geq\sum_{k=3}^{n}(\lambda_{k}-\lambda_{n+1}-\frac{4}{15\alpha})(\lambda_{k}+2)b_{k}^{2}+(\lambda_{n+1}-10+\frac{4}{5\alpha})\sum_{k=3}^{\infty}(\lambda_{k}+2)b_{k}^{2}
=βˆ‘k=3n(Ξ»kβˆ’Ξ»n+1βˆ’415​α)​(Ξ»k+2)​bk2+(Ξ»n+1βˆ’10+45​α)​[16​β15​(5βˆ’1Ξ±)βˆ’8​β25βˆ’8​a227]\displaystyle=\sum_{k=3}^{n}(\lambda_{k}-\lambda_{n+1}-\frac{4}{15\alpha})(\lambda_{k}+2)b_{k}^{2}+(\lambda_{n+1}-10+\frac{4}{5\alpha})\left[\frac{16\beta}{15}(5-\frac{1}{\alpha})-\frac{8\beta^{2}}{5}-\frac{8a_{2}^{2}}{7}\right] (4.5)

Combining (4.3) and (4.5), we get

0\displaystyle 0 ≀16​β15​(5βˆ’1Ξ±)​(6815β€‹Ξ±βˆ’6βˆ’Ξ»n+1)+815​β2​(3​λn+1βˆ’12+325​α)\displaystyle\leq\frac{16\beta}{15}(5-\frac{1}{\alpha})(\frac{68}{15\alpha}-6-\lambda_{n+1})+\frac{8}{15}\beta^{2}(3\lambda_{n+1}-12+\frac{32}{5\alpha})
+815​α​(Ξ»2+2)​b22+βˆ‘k=2n(Ξ»n+1βˆ’Ξ»k+415​α)​(Ξ»k+2)​bk2.\displaystyle+\frac{8}{15\alpha}(\lambda_{2}+2)b_{2}^{2}+\sum_{k=2}^{n}(\lambda_{n+1}-\lambda_{k}+\frac{4}{15\alpha})(\lambda_{k}+2)b_{k}^{2}. (4.6)

Now we can start the induction procedure. First we rewrite (4) in terms of aa and Ξ±\alpha:

a​(4βˆ’5​a)​(3​λn+1βˆ’12+325​α)\displaystyle a(4-5a)(3\lambda_{n+1}-12+\frac{32}{5\alpha}) ≀4​(4βˆ’5​a)15​α​(βˆ’8+136β€‹Ξ±βˆ’180​α2βˆ’15​λn+1​(2​α2βˆ’Ξ±))\displaystyle\leq\frac{4(4-5a)}{15\alpha}(-8+136\alpha-180\alpha^{2}-15\lambda_{n+1}(2\alpha^{2}-\alpha))
+6​α2​(815​α​(Ξ»2+2)​b22+βˆ‘k=2n(Ξ»n+1βˆ’Ξ»k+415​α)​(Ξ»k+2)​bk2).\displaystyle+6\alpha^{2}\big{(}\frac{8}{15\alpha}(\lambda_{2}+2)b_{2}^{2}+\sum_{k=2}^{n}(\lambda_{n+1}-\lambda_{k}+\frac{4}{15\alpha})(\lambda_{k}+2)b_{k}^{2}\big{)}.

By (4.4), we have a=45​(1βˆ’Ξ±β€‹Ξ²)<0.31a=\frac{4}{5}(1-\alpha\beta)<0.31. When n=3n=3, we apply Lemma Β 3.2 to (4), as mentioned in Remark 3.2, we may take Ξ»=1\lambda=1 in (3.7) and Ξ»=12\lambda=\frac{1}{2} in (3.8). Direct computation then shows that a<18=5Ξ»5a<\frac{1}{8}=\frac{5}{\lambda_{5}}. So (4.1) holds for n=3n=3.

By induction, we now suppose that a≀5Ξ»na\leq\frac{5}{\lambda_{n}} for some nβ‰₯3n\geq 3. To prove that an≀5Ξ»n+1a_{n}\leq\frac{5}{\lambda_{n+1}}, we assume the contrary, an>5Ξ»n+1a_{n}>\frac{5}{\lambda_{n+1}}. We will derive a contradiction, which proves a≀5Ξ»n+1a\leq\frac{5}{\lambda_{n+1}}.

By Theorem 3.1, we have

βˆ‘k=2n(Ξ»n+1βˆ’Ξ»k+415​α)​(Ξ»k+2)​bk2\displaystyle\sum_{k=2}^{n}(\lambda_{n+1}-\lambda_{k}+\frac{4}{15\alpha})(\lambda_{k}+2)b_{k}^{2}
≀\displaystyle\leq βˆ‘k=2k​ oddn(Ξ»n+1βˆ’Ξ»k+415​α)​2​k+32​α2​(aβˆ’0.089​λk​(2​λ2βˆ’2​λ+1)​a2)2\displaystyle\sum_{\begin{subarray}{c}k=2\\ k\text{ odd}\end{subarray}}^{n}(\lambda_{n+1}-\lambda_{k}+\frac{4}{15\alpha})\frac{2k+3}{2\alpha^{2}}(a-0.089\lambda_{k}(2\lambda^{2}-2\lambda+1)a^{2})^{2}
+\displaystyle+ βˆ‘k=2k​ evenn(Ξ»n+1βˆ’Ξ»k+415​α)​2​k+32​α2​((0.081+0.919​λ)​aβˆ’0.089​λ2​λk​a2)2\displaystyle\sum_{\begin{subarray}{c}k=2\\ k\text{ even}\end{subarray}}^{n}(\lambda_{n+1}-\lambda_{k}+\frac{4}{15\alpha})\frac{2k+3}{2\alpha^{2}}((0.081+0.919\lambda)a-0.089\lambda^{2}\lambda_{k}a^{2})^{2}
=:\displaystyle=: 12​α2​fn​(Ξ»)​a2.\displaystyle\frac{1}{2\alpha^{2}}f_{n}(\lambda)a^{2}.

The following lemma implies that the worst case happens when Ξ»=1\lambda=1.

Lemma 4.1.

If 5Ξ»n+1≀a≀5Ξ»n\frac{5}{\lambda_{n+1}}\leq a\leq\frac{5}{\lambda_{n}} for some nβ‰₯3n\geq 3, then we have

fn​(Ξ»)≀fn​(1),Β for any ​12≀λ≀1.f_{n}(\lambda)\leq f_{n}(1),\text{ for any }\frac{1}{2}\leq\lambda\leq 1.
Proof.

We first assume nn is odd and relabel nn to be 2​n+12n+1, nβ‰₯1n\geq 1. By direct computation, we have

f2​n+1​(Ξ»)=\displaystyle f_{2n+1}(\lambda)= βˆ‘m=1n[(Ξ»2​n+2βˆ’Ξ»2​m+415​α)(4m+3)((0.081+0.919Ξ»)βˆ’0.089Ξ»2Ξ»2​ma)2\displaystyle\sum_{m=1}^{n}\left[(\lambda_{2n+2}-\lambda_{2m}+\frac{4}{15\alpha})(4m+3)((0.081+0.919\lambda)-0.089\lambda^{2}\lambda_{2m}a)^{2}\right.
+(Ξ»2​n+2βˆ’Ξ»2​m+1+415​α)(4m+5)(1βˆ’0.089Ξ»2​m+1(2Ξ»2βˆ’2Ξ»+1)a)2]\displaystyle\left.+(\lambda_{2n+2}-\lambda_{2m+1}+\frac{4}{15\alpha})(4m+5)(1-0.089\lambda_{2m+1}(2\lambda^{2}-2\lambda+1)a)^{2}\right]
=(0.081+0.919​λ)2​S1+S2βˆ’0.178​λ2​(0.081+0.919​λ)​a​S3\displaystyle=(0.081+0.919\lambda)^{2}S_{1}+S_{2}-0.178\lambda^{2}(0.081+0.919\lambda)aS_{3}
βˆ’0.178​(2​λ2βˆ’2​λ+1)​a​S4+0.0892​λ4​a2​S5+0.0892​(2​λ2βˆ’2​λ+1)2​a2​S6,\displaystyle-0.178(2\lambda^{2}-2\lambda+1)aS_{4}+0.089^{2}\lambda^{4}a^{2}S_{5}+0.089^{2}(2\lambda^{2}-2\lambda+1)^{2}a^{2}S_{6},

