This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

On rigidity of Coxeter systems up to finite twists and separations of Coxeter generating sets

Tetsuya Hosaka Department of Mathematics, Faculty of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan hosaka.tetsuya@shizuoka.ac.jp
(Date: June 20, 2023)
Abstract.

In this paper, we study the twist-conjecture for Coxeter systems and rigidity of Coxeter systems up to finite twists. For Coxeter systems (W,R)(W,R) and (W,S)(W,S), under the untangle-condition for conjugate subsets, we investigate separations and type(I) and type(II) subsets of RR and SS and give an equivalent condition of RR and SS that are conjugate up to finite twists. We provide one direction of approach to solving the twist-conjecture and the isomorphism problem for Coxeter groups of finite ranks.

Key words and phrases:
Coxeter groups; Coxeter systems; the isomorphism problem for Coxeter groups; rigidity of Coxeter systems; twists of Coxeter systems
2010 Mathematics Subject Classification:
20F55
This work was partly supported by JSPS KAKENHI Grant Number JP18K03273.

1. Introduction and preliminaries

The purpose of this paper is to investigate the twist-conjecture for Coxeter systems and rigidity of Coxeter systems up to finite twists. Definitions and details of Coxeter groups and Coxeter systems are found in [1] and [11]. In this paper, we suppose that all Coxeter groups are of finite ranks. The isomorphism problem for Coxeter groups is open.

Problem 1.1 (The isomorphism problem for Coxeter groups).

For given Coxeter systems (W,S)(W,S) and (W,S)(W^{\prime},S^{\prime}), find an algorithm to determine whether the Coxeter groups WW and WW^{\prime} are isomorphic or not.

For a Coxeter system (W,S)(W,S) and a subset TT of SS, WTW_{T} is defined as the subgroup generated by TT in WW. It is well known that (WT,T)(W_{T},T) also becomes a Coxeter system. A subset TT of SS is said to be spherical, if the subgroup WTW_{T} is finite. If TT is a spherical subset of SS, then it is known that there exists a unique longest length element in WTW_{T} that is denoted by wTw_{T}. For a subset TT of SS, we denote T:={sS:st=tsfor alltT}T^{\perp}:=\{s\in S:st=ts\ \text{for all}\ t\in T\}. For a Coxeter group WW, a subset RR of WW is called a Coxeter generating set for WW, if (W,R)(W,R) is a Coxeter system.

Recent research on the isomorphism problem for Coxeter groups and rigidity of Coxeter groups and Coxeter systems can be found in [2], [4], [5], [10], [12], [14], [15], [16], [17] and [18].

A Coxeter system (W,S)(W,S) is said to be reflection-rigid, if it is determined by the Coxeter group WW and the set of reflections

S:={wsw1W:wW,sS}=SW{\mathcal{R}}_{S}:=\{wsw^{-1}\in W:w\in W,\ s\in S\}=S^{W}

up to isomorphisms; that is, for any Coxeter generating set SS^{\prime} for WW such that the reflection sets S{\mathcal{R}}_{S} and S{\mathcal{R}}_{S^{\prime}} are equal, two Coxeter systems (W,S)(W,S) and (W,S)(W,S^{\prime}) are isomorphic.

Also a Coxeter system (W,S)(W,S) is said to be strongly-reflection-rigid, if SS is determined by the Coxeter group WW and the reflection set S{\mathcal{R}}_{S} up to conjugate; that is, for any Coxeter generating set SS^{\prime} for WW such that the reflection sets S{\mathcal{R}}_{S} and S{\mathcal{R}}_{S^{\prime}} are equal, two Coxeter generating sets SS and SS^{\prime} are conjugate in WW.

Let WW be a Coxeter group. Two Coxeter generating sets SS and SS^{\prime} for WW are said to be angle-compatible [5] (or sharp-angled [12]), if for any {a,b}S\{a,b\}\subset S as o(ab)<o(ab)<\infty there exists {a,b}S\{a^{\prime},b^{\prime}\}\subset S^{\prime} as o(ab)<o(a^{\prime}b^{\prime})<\infty such that {a,b}\{a,b\} and {a,b}\{a^{\prime},b^{\prime}\} are conjugate in WW. Here for wWw\in W, o(w)o(w) is the order of ww in the group WW. We say that a Coxeter system (W,S)(W,S) is angle-rigid, if for any Coxeter generating set SS^{\prime} for WW such that SS and SS^{\prime} are angle-compatible, two Coxeter systems (W,S)(W,S) and (W,S)(W,S^{\prime}) are isomorphic. Also a Coxeter system (W,S)(W,S) is said to be strongly-angle-rigid, if for any Coxeter generating set SS^{\prime} for WW such that SS and SS^{\prime} are angle-compatible, two Coxeter generating sets SS and SS^{\prime} are conjugate in WW.

It is known that if two Coxeter generating sets SS and SS^{\prime} for WW are angle-compatible then the reflection sets S{\mathcal{R}}_{S} and S{\mathcal{R}}_{S^{\prime}} are equal (see [5]). Hence if a Coxeter system (W,S)(W,S) is (strongly-)reflection-rigid, then it is (strongly-)angle-rigid.

Recently, Marquis and Mühlherr have proved the following.

Theorem 1.2 ([12, Corollary 1.1]).

The isomorphism problem for Coxeter groups is solved as soon as the following problem is solved.

Problem 1.3 ([12]).

Let (W,R)(W,R) be a Coxeter system. Find all Coxeter generating sets SRWS\subset R^{W} such that SS is sharp-angled with respect to RR.

Thus if for a given Coxeter system (W,R)(W,R) we can output all Coxeter generating sets SS for WW such that RR and SS are angle-compatible, then the isomorphism problem for Coxeter groups is solved.

Caprace and Przytycki have given the following.

Theorem 1.4 ([5, Theorem 1.1]).

Let SS and RR be angle-compatible Coxeter generating sets for a group WW. If SS is twist-rigid, then SS and RR are conjugate.

Hence, every twist-rigid Coxeter system is strongly-angle-rigid.

Here (W,S)(W,S) (and SS) is said to be twist-rigid, if (W,S)(W,S) has no elementary twist [5]. We give a definition and detail of a “twist” later.

Definition 1.5.

Let (W,S)(W,S) be a Coxeter system and let UU be a subset of SS. We consider the irreducible decomposition

WU=WU1××WUn,W_{U}=W_{U_{1}}\times\cdots\times W_{U_{n}},

where U=U1UnU=U_{1}\cup\cdots\cup U_{n} is a disjoint union and each (WUi,Ui)(W_{U_{i}},U_{i}) is an irreducible Coxeter system. Here each WUiW_{U_{i}} is either finite or infinite. We define

Uσ:={Ui:WUi is finite}and\displaystyle U_{\sigma}:=\bigcup\{U_{i}:\text{$W_{U_{i}}$ is finite}\}\ \text{and}
Uν:={Ui:WUi is infinite}.\displaystyle U_{\nu}:=\bigcup\{U_{i}:\text{$W_{U_{i}}$ is infinite}\}.

Then U=UσUνU=U_{\sigma}\cup U_{\nu} is a disjoint union, WUσW_{U_{\sigma}} is finite, WUνW_{U_{\nu}} is infinite (if UνU_{\nu} is non-empty), and WU=WUσ×WUνW_{U}=W_{U_{\sigma}}\times W_{U_{\nu}}.

Let (W,S)(W,S) be a Coxeter system. We say that a subset UU of SS is a spherical-product subset of SS, if UU is non-empty and UσσU\subset\sigma\cup\sigma^{\perp} for some non-empty spherical subset σ\sigma of SS. Here if UU is a spherical-product subset of SS, then either

  1. (1)

    Uσ=UU_{\sigma}=U and Uν=U_{\nu}=\emptyset (where UU is spherical),

  2. (2)

    UσU_{\sigma}\neq\emptyset and UνU_{\nu}\neq\emptyset (where U=UσUνUσ(Uσ)U=U_{\sigma}\cup U_{\nu}\subset U_{\sigma}\cup(U_{\sigma})^{\perp}), or

  3. (3)

    Uσ=U_{\sigma}=\emptyset and Uν=UU_{\nu}=U (where for a spherical subset σ\sigma of SS such that UσσU\subset\sigma\cup\sigma^{\perp}, if we put U¯:=σU\overline{U}:=\sigma\cup U then U¯σ=σ\overline{U}_{\sigma}=\sigma and U¯ν=U\overline{U}_{\nu}=U).

A subset TT of SS is said to be connected, if for any a,bTa,b\in T as aba\neq b, there exists a sequence a=t1,t2,,tn=ba=t_{1},t_{2},\ldots,t_{n}=b in TT such that o(titi+1)o(t_{i}t_{i+1}) is finite for any i=1,,n1i=1,\ldots,n-1 (that is, the nerve of (WT,T)(W_{T},T) is connected). Also we often say that a spherical-product subset UU separates SS, if SS is connected and SUS-U is not connected (that is, the nerve LUL_{U} of (WU,U)(W_{U},U) separates the connected nerve LL of (W,S)(W,S) to some at least two components).

If a spherical-product subset UU of SS separates SS, then for some non-empty subsets XX and YY of SS,

  1. (1)

    SU=XYS-U=X\cup Y that is a disjoint union and

  2. (2)

    o(xy)=o(xy)=\infty for any xXx\in X and yYy\in Y.

There is a spherical subset σ\sigma of SS such that UσσU\subset\sigma\cup\sigma^{\perp}. Here if UσU_{\sigma} is non-empty then we take σ:=Uσ\sigma:=U_{\sigma}. Then wσUwσ=Uw_{\sigma}Uw_{\sigma}=U and we obtain a Coxeter generating set for WW as

S:=XU(wσYwσ)S^{\prime}:=X\cup U\cup(w_{\sigma}Yw_{\sigma})

that is an elementary twist ([2], [3], [5], [13], [14]). Also in the case that SS is not connected, we can consider that U=U=\emptyset separates SS. If S=XYS=X\cup Y that is a disjoint union and o(xy)=o(xy)=\infty for any xXx\in X and yYy\in Y, then for any wWXw\in W_{X} we obtain a Coxeter generating set S:=X(wYw1)S^{\prime}:=X\cup(wYw^{-1}) for WW that is also an elementary twist ([2], [3], [5], [6], [14]).

Hence, (W,S)(W,S) is twist-rigid if and only if SS is connected and any spherical-product subset UU does not separate SS.

More generally, let UU be a spherical-product subset of SS that separates SS and let XX and YY be non-empty subsets of SS such that

  1. (1)

    SU=XYS-U=X\cup Y that is a disjoint union,

  2. (2)

    o(xy)=o(xy)=\infty for any xXx\in X and yYy\in Y and

  3. (3)

    wUw1=UwUw^{-1}=U for some wWXUw\in W_{X\cup U}.

Then we obtain a Coxeter generating set for WW as

S:=XU(wYw1)S^{\prime}:=X\cup U\cup(wYw^{-1})

that is called a ((general-))twist. Here there is a possibility that every twist can be denoted by some elementary-twists. The author does not know whether this always holds.

In this paper, we often say that a Coxeter generating set SS^{\prime} is obtained from SS by some finite twists, if there exists a sequence S=S1,S2,,Sn=SS=S_{1},S_{2},\ldots,S_{n}=S^{\prime} of Coxeter generating sets for WW such that each Si+1S_{i+1} is obtained from SiS_{i} by some twist. We also say that Coxeter generating sets RR and SS for WW are conjugate up to finite twists, if there exists a Coxeter generating set RR^{\prime} for WW such that RR^{\prime} is obtained from RR by some finite twists and RR^{\prime} is conjugate to SS. Here Coxeter generating sets RR and SS for WW are conjugate up to finite twists if and only if there exist Coxeter generating sets RR^{\prime} and SS^{\prime} for WW such that RR^{\prime} and SS^{\prime} are obtained from RR and SS by some finite twists respectively and RR^{\prime} is conjugate to SS^{\prime}.

Now we define new concepts “separations” and “untangle-conjugate” on Coxeter systems. These definitions are technical. The purpose of this paper is to give a further reduction of the isomorphism problem for Coxeter groups. These definitions are designed and constructed as the main results in this paper hold and as two Coxeter generating sets with some conditions using them are conjugate up to finite twists.

First, the following lemma is known.

Lemma 1.6 (cf. [2]).

Let (W,S)(W,S) and (W,S)(W,S^{\prime}) be Coxeter systems. For each maximal spherical subset TT of SS, there exists a unique maximal spherical subset TT^{\prime} of SS^{\prime} such that WTW_{T} and WTW_{T^{\prime}} are conjugate in WW.

Here we say that two Coxeter systems (W,S)(W,S) and (W,S)(W,S^{\prime}) are maximal-spherical-subset-compatible, if for each maximal spherical subset TT of SS, there exists a maximal spherical subset TT^{\prime} of SS^{\prime} such that TT and TT^{\prime} are conjugate in WW (where TT^{\prime} is unique by Lemma 1.6). If two Coxeter systems are maximal-spherical-subset-compatible then they are angle-compatible. Indeed for each {a,b}S\{a,b\}\subset S as o(ab)<o(ab)<\infty, there exists a maximal spherical subset TT of SS containing {a,b}\{a,b\}. If TT^{\prime} is a maximal spherical subset of SS^{\prime} such that TT and TT^{\prime} are conjugate in WW then some subset {a,b}T\{a^{\prime},b^{\prime}\}\subset T^{\prime} is conjugate to {a,b}\{a,b\}.

For a Coxeter system (W,S)(W,S) as SS is connected and for ASA\subset S, we say that AA is a twist-rigid subset of SS, if AA is connected and if there does not exist a spherical-product subset UU of SS such that UU separates SS and UAU\cap A separates AA. Here we note that (WA,A)(W_{A},A) need not be a twist-rigid Coxeter system in general (see examples in Section 2).

Let (W,S)(W,S) be a Coxeter system. We suppose that SS is connected. Let 𝒜{\mathcal{A}} be a set of subsets of SS such that

  1. (1)

    S=A𝒜AS=\bigcup_{A\in\mathcal{A}}A,

  2. (2)

    each A𝒜A\in{\mathcal{A}} is connected and a union of some maximal twist-rigid subsets of SS, and

  3. (3)

    for each maximal twist-rigid subset A0A_{0} of SS, there exists a unique element A𝒜A\in{\mathcal{A}} such that A0AA_{0}\subset A.

A subset UU of SS is called a separator of 𝒜{\mathcal{A}}, if the following conditions (i)–(v) hold:

  1. (i)

    UU is a spherical-product subset of SS.

  2. (ii)

    UU separates SS.

  3. (iii)

    For any A𝒜A\in{\mathcal{A}}, there exists a unique j{1,,t}j\in\{1,\ldots,t\} such that AX¯jA\subset\overline{X}_{j}. Here SU=X1XtS-U=X_{1}\cup\cdots\cup X_{t} and X1,,XtX_{1},\ldots,X_{t} are the connected components of SUS-U and we define X¯j:={A𝒜:AXjU}\overline{X}_{j}:=\bigcup\{A\in{\mathcal{A}}:A\subset X_{j}\cup U\} for each j=1,,tj=1,\ldots,t.

  4. (iv)

    There exist A1,A2𝒜A_{1},A_{2}\in{\mathcal{A}} such that A1A2=UA_{1}\cap A_{2}=U, A1X¯j1A_{1}\subset\overline{X}_{j_{1}} and A2X¯j2A_{2}\subset\overline{X}_{j_{2}} for some j1,j2{1,,t}j_{1},j_{2}\in\{1,\ldots,t\} as j1j2j_{1}\neq j_{2}.

  5. (v)

    Let j{1,,t}j\in\{1,\ldots,t\}. For any distinct elements A1,,An𝒜A_{1},\ldots,A_{n}\in{\mathcal{A}} such that UX¯jA1AnX¯jU\cap\overline{X}_{j}\subset A_{1}\cup\cdots\cup A_{n}\subset\overline{X}_{j}, if (A1Ai)Ai+1(A_{1}\cup\cdots\cup A_{i})\cap A_{i+1} is maximal in

    {(A1Ai)A:A𝒜{A1,,Ai}}\{(A_{1}\cup\cdots\cup A_{i})\cap A:A\in{\mathcal{A}}-\{A_{1},\ldots,A_{i}\}\}

    for any i=1,,n1i=1,\ldots,n-1, then UX¯jAiU\cap\overline{X}_{j}\subset A_{i} for some i{1,,n}i\in\{1,\ldots,n\}.

A set 𝒜{\mathcal{A}} of subsets of SS is called a separation of SS, if the following conditions (1)–(4) hold:

  1. (1)

    S=A𝒜AS=\bigcup_{A\in\mathcal{A}}A.

  2. (2)

    Each A𝒜A\in{\mathcal{A}} is connected and a union of some maximal twist-rigid subsets of SS.

  3. (3)

    For each maximal twist-rigid subset A0A_{0} of SS, there exists a unique element A𝒜A\in{\mathcal{A}} such that A0AA_{0}\subset A.

  4. (4)

    For distinct elements A1,A2,,An𝒜A_{1},A_{2},\ldots,A_{n}\in{\mathcal{A}}, if (A1Ai)Ai+1(A_{1}\cup\cdots\cup A_{i})\cap A_{i+1} is maximal in

    {(A1Ai)A:A𝒜{A1,,Ai}}\{(A_{1}\cup\cdots\cup A_{i})\cap A:A\in{\mathcal{A}}-\{A_{1},\ldots,A_{i}\}\}

    for any i=1,,n1i=1,\ldots,n-1, then for each i=1,,n1i=1,\ldots,n-1,

    1. (a)

      Ui:=(A1Ai)Ai+1U_{i}:=(A_{1}\cup\cdots\cup A_{i})\cap A_{i+1} is a separator of 𝒜{\mathcal{A}}, and

    2. (b)

      A1AiXj1UiA_{1}\cup\cdots\cup A_{i}\subset X_{j_{1}}\cup U_{i} and Ai+1Xj2UiA_{i+1}\subset X_{j_{2}}\cup U_{i} for some j1,j2{1,,t}j_{1},j_{2}\in\{1,\ldots,t\} as j1j2j_{1}\neq j_{2}, where SUi=X1XtS-U_{i}=X_{1}\cup\cdots\cup X_{t} and X1,,XtX_{1},\ldots,X_{t} are the connected components of SUiS-U_{i}.

In the case that SS is not connected, a set 𝒜{\mathcal{A}} of subsets of SS is called a separation of SS, if for the connected components S1,,SkS_{1},\ldots,S_{k} of SS (that is, each SiS_{i} is a maximal connected subset of SS and S=S1SkS=S_{1}\cup\cdots\cup S_{k} is a disjoint union), 𝒜i:={A𝒜:ASi}{\mathcal{A}}_{i}:=\{A\in{\mathcal{A}}:A\subset S_{i}\} is a separation of SiS_{i} for any i=1,,ki=1,\ldots,k.

For two sets 𝒜1{\mathcal{A}}_{1} and 𝒜2{\mathcal{A}}_{2} of subsets of SS, we denote 𝒜1𝒜2{\mathcal{A}}_{1}\preceq{\mathcal{A}}_{2}, if for any A1𝒜1A_{1}\in{\mathcal{A}}_{1}, A1A2A_{1}\subset A_{2} for some A2𝒜2A_{2}\in{\mathcal{A}}_{2}.

A separation 𝒜{\mathcal{A}} of SS is said to be minimal, if

  1.  

    there does not exist a separation 𝒜{\mathcal{A}}^{\prime} of SS such that 𝒜𝒜{\mathcal{A}}^{\prime}\neq{\mathcal{A}} and any A𝒜A^{\prime}\in{\mathcal{A}}^{\prime} is contained in some A𝒜A\in{\mathcal{A}}.

A minimal separation is “minimal” with respect to the partial order “\preceq”.

Let (W,S)(W,S) be a Coxeter system and let 𝒜{\mathcal{A}} be a set of subsets of SS. We consider a twist

S:=XU(wYw1)S^{\prime}:=X\cup U\cup(wYw^{-1})

where UU is a spherical-product subset of SS and wWXUw\in W_{X\cup U} such that wUw1=UwUw^{-1}=U, UU separates SS as SU=XYS-U=X\cup Y that is a disjoint union and o(xy)=o(xy)=\infty for any xXx\in X and yYy\in Y. A twist SS^{\prime} is said to be preserving 𝒜{\mathcal{A}}, if for any A𝒜A\in{\mathcal{A}}, AXUA\subset X\cup U or AYUA\subset Y\cup U (that is, there does not exist A𝒜A\in{\mathcal{A}} such that AXA\cap X\neq\emptyset and AYA\cap Y\neq\emptyset). If the twist SS^{\prime} is preserving 𝒜{\mathcal{A}} then

𝒜:={A:A𝒜,AXU}{wAw1:A𝒜,AXU}{\mathcal{A}}^{\prime}:=\{A:A\in{\mathcal{A}},\ A\subset X\cup U\}\cup\{wAw^{-1}:A\in{\mathcal{A}},\ A\not\subset X\cup U\}

is a set of subsets of SS^{\prime} and 𝒜{\mathcal{A}}^{\prime} is called the set induced by 𝒜{\mathcal{A}} and the twist.

Here if 𝒜{\mathcal{A}} is a separation of SS, then the induced set 𝒜{\mathcal{A}}^{\prime} is a separation of SS^{\prime} and it is called the separation induced by 𝒜{\mathcal{A}} and the twist.

Let 𝒜{\mathcal{A}} be a set of subsets of SS. We often say that S′′S^{\prime\prime} is obtained from SS by some finite twists preserving 𝒜{\mathcal{A}}, if there exists a sequence S=S1,S2,,Sn=S′′S=S_{1},S_{2},\ldots,S_{n}=S^{\prime\prime} of Coxeter generating sets for WW such that Si+1S_{i+1} is a twist of SiS_{i} preserving 𝒜i{\mathcal{A}}_{i} for each i=1,,n1i=1,\ldots,n-1 where 𝒜1:=𝒜{\mathcal{A}}_{1}:={\mathcal{A}} and 𝒜i{\mathcal{A}}_{i} is the set of subsets of SiS_{i} induced by 𝒜i1{\mathcal{A}}_{i-1} and the twist for each i=2,,n1i=2,\ldots,n-1.

Definition 1.7.

Let (W,R)(W,R) and (W,S)(W,S) be Coxeter systems and let 𝒜{\mathcal{A}} and {\mathcal{B}} be separations of RR and SS respectively. We say that (W,R)(W,R) and (W,S)(W,S) are compatible on separations 𝒜{\mathcal{A}} and {\mathcal{B}}, if

  1. (i)

    each A𝒜A\in{\mathcal{A}} is conjugate to some unique BB\in{\mathcal{B}} and

  2. (ii)

    each BB\in{\mathcal{B}} is conjugate to some unique A𝒜A\in{\mathcal{A}}.

We define that two Coxeter systems (W,R)(W,R) and (W,S)(W,S) are some-separation-compatible, if (W,R)(W,R) and (W,S)(W,S) are compatible on some separations 𝒜{\mathcal{A}} and {\mathcal{B}} of RR and SS respectively.

Every spherical subset TT of SS is not separated by any spherical(-product) subset σ\sigma of SS. Hence TT is a twist-rigid subset of SS and TAT\subset A for some maximal twist-rigid subset AA of SS.

If two Coxeter systems are some-separation-compatible, then they are maximal-twist-rigid-subset-compatible and maximal-spherical-subset-compatible, hence they are angle-compatible.

We define and investigate type(I)-type(II)-compatible later.

In this paper, we study when are Coxeter generating sets conjugate up to finite twists under “the untangle-condition” on conjugate subsets.

Let (W,S)(W,S) be a Coxeter system. We define “untangle-conjugate”.

Definition 1.8.

For spherical subsets σ\sigma, τ\tau and TT of SS as στT\sigma\cup\tau\subset T, we denote σwTτ\displaystyle\sigma\mathop{\simeq}_{w_{T}}\tau, if wTσwT=τw_{T}\sigma w_{T}=\tau.

Let UU and UU^{\prime} be non-empty subsets of SS. They are uniquely denoted by U=UσUνU=U_{\sigma}\cup U_{\nu} and U=UσUνU^{\prime}=U^{\prime}_{\sigma}\cup U^{\prime}_{\nu}. For a spherical subset TT of SS as UσUσTU_{\sigma}\cup U^{\prime}_{\sigma}\subset T, we denote UwTU\displaystyle U\mathop{\simeq}_{w_{T}}U^{\prime}, if wTUσwT=Uσw_{T}U_{\sigma}w_{T}=U^{\prime}_{\sigma}, Uν=UνU_{\nu}=U^{\prime}_{\nu} and st=tsst=ts for any sUνs\in U_{\nu} and tTt\in T.

Here if UwTU\displaystyle U\mathop{\simeq}_{w_{T}}U^{\prime}, then UU and UU^{\prime} are conjugate and

wTUwT\displaystyle w_{T}Uw_{T} =wT(UσUν)wT=(wTUσwT)(wTUνwT)\displaystyle=w_{T}(U_{\sigma}\cup U_{\nu})w_{T}=(w_{T}U_{\sigma}w_{T})\cup(w_{T}U_{\nu}w_{T})
=UσUν=U.\displaystyle=U^{\prime}_{\sigma}\cup U_{\nu}=U^{\prime}.

Also if

U=U1wT1U2wT2wTq1Uq=U,\displaystyle U=U_{1}\mathop{\simeq}_{\,\,w_{T_{1}}}U_{2}\mathop{\simeq}_{\,\,w_{T_{2}}}\cdots{}\mathop{\simeq}_{\ \ w_{T_{q-1}}}U_{q}=U^{\prime},

then UU and UU^{\prime} are conjugate and for w:=wTq1wT2wT1w:=w_{T_{q-1}}\cdots w_{T_{2}}w_{T_{1}},

wUw1\displaystyle wUw^{-1} =wTq1wT2wT1U1wT1wT2wTq1\displaystyle=w_{T_{q-1}}\cdots w_{T_{2}}w_{T_{1}}U_{1}w_{T_{1}}w_{T_{2}}\cdots w_{T_{q-1}}
=wTq1wT2U2wT2wTq1\displaystyle=w_{T_{q-1}}\cdots w_{T_{2}}U_{2}w_{T_{2}}\cdots w_{T_{q-1}}
=\displaystyle=\cdots
=wTq1Uq1wTq1\displaystyle=w_{T_{q-1}}U_{q-1}w_{T_{q-1}}
=Uq=U.\displaystyle=U_{q}=U^{\prime}.

