This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

On regularity of a Kinetic Boundary layer

Hongxu Chen Department of Mathematics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, email: [email protected]
Abstract.

We study the nonlinear steady Boltzmann equation in the half space, with phase transition and Dirichlet boundary condition. In particular, we study the regularity of the solution to the half-space problem in the situation that the gas is in contact with its condensed phase. We propose a novel kinetic weight and establish a weighted C1C^{1} estimate under the spatial domain x[0,)x\in[0,\infty), which is unbounded and not strictly convex. Additionally, we prove the W1,pW^{1,p} estimate without any weight for p<2p<2.

1. Introduction

1.1. Background

The regularity issue for the boundary value problem of the Boltzmann equation has been a challenging problem due to the singularity of the characteristic near the boundary and the nonlocal nature of the collision operator. Significant progress has been achieved in a convex bounded domain by Guo-Kim-Tonon-Trescases in [19], where the boundedness and strict convexity of the domain play crucial roles in the analysis (see [11] for a discussion on curvature). In this paper, we are interested in the regularity estimate in a domain that lacks both boundedness and strict convexity, specifically, we consider the half-space kinetic boundary layer problem. Other domains with similar properties are discussed in Remark 2.

We consider the phase transition problem in the kinetic theory of gas. This problem can be modeled by the steady Boltzmann equation in the half space with slab-symmetry and suitable boundary conditions, and converging to some Maxwellian equilibrium at the far field. Let F(x,v)F(x,v) be the mass density of the gas particle at distance x>0x>0 and velocity v3v\in\mathbb{R}^{3}. Then the half-space problem is formulated as

{v1xF(x,v)=Q(F,F)(x,v),v3,x>0,F(x,v)M1,u,1(v), as x.\begin{cases}v_{1}\partial_{x}F(x,v)=Q(F,F)(x,v),\ v\in\mathbb{R}^{3},\ x>0,\\ F(x,v)\to M_{1,u,1}(v),\ \ \text{ as }x\to\infty.\end{cases} (1.1)

The Maxwellian equilibrium in (1.1) is denoted as Mρ,u,T(v)M_{\rho,u,T}(v). It is characterized by the constant parameters ρ+\rho\in\mathbb{R}^{+}, uu\in\mathbb{R}, and T+T\in\mathbb{R}^{+}, which represent the mass density, flow velocity, and temperature, respectively. The equilibrium is expressed as:

Mρ,u,T(v)=ρ(2πT)3/2exp((v1u)2+v22+v322T).M_{\rho,u,T}(v)=\frac{\rho}{(2\pi T)^{3/2}}\exp\left(-\frac{(v_{1}-u)^{2}+v_{2}^{2}+v_{3}^{2}}{2T}\right). (1.2)

In (1.1), Q(F,F)Q(F,F) is the Boltzmann collision operator. We consider the hard sphere model with an angular cut-off kernel, where QQ is defined as

Q(F,F)(x,v):=3×𝕊2(F(x,v)F(x,v)F(x,v)F(x,v))|(vv)ω|dωdv.Q(F,F)(x,v):=\int_{\mathbb{R}^{3}\times\mathbb{S}^{2}}(F(x,v^{\prime})F(x,v_{*}^{\prime})-F(x,v)F(x,v_{*}))|(v-v_{*})\cdot\omega|\mathrm{d}\omega\mathrm{d}v_{*}. (1.3)

In (1.3) v,vv^{\prime},v_{*}^{\prime} represent the post-collision velocity, which can be determined through ω𝕊2\omega\in\mathbb{S}^{2} and the conservation of momentum and energy:

v+v=v+v,|v|2+|v|2=|v|2+|v|2,\displaystyle v^{\prime}+v_{*}^{\prime}=v+v_{*},\ \ \ |v^{\prime}|^{2}+|v^{\prime}_{*}|^{2}=|v|^{2}+|v_{*}|^{2},
v=v((vv)ω)ω,v=v+((vv)ω)ω.\displaystyle v^{\prime}=v-((v-v_{*})\cdot\omega)\omega,\ v_{*}^{\prime}=v_{*}+((v-v_{*})\cdot\omega)\omega.