where Si,i=1,…,6S_{i},i=1,...,6 are given by

S1=βˆ‘m=1n(Ξ»2​n+2βˆ’Ξ»2​m+415​α)​(4​m+3)=4​n4+28​n3+(815​α+59)​n2+(43​α+35)​n,S_{1}=\sum_{m=1}^{n}\left(\lambda_{2n+2}-\lambda_{2m}+\frac{4}{15\alpha}\right)(4m+3)=4n^{4}+28n^{3}+\left(\frac{8}{15\alpha}+59\right)n^{2}+\left(\frac{4}{3\alpha}+35\right)n,
S2\displaystyle S_{2} =βˆ‘m=1n(Ξ»2​n+2βˆ’Ξ»2​m+1+415​α)​(4​m+5)\displaystyle=\sum_{m=1}^{n}\left(\lambda_{2n+2}-\lambda_{2m+1}+\frac{4}{15\alpha}\right)(4m+5)
=4​n4+28​n3+(815​α+51)​n2+(2815​α+7)​n,\displaystyle=4n^{4}+28n^{3}+\left(\frac{8}{15\alpha}+51\right)n^{2}+\left(\frac{28}{15\alpha}+7\right)n,
S3\displaystyle S_{3} =βˆ‘m=1n(Ξ»2​n+2βˆ’Ξ»2​m+415​α)​(4​m+3)​λ2​m\displaystyle=\sum_{m=1}^{n}\left(\lambda_{2n+2}-\lambda_{2m}+\frac{4}{15\alpha}\right)(4m+3)\lambda_{2m}
=16​n63+56​n5+(1615​α+6763)​n4+(163​α+434)​n3\displaystyle=\frac{16n^{6}}{3}+56n^{5}+\left(\frac{16}{15\alpha}+\frac{676}{3}\right)n^{4}+\left(\frac{16}{3\alpha}+434\right)n^{3}
+(12415​α+11983)​n2+(4Ξ±+140)​n,\displaystyle+\left(\frac{124}{15\alpha}+\frac{1198}{3}\right)n^{2}+\left(\frac{4}{\alpha}+140\right)n,
S4\displaystyle S_{4} =βˆ‘m=1n(Ξ»2​n+2βˆ’Ξ»2​m+1+415​α)​(4​m+5)​λ2​m+1\displaystyle=\sum_{m=1}^{n}(\lambda_{2n+2}-\lambda_{2m+1}+\frac{4}{15\alpha})(4m+5)\lambda_{2m+1}
=16​n63+56​n5+(1615​α+7243)​n4+(11215​α+546)​n3\displaystyle=\frac{16n^{6}}{3}+56n^{5}+\left(\frac{16}{15\alpha}+\frac{724}{3}\right)n^{4}+\left(\frac{112}{15\alpha}+546\right)n^{3}
+(26815​α+18103)​n2+(845​α+168)​n,\displaystyle+\left(\frac{268}{15\alpha}+\frac{1810}{3}\right)n^{2}+\left(\frac{84}{5\alpha}+168\right)n,
S5\displaystyle S_{5} =βˆ‘m=1n(Ξ»2​n+2βˆ’Ξ»2​m+415​α)​(4​m+3)​λ2​m2\displaystyle=\sum_{m=1}^{n}\left(\lambda_{2n+2}-\lambda_{2m}+\frac{4}{15\alpha}\right)(4m+3)\lambda_{2m}^{2}
=32​n83+448​n73+(12845​α+848)​n6+(643​α+75043)​n5+(262445​α+4062)​n4\displaystyle=\frac{32n^{8}}{3}+\frac{448n^{7}}{3}+\left(\frac{128}{45\alpha}+848\right)n^{6}+\left(\frac{64}{3\alpha}+\frac{7504}{3}\right)n^{5}+\left(\frac{2624}{45\alpha}+4062\right)n^{4}
+(2083​α+105283)​n3+(144845​α+41383)​n2+(83​α+140)​n,\displaystyle+\left(\frac{208}{3\alpha}+\frac{10528}{3}\right)n^{3}+\left(\frac{1448}{45\alpha}+\frac{4138}{3}\right)n^{2}+\left(\frac{8}{3\alpha}+140\right)n,
S6\displaystyle S_{6} =βˆ‘m=1n(Ξ»2​n+2βˆ’Ξ»2​m+1+415​α)​(4​m+5)​λ2​m+12\displaystyle=\sum_{m=1}^{n}\left(\lambda_{2n+2}-\lambda_{2m+1}+\frac{4}{15\alpha}\right)(4m+5)\lambda_{2m+1}^{2}
=32​n83+448​n73+(12845​α+912)​n6+(44815​α+95203)​n5+(550445​α+6830)​n4\displaystyle=\frac{32n^{8}}{3}+\frac{448n^{7}}{3}+\left(\frac{128}{45\alpha}+912\right)n^{6}+\left(\frac{448}{15\alpha}+\frac{9520}{3}\right)n^{5}+\left(\frac{5504}{45\alpha}+6830\right)n^{4}
+(12325​α+274963)​n3+(1138445​α+209623)​n2+(6165​α+1932)​n.\displaystyle+\left(\frac{1232}{5\alpha}+\frac{27496}{3}\right)n^{3}+\left(\frac{11384}{45\alpha}+\frac{20962}{3}\right)n^{2}+\left(\frac{616}{5\alpha}+1932\right)n.

Direct computations yield

f2​n+1′​(Ξ»)\displaystyle f_{2n+1}^{\prime}(\lambda) β‰₯1.838​(0.081+0.919​λ)​S1+S2βˆ’0.178​(0.162​λ+2.757​λ2)​5Ξ»2​n+1​S3\displaystyle\geq 1.838(0.081+0.919\lambda)S_{1}+S_{2}-0.178(0.162\lambda+2.757\lambda^{2})\frac{5}{\lambda_{2n+1}}S_{3}
βˆ’0.178​(4β€‹Ξ»βˆ’2)​5Ξ»2​n+1​S4+0.1782​λ3​25Ξ»2​n+22​S5\displaystyle-0.178(4\lambda-2)\frac{5}{\lambda_{2n+1}}S_{4}+0.178^{2}\lambda^{3}\frac{25}{\lambda_{2n+2}^{2}}S_{5}
+0.3562​(4​λ3βˆ’6​λ2+4​λ+1)​25Ξ»2​n+22​S6\displaystyle+0.356^{2}(4\lambda^{3}-6\lambda^{2}+4\lambda+1)\frac{25}{\lambda_{2n+2}^{2}}S_{6}
>0.\displaystyle>0.

Hence f2​n+1​(Ξ»)≀f2​n+1​(1)f_{2n+1}(\lambda)\leq f_{2n+1}(1) and Lemma 4.1 is thus proved when nn is odd. The case when nn is even follows from a similar computation and we omit the details. ∎

By Lemma 4.1 above, we infer that

βˆ‘k=2n(Ξ»n+1βˆ’Ξ»k+415​α)​(Ξ»k+2)​bk2\displaystyle\sum_{k=2}^{n}(\lambda_{n+1}-\lambda_{k}+\frac{4}{15\alpha})(\lambda_{k}+2)b_{k}^{2}
≀\displaystyle\leq βˆ‘k=2n(Ξ»n+1βˆ’Ξ»k+415​α)​2​k+32​α2​(aβˆ’0.089​λk​a2)2\displaystyle\sum_{k=2}^{n}(\lambda_{n+1}-\lambda_{k}+\frac{4}{15\alpha})\frac{2k+3}{2\alpha^{2}}(a-0.089\lambda_{k}a^{2})^{2}
≀\displaystyle\leq βˆ‘k=2n(Ξ»n+1βˆ’Ξ»k+415​α)​2​k+32​α2​(1βˆ’0.445​λkΞ»n+1)2​a2.\displaystyle\sum_{k=2}^{n}(\lambda_{n+1}-\lambda_{k}+\frac{4}{15\alpha})\frac{2k+3}{2\alpha^{2}}(1-\frac{0.445\lambda_{k}}{\lambda_{n+1}})^{2}a^{2}.