We say that conjugate subsets UU and UU^{\prime} of SS are untangle, if the following statements (1) and (2) hold:

  1. (1)

    In the case that UUU\neq U^{\prime}, there exist a sequence U1,,UqU_{1},\cdots,U_{q} of subsets of SS and a sequence T1,,Tq1T_{1},\cdots,T_{q-1} of spherical subsets of SS such that

    U=U1wT1U2wT2wTq1Uq=U.\displaystyle U=U_{1}\mathop{\simeq}_{\,\,w_{T_{1}}}U_{2}\mathop{\simeq}_{\,\,w_{T_{2}}}\cdots{}\mathop{\simeq}_{\ \ w_{T_{q-1}}}U_{q}=U^{\prime}.
  2. (2)

    In the case that U=UU=U^{\prime}, for wWw\in W as wUw1=UwUw^{-1}=U, we define the bijective map fw:UUf_{w}:U\to U by fw(a)=waw1f_{w}(a)=waw^{-1} for any aUa\in U. For any wWw\in W as wUw1=UwUw^{-1}=U, fw=f1=idUf_{w}=f_{1}={\rm id}_{U} for 1W1\in W, or, there exist a sequence U1,,UqU_{1},\cdots,U_{q} of subsets of SS and a sequence T1,,Tq1T_{1},\cdots,T_{q-1} of spherical subsets of SS such that

    U=U1wT1U2wT2wTq1Uq=U\displaystyle U=U_{1}\mathop{\simeq}_{\,\,w_{T_{1}}}U_{2}\mathop{\simeq}_{\,\,w_{T_{2}}}\cdots{}\mathop{\simeq}_{\ \ w_{T_{q-1}}}U_{q}=U

    and fw=fw0f_{w}=f_{w_{0}} for w0:=wTq1wT2wT1w_{0}:=w_{T_{q-1}}\cdots w_{T_{2}}w_{T_{1}}.

Now we define “the untangle-conjugate-condition” and “the untangle-condition”.

Definition 1.9.

We say that a Coxeter system (W,S)(W,S) has the untangle-conjugate-condition, if all conjugate subsets UU and UU^{\prime} of SS are untangle and the following holds:

  1. (*)

    Let RR be a Coxeter generating set for WW, let S1,,SnS_{1},\ldots,S_{n} be the connected components of SS and let R1,,RnR_{1},\ldots,R_{n} be the connected components of RR (that is, W=WS1WSn=WR1WRnW=W_{S_{1}}*\cdots*W_{S_{n}}=W_{R_{1}}*\cdots*W_{R_{n}}). If SiS_{i} and RiR_{i} are conjugate in WW for any i=1,,ni=1,\ldots,n, then there exists a Coxeter generating set RR^{\prime} for WW such that RR^{\prime} is obtained from RR by some finite twists and SS and RR^{\prime} are conjugate.

Also we say that a Coxeter system (W,S)(W,S) has the untangle-condition, if all Coxeter systems obtained from (W,S)(W,S) by some finite twists have the untangle-conjugate-condition.

Example 1.10.

We consider a Coxeter system (W,S)(W,S) defined by Figure 1 (i) or (ii).

Refer to caption
Figure 1. Example 1.10

Here SS is the vertex set of the figure and o(ss)=1o(ss)=1 for any sSs\in S. If two vertices s,tSs,t\in S as sts\neq t do not span any edge in the figure then we define o(st)=o(st)=\infty. If two vertices s,tSs,t\in S as sts\neq t span an edge numbering mm then define o(st)=mo(st)=m.

Let σ=σ1:={a1,b1}\sigma=\sigma_{1}:=\{a_{1},b_{1}\}, σ2:={a2,b1}\sigma_{2}:=\{a_{2},b_{1}\}, σ3:={a2,b2}\sigma_{3}:=\{a_{2},b_{2}\}, σ4:={a2,b3}\sigma_{4}:=\{a_{2},b_{3}\} and τ=σ5:={a3,b3}\tau=\sigma_{5}:=\{a_{3},b_{3}\}. Also let T1:={a1,a2,b1}T_{1}:=\{a_{1},a_{2},b_{1}\}, T2:={a2,b1,b2}T_{2}:=\{a_{2},b_{1},b_{2}\}, T3:={a2,b2,b3}T_{3}:=\{a_{2},b_{2},b_{3}\} and T4:={a2,a3,b3}T_{4}:=\{a_{2},a_{3},b_{3}\}.

Then σ\sigma and τ\tau are untangle-conjugate and

σ=σ1wT1σ2wT2σ3wT3σ4wT4σ5=τ\displaystyle\sigma=\sigma_{1}\mathop{\simeq}_{\,\,w_{T_{1}}}\sigma_{2}\mathop{\simeq}_{\,\,w_{T_{2}}}\sigma_{3}\mathop{\simeq}_{\,\,w_{T_{3}}}\sigma_{4}\mathop{\simeq}_{\,\,w_{T_{4}}}\sigma_{5}=\tau

in both cases (i) and (ii).

In the case (ii), for T0:=σ={a1,b1}T_{0}:=\sigma=\{a_{1},b_{1}\},

σwT0σ.\displaystyle\sigma\mathop{\simeq}_{\,\,w_{T_{0}}}\sigma.

Then wT0σwT0=σw_{T_{0}}\sigma w_{T_{0}}=\sigma. Here wT0a1wT0=b1w_{T_{0}}a_{1}w_{T_{0}}=b_{1} and wT0b1wT0=a1w_{T_{0}}b_{1}w_{T_{0}}=a_{1}. Hence fwT0:σσf_{w_{T_{0}}}:\sigma\to\sigma is the bijective map such that fwT0(a1)=b1f_{w_{T_{0}}}(a_{1})=b_{1} and fwT0(b1)=a1f_{w_{T_{0}}}(b_{1})=a_{1}.

We can see [3] and [8] on conjugate spherical subsets.

Example 1.11.

We consider a Coxeter system (W,S)(W,S) defined by Figure 2.

Refer to caption
Figure 2. Example 1.11

Here we identify a1=b5a_{1}=b_{5} and b1=a5b_{1}=a_{5}. (The nerve of (W,S)(W,S) is a triangulation of the Möbius band.)

Let σ=σ1:={a1,b1}={b5,a5}\sigma=\sigma_{1}:=\{a_{1},b_{1}\}=\{b_{5},a_{5}\}, σ2:={a2,b1}\sigma_{2}:=\{a_{2},b_{1}\}, σ3:={a2,b2}\sigma_{3}:=\{a_{2},b_{2}\}, σ4:={a3,b2}\sigma_{4}:=\{a_{3},b_{2}\}, σ5:={a3,b3}\sigma_{5}:=\{a_{3},b_{3}\}, σ6:={a4,b3}\sigma_{6}:=\{a_{4},b_{3}\}, σ7:={a4,b4}\sigma_{7}:=\{a_{4},b_{4}\} and σ8:={a5,b4}\sigma_{8}:=\{a_{5},b_{4}\}. Also let T1:={a1,a2,b1}T_{1}:=\{a_{1},a_{2},b_{1}\}, T2:={a2,b1,b2}T_{2}:=\{a_{2},b_{1},b_{2}\}, T3:={a2,a3,b2}T_{3}:=\{a_{2},a_{3},b_{2}\}, T4:={a3,b2,b3}T_{4}:=\{a_{3},b_{2},b_{3}\}, T5:={a3,a4,b3}T_{5}:=\{a_{3},a_{4},b_{3}\}, T6:={a4,b3,b4}T_{6}:=\{a_{4},b_{3},b_{4}\}, T7:={a4,a5,b4}T_{7}:=\{a_{4},a_{5},b_{4}\} and T8:={a5,b4,b5}T_{8}:=\{a_{5},b_{4},b_{5}\}.

Then

σ=σ1wT1σ2wT2σ3wT3σ4wT4σ5wT5σ6wT6σ7wT7σ8wT8σ1=σ.\displaystyle\sigma=\sigma_{1}\mathop{\simeq}_{\,\,w_{T_{1}}}\sigma_{2}\mathop{\simeq}_{\,\,w_{T_{2}}}\sigma_{3}\mathop{\simeq}_{\,\,w_{T_{3}}}\sigma_{4}\mathop{\simeq}_{\,\,w_{T_{4}}}\sigma_{5}\mathop{\simeq}_{\,\,w_{T_{5}}}\sigma_{6}\mathop{\simeq}_{\,\,w_{T_{6}}}\sigma_{7}\mathop{\simeq}_{\,\,w_{T_{7}}}\sigma_{8}\mathop{\simeq}_{\,\,w_{T_{8}}}\sigma_{1}=\sigma.

For w0:=wT8wT7wT6wT5wT4wT3wT2wT1w_{0}:=w_{T_{8}}w_{T_{7}}w_{T_{6}}w_{T_{5}}w_{T_{4}}w_{T_{3}}w_{T_{2}}w_{T_{1}}, we have that w0σw01=σw_{0}\sigma w_{0}^{-1}=\sigma. Here w0a1w01=b1w_{0}a_{1}w_{0}^{-1}=b_{1} and w0b1w01=a1w_{0}b_{1}w_{0}^{-1}=a_{1}.

For example, if w=1w=1, w=a1w=a_{1}, w=b1w=b_{1}, w=wσ=a1b1w=w_{\sigma}=a_{1}b_{1}, w=w0w=w_{0}, w=w02w=w_{0}^{2}, or w=a1w0a1b1w0w=a_{1}w_{0}a_{1}b_{1}w_{0}, then wσw1=σw\sigma w^{-1}=\sigma.

For any wWw\in W as wσw1=σw\sigma w^{-1}=\sigma, if [ wa1w1=a1wa_{1}w^{-1}=a_{1} and wb1w1=b1wb_{1}w^{-1}=b_{1} ] then fw=f1f_{w}=f_{1} for 1W1\in W. Also if [ wa1w1=b1wa_{1}w^{-1}=b_{1} and wb1w1=a1wb_{1}w^{-1}=a_{1} ] then fw=fw0f_{w}=f_{w_{0}} as above.

The author does not know whether there is an example of non-untangle-conjugate subsets of a Coxeter generating set.

After some preliminaries in Sections 2 and 3, we prove the following theorem in Section 4.

Theorem 1.12.

Let (W,R)(W,R) and (W,S)(W,S) be Coxeter systems with the untangle-condition. If (W,R)(W,R) and (W,S)(W,S) are some-separation-compatible, then RR and SS are conjugate up to finite twists.

We obtain a corollary from Theorem 1.12.

Corollary 1.13.

For Coxeter systems (W,R)(W,R) and (W,S)(W,S) with the untangle-condition, the following statements are equivalent::

  1. (i)

    RR and SS are conjugate up to finite twists.

  2. (ii)

    (W,R0)(W,R_{0}) and (W,S)(W,S) are some-separation-compatible for some Coxeter generating set R0R_{0} obtained from RR by finite twists.

Now we define “type(I)” and “type(II)” subsets and “the standard-separation” of a Coxeter generating set.

Definition 1.14.

Let (W,S)(W,S) be a Coxeter system. For each minimal separation 𝒜{\mathcal{A}} of SS, we define 𝒰𝒜{\mathcal{U}}_{\mathcal{A}} as the set of separators of 𝒜{\mathcal{A}}. Let

𝒰¯:={𝒰𝒜:𝒜 is a minimal separation of S}.\overline{\mathcal{U}}:=\bigcap\{{\mathcal{U}}_{\mathcal{A}}:\text{${\mathcal{A}}$ is a minimal separation of $S$}\}.

Then we define the separation 𝒜~S\widetilde{\mathcal{A}}_{S} of SS by 𝒰¯\overline{\mathcal{U}} as follows.

Let 𝒜0{\mathcal{A}}_{0} be the set of maximal twist-rigid subsets of SS. For A,A𝒜0A,A^{\prime}\in{\mathcal{A}}_{0}, we denote AAA\sim A^{\prime} if any U𝒰¯U\in\overline{\mathcal{U}} does not separate AA and AA^{\prime}; that is, there exist a minimal separation 𝒜{\mathcal{A}} of SS and an element A¯𝒜\overline{A}\in{\mathcal{A}} such that AAA¯A\cup A^{\prime}\subset\overline{A}. Then “\sim” is an equivalence relation on the set 𝒜0{\mathcal{A}}_{0}. Let [A]:={A𝒜0:AA}[A]:=\{A^{\prime}\in{\mathcal{A}}_{0}:A^{\prime}\sim A\} that is the equivalence class for A𝒜0A\in{\mathcal{A}}_{0}. Here

𝒜0/={[A]:A𝒜0}={[A1],,[An]}{\mathcal{A}}_{0}/\!\!\sim\;=\{[A]:A\in{\mathcal{A}}_{0}\}=\{[A_{1}],\ldots,[A_{n}]\}

for some A1,,An𝒜0A_{1},\ldots,A_{n}\in{\mathcal{A}}_{0} as [Ai][Aj][A_{i}]\neq[A_{j}] if iji\neq j. Let

A¯i:=[Ai]={A𝒜0:AAi}\overline{A}_{i}:=\bigcup[A_{i}]=\bigcup\{A\in{\mathcal{A}}_{0}:A\sim A_{i}\}

for each i=1,,ni=1,\ldots,n. Then we define

𝒜~S:={A¯1,,A¯n}.\widetilde{\mathcal{A}}_{S}:=\{\overline{A}_{1},\ldots,\overline{A}_{n}\}.

In Section 5, we show that 𝒜~S\widetilde{\mathcal{A}}_{S} is a separation of SS. We say that 𝒜~S\widetilde{\mathcal{A}}_{S} is the standard separation of SS.

A subset AA of SS is said to be type(I), if A𝒜A\in{\mathcal{A}} holds for any minimal separation 𝒜{\mathcal{A}} of SS. Let 𝒜~S(I)\widetilde{\mathcal{A}}_{S}^{\rm(I)} be the set of type(I) subsets of SS; that is,

𝒜~S(I)={A𝒜~S:A𝒜for any minimal separation 𝒜 of S}.\widetilde{\mathcal{A}}_{S}^{\rm(I)}=\{A\in\widetilde{\mathcal{A}}_{S}:A\in{\mathcal{A}}\ \text{for any minimal separation ${\mathcal{A}}$ of $S$}\}.

We also define

𝒜~S(II):=𝒜~S𝒜~S(I)\widetilde{\mathcal{A}}_{S}^{\rm(II)}:=\widetilde{\mathcal{A}}_{S}-\widetilde{\mathcal{A}}_{S}^{\rm(I)}

and every element A𝒜~S(II)A\in\widetilde{\mathcal{A}}_{S}^{\rm(II)} is called a type(II) subset of SS.

Then 𝒜~S=𝒜~S(I)𝒜~S(II)\widetilde{\mathcal{A}}_{S}=\widetilde{\mathcal{A}}_{S}^{\rm(I)}\cup\widetilde{\mathcal{A}}_{S}^{\rm(II)} is a disjoint union. Here 𝒜~S\widetilde{\mathcal{A}}_{S}, 𝒜~S(I)\widetilde{\mathcal{A}}_{S}^{\rm(I)} and 𝒜~S(II)\widetilde{\mathcal{A}}_{S}^{\rm(II)} are uniquely determined by the Coxeter system (W,S)(W,S).

Let (W,S)(W,S) be a Coxeter system. We say that for a subset AA of SS, AA^{\prime} is a twist of AA that induces some twist of SS, if there exist a spherical-product subset UU of SS and wWw\in W such that UAU\subset A, UU separates AA, AA^{\prime} is a twist of AA obtained by UU and ww, UU separates SS and some twist SS^{\prime} of SS is obtained by UU and ww. We also say that A′′A^{\prime\prime} is obtained from AA by some finite twists that induces some twist of SS, if there exist a sequence A=A1,A2,,An=A′′A=A_{1},A_{2},\ldots,A_{n}=A^{\prime\prime} and a sequence S=S1,S2,,Sn=S′′S=S_{1},S_{2},\ldots,S_{n}=S^{\prime\prime} of Coxeter generating sets for WW such that AiSiA_{i}\subset S_{i} for any i=1,,ni=1,\ldots,n and Ai+1A_{i+1} is a twist of AiA_{i} that induces a twist Si+1S_{i+1} of SiS_{i} for each i=1,,n1i=1,\ldots,n-1.

We define “type(II)-compatible”.

Definition 1.15.

Let (W,R)(W,R) and (W,S)(W,S) be Coxeter systems. We say that A𝒜~R(II)A\in\widetilde{\mathcal{A}}_{R}^{\rm(II)} and B𝒜~S(II)B\in\widetilde{\mathcal{A}}_{S}^{\rm(II)} are type(II)-compatible, if

  1.  

    there exists A0A_{0} obtained from AA by some finite twists that induce some twists of RR preserving 𝒜~R{A}\widetilde{\mathcal{A}}_{R}-\{A\} such that A0A_{0} and BB are conjugate in WW.

This means that the type(II) subsets A𝒜~R(II)A\in\widetilde{\mathcal{A}}_{R}^{\rm(II)} and B𝒜~S(II)B\in\widetilde{\mathcal{A}}_{S}^{\rm(II)} are conjugate up to finite twists that induce some twists of RR preserving 𝒜~R{A}\widetilde{\mathcal{A}}_{R}-\{A\}.

Now we define “type(I)-type(II)-compatible”.

Definition 1.16.

Two Coxeter systems (W,R)(W,R) and (W,S)(W,S) are said to be type(I)-type(II)-compatible, if for the standard separations 𝒜~R\widetilde{\mathcal{A}}_{R} and 𝒜~S\widetilde{\mathcal{A}}_{S} of RR and SS respectively,

  1. (i)

    each A𝒜~R(I)A\in\widetilde{\mathcal{A}}_{R}^{\rm(I)} is conjugate to some unique B𝒜~S(I)B\in\widetilde{\mathcal{A}}_{S}^{\rm(I)},

  2. (ii)

    each B𝒜~S(I)B\in\widetilde{\mathcal{A}}_{S}^{\rm(I)} is conjugate to some unique A𝒜~R(I)A\in\widetilde{\mathcal{A}}_{R}^{\rm(I)},

  3. (iii)

    for each A𝒜~R(II)A\in\widetilde{\mathcal{A}}_{R}^{\rm(II)}, there exists a unique B𝒜~S(II)B\in\widetilde{\mathcal{A}}_{S}^{\rm(II)} such that AA and BB are type(II)-compatible, and

  4. (iv)

    for each B𝒜~S(II)B\in\widetilde{\mathcal{A}}_{S}^{\rm(II)}, there exists a unique A𝒜~R(II)A\in\widetilde{\mathcal{A}}_{R}^{\rm(II)} such that BB and AA are type(II)-compatible.

In Section 6, we show that if two Coxeter systems with the untangle-condition are type(I)-type(II)-compatible, then they are some-separation-compatible up to finite twists. Thus, if two Coxeter systems (W,R)(W,R) and (W,S)(W,S) with the untangle-condition are type(I)-type(II)-compatible, then RR and SS are conjugate up to finite twists by Theorem 1.12.

We show the following theorem in Section 6.

Theorem 1.17.

For Coxeter systems (W,R)(W,R) and (W,S)(W,S) with the untangle-condition, the following two statements are equivalent::

  1. (i)

    RR and SS are conjugate up to finite twists.

  2. (ii)

    (W,R)(W,R) and (W,S)(W,S) are type(I)-type(II)-compatible.

For given Coxeter systems (W,R)(W,R) and (W,S)(W,S), it seems that to consider whether

  1. (a)

    (W,R)(W,R) and (W,S)(W,S) are type(I)-type(II)-compatible

is more simple than to consider whether

  1. (b)

    (W,R0)(W,R_{0}) and (W,S)(W,S) are some-separation-compatible for some Coxeter generating set R0R_{0} obtained from RR by finite twists.

In Theorem 1.17, we use two conditions as “the untangle-condition” and “type(I)-type(II)-compatible” for Coxeter systems.

Problem 1.18.

The untangle-conjugate-condition will always hold for all Coxeter systems (W,S)(W,S)?

Problem 1.19.

Angle-compatible Coxeter systems (W,R)(W,R) and (W,S)(W,S) will be always type(I)-type(II)-compatible?

If there exist counter-examples of angle-compatible Coxeter systems (W,R)(W,R) and (W,S)(W,S) such that any R0R_{0} and S0S_{0} obtained from RR and SS by some finite twists respectively are not type(I)-type(II)-compatible, or a Coxeter system (W,S)(W,S) that does not have the untangle-conjugate-condition, then they are meaningful examples.

If Problems 1.18 and 1.19 both can be solved affirmatively, then the twist-conjecture for Coxeter systems can be solved affirmatively from Theorem 1.17. Also if Problem 1.3 can be solved from the twist-conjecture for Coxeter systems affirmatively, then the isomorphism problem for Coxeter groups of finite ranks can be solved by Theorem 1.2.

2. Remarks and examples on separations

We introduce some remarks and examples on separations of Coxeter generating sets.

Remark 2.1.

Let (W,S)(W,S) be a Coxeter system as SS is connected. Let 𝒜{\mathcal{A}} be a separation of SS and let n:=|𝒜|n:=|{\mathcal{A}}|. Then we may denote 𝒜={A1,A2,,An}{\mathcal{A}}=\{A_{1},A_{2},\ldots,A_{n}\} such that for each i=1,,n1i=1,\ldots,n-1, Ui:=(A1Ai)Ai+1U_{i}:=(A_{1}\cup\cdots\cup A_{i})\cap A_{i+1} is maximal in

{(A1Ai)Aj:j=i+1,,n}.\{(A_{1}\cup\cdots\cup A_{i})\cap A_{j}:j=i+1,\ldots,n\}.

Here by the definition of a separation of SS, UiU_{i} is a separator of 𝒜{\mathcal{A}} and it is a spherical-product subset of SS that separates SS for any i=1,,n1i=1,\ldots,n-1. Hence WW has a structure as

W=(((WA1WU1WA2)WU2WA3)WU3)WUn1WAn.W=(\cdots((W_{A_{1}}*_{W_{U_{1}}}W_{A_{2}})*_{W_{U_{2}}}W_{A_{3}})*_{W_{U_{3}}}\cdots)*_{W_{U_{n-1}}}W_{A_{n}}.
Remark 2.2.

Let (W,S)(W,S) be a Coxeter system as SS is connected and let UU be a spherical-product subset of SS that separates SS. Let 𝒜0{\mathcal{A}}_{0} be the set of maximal twist-rigid subsets of SS. Suppose that X1,,XtX_{1},\ldots,X_{t} are the connected components of SUS-U and SU=X1XtS-U=X_{1}\cup\cdots\cup X_{t} is a disjoint union. Let

X¯i:={A𝒜0:AXiUandAU}\displaystyle\overline{X}_{i}:=\bigcup\{A\in{\mathcal{A}}_{0}:A\subset X_{i}\cup U\ \text{and}\ A\not\subset U\}
for each i=1,,ti=1,\ldots,t and let
Y¯:={A𝒜0:AU}.\displaystyle\overline{Y}:=\bigcup\{A\in{\mathcal{A}}_{0}:A\subset U\}.

Here each X¯i\overline{X}_{i} (and Y¯\overline{Y}) is connected and it is a union of some maximal twist-rigid subsets of SS (if Y¯\overline{Y} is non-empty). Let 𝒜:={X¯1,,X¯t,Y¯}{\mathcal{A}}:=\{\overline{X}_{1},\ldots,\overline{X}_{t},\overline{Y}\} if Y¯\overline{Y} is non-empty, and let 𝒜:={X¯1,,X¯t}{\mathcal{A}}:=\{\overline{X}_{1},\ldots,\overline{X}_{t}\} if Y¯\overline{Y} is empty. Then 𝒜{\mathcal{A}} is a separation of SS. We say that 𝒜{\mathcal{A}} is the induced separation of SS by UU.

Let 𝒜{\mathcal{A}}^{\prime} be a minimal separation of SS such that 𝒜𝒜{\mathcal{A}}^{\prime}\preceq{\mathcal{A}}. Then UU does not separate any A𝒜A\in{\mathcal{A}}^{\prime}. Thus we can obtain a minimal separation 𝒜{\mathcal{A}}^{\prime} of SS from a spherical-product subset UU of SS that separates SS such that UU does not separate any A𝒜A\in{\mathcal{A}}^{\prime}.

Let {Uj}\{U_{j}\} be the set of spherical-product subsets of SS that separate SS. By the above argument, we obtain the separation 𝒜j{\mathcal{A}}_{j} of SS induced by each UjU_{j}. If {Uj}\{U_{j}\} is non-empty (that is, if (W,S)(W,S) is not a twist-rigid Coxeter system), then for any minimal separation 𝒜{\mathcal{A}}^{\prime} of SS, 𝒜𝒜j{\mathcal{A}}^{\prime}\preceq{\mathcal{A}}_{j} for some jj. Hence, from considering the set {Uj}\{U_{j}\} of spherical-product subsets that separate SS and the induced separations 𝒜j{\mathcal{A}}_{j}, we can obtain all minimal separations of SS.

We give some examples.

Example 2.3.

We consider Coxeter systems (Wi,Si)(W_{i},S_{i}) (i=1,2,3,4i=1,2,3,4) defined by Figure 3.

Refer to caption
Figure 3. Example 2.3

Here S1S_{1}, S2S_{2}, S3S_{3} and S4S_{4} are the vertex sets of the figures (1)(1), (2)(2), (3)(3) and (4)(4) respectively in Figure 3. Let i{1,2,3,4}i\in\{1,2,3,4\}. We define o(ss)=1o(ss)=1 for any sSis\in S_{i}. If two vertices s,tSis,t\in S_{i} as sts\neq t do not span any edge in the figure then we define o(st)=o(st)=\infty. If two vertices s,tSis,t\in S_{i} as sts\neq t span an edge then we consider that o(st)=o(ts)o(st)=o(ts) has some (arbitrary) finite number at least 22. Then a Coxeter system (Wi,Si)(W_{i},S_{i}) is obtained.

(1) Let U:={a1,a2}U:=\{a_{1},a_{2}\}, X1:={x1,x2}X_{1}:=\{x_{1},x_{2}\} and X2:={y1,y2}X_{2}:=\{y_{1},y_{2}\} in (W1,S1)(W_{1},S_{1}). Then UU is a spherical-product subset of S1S_{1} that separates S1S_{1} and S1U=X1X2S_{1}-U=X_{1}\cup X_{2} where X1X_{1} and X2X_{2} are the connected components of S1US_{1}-U. Then X¯1={x1,x2,a1,a2}\overline{X}_{1}=\{x_{1},x_{2},a_{1},a_{2}\} and X¯2={y1,y2,a1,a2}\overline{X}_{2}=\{y_{1},y_{2},a_{1},a_{2}\}. Here 𝒜:={X¯1,X¯2}{\mathcal{A}}:=\{\overline{X}_{1},\overline{X}_{2}\} is the separation of S1S_{1} induced by UU, and UU is a separator of 𝒜{\mathcal{A}}.