The well-posedness and asymptotic behavior of the linear half-space problem (linearized version of (1.1)), also known as Milne problem, have been studied in the pioneering work by Bardos-Caflisch-Nicolaenko [1]. The Milne problem serves as a fundamental boundary layer problem with specified incoming boundary condition. This theory has found significant applications in the hydrodynamic limit problem of the kinetic equation when there exhibits a mismatch between the kinetic and fluid boundaries, as demonstrated in [32, 13, 33].

For the nonlinear half-space problem (1.1) with Dirichlet boundary conditions, not all Dirichlet data are admissible and the admissible conditions depend on the far field Maxwellian. When uu does not take the singular values {0,+5/3,5/3}\{0,+\sqrt{5/3},-\sqrt{5/3}\}, Ukai-Yang-Yu devised a penalization method to construct a unique solution in [30, 31], and the solution is proved to converge exponentially to 0 as xx\to\infty. In this study, the convergence rate and the condition on the admissible boundary data depend on the parameter uu. When uu takes the singular value u=0u=0, Golse studied the well-posedness and boundary admissible condition in [15].

In our paper, we focus on the case of 0<|u|10<|u|\ll 1 with the Dirichlet boundary condition, which corresponds to the phase transition in the condensation-evaporation problem. For more comprehensive details on the boundary admissible condition of these problems, we refer readers to [2] and the reference therein. We also refer readers to [29, 28] for extensive numerical computation on these topics.

To begin, we denote the standard global Maxwellian by M:=M1,0,1M:=M_{1,0,1} with Mρ,u,TM_{\rho,u,T} defined in (1.2). We apply a change of variable ξ:=v(u,0,0),\xi:=v-(u,0,0), and set the Boltzmann equation FF (1.1) as a perturbation around the Maxwellian

F(x,v)=(M+Mf)(x,v(u,0,0)).F(x,v)=(M+\sqrt{M}f)(x,v-(u,0,0)).

The equation of the perturbation ff, with ξ=v(u,0,0)\xi=v-(u,0,0), reads

{(ξ1+u)xf(x,ξ)+f(x,ξ)=Γ(f,f)f(x,ξ)0 as x.\begin{cases}(\xi_{1}+u)\partial_{x}f(x,\xi)+\mathcal{L}f(x,\xi)=\Gamma(f,f)\\ f(x,\xi)\to 0\text{ as }x\to\infty.\end{cases} (1.4)

Here f\mathcal{L}f is the linear Boltzmann operator, which is defined as

f:=ν(ξ)fK(f)=Q(M,Mf)MQ(Mf,M)M.\mathcal{L}f:=\nu(\xi)f-K(f)=-\frac{Q(M,\sqrt{M}f)}{\sqrt{M}}-\frac{Q(\sqrt{M}f,M)}{\sqrt{M}}. (1.5)

Γ(f,f)\Gamma(f,f) is the nonlinear Boltzmann operator defined as

Γ(f,g):=Q(Mf,Mg)+Q(Mg,Mf)2M.\Gamma(f,g):=\frac{Q(\sqrt{M}f,\sqrt{M}g)+Q(\sqrt{M}g,\sqrt{M}f)}{2\sqrt{M}}. (1.6)

The properties of these Boltzmann operators are summarized in Lemma 1.

Now we discuss boundary conditions of (1.4). We assume that the gas is in contact with its condensed phase as in [3]. At x=0x=0, we impose a Dirichlet boundary condition:

f(0,ξ)=fb(ξ),ξ1+u>0.f(0,\xi)=f_{b}(\xi),\ \ \ \xi_{1}+u>0. (1.7)

For other boundary conditions such as diffuse boundary condition and specular boundary condition, the well-posedness and asymptotic behavior are obtained in [16, 12], and recently, with continuity, in [20, 21] under different functional spaces. We refer to [23, 24] for more recent progress on the range of Mach number.