Expanding the above summation, we get

βˆ‘k=2n(Ξ»n+1βˆ’Ξ»k+415​α)​2​k+32​α2​(1βˆ’0.445​λkΞ»n+1)2\displaystyle\sum_{k=2}^{n}(\lambda_{n+1}-\lambda_{k}+\frac{4}{15\alpha})\frac{2k+3}{2\alpha^{2}}(1-\frac{0.445\lambda_{k}}{\lambda_{n+1}})^{2}
≀0.37​n4+0.37​n3+(0.166Ξ±+5.4)​n2+(0.75Ξ±βˆ’19.12)​nβˆ’(1.35Ξ±βˆ’17.8)\displaystyle\leq 0.37n^{4}+0.37n^{3}+(\frac{0.166}{\alpha}+5.4)n^{2}+(\frac{0.75}{\alpha}-19.12)n-(\frac{1.35}{\alpha}-17.8)
βˆ’(5.75Ξ±βˆ’101)​1Ξ»n+1βˆ’(0.46Ξ±βˆ’7.05)​2​n2+10​n+17Ξ»n+12\displaystyle-(\frac{5.75}{\alpha}-101)\frac{1}{\lambda_{n+1}}-(\frac{0.46}{\alpha}-7.05)\frac{2n^{2}+10n+17}{\lambda_{n+1}^{2}}
≀0.37​n4+3.7​n3+5.74​n2βˆ’17.62​n+15.2+101Ξ»n+1+56Ξ»n+12.\displaystyle\leq 0.37n^{4}+3.7n^{3}+5.74n^{2}-17.62n+15.2+\frac{101}{\lambda_{n+1}}+\frac{56}{\lambda_{n+1}^{2}}.

Plugging into (4), we obtain

0≀[56​α2(3Ξ»n+1βˆ’12+325​α)+2815​α2(1βˆ’8920​λn+1)2\displaystyle 0\leq\left[\frac{5}{6\alpha^{2}}(3\lambda_{n+1}-12+\frac{32}{5\alpha})+\frac{28}{15\alpha^{2}}(1-\frac{89}{20\lambda_{n+1}})^{2}\right.
+12​α2(0.37n4+3.7n3+5.74n2βˆ’17.62n+15.2+101.4Ξ»n+1+56Ξ»n+12)]a2\displaystyle\left.+\frac{1}{2\alpha^{2}}\left(0.37n^{4}+3.7n^{3}+5.74n^{2}-17.62n+15.2+\frac{101.4}{\lambda_{n+1}}+\frac{56}{\lambda_{n+1}^{2}}\right)\right]a^{2}
βˆ’[23​α​(βˆ’83​α2+1363β€‹Ξ±βˆ’60)+23​α2​(3​λn+1βˆ’12+325​α)]​a+815​α​(βˆ’83​α2+1363β€‹Ξ±βˆ’60)\displaystyle-\left[\frac{2}{3\alpha}\left(-\frac{8}{3\alpha^{2}}+\frac{136}{3\alpha}-60\right)+\frac{2}{3\alpha^{2}}\left(3\lambda_{n+1}-12+\frac{32}{5\alpha}\right)\right]a+\frac{8}{15\alpha}\left(-\frac{8}{3\alpha^{2}}+\frac{136}{3\alpha}-60\right)
=:hn(a),\displaystyle=:h_{n}(a),

where hn​(a)h_{n}(a) is defined at the last equality. Note that hn​(a)h_{n}(a) is quadratic in aa and convex. To get a contradiction, it suffices to check that the parabola hn​(a)h_{n}(a) is negative at both a=5Ξ»n+1a=\frac{5}{\lambda_{n+1}} and a=5Ξ»na=\frac{5}{\lambda_{n}}.

When a=5Ξ»n+1a=\frac{5}{\lambda_{n+1}}, we have

hn​(5Ξ»n+1)\displaystyle h_{n}(\frac{5}{\lambda_{n+1}}) =(37​n48​α2​λn+12βˆ’10Ξ±2+815​α​(βˆ’83​α2+1363β€‹Ξ±βˆ’60))+185​n34​α2​λn+12\displaystyle=\left(\frac{37n^{4}}{8\alpha^{2}\lambda_{n+1}^{2}}-\frac{10}{\alpha^{2}}+\frac{8}{15\alpha}\left(-\frac{8}{3\alpha^{2}}+\frac{136}{3\alpha}-60\right)\right)+\frac{185n^{3}}{4\alpha^{2}\lambda_{n+1}^{2}}
+[287​n24​α2​λn+12+(40Ξ±+72518​α2βˆ’11245​α3)​1Ξ»n+1]βˆ’881​n4​α2​λn+12\displaystyle+\left[\frac{287n^{2}}{4\alpha^{2}\lambda_{n+1}^{2}}+\left(\frac{40}{\alpha}+\frac{725}{18\alpha^{2}}-\frac{112}{45\alpha^{3}}\right)\frac{1}{\lambda_{n+1}}\right]-\frac{881n}{4\alpha^{2}\lambda_{n+1}^{2}}
+[1403​α2​(1βˆ’8920​λn+1)2+(βˆ’60Ξ±2+4003​α3)]​1Ξ»n+12+25352​α2​λn+13+700Ξ±2​λn+14\displaystyle+\left[\frac{140}{3\alpha^{2}}(1-\frac{89}{20\lambda_{n+1}})^{2}+\left(-\frac{60}{\alpha^{2}}+\frac{400}{3\alpha^{3}}\right)\right]\frac{1}{\lambda_{n+1}^{2}}+\frac{2535}{2\alpha^{2}\lambda_{n+1}^{3}}+\frac{700}{\alpha^{2}\lambda_{n+1}^{4}}

.

Note that the leading order term is negative (in fact it is less than βˆ’16-\frac{1}{6}) and direct computation yields that hn​(5Ξ»n+1)<0h_{n}(\frac{5}{\lambda_{n+1}})<0. By similar computations we also derive that hn​(5Ξ»n)<0h_{n}(\frac{5}{\lambda_{n}})<0.

As a consequence, we get a≀5Ξ»na\leq\frac{5}{\lambda_{n}} for any nβ‰₯3n\geq 3. Let nn tend to infinity, we get a=0a=0, which implies that 1Ξ±βˆ’Ξ²=0\frac{1}{\alpha}-\beta=0, a contradiction.

Appendix A proof of Lemma 3.2

In this appendix, we prove LemmaΒ 3.2.

Proof of LemmaΒ 3.2.

Define Am,n+=∫01xm​(1βˆ’x2)n​gA_{m,n}^{+}=\int_{0}^{1}x^{m}(1-x^{2})^{n}g, Am,nβˆ’=βˆ«βˆ’10|x|m​(1βˆ’x2)n​gA_{m,n}^{-}=\int_{-1}^{0}|x|^{m}(1-x^{2})^{n}g, and Am,n=Am,n++Am,nβˆ’A_{m,n}=A_{m,n}^{+}+A_{m,n}^{-}. We begin with the estimate of A3A_{3}. By definition,

A3=βˆ«βˆ’11(1βˆ’x2)​g​F~3β€²=16β€‹βˆ«βˆ’11(1βˆ’x2)​(7​x2βˆ’1)​g=16​(7​A2,1βˆ’a).\displaystyle A_{3}=\int_{-1}^{1}(1-x^{2})g\widetilde{F}_{3}^{\prime}=\frac{1}{6}\int_{-1}^{1}(1-x^{2})(7x^{2}-1)g=\frac{1}{6}(7A_{2,1}-a).