(2) Let U:={a1,a2}U:=\{a_{1},a_{2}\}, X1:={x1,x2}X_{1}:=\{x_{1},x_{2}\} and X2:={y1,y2,y3}X_{2}:=\{y_{1},y_{2},y_{3}\} in (W2,S2)(W_{2},S_{2}). Then UU is a spherical-product subset of S2S_{2} that separates S2S_{2} and S2U=X1X2S_{2}-U=X_{1}\cup X_{2} where X1X_{1} and X2X_{2} are the connected components of S2US_{2}-U. Then X¯1={x1,x2,a1,a2}\overline{X}_{1}=\{x_{1},x_{2},a_{1},a_{2}\} and X¯2={y1,y2,y3,a1}\overline{X}_{2}=\{y_{1},y_{2},y_{3},a_{1}\}. Here 𝒜:={X¯1,X¯2}{\mathcal{A}}:=\{\overline{X}_{1},\overline{X}_{2}\} is the separation of S2S_{2} induced by UU, and U:={a1}U^{\prime}:=\{a_{1}\} is a separator of 𝒜{\mathcal{A}} (here U={a1,a2}U=\{a_{1},a_{2}\} is not a separator of 𝒜{\mathcal{A}}).

(3) Let U:={a1}U:=\{a_{1}\}, X1:={x}X_{1}:=\{x\}, X2:={y}X_{2}:=\{y\} and X3:={z}X_{3}:=\{z\} in (W3,S3)(W_{3},S_{3}). Then UU is a spherical-product subset of S3S_{3} that separates S3S_{3} and S3U=X1X2X3S_{3}-U=X_{1}\cup X_{2}\cup X_{3} where X1X_{1}, X2X_{2} and X3X_{3} are the connected components of S3US_{3}-U. Then X¯1={x,a1}\overline{X}_{1}=\{x,a_{1}\}, X¯2={y,a1}\overline{X}_{2}=\{y,a_{1}\} and X¯3={z,a1}\overline{X}_{3}=\{z,a_{1}\}. Here 𝒜:={X¯1,X¯2,X¯3}{\mathcal{A}}:=\{\overline{X}_{1},\overline{X}_{2},\overline{X}_{3}\} is the separation of S3S_{3} induced by UU, and UU is a separator of 𝒜{\mathcal{A}}.

(4) Let U:={a1,a2}U:=\{a_{1},a_{2}\}, X1:={x}X_{1}:=\{x\} and X2:={y}X_{2}:=\{y\} in (W4,S4)(W_{4},S_{4}). Then UU is a spherical-product subset of S4S_{4} that separates S4S_{4} and S4U=X1X2S_{4}-U=X_{1}\cup X_{2} where X1X_{1} and X2X_{2} are the connected components of S4US_{4}-U. Then X¯1={x,a1}\overline{X}_{1}=\{x,a_{1}\}, X¯2={y,a1}\overline{X}_{2}=\{y,a_{1}\} and Y¯={a1,a2}\overline{Y}=\{a_{1},a_{2}\}. Here 𝒜:={X¯1,X¯2,Y¯}{\mathcal{A}}:=\{\overline{X}_{1},\overline{X}_{2},\overline{Y}\} is the separation of S4S_{4} induced by UU, and U:={a1}U^{\prime}:=\{a_{1}\} is a separator of 𝒜{\mathcal{A}} (here U={a1,a2}U=\{a_{1},a_{2}\} is not a separator of 𝒜{\mathcal{A}}).

Example 2.4.

We consider a Coxeter system (W,S)(W,S) defined by Figure 4.

Refer to caption
Figure 4. Example 2.4

Here SS is the vertex set of the figure. Let o(ss)=1o(ss)=1 for any sSs\in S. If two vertices s,tSs,t\in S as sts\neq t do not span any edge in the figure then we define o(st)=o(st)=\infty. If two vertices s,tSs,t\in S as sts\neq t span an edge numbering 22 then define o(st)=2o(st)=2. Also if two vertices s,tSs,t\in S as sts\neq t span an edge with no numbering then we consider that o(st)=o(ts)o(st)=o(ts) has some (arbitrary) finite number at least 22. Then a Coxeter system (W,S)(W,S) is obtained.

Let AiA_{i} be the set of 44-vertices around “AiA_{i}” in the figure and let BiB_{i} be the set of 44-vertices around “BiB_{i}” in the figure for each i=1,2,3,4i=1,2,3,4.

  1. (a)

    The set of maximal twist-rigid subsets of SS is

    {A1,A2,A3,A4,B1,B2,B3,B4}.\{A_{1},\ A_{2},\ A_{3},\ A_{4},\ B_{1},\ B_{2},\ B_{3},\ B_{4}\}.

    Here

    D:={d1,d2,d3,d4,d5,d6,d7,d8}D:=\{d_{1},\,d_{2},\,d_{3},\,d_{4},\,d_{5},\,d_{6},\,d_{7},\,d_{8}\}

    is not a twist-rigid subset of SS. Indeed for example U:={d2,d0,d6}U:=\{d_{2},\,d_{0},\,d_{6}\} is a spherical-product subset of SS that separates SS and UD={d2,d6}U\cap D=\{d_{2},\,d_{6}\} separates DD. We also note that (WD,D)(W_{D},D) is a twist-rigid Coxeter system.

  2. (b)

    The minimal separations of SS are the 4-sets as

    1. (1)

      {A1,A2,A3,A4,B1B2,B3B4}\{A_{1},\ A_{2},\ A_{3},\ A_{4},\ B_{1}\cup B_{2},\ B_{3}\cup B_{4}\},

    2. (2)

      {A1,A2,A3,A4,B1B4,B2B3}\{A_{1},\ A_{2},\ A_{3},\ A_{4},\ B_{1}\cup B_{4},\ B_{2}\cup B_{3}\},

    3. (3)

      {A1,A2,A3,A4,B1B3,B2,B4}\{A_{1},\ A_{2},\ A_{3},\ A_{4},\ B_{1}\cup B_{3},\ B_{2},\ B_{4}\} and

    4. (4)

      {A1,A2,A3,A4,B1,B3,B2B4}\{A_{1},\ A_{2},\ A_{3},\ A_{4},\ B_{1},\ B_{3},\ B_{2}\cup B_{4}\}.

  3. (c)

    The set of type(I) subsets of SS is

    𝒜~S(I)={A1,A2,A3,A4}.\widetilde{\mathcal{A}}_{S}^{\rm(I)}=\{A_{1},\ A_{2},\ A_{3},\ A_{4}\}.
  4. (d)

    The set of type(II) subsets of SS is

    𝒜~S(II)={B1B2B3B4}.\widetilde{\mathcal{A}}_{S}^{\rm(II)}=\{B_{1}\cup B_{2}\cup B_{3}\cup B_{4}\}.
  5. (e)

    The standard separation of SS is

    𝒜~S\displaystyle\widetilde{\mathcal{A}}_{S} =𝒜~S(I)𝒜~S(II)\displaystyle=\widetilde{\mathcal{A}}_{S}^{\rm(I)}\cup\widetilde{\mathcal{A}}_{S}^{\rm(II)}
    ={A1,A2,A3,A4,B1B2B3B4}.\displaystyle=\{A_{1},\ A_{2},\ A_{3},\ A_{4},\ B_{1}\cup B_{2}\cup B_{3}\cup B_{4}\}.
Example 2.5.

We consider a Coxeter system (W,S)(W,S) defined by Figure 5.

Refer to caption
Figure 5. Example 2.5

Here SS is the vertex set of the figure and o(st)o(st) is defined as in Example 2.4.

Let AiA_{i} be the set of 44-vertices around “AiA_{i}” in the figure for each i=1,2,3,4,5,6,7,8i=1,2,3,4,5,6,7,8.

  1. (a)

    The set of maximal twist-rigid subsets of SS is

    {A1,A4,A5,A8,A2A6,A3A7}.\{A_{1},\ A_{4},\ A_{5},\ A_{8},\ A_{2}\cup A_{6},\ A_{3}\cup A_{7}\}.
  2. (b)

    The minimal separations of SS are the 9-sets as

    1. (1)

      {A1A5,A2A6,A3A7,A4A8}\{A_{1}\cup A_{5},\ A_{2}\cup A_{6},\ A_{3}\cup A_{7},\ A_{4}\cup A_{8}\},

    2. (2)

      {A1A5,A2A6,A3A7A8,A4}\{A_{1}\cup A_{5},\ A_{2}\cup A_{6},\ A_{3}\cup A_{7}\cup A_{8},\ A_{4}\},

    3. (3)

      {A1A5,A2A6,A3A4A7,A8}\{A_{1}\cup A_{5},\ A_{2}\cup A_{6},\ A_{3}\cup A_{4}\cup A_{7},\ A_{8}\},

    4. (4)

      {A1,A2A5A6,A3A7,A4A8}\{A_{1},\ A_{2}\cup A_{5}\cup A_{6},\ A_{3}\cup A_{7},\ A_{4}\cup A_{8}\},

    5. (5)

      {A1,A2A5A6,A3A7A8,A4}\{A_{1},\ A_{2}\cup A_{5}\cup A_{6},\ A_{3}\cup A_{7}\cup A_{8},\ A_{4}\},

    6. (6)

      {A1,A2A5A6,A3A4A7,A8}\{A_{1},\ A_{2}\cup A_{5}\cup A_{6},\ A_{3}\cup A_{4}\cup A_{7},\ A_{8}\},

    7. (7)

      {A1A2A6,A5,A3A7,A4A8}\{A_{1}\cup A_{2}\cup A_{6},\ A_{5},\ A_{3}\cup A_{7},\ A_{4}\cup A_{8}\},

    8. (8)

      {A1A2A6,A5,A3A7A8,A4}\{A_{1}\cup A_{2}\cup A_{6},\ A_{5},\ A_{3}\cup A_{7}\cup A_{8},\ A_{4}\} and

    9. (9)

      {A1A2A6,A5,A3A4A7,A8}\{A_{1}\cup A_{2}\cup A_{6},\ A_{5},\ A_{3}\cup A_{4}\cup A_{7},\ A_{8}\}.

  3. (c)

    The set 𝒜~S(I)\widetilde{\mathcal{A}}_{S}^{\rm(I)} of type(I) subsets of SS is empty.

  4. (d)

    The set of type(II) subsets of SS is

    𝒜~S(II)={B1,B2}\widetilde{\mathcal{A}}_{S}^{\rm(II)}=\{B_{1},\ B_{2}\}

    where B1:=A1A2A5A6B_{1}:=A_{1}\cup A_{2}\cup A_{5}\cup A_{6} and B2:=A3A4A7A8B_{2}:=A_{3}\cup A_{4}\cup A_{7}\cup A_{8}.

  5. (e)

    The standard separation of SS is

    𝒜~S={B1,B2}.\widetilde{\mathcal{A}}_{S}=\{B_{1},\ B_{2}\}.
Example 2.6.

We consider the Coxeter system (W,S)(W,S) defined by Figure 6. Here S:={a,b1,b2,b3,c}S:=\{a,\,b_{1},\,b_{2},\,b_{3},\,c\}.

Refer to caption
Figure 6. Example 2.6

Let A1:={a,b1,c}A_{1}:=\{a,\,b_{1},\,c\}, A2:={a,b2,c}A_{2}:=\{a,\,b_{2},\,c\}, A3:={a,b3,c}A_{3}:=\{a,\,b_{3},\,c\}, B1:={a,b1,b2,b3}B_{1}:=\{a,\,b_{1},\,b_{2},\,b_{3}\} and B2:={b1,b2,b3,c}B_{2}:=\{b_{1},\,b_{2},\,b_{3},\,c\}.

  1. (a)

    The set of maximal twist-rigid subsets of SS is

    {{a,b1},{a,b2},{a,b3},{b1,c},{b2,c},{b3,c}}.\{\,\{a,\,b_{1}\},\,\{a,\,b_{2}\},\,\{a,\,b_{3}\},\,\{b_{1},\,c\},\,\{b_{2},\,c\},\,\{b_{3},\,c\}\,\}.
  2. (b)

    The minimal separations of SS are the 2-sets as

    1. (1)

      {A1,A2,A3}\{A_{1},\ A_{2},\ A_{3}\} and

    2. (2)

      {B1,B2}\{B_{1},\ B_{2}\}.

  3. (c)

    The set 𝒜~S(I)\widetilde{\mathcal{A}}_{S}^{\rm(I)} of type(I) subsets of SS is empty.

  4. (d)

    The set of type(II) subsets of SS is 𝒜~S(II)={S}\widetilde{\mathcal{A}}_{S}^{\rm(II)}=\{S\}.

  5. (e)

    The standard separation of SS is 𝒜~S={S}\widetilde{\mathcal{A}}_{S}=\{S\}.

Example 2.7.

We consider a Coxeter system (W,S)(W,S) defined by Figure 7. Here SS is the vertex set of the figure; that is,

S:={a,b,c,d,e,f,g,h,i,j,k,l},S:=\{a,\,b,\,c,\,d,\,e,\,f,\,g,\,h,\,i,\,j,\,k,\,l\},

and we define o(ek)3o(ek)\geq 3.

Refer to caption
Figure 7. Example 2.7

Let

A1\displaystyle A_{1} :={a,b,d,e},\displaystyle:=\{a,\,b,\,d,\,e\},
A2\displaystyle A_{2} :={b,d,e,g,i,j,k,l},\displaystyle:=\{b,\,d,\,e,\,g,\,i,\,j,\,k,\,l\},
A3\displaystyle A_{3} :={d,e,f,g}and\displaystyle:=\{d,\,e,\,f,\,g\}\ \text{and}
A4\displaystyle A_{4} :={b,c,e,g,h}.\displaystyle:=\{b,\,c,\,e,\,g,\,h\}.

Then

𝒜:={A1,A2,A3,A4}{\mathcal{A}}:=\{A_{1},\ A_{2},\ A_{3},\ A_{4}\}

is a separation of SS. For example,

U1:=A1A2is maximal in{A1Aj:j=2,3,4},\displaystyle U_{1}:=A_{1}\cap A_{2}\ \text{is maximal in}\ \{A_{1}\cap A_{j}:j=2,3,4\},
U2:=(A1A2)A3is maximal in{(A1A2)Aj:j=3,4}and\displaystyle U_{2}:=(A_{1}\cup A_{2})\cap A_{3}\ \text{is maximal in}\ \{(A_{1}\cup A_{2})\cap A_{j}:j=3,4\}\ \text{and}
U3:=(A1A2A3)A4is maximal in{(A1A2A3)Aj:j=4}.\displaystyle U_{3}:=(A_{1}\cup A_{2}\cup A_{3})\cap A_{4}\ \text{is maximal in}\ \{(A_{1}\cup A_{2}\cup A_{3})\cap A_{j}:j=4\}.

Also U1U_{1}, U2U_{2} and U3U_{3} are separators of 𝒜{\mathcal{A}} and they are spherical-product subsets of SS that separate SS. Here we note that A1A3A_{1}\cap A_{3}, A1A4A_{1}\cap A_{4} and A3A4A_{3}\cap A_{4} are spherical-product subsets that do not separate SS.

The spherical-product subsets of SS that separate SS are the 3-sets as

U1={b,d,e},U2={d,e,g}andU3={b,e,g}.U_{1}=\{b,\,d,\,e\},\ U_{2}=\{d,\,e,\,g\}\ \text{and}\ U_{3}=\{b,\,e,\,g\}.

Each UiU_{i} induces the separation 𝒜i{\mathcal{A}}_{i} of SS as in Remark 2.2. Then for any minimal separation 𝒜{\mathcal{A}}^{\prime} of SS, 𝒜𝒜i{\mathcal{A}}^{\prime}\preceq{\mathcal{A}}_{i} for some i=1,2,3i=1,2,3. Here 𝒜𝒜i{\mathcal{A}}\preceq{\mathcal{A}}_{i} holds for any i=1,2,3i=1,2,3, where 𝒜={A1,A2,A3,A4}{\mathcal{A}}=\{A_{1},A_{2},A_{3},A_{4}\}. Hence 𝒜{\mathcal{A}} is the unique minimal separation of SS. Thus, there are no type(II) subsets of SS and

𝒜~S=𝒜~S(I)={A1,A2,A3,A4}.\widetilde{\mathcal{A}}_{S}=\widetilde{\mathcal{A}}_{S}^{\rm(I)}=\{A_{1},\ A_{2},\ A_{3},\ A_{4}\}.
Example 2.8.

We consider a Coxeter system (W,S)(W^{\prime},S^{\prime}) defined by Figure 8. Here SS^{\prime} is the vertex set of the figure; that is,

S:={a,b,c,d,e,f,g,h}.S^{\prime}:=\{a,\,b,\,c,\,d,\,e,\,f,\,g,\,h\}.
Refer to caption
Figure 8. Example 2.8

Then WW^{\prime} can be considered as a standard subgroup of (W,S)(W,S) in Example 2.7 generated by SS^{\prime}.

Let

A1\displaystyle A_{1} :={a,b,d,e},\displaystyle:=\{a,\,b,\,d,\,e\},
A3\displaystyle A_{3} :={d,e,f,g}and\displaystyle:=\{d,\,e,\,f,\,g\}\ \text{and}
A4\displaystyle A_{4} :={b,c,e,g,h}.\displaystyle:=\{b,\,c,\,e,\,g,\,h\}.

Then the spherical-product subsets of SS^{\prime} that separate SS^{\prime} are the 3-sets as

U1={b,d,e},U2={d,e,g}andU3={b,e,g}.U_{1}=\{b,\,d,\,e\},\ U_{2}=\{d,\,e,\,g\}\ \text{and}\ U_{3}=\{b,\,e,\,g\}.

Each UiU_{i} induces the separation 𝒜i{\mathcal{A}}^{\prime}_{i} of SS^{\prime} as in Remark 2.2. Then for any minimal separation 𝒜{\mathcal{A}}^{\prime} of SS^{\prime}, 𝒜𝒜i{\mathcal{A}}^{\prime}\preceq{\mathcal{A}}^{\prime}_{i} for some i=1,2,3i=1,2,3. Here we note that the set {A1,A3,A4}\{A_{1},A_{3},A_{4}\} is not a separation of SS^{\prime}. Then the minimal separations of SS^{\prime} are the 3-sets as

{A1A3,A4},\displaystyle\{A_{1}\cup A_{3},\ A_{4}\},
{A1,A3A4}and\displaystyle\{A_{1},\ A_{3}\cup A_{4}\}\ \text{and}
{A1A4,A3}.\displaystyle\{A_{1}\cup A_{4},\ A_{3}\}.

Hence, there are no type(I) subsets of SS^{\prime} and

𝒜~S=𝒜~S(II)={S}.\widetilde{\mathcal{A}}_{S^{\prime}}=\widetilde{\mathcal{A}}_{S^{\prime}}^{\rm(II)}=\{S^{\prime}\}.
Example 2.9.

We consider Coxeter systems (W,S)(W,S) and (W,S)(W,S^{\prime}) defined by Figure 9. Here SS and SS^{\prime} are the vertex sets of the corresponding figures and we define o(a1a2)=3o(a_{1}a_{2})=3.

Refer to caption
Figure 9. Example 2.9

Let σ:={a1,a2}\sigma:=\{a_{1},a_{2}\}, U:={a1,a2,a3,a4}U:=\{a_{1},a_{2},a_{3},a_{4}\}, X:={x1,x2,x3}X:=\{x_{1},x_{2},x_{3}\}, Y:={y1,y2,y3}Y:=\{y_{1},y_{2},y_{3}\} and Y:={y1,y2,y3}Y^{\prime}:=\{y^{\prime}_{1},y^{\prime}_{2},y^{\prime}_{3}\}. Here Uσ=σU_{\sigma}=\sigma, Uν={a3,a4}U_{\nu}=\{a_{3},a_{4}\} and wσU=wσ=Uw_{\sigma}U=w_{\sigma}=U. Then S=XUwσYwσS^{\prime}=X\cup U\cup w_{\sigma}Yw_{\sigma} is a twist of SS by UU and wσw_{\sigma} (where yi=wσyiwσy^{\prime}_{i}=w_{\sigma}y_{i}w_{\sigma} for i=1,2,3,4i=1,2,3,4).

In (W,S)(W,S), let AiA_{i} be the set of 44-vertices around “AiA_{i}” in the figure for each i=1,2,3,4i=1,2,3,4. Then the minimal separations of SS are the 9-sets as

  1. (1)

    {U,A1A2,A3A4}\{U,\ A_{1}\cup A_{2},\ A_{3}\cup A_{4}\},

  2. (2)

    {U,A1,A4,A2A3}\{U,\ A_{1},\ A_{4},\ A_{2}\cup A_{3}\},

  3. (3)

    {U,A1A4,A2,A3}\{U,\ A_{1}\cup A_{4},\ A_{2},\ A_{3}\},

  4. (4)

    {UA1,A2,A3A4}\{U\cup A_{1},\ A_{2},\ A_{3}\cup A_{4}\},

  5. (5)

    {UA2,A1,A3A4}\{U\cup A_{2},\ A_{1},\ A_{3}\cup A_{4}\},

  6. (6)

    {A1A2,UA3,A4}\{A_{1}\cup A_{2},\ U\cup A_{3},\ A_{4}\},

  7. (7)

    {A1A2,UA4,A3}\{A_{1}\cup A_{2},\ U\cup A_{4},\ A_{3}\},

  8. (8)

    {UA1A3,A2,A4}\{U\cup A_{1}\cup A_{3},\ A_{2},\ A_{4}\} and

  9. (9)

    {UA2A4,A1,A3}\{U\cup A_{2}\cup A_{4},\ A_{1},\ A_{3}\}.

The Coxeter system (W,S)(W,S^{\prime}) is denoted by Figure 10.

Refer to caption
Figure 10. The Coxeter system (W,S)(W,S^{\prime})

In (W,S)(W,S^{\prime}), let AiA_{i} and BiB_{i} be the sets of 44-vertices around “AiA_{i}” and “BiB_{i}” in the figure for each i=1,2i=1,2 respectively. Then the minimal separations of SS are the 9-sets as

  1. (1)

    {A1A2,U,B1B2}\{A_{1}\cup A_{2},\ U,\ B_{1}\cup B_{2}\},

  2. (2)

    {A1A2,UB1,B2}\{A_{1}\cup A_{2},\ U\cup B_{1},\ B_{2}\},

  3. (3)

    {A1A2,UB2,B1}\{A_{1}\cup A_{2},\ U\cup B_{2},\ B_{1}\},

  4. (4)

    {A1,A2U,B1B2}\{A_{1},\ A_{2}\cup U,\ B_{1}\cup B_{2}\},

  5. (5)

    {A1,A2UB1,B2}\{A_{1},\ A_{2}\cup U\cup B_{1},\ B_{2}\},

  6. (6)

    {A1,A2UB2,B1}\{A_{1},\ A_{2}\cup U\cup B_{2},\ B_{1}\},

  7. (7)

    {A2,A1U,B1B2}\{A_{2},\ A_{1}\cup U,\ B_{1}\cup B_{2}\},

  8. (8)

    {A2,A1UB1,B2}\{A_{2},\ A_{1}\cup U\cup B_{1},\ B_{2}\} and

  9. (9)

    {A2,A1UB2,B1}\{A_{2},\ A_{1}\cup U\cup B_{2},\ B_{1}\}.

Here UU is a spherical-product subset that separates SS and SS^{\prime} both. We consider the separations 𝒜{\mathcal{A}} and 𝒜{\mathcal{A}}^{\prime} of SS and SS^{\prime} induced by UU respectively. Then (W,S)(W,S) and (W,S)(W,S^{\prime}) are compatible on the separations 𝒜{\mathcal{A}} and 𝒜{\mathcal{A}}^{\prime}. Thus (W,S)(W,S) and (W,S)(W,S^{\prime}) are some-separation-compatible.

In (W,S)(W,S), there are no type(I) subsets of SS and

𝒜~S=𝒜~S(II)={S}.\widetilde{\mathcal{A}}_{S}=\widetilde{\mathcal{A}}_{S}^{\rm(II)}=\{S\}.

The Coxeter system (W,S)(W,S^{\prime}) is denoted by Figure 10. In (W,S)(W,S^{\prime}), there are no type(I) subsets of SS^{\prime} and

𝒜~S=𝒜~S(II)={S}.\widetilde{\mathcal{A}}_{S^{\prime}}=\widetilde{\mathcal{A}}_{S^{\prime}}^{\rm(II)}=\{S^{\prime}\}.

Then the type(II) subsets S𝒜~S(II)S\in\widetilde{\mathcal{A}}_{S}^{\rm(II)} and S𝒜~S(II)S^{\prime}\in\widetilde{\mathcal{A}}_{S^{\prime}}^{\rm(II)} are type(II)-compatible. Hence (W,S)(W,S) and (W,S)(W,S^{\prime}) are type(I)-type(II)-compatible. Here (W,S)(W,S) and (W,S)(W,S^{\prime}) are not compatible on their standard separations.

3. On separations of Coxeter generating sets and compatible Coxeter systems

Let (W,S)(W,S) be a Coxeter system. A maximal spherical subset σ\sigma of SS is not separated by any subset of σ\sigma. Hence every maximal spherical subset σ\sigma is a twist-rigid subset of SS. Also for a maximal spherical subset σ\sigma of SS, there exists a maximal twist-rigid subset AA of SS such that σA\sigma\subset A.

We consider that two Coxeter systems (W,R)(W,R) and (W,S)(W,S) are maximal-twist-rigid-subset-compatible, if each maximal twist-rigid subset AA of RR is conjugate to some unique maximal twist-rigid subset BB of SS and each maximal twist-rigid subset BB of SS is conjugate to some unique maximal twist-rigid subset AA of RR.

By the above argument, if two Coxeter systems are maximal-twist-rigid-subset-compatible, then they are maximal-spherical-subset-compatible. Also by the argument in Section 1, if two Coxeter systems are maximal-spherical-subset-compatible, then they are angle-compatible.

Question 3.1.
  1. (i)

    Angle-compatible Coxeter systems (W,R)(W,R) and (W,S)(W,S) will be maximal-spherical-subset-compatible?

  2. (ii)

    Maximal-spherical-subset-compatible Coxeter systems (W,R)(W,R) and (W,S)(W,S) will be maximal-twist-rigid-subset-compatible?

The following technical lemma and remark are used in the proof of the main theorem.

Lemma 3.2.

Let (W,S)(W,S) be a Coxeter system and let 𝒜{\mathcal{A}} be a separation of SS. Suppose that the following statements (1)–(4) hold:

  1. (1)

    A1,,An𝒜A_{1},\ldots,A_{n}\in{\mathcal{A}}.

  2. (2)

    (A1Ai)Ai+1(A_{1}\cup\cdots\cup A_{i})\cap A_{i+1} is maximal in

    {(A1Ai)C:C𝒜{A1,,Ai}}\{(A_{1}\cup\cdots\cup A_{i})\cap C:C\in{\mathcal{A}}-\{A_{1},\ldots,A_{i}\}\}

    for any i=1,,n1i=1,\ldots,n-1.