Recently, for uu closed to the singular value 0, Bernhoff and Golse [3] proposed an elegant approach to establish the well-posedness and asymptotic stability under certain assumptions on the boundary data(also see [27]). In this result, the solution ff is proved to exhibit slab symmetry and converge exponentially as xx\to\infty, with the convergence rate being uniform in |u|1|u|\ll 1. We document this well-posedness result in Theorem 3 in Section 2.

1.2. Main result

While the well-posedness of (1.4) is well understood in [3] and other literature, the regularity of such a boundary layer problem remains open. In this paper, we tackle this problem by constructing the weighted C1C^{1} estimate and W1,p,p<2W^{1,p},p<2 estimate without weight.

It is well-known that with the presence of the boundary, the regularity of the Boltzmann equation possesses singularity due to the non-local nature of the Boltzmann operator. As demonstrated in [26, 17, 25, 18], in a general convex domain, the spatial derivative xf(x,ξ)\nabla_{x}f(x,\xi) generates singularity as 1/(n(x𝐛)ξ)1/(n(x_{\mathbf{b}})\cdot\xi), where x𝐛x_{\mathbf{b}} corresponds to the backward exit position defined as

x𝐛(x,ξ)=xt𝐛(x,ξ)ξ,t𝐛(x,ξ)=sup{s0,xsξΩ}.\displaystyle x_{\mathbf{b}}(x,\xi)=x-t_{\mathbf{b}}(x,\xi)\xi,\ t_{\mathbf{b}}(x,\xi)=\sup\{s\geq 0,\ x-s\xi\in\Omega\}.

In particular, in [19], Guo-Kim-Tonon-Trescases proposed a kinetic weight that can compensate the singularity and capture the convexity of domain at the same time. This innovative approach successfully overcomes the challenges posed by the non-local properties of the Boltzmann equation and establishes a weighted C1C^{1} estimate. The introduction of kinetic weight has significantly advanced the understanding of the Boltzmann regularity, see [8, 6, 5, 10].

In our specific problem, it is evident that xf\partial_{x}f exhibits a singularity as 1/(ξ1+u)1/(\xi_{1}+u). However, due to the lack of strict convexity and boundedness in the domain, we need to introduce a new kinetic weight to address this singularity. The proposed kinetic weight is defined as follows:

Definition 1 (Kinetic weight).

We define

α~(x,ξ):=|ξ1+u|2+(cν0)2x2,\tilde{\alpha}(x,\xi):=\sqrt{|\xi_{1}+u|^{2}+(c\nu_{0})^{2}x^{2}}, (1.8)

where ν0\nu_{0} corresponds to the lower bound of the collision frequency defined in (2.8). 0<c<10<c<1 is a constant that will be specified later in (2.13).

We introduce a cut-off function for the kinetic weight. Define χ:[0,)[0,)\chi:[0,\infty)\rightarrow[0,\infty) which stands for a non-decreasing smooth function such that

χ(s)=sfors[0,1/2],χ(s)=1fors[2,),and|χ(s)|1fors[0,).\chi(s)=s\ \text{for}\ s\in[0,1/2],\ \chi(s)=1\ \text{for}\ s\in[2,\infty),\ and\ |\chi^{\prime}(s)|\leq 1\ \text{for}\ s\in[0,\infty). (1.9)

Then we introduce a cut-off function to the kinetic weight:

α(x,ξ):=χ(α~(x,ξ)).\alpha(x,\xi):=\chi(\tilde{\alpha}(x,\xi)). (1.10)

With the extra cutoff function, we directly have

α(x,ξ)1, 11α(x,ξ).\alpha(x,\xi)\leq 1,\ \ \ 1\leq\frac{1}{\alpha(x,\xi)}. (1.11)
Remark 1.

On the boundary x=0x=0, clearly we have

α(0,ξ)|ξ1+u|,1|ξ1+u|1α(0,ξ).\displaystyle\alpha(0,\xi)\leq|\xi_{1}+u|,\ \ \frac{1}{|\xi_{1}+u|}\leq\frac{1}{\alpha(0,\xi)}. (1.12)

Thus the singularity 1|ξ1+u|\frac{1}{|\xi_{1}+u|} can be compensated by α(x,ξ)\alpha(x,\xi) when |ξ1+u|1|\xi_{1}+u|\ll 1.