By Cauchy-Schwartz inequality and (3.12),

(A2,1+)2\displaystyle(A_{2,1}^{+})^{2} β‰€βˆ«01(1βˆ’x2)2​gβ€‹βˆ«01x4​g\displaystyle\leq\int_{0}^{1}(1-x^{2})^{2}g\int_{0}^{1}x^{4}g
≀(a+βˆ’A2,1+)​(a+12βˆ’a+βˆ’A2,1+),\displaystyle\leq(a_{+}-A_{2,1}^{+})(\frac{a+1}{2}-a_{+}-A_{2,1}^{+}),

so

A2,1+≀a+βˆ’2​a+2a+1.A_{2,1}^{+}\leq a_{+}-\frac{2a_{+}^{2}}{a+1}. (A.1)

In the same way,

A2,1βˆ’β‰€aβˆ’βˆ’2​aβˆ’2a+1.A_{2,1}^{-}\leq a_{-}-\frac{2a_{-}^{2}}{a+1}.

Hence,

A2,1≀aβˆ’2​a+2+2​aβˆ’2a+1=aβˆ’2​a2a+1​(2​λ2βˆ’2​λ+1).A_{2,1}\leq a-\frac{2a_{+}^{2}+2a_{-}^{2}}{a+1}=a-\frac{2a^{2}}{a+1}(2\lambda^{2}-2\lambda+1).

Therefore

A3≀aβˆ’73​a2a+1​(2​λ2βˆ’2​λ+1),\displaystyle A_{3}\leq a-\frac{7}{3}\frac{a^{2}}{a+1}(2\lambda^{2}-2\lambda+1),

which, together with the definition of A3A_{3}, implies

|A3|≀max⁑{aβˆ’73​a2a+1​(2​λ2βˆ’2​λ+1),a6}.\displaystyle|A_{3}|\leq\max\{a-\frac{7}{3}\frac{a^{2}}{a+1}(2\lambda^{2}-2\lambda+1),\frac{a}{6}\}.

For A2A_{2}, we have

|A2|=|βˆ«βˆ’11x​(1βˆ’x2)​g|≀max⁑{A1,1+,A1,1βˆ’}.\displaystyle|A_{2}|=|\int_{-1}^{1}x(1-x^{2})g|\leq\max\left\{A_{1,1}^{+},A_{1,1}^{-}\right\}.

By Cauchy-Schwartz inequality,

(A1,1+)2≀A2,1+β€‹βˆ«01(1βˆ’x2)​g≀a+2βˆ’2​a+3a+1.\displaystyle(A_{1,1}^{+})^{2}\leq A_{2,1}^{+}\int_{0}^{1}(1-x^{2})g\leq a_{+}^{2}-\frac{2a_{+}^{3}}{a+1}.
(A1,1βˆ’)2≀A2,1βˆ’β€‹βˆ«01(1βˆ’x2)​g≀aβˆ’2βˆ’2​aβˆ’3a+1.\displaystyle(A_{1,1}^{-})^{2}\leq A_{2,1}^{-}\int_{0}^{1}(1-x^{2})g\leq a_{-}^{2}-\frac{2a_{-}^{3}}{a+1}.

Since we have assumed Ξ»β‰₯12\lambda\geq\frac{1}{2}, we conclude that

|A2|≀a+​1βˆ’2​a+a+1.\displaystyle|A_{2}|\leq a_{+}\sqrt{1-\frac{2a_{+}}{a+1}}.

The estimate of |A4||A_{4}| is similar to that of |A2||A_{2}|. By definition,

A4=βˆ«βˆ’11(1βˆ’x2)​g​F~4β€²=12β€‹βˆ«βˆ’11(1βˆ’x2)​(3​x2βˆ’1)​x​g=A1,1βˆ’32​A3,1.\displaystyle A_{4}=\int_{-1}^{1}(1-x^{2})g\widetilde{F}_{4}^{\prime}=\frac{1}{2}\int_{-1}^{1}(1-x^{2})(3x^{2}-1)xg=A_{1,1}-\frac{3}{2}A_{3,1}.

By Cauchy-Schwartz inequality and (3.13),

A3,1β‰₯(A1,1+)2∫01x​gβ‰₯2​(A1,1+)2,\displaystyle A_{3,1}\geq\frac{(A_{1,1}^{+})^{2}}{\int_{0}^{1}xg}\geq 2(A_{1,1}^{+})^{2},

so

A4+≀A1,1+βˆ’3​(A1,1+)2A_{4}^{+}\leq A_{1,1}^{+}-3(A_{1,1}^{+})^{2}

On the other hand,

A4+β‰₯12​min0≀x≀1⁑{(3​x2βˆ’1)​x}β€‹βˆ«01(1βˆ’x2)​g=βˆ’19​a+.\displaystyle A_{4}^{+}\geq\frac{1}{2}\min_{0\leq x\leq 1}\{(3x^{2}-1)x\}\int_{0}^{1}(1-x^{2})g=-\frac{1}{9}a_{+}.

In the same way,

βˆ’(A1,1βˆ’βˆ’3​(A1,1βˆ’)2)≀A4βˆ’β‰€19​aβˆ’\displaystyle-(A_{1,1}^{-}-3(A_{1,1}^{-})^{2})\leq A_{4}^{-}\leq\frac{1}{9}a_{-}

Since Ξ»β‰₯12\lambda\geq\frac{1}{2}, we conclude that

|A4|≀A1,1+βˆ’3​(A1,1+)2+19​aβˆ’.\displaystyle|A_{4}|\leq A_{1,1}^{+}-3(A_{1,1}^{+})^{2}+\frac{1}{9}a_{-}.

Finally, for A5A_{5}, we have

A5=116β€‹βˆ«βˆ’11(1βˆ’x2)​(1βˆ’18​x2+33​x4)​g=116​(16​aβˆ’33​A2,2βˆ’15​A2,0)\displaystyle A_{5}=\frac{1}{16}\int_{-1}^{1}(1-x^{2})(1-18x^{2}+33x^{4})g=\frac{1}{16}(16a-33A_{2,2}-15A_{2,0})

By Cauchy-Schwartz inequality and (3.12),

A2,2+β‰₯(A2,1+)2∫01x2​gβ‰₯(A2,1+)2a+12βˆ’a+,\displaystyle A_{2,2}^{+}\geq\frac{(A_{2,1}^{+})^{2}}{\int_{0}^{1}x^{2}g}\geq\frac{(A_{2,1}^{+})^{2}}{\frac{a+1}{2}-a_{+}},

so by (A.1),

A5+\displaystyle A_{5}^{+} ≀116(16a+βˆ’33​(A2,1+)2a+12βˆ’a+βˆ’15(a+βˆ’A2,1+)\displaystyle\leq\frac{1}{16}\big{(}16a_{+}-\frac{33(A_{2,1}^{+})^{2}}{\frac{a+1}{2}-a_{+}}-15(a_{+}-A_{2,1}^{+}\big{)}
≀116​(a+βˆ’3​(a+βˆ’2​a+2a+1)​(22​a+a+1βˆ’5))\displaystyle\leq\frac{1}{16}\Big{(}a_{+}-3(a_{+}-\frac{2a_{+}^{2}}{a+1})(\frac{22a_{+}}{a+1}-5)\Big{)}
=a+βˆ’6​a+2a+1+33​a+34​(a+1)2.\displaystyle=a_{+}-\frac{6a_{+}^{2}}{a+1}+\frac{33a_{+}^{3}}{4(a+1)^{2}}.

Therefore

A5≀aβˆ’6​(a+2+aβˆ’2)a+1+33​(a+3+aβˆ’3)4​(a+1)2.\displaystyle A_{5}\leq a-\frac{6(a_{+}^{2}+a_{-}^{2})}{a+1}+\frac{33(a_{+}^{3}+a_{-}^{3})}{4(a+1)^{2}}.

On the other hand,

A5β‰₯116​minβˆ’1≀x≀1⁑{1βˆ’18​x2+33​x4}β€‹βˆ«βˆ’11(1βˆ’x2)​g=βˆ’111​a.\displaystyle A_{5}\geq\frac{1}{16}\min_{-1\leq x\leq 1}\{1-18x^{2}+33x^{4}\}\int_{-1}^{1}(1-x^{2})g=-\frac{1}{11}a.