  3. (3)

    A¯0:=A1An\overline{A}_{0}:=A_{1}\cup\cdots\cup A_{n}.

  4. (4)

    A𝒜{A1,,An}A\in{\mathcal{A}}-\{A_{1},\ldots,A_{n}\}.

Then there exists a subset U0U_{0} of A¯0\overline{A}_{0} such that U0U_{0} is a separator of 𝒜{\mathcal{A}} and U0U_{0} separates A¯0\overline{A}_{0} and AA; that is, for the connected components X1,,XtX_{1},\dots,X_{t} of SU0S-U_{0} (where SU0=X1XtS-U_{0}=X_{1}\cup\cdots\cup X_{t} is a disjoint union), A¯0XiU0\overline{A}_{0}\subset X_{i}\cup U_{0} and AXjU0A\subset X_{j}\cup U_{0} for some i,j{1,,t}i,j\in\{1,\ldots,t\} as iji\neq j.

Proof.

We suppose that the statements (1)–(4) hold.

Let An+1𝒜{A1,,An}A_{n+1}\in{\mathcal{A}}-\{A_{1},\ldots,A_{n}\} such that U:=(A1An)An+1U:=(A_{1}\cup\cdots\cup A_{n})\cap A_{n+1} is maximal in {(A1An)C:C𝒜{A1,,An}}\{(A_{1}\cup\cdots\cup A_{n})\cap C:C\in{\mathcal{A}}-\{A_{1},\ldots,A_{n}\}\}.

If UU separates A¯0\overline{A}_{0} and AA, then we obtain U0:=UU_{0}:=U and this lemma is proved, since UU is a subset of A¯0\overline{A}_{0} and UU is a separator of 𝒜{\mathcal{A}} by the definition of a separation.

We suppose that UU does not separate A¯0\overline{A}_{0} and AA.

Let An+1,,Ap𝒜{A1,,An}A_{n+1},\ldots,A_{p}\in{\mathcal{A}}-\{A_{1},\ldots,A_{n}\} such that (A1Ai)Ai+1(A_{1}\cup\cdots\cup A_{i})\cap A_{i+1} is maximal in

{(A1Ai)C:C𝒜{A1,,Ai}}\{(A_{1}\cup\cdots\cup A_{i})\cap C:C\in{\mathcal{A}}-\{A_{1},\ldots,A_{i}\}\}

for any i=1,,n1,n,,p1i=1,\ldots,n-1,n,\ldots,p-1 and (A1Ap1)Ap(A_{1}\cup\cdots\cup A_{p-1})\cap A_{p} separates A¯0\overline{A}_{0} and AA. Here we may suppose that pp is the minimum number as (A1Ap1)Ap(A_{1}\cup\cdots\cup A_{p-1})\cap A_{p} separates A¯0\overline{A}_{0} and AA; that is, (A1Ai1)Ai(A_{1}\cup\cdots\cup A_{i-1})\cap A_{i} does not separate A¯0\overline{A}_{0} and AA for any i=n+1,,p1i=n+1,\ldots,p-1.

Let U:=(A1Ap1)ApU:=(A_{1}\cup\cdots\cup A_{p-1})\cap A_{p} that is a separator of 𝒜{\mathcal{A}} and separates A¯0\overline{A}_{0} and AA. Here if UA¯0U\subset\overline{A}_{0} then we obtain U0:=UU_{0}:=U and this lemma is proved.

We suppose that UA¯0U\not\subset\overline{A}_{0}.

We consider the connected components Y1,,YrY_{1},\dots,Y_{r} of SUS-U where SU=Y1YrS-U=Y_{1}\cup\cdots\cup Y_{r} is a disjoint union. We may suppose that A¯0Y1U\overline{A}_{0}\subset Y_{1}\cup U and AY2UA\subset Y_{2}\cup U. By the definition of a separator, there exists Ai0A_{i_{0}} (1i0p11\leq i_{0}\leq p-1) such that UAi0Y1UU\subset A_{i_{0}}\subset Y_{1}\cup U. Since UA¯0U\not\subset\overline{A}_{0}, we have that n+1i0p1n+1\leq i_{0}\leq p-1.

(a) Since UU separates A¯0\overline{A}_{0} and AA, for any aA¯0a\in\overline{A}_{0} and bAb\in A, any path [a,b][a,b] form aa to bb in the nerve of (W,S)(W,S) intersects UU.

(b) Let V:=(A1Ai01)Ai0V:=(A_{1}\cup\cdots\cup A_{i_{0}-1})\cap A_{i_{0}} that is a separator of 𝒜{\mathcal{A}} and does not separate A¯0\overline{A}_{0} and AA. We consider the connected components Z1,,ZqZ_{1},\dots,Z_{q} of SVS-V where SV=Z1ZqS-V=Z_{1}\cup\cdots\cup Z_{q} is a disjoint union. We may suppose that A¯0AZ1V\overline{A}_{0}\cup A\subset Z_{1}\cup V and Ai0Z2VA_{i_{0}}\subset Z_{2}\cup V. Here A¯0V\overline{A}_{0}\not\subset V and AVA\not\subset V. Hence there exist a1Z1A¯0a_{1}\in Z_{1}\cap\overline{A}_{0} and b1Z1Ab_{1}\in Z_{1}\cap A. Since Z1Z_{1} is connected, there exists a path [a1,b1][a_{1},b_{1}] from a1a_{1} to b1b_{1} in the nerve of (WZ1,Z1)(W_{Z_{1}},Z_{1}). Here Z1Ai0=Z_{1}\cap A_{i_{0}}=\emptyset, since Ai0Z2VA_{i_{0}}\subset Z_{2}\cup V. Thus the path [a1,b1][a_{1},b_{1}] does not intersect Ai0A_{i_{0}}. In particular, the path [a1,b1][a_{1},b_{1}] does not intersect UU, because UAi0U\subset A_{i_{0}}. This contradicts (a).

Thus, UA¯0U\subset\overline{A}_{0} and we obtain U0:=UU_{0}:=U. This lemma is proved. ∎

The following remark is obtained from Lemma 3.2.

Remark 3.3.

Let (W,S)(W,S) be a Coxeter system with the untangle-conjugate-condition and let 𝒜{\mathcal{A}} be a separation of SS. We suppose that the following statements (1)–(8) hold:

  1. (1)

    A1,,An𝒜A_{1},\ldots,A_{n}\in{\mathcal{A}}.

  2. (2)

    (A1Ai)Ai+1(A_{1}\cup\cdots\cup A_{i})\cap A_{i+1} is maximal in

    {(A1Ai)C:C𝒜{A1,,Ai}}\{(A_{1}\cup\cdots\cup A_{i})\cap C:C\in{\mathcal{A}}-\{A_{1},\ldots,A_{i}\}\}

    for any i=1,,n1i=1,\ldots,n-1.

  3. (3)

    A¯0:=A1An\overline{A}_{0}:=A_{1}\cup\cdots\cup A_{n}.

  4. (4)

    A𝒜{A1,,An}A\in{\mathcal{A}}-\{A_{1},\ldots,A_{n}\}.

  5. (5)

    UU is a spherical-product subset of SS such that UσU_{\sigma} is non-empty and UA¯0U\subsetneq\overline{A}_{0}.

  6. (6)

    UU^{\prime} is a spherical-product subset of SS such that UAU^{\prime}\subsetneq A.

  7. (7)

    UU and UU^{\prime} are conjugate and UUU\neq U^{\prime}.

  8. (8)

    |U|max{|A¯0C|:C𝒜,CA¯0}|U|\geq\max\{\,|\overline{A}_{0}\cap C|\,:C\in{\mathcal{A}},\ C\not\subset\overline{A}_{0}\}.

Then by (7) and the untangle-conjugate-condition, there exist a sequence U1,,UqU_{1},\cdots,U_{q} of subsets of SS and a sequence T1,,Tq1T_{1},\cdots,T_{q-1} of spherical subsets of SS such that

U=U1wT1U2wT2wTq1Uq=U.\displaystyle U=U_{1}\mathop{\simeq}_{\,\,w_{T_{1}}}U_{2}\mathop{\simeq}_{\,\,w_{T_{2}}}\cdots{}\mathop{\simeq}_{\ \ w_{T_{q-1}}}U_{q}=U^{\prime}.

Here |U|=|U1|==|Uq|=|U||U|=|U_{1}|=\cdots=|U_{q}|=|U^{\prime}|.

Since UUU\neq U^{\prime} by (7), q2q\geq 2. We suppose that UiA¯0U_{i}\not\subset\overline{A}_{0} for any i{2,,q}i\in\{2,\ldots,q\} and TiA¯0T_{i}\not\subset\overline{A}_{0} for any i{1,,q1}i\in\{1,\ldots,q-1\}.

By Lemma 3.2, there exists a subset U0U_{0} of A¯0\overline{A}_{0} such that U0U_{0} is a separator of 𝒜{\mathcal{A}} and U0U_{0} separates A¯0\overline{A}_{0} and AA.

By the above untangle-conjugate sequence, F:=T1Tq1F:=T_{1}\cup\cdots\cup T_{q-1} is connected. Here (Ui)σ(Ui+1)σTi(U_{i})_{\sigma}\cup(U_{i+1})_{\sigma}\subset T_{i} for each i=1,,q1i=1,\ldots,q-1. Also U1=UA¯0U_{1}=U\subsetneq\overline{A}_{0} by (5) and Uq=UAU_{q}=U^{\prime}\subsetneq A by (6). Then UA¯0FU\subset\overline{A}_{0}\cap F and UAFU^{\prime}\subset A\cap F. Also Uν=UνA¯0AU_{\nu}=U^{\prime}_{\nu}\subset\overline{A}_{0}\cap A.

For any aUσa\in U_{\sigma}, F(U{a})=(FU){a}F-(U-\{a\})=(F-U)\cup\{a\} is connected and there exists a path from aa to some point of AA in F(U{a})F-(U-\{a\}), because each TiT_{i} is spherical and o(st)<o(st)<\infty for any s,tTis,t\in T_{i}.

Hence UU0U\subset U_{0}, since U0U_{0} separates A¯0\overline{A}_{0} and AA.

We show that U0=A¯0CU_{0}=\overline{A}_{0}\cap C for some C𝒜C\in{\mathcal{A}} as CA¯0C\not\subset\overline{A}_{0}. Let X1,,XtX_{1},\ldots,X_{t} be the connected components of SU0S-U_{0} and let X¯j:={C𝒜:CXjU0}\overline{X}_{j}:=\bigcup\{C\in{\mathcal{A}}:C\subset X_{j}\cup U_{0}\} for each j=1,,tj=1,\ldots,t. Here X¯jX¯jU0\overline{X}_{j}\cap\overline{X}_{j^{\prime}}\subset U_{0} if jjj\neq j^{\prime}. Since U0U_{0} is a separator of 𝒜{\mathcal{A}}, there exist C1,C2𝒜C_{1},C_{2}\in{\mathcal{A}} such that U0=C1C2U_{0}=C_{1}\cap C_{2}, C1X¯j1C_{1}\subset\overline{X}_{j_{1}} and C2X¯j2C_{2}\subset\overline{X}_{j_{2}} for some j1,j2{1,,t}j_{1},j_{2}\in\{1,\ldots,t\} as j1j2j_{1}\neq j_{2} by (iv) in the definition of a separator. Here A¯0X¯j0\overline{A}_{0}\subset\overline{X}_{j_{0}} for some j0{1,,t}j_{0}\in\{1,\ldots,t\}. Then j0j1j_{0}\neq j_{1} or j0j2j_{0}\neq j_{2}, since j1j2j_{1}\neq j_{2}. We suppose that j0j1j_{0}\neq j_{1}. Then C1A¯0C_{1}\not\subset\overline{A}_{0} and U0=A¯0C1U_{0}=\overline{A}_{0}\cap C_{1}, because U0A¯0U_{0}\subset\overline{A}_{0} and U0=C1C2C1U_{0}=C_{1}\cap C_{2}\subset C_{1} (here X¯j0X¯j1U0\overline{X}_{j_{0}}\cap\overline{X}_{j_{1}}\subset U_{0}). Hence U0=A¯0CU_{0}=\overline{A}_{0}\cap C for some C𝒜C\in{\mathcal{A}} as CA¯0C\not\subset\overline{A}_{0}.

Thus |U||U0||U|\geq|U_{0}| by (8). Hence we have that U=U0U=U_{0}, because UU0U\subset U_{0}.

Then UU separates SS, and V:=UT1=T1UνV:=U\cup T_{1}=T_{1}\cup U_{\nu} separates SS. Here st=tsst=ts for any sUνs\in U_{\nu} and tT1t\in T_{1}.

Let XX and YY be subsets of SS such that SV=XYS-V=X\cup Y is a disjoint union, A¯0XV\overline{A}_{0}\subset X\cup V, AYVA\subset Y\cup V and o(xy)=o(xy)=\infty for any xXx\in X and yYy\in Y. Then we can obtain a twist

S=XVwT1YwT1.S^{\prime}=X\cup V\cup w_{T_{1}}Yw_{T_{1}}.

Here for each C𝒜C\in{\mathcal{A}}, CXVC\subset X\cup V or CYVC\subset Y\cup V. Hence the twist SS^{\prime} is preserving 𝒜{\mathcal{A}} and fixing A¯0\overline{A}_{0}. Let 𝒜{\mathcal{A}}^{\prime} be the induced separation of SS^{\prime} by 𝒜{\mathcal{A}} and the twist. Then wT1U2wT1=U1=Uw_{T_{1}}U_{2}w_{T_{1}}=U_{1}=U. Let A:=wT1AwT1A^{\prime}:=w_{T_{1}}Aw_{T_{1}}, let Ui:=wT1UiwT1U^{\prime}_{i}:=w_{T_{1}}U_{i}w_{T_{1}} for i=2,,qi=2,\ldots,q and let Ti:=wT1TiwT1T^{\prime}_{i}:=w_{T_{1}}T_{i}w_{T_{1}} for i=2,,q1i=2,\ldots,q-1. Then in SS^{\prime}, we obtain that U2A¯0U^{\prime}_{2}\subset\overline{A}_{0} and UqAU^{\prime}_{q}\subset A^{\prime}. Also

U2wT2U3wT3wTq1Uq\displaystyle U^{\prime}_{2}\mathop{\simeq}_{\,\,w_{T^{\prime}_{2}}}U^{\prime}_{3}\mathop{\simeq}_{\,\,w_{T^{\prime}_{3}}}\cdots{}\mathop{\simeq}_{\ \ w_{T^{\prime}_{q-1}}}U^{\prime}_{q}

in SS^{\prime}. Here we can iterate this argument.

4. Some-separation-compatible Coxeter generating sets are conjugate up to finite twists

We prove that two some-separation-compatible Coxeter generating sets are conjugate up to finite twists.

Theorem 4.1.

Let (W,R)(W,R) and (W,S)(W,S) be Coxeter systems with the untangle-condition. If (W,R)(W,R) and (W,S)(W,S) are some-separation-compatible, then RR and SS are conjugate up to finite twists.

Proof.

We suppose that (W,R)(W,R) and (W,S)(W,S) are some-separation-compatible and suppose that RR and SS are connected. Then there exist separations 𝒜R{\mathcal{A}}_{R} and 𝒜S{\mathcal{A}}_{S} of RR and SS respectively such that (W,R)(W,R) and (W,S)(W,S) are compatible on the separations 𝒜R{\mathcal{A}}_{R} and 𝒜S{\mathcal{A}}_{S}; that is, each A𝒜RA\in{\mathcal{A}}_{R} is conjugate to some unique B𝒜SB\in{\mathcal{A}}_{S} and each B𝒜SB\in{\mathcal{A}}_{S} is conjugate to some unique A𝒜RA\in{\mathcal{A}}_{R}.

We note that if RR^{\prime} and SS^{\prime} are Coxeter generating sets for WW that are obtained from RR and SS by some finite twists preserving 𝒜R{\mathcal{A}}_{R} and 𝒜S{\mathcal{A}}_{S} respectively, then also each A𝒜RA\in{\mathcal{A}}_{R^{\prime}} is conjugate to some unique B𝒜SB\in{\mathcal{A}}_{S^{\prime}} and each B𝒜SB\in{\mathcal{A}}_{S^{\prime}} is conjugate to some unique A𝒜RA\in{\mathcal{A}}_{R^{\prime}}.

Now we show that the following statement (Pi)({\rm P}_{i}) holds for each i=1,,ni=1,\ldots,n, where n:=|𝒜R|=|𝒜S|n:=|{\mathcal{A}}_{R}|=|{\mathcal{A}}_{S}|.

  1. (Pi)({\rm P}_{i})

    There exist Coxeter generating sets RiR_{i} and SiS_{i} for WW such that RiR_{i} and SiS_{i} are obtained from RR and SS by some finite twists preserving 𝒜R{\mathcal{A}}_{R} and 𝒜S{\mathcal{A}}_{S} respectively and A¯i\overline{A}_{i} and B¯i\overline{B}_{i} are conjugate in WW, where A¯i\overline{A}_{i} is a union of some ii-th elements C1,,CiC_{1},\ldots,C_{i} of 𝒜Ri{\mathcal{A}}_{R_{i}} in RiR_{i} as (C1Ck)Ck+1(C_{1}\cup\cdots\cup C_{k})\cap C_{k+1} is maximal in

    {(C1Ck)C:C𝒜Ri{C1,,Ck}}\{(C_{1}\cup\cdots\cup C_{k})\cap C:C\in{\mathcal{A}}_{R_{i}}-\{C_{1},\ldots,C_{k}\}\}

    for any k=1,,i1k=1,\ldots,i-1, and B¯i\overline{B}_{i} is a union of some ii-th elements D1,,DiD_{1},\ldots,D_{i} of 𝒜Si{\mathcal{A}}_{S_{i}} in SiS_{i} as (D1Dk)Dk+1(D_{1}\cup\cdots\cup D_{k})\cap D_{k+1} is maximal in

    {(D1Dk)D:D𝒜Si{D1,,Dk}}\{(D_{1}\cup\cdots\cup D_{k})\cap D:D\in{\mathcal{A}}_{S_{i}}-\{D_{1},\ldots,D_{k}\}\}

    for any k=1,,i1k=1,\ldots,i-1.

We prove (Pi)({\rm P}_{i}) by induction on ii.

Let R1:=RR_{1}:=R and S1:=SS_{1}:=S. For A1𝒜R1A_{1}\in{\mathcal{A}}_{R_{1}}, there exists a unique B1𝒜S1B_{1}\in{\mathcal{A}}_{S_{1}} such that A1A_{1} and B1B_{1} are conjugate. Let A¯1:=A1\overline{A}_{1}:=A_{1} and B¯1:=B1\overline{B}_{1}:=B_{1}. Then (P1)({\rm P}_{1}) holds.

Let i01i_{0}\geq 1. We suppose that (Pi0)({\rm P}_{i_{0}}) holds; that is, there exist Coxeter generating sets Ri0R_{i_{0}} and Si0S_{i_{0}} for WW such that Ri0R_{i_{0}} and Si0S_{i_{0}} are obtained from RR and SS by some finite twists preserving 𝒜R{\mathcal{A}}_{R} and 𝒜S{\mathcal{A}}_{S} respectively and A¯i0\overline{A}_{i_{0}} and B¯i0\overline{B}_{i_{0}} are conjugate, where A¯i0\overline{A}_{i_{0}} is a union of some i0i_{0}-th elements C1,,Ci0C_{1},\ldots,C_{i_{0}} of 𝒜Ri0{\mathcal{A}}_{R_{i_{0}}} in Ri0R_{i_{0}} as (C1Ck)Ck+1(C_{1}\cup\cdots\cup C_{k})\cap C_{k+1} is maximal in

{(C1Ck)C:C𝒜Ri0{C1,,Ck}}\{(C_{1}\cup\cdots\cup C_{k})\cap C:C\in{\mathcal{A}}_{R_{i_{0}}}-\{C_{1},\ldots,C_{k}\}\}

for any k=1,,i01k=1,\ldots,i_{0}-1, and B¯i0\overline{B}_{i_{0}} is a union of some i0i_{0}-th elements D1,,Di0D_{1},\ldots,D_{i_{0}} of 𝒜Si0{\mathcal{A}}_{S_{i_{0}}} in Si0S_{i_{0}} as (D1Dk)Dk+1(D_{1}\cup\cdots\cup D_{k})\cap D_{k+1} is maximal in

{(D1Dk)D:D𝒜Si0{D1,,Dk}}\{(D_{1}\cup\cdots\cup D_{k})\cap D:D\in{\mathcal{A}}_{S_{i_{0}}}-\{D_{1},\ldots,D_{k}\}\}

for any k=1,,i01k=1,\ldots,i_{0}-1.

Then we show that (Pi0+1)({\rm P}_{i_{0}+1}) holds.

Let

d1:=max{|A¯i0C|:C𝒜Ri0,CA¯i0} and\displaystyle d_{1}:=\max\{\;|\overline{A}_{i_{0}}\cap C|\,:C\in{\mathcal{A}}_{R_{i_{0}}},\ C\not\subset\overline{A}_{i_{0}}\}\text{ and}
d2:=max{|B¯i0D|:D𝒜Si0,DB¯i0}.\displaystyle d_{2}:=\max\{\;|\overline{B}_{i_{0}}\cap D|\,:D\in{\mathcal{A}}_{S_{i_{0}}},\ D\not\subset\overline{B}_{i_{0}}\}.

Since RR and SS are connected, Ri0R_{i_{0}} and Si0S_{i_{0}} are connected. Hence d1>0d_{1}>0 and d2>0d_{2}>0.

Now we suppose that d1d2d_{1}\leq d_{2}.

Then there exists B𝒜Si0B\in{\mathcal{A}}_{S_{i_{0}}} such that BB¯i0B\not\subset\overline{B}_{i_{0}} and d2=|B¯i0B|d_{2}=|\overline{B}_{i_{0}}\cap B|. Let Si0+1:=Si0S_{i_{0}+1}:=S_{i_{0}} and let B¯i0+1:=B¯i0B\overline{B}_{i_{0}+1}:=\overline{B}_{i_{0}}\cup B. Here Si0+1S_{i_{0}+1} is preserving 𝒜Si0{\mathcal{A}}_{S_{i_{0}}} and fixing B¯i0\overline{B}_{i_{0}}. Also Si0+1S_{i_{0}+1} is obtained from SS by some finite twists preserving 𝒜S{\mathcal{A}}_{S}. We also note that B¯i0+1\overline{B}_{i_{0}+1} is a union of some (i0+1)(i_{0}+1)-th elements of 𝒜Si0+1{\mathcal{A}}_{S_{i_{0}+1}} in Si0+1S_{i_{0}+1}.

Let AA be the element of 𝒜Ri0{\mathcal{A}}_{R_{i_{0}}} such that AA and BB are conjugate in WW. Let U:=B¯i0BU:=\overline{B}_{i_{0}}\cap B. Then since |U|=d2|U|=d_{2}, UU is a spherical-product subset of Si0+1S_{i_{0}+1} and UU separates Si0+1S_{i_{0}+1} by the definition of a separation, because 𝒜Si0+1{\mathcal{A}}_{S_{i_{0}+1}} is a separation of Si0+1S_{i_{0}+1}.

Since A¯i0\overline{A}_{i_{0}} and B¯i0\overline{B}_{i_{0}} are conjugate in WW, xB¯i0x1=A¯i0x\overline{B}_{i_{0}}x^{-1}=\overline{A}_{i_{0}} for some xWx\in W. Then UB¯i0U\subset\overline{B}_{i_{0}} and U:=xUx1A¯i0U^{\prime}:=xUx^{-1}\subset\overline{A}_{i_{0}}. Also since AA and BB are conjugate in WW, yBy1=AyBy^{-1}=A for some yWy\in W. Then UBU\subset B and U′′:=yUy1AU^{\prime\prime}:=yUy^{-1}\subset A. Here UU^{\prime} and U′′U^{\prime\prime} are conjugate spherical-product subsets of Ri0R_{i_{0}} in WW. Hence they are untangle by the untangle-condition. Here if UσU^{\prime}_{\sigma} is empty then U=Uν=Uν′′=U′′U^{\prime}=U^{\prime}_{\nu}=U^{\prime\prime}_{\nu}=U^{\prime\prime}.

(a) We consider the case that U=U′′U^{\prime}=U^{\prime\prime}.

Then A¯i0A=U=U′′\overline{A}_{i_{0}}\cap A=U^{\prime}=U^{\prime\prime} and d1=d2d_{1}=d_{2}, since |U|=|U|=d2|U^{\prime}|=|U|=d_{2} and d1d2d_{1}\leq d_{2}. Hence |U|=d1|U^{\prime}|=d_{1}, U=A¯i0AU^{\prime}=\overline{A}_{i_{0}}\cap A is maximal in

{A¯i0C:C𝒜Ri0,CA¯i0}\{\overline{A}_{i_{0}}\cap C:C\in{\mathcal{A}}_{R_{i_{0}}},\ C\not\subset\overline{A}_{i_{0}}\}

and U=U′′U^{\prime}=U^{\prime\prime} separates Ri0R_{i_{0}}.

Here xUx1=UxUx^{-1}=U^{\prime} and yUy1=U′′=UyUy^{-1}=U^{\prime\prime}=U^{\prime}. Hence

xy1Uyx1=xUx1=U.xy^{-1}U^{\prime}yx^{-1}=xUx^{-1}=U^{\prime}.

We define the bijective map fxy1:UUf_{xy^{-1}}:U^{\prime}\to U^{\prime} by fxy1(a)=(xy1)a(yx1)f_{xy^{-1}}(a)=(xy^{-1})a(yx^{-1}) for any aUa\in U^{\prime}.

By the untangle-conjugate-condition, fxy1=f1f_{xy^{-1}}=f_{1} for 1W1\in W, or, there exist a sequence U1,,UqU_{1},\cdots,U_{q} of subsets of Ri0R_{i_{0}} and a sequence T1,,Tq1T_{1},\cdots,T_{q-1} of spherical subsets of Ri0R_{i_{0}} such that

U=U1wT1U2wT2wTq1Uq=U,\displaystyle U^{\prime}=U_{1}\mathop{\simeq}_{\,\,w_{T_{1}}}U_{2}\mathop{\simeq}_{\,\,w_{T_{2}}}\cdots{}\mathop{\simeq}_{\ \ w_{T_{q-1}}}U_{q}=U^{\prime},

(Ui)σ(Ui+1)σTi(U_{i})_{\sigma}\cup(U_{i+1})_{\sigma}\subset T_{i} for any i=1,,q1i=1,\ldots,q-1 and fxy1=fw0f_{xy^{-1}}=f_{w_{0}} for w0:=wTq1wT2wT1w_{0}:=w_{T_{q-1}}\cdots w_{T_{2}}w_{T_{1}}.