From (1.4), we can control xf(x,ξ)\partial_{x}f(x,\xi) using a trivial weight ξ1+u\xi_{1}+u. At the boundary x=0x=0, xf\partial_{x}f is expected to be discontinuous and possess a singularity as 1ξ1+u\frac{1}{\xi_{1}+u}. Away from the boundary, ff is expected to be continuous; however, the trivial weight ξ1+u\xi_{1}+u does not provide information regarding this continuity. Our weight (1.8) is non-zero away from the boundary, and controlling αxf\alpha\partial_{x}f implies the desired estimate for xf\partial_{x}f when x>0x>0, as illustrated in Theorem 1.

Remark 2.

The kinetic weight proposed in [19] is almost invariant along the characteristic thanks to the strict convexity and boundedness. It is important to note that even under a flat and unbounded domain, our weight (1.8) still possesses favorable properties similar to [19] in the following two aspects.

I. Due to the presence of the spatial variable xx in (1.8), our weight α(x,ξ)\alpha(x,\xi) does not remain invariant along the characteristic. In fact, the rate of change along the characteristic of these weights can be explicitly computed (see Lemma 4 and Lemma 5). Importantly, it turns out that the rate of change depends on the choice of cc. Meanwhile, the collision frequency ν\nu from the linear Boltzmann operator \mathcal{L} is bounded below by ν0\nu_{0} according to Lemma 1. By selecting an appropriate cc, the growth factor e2cν0se^{2c\nu_{0}s} in Lemma 5 along the characteristic can be compensated by the damped factor eνse^{-\nu s}.

II. The extra spatial variable xx in (1.8) plays a key role in the regularity estimate of the non-local Boltzmann operator. For example, in (1.23), the integral over dξ\mathrm{d}\xi^{\prime} does not blow up; instead, it becomes a function of the spatial variable xx. This allows us to proceed the computation and focus on the ds\mathrm{d}s integral. We refer more detailed computation to Lemma 6.

We anticipate that this type of kinetic weight can be adapted to study the regularity issue in unbounded domains with flat boundaries. For instance, the initial boundary value problem of the Boltzmann equation in [22], [4] with domain 𝕋2×+\mathbb{T}^{2}\times\mathbb{R}^{+}, and in [7] with domain 2×(1,1)\mathbb{R}^{2}\times(-1,1).

In the following result, we establish the regularity estimate of the solution to the boundary layer problem (1.4). We denote the exponential weight in velocity ξ\xi as

w(ξ):=eθ|ξ|2,θ<14,wθ~(ξ):=eθ~|ξ|2 for θ~θ.\begin{split}&w(\xi):=e^{\theta|\xi|^{2}},\ \theta<\frac{1}{4},\ \ \ w_{\tilde{\theta}}(\xi):=e^{\tilde{\theta}|\xi|^{2}}\text{ for }\tilde{\theta}\ll\theta.\end{split} (1.13)

We define the grazing set as

𝒟:={(0,ξ)|ξ3,ξ1+u=0}.\mathcal{D}:=\{(0,\xi)|\xi\in\mathbb{R}^{3},\ \ \xi_{1}+u=0\}. (1.14)

We denote the inner product and orthongonal matrix as

f:=3f(ξ)dξ,\displaystyle\langle f\rangle:=\int_{\mathbb{R}^{3}}f(\xi)\mathrm{d}\xi, (1.15)
:=(100010001).\mathcal{R}:=\begin{pmatrix}1&0&0\\ 0&-1&0\\ 0&0&-1\\ \end{pmatrix}. (1.16)
Theorem 1.