From (4) and the estimates of |A2||A_{2}| and |A3||A_{3}|, we can deduce that a<0.125a<0.125, so now it is not hard to see that

|A5|≀aβˆ’6​(a+2+aβˆ’2)a+1+33​(a+3+aβˆ’3)4​(a+1)2.\displaystyle|A_{5}|\leq a-\frac{6(a_{+}^{2}+a_{-}^{2})}{a+1}+\frac{33(a_{+}^{3}+a_{-}^{3})}{4(a+1)^{2}}.

Thus the proof of Lemma 3.2 is completed. ∎

Appendix B proof of Lemma 3.4 and Lemma 3.5

In this appendix we prove Lemma 3.4 and Lemma 3.5. The proofs are technical and use many quantitative properties of Gegenbauer polynomials.

Before we prove LemmaΒ 3.4, we first state some general lemma about Gegenbauer polynomials. Denote by xn​k​(Ξ½)x_{nk}(\nu), k=1,β‹―,nk=1,\cdots,n, the zeros of Cnν​(x)C_{n}^{\nu}(x) enumerated in decreasing order, that is, 1>xn​1​(Ξ½)>β‹―>xn​n​(Ξ½)>βˆ’11>x_{n1}(\nu)>\cdots>x_{nn}(\nu)>-1.

Lemma B.1 (Corollary 2.3 in Area et al.[1]).

For any nβ‰₯2n\geq 2 and for every Ξ½β‰₯1\nu\geq 1, the inequality

xn​1​(Ξ½)≀(nβˆ’1)​(n+2β€‹Ξ½βˆ’2)(n+Ξ½βˆ’2)​(n+Ξ½βˆ’1)​cos⁑(Ο€n+1)\displaystyle x_{n1}(\nu)\leq\sqrt{\frac{(n-1)(n+2\nu-2)}{(n+\nu-2)(n+\nu-1)}}\cos(\frac{\pi}{n+1}) (B.1)

holds.

The next lemma is well-known and it is valid for many other orthogonal polynomials.

Lemma B.2 (Olver et al. [2]).

Denote by yn​k​(Ξ½)y_{nk}(\nu), k=0,1,β‹―,nβˆ’1,nk=0,1,\cdots,n-1,n, the local maxima of |Cnν​(x)||C_{n}^{\nu}(x)| enumerated in decreasing order, then yn​0​(Ξ½)=1,yn​n​(Ξ½)=βˆ’1y_{n0}(\nu)=1,y_{nn}(\nu)=-1, and we have

  1. (a)(a)

    yn​k​(Ξ½)=xnβˆ’1,k​(Ξ½+1),k=1,β‹―,nβˆ’1.y_{nk}(\nu)=x_{n-1,k}(\nu+1),\ k=1,\cdots,n-1.

  2. (b)(b)

    |Cnν​(yn​0​(Ξ½))|>|Cnν​(yn​1​(Ξ½))|>β‹―>|Cnν​(yn,[n+12]​(Ξ½))|.|C_{n}^{\nu}(y_{n0}(\nu))|>|C_{n}^{\nu}(y_{n1}(\nu))|>\cdots>|C_{n}^{\nu}(y_{n,[\frac{n+1}{2}]}(\nu))|.

  3. (c)(c)

    (CnΞ½)(k)​(x)>0(C_{n}^{\nu})^{(k)}(x)>0 on (xn​1​(Ξ½),1)(x_{n1}(\nu),1) for all k=0,1,β‹―,n.k=0,1,\cdots,n.

Proof of LemmaΒ 3.4.

Direct computation by Matlab shows that LemmaΒ 3.4 holds for 6≀k≀506\leq k\leq 50, so in what follows we may assume k>50k>50.

By LemmaΒ B.1 and (2.1), we know that the minimum of F~kβ€²\widetilde{F}_{k}^{\prime} on [0,1][0,1] is achieved at the point

xkβˆ’2,1​(72)≀(kβˆ’3)​(k+3)(kβˆ’12)​(k+12)​cos⁑(Ο€kβˆ’1)≀1βˆ’9.1k2.\displaystyle x_{k-2,1}(\frac{7}{2})\leq\sqrt{\frac{(k-3)(k+3)}{(k-\frac{1}{2})(k+\frac{1}{2})}}\cos(\frac{\pi}{k-1})\leq 1-\frac{9.1}{k^{2}}. (B.2)

Taking N=2N=2 in LemmaΒ 3.3, we obtain

F~k′​(cos⁑΢)\displaystyle\widetilde{F}_{k}^{\prime}(\cos{\zeta}) =24k​(k+1)​(k+2)​(k+3)​Ckβˆ’152​(cos⁑΢)\displaystyle=\frac{24}{k(k+1)(k+2)(k+3)}C_{k-1}^{\frac{5}{2}}(\cos{\zeta})
=8​2π​((sin⁑΢)βˆ’52​Γ​(k)​(cos⁑(Ξ΄kβˆ’1,0)Γ​(k+52)+158​cos⁑(Ξ΄kβˆ’1,1)Γ​(k+72)​sin⁑΢)+R~)\displaystyle=8\sqrt{\frac{2}{\pi}}\Big{(}(\sin{\zeta})^{-\frac{5}{2}}\Gamma(k)\Big{(}\frac{\cos{(\delta_{k-1,0})}}{\Gamma(k+\frac{5}{2})}+\frac{15}{8}\frac{\cos{(\delta_{k-1,1})}}{\Gamma(k+\frac{7}{2})\sin{\zeta}}\Big{)}+\widetilde{R}\Big{)}
=8​2π​(k52​Γ​(k)l52​Γ​(k+52)​(cos⁑((k+32)β€‹ΞΆβˆ’5​π4)+158​l​k(k+52)​cos⁑((k+52)β€‹ΞΆβˆ’3​π4))+R~),\displaystyle=8\sqrt{\frac{2}{\pi}}\Big{(}\frac{k^{\frac{5}{2}}\Gamma(k)}{{l^{\frac{5}{2}}}\Gamma(k+\frac{5}{2})}\big{(}\cos{((k+\frac{3}{2})\zeta-\frac{5\pi}{4})}+\frac{15}{8l}\frac{k}{(k+\frac{5}{2})}\cos{((k+\frac{5}{2})\zeta-\frac{3\pi}{4})}\big{)}+\widetilde{R}\Big{)}, (B.3)

where R~\widetilde{R} satisfies

|R~|≀158​Γ​(k)Γ​(k+92)​(sin⁑΢)βˆ’92β‹…{sec⁑΢ if ​0<΢≀π4,2​sin⁑΢ if ​π4<ΞΆ<Ο€2.\displaystyle|\widetilde{R}|\leq\frac{15}{8}\frac{\Gamma(k)}{\Gamma(k+\frac{9}{2})}(\sin{\zeta})^{-\frac{9}{2}}\cdot\begin{cases}\sec{\zeta}&\text{ if }0<\zeta\leq\frac{\pi}{4},\\ 2\sin{\zeta}&\text{ if }\frac{\pi}{4}<\zeta<\frac{\pi}{2}.\end{cases} (B.4)

Let sin⁑΢=lk\sin{\zeta}=\frac{l}{k}. Then by (B.2) we can assume lβ‰₯18l\geq\sqrt{18}. From (B.4) we know that if l≀k2l\leq\frac{k}{\sqrt{2}}, then

|R~|≀158​l92​k92​Γ​(k)Γ​(k+92)​11βˆ’l2k2<158​l92​11βˆ’l2k2;\displaystyle|\widetilde{R}|\leq\frac{15}{8l^{\frac{9}{2}}}\frac{k^{\frac{9}{2}}\Gamma(k)}{\Gamma(k+\frac{9}{2})}\frac{1}{\sqrt{1-\frac{l^{2}}{k^{2}}}}<\frac{15}{8l^{\frac{9}{2}}}\frac{1}{\sqrt{1-\frac{l^{2}}{k^{2}}}}; (B.5)

while if l>k2l>\frac{k}{\sqrt{2}}, then

|R~|≀154​l72​k72​Γ​(k)Γ​(k+92)<15​(2)724​k92.\displaystyle|\widetilde{R}|\leq\frac{15}{4l^{\frac{7}{2}}}\frac{k^{\frac{7}{2}}\Gamma(k)}{\Gamma(k+\frac{9}{2})}<\frac{15(\sqrt{2})^{\frac{7}{2}}}{4k^{\frac{9}{2}}}. (B.6)