(a-1) Suppose that fxy1=f1f_{xy^{-1}}=f_{1}. Then A¯i0+1=A¯i0A\overline{A}_{i_{0}+1}=\overline{A}_{i_{0}}\cup A in Ri0R_{i_{0}} is conjugate to B¯i0+1=B¯i0B\overline{B}_{i_{0}+1}=\overline{B}_{i_{0}}\cup B in Si0S_{i_{0}} where A¯i0+1\overline{A}_{i_{0}+1} and B¯i0+1\overline{B}_{i_{0}+1} are unions of some (i0+1)(i_{0}+1)-th elements of 𝒜Ri0{\mathcal{A}}_{R_{i_{0}}} and 𝒜Si0{\mathcal{A}}_{S_{i_{0}}} respectively. Let Ri0+1:=Ri0R_{i_{0}+1}:=R_{i_{0}} and Si0+1:=Si0S_{i_{0}+1}:=S_{i_{0}}. Here A¯i0A\overline{A}_{i_{0}}\cap A is maximal in

{A¯i0C:C𝒜Ri0+1,CA¯i0}\{\overline{A}_{i_{0}}\cap C:C\in{\mathcal{A}}_{R_{i_{0}+1}},\ C\not\subset\overline{A}_{i_{0}}\}

and B¯i0B\overline{B}_{i_{0}}\cap B is maximal in

{B¯i0D:D𝒜Si0+1,DB¯i0},\{\overline{B}_{i_{0}}\cap D:D\in{\mathcal{A}}_{S_{i_{0}+1}},\ D\not\subset\overline{B}_{i_{0}}\},

because |A¯i0A|=|B¯i0B|=d1=d2|\overline{A}_{i_{0}}\cap A|=|\overline{B}_{i_{0}}\cap B|=d_{1}=d_{2}.

(a-2) Suppose that there exist a sequence U1,,UqU_{1},\cdots,U_{q} of subsets of Ri0R_{i_{0}} and a sequence T1,,Tq1T_{1},\cdots,T_{q-1} of spherical subsets of Ri0R_{i_{0}} such that

U=U1wT1U2wT2wTq1Uq=U,\displaystyle U^{\prime}=U_{1}\mathop{\simeq}_{\,\,w_{T_{1}}}U_{2}\mathop{\simeq}_{\,\,w_{T_{2}}}\cdots{}\mathop{\simeq}_{\ \ w_{T_{q-1}}}U_{q}=U^{\prime},

(Ui)σ(Ui+1)σTi(U_{i})_{\sigma}\cup(U_{i+1})_{\sigma}\subset T_{i} for any i=1,,q1i=1,\ldots,q-1 and fxy1=fw0f_{xy^{-1}}=f_{w_{0}} for w0:=wTq1wT2wT1w_{0}:=w_{T_{q-1}}\cdots w_{T_{2}}w_{T_{1}}.

Then we will attach AA to A¯i0\overline{A}_{i_{0}} by gluing UU^{\prime} and U′′=UU^{\prime\prime}=U^{\prime} by some finite twists of Ri0R_{i_{0}} (preserving 𝒜Ri0{\mathcal{A}}_{R_{i_{0}}} and fixing A¯i0\overline{A}_{i_{0}}) induced by the above untangle-conjugate sequence from UU^{\prime} to U′′=UU^{\prime\prime}=U^{\prime}.

Since U=A¯i0AU^{\prime}=\overline{A}_{i_{0}}\cap A separates Ri0R_{i_{0}}, V:=UT1=T1UνV:=U^{\prime}\cup T_{1}=T_{1}\cup U^{\prime}_{\nu} separates Ri0R_{i_{0}}. For some two subsets XX and YY of Ri0R_{i_{0}},

  1. (1)

    Ri0V=XYR_{i_{0}}-V=X\cup Y that is a disjoint union,

  2. (2)

    o(xy)=o(xy)=\infty for any xXx\in X and yYy\in Y,

  3. (3)

    A¯i0(U1Uq)XV\overline{A}_{i_{0}}\cup(U_{1}\cup\cdots\cup U_{q})\subset X\cup V and

  4. (4)

    AYVA\subset Y\cup V.

Here for any C𝒜Ri0C\in{\mathcal{A}}_{R_{i_{0}}}, CXVC\subset X\cup V or CYVC\subset Y\cup V, since U=A¯i0AU^{\prime}=\overline{A}_{i_{0}}\cap A is a separator of 𝒜Ri0{\mathcal{A}}_{R_{i_{0}}} and V=UT1V=U^{\prime}\cup T_{1}.

Then Ri0:=XV(wT1YwT1)R^{\prime}_{i_{0}}:=X\cup V\cup(w_{T_{1}}Yw_{T_{1}}) is a twist of Ri0R_{i_{0}} preserving 𝒜Ri0{\mathcal{A}}_{R_{i_{0}}} and fixing A¯i0\overline{A}_{i_{0}}. Let 𝒜Ri0{\mathcal{A}}_{R^{\prime}_{i_{0}}} be the separation of Ri0R^{\prime}_{i_{0}} induced by 𝒜Ri0{\mathcal{A}}_{R_{i_{0}}} and the twist.

Let A:=wT1AwT1𝒜Ri0A^{\prime}:=w_{T_{1}}Aw_{T_{1}}\in{\mathcal{A}}_{R^{\prime}_{i_{0}}} that is conjugate to AA and BB. Then

A=wT1AwT1wT1UwT1=wT1U1wT1=U2,A^{\prime}=w_{T_{1}}Aw_{T_{1}}\supset w_{T_{1}}U^{\prime}w_{T_{1}}=w_{T_{1}}U_{1}w_{T_{1}}=U_{2},

U=U′′=UqA¯i0U^{\prime}=U^{\prime\prime}=U_{q}\subset\overline{A}_{i_{0}} and

U2wT2U3wT3wTq1Uq=U.\displaystyle U_{2}\mathop{\simeq}_{\,\,w_{T_{2}}}U_{3}\mathop{\simeq}_{\,\,w_{T_{3}}}\cdots{}\mathop{\simeq}_{\ \ w_{T_{q-1}}}U_{q}=U^{\prime}.

Since U=U1U^{\prime}=U_{1} separates Ri0R_{i_{0}} and separates A¯i0\overline{A}_{i_{0}} and AA, we have that U2U_{2} separates Ri0R^{\prime}_{i_{0}} and U2U_{2} separates A¯i0\overline{A}_{i_{0}} and AA^{\prime} in Ri0R^{\prime}_{i_{0}}. Hence T2UνT_{2}\cup U^{\prime}_{\nu} separates Ri0R^{\prime}_{i_{0}} and T2UνT_{2}\cup U^{\prime}_{\nu} separates A¯i0\overline{A}_{i_{0}} and AA^{\prime} in Ri0R^{\prime}_{i_{0}}.

We iterate this argument for T2,,Tq1T_{2},\ldots,T_{q-1}. Then we obtain a Coxeter generating set Ri0′′R^{\prime\prime}_{i_{0}} from Ri0R_{i_{0}} by some finite twists preserving 𝒜Ri0{\mathcal{A}}_{R_{i_{0}}} and fixing A¯i0\overline{A}_{i_{0}} such that for w0=wTq1wT1w_{0}=w_{T_{q-1}}\cdots w_{T_{1}} and A′′:=w0Aw0𝒜Ri0′′A^{\prime\prime}:=w_{0}Aw_{0}\in{\mathcal{A}}_{R^{\prime\prime}_{i_{0}}} that is conjugate to AA and BB,

A′′=w0Aw0w0Uw0=wTq1wT1U1wT1wTq1=Uq=U,A^{\prime\prime}=w_{0}Aw_{0}\supset w_{0}U^{\prime}w_{0}=w_{T_{q-1}}\cdots w_{T_{1}}U_{1}w_{T_{1}}\cdots w_{T_{q-1}}=U_{q}=U^{\prime},

where 𝒜Ri0′′{\mathcal{A}}_{R^{\prime\prime}_{i_{0}}} is the separation of Ri0′′R^{\prime\prime}_{i_{0}} induced by 𝒜Ri0{\mathcal{A}}_{R_{i_{0}}} and the twists.

Let Ri0+1:=Ri0′′R_{i_{0}+1}:=R^{\prime\prime}_{i_{0}} and Si0+1:=Si0S_{i_{0}+1}:=S_{i_{0}}. Here A¯i0A′′\overline{A}_{i_{0}}\cap A^{\prime\prime} is maximal in

{A¯i0C:C𝒜Ri0+1,CA¯i0}\{\overline{A}_{i_{0}}\cap C:C\in{\mathcal{A}}_{R_{i_{0}+1}},\ C\not\subset\overline{A}_{i_{0}}\}

and B¯i0B\overline{B}_{i_{0}}\cap B is maximal in

{B¯i0D:D𝒜Si0+1,DB¯i0},\{\overline{B}_{i_{0}}\cap D:D\in{\mathcal{A}}_{S_{i_{0}+1}},\ D\not\subset\overline{B}_{i_{0}}\},

because |A¯i0A′′|=|B¯i0B|=d1=d2|\overline{A}_{i_{0}}\cap A^{\prime\prime}|=|\overline{B}_{i_{0}}\cap B|=d_{1}=d_{2}. Here A¯i0A′′\overline{A}_{i_{0}}\cup A^{\prime\prime} in Ri0+1R_{i_{0}+1} is conjugate to B¯i0B\overline{B}_{i_{0}}\cup B in Si0+1S_{i_{0}+1} where A′′=w0Aw0A^{\prime\prime}=w_{0}Aw_{0} is the element of 𝒜Ri0+1{\mathcal{A}}_{R_{i_{0}+1}} that is conjugate to AA and BB. Thus we obtain that (Pi0+1)({\rm P}_{i_{0}+1}) holds.

(b) We consider the case that UU′′U^{\prime}\neq U^{\prime\prime}.

Here UσU^{\prime}_{\sigma} and Uσ′′U^{\prime\prime}_{\sigma} are non-empty. Then there exists a sequence of spherical-product subsets

U=U1wT1U2wT2wTq1Uq=U′′\displaystyle U^{\prime}=U_{1}\mathop{\simeq}_{\,\,w_{T_{1}}}U_{2}\mathop{\simeq}_{\,\,w_{T_{2}}}\cdots{}\mathop{\simeq}_{\ \ w_{T_{q-1}}}U_{q}=U^{\prime\prime}

in Ri0R_{i_{0}}. Here T1,,Tq1T_{1},\cdots,T_{q-1} are spherical subsets of Ri0R_{i_{0}} such that (Uj)σ(Uj+1)σTj(U_{j})_{\sigma}\cup(U_{j+1})_{\sigma}\subset T_{j} for j=1,,q1j=1,\ldots,q-1, (Uj)ν=Uν(U_{j})_{\nu}=U^{\prime}_{\nu} for j=1,,qj=1,\ldots,q, and st=tsst=ts for any sUνs\in U^{\prime}_{\nu} and tT1Tq1t\in T_{1}\cup\cdots\cup T_{q-1}. Also U=U1A¯i0U^{\prime}=U_{1}\subset\overline{A}_{i_{0}} and U′′=UqAU^{\prime\prime}=U_{q}\subset A.

Let σj:=(Uj)σ\sigma_{j}:=(U_{j})_{\sigma} for each j=1,,qj=1,\ldots,q. Then

Uσ=σ1wT1σ2wT2wTq1σq=Uσ′′.\displaystyle U^{\prime}_{\sigma}=\sigma_{1}\mathop{\simeq}_{\,\,w_{T_{1}}}\sigma_{2}\mathop{\simeq}_{\,\,w_{T_{2}}}\cdots{}\mathop{\simeq}_{\ \ w_{T_{q-1}}}\sigma_{q}=U^{\prime\prime}_{\sigma}.

We will attach AA to A¯i0\overline{A}_{i_{0}} by gluing UU^{\prime} and U′′U^{\prime\prime} by some finite twists of Ri0R_{i_{0}} (preserving 𝒜Ri0{\mathcal{A}}_{R_{i_{0}}} and fixing A¯i0\overline{A}_{i_{0}}) induced by the untangle-conjugate sequence from UU^{\prime} to U′′U^{\prime\prime}.

We first suppose that UqA¯i0U_{q}\not\subset\overline{A}_{i_{0}} (that is, σqA¯i0\sigma_{q}\not\subset\overline{A}_{i_{0}}). Let j0{1,,q1}j_{0}\in\{1,\ldots,q-1\} be the number as σj0A¯i0\sigma_{j_{0}}\subset\overline{A}_{i_{0}} and σjA¯i0\sigma_{j}\not\subset\overline{A}_{i_{0}} for any j=j0+1,,qj=j_{0}+1,\ldots,q. For T:=Tj0T:=T_{j_{0}}, wTσj0+1wT=σj0w_{T}\sigma_{j_{0}+1}w_{T}=\sigma_{j_{0}} and TA¯i0T\not\subset\overline{A}_{i_{0}}.

Let V:=TUν=Uj0TV:=T\cup U^{\prime}_{\nu}=U_{j_{0}}\cup T. Here st=tsst=ts for any sUνs\in U^{\prime}_{\nu} and tTt\in T. Then TT is a spherical subset and VV is a spherical-product subset of Ri0R_{i_{0}}. Also A¯i0V=Uj0\overline{A}_{i_{0}}\cap V=U_{j_{0}} and |Uj0|=|U|=|U|=d2d1|U_{j_{0}}|=|U^{\prime}|=|U|=d_{2}\geq d_{1}.

Then by Remark 3.3, Uj0U_{j_{0}} separates Ri0R_{i_{0}} and Uj0U_{j_{0}} separates A¯i0\overline{A}_{i_{0}} and AA in Ri0R_{i_{0}}.

Thus V=Uj0TV=U_{j_{0}}\cup T separates Ri0R_{i_{0}} and VV separates A¯i0\overline{A}_{i_{0}} and AA. For some two subsets XX and YY of Ri0R_{i_{0}},

  1. (1)

    Ri0V=XYR_{i_{0}}-V=X\cup Y that is a disjoint union,

  2. (2)

    o(xy)=o(xy)=\infty for any xXx\in X and yYy\in Y,

  3. (3)

    A¯i0XV\overline{A}_{i_{0}}\subset X\cup V and

  4. (4)

    AYVA\subset Y\cup V.

Here for any C𝒜Ri0C\in{\mathcal{A}}_{R_{i_{0}}}, CXVC\subset X\cup V or CYVC\subset Y\cup V, since Uj0=A¯i0A′′U_{j_{0}}=\overline{A}_{i_{0}}\cap A^{\prime\prime} and V=Uj0TV=U_{j_{0}}\cup T. Then Ri0:=XV(wTYwT)R^{\prime}_{i_{0}}:=X\cup V\cup(w_{T}Yw_{T}) is a twist of Ri0R_{i_{0}} preserving 𝒜Ri0{\mathcal{A}}_{R_{i_{0}}} and fixing A¯i0\overline{A}_{i_{0}}. Let 𝒜Ri0{\mathcal{A}}_{R^{\prime}_{i_{0}}} be the separation of Ri0R^{\prime}_{i_{0}} induced by 𝒜Ri0{\mathcal{A}}_{R_{i_{0}}} and the twist.

Then wTσj0+1wT=σj0w_{T}\sigma_{j_{0}+1}w_{T}=\sigma_{j_{0}} and wTUj0+1wT=Uj0w_{T}U_{j_{0}+1}w_{T}=U_{j_{0}}. Hence U′′U^{\prime\prime} moves one step toward UU^{\prime} by this twist. Let σk:=wTσkwT\sigma^{\prime}_{k}:=w_{T}\sigma_{k}w_{T} and Uk:=wTUkwTU^{\prime}_{k}:=w_{T}U_{k}w_{T} for each k=j0+1,,qk=j_{0}+1,\ldots,q and let Tk:=wTTkwTT^{\prime}_{k}:=w_{T}T_{k}w_{T} for k=j0+1,,q1k=j_{0}+1,\ldots,q-1 (that are the corresponding subsets of Ri0R^{\prime}_{i_{0}} to σk\sigma_{k}, UkU_{k} and TkT_{k} in Ri0R_{i_{0}} respectively). Then

Uσ=σ1wT1wTj01σj0=σj0+1wTj0+1σj0+2wTj0+2wTq1σq=(U¯′′)σ\displaystyle U^{\prime}_{\sigma}=\sigma_{1}\mathop{\simeq}_{\,\,w_{T_{1}}}\cdots{}\mathop{\simeq}_{\ \ w_{T_{j_{0}-1}}}\sigma_{j_{0}}=\sigma^{\prime}_{j_{0}+1}{}\mathop{\simeq}_{\ \ w_{T^{\prime}_{j_{0}+1}}}\sigma^{\prime}_{j_{0}+2}{}\mathop{\simeq}_{\ \ w_{T^{\prime}_{j_{0}+2}}}\cdots{}\mathop{\simeq}_{\ \ w_{T^{\prime}_{q-1}}}\sigma^{\prime}_{q}=(\overline{U}^{\prime\prime})_{\sigma}

and

U=U1wT1wTj01Uj0=Uj0+1wTj0+1Uj0+2wTj0+2wTq1Uq=U¯′′\displaystyle U^{\prime}=U_{1}\mathop{\simeq}_{\,\,w_{T_{1}}}\cdots{}\mathop{\simeq}_{\ \ w_{T_{j_{0}-1}}}U_{j_{0}}=U^{\prime}_{j_{0}+1}{}\mathop{\simeq}_{\ \ w_{T^{\prime}_{j_{0}+1}}}U^{\prime}_{j_{0}+2}{}\mathop{\simeq}_{\ \ w_{T^{\prime}_{j_{0}+2}}}\cdots{}\mathop{\simeq}_{\ \ w_{T^{\prime}_{q-1}}}U^{\prime}_{q}=\overline{U}^{\prime\prime}

in Ri0R^{\prime}_{i_{0}} where U¯′′:=wTU′′wT\overline{U}^{\prime\prime}:=w_{T}U^{\prime\prime}w_{T}. Here A:=wTAwT𝒜Ri0A^{\prime}:=w_{T}Aw_{T}\in{\mathcal{A}}_{R^{\prime}_{i_{0}}} is conjugate to AA and BB, and U¯′′A\overline{U}^{\prime\prime}\subset A^{\prime} holds.

We iterate this argument. Then we obtain a Coxeter generating set Ri0′′R^{\prime\prime}_{i_{0}} from Ri0R_{i_{0}} by some finite twists preserving 𝒜Ri0{\mathcal{A}}_{R_{i_{0}}} and fixing A¯i0\overline{A}_{i_{0}} such that the above sequence of spherical-product subsets transforms to

U=U1wT1U2wT2wTj01Uj0=U′′′\displaystyle U^{\prime}=U_{1}\mathop{\simeq}_{\,\,w_{T_{1}}}U_{2}\mathop{\simeq}_{\,\,w_{T_{2}}}\cdots{}\mathop{\simeq}_{\ \ w_{T_{j_{0}-1}}}U_{j_{0}}=U^{\prime\prime\prime}

in Ri0′′R^{\prime\prime}_{i_{0}} where 𝒜Ri0′′{\mathcal{A}}_{R^{\prime\prime}_{i_{0}}} is the separation of Ri0′′R^{\prime\prime}_{i_{0}} induced by 𝒜Ri0{\mathcal{A}}_{R_{i_{0}}} and the twist, and U′′′A′′U^{\prime\prime\prime}\subset A^{\prime\prime} for A′′𝒜Ri0′′A^{\prime\prime}\in{\mathcal{A}}_{R^{\prime\prime}_{i_{0}}} that is conjugate to AA and BB. Here A′′A¯i0A^{\prime\prime}\not\subset\overline{A}_{i_{0}} and Uj0A¯i0U_{j_{0}}\subset\overline{A}_{i_{0}} by the assumption and the definition of the number j0j_{0}.

Then Uj0=A¯i0A′′U_{j_{0}}=\overline{A}_{i_{0}}\cap A^{\prime\prime} and |Uj0|=d1=d2|U_{j_{0}}|=d_{1}=d_{2}. Hence Uj0U_{j_{0}} separates Ri0′′R^{\prime\prime}_{i_{0}}. Thus if j02j_{0}\geq 2 then for T0:=Tj01T_{0}:=T_{j_{0}-1}, V0:=T0Uν=Uj0T0V_{0}:=T_{0}\cup U^{\prime}_{\nu}=U_{j_{0}}\cup T_{0} separates Ri0′′R^{\prime\prime}_{i_{0}} and we have a twist Ri0′′′R^{\prime\prime\prime}_{i_{0}} of Ri0′′R^{\prime\prime}_{i_{0}} by V0V_{0} and wT0w_{T_{0}} preserving 𝒜Ri0′′{\mathcal{A}}_{R^{\prime\prime}_{i_{0}}} and fixing A¯i0\overline{A}_{i_{0}}. Then U′′′U^{\prime\prime\prime} moves one step toward UU^{\prime} by this twist. Here A′′′:=wT0A′′wT0A^{\prime\prime\prime}:=w_{T_{0}}A^{\prime\prime}w_{T_{0}} is conjugate to AA and BB, and Uj01=wT0Uj0wT0A′′′U_{j_{0}-1}=w_{T_{0}}U_{j_{0}}w_{T_{0}}\subset A^{\prime\prime\prime} in Ri0′′′R^{\prime\prime\prime}_{i_{0}}.

Since Uj0U_{j_{0}} separates Ri0′′R^{\prime\prime}_{i_{0}} and separates A¯i0\overline{A}_{i_{0}} and A′′A^{\prime\prime} in Ri0′′R^{\prime\prime}_{i_{0}}, we have that Uj01U_{j_{0}-1} separates Ri0′′′R^{\prime\prime\prime}_{i_{0}} and Uj01U_{j_{0}-1} separates A¯i0\overline{A}_{i_{0}} and A′′′A^{\prime\prime\prime} in Ri0′′′R^{\prime\prime\prime}_{i_{0}}. Hence Tj01UνT_{j_{0}-1}\cup U^{\prime}_{\nu} separates Ri0′′′R^{\prime\prime\prime}_{i_{0}} and Tj01UνT_{j_{0}-1}\cup U^{\prime}_{\nu} separates A¯i0\overline{A}_{i_{0}} and A′′′A^{\prime\prime\prime} in Ri0′′′R^{\prime\prime\prime}_{i_{0}}.

We can iterate this argument for Tj01,,T1T_{j_{0}-1},\ldots,T_{1}.

By iterating this argument and by (a), we obtain a Coxeter generating set Ri0+1R_{i_{0}+1} from Ri0R_{i_{0}} by some finite twists preserving 𝒜Ri0{\mathcal{A}}_{R_{i_{0}}} and fixing A¯i0\overline{A}_{i_{0}} such that A¯i0A\overline{A}_{i_{0}}\cup A^{\prime} in Ri0+1R_{i_{0}+1} is conjugate to B¯i0B\overline{B}_{i_{0}}\cup B in Si0+1S_{i_{0}+1} where AA^{\prime} is the element of 𝒜Ri0+1{\mathcal{A}}_{R_{i_{0}+1}} that is conjugate to AA and BB. Hence, we obtain that (Pi0+1)({\rm P}_{i_{0}+1}) holds.

Thus (Pi)({\rm P}_{i}) holds for any i=1,,ni=1,\ldots,n.

Then (Pn)({\rm P}_{n}) implies that there exist Coxeter generating sets RnR_{n} and SnS_{n} for WW such that RnR_{n} and SnS_{n} are obtained from RR and SS by some finite twists respectively and RnR_{n} and SnS_{n} are conjugate, because the unions of the nn-th elements of 𝒜Rn{\mathcal{A}}_{R_{n}} in RnR_{n} and 𝒜Sn{\mathcal{A}}_{S_{n}} in SnS_{n} are just RnR_{n} and SnS_{n} respectively.

Therefore, RR and SS are conjugate up to finite twists.

In the case that RR and SS are connected, we showed that if (W,R)(W,R) and (W,S)(W,S) are some-separation-compatible, then RR and SS are conjugate up to finite twists.

We suppose that RR and SS are not connected.

Let R1,,RnR_{1},\ldots,R_{n} be the connected components of RR and let S1,,SnS_{1},\ldots,S_{n} be the connected components of SS; that is,

W=WS1WSn=WR1WRn,W=W_{S_{1}}*\cdots*W_{S_{n}}=W_{R_{1}}*\cdots*W_{R_{n}},

where the numbers of the connected components of RR and SS are equal.

By the same argument as above (in the case that RR and SS are connected), we can obtain Coxeter generating sets RR^{\prime} and SS^{\prime} for WW such that RR^{\prime} and SS^{\prime} are obtained from RR and SS by some finite twists respectively and RiR^{\prime}_{i} and SiS^{\prime}_{i} are conjugate for any i=1,,ni=1,\ldots,n, where R1,,RnR^{\prime}_{1},\ldots,R^{\prime}_{n} are the connected components of RR^{\prime} and S1,,SnS^{\prime}_{1},\ldots,S^{\prime}_{n} are the connected components of SS^{\prime}.

Then by the untangle-condition, there exists a Coxeter generating set R′′R^{\prime\prime} for WW such that R′′R^{\prime\prime} is obtained from RR^{\prime} by some finite twists and SS^{\prime} and R′′R^{\prime\prime} are conjugate.

Therefore, RR and SS are conjugate up to finite twists. ∎

We obtain the following corollary from Theorem 4.1.

Corollary 4.2.

For Coxeter systems (W,R)(W,R) and (W,S)(W,S) with the untangle-condition, the following two statements are equivalent:

  1. (i)

    RR and SS are conjugate up to finite twists.

  2. (ii)

    (W,R0)(W,R_{0}) and (W,S)(W,S) are some-separation-compatible for some Coxeter generating set R0R_{0} obtained from RR by finite twists.

5. 𝒜~S\widetilde{\mathcal{A}}_{S} is a separation of SS

In this section, we prove the following proposition.

Proposition 5.1.

Let (W,S)(W,S) be a Coxeter system and let 𝒜~S\widetilde{\mathcal{A}}_{S} be the set of subsets of SS in Definition 1.14. Then 𝒜~S\widetilde{\mathcal{A}}_{S} is a separation of SS.

Let (W,S)(W,S) be a Coxeter system and let 𝒜0{\mathcal{A}}_{0} be the set of maximal twist-rigid subsets of SS. We suppose that SS is connected. For 𝒜~S\widetilde{\mathcal{A}}_{S}, we show the statements (1)–(4) of the definition of a separation (in Section 1) hold.

(1) and (3): For each A0𝒜0A_{0}\in{\mathcal{A}}_{0}, there exists a unique B𝒜~SB\in\widetilde{\mathcal{A}}_{S} such that A0BA_{0}\subset B. (Here we can denote B=[A0]B=\bigcup[A_{0}] by Definition 1.14.) Hence 𝒜~S=𝒜0=S\bigcup\widetilde{\mathcal{A}}_{S}=\bigcup{\mathcal{A}}_{0}=S.

