This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

On representation zeta function of special linear groups over finite principal ideal local rings

Uri Ronen
[email protected]
Abstract

We show that the group algebras [SL3(𝔽3[t]/(t3))]\mathbb{C}[\text{SL}_{3}(\nicefrac{{\mathbb{F}_{3}[t]}}{{(t^{3})}})] and [SL3(/27)]\mathbb{C}[\text{SL}_{3}(\nicefrac{{\mathbb{Z}}}{{27}})] are not isomorphic, as well as [SL4(𝔽2[t]/(t3))][SL4(/8)]\mathbb{C}[\text{SL}_{4}(\nicefrac{{\mathbb{F}_{2}[t]}}{{(t^{3})}})]\ncong\mathbb{C}[\text{SL}_{4}(\nicefrac{{\mathbb{Z}}}{{8}})], by computing the number of conjugacy classes in those groups using MAGMA’s calculator. Similarly, we reproduce special cases of a recent result by Hassain and Singla, showing that [SL2(𝔽2[t]/(tk))][SL2(/2k)]\mathbb{C}[\text{SL}_{2}(\nicefrac{{\mathbb{F}_{2}[t]}}{{(t^{k})}})]\ncong\mathbb{C}[\text{SL}_{2}(\nicefrac{{\mathbb{Z}}}{{2^{k}}})] for 3k83\leq k\leq 8.

Introduction

For a finite group GG, let Irr(G)\text{Irr}(G) be the set of complex irreducible representations of GG, up to equivalence. Define the representation zeta function of GG to be:

ζG(s):=ρIrr(G)1(dimρ)s\zeta_{G}(s):=\sum_{\rho\in\text{Irr}(G)}\frac{1}{(\dim\rho)^{s}}

Note that if G1,G2G_{1},G_{2} are finite groups then ζG1=ζG2\zeta_{G_{1}}=\zeta_{G_{2}} if and only if their groups algebras over \mathbb{C} are isomorphic. Let pp be a prime and let p\mathbb{Z}_{p} be the ring of pp-adic integers, and 𝔽p[[t]]\mathbb{F}_{p}[[t]] the ring of power series over 𝔽p\mathbb{F}_{p}. When studying (continuous) representations of profinite groups such as GLn(𝔽p[[t]])\text{GL}_{n}(\mathbb{F}_{p}[[t]]) and GLn(p)\text{GL}_{n}(\mathbb{Z}_{p}), it is natural to study the representations of their finite quotients, as continuous representations of profinite groups factor through some finite quotient. In this context, we have the following (special case of a) conjecture by Onn ([1], conjecture 1.3):

ζGLn(𝔽p[t]/(tk))=ζGLn(/pk) for all n,k1 and p prime.\zeta_{\text{GL}_{n}(\nicefrac{{\mathbb{F}_{p}[t]}}{{(t^{k})}})}=\zeta_{\text{GL}_{n}(\nicefrac{{\mathbb{Z}}}{{p^{k}}})}\text{ for all }n,k\geq 1\text{ and }p\text{ prime}.

As of the time of writing this paper, Onn’s conjecture remains open. Nevertheless, extensive efforts have been devoted over the years to establish it’s correctness: in [1] the conjecture was demonstrated to hold for n=2n=2 and all k1k\geq 1 and pp. Recently, [2] extended this result to SL3\text{SL}_{3} and GL3\text{GL}_{3}, under the condition that p>3p>3. Subsequent work in [3] proved Onn’s conjecture for k=2k=2 and for all n1n\geq 1 and pp, and shortly after [4] further extended this result to other classical groups, such as SLn,On,Spn,Un\text{SL}_{n},\text{O}_{n},\text{Sp}_{n},\text{U}_{n}. A recent contribution in [5] established that for every n,k1n,k\geq 1 there exists N(n,k)>0N(n,k)>0 such that for any prime p>N(n,k)p>N(n,k) Onn’s conjecture holds with n,k,pn,k,p, and the same is true for SL.
Conversely, in ([6],[7]) it was proven that the conjecture is false for SL2\text{SL}_{2}, p=2p=2, and k4k\geq 4. Notably, this result can be extended to k=3k=3 using similar methods, but not to k=2k=2, as demonstrated in [6] ,§11.
With the assistance of MAGMA’s online computational algebra calculator, we found explicit generators for some of the groups mentioned above and subsequently determined their number of conjugacy classes:

G1G_{1} #Conj.Classes G2G_{2}
SL4(𝔽2[t]/(t3))\text{SL}_{4}(\nicefrac{{\mathbb{F}_{2}[t]}}{{(t^{3})}}) 1824     1896 SL4(/23)\text{SL}_{4}(\nicefrac{{\mathbb{Z}}}{{2^{3}}})
SL3(𝔽3[t]/(t3))\text{SL}_{3}(\nicefrac{{\mathbb{F}_{3}[t]}}{{(t^{3})}}) 1242     1218 SL3(/33)\text{SL}_{3}(\nicefrac{{\mathbb{Z}}}{{3^{3}}})
SL2(𝔽2[t]/(t8))\text{SL}_{2}(\nicefrac{{\mathbb{F}_{2}[t]}}{{(t^{8})}}) 1336     1456 SL2(/28)\text{SL}_{2}(\nicefrac{{\mathbb{Z}}}{{2^{8}}})
SL2(𝔽2[t]/(t7))\text{SL}_{2}(\nicefrac{{\mathbb{F}_{2}[t]}}{{(t^{7})}}) 624     720 SL2(/27)\text{SL}_{2}(\nicefrac{{\mathbb{Z}}}{{2^{7}}})
SL2(𝔽2[t]/(t6))\text{SL}_{2}(\nicefrac{{\mathbb{F}_{2}[t]}}{{(t^{6})}}) 292     352 SL2(/26)\text{SL}_{2}(\nicefrac{{\mathbb{Z}}}{{2^{6}}})
SL2(𝔽2[t]/(t5))\text{SL}_{2}(\nicefrac{{\mathbb{F}_{2}[t]}}{{(t^{5})}}) 132     168 SL2(/25)\text{SL}_{2}(\nicefrac{{\mathbb{Z}}}{{2^{5}}})
SL2(𝔽2[t]/(t4))\text{SL}_{2}(\nicefrac{{\mathbb{F}_{2}[t]}}{{(t^{4})}}) 58     76 SL2(/24)\text{SL}_{2}(\nicefrac{{\mathbb{Z}}}{{2^{4}}})
SL2(𝔽2[t]/(t3))\text{SL}_{2}(\nicefrac{{\mathbb{F}_{2}[t]}}{{(t^{3})}}) 24     30 SL2(/23)\text{SL}_{2}(\nicefrac{{\mathbb{Z}}}{{2^{3}}})

Note that if ζG1=ζG2\zeta_{G_{1}}=\zeta_{G_{2}}, then in particular #Conj.Classes(G1)=#Irr(G1)=ζG1(0)=ζG2(0)=#Irr(G2)=#Conj.Classes(G2)\#\text{Conj.Classes}(G_{1})=\#\text{Irr}(G_{1})=\zeta_{G_{1}}(0)=\zeta_{G_{2}}(0)=\#\text{Irr}(G_{2})=\#\text{Conj.Classes}(G_{2}), so it follows from the above:

Theorem 1.

The following pairs of groups have nonisomorphic complex group algebra, or equivalently, different representation zeta function:

  • SL4(𝔽2[t]/(t3))\text{SL}_{4}(\nicefrac{{\mathbb{F}_{2}[t]}}{{(t^{3})}}) and SL4(/23)\text{SL}_{4}(\nicefrac{{\mathbb{Z}}}{{2^{3}}})

  • SL3(𝔽3[t]/(t3))\text{SL}_{3}(\nicefrac{{\mathbb{F}_{3}[t]}}{{(t^{3})}}) and SL3(/33)\text{SL}_{3}(\nicefrac{{\mathbb{Z}}}{{3^{3}}})

Additionally, this data reproduces special cases of the main result presented in ([6],[7]):

Proposition 1.

[SL2(𝔽2[t]/(tk))][SL2(/2k)]\mathbb{C}[\text{SL}_{2}(\nicefrac{{\mathbb{F}_{2}[t]}}{{(t^{k})}})]\ncong\mathbb{C}[\text{SL}_{2}(\nicefrac{{\mathbb{Z}}}{{2^{k}}})] for 3k83\leq k\leq 8.

This approach to the problem may even shed light on the validity of Onn’s conjecture.
The following section outlines the fundamental concepts and provides code examples that were employed to compute the aforementioned data.

Acknowledgements

I would like to express my gratitude for the support and guidance provided by my advisor, Uri Onn, during this work as part of the ’research project’ course at the Technion in spring 2023. His clear direction and insightful feedback greatly contributed to making this subject accessible. Additionally, I thank Jonathan Shulman for many fruitful discussions.