To get the desired lower bound, we shall use the following simple estimates.

cos⁑(x+Ξ΄)=cos⁑xβˆ’Ξ΄β€‹sin⁑(x+h​δ)β‰₯cos⁑xβˆ’|Ξ΄|.\cos(x+\delta)=\cos x-\delta\sin(x+h\delta)\geq\cos x-|\delta|. (B.7)
ΞΆβˆ’sin⁑΢≀(Ο€2βˆ’1)​sin3⁑΢≀sin3⁑΢, 0<ΞΆ<Ο€2.\zeta-\sin\zeta\leq(\frac{\pi}{2}-1)\sin^{3}{\zeta}\leq\sin^{3}{\zeta},\ 0<\zeta<\frac{\pi}{2}. (B.8)

With the help of (B.7) and (B.8), we have

cos⁑((k+32)β€‹ΞΆβˆ’5​π4)\displaystyle\cos{((k+\frac{3}{2})\zeta-\frac{5\pi}{4})} =cos⁑((k+32)​lk+(k+32)​(ΞΆβˆ’sin⁑΢)βˆ’5​π4)\displaystyle=\cos((k+\frac{3}{2})\frac{l}{k}+(k+\frac{3}{2})(\zeta-\sin\zeta)-\frac{5\pi}{4})
β‰₯cos⁑(lβˆ’5​π4)βˆ’((k+32)​(ΞΆβˆ’sin⁑΢)+3​l2​k)\displaystyle\geq\cos(l-\frac{5\pi}{4})-((k+\frac{3}{2})(\zeta-\sin\zeta)+\frac{3l}{2k})
β‰₯cos⁑(lβˆ’5​π4)βˆ’((k+32)​(lk)3+3​l2​k).\displaystyle\geq\cos(l-\frac{5\pi}{4})-((k+\frac{3}{2})(\frac{l}{k})^{3}+\frac{3l}{2k}). (B.9)

Similarly, we get

cos⁑((k+52)β€‹ΞΆβˆ’3​π4)β‰₯cos⁑(lβˆ’3​π4)βˆ’((k+52)​(lk)3+5​l2​k).\displaystyle\cos{((k+\frac{5}{2})\zeta-\frac{3\pi}{4})}\geq\cos(l-\frac{3\pi}{4})-((k+\frac{5}{2})(\frac{l}{k})^{3}+\frac{5l}{2k}). (B.10)

Therefore it holds that

lβˆ’52​(cos⁑((k+32)β€‹ΞΆβˆ’5​π4)+158​l​k(k+52)​cos⁑((k+52)β€‹ΞΆβˆ’3​π4))\displaystyle l^{-\frac{5}{2}}\Big{(}\cos{((k+\frac{3}{2})\zeta-\frac{5\pi}{4})}+\frac{15}{8l}\frac{k}{(k+\frac{5}{2})}\cos{((k+\frac{5}{2})\zeta-\frac{3\pi}{4})}\Big{)}
β‰₯\displaystyle\geq βˆ’(15​cos⁑(l+Ο€4)8​l7/2+cos⁑(lβˆ’Ο€4)l5/2)βˆ’(32​l3/2​k+7516​l5/2​k+3​l2​k3+7516​l​k3+lk2+158​l​k2)\displaystyle-\big{(}\frac{15\cos\left(l+\frac{\pi}{4}\right)}{8l^{7/2}}+\frac{\cos\left(l-\frac{\pi}{4}\right)}{l^{5/2}}\big{)}-\Big{(}\frac{3}{2l^{3/2}k}+\frac{75}{16l^{5/2}k}+\frac{3\sqrt{l}}{2k^{3}}+\frac{75}{16\sqrt{l}k^{3}}+\frac{\sqrt{l}}{k^{2}}+\frac{15}{8\sqrt{l}k^{2}}\Big{)}
=:\displaystyle=: Ο†k​(l).\displaystyle\varphi_{k}(l).

Since k52​Γ​(k)Γ​(k+52)<1\frac{k^{\frac{5}{2}}\Gamma(k)}{\Gamma(k+\frac{5}{2})}<1, we deduce that

F~k′​(cos⁑΢)β‰₯8​2π​(Ο†kβˆ’β€‹(l)βˆ’|R~|),\widetilde{F}_{k}^{\prime}(\cos{\zeta})\geq 8\sqrt{\frac{2}{\pi}}(\varphi_{k}^{-}(l)-|\widetilde{R}|),

where Ο†kβˆ’β€‹(l)=min⁑{Ο†k​(l),0}\varphi_{k}^{-}(l)=\min\{\varphi_{k}(l),0\}. Now we split ll into different intervals to get a relatively precise estimate.

If 18≀l≀5\sqrt{18}\leq l\leq 5, then it is straightforward to check that Ο†k​(l)β‰₯0\varphi_{k}(l)\geq 0 and so

F~k′​(cos⁑΢)β‰₯βˆ’8​2π​(158​l92​11βˆ’l2k2)>βˆ’8​2π×0.003>βˆ’0.081.\widetilde{F}_{k}^{\prime}(\cos{\zeta})\geq-8\sqrt{\frac{2}{\pi}}(\frac{15}{8l^{\frac{9}{2}}}\frac{1}{\sqrt{1-\frac{l^{2}}{k^{2}}}})>-8\sqrt{\frac{2}{\pi}}\times 0.003>-0.081.

If 5<l≀5.65<l\leq 5.6, then Ο†kβˆ’β€‹(l)β‰₯βˆ’0.0059βˆ’0.004=βˆ’0.0099\varphi_{k}^{-}(l)\geq-0.0059-0.004=-0.0099, and (B.5) implies |R~|<0.0015|\widetilde{R}|<0.0015 and so

F~k′​(cos⁑΢)β‰₯βˆ’8​2π×0.0114>βˆ’0.081.\widetilde{F}_{k}^{\prime}(\cos{\zeta})\geq-8\sqrt{\frac{2}{\pi}}\times 0.0114>-0.081.

If lβ‰₯6.8l\geq 6.8, then Ο†kβˆ’β€‹(l)β‰₯βˆ’0.0087βˆ’0.003=βˆ’0.0117\varphi_{k}^{-}(l)\geq-0.0087-0.003=-0.0117, and either (B.5) or (B.6) implies |R~|<0.0005|\widetilde{R}|<0.0005 and so

F~k′​(cos⁑΢)β‰₯βˆ’8​2π×0.0122>βˆ’0.081.\widetilde{F}_{k}^{\prime}(\cos{\zeta})\geq-8\sqrt{\frac{2}{\pi}}\times 0.0122>-0.081.

Finally, if 5.6<l<6.85.6<l<6.8, then (B.5) implies |R~|<0.0009|\widetilde{R}|<0.0009. In this case, 0.532​π<lβˆ’5​π4<0.915​π0.532\pi<l-\frac{5\pi}{4}<0.915\pi, and 1.032​π<lβˆ’3​π4<1.415​π1.032\pi<l-\frac{3\pi}{4}<1.415\pi. Now we can refine the estimate in (B.7) to get better estimates than (B.9) and (B.10). More precisely, we have

cos⁑((k+32)β€‹ΞΆβˆ’5​π4)\displaystyle\cos{((k+\frac{3}{2})\zeta-\frac{5\pi}{4})} =cos⁑((k+32)​lk+(k+32)​(ΞΆβˆ’sin⁑΢)βˆ’5​π4)\displaystyle=\cos((k+\frac{3}{2})\frac{l}{k}+(k+\frac{3}{2})(\zeta-\sin\zeta)-\frac{5\pi}{4})
β‰₯cos⁑(lβˆ’5​π4)βˆ’sin⁑(lβˆ’5​π4)​((k+32)​(ΞΆβˆ’sin⁑΢)+3​l2​k)\displaystyle\geq\cos(l-\frac{5\pi}{4})-\sin(l-\frac{5\pi}{4})((k+\frac{3}{2})(\zeta-\sin\zeta)+\frac{3l}{2k})
β‰₯cos⁑(lβˆ’5​π4)βˆ’2​lk​sin⁑(lβˆ’5​π4).\displaystyle\geq\cos(l-\frac{5\pi}{4})-\frac{2l}{k}\sin(l-\frac{5\pi}{4}). (B.11)