(2) Let B𝒜~SB\in\widetilde{\mathcal{A}}_{S}. Then B=[A0]B=\bigcup[A_{0}] for some A0𝒜0A_{0}\in{\mathcal{A}}_{0} by Definition 1.14. Hence BB is a union of some maximal twist-rigid subsets of SS. Also B=[A0]B=\bigcup[A_{0}] is connected by the definition of the equivalence relation “\sim” on 𝒜0{\mathcal{A}}_{0}.

To prove (4) in the definition of a separation for 𝒜~S\widetilde{\mathcal{A}}_{S}, we show some lemmas.

Let 𝒜{\mathcal{A}} be a minimal separation of SS (and fix 𝒜{\mathcal{A}}).

Lemma 5.2.

Let B0𝒜~S(II)B_{0}\in\widetilde{\mathcal{A}}_{S}^{\rm(II)}. Let A1,,AlA_{1},\ldots,A_{l} be the distinct elements of 𝒜{\mathcal{A}} such that AiB0A_{i}\subset B_{0} for any i=1,,li=1,\ldots,l. Then B0=i=1lAi\textstyle B_{0}=\bigcup_{i=1}^{l}A_{i}.

Proof.

We can denote B0=[A]B_{0}=\bigcup[A^{\prime}] for some A𝒜0A^{\prime}\in{\mathcal{A}}_{0}. Let [A]={A1,,At}[A^{\prime}]=\{A^{\prime}_{1},\ldots,A^{\prime}_{t}\} (where Aj𝒜0A^{\prime}_{j}\in{\mathcal{A}}_{0} as AjAA^{\prime}_{j}\sim A^{\prime}). For each j=1,,tj=1,\ldots,t, AjAj′′A^{\prime}_{j}\subset A^{\prime\prime}_{j} for some unique Aj′′𝒜A^{\prime\prime}_{j}\in{\mathcal{A}}, since 𝒜{\mathcal{A}} is a separation of SS. Here A1′′,,At′′A^{\prime\prime}_{1},\ldots,A^{\prime\prime}_{t} need not be different all together.

We show that Aj′′B0A^{\prime\prime}_{j}\subset B_{0} for any j{1,,t}j\in\{1,\ldots,t\}.

Let j{1,,t}j\in\{1,\ldots,t\}. Here AjB0=[A]A^{\prime}_{j}\subset B_{0}=\bigcup[A^{\prime}] and Aj𝒜0A^{\prime}_{j}\in{\mathcal{A}}_{0}. Hence AjAA^{\prime}_{j}\sim A^{\prime}. Let A′′𝒜0A^{\prime\prime}\in{\mathcal{A}}_{0} as A′′Aj′′A^{\prime\prime}\subset A^{\prime\prime}_{j}. Then A′′AjA^{\prime\prime}\sim A^{\prime}_{j} by the definition of the equivalence relation “\sim” on 𝒜0{\mathcal{A}}_{0}, since A′′,Aj𝒜0A^{\prime\prime},A^{\prime}_{j}\in{\mathcal{A}}_{0} and A′′AjAj′′𝒜A^{\prime\prime}\cup A^{\prime}_{j}\subset A^{\prime\prime}_{j}\in{\mathcal{A}}. Thus A′′AjAA^{\prime\prime}\sim A^{\prime}_{j}\sim A^{\prime}. We obtain that A′′[A]=B0A^{\prime\prime}\subset\bigcup[A^{\prime}]=B_{0}. Hence

Aj′′={A′′𝒜0:A′′Aj′′}B0.A^{\prime\prime}_{j}=\bigcup\{A^{\prime\prime}\in{\mathcal{A}}_{0}:A^{\prime\prime}\subset A^{\prime\prime}_{j}\}\subset B_{0}.

Thus Aj′′B0A^{\prime\prime}_{j}\subset B_{0} for any j{1,,t}j\in\{1,\ldots,t\}.

Then {A1′′,,At′′}{A1,,Al}\{A^{\prime\prime}_{1},\ldots,A^{\prime\prime}_{t}\}\subset\{A_{1},\ldots,A_{l}\} (in fact, the equality holds) and

B0=[A]=j=1tAjj=1tAj′′i=1lAi.\textstyle B_{0}=\bigcup[A^{\prime}]=\bigcup_{j=1}^{t}A^{\prime}_{j}\subset\bigcup_{j=1}^{t}A^{\prime\prime}_{j}\subset\bigcup_{i=1}^{l}A_{i}.

Also obviously i=1lAiB0\bigcup_{i=1}^{l}A_{i}\subset B_{0} holds. Thus B0=i=1lAiB_{0}=\bigcup_{i=1}^{l}A_{i}. ∎

Now we say that a sequence A1,,Al𝒜A_{1},\ldots,A_{l}\in{\mathcal{A}} satisfies the condition ()(*) in 𝒜{\mathcal{A}}, if

  1. ()(*)  

    (A1Ai)Ai+1(A_{1}\cup\cdots\cup A_{i})\cap A_{i+1} is maximal in

    {(A1Ai)A:A𝒜{A1,,Ai}}\{(A_{1}\cup\cdots\cup A_{i})\cap A:A\in{\mathcal{A}}-\{A_{1},\ldots,A_{i}\}\}

    for any i=1,,l1i=1,\ldots,l-1.

We next show the following.

Lemma 5.3.

Let B0𝒜~S(II)B_{0}\in\widetilde{\mathcal{A}}_{S}^{\rm(II)}. Let A1,,AlA_{1},\ldots,A_{l} be the distinct elements of 𝒜{\mathcal{A}} such that AiB0A_{i}\subset B_{0} for any i=1,,li=1,\ldots,l. Then there exists a bijective map f:{1,,l}{1,,l}f:\{1,\ldots,l\}\to\{1,\ldots,l\} such that the sequence Af(1),,Af(l)A_{f(1)},\ldots,A_{f(l)} satisfies the condition ()(*) in 𝒜{\mathcal{A}}.

Proof.

Let f(1){1,,l}f(1)\in\{1,\ldots,l\} that is arbitrary. Let f(2){1,,l}{f(1)}f(2)\in\{1,\ldots,l\}-\{f(1)\} such that Af(1)Af(2)A_{f(1)}\cap A_{f(2)} is maximal in {Af(1)A:A{A1,,Al}{Af(1)}}\{A_{f(1)}\cap A:A\in\{A_{1},\ldots,A_{l}\}-\{A_{f(1)}\}\}. Then we show that Af(1)Af(2)A_{f(1)}\cap A_{f(2)} is maximal in {Af(1)A:A𝒜{Af(1)}}\{A_{f(1)}\cap A:A\in{\mathcal{A}}-\{A_{f(1)}\}\}. Indeed if this does not hold, then there exists A2𝒜{Af(1)}A^{\prime}_{2}\in{\mathcal{A}}-\{A_{f(1)}\} such that Af(1)A2A_{f(1)}\cap A^{\prime}_{2} is maximal in {Af(1)A:A𝒜{Af(1)}}\{A_{f(1)}\cap A:A\in{\mathcal{A}}-\{A_{f(1)}\}\} and Af(1)Af(2)Af(1)A2A_{f(1)}\cap A_{f(2)}\subsetneq A_{f(1)}\cap A^{\prime}_{2}. Here A2{A1,,Al}A^{\prime}_{2}\not\in\{A_{1},\ldots,A_{l}\} and A2B0A^{\prime}_{2}\not\subset B_{0}. Hence some U¯1𝒰¯\overline{U}_{1}\in\overline{\mathcal{U}} separates B0B_{0} and A2A^{\prime}_{2}, where 𝒰¯\overline{\mathcal{U}} is the separators set as in Definition 1.14. Here “U¯1\overline{U}_{1} separates B0B_{0} and A2A^{\prime}_{2}” means that B0X¯j1B_{0}\subset\overline{X}_{j_{1}} and A2X¯j2A^{\prime}_{2}\subset\overline{X}_{j_{2}} for some j1,j2{1,,t}j_{1},j_{2}\in\{1,\ldots,t\} as j1j2j_{1}\neq j_{2}, where X1,,XtX_{1},\ldots,X_{t} are the connected components of SU1S-U_{1} and SU1=X1XtS-U_{1}=X_{1}\cup\cdots\cup X_{t}.

Then U¯1\overline{U}_{1} separates Af(1)A_{f(1)} and A2A^{\prime}_{2}. Thus U¯1\overline{U}_{1} separates Af(1)A_{f(1)} and Af(2)A_{f(2)}, because Af(1)Af(2)Af(1)A2U¯1A_{f(1)}\cap A_{f(2)}\subsetneq A_{f(1)}\cap A^{\prime}_{2}\subset\overline{U}_{1}. This contradicts that Af(1)Af(2)B0𝒜~S(II)A_{f(1)}\cup A_{f(2)}\subset B_{0}\in\widetilde{\mathcal{A}}_{S}^{\rm(II)}. Thus Af(1)Af(2)A_{f(1)}\cap A_{f(2)} is maximal in {Af(1)A:A𝒜{Af(1)}}\{A_{f(1)}\cap A:A\in{\mathcal{A}}-\{A_{f(1)}\}\}.

Let f(3){1,,l}{f(1),f(2)}f(3)\in\{1,\ldots,l\}-\{f(1),f(2)\} such that (Af(1)Af(2))Af(3)(A_{f(1)}\cup A_{f(2)})\cap A_{f(3)} is maximal in

{(Af(1)Af(2))A:A{A1,,Al}{Af(1),Af(2)}}.\{(A_{f(1)}\cup A_{f(2)})\cap A:A\in\{A_{1},\ldots,A_{l}\}-\{A_{f(1)},A_{f(2)}\}\}.

Then we show that (Af(1)Af(2))Af(3)(A_{f(1)}\cup A_{f(2)})\cap A_{f(3)} is maximal in

{(Af(1)Af(2))A:A𝒜{Af(1),Af(2)}}.\{(A_{f(1)}\cup A_{f(2)})\cap A:A\in{\mathcal{A}}-\{A_{f(1)},A_{f(2)}\}\}.

Indeed if this does not hold, then there exists A3𝒜{Af(1),Af(2)}A^{\prime}_{3}\in{\mathcal{A}}-\{A_{f(1)},A_{f(2)}\} such that (Af(1)Af(2))A3(A_{f(1)}\cup A_{f(2)})\cap A^{\prime}_{3} is maximal in

{(Af(1)Af(2))A:A𝒜{Af(1),Af(2)}}\{(A_{f(1)}\cup A_{f(2)})\cap A:A\in{\mathcal{A}}-\{A_{f(1)},A_{f(2)}\}\}

and

(Af(1)Af(2))Af(3)(Af(1)Af(2))A3.(A_{f(1)}\cup A_{f(2)})\cap A_{f(3)}\subsetneq(A_{f(1)}\cup A_{f(2)})\cap A^{\prime}_{3}.

Here A3{A1,,Al}A^{\prime}_{3}\not\in\{A_{1},\ldots,A_{l}\} and A3B0A^{\prime}_{3}\not\subset B_{0}. Hence some U¯2𝒰¯\overline{U}_{2}\in\overline{\mathcal{U}} separates B0B_{0} and A3A^{\prime}_{3}, and U¯2\overline{U}_{2} separates Af(1)Af(2)A_{f(1)}\cup A_{f(2)} and A3A^{\prime}_{3}. Then U¯2\overline{U}_{2} separates Af(1)Af(2)A_{f(1)}\cup A_{f(2)} and Af(3)A_{f(3)}, because (Af(1)Af(2))Af(3)(Af(1)Af(2))A3U¯2(A_{f(1)}\cup A_{f(2)})\cap A_{f(3)}\subsetneq(A_{f(1)}\cup A_{f(2)})\cap A^{\prime}_{3}\subset\overline{U}_{2}. This contradicts that Af(1)Af(2)Af(3)B0𝒜~S(II)A_{f(1)}\cup A_{f(2)}\cup A_{f(3)}\subset B_{0}\in\widetilde{\mathcal{A}}_{S}^{\rm(II)}.

By iterating this argument, we obtain a sequence Af(1),,Af(l)A_{f(1)},\ldots,A_{f(l)} that satisfies the condition ()(*) in 𝒜{\mathcal{A}}. ∎

Lemma 5.4.

Let B1,,Bn𝒜~SB_{1},\ldots,B_{n}\in\widetilde{\mathcal{A}}_{S} such that the sequence B1,,BnB_{1},\ldots,B_{n} satisfies the condition ()(*) in 𝒜~S\widetilde{\mathcal{A}}_{S}. Then there exists a sequence

A1,,Al1,Al1+1,,Al2,,Aln1+1,,Aln𝒜A_{1},\ldots,A_{l_{1}},A_{l_{1}+1},\ldots,A_{l_{2}},\ldots,A_{l_{n-1}+1},\ldots,A_{l_{n}}\;\in{\mathcal{A}}

satisfying the condition ()(*) in 𝒜{\mathcal{A}} such that

B1=i=1l1Ai,B2=i=l1+1l2Ai,,Bn=i=ln1+1lnAi.\textstyle B_{1}=\bigcup_{i=1}^{l_{1}}A_{i},\ B_{2}=\bigcup_{i=l_{1}+1}^{l_{2}}A_{i},\ \ldots,\ B_{n}=\bigcup_{i=l_{n-1}+1}^{l_{n}}A_{i}.

Also (B1Bi)Bi+1=(B1Bi)Ali+1(B_{1}\cup\cdots\cup B_{i})\cap B_{i+1}=(B_{1}\cup\cdots\cup B_{i})\cap A_{l_{i}+1} for any i=1,,n1i=1,\ldots,n-1.

Proof.

In the case that n=1n=1, by Lemma 5.3, there exists a sequence A1,,Al1𝒜A_{1},\ldots,A_{l_{1}}\in{\mathcal{A}} satisfying the condition ()(*) in 𝒜{\mathcal{A}} such that B1=i=1l1AiB_{1}=\bigcup_{i=1}^{l_{1}}A_{i}.

Let n2n\geq 2. Suppose that B1,,Bn1,Bn𝒜~SB_{1},\ldots,B_{n-1},B_{n}\in\widetilde{\mathcal{A}}_{S} satisfies the condition ()(*) in 𝒜~S\widetilde{\mathcal{A}}_{S}, a sequence

A1,,Al1,Al1+1,,Al2,,Aln2+1,,Aln1𝒜A_{1},\ldots,A_{l_{1}},A_{l_{1}+1},\ldots,A_{l_{2}},\ldots,A_{l_{n-2}+1},\ldots,A_{l_{n-1}}\;\in{\mathcal{A}}

satisfies the condition ()(*) in 𝒜{\mathcal{A}} and

B1=i=1l1Ai,B2=i=l1+1l2Ai,,Bn1=i=ln2+1ln1Ai.\textstyle B_{1}=\bigcup_{i=1}^{l_{1}}A_{i},\ \;B_{2}=\bigcup_{i=l_{1}+1}^{l_{2}}A_{i},\ \;\ldots,\ \;B_{n-1}=\bigcup_{i=l_{n-2}+1}^{l_{n-1}}A_{i}.

Here Bn𝒜~SB_{n}\in\widetilde{\mathcal{A}}_{S} and (B1Bn1)Bn(B_{1}\cup\cdots\cup B_{n-1})\cap B_{n} is maximal in

{(B1Bn1)B:B𝒜~S{B1,,Bn1}}.\{(B_{1}\cup\cdots\cup B_{n-1})\cap B:B\in\widetilde{\mathcal{A}}_{S}-\{B_{1},\ldots,B_{n-1}\}\}.

Since Bn{B1,,Bn1}B_{n}\not\in\{B_{1},\ldots,B_{n-1}\}, by the definition of 𝒜~S\widetilde{\mathcal{A}}_{S}, there exists U¯𝒰¯\overline{U}\in\overline{\mathcal{U}} such that BnX¯1B_{n}\subset\overline{X}_{1} and B1Bn1X¯2X¯tB_{1}\cup\cdots\cup B_{n-1}\subset\overline{X}_{2}\cup\cdots\cup\overline{X}_{t} where SU¯=X1XtS-\overline{U}=X_{1}\cup\cdots\cup X_{t} is a disjoint union, X1,,XtX_{1},\ldots,X_{t} are the connected components of SU¯S-\overline{U} and X¯j={A𝒜:AXjU¯}\overline{X}_{j}=\bigcup\{A\in{\mathcal{A}}:A\subset X_{j}\cup\overline{U}\} for j=1,,tj=1,\ldots,t. Here U¯\overline{U} is a separator of 𝒜{\mathcal{A}}. For U0:=U¯X¯1U_{0}:=\overline{U}\cap\overline{X}_{1}, by (v) in the definition of a separator, there exists A0𝒜A^{\prime}_{0}\in{\mathcal{A}} such that U0A0X¯1U_{0}\subset A^{\prime}_{0}\subset\overline{X}_{1}. Then by (iv) in the definition of a separator, the following equation holds;

U0\displaystyle U_{0} =(X¯2X¯t)A0=U¯A0\displaystyle=(\overline{X}_{2}\cup\cdots\cup\overline{X}_{t})\cap A^{\prime}_{0}=\overline{U}\cap A^{\prime}_{0}
=(X¯2X¯t)X¯1=U¯X¯1.\displaystyle=(\overline{X}_{2}\cup\cdots\cup\overline{X}_{t})\cap\overline{X}_{1}=\overline{U}\cap\overline{X}_{1}.

Let U0:=(B1Bn1)BnU^{\prime}_{0}:=(B_{1}\cup\cdots\cup B_{n-1})\cap B_{n}. Then

U0=(B1Bn1)Bn(X¯2X¯t)X¯1=U0.U^{\prime}_{0}=(B_{1}\cup\cdots\cup B_{n-1})\cap B_{n}\subset(\overline{X}_{2}\cup\cdots\cup\overline{X}_{t})\cap\overline{X}_{1}=U_{0}.

Hence U0U0A0X¯1U^{\prime}_{0}\subset U_{0}\subset A^{\prime}_{0}\subset\overline{X}_{1}. Thus

U0\displaystyle U^{\prime}_{0} =(B1Bn1)A0\displaystyle=(B_{1}\cup\cdots\cup B_{n-1})\cap A^{\prime}_{0}
=(B1Bn1)X¯1.\displaystyle=(B_{1}\cup\cdots\cup B_{n-1})\cap\overline{X}_{1}.

Here U0=(B1Bn1)BnU^{\prime}_{0}=(B_{1}\cup\cdots\cup B_{n-1})\cap B_{n} is maximal in

{(B1Bn1)B:B𝒜~S{B1,,Bn1}}.\{(B_{1}\cup\cdots\cup B_{n-1})\cap B:B\in\widetilde{\mathcal{A}}_{S}-\{B_{1},\ldots,B_{n-1}\}\}.

By the above argument, U0=(B1Bn1)A0U^{\prime}_{0}=(B_{1}\cup\cdots\cup B_{n-1})\cap A^{\prime}_{0} is maximal in

{(B1Bn1)A:A𝒜{A1,,Aln1}}\{(B_{1}\cup\cdots\cup B_{n-1})\cap A:A\in{\mathcal{A}}-\{A_{1},\ldots,A_{l_{n-1}}\}\}

and it is maximal in

{(A1Aln1)A:A𝒜{A1,,Aln1}}.\{(A_{1}\cup\cdots\cup A_{l_{n-1}})\cap A:A\in{\mathcal{A}}-\{A_{1},\ldots,A_{l_{n-1}}\}\}.

Hence the sequence

A1,,Al1,Al1+1,,Al2,,Aln2+1,,Aln1,A0𝒜A_{1},\ldots,A_{l_{1}},A_{l_{1}+1},\ldots,A_{l_{2}},\ldots,A_{l_{n-2}+1},\ldots,A_{l_{n-1}},\,A^{\prime}_{0}\;\in{\mathcal{A}}

satisfies the condition ()(*) in 𝒜{\mathcal{A}}. Here U0U^{\prime}_{0} is a separator of 𝒜{\mathcal{A}}.

Let A1,,AlA^{\prime}_{1},\ldots,A^{\prime}_{l^{\prime}} be the set of 𝒜{\mathcal{A}} such that AiBnA^{\prime}_{i}\subset B_{n} for any i=1,,li=1,\ldots,l^{\prime}. By Lemma 5.2, Bn=A1AlB_{n}=A^{\prime}_{1}\cup\cdots\cup A^{\prime}_{l^{\prime}}. By Lemma 5.3, we may suppose that A1=A0A^{\prime}_{1}=A^{\prime}_{0} and the sequence A1,,AlA^{\prime}_{1},\ldots,A^{\prime}_{l^{\prime}} satisfies the condition ()(*) in 𝒜{\mathcal{A}}. Then

(B1Bn1)Bn=U0=(B1Bn1)A1.(B_{1}\cup\cdots\cup B_{n-1})\cap B_{n}=U^{\prime}_{0}=(B_{1}\cup\cdots\cup B_{n-1})\cap A^{\prime}_{1}.

We show that

((B1Bn1)A1Ai)Ai+1=(A1Ai)Ai+1((B_{1}\cup\cdots\cup B_{n-1})\cup A^{\prime}_{1}\cup\cdots\cup A^{\prime}_{i})\cap A^{\prime}_{i+1}=(A^{\prime}_{1}\cup\cdots\cup A^{\prime}_{i})\cap A^{\prime}_{i+1}

for any i=1,,l1i=1,\ldots,l^{\prime}-1. Let Ui+1:=((B1Bn1)A1Ai)Ai+1U_{i+1}:=((B_{1}\cup\cdots\cup B_{n-1})\cup A^{\prime}_{1}\cup\cdots\cup A^{\prime}_{i})\cap A^{\prime}_{i+1}. Then

Ui+1\displaystyle U_{i+1} =((B1Bn1)A1Ai)Ai+1\displaystyle=((B_{1}\cup\cdots\cup B_{n-1})\cup A^{\prime}_{1}\cup\cdots\cup A^{\prime}_{i})\cap A^{\prime}_{i+1}
(X¯2X¯t)A1Ai)Ai+1\displaystyle\subset(\overline{X}_{2}\cup\cdots\cup\overline{X}_{t})\cup A^{\prime}_{1}\cup\cdots\cup A^{\prime}_{i})\cap A^{\prime}_{i+1}
=((X¯2X¯t)Ai+1)((A1Ai)Ai+1)\displaystyle=((\overline{X}_{2}\cup\cdots\cup\overline{X}_{t})\cap A^{\prime}_{i+1})\cup((A^{\prime}_{1}\cup\cdots\cup A^{\prime}_{i})\cap A^{\prime}_{i+1})
=((X¯2X¯t)X¯1Ai+1)((A1Ai)Ai+1)\displaystyle=((\overline{X}_{2}\cup\cdots\cup\overline{X}_{t})\cap\overline{X}_{1}\cap A^{\prime}_{i+1})\cup((A^{\prime}_{1}\cup\cdots\cup A^{\prime}_{i})\cap A^{\prime}_{i+1})
=((U0Ai+1)((A1Ai)Ai+1)\displaystyle=((U_{0}\cap A^{\prime}_{i+1})\cup((A^{\prime}_{1}\cup\cdots\cup A^{\prime}_{i})\cap A^{\prime}_{i+1})
=(U0A1Ai)Ai+1\displaystyle=(U_{0}\cup A^{\prime}_{1}\cup\cdots\cup A^{\prime}_{i})\cap A^{\prime}_{i+1}
=(A1Ai)Ai+1,\displaystyle=(A^{\prime}_{1}\cup\cdots\cup A^{\prime}_{i})\cap A^{\prime}_{i+1},

where Ai+1X¯1A^{\prime}_{i+1}\subset\overline{X}_{1} and Ai+1=X¯1Ai+1A^{\prime}_{i+1}=\overline{X}_{1}\cap A^{\prime}_{i+1}. Also here (X¯2X¯t)X¯1=U0(\overline{X}_{2}\cup\cdots\cup\overline{X}_{t})\cap\overline{X}_{1}=U_{0} and U0A0=A1U_{0}\subset A^{\prime}_{0}=A^{\prime}_{1}. Obviously (A1Ai)Ai+1Ui+1(A^{\prime}_{1}\cup\cdots\cup A^{\prime}_{i})\cap A^{\prime}_{i+1}\subset U_{i+1} holds.

Then Ui+1U_{i+1} is maximal in

{(A1Ai)A:A𝒜{A1,,Ai}}\{(A^{\prime}_{1}\cup\cdots\cup A^{\prime}_{i})\cap A:A\in{\mathcal{A}}-\{A^{\prime}_{1},\ldots,A^{\prime}_{i}\}\}

for any i=1,,l1i=1,\ldots,l^{\prime}-1. Hence Ui+1U_{i+1} is maximal in

{((B1Bn1)A1Ai)A:A𝒜{A1,,Al1,Al1+1,,Al2,,Aln2+1,,Aln1,A1,,Ai}}\{((B_{1}\cup\cdots\cup B_{n-1})\cup A^{\prime}_{1}\cup\cdots\cup A^{\prime}_{i})\cap A:\\ A\in{\mathcal{A}}-\{A_{1},\ldots,A_{l_{1}},A_{l_{1}+1},\ldots,A_{l_{2}},\ldots,A_{l_{n-2}+1},\ldots,A_{l_{n-1}},A^{\prime}_{1},\ldots,A^{\prime}_{i}\}\}

for any i=1,,l1i=1,\ldots,l^{\prime}-1.

Thus the sequence

A1,,Al1,Al1+1,,Al2,,Aln2+1,,Aln1,A1,Al𝒜A_{1},\ldots,A_{l_{1}},A_{l_{1}+1},\ldots,A_{l_{2}},\ldots,A_{l_{n-2}+1},\ldots,A_{l_{n-1}},A^{\prime}_{1}\ldots,A^{\prime}_{l^{\prime}}\;\in{\mathcal{A}}

satisfies the condition ()(*) in 𝒜{\mathcal{A}}. ∎

(4) Now we show that (4) in the definition of a separation of SS holds for 𝒜~S\widetilde{\mathcal{A}}_{S}.

Suppose that B1,,Bn𝒜~SB_{1},\ldots,B_{n}\in\widetilde{\mathcal{A}}_{S} is a sequence satisfying the condition ()(*) in 𝒜~S\widetilde{\mathcal{A}}_{S}. Then we show that Ui:=(B1Bi)Bi+1U_{i}:=(B_{1}\cup\cdots\cup B_{i})\cap B_{i+1} is a separator of 𝒜~S\widetilde{\mathcal{A}}_{S} for any i=1,,n1i=1,\ldots,n-1.

Let i{1,,n1}i\in\{1,\ldots,n-1\} and let U:=Ui=(B1Bi)Bi+1U:=U_{i}=(B_{1}\cup\cdots\cup B_{i})\cap B_{i+1}. By Lemma 5.4, UU is a separator of 𝒜{\mathcal{A}}.