Assume 0<|u|<r0<|u|<r for some r1r\ll 1. Assume that for some ε1\varepsilon\ll 1, the boundary data fbf_{b} (1.7) satisfy

fb=fb,fbC(3) and wfbLξε, defined in (1.16),f_{b}\circ\mathcal{R}=f_{b},\ f_{b}\in C(\mathbb{R}^{3})\text{ and }\|wf_{b}\|_{L^{\infty}_{\xi}}\leq\varepsilon,\ \ \mathcal{R}\text{ defined in }\eqref{matrix}, (1.17)

and

(ξ1+u)Y1[u]u,γ[fb]=(ξ1+u)Y2[u]u,γ[fb]=0.\langle(\xi_{1}+u)Y_{1}[u]\mathfrak{R}_{u,\gamma}[f_{b}]\rangle=\langle(\xi_{1}+u)Y_{2}[u]\mathfrak{R}_{u,\gamma}[f_{b}]\rangle=0. (1.18)

Here Y1[u]Y_{1}[u], Y2[u]Y_{2}[u], and u,γ\mathfrak{R}_{u,\gamma} are defined in Appendix A.

We further assume that (1.4) with boundary condition (1.7) has a unique solution ff such that for some C>0C>0 and γ1\gamma\ll 1,

fC(+×3\𝒟),wf(x,ξ)LξCεeγx.\displaystyle f\in C(\mathbb{R}^{+}\times\mathbb{R}^{3}\backslash\mathcal{D}),\ \|wf(x,\xi)\|_{L^{\infty}_{\xi}}\leq C\varepsilon e^{-\gamma x}. (1.19)

Then for some C>0C_{\infty}>0, the unique solution ff satisfies the weighted C1C^{1} estimate:

wθ~αxfLx,ξCεeγx.\|w_{\tilde{\theta}}\alpha\partial_{x}f\|_{L^{\infty}_{x,\xi}}\leq C_{\infty}\varepsilon e^{-\gamma x}. (1.20)

For 1p<21\leq p<2 and γ0<γ\gamma_{0}<\gamma, the solution ff also satisfies the W1,pW^{1,p} and Hloc1H^{1}_{loc} estimate:

wθ~/2eγ0xxfLx,ξpCpε for some Cp>0,\displaystyle\|w_{\tilde{\theta}/2}e^{\gamma_{0}x}\partial_{x}f\|_{L^{p}_{x,\xi}}\leq C_{p}\varepsilon\text{ for some }C_{p}>0, (1.21)
δ3wθ~(ξ)e2γ0x|xf|2dξdxCδ for any δ>0 and some Cδ>0.\displaystyle\int_{\delta}^{\infty}\int_{\mathbb{R}^{3}}w_{\tilde{\theta}}(\xi)e^{2\gamma_{0}x}|\partial_{x}f|^{2}\mathrm{d}\xi\mathrm{d}x\leq C_{\delta}\text{ for any }\delta>0\text{ and some }C_{\delta}>0. (1.22)
Remark 3.

The continuity and ww-weighted LL^{\infty} estimate assumption (1.19) will be justified in Theorem 2.

Bernhoff and Golse construct a unique solution ff using polynomial weight (1+|ξ|3)(1+|\xi|^{3})(see Theorem 3) in [3]. In this study, they focus on the well-posedness analysis of a penalized problem, which subsequently establishes the well-posedness of the original problem (1.4) by eliminating the penalization. To remove the penalization, additional assumptions (1.18) are introduced. The assumptions (1.18) also imply that the incoming boundary forms a manifold of co-dimension two for given uu, as stated in [3].

In our paper, we do not incorporate these additional conditions in our analysis. For precise definitions of the functions Y1[u]Y_{1}[u], Y2[u]Y_{2}[u], and u,γ\mathfrak{R}_{u,\gamma} in (1.18), we refer readers to the Appendix A and also to [3].

Remark 4.