Similarly there holds

cos⁑((k+52)β€‹ΞΆβˆ’3​π4)β‰₯cos⁑(lβˆ’3​π4)βˆ’5​l2​k​sin⁑(lβˆ’3​π4).\displaystyle\cos{((k+\frac{5}{2})\zeta-\frac{3\pi}{4})}\geq\cos(l-\frac{3\pi}{4})-\frac{5l}{2k}\sin(l-\frac{3\pi}{4}). (B.12)

Now it is straightforward to compute

lβˆ’52​(cos⁑((k+32)β€‹ΞΆβˆ’5​π4)+158​l​k(k+52)​cos⁑((k+52)β€‹ΞΆβˆ’3​π4))\displaystyle l^{-\frac{5}{2}}\Big{(}\cos{((k+\frac{3}{2})\zeta-\frac{5\pi}{4})}+\frac{15}{8l}\frac{k}{(k+\frac{5}{2})}\cos{((k+\frac{5}{2})\zeta-\frac{3\pi}{4})}\Big{)}
β‰₯\displaystyle\geq lβˆ’52​(cos⁑(lβˆ’5​π4)βˆ’2​lk​sin⁑(lβˆ’5​π4))+158​lβˆ’72​k(k+52)​(cos⁑(lβˆ’3​π4)βˆ’5​l2​k​sin⁑(lβˆ’3​π4))\displaystyle l^{-\frac{5}{2}}\Big{(}\cos(l-\frac{5\pi}{4})-\frac{2l}{k}\sin(l-\frac{5\pi}{4})\Big{)}+\frac{15}{8}\frac{l^{-\frac{7}{2}}k}{(k+\frac{5}{2})}\Big{(}\cos(l-\frac{3\pi}{4})-\frac{5l}{2k}\sin(l-\frac{3\pi}{4})\Big{)}
β‰₯\displaystyle\geq βˆ’0.01,\displaystyle-0.01,

so

F~k′​(cos⁑΢)β‰₯βˆ’8​2π×(0.01+0.0009)>βˆ’0.081,\widetilde{F}_{k}^{\prime}(\cos{\zeta})\geq-8\sqrt{\frac{2}{\pi}}\times(0.01+0.0009)>-0.081,

which completes the proofs of Lemma 3.4. ∎

Proof of LemmaΒ 3.5.

The proof is similar to that of LemmaΒ 3.4 above. We first prove the following estimate at one point:

0.081≀F~k′​(1βˆ’10Ξ»k)≀0.11,kβ‰₯6.0.081\leq\widetilde{F}_{k}^{\prime}(1-\frac{10}{\lambda_{k}})\leq 0.11,\quad k\geq 6. (B.13)

Direct computation by Matlab shows that LemmaΒ 3.4 holds for 6≀k≀506\leq k\leq 50, so in what follows we may assume k>50k>50. The main tool we use is still (B.3), and the only difference is that now cos⁑΢=1βˆ’10Ξ»k\cos\zeta=1-\frac{10}{\lambda_{k}}.

By Taylor expansion, one easily obtains

2​5kβˆ’3​5k2<ΞΆ<2​5k,\displaystyle\frac{2\sqrt{5}}{k}-\frac{3\sqrt{5}}{k^{2}}<\zeta<\frac{2\sqrt{5}}{k}, (B.14)

and

sin⁑΢β‰₯2​5kβˆ’3​5k2.\displaystyle\sin\zeta\geq\frac{2\sqrt{5}}{k}-\frac{3\sqrt{5}}{k^{2}}. (B.15)

By (B.4) and (B.15), there holds

|R~|\displaystyle|\widetilde{R}| ≀105128​Γ​(k)Γ​(k+92)​(2​5kβˆ’3​5k2)βˆ’92​(1βˆ’10Ξ»k)βˆ’1\displaystyle\leq\frac{105}{128}\frac{\Gamma(k)}{\Gamma(k+\frac{9}{2})}(\frac{2\sqrt{5}}{k}-\frac{3\sqrt{5}}{k^{2}})^{-\frac{9}{2}}(1-\frac{10}{\lambda_{k}})^{-1}
≀105128Γ—20βˆ’94​(1βˆ’1.5k)βˆ’92​(1βˆ’10Ξ»k)βˆ’1\displaystyle\leq\frac{105}{128}\times 20^{-\frac{9}{4}}(1-\frac{1.5}{k})^{-\frac{9}{2}}(1-\frac{10}{\lambda_{k}})^{-1}
≀0.001.\displaystyle\leq 0.001. (B.16)

We observe that 0.17​π<(k+32)β€‹ΞΆβˆ’5​π4<0.2​π0.17\pi<(k+\frac{3}{2})\zeta-\frac{5\pi}{4}<0.2\pi, and 0.67​π<(k+32)β€‹ΞΆβˆ’3​π4<0.7​π0.67\pi<(k+\frac{3}{2})\zeta-\frac{3\pi}{4}<0.7\pi. Then, similar to the estimates in (B.11) and (B.12), we have

cos⁑((k+32)β€‹ΞΆβˆ’5​π4)\displaystyle\cos{((k+\frac{3}{2})\zeta-\frac{5\pi}{4})} ≀cos⁑((k+32)​(2​5kβˆ’3​5k2)βˆ’5​π4)\displaystyle\leq\cos{((k+\frac{3}{2})(\frac{2\sqrt{5}}{k}-\frac{3\sqrt{5}}{k^{2}})-\frac{5\pi}{4})}
≀cos⁑(2​5βˆ’5​π4)βˆ’9​52​k2​sin⁑(2​5βˆ’5​π4),\displaystyle\leq\cos(2\sqrt{5}-\frac{5\pi}{4})-\frac{9\sqrt{5}}{2k^{2}}\sin(2\sqrt{5}-\frac{5\pi}{4}), (B.17)
cos⁑((k+32)β€‹ΞΆβˆ’5​π4)\displaystyle\cos{((k+\frac{3}{2})\zeta-\frac{5\pi}{4})} β‰₯cos⁑(2​5k​(k+32)βˆ’5​π4)\displaystyle\geq\cos{(\frac{2\sqrt{5}}{k}(k+\frac{3}{2})-\frac{5\pi}{4})}
β‰₯cos⁑(2​5βˆ’5​π4)βˆ’3​5k​sin⁑(2​5βˆ’5​π4+3​5k),\displaystyle\geq\cos(2\sqrt{5}-\frac{5\pi}{4})-\frac{3\sqrt{5}}{k}\sin(2\sqrt{5}-\frac{5\pi}{4}+\frac{3\sqrt{5}}{k}), (B.18)
cos⁑((k+52)β€‹ΞΆβˆ’3​π4)\displaystyle\cos{((k+\frac{5}{2})\zeta-\frac{3\pi}{4})} ≀cos((k+52)(2​5kβˆ’3​5k2)βˆ’3​π4))\displaystyle\leq\cos{((k+\frac{5}{2})(\frac{2\sqrt{5}}{k}-\frac{3\sqrt{5}}{k^{2}})-\frac{3\pi}{4}))}
≀cos⁑(2​5βˆ’3​π4)βˆ’(2​5kβˆ’15​52​k2)​sin⁑(2​5βˆ’3​π4+2​5k),\displaystyle\leq\cos(2\sqrt{5}-\frac{3\pi}{4})-(\frac{2\sqrt{5}}{k}-\frac{15\sqrt{5}}{2k^{2}})\sin(2\sqrt{5}-\frac{3\pi}{4}+\frac{2\sqrt{5}}{k}), (B.19)
cos⁑((k+32)β€‹ΞΆβˆ’3​π4)\displaystyle\cos{((k+\frac{3}{2})\zeta-\frac{3\pi}{4})} β‰₯cos((2​5k(k+52)βˆ’3​π4)\displaystyle\geq\cos{((\frac{2\sqrt{5}}{k}(k+\frac{5}{2})-\frac{3\pi}{4})}
β‰₯cos⁑(2​5βˆ’3​π4)βˆ’5​5k​sin⁑(2​5βˆ’3​π4).\displaystyle\geq\cos(2\sqrt{5}-\frac{3\pi}{4})-\frac{5\sqrt{5}}{k}\sin(2\sqrt{5}-\frac{3\pi}{4}). (B.20)