(i) and (ii): Then UU is a spherical-product subset of SS and UU separates SS.

(iii) Suppose that XU=X1XtX-U=X_{1}\cup\cdots\cup X_{t} is a disjoint union and X1,,XtX_{1},\ldots,X_{t} are the connected components of SUS-U. Let

X¯j:={A𝒜:AXjU}and\displaystyle\overline{X}_{j}:=\bigcup\{A\in{\mathcal{A}}:A\subset X_{j}\cup U\}\ \text{and}
X¯j:={B𝒜~S:BXjU}\displaystyle\overline{X}^{\prime}_{j}:=\bigcup\{B\in\widetilde{\mathcal{A}}_{S}:B\subset X_{j}\cup U\}

for each j=1,,tj=1,\ldots,t.

By the definition of 𝒜~S\widetilde{\mathcal{A}}_{S}, each B𝒜~SB\in\widetilde{\mathcal{A}}_{S} is not separated by any separator of a minimal separation of SS. Hence for any B𝒜~SB\in\widetilde{\mathcal{A}}_{S}, UU does not separate BB and BUXj0B-U\subset X_{j_{0}} for some unique j0{1,,t}j_{0}\in\{1,\ldots,t\}. Then BX¯j0B\subset\overline{X}_{j_{0}} and BX¯j0B\subset\overline{X}^{\prime}_{j_{0}} hold.

Here X¯j=X¯j\overline{X}_{j}=\overline{X}^{\prime}_{j} holds for any j=1,,tj=1,\ldots,t, because each B𝒜~SB\in\widetilde{\mathcal{A}}_{S} is denoted by B=i=1lAiB=\bigcup_{i=1}^{l}A_{i} (where A1,,AlA_{1},\ldots,A_{l} are the elements of 𝒜{\mathcal{A}} such that AiBA_{i}\subset B) and each A𝒜A\in{\mathcal{A}} is contained in some unique B𝒜~SB\in\widetilde{\mathcal{A}}_{S}.

(iv) Since UU is a separator of 𝒜{\mathcal{A}}, there exist A1,A2𝒜A_{1},A_{2}\in{\mathcal{A}} such that A1A2=UA_{1}\cap A_{2}=U, A1X¯j1A_{1}\subset\overline{X}_{j_{1}} and A2X¯j2A_{2}\subset\overline{X}_{j_{2}} for some j1,j2{1,,t}j_{1},j_{2}\in\{1,\ldots,t\} as j1j2j_{1}\neq j_{2}. Then A1B1A_{1}\subset B^{\prime}_{1} and A2B2A_{2}\subset B^{\prime}_{2} for some unique B1,B2𝒜~SB^{\prime}_{1},B^{\prime}_{2}\in\widetilde{\mathcal{A}}_{S}. Here B1X¯j1=X¯j1B^{\prime}_{1}\subset\overline{X}_{j_{1}}=\overline{X}^{\prime}_{j_{1}} and B2X¯j2=X¯j2B^{\prime}_{2}\subset\overline{X}_{j_{2}}=\overline{X}^{\prime}_{j_{2}}. Then B1B2=UB^{\prime}_{1}\cap B^{\prime}_{2}=U holds.

(v) Let j{1,,t}j\in\{1,\ldots,t\}. Suppose that B1,,Bk𝒜~SB^{\prime}_{1},\ldots,B^{\prime}_{k}\in\widetilde{\mathcal{A}}_{S} satisfies the condition ()(*) in 𝒜~S\widetilde{\mathcal{A}}_{S} and UX¯jB1BkX¯jU\cap\overline{X}^{\prime}_{j}\subset B^{\prime}_{1}\cup\cdots\cup B^{\prime}_{k}\subset\overline{X}^{\prime}_{j}. By Lemma 5.4, there exists a sequence

A1,,Ap1,,Apk1+1,,Apk𝒜A^{\prime}_{1},\ldots,A^{\prime}_{p_{1}},\ldots,A^{\prime}_{p_{k-1}+1},\ldots,A^{\prime}_{p_{k}}\;\in{\mathcal{A}}

satisfying the condition ()(*) in 𝒜{\mathcal{A}} such that

B1=i=1p1Ai,,Bk=i=pk1+1pkAi.\textstyle B^{\prime}_{1}=\bigcup_{i=1}^{p_{1}}A^{\prime}_{i},\ \ldots,\ B^{\prime}_{k}=\bigcup_{i=p_{k-1}+1}^{p_{k}}A^{\prime}_{i}.

Since UU is a separator of 𝒜{\mathcal{A}}, we have that UX¯jAi0U\cap\overline{X}^{\prime}_{j}\subset A^{\prime}_{i_{0}} for some i0{1,,pk}i_{0}\in\{1,\ldots,p_{k}\}. Here Ai0Bi1A^{\prime}_{i_{0}}\subset B^{\prime}_{i_{1}} for some i1{1,,k}i_{1}\in\{1,\ldots,k\}. Then UX¯jAi0Bi1U\cap\overline{X}^{\prime}_{j}\subset A^{\prime}_{i_{0}}\subset B^{\prime}_{i_{1}}.

Thus from the above (i)–(v), UU is a separator of 𝒜~S\widetilde{\mathcal{A}}_{S}.

We show (b) on (4) in the definition of a separation for 𝒜~S\widetilde{\mathcal{A}}_{S}; that is, B1BiXj1UB_{1}\cup\cdots\cup B_{i}\subset X_{j_{1}}\cup U and Bi+1Xj2UB_{i+1}\subset X_{j_{2}}\cup U for some j1,j2{1,,t}j_{1},j_{2}\in\{1,\ldots,t\} as j1j2j_{1}\neq j_{2}.

Since 𝒜~\widetilde{\mathcal{A}} is a separation, by Lemma 5.4, we obtain that B1BiXj1UB_{1}\cup\cdots\cup B_{i}\subset X_{j_{1}}\cup U and Ali+1Xj2UA_{l_{i}+1}\subset X_{j_{2}}\cup U for some j1,j2{1,,t}j_{1},j_{2}\in\{1,\ldots,t\} as j1j2j_{1}\neq j_{2}. Since UU is a separator of 𝒜~S\widetilde{\mathcal{A}}_{S}, UU does not separate Bi+1=Ali+1Ali+1𝒜~SB_{i+1}=A_{l_{i}+1}\cup\cdots\cup A_{l_{i+1}}\in\widetilde{\mathcal{A}}_{S}. Hence Bi+1Xj2UB_{i+1}\subset X_{j_{2}}\cup U.

Thus (4) in the definition of a separation of SS holds for 𝒜~S\widetilde{\mathcal{A}}_{S}.

Therefore 𝒜~S\widetilde{\mathcal{A}}_{S} is a separation of SS.

6. Type(I)-type(II)-compatible and conjugate up to finite twists

We investigate on type(I)-type(II)-compatible Coxeter systems and conjugate up to finite twists. We show that for Coxeter systems (W,R)(W,R) and (W,S)(W,S) with the untangle-condition, RR and SS are conjugate up to finite twists if and only if (W,R)(W,R) and (W,S)(W,S) are type(I)-type(II)-compatible.

We show a lemma on conjugate spherical-product subsets.

Lemma 6.1.

Let (W,S)(W,S) be a Coxeter system and let UU be a spherical-product subset of SS. If wUw1=UwUw^{-1}=U for some wWw\in W, then wUσw1=UσwU_{\sigma}w^{-1}=U_{\sigma} and wUνw1=UνwU_{\nu}w^{-1}=U_{\nu}.

Proof.

Suppose that wUw1=UwUw^{-1}=U for some wWw\in W. Then

WU=WUσ×WUνand\displaystyle W_{U}=W_{U_{\sigma}}\times W_{U_{\nu}}\ \text{and}
WwUw1=wWUw1=wWUσw1×wWUνw1\displaystyle W_{wUw^{-1}}=wW_{U}w^{-1}=wW_{U_{\sigma}}w^{-1}\times wW_{U_{\nu}}w^{-1}
=WwUσw1×WwUνw1.\displaystyle\hskip 40.97194pt=W_{wU_{\sigma}w^{-1}}\times W_{wU_{\nu}w^{-1}}.

Here WUνW_{U_{\nu}} and WwUνw1W_{wU_{\nu}w^{-1}} are the minimal standard (parabolic) subgroups of finite index in WUW_{U} and WwUw1W_{wUw^{-1}} respectively (see [9]). Since WU=WwUw1W_{U}=W_{wUw^{-1}} and U=wUw1U=wUw^{-1}, we have that WUν=WwUνw1W_{U_{\nu}}=W_{wU_{\nu}w^{-1}}. Hence Uν=wUνw1U_{\nu}=wU_{\nu}w^{-1}. Thus wUνw1=UνwU_{\nu}w^{-1}=U_{\nu} and wUσw1=UσwU_{\sigma}w^{-1}=U_{\sigma}. ∎

We show a lemma on spherical subsets and type(II) subsets.

Lemma 6.2.

Let (W,S)(W,S) be a Coxeter system. If σ\sigma is a spherical subset of SS that separates SS, then σ\sigma does not separate any type(II) subset of SS.

Proof.

Let σ\sigma be a spherical subset of SS that separates SS. We can denote Sσ=X1XtS-\sigma=X_{1}\cup\cdots\cup X_{t} where X1,,XtX_{1},\ldots,X_{t} are the connected components of SσS-\sigma.

Then for any maximal twist-rigid subset AA of SS, σ\sigma does not separate AA and AXiσA\subset X_{i}\cup\sigma for some i{1,,t}i\in\{1,\ldots,t\}. Also for any minimal separation 𝒜{\mathcal{A}} of SS and for any B𝒜B\in{\mathcal{A}}, σ\sigma does not separate BB and BXiσB\subset X_{i}\cup\sigma for some i{1,,t}i\in\{1,\ldots,t\}. (Indeed if σ\sigma separates some B𝒜B\in{\mathcal{A}}, then there exists a separation 𝒜{\mathcal{A}}^{\prime} of SS induced by σ\sigma from 𝒜{\mathcal{A}} such that 𝒜𝒜{\mathcal{A}}^{\prime}\prec{\mathcal{A}}. This contradicts that 𝒜{\mathcal{A}} is minimal.)

Hence σ\sigma does not separate any type(II) subset of SS. ∎

Now we show the following.

Lemma 6.3.

Let (W,S)(W,S) be a Coxeter system with the untangle-condition and let (W,S)(W,S^{\prime}) be a Coxeter system obtained from (W,S)(W,S) by some twist. Then (W,S)(W,S) and (W,S)(W,S^{\prime}) are type(I)-type(II)-compatible.

Proof.

It is sufficient to show this lemma in the case that (W,S)(W,S) and (W,S)(W,S^{\prime}) are connected. Now we suppose this.

Let UU be a spherical-product subset of SS and let wWw\in W such that UU separates SS, U=wUw1U=wUw^{-1} and SS^{\prime} is obtained from SS by some twist of UU and ww. There exist non-empty subsets XX and YY of SS such that SU=XYS-U=X\cup Y, XY=X\cap Y=\emptyset, o(xy)=o(xy)=\infty for any xXx\in X and yYy\in Y, and S=XU(wYw1)S^{\prime}=X\cup U\cup(wYw^{-1}).

Let 𝒜0{\mathcal{A}}_{0} and 𝒜0{\mathcal{A}}^{\prime}_{0} be the sets of maximal twist-rigid subsets of SS and SS^{\prime} respectively. Here for each C𝒜0C\in{\mathcal{A}}_{0}, if we put C:=CC^{\prime}:=C (if CXUC\subset X\cup U) and C:=w1CwC^{\prime}:=w^{-1}Cw (if CXUC\not\subset X\cup U), then C𝒜0C^{\prime}\in{\mathcal{A}}^{\prime}_{0}. Hence

𝒜0={C:C𝒜0,CXU}{wCw1:C𝒜0,CXU}.\begin{split}{\mathcal{A}}^{\prime}_{0}=&\{C:C\in{\mathcal{A}}_{0},\ C\subset X\cup U\}\\ &\ \hskip 34.1433pt\cup\{wCw^{-1}:C\in{\mathcal{A}}_{0},\ C\not\subset X\cup U\}.\end{split}

By the definition of type(I) subsets and Remark 2.2, each A𝒜~S(I)A\in\widetilde{\mathcal{A}}_{S}^{\rm(I)} is not separated by any spherical-product subset that separates SS.

Let A𝒜~S(I)A\in\widetilde{\mathcal{A}}_{S}^{\rm(I)}. Here AA is not separated by UU. We consider the subset AA^{\prime} of SS^{\prime} as A=AA^{\prime}=A (if AXUA\subset X\cup U) and A=wAw1A^{\prime}=wAw^{-1} (if AXUA\not\subset X\cup U). Then since UU separates SS^{\prime}, there is an induced separation 𝒜{\mathcal{A}}^{\prime} of SS^{\prime} by UU as in Remark 2.2. Then AA^{\prime} is not separated by any spherical-product subset UU^{\prime} that separates SS^{\prime}. Indeed, suppose that AA^{\prime} is separated by some spherical-product subset U0U^{\prime}_{0} that separates SS^{\prime}. Here either UU does not separate any B𝒜~S(II)B\in\widetilde{\mathcal{A}}_{S}^{\rm(II)} or UU separates some B𝒜~S(II)B\in\widetilde{\mathcal{A}}_{S}^{\rm(II)}. In both cases, U0XUU^{\prime}_{0}\subset X\cup U or U0wYw1UU^{\prime}_{0}\subset wYw^{-1}\cup U. For U0:=U0U_{0}:=U^{\prime}_{0} (if U0XUU^{\prime}_{0}\subset X\cup U) and U0:=w1U0wU_{0}:=w^{-1}U^{\prime}_{0}w (if U0XUU^{\prime}_{0}\not\subset X\cup U), U0U_{0} is a spherical-product subset of SS that separates SS and U0U_{0} has to separate AA that is a contradiction. Hence A𝒜~S(I)A^{\prime}\in\widetilde{\mathcal{A}}_{S^{\prime}}^{\rm(I)}.

Also by the same argument, for each A𝒜~S(I)A^{\prime}\in\widetilde{\mathcal{A}}_{S^{\prime}}^{\rm(I)}, if AA is the subset of SS defined by A:=AA:=A^{\prime} (if AXUA^{\prime}\subset X\cup U) and A:=w1AwA:=w^{-1}A^{\prime}w (if AXUA^{\prime}\not\subset X\cup U) then A𝒜~S(I)A\in\widetilde{\mathcal{A}}_{S}^{\rm(I)}.

Thus

𝒜~S(I)={A:A𝒜~S(I),AXU}{wAw1:A𝒜~S(I),AXU},\begin{split}\widetilde{\mathcal{A}}_{S^{\prime}}^{\rm(I)}=&\{A:A\in\widetilde{\mathcal{A}}_{S}^{\rm(I)},\ A\subset X\cup U\}\\ &\ \hskip 34.1433pt\cup\{wAw^{-1}:A\in\widetilde{\mathcal{A}}_{S}^{\rm(I)},\ A\not\subset X\cup U\},\end{split}

and |𝒜~S(I)|=|𝒜~S(I)||\widetilde{\mathcal{A}}_{S}^{\rm(I)}|=|\widetilde{\mathcal{A}}_{S^{\prime}}^{\rm(I)}|.

(a) We first suppose that UU does not separate any B𝒜~S(II)B\in\widetilde{\mathcal{A}}_{S}^{\rm(II)}.

Then for any minimal separation 𝒜{\mathcal{A}} of SS, SS^{\prime} is a twist of SS that is preserving 𝒜{\mathcal{A}} and the separation 𝒜{\mathcal{A}}^{\prime} of SS^{\prime} induced by 𝒜{\mathcal{A}} and the twist is minimal. Also for any minimal separation 𝒜{\mathcal{A}}^{\prime} of SS^{\prime}, the separation 𝒜{\mathcal{A}} of SS induced by 𝒜{\mathcal{A}}^{\prime} and the twist is minimal. Hence

𝒜~S(II)={B:B𝒜~S(II),BXU}{wBw1:B𝒜~S(II),BXU}.\begin{split}\widetilde{\mathcal{A}}_{S^{\prime}}^{\rm(II)}=&\{B:B\in\widetilde{\mathcal{A}}_{S}^{\rm(II)},\ B\subset X\cup U\}\\ &\ \hskip 34.1433pt\cup\{wBw^{-1}:B\in\widetilde{\mathcal{A}}_{S}^{\rm(II)},\ B\not\subset X\cup U\}.\end{split}

Thus (W,S)(W,S) and (W,S)(W,S^{\prime}) are type(I)-type(II)-compatible.

(b) We suppose that UU separates some unique B0𝒜~S(II)B_{0}\in\widetilde{\mathcal{A}}_{S}^{\rm(II)}. Here UU does not separate any A𝒜~S{B0}A\in\widetilde{\mathcal{A}}_{S}-\{B_{0}\}.

Let

𝒰¯S:={𝒰𝒜:𝒜 is a minimal separation of S}and\displaystyle\overline{\mathcal{U}}_{S}:=\bigcap\{{\mathcal{U}}_{\mathcal{A}}:\text{${\mathcal{A}}$ is a minimal separation of $S$}\}\ \text{and}
𝒰¯S:={𝒰𝒜:𝒜 is a minimal separation of S},\displaystyle\overline{\mathcal{U}}_{S^{\prime}}:=\bigcap\{{\mathcal{U}}_{{\mathcal{A}}^{\prime}}:\text{${\mathcal{A}}^{\prime}$ is a minimal separation of $S^{\prime}$}\},

where 𝒰𝒜{\mathcal{U}}_{\mathcal{A}} and 𝒰𝒜{\mathcal{U}}_{{\mathcal{A}}^{\prime}} are the sets of separators of minimal separations 𝒜{\mathcal{A}} and 𝒜{\mathcal{A}}^{\prime} of SS and SS^{\prime} respectively. The standard separations 𝒜~S\widetilde{\mathcal{A}}_{S} and 𝒜~S\widetilde{\mathcal{A}}_{S^{\prime}} are defined by the separator sets 𝒰¯S\overline{\mathcal{U}}_{S} and 𝒰¯S\overline{\mathcal{U}}_{S^{\prime}} respectively.

Then for any minimal separation 𝒜{\mathcal{A}} of SS, SS^{\prime} is a twist of SS that is preserving {A𝒜:AB0}\{A\in{\mathcal{A}}:A\not\subset B_{0}\}; that is, AXUA\subset X\cup U or AwYw1UA\subset wYw^{-1}\cup U for each A𝒜A\in{\mathcal{A}} as AB0A\not\subset B_{0}. Also for any minimal separation 𝒜{\mathcal{A}}^{\prime} of SS^{\prime}, SS is a twist of SS^{\prime} that is preserving {A𝒜:AB0}\{A^{\prime}\in{\mathcal{A}}^{\prime}:A^{\prime}\not\subset B^{\prime}_{0}\} where B0:=(B0(XU))w(B0Y)w1B^{\prime}_{0}:=(B_{0}\cap(X\cup U))\cup w(B_{0}\cap Y)w^{-1}; that is, AXUA^{\prime}\subset X\cup U or Aw1YwUA^{\prime}\subset w^{-1}Yw\cup U for each A𝒜A^{\prime}\in{\mathcal{A}}^{\prime} as AB0A^{\prime}\not\subset B^{\prime}_{0}.

Hence for any U¯𝒰𝒜\overline{U}\in{\mathcal{U}}_{\mathcal{A}} as U¯XU\overline{U}\subset X\cup U, U¯𝒰𝒜\overline{U}\in{\mathcal{U}}_{{\mathcal{A}}^{\prime}}. Also for any U¯𝒰𝒜\overline{U}\in{\mathcal{U}}_{\mathcal{A}} as U¯YU\overline{U}\subset Y\cup U, wU¯w1𝒰𝒜w\overline{U}w^{-1}\in{\mathcal{U}}_{{\mathcal{A}}^{\prime}}.

Let B𝒜~S(II){B0}B\in\widetilde{\mathcal{A}}_{S}^{\rm(II)}-\{B_{0}\}. We consider the subset BB^{\prime} of SS^{\prime} as B=BB^{\prime}=B (if BXUB\subset X\cup U) and B=wBw1B^{\prime}=wBw^{-1} (if BXUB\not\subset X\cup U). Then B𝒜~S(II)B^{\prime}\in\widetilde{\mathcal{A}}_{S^{\prime}}^{\rm(II)} by the above argument. Here BB and BB^{\prime} are type(II)-compatible, since BB and BB^{\prime} are conjugate. Hence

𝒜~S(II){B:B𝒜~S(II){B0},BXU}{wBw1:B𝒜~S(II){B0},BXU}.\begin{split}\widetilde{\mathcal{A}}_{S^{\prime}}^{\rm(II)}\supset&\{B:B\in\widetilde{\mathcal{A}}_{S}^{\rm(II)}-\{B_{0}\},\ B\subset X\cup U\}\\ &\ \hskip 34.1433pt\cup\{wBw^{-1}:B\in\widetilde{\mathcal{A}}_{S}^{\rm(II)}-\{B_{0}\},\ B\not\subset X\cup U\}.\end{split}

Thus |𝒜~S(II)||𝒜~S(II)||\widetilde{\mathcal{A}}_{S^{\prime}}^{\rm(II)}|\geq|\widetilde{\mathcal{A}}_{S}^{\rm(II)}|, because |𝒜~S(II){B0}|=|𝒜~S(II)|1|\widetilde{\mathcal{A}}_{S}^{\rm(II)}-\{B_{0}\}|=|\widetilde{\mathcal{A}}_{S}^{\rm(II)}|-1 and there is a possibility that the corresponding subset B0=(B0(XU))w(B0Y)w1B^{\prime}_{0}=(B_{0}\cap(X\cup U))\cup w(B_{0}\cap Y)w^{-1} of SS^{\prime} to B0B_{0} in SS is a union of some type(II) subsets. Also since SS is a twist of SS^{\prime}, by the same argument, |𝒜~S(II)||𝒜~S(II)||\widetilde{\mathcal{A}}_{S}^{\rm(II)}|\geq|\widetilde{\mathcal{A}}_{S^{\prime}}^{\rm(II)}|. Hence |𝒜~S(II)|=|𝒜~S(II)||\widetilde{\mathcal{A}}_{S}^{\rm(II)}|=|\widetilde{\mathcal{A}}_{S^{\prime}}^{\rm(II)}|. This implies that

B0=(B0(XU))w(B0Y)w1B^{\prime}_{0}=(B_{0}\cap(X\cup U))\cup w(B_{0}\cap Y)w^{-1}

is a type(II) subset of SS^{\prime}. Here B0B^{\prime}_{0} is a twist of B0B_{0} that induces the twist of SS.

Thus, if UU separates some unique B0𝒜~S(II)B_{0}\in\widetilde{\mathcal{A}}_{S}^{\rm(II)} then (W,S)(W,S) and (W,S)(W,S^{\prime}) are type(I)-type(II)-compatible.

(c) We suppose that UU separates some B𝒜~S(II)B\in\widetilde{\mathcal{A}}_{S}^{\rm(II)} that is not unique. Let B1,,BlB_{1},\ldots,B_{l} be the type(II) subsets of SS such that UU (also UBiU\cap B_{i}) separates BiB_{i} for i=1,,li=1,\ldots,l.

For each i=1,,li=1,\ldots,l, we show that UBiU\cap B_{i} separates unique Bi𝒜~S(II)B_{i}\in\widetilde{\mathcal{A}}_{S}^{\rm(II)}. We suppose that UBiU\cap B_{i} separates some BjB_{j} as jij\neq i. Then UBiBjU\cap B_{i}\cap B_{j} separates BjB_{j}. The standard separation 𝒜~S\widetilde{\mathcal{A}}_{S} of SS is defined by the separator-set 𝒰¯S\overline{\mathcal{U}}_{S}. Here BiBjU0B_{i}\cap B_{j}\subset U_{0} for some U0𝒰¯SU_{0}\in\overline{\mathcal{U}}_{S}. Then UBiBjUU0U0U\cap B_{i}\cap B_{j}\subset U\cap U_{0}\subset U_{0}. Since UBiBjU\cap B_{i}\cap B_{j} separates BjB_{j}, we have that U0U_{0} separates BjB_{j}. This contradicts that U0𝒰¯SU_{0}\in\overline{\mathcal{U}}_{S} does not separate any B𝒜~SB\in\widetilde{\mathcal{A}}_{S}.

Now SS is connected. Let Y1,,YtY_{1},\ldots,Y_{t} be the connected components of YY. Then Y=Y1YtY=Y_{1}\cup\cdots\cup Y_{t} and SU=XY=XY1YtS-U=X\cup Y=X\cup Y_{1}\cup\cdots\cup Y_{t} that are disjoint unions.

Let 𝒜0{\mathcal{A}}_{0} be the maximal twist-rigid subset of SS, let 𝒜{\mathcal{A}} be the induced separation of SS by UU as Remark 2.2, and let 𝒜{\mathcal{A}}^{\prime} be a minimal separation of SS such that 𝒜𝒜{\mathcal{A}}^{\prime}\preceq{\mathcal{A}}.

Let i{1,,t}i\in\{1,\ldots,t\} and let

Y¯i:={A𝒜0:AYiUandAU}.\overline{Y}_{i}:=\bigcup\{A\in{\mathcal{A}}_{0}:A\subset Y_{i}\cup U\ \text{and}\ A\not\subset U\}.

Then

Y¯i={A𝒜:AYiUandAU}.\overline{Y}_{i}=\bigcup\{A\in{\mathcal{A}}^{\prime}:A\subset Y_{i}\cup U\ \text{and}\ A\not\subset U\}.

Since 𝒜{\mathcal{A}}^{\prime} is a separation of SS, there exists Ai𝒜A^{\prime}_{i}\in{\mathcal{A}}^{\prime} such that Y¯iAi\overline{Y}_{i}\cap A^{\prime}_{i} is a separator of 𝒜{\mathcal{A}}^{\prime} and AiBjiA^{\prime}_{i}\subset B_{j_{i}} for some ji{1,,l}j_{i}\in\{1,\ldots,l\}. Then Y¯iAiUBji\overline{Y}_{i}\cap A^{\prime}_{i}\subset U\cap B_{j_{i}} separates BjiB_{j_{i}}. (Also Y¯iAiUBji\overline{Y}_{i}\cap A^{\prime}_{i}\subset U\cap B_{j_{i}} separates SS.) Here Bji𝒜~S(II)B_{j_{i}}\in\widetilde{\mathcal{A}}_{S}^{\rm(II)} is uniquely determined.

Hence t=lt=l and the map g(i)=jig(i)=j_{i} is bijective on the set {1,,l}\{1,\ldots,l\}. We may suppose that g(i)=ig(i)=i for any i=1,,li=1,\ldots,l. Then for each i=1,,li=1,\ldots,l, Y¯iAi\overline{Y}_{i}\cap A^{\prime}_{i} is a separator of 𝒜{\mathcal{A}}^{\prime} and AiBiA^{\prime}_{i}\subset B_{i}.