Outline of ideas

MAGMA’s online calculator, available here, fully supports groups of the form SLn(/pk)\text{SL}_{n}(\nicefrac{{\mathbb{Z}}}{{p^{k}}}), and can easily compute their number of conjugacy classes. As an example, the following code computes the number of conjugacy classes for SL4(/23)\text{SL}_{4}(\nicefrac{{\mathbb{Z}}}{{2^{3}}}):

Z:=Integers();

I:=ideal<Z|8>;

A:=quo<Z|I>;

NumberOfClasses(SL(4,A));and the output is ”1896”, as required. Now we return to SL4(𝔽2[t]/(t3))\text{SL}_{4}(\nicefrac{{\mathbb{F}_{2}[t]}}{{(t^{3})}}). Unfortunately, MAGMA doesn’t support this group. Nevertheless, it does support GL4(𝔽2[t]/(t3))\text{GL}_{4}(\nicefrac{{\mathbb{F}_{2}[t]}}{{(t^{3})}}). To compute the number of conjugacy classes of SL4(𝔽2[t]/(t3))\text{SL}_{4}(\nicefrac{{\mathbb{F}_{2}[t]}}{{(t^{3})}}) we must find explicit (matrix) generators for SL4(𝔽2[t]/(t3))\text{SL}_{4}(\nicefrac{{\mathbb{F}_{2}[t]}}{{(t^{3})}}), as MAGMA can compute the number of conjugacy classes in a group when provided with an explicit set of generators.
We begin our search in [8], where it is shown that the following matrices generate SL3(/2)\text{SL}_{3}(\nicefrac{{\mathbb{Z}}}{{2}}):

X:=(010001100)Y:=(101011010)Z:=(010100111)X:=\begin{pmatrix}0&1&0\\ 0&0&1\\ 1&0&0\end{pmatrix}\;\;\;\;Y:=\begin{pmatrix}1&0&1\\ 0&-1&-1\\ 0&1&0\end{pmatrix}\;\;\;\;Z:=\begin{pmatrix}0&1&0\\ 1&0&0\\ -1&-1&-1\end{pmatrix}

So, it seems plausible that the following matrices could potentially generate SL4(/2)SL_{4}(\nicefrac{{\mathbb{Z}}}{{2}}):

x:=(0100001000011000)y:=(1010011001000001)z:=(0100100011100001)x:=\begin{pmatrix}0&1&0&0\\ 0&0&1&0\\ 0&0&0&1\\ 1&0&0&0\end{pmatrix}\;\;\;\;y:=\begin{pmatrix}1&0&1&0\\ 0&-1&-1&0\\ 0&1&0&0\\ 0&0&0&1\end{pmatrix}\;\;\;\;z:=\begin{pmatrix}0&1&0&0\\ 1&0&0&0\\ -1&-1&-1&0\\ 0&0&0&1\end{pmatrix}

To address the presence of the element tt, we once again make an informed guess. We include the simplest matrix in SL4(𝔽2[t]/(t3))\text{SL}_{4}(\nicefrac{{\mathbb{F}_{2}[t]}}{{(t^{3})}}) that contains tt:

w:=(1t00010000100001)w:=\begin{pmatrix}1&t&0&0\\ 0&1&0&0\\ 0&0&1&0\\ 0&0&0&1\end{pmatrix}

Now we compute the size of the subgroup HH generated by {x,y,z,w}\{x,y,z,w\} inside GL4(𝔽2[t]/(t3))\text{GL}_{4}(\nicefrac{{\mathbb{F}_{2}[t]}}{{(t^{3})}}) and anticipate it is the full size of SL4(𝔽2[t]/(t3))\text{SL}_{4}(\nicefrac{{\mathbb{F}_{2}[t]}}{{(t^{3})}}), which is111|SLn(𝔽p[t]/(tk))|=p(n21)(k1)p10in1(pnpi)|SL_{n}(\nicefrac{{\mathbb{F}_{p}[t]}}{{(t^{k})}})|=\frac{p^{(n^{2}-1)(k-1)}}{p-1}\prod_{0\leq i\leq n-1}(p^{n}-p^{i}) 2164663517184021646635171840. If this is the case, we have successfully found generators for SL4(𝔽2[t]/(t3))\text{SL}_{4}(\nicefrac{{\mathbb{F}_{2}[t]}}{{(t^{3})}}) and can thus compute it’s number of conjugacy classes. We execute the following code to calculate #H\#H and #Conj.Classes(H)\#\text{Conj.Classes}(H):