So by (B) and (B), we obtain

(sin⁑΢)βˆ’52​Γ​(k)Γ​(k+52)​(cos⁑(Ξ΄kβˆ’1,0)+158​cos⁑(Ξ΄kβˆ’1,1)(k+52)​sin⁑΢)\displaystyle(\sin{\zeta})^{-\frac{5}{2}}\frac{\Gamma(k)}{\Gamma(k+\frac{5}{2})}\Big{(}\cos{(\delta_{k-1,0})}+\frac{15}{8}\frac{\cos{(\delta_{k-1,1})}}{(k+\frac{5}{2})\sin{\zeta}}\Big{)}
≀\displaystyle\leq (2​5βˆ’3​5k)βˆ’52​k52​Γ​(k)Γ​(k+52)​(0.8551βˆ’5.218k2+158β€‹βˆ’0.5186βˆ’0.81​(2​5kβˆ’15​52​k2)(k+52)​(2​5kβˆ’3​5k2))\displaystyle(2\sqrt{5}-\frac{3\sqrt{5}}{k})^{-\frac{5}{2}}\frac{k^{\frac{5}{2}}\Gamma(k)}{\Gamma(k+\frac{5}{2})}\Big{(}0.8551-\frac{5.218}{k^{2}}+\frac{15}{8}\frac{-0.5186-0.81(\frac{2\sqrt{5}}{k}-\frac{15\sqrt{5}}{2k^{2}})}{(k+\frac{5}{2})(\frac{2\sqrt{5}}{k}-\frac{3\sqrt{5}}{k^{2}})}\Big{)}
≀\displaystyle\leq 20βˆ’54​(0.638βˆ’2k)\displaystyle 20^{-\frac{5}{4}}(0.638-\frac{2}{k})
≀\displaystyle\leq 0.0151,\displaystyle 0.0151,

which, together with (B), implies that

F~k′​(1βˆ’10Ξ»k)≀8​2π​(0.0151+0.001)≀0.103≀0.11.\displaystyle\widetilde{F}_{k}^{\prime}(1-\frac{10}{\lambda_{k}})\leq 8\sqrt{\frac{2}{\pi}}(0.0151+0.001)\leq 0.103\leq 0.11.

The other direction F~k′​(1βˆ’10Ξ»k)>0.081\widetilde{F}_{k}^{\prime}(1-\frac{10}{\lambda_{k}})>0.081 is similar. The only difference is that we need to use (B) and (B) instead of (B) and (B). We omit the details. Thus (B.13) is proved.

Now in view of LemmaΒ 3.4, we see that F~k′​(1βˆ’10Ξ»k)>βˆ’min0≀x≀1⁑F~k′​(x)\widetilde{F}_{k}^{\prime}(1-\frac{10}{\lambda_{k}})>-\min\limits_{0\leq x\leq 1}\widetilde{F}_{k}^{\prime}(x). Then by LemmaΒ B.2 (b)(b), F~k′​(1βˆ’10Ξ»k)β‰₯F~k′​(x)\widetilde{F}_{k}^{\prime}(1-\frac{10}{\lambda_{k}})\geq\widetilde{F}_{k}^{\prime}(x) for all 0≀x≀1βˆ’10Ξ»k0\leq x\leq 1-\frac{10}{\lambda_{k}}. Moreover, the convexity of F~k′​(x)\widetilde{F}_{k}^{\prime}(x) on [1βˆ’10Ξ»k,1][1-\frac{10}{\lambda_{k}},1] is guaranteed by LemmaΒ B.2 (c)(c). Thus the proof of Lemma 3.5 is completed. ∎

Acknowledgements

J. Wei is partially supported by NSERC of Canada. We thank Professor Changfeng Gui for interesting discussions.

References

  • [1] I. Area, D. Dimitrov, E. Godoy, et al. Zeros of Gegenbauer and Hermite polynomials and connection coefficients, Mathematics of Computation. 73(248) (2004), 1937-1951.
  • [2] F.W. Olver, D.W. Lozier, R.F. Boisvert, C.W. Clark, eds. NIST handbook of mathematical functions hardback and CD-ROM, Cambridge university press, 2010.
  • [3] W. Beckner, Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality, Ann. Math. 138 (1993), 213–242.
  • [4] S.-Y.A. Chang and C. Gui, A sharp inequality on the exponentiation of functions on the sphere, Comm. Pure Appl. Math., to appear.
  • [5] S.-Y.A. Chang and F.B. Hang, Improved Moser-Trudinger-Onofri Inequality under constraints, Comm. Pure Appl. Math. 75 (2022), 197–220.
  • [6] S.-Y.A. Chang and P.C. Yang, Prescribing Gaussian curvature on S2S^{2}, Acta Math. 159 (1987), 215–259.
  • [7] S.-Y. A. Chang and P. C. Yang, Conformal deformation of metrics on S2. J. Differential Geom. 27 (1988), no. 2, 259–296.
  • [8] S.-Y.A. Chang and P.C. Yang, Extremal metrics of zeta function determinants on 4-manifolds, Ann. Math. 142 (1995), 171–212.
  • [9] S.-Y.A. Chang and P.C. Yang, On uniqueness of an nth order differential equation in conformal geometry, Math. Res. Lett. 4 (1997), 1–12.
  • [10] Z. Djadli, E. Hebey and M. Ledoux, Paneitz-type operators and applications, Duke Math. J. 104(1) (2000), 129–169.
  • [11] Z. Djadli and A. Malchiodi, Existence of conformal metrics with constant Q-curvature, Ann. Math. 168 (2008) 813–858.
  • [12] J.Feldman, R. Froese, N. Ghoussoub and C.F. Gui, An improved Moser-Aubin-Onofri inequality for axially symmetric functions on S2. Calc. Var. Partial Differential Equations 6 (1998), no. 2, 95–104.
  • [13] N. Ghoussoub and C. S. Lin, On the best constant in the Moser-Onofri-Aubin inequality. Comm. Math. Phys. 298 (2010), no. 3, 869–878.
  • [14] C. Gui and A. Moradifam, The sphere covering inequality and its applications, Invent. Math. 214(3) (2018), 1169–1204.
  • [15] C. Gui, Y. Hu and W. Xie, Improved Beckner’s inequality for axially symmetric functions on S4S^{4}, arXiv :2109 .13390.
  • [16] C. Gui, Y. Hu and W. Xie, Improved Beckner’s inequality for axially symmetric functions on SnS^{n}, J. Funct. Analysis 282(2022), 109335.
  • [17] C. Gui and J. Wei, On a sharp Moser-Aubin-Onofri inequality for functions on S2S^{2} with symmetry, Pac. J. Math. 194(2) (2000) 349–358.
  • [18] M. Gursky and A. Malchiodi, A strong maximum principle for the Paneitz operator and a non-local flow for the Q-curvature. J. Eur. Math. Soc. (JEMS) 17(9) (2015), 2137–2173.
  • [19] T. Jin, Y. Li and J. Xiong, The Nirenberg problem and its generalizations: a unified approach. Math. Ann. 369 (2017), no. 1-2, 109–151.
  • [20] Y.Y. Li and J.G. Xiong, Compactness of conformal metrics with constant Q-curvature, Adv. Math. 345 (2019), 116–160.
  • [21] A. Malchiodi, Compactness of solutions to some geometric fourth-order equations, J. Reine Angew. Math. 594 (2006), 137–174.
  • [22] M. Morimoto, Analytic Functionals on the Sphere, Translations of Mathematical Monographs, No 178. AMS, first edition, 1998.
  • [23] G. Nemes and A. O. Daalhuis, Large-parameter asymptotic expansions for the Legendre and allied functions. SIAM J. Math. Anal. 52 (2020), no. 1, 437–470.
  • [24] J. Wei and X. Xu, On conformal deformations of metrics on SnS^{n}, J. Funct. Anal. 157 (1998), 292–325.