Let Ui:=(UBi)UσU_{i}:=(U\cap B_{i})\cup U_{\sigma} for each i=1,,li=1,\ldots,l. Since UBiU\cap B_{i} separates SS, UiU_{i} separates SS. Here Ui=Uσ(UνUi)U_{i}=U_{\sigma}\cup(U_{\nu}\cap U_{i}) holds. Then wUσw1=UσwU_{\sigma}w^{-1}=U_{\sigma} and wUνw1=UνwU_{\nu}w^{-1}=U_{\nu} by Lemma 6.1. Hence waw1=awaw^{-1}=a for any aUνa\in U_{\nu} by the untangle-condition. Thus

wUiw1\displaystyle wU_{i}w^{-1} =(wUσw1)(w(UνUi)w1)\displaystyle=(wU_{\sigma}w^{-1})\cup(w(U_{\nu}\cap U_{i})w^{-1})
=Uσ(UνUi)=Ui,\displaystyle=U_{\sigma}\cup(U_{\nu}\cap U_{i})=U_{i},

for any i=1,,li=1,\ldots,l.

Here UiU_{i} separates Bi𝒜~S(II)B_{i}\in\widetilde{\mathcal{A}}_{S}^{\rm(II)}. Indeed

BiUi=Bi(UiBi)=Bi(UBi)=BiU.B_{i}-U_{i}=B_{i}-(U_{i}\cap B_{i})=B_{i}-(U\cap B_{i})=B_{i}-U.

We show that UiU_{i} separates the unique element BiB_{i} of 𝒜~S(II)\widetilde{\mathcal{A}}_{S}^{\rm(II)}. We suppose that UiU_{i} separates Bj𝒜~S(II)B_{j}\in\widetilde{\mathcal{A}}_{S}^{\rm(II)} as jij\neq i. Then

BjUi=(UBiBj)(UσBj)B_{j}\cap U_{i}=(U\cap B_{i}\cap B_{j})\cup(U_{\sigma}\cap B_{j})

separates BjB_{j}. Since the spherical subset UσBjU_{\sigma}\cap B_{j} does not separate the type(II) subset BjB_{j} by Lemma 6.2, UBiBjU\cap B_{i}\cap B_{j}\neq\emptyset and BiBjB_{i}\cap B_{j}\neq\emptyset. Hence BiBjB_{i}\cup B_{j} is connected. There exists the separation 𝒜1{\mathcal{A}}_{1} induced by UiU_{i} as in Remark 2.2 and we can obtain a minimal separation 𝒜1{\mathcal{A}}^{\prime}_{1} as 𝒜1𝒜1{\mathcal{A}}^{\prime}_{1}\preceq{\mathcal{A}}_{1}. Here the spherical-product subset Ui=(UBi)UσU_{i}=(U\cap B_{i})\cup U_{\sigma} separates BiB_{i} and UiU_{i} separates BjB_{j} by hypothesis. This contradicts that BiB_{i} and BjB_{j} are distinct type(II) subsets of SS. Thus UiU_{i} separates unique Bi𝒜~S(II)B_{i}\in\widetilde{\mathcal{A}}_{S}^{\rm(II)}.

For each i=1,,li=1,\ldots,l and for Xi:=S(UiYi)X_{i}:=S-(U_{i}\cup Y_{i}), SUi=XiYiS-U_{i}=X_{i}\cup Y_{i} that is a disjoint union and o(xy)=o(xy)=\infty for any xXix\in X_{i} and yYiy\in Y_{i}. Here

S=XU(Y1Yl)S=X\cup U\cup(Y_{1}\cup\cdots\cup Y_{l})

is a disjoint union and wUiw1=UiwU_{i}w^{-1}=U_{i} as above.

Let S1:=X1U1wY1w1S_{1}:=X_{1}\cup U_{1}\cup wY_{1}w^{-1} that is a twist of SS by U1U_{1} and ww. Then U1U_{1} separates unique B1𝒜~S(II)B_{1}\in\widetilde{\mathcal{A}}_{S}^{\rm(II)} by the above argument. Hence SS and S1S_{1} are type(I)-type(II)-compatible by the above argument (b). Then

S1=XU(wY1w1Y2Y3Yl).S_{1}=X\cup U\cup(wY_{1}w^{-1}\cup Y_{2}\cup Y_{3}\cup\cdots\cup Y_{l}).

For the corresponding subset B2B^{\prime}_{2} of S1S_{1} to the subset B2B_{2} of SS, U2U_{2} separates unique B2𝒜~S1(II)B^{\prime}_{2}\in\widetilde{\mathcal{A}}_{S_{1}}^{\rm(II)} in S1S_{1}. Also for the corresponding subset X2X^{\prime}_{2} of S1S_{1} to the subset X2X_{2} of SS, S1U2=X2Y2S_{1}-U_{2}=X^{\prime}_{2}\cup Y_{2} is a disjoint union.

Let S2:=X2U2wY2w1S_{2}:=X^{\prime}_{2}\cup U_{2}\cup wY_{2}w^{-1} that is a twist of S1S_{1} by U2U_{2} and ww. Then U2U_{2} separates unique B2𝒜~S2(II)B^{\prime}_{2}\in\widetilde{\mathcal{A}}_{S_{2}}^{\rm(II)} in S2S_{2}. Hence S1S_{1} and S2S_{2} are type(I)-type(II)-compatible by the above argument (b). Here

S2=XU(wY1w1wY2w1Y3Yl).S_{2}=X\cup U\cup(wY_{1}w^{-1}\cup wY_{2}w^{-1}\cup Y_{3}\cup\cdots\cup Y_{l}).

By iterating this argument, we obtain a sequence of Coxeter generating sets S=S0,S1,S2,,SlS=S_{0},S_{1},S_{2},\ldots,S_{l} such that SiS_{i} is some twist of Si1S_{i-1} by UiU_{i} and ww for each i=1,,li=1,\ldots,l. Here UiU_{i} separates unique Bi𝒜~Si(II)B^{\prime}_{i}\in\widetilde{\mathcal{A}}_{S_{i}}^{\rm(II)} in (W,Si)(W,S_{i}) for any i=1,,li=1,\ldots,l, where BiB^{\prime}_{i} is the type(II) subset of SiS_{i} corresponding to BiB_{i} in SS. Then (W,Si)(W,S_{i}) and (W,Si+1)(W,S_{i+1}) are type(I)-type(II)-compatible for each i=1,,li=1,\ldots,l by the above argument (b). Here

S=S0=XU(Y1Y2Y3Yl),\displaystyle S=S_{0}=X\cup U\cup(Y_{1}\cup Y_{2}\cup Y_{3}\cup\cdots\cup Y_{l}),
S1=XU(wY1w1Y2Y3Yl),\displaystyle S_{1}=X\cup U\cup(wY_{1}w^{-1}\cup Y_{2}\cup Y_{3}\cup\cdots\cup Y_{l}),
S2=XU(wY1w1wY2w1Y3Yl),\displaystyle S_{2}=X\cup U\cup(wY_{1}w^{-1}\cup wY_{2}w^{-1}\cup Y_{3}\cup\cdots\cup Y_{l}),
\displaystyle\ \cdots
Sl=XU(wY1w1wY2w1wYlw1)=S.\displaystyle S_{l}=X\cup U\cup(wY_{1}w^{-1}\cup wY_{2}w^{-1}\cup\cdots\cup wY_{l}w^{-1})=S^{\prime}.

Thus, we obtain that (W,S)(W,S) and (W,S)(W,S^{\prime}) are type(I)-type(II)-compatible. ∎

Remark 6.4.

Let (W,S)(W,S) be a Coxeter system. Let U1U_{1} and U2U_{2} be spherical-product subsets of SS that separate SS such that for each i=1,2i=1,2,

  1. (a)i\text{(a)}_{i}

    UiU_{i} does not separate any B𝒜~S(II)B\in\widetilde{\mathcal{A}}_{S}^{\rm(II)}, or

  2. (b)i\text{(b)}_{i}

    UiU_{i} separates some unique B𝒜~S(II)B\in\widetilde{\mathcal{A}}_{S}^{\rm(II)}.

We consider a twist S=XU1wYw1S^{\prime}=X\cup U_{1}\cup wYw^{-1} of SS by U1U_{1} and wWw\in W. Here we suppose that wU1w1=U1wU_{1}w^{-1}=U_{1}, SU1=XYS-U_{1}=X\cup Y is a disjoint union and o(xy)=o(xy)=\infty for any xXx\in X and yYy\in Y.

Then we investigate a spherical-product subset U2U^{\prime}_{2} of SS^{\prime} corresponding to U2U_{2} in SS from the proof of Lemma 6.3.

If

  1. (a)1\text{(a)}_{1}

    U1U_{1} does not separate any B𝒜~S(II)B\in\widetilde{\mathcal{A}}_{S}^{\rm(II)},

then for U2:=U2U^{\prime}_{2}:=U_{2} (if U2XU1U_{2}\subset X\cup U_{1}) and U2:=wU2w1U^{\prime}_{2}:=wU_{2}w^{-1} (if U2XU1U_{2}\not\subset X\cup U_{1}), U2U^{\prime}_{2} is the spherical-product subset of SS^{\prime} corresponding to U2U_{2} in SS.

We suppose that

  1. (b)1\text{(b)}_{1}

    U1U_{1} separates some unique B1𝒜~S(II)B_{1}\in\widetilde{\mathcal{A}}_{S}^{\rm(II)}.

If

  1. (a)2\text{(a)}_{2}

    U2U_{2} does not separate any B𝒜~S(II)B\in\widetilde{\mathcal{A}}_{S}^{\rm(II)},

then for U2:=U2U^{\prime}_{2}:=U_{2} (if U2XU1U_{2}\subset X\cup U_{1}) and U2:=wU2w1U^{\prime}_{2}:=wU_{2}w^{-1} (if U2XU1U_{2}\not\subset X\cup U_{1}), U2U^{\prime}_{2} is the spherical-product subset of SS^{\prime} corresponding to U2U_{2} in SS. Also if

  1. (b)2\text{(b)}_{2}

    U2U_{2} separates some unique B2𝒜~S(II)B_{2}\in\widetilde{\mathcal{A}}_{S}^{\rm(II)}

and if B1B2B_{1}\neq B_{2}, then for U2:=U2U^{\prime}_{2}:=U_{2} (if U2XU1U_{2}\subset X\cup U_{1}) and U2:=wU2w1U^{\prime}_{2}:=wU_{2}w^{-1} (if U2XU1U_{2}\not\subset X\cup U_{1}), U2U^{\prime}_{2} is the spherical-product subset of SS^{\prime} corresponding to U2U_{2} in SS.

Suppose that

  1. (b)1\text{(b)}_{1}

    U1U_{1} separates some unique B1𝒜~S(II)B_{1}\in\widetilde{\mathcal{A}}_{S}^{\rm(II)} and

  2. (b)2\text{(b)}_{2}

    U2U_{2} separates some unique B2𝒜~S(II)B_{2}\in\widetilde{\mathcal{A}}_{S}^{\rm(II)}

and suppose that B1=B2B_{1}=B_{2}. In this case, U1U_{1} and U2U_{2} both separate the unique type(II) subset B1=B2B_{1}=B_{2}.

We obtain the following theorem from the proof of Lemma 6.3 and Remark 6.4.

Theorem 6.5.

Let (W,R)(W,R) be a Coxeter system with the untangle-condition and let SS be a Coxeter generating set for WW obtained from RR by some finite twists. Then (W,R)(W,R) and (W,S)(W,S) are type(I)-type(II)-compatible.

Proof.

There exists a sequence R=S1,S2,,Sn=SR=S_{1},S_{2},\ldots,S_{n}=S of Coxeter generating sets for WW such that Si+1S_{i+1} is obtained from SiS_{i} by some twist for any i=1,,n1i=1,\ldots,n-1. We suppose that the twist Si+1S_{i+1} of SiS_{i} is obtained by a spherical-product subset UiU_{i} of SiS_{i} and wiWw_{i}\in W as wiUiwi1=Uiw_{i}U_{i}w_{i}^{-1}=U_{i} for each i=1,,n1i=1,\ldots,n-1. Here by the proof of Lemma 6.3, for each i=1,,n1i=1,\ldots,n-1, either

  1. (a)

    UiU_{i} does not separate any B𝒜~Si(II)B\in\widetilde{\mathcal{A}}_{S_{i}}^{\rm(II)},

  2. (b)

    UiU_{i} separates some unique B𝒜~Si(II)B\in\widetilde{\mathcal{A}}_{S_{i}}^{\rm(II)}, or

  3. (c)

    UiU_{i} separates some B𝒜~Si(II)B\in\widetilde{\mathcal{A}}_{S_{i}}^{\rm(II)} that is not unique.

Here if (c) UiU_{i} separates some B𝒜~Si(II)B\in\widetilde{\mathcal{A}}_{S_{i}}^{\rm(II)} that is not unique, then by the proof of Lemma 6.3, there exist a sequence Ui1,,UitU_{i}^{1},\ldots,U_{i}^{t} of spherical-product subsets and a sequence Si=Si1,Si2,,Sit=Si+1S_{i}=S_{i}^{1},S_{i}^{2},\ldots,S_{i}^{t}=S_{i+1} of Coxeter generating set for WW such that each Sij+1S_{i}^{j+1} is obtained from SijS_{i}^{j} by some twist induced by UijU_{i}^{j} and wiw_{i} as wiUijwi1=Uijw_{i}U_{i}^{j}w_{i}^{-1}=U_{i}^{j} and UijU_{i}^{j} separates some unique Bij𝒜~Sij(II)B_{i}^{j}\in\widetilde{\mathcal{A}}_{S_{i}^{j}}^{\rm(II)}.

Thus there exists a sequence R=S1,S2,,Sk=SR=S_{1},S_{2},\ldots,S_{k}=S of Coxeter generating sets for WW such that for any i=1,,k1i=1,\ldots,k-1, Si+1S_{i+1} is obtained from SiS_{i} by some twist of some spherical-product subset UiU_{i} of SiS_{i} and wiWw_{i}\in W as wiUiwi1=Uiw_{i}U_{i}w_{i}^{-1}=U_{i} and either

  1. (a)

    UiU_{i} does not separate any B𝒜~Si(II)B\in\widetilde{\mathcal{A}}_{S_{i}}^{\rm(II)}, or

  2. (b)

    UiU_{i} separates some unique B𝒜~Si(II)B\in\widetilde{\mathcal{A}}_{S_{i}}^{\rm(II)}.

By the proof of Lemma 6.3 and Remark 6.4, we can obtain that (W,R)=(W,S1)(W,R)=(W,S_{1}) and (W,S)=(W,Sk)(W,S)=(W,S_{k}) are type(I)-type(II)-compatible. ∎

We show the following theorem.

Theorem 6.6.

Let (W,R)(W,R) and (W,S)(W,S) be Coxeter systems with the untangle-condition. If (W,R)(W,R) and (W,S)(W,S) are type(I)-type(II)-compatible, then there exists a Coxeter generating set R¯\overline{R} obtained from RR by some finite twists such that (W,R¯)(W,\overline{R}) and (W,S)(W,S) are compatible on the standard separations 𝒜~R¯\widetilde{\mathcal{A}}_{\overline{R}} and 𝒜~S\widetilde{\mathcal{A}}_{S} (hence they are some-separation-compatible).

Proof.

Let A1𝒜~R(II)A_{1}\in\widetilde{\mathcal{A}}_{R}^{\rm(II)} and B1𝒜~S(II)B_{1}\in\widetilde{\mathcal{A}}_{S}^{\rm(II)} such that A1A_{1} and B1B_{1} are type(II)-compatible. There exists A1A^{\prime}_{1} obtained from A1A_{1} by some finite twists that induce some twists of RR preserving 𝒜~R{A1}\widetilde{\mathcal{A}}_{R}-\{A_{1}\} such that A1A^{\prime}_{1} and B1B_{1} are conjugate in WW. Let R1R_{1} be the Coxeter generating set for WW obtained from RR by the induced finite twists preserving 𝒜~R{A1}\widetilde{\mathcal{A}}_{R}-\{A_{1}\} such that A1A^{\prime}_{1} in R1R_{1} is conjugate to B1B_{1} in SS.

Then by the proofs of Lemma 6.3 and Theorem 6.5, (W,R)(W,R) and (W,R1)(W,R_{1}) are type(I)-type(II)-compatible, A1A^{\prime}_{1} is a type(II) subset of R1R_{1} and

𝒜~R1=(𝒜~R{A1}){A1},\widetilde{\mathcal{A}}_{R_{1}}=(\widetilde{\mathcal{A}}_{R}-\{A_{1}\})^{\prime}\cup\{A^{\prime}_{1}\},

where (𝒜~R{A1})(\widetilde{\mathcal{A}}_{R}-\{A_{1}\})^{\prime} is the set of the corresponding conjugate subsets of R1R_{1} to the elements of 𝒜~R{A1}\widetilde{\mathcal{A}}_{R}-\{A_{1}\} in RR.

Hence

  1. (1)

    (W,R1)(W,R_{1}) and (W,S)(W,S) are type(I)-type(II)-compatible,

  2. (2)

    A1𝒜~R1(II)A^{\prime}_{1}\in\widetilde{\mathcal{A}}_{R_{1}}^{\rm(II)} is conjugate to B1𝒜~S(II)B_{1}\in\widetilde{\mathcal{A}}_{S}^{\rm(II)} and

  3. (3)

    𝒜~R1{A1}=(𝒜~R{A1})\widetilde{\mathcal{A}}_{R_{1}}-\{A^{\prime}_{1}\}=(\widetilde{\mathcal{A}}_{R}-\{A_{1}\})^{\prime}.

Let A2𝒜~R1(II){A1}A^{\prime}_{2}\in\widetilde{\mathcal{A}}_{R_{1}}^{\rm(II)}-\{A_{1}^{\prime}\} and B2𝒜~S(II){B1}B_{2}\in\widetilde{\mathcal{A}}_{S}^{\rm(II)}-\{B_{1}\} such that A2A^{\prime}_{2} and B2B_{2} are type(II)-compatible. Let A2𝒜~R(II)A_{2}\in\widetilde{\mathcal{A}}_{R}^{\rm(II)} be the corresponding conjugate subset of RR to A2𝒜~R1(II)A^{\prime}_{2}\in\widetilde{\mathcal{A}}_{R_{1}}^{\rm(II)} in R1R_{1}.

There exists A2′′A^{\prime\prime}_{2} obtained from A2A^{\prime}_{2} by some finite twists that induce some twists of R1R_{1} preserving 𝒜~R1{A2}\widetilde{\mathcal{A}}_{R_{1}}-\{A^{\prime}_{2}\} such that A2′′A^{\prime\prime}_{2} and B2B_{2} are conjugate. Let R2R_{2} be the induced Coxeter generating set.

Then by the proofs of Lemma 6.3 and Theorem 6.5, (W,R1)(W,R_{1}) and (W,R2)(W,R_{2}) are type(I)-type(II)-compatible, A2′′A^{\prime\prime}_{2} is a type(II) subset of R2R_{2} and

𝒜~R2=(𝒜~R1{A2}){A2′′}=(𝒜~R{A1,A2})′′{A1′′,A2′′},\widetilde{\mathcal{A}}_{R_{2}}=(\widetilde{\mathcal{A}}_{R_{1}}-\{A^{\prime}_{2}\})^{\prime}\cup\{A^{\prime\prime}_{2}\}=(\widetilde{\mathcal{A}}_{R}-\{A_{1},\,A_{2}\})^{\prime\prime}\cup\{A^{\prime\prime}_{1},\,A^{\prime\prime}_{2}\},

where A1′′A^{\prime\prime}_{1} is the corresponding conjugate subset of R2R_{2} to A1A^{\prime}_{1} in R1R_{1}, and (𝒜~R1{A2})(\widetilde{\mathcal{A}}_{R_{1}}-\{A^{\prime}_{2}\})^{\prime} (and (𝒜~R{A1,A2})′′(\widetilde{\mathcal{A}}_{R}-\{A_{1},\,A_{2}\})^{\prime\prime}) is the set of the corresponding conjugate subsets of R2R_{2} to the elements of 𝒜~R1{A2}\widetilde{\mathcal{A}}_{R_{1}}-\{A^{\prime}_{2}\} in R1R_{1} (and 𝒜~R{A1,A2}\widetilde{\mathcal{A}}_{R}-\{A_{1},\,A_{2}\} in RR respectively).

Hence

  1. (1)

    (W,R2)(W,R_{2}) and (W,S)(W,S) are type(I)-type(II)-compatible,

  2. (2)

    A1′′𝒜~R2(II)A^{\prime\prime}_{1}\in\widetilde{\mathcal{A}}_{R_{2}}^{\rm(II)} is conjugate to B1𝒜~S(II)B_{1}\in\widetilde{\mathcal{A}}_{S}^{\rm(II)},

  3. (3)

    A2′′𝒜~R2(II)A^{\prime\prime}_{2}\in\widetilde{\mathcal{A}}_{R_{2}}^{\rm(II)} is conjugate to B2𝒜~S(II)B_{2}\in\widetilde{\mathcal{A}}_{S}^{\rm(II)} and

  4. (4)

    𝒜~R2{A1′′,A2′′}=(𝒜~R{A1,A2})′′\widetilde{\mathcal{A}}_{R_{2}}-\{A^{\prime\prime}_{1},\,A^{\prime\prime}_{2}\}=(\widetilde{\mathcal{A}}_{R}-\{A_{1},\,A_{2}\})^{\prime\prime}.

By iterating this argument, we obtain a Coxeter generating set R¯\overline{R} for WW from RR by some finite twists preserving 𝒜~R(I)\widetilde{\mathcal{A}}_{R}^{\rm(I)} such that for each A𝒜~R(II)A\in\widetilde{\mathcal{A}}_{R}^{\rm(II)}, the corresponding subset A𝒜~R¯(II)A^{\prime}\in\widetilde{\mathcal{A}}_{\overline{R}}^{\rm(II)} is conjugate to some unique B𝒜~S(II)B\in\widetilde{\mathcal{A}}_{S}^{\rm(II)}.

Also by the definition of type(I)-type(II)-compatible and the above argument, each A𝒜~R¯(I)A\in\widetilde{\mathcal{A}}_{\overline{R}}^{\rm(I)} is conjugate to some unique B𝒜~S(I)B\in\widetilde{\mathcal{A}}_{S}^{\rm(I)}.

Thus, (W,R¯)(W,\overline{R}) and (W,S)(W,S) are compatible on the standard separations 𝒜~R¯\widetilde{\mathcal{A}}_{\overline{R}} and 𝒜~S\widetilde{\mathcal{A}}_{S}. ∎

We obtain the following theorem from Theorems 4.1, 6.5 and 6.6.

Theorem 6.7.

Let (W,R)(W,R) and (W,S)(W,S) be Coxeter systems with the untangle-condition. Then the following two statements are equivalent::

  1. (i)

    RR and SS are conjugate up to finite twists.

  2. (ii)

    (W,R)(W,R) and (W,S)(W,S) are type(I)-type(II)-compatible.

Proof.

By Theorem 6.5, if RR and SS are conjugate up to finite twists, then (W,R)(W,R) and (W,S)(W,S) are type(I)-type(II)-compatible.

If (W,R)(W,R) and (W,S)(W,S) are type(I)-type(II)-compatible, then there exists a Coxeter generating set R¯\overline{R} obtained from RR by some finite twists such that (W,R¯)(W,\overline{R}) and (W,S)(W,S) are compatible on the standard separations 𝒜~R¯\widetilde{\mathcal{A}}_{\overline{R}} and 𝒜~S\widetilde{\mathcal{A}}_{S} by Theorem 6.6. Thus by Theorem 4.1, RR and SS are conjugate up to finite twists. ∎

References

  • [1] N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Actualités Scientifiques et Industrielles, No. 1337, Hermann, Paris, 1968.
  • [2] N. Brady, J.P. McCammond, B. Mühlherr and W.D. Neumann, Rigidity of Coxeter groups and Artin groups, Geom. Dedicata 94 (2002), 91–109.
  • [3] B. Brink and R.B. Howlett, Normalizers of parabolic subgroups in Coxeter groups, Inv. Math. 136 (1999), 323–351.
  • [4] P.-E. Caprace and B. Mühlherr, Reflection rigidity of 2-spherical Coxeter groups, Proc. Lond. Math. Soc. (3) 94 (2007), no. 2, 520–542.
  • [5] P.-E. Caprace and P. Przytycki, Twist-rigid Coxeter groups, Geom. Topol. 14 (2010), no. 4, 2243–2275.
  • [6] R. Charney and M.W. Davis, When is a Coxeter system determined by its Coxeter group? J. Lond. Math. Soc., II. Ser. 61 (2000), no. 2, 441–461.
  • [7] M.W. Davis, The cohomology of a Coxeter group with group ring coefficients, Duke Math. J. 91 (1998), no. 2, 297–314.
  • [8] V.V. Deodhar, On the root system of a Coxeter group, Comm. Algebra 10 (1982), 611–630.
  • [9] T. Hosaka, Parabolic subgroups of finite index in Coxeter groups, J. Pure Appl. Algebra 169 (2002), 215–227.
  • [10] J. Huang and P. Przytycki, A step towards twist conjecture, arXiv preprint arXiv:1708.00960, 2017.
  • [11] J.E. Humphreys, Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics 29, Cambridge University Press, Cambridge, 1992.
  • [12] T. Marquis and B. Mühlherr, Angle-deformations in Coxeter groups, Algebr. Geom. Topol. 8 (2008), no. 4, 2175–2208.
  • [13] B. Mühlherr, On isomorphisms between Coxeter groups, Des. Codes Cryptogr. 21 (2000), 189–189.
  • [14] B. Mühlherr, The isomorphism problem for Coxeter groups, Davis, Chandler (ed.) et al., The Coxeter legacy. Reflections and projections. American Mathematical Society, Providence, RI, 2006, pp. 1–15.
  • [15] B. Mühlherr and R. Weidmann, Rigidity of skew-angled Coxeter groups, Adv. Geom. 2 (2002), no. 4, 391–415.
  • [16] K. Nuida, On the isomorphism problem for Coxeter groups and related topics, Narasimha Sastry, N.S. (ed.), Groups of exceptional type, Coxeter groups and related geometries, Springer Proceedings in Mathematics & Statistics 82, Springer, 2014, pp. 217–238.
  • [17] J.G. Ratcliffe and S.T. Tschantz, Chordal Coxeter groups, Geom. Dedicata 136 (2008), 57–77.
  • [18] C.J.Weigel, The twist conjecture for Coxeter groups without small triangle subgroups, Innov. Incidence Geom. 12 (2011), 111–140.