R<x>:=PolynomialRing(GF(2));

I:=ideal<R|x^3>;

Q:=R/I;

G:=GL(4,Q);

x:=elt<G|

0,1,0,0,

0,0,1,0,

0,0,0,1,

1,0,0,0>;

y:=elt<G|

1,0,1,0,

0,-1,-1,0,

0,1,0,0,

0,0,0,1>;

z:=elt<G|

0,1,0,0,

1,0,0,0,

-1,-1,-1,0,

0,0,0,1>;

w:=elt<G|

1,Q.1,0,0,

0,1,0,0,

0,0,1,0,

0,0,0,1>;

H:=sub<G|x,y,z,w>;

#H;

#ConjugacyClasses(H);and the output is "21646635171840  1824""21646635171840\;\;1824", meaning that SL4(𝔽2[t]/(t3))=x,y,z,w\text{SL}_{4}(\nicefrac{{\mathbb{F}_{2}[t]}}{{(t^{3})}})=\langle x,y,z,w\rangle, and that #Conj.Classes(SL4(𝔽2[t]/(t3)))=1824\#\text{Conj.Classes}(\text{SL}_{4}(\nicefrac{{\mathbb{F}_{2}[t]}}{{(t^{3})}}))=1824, as required.
For the remaining groups, we only provide a set of generators (obtained by similar methods), as the code is very similar.
The following matrices generate SL3(𝔽3[t]/(t3))\text{SL}_{3}(\nicefrac{{\mathbb{F}_{3}[t]}}{{(t^{3})}}):

(010001100)(101011010)(010100111)(1t0010001)\begin{pmatrix}0&1&0\\ 0&0&1\\ 1&0&0\end{pmatrix}\;\;\;\;\begin{pmatrix}1&0&1\\ 0&-1&-1\\ 0&1&0\end{pmatrix}\;\;\;\;\begin{pmatrix}0&1&0\\ 1&0&0\\ -1&-1&-1\end{pmatrix}\;\;\;\;\begin{pmatrix}1&t&0\\ 0&1&0\\ 0&0&1\end{pmatrix}

The following matrices generate SL2(𝔽2[t]/(tk))\text{SL}_{2}(\nicefrac{{\mathbb{F}_{2}[t]}}{{(t^{k})}}) for 3k83\leq k\leq 8:

(1101)(10t1)(1+t2t211)\begin{pmatrix}1&1\\ 0&1\end{pmatrix}\;\;\;\;\begin{pmatrix}1&0\\ t&1\end{pmatrix}\;\;\;\;\begin{pmatrix}1+t^{2}&t^{2}\\ 1&1\end{pmatrix}

We conclude by noting that we were able to find generators and, consequently, determine the number of conjugacy classes for other groups not mentioned above, including not only GL but also SL in various degrees and lengths. For further details and data, interested readers are invited to contact the author.

References

  • [1] Uri Onn. Representations of automorphism groups of finite o-modules of rank two. Advances in Mathematics, 219(6):2058–2085, 2008.
  • [2] Uri Onn, Amritanshu Prasad, and Pooja Singla. Representation zeta functions of arithmetic groups of type A2\text{A}_{2} in positive characteristic. arXiv preprint arXiv:2308.07073, 2023.
  • [3] Pooja Singla. On representations of general linear groups over principal ideal local rings of length two. Journal of Algebra, 324(9):2543–2563, 2010.
  • [4] Pooja Singla. On representations of classical groups over principal ideal local rings of length two. Communications in Algebra, 40(11):4060–4067, 2012.
  • [5] Itamar Hadas. Spectral equivalence of smooth group schemes over principal ideal local rings. arXiv preprint arXiv:2207.05830, 2022.
  • [6] Maliyekkal Hassain and Pooja Singla. Representation growth of compact special linear groups of degree two. Advances in Mathematics, 396:108164, 2022.
  • [7] Maliyekkal Hassain. Construction of representations of compact special linear groups of degree two. arXiv preprint arXiv:2209.00919, 2022.
  • [8] Marston Conder, Edmund Robertson, and Peter Williams. Presentations for 3-dimensional special linear groups over integer rings. Proceedings of the American Mathematical Society, 115(1):19–26, 1992.