For the W1,pW^{1,p} estimate with p<2p<2, the exponential weight wθ~(ξ)w_{\tilde{\theta}}(\xi) and exponential decay eγxe^{-\gamma x} in the weighted C1C^{1} estimate (1.20) guarantee the integrability as x,|ξ|x,|\xi|\to\infty. For a general convex, smooth, and bounded domain, [9] establishes a W1,pW^{1,p} estimate for p<3p<3 by employing control over the backward exit time t𝐛|n(x𝐛)ξ|/|ξ|2t_{\mathbf{b}}\lesssim|n(x_{\mathbf{b}})\cdot\xi|/|\xi|^{2}. This control allows for a gain in local integrability with respect to the singularity 1/(n(x𝐛)ξ)1/(n(x_{\mathbf{b}})\cdot\xi). We notice that in our paper, we do not have the benefit of such an additional control since our domain is unbounded and not strictly convex.

Remark 5.

The Hloc1H^{1}_{loc} estimate (1.22) coincides with the regularity of the Milne problem, as stated in Theorem 3.3 in [1]:

δ3(1+|ξ|)e2γx|xf|2dξdxCδ.\displaystyle\int_{\delta}^{\infty}\int_{\mathbb{R}^{3}}(1+|\xi|)e^{2\gamma x}|\partial_{x}f|^{2}\mathrm{d}\xi\mathrm{d}x\leq C_{\delta}.

Bardos-Caflisch-Nicolaenko derived this upper bound through an L2L^{2} energy estimate to the equation of xf\partial_{x}f. In our Theorem 1, we deal with the nonlinear problem, and we derive (1.22) through direct computation using the weighted C1C^{1} estimate (1.20). In this computation, the extra weight in (1.20) generates extra singularity 1|α(x,ξ)|2\frac{1}{|\alpha(x,\xi)|^{2}} in integration, which is controllable away from x=0x=0, as demonstrated in Section 1.3.

The assumption (1.19) is justified in the following theorem.

Theorem 2.

There exists ε\varepsilon, rr, γ\gamma and CC such that if the boundary data fbf_{b} (1.7) satisfies

fb=fb,fbC(3) and wfbLξε, defined in (1.16),f_{b}\circ\mathcal{R}=f_{b},\ f_{b}\in C(\mathbb{R}^{3})\text{ and }\|wf_{b}\|_{L^{\infty}_{\xi}}\leq\varepsilon,\ \ \mathcal{R}\text{ defined in }\eqref{matrix},
(ξ1+u)Y1[u]u,γ[fb]=(ξ1+u)Y2[u]u,γ[fb]=0.\langle(\xi_{1}+u)Y_{1}[u]\mathfrak{R}_{u,\gamma}[f_{b}]\rangle=\langle(\xi_{1}+u)Y_{2}[u]\mathfrak{R}_{u,\gamma}[f_{b}]\rangle=0.

for each 0<|u|r0<|u|\leq r. Then (1.4) with boundary condition (1.7) has a unique solution ff that is continuous away from the grazing set: fC(+×3\𝒟)f\in C(\mathbb{R}^{+}\times\mathbb{R}^{3}\backslash\mathcal{D}), and

f(x,ξ)=f(x,ξ) for a.e (x,ξ)+×3.f(x,\mathcal{R}\xi)=f(x,\xi)\text{ for a.e }(x,\xi)\in\mathbb{R}_{+}\times\mathbb{R}^{3}.

Moreover, ff satisfies the uniform-in-uu decay estimate

wf(x,ξ)LξCεeγx.\|wf(x,\xi)\|_{L^{\infty}_{\xi}}\leq C\varepsilon e^{-\gamma x}.
Remark 6.

The ww-weighted LL^{\infty} estimate (1.19) is crucial in constructing the weighted C1C^{1} regularity (1.20) in Theorem 1. As stated in (2.7) in Lemma 1, the nonlinear operator Γ\Gamma shares a similar structure with the linear operator KfKf (2.2) by employing the weight ww. This allows us to control the contribution of both KK and Γ\Gamma in the weighted C1C^{1} estimate using a uniform strategy.

1.3. Difficulty and main idea

1. Continuity proof by penalization. To begin, we justify the continuity and ww weighted LL^{\infty} estimate assumption (1.19) in Theorem 2. Following the approach in [3], we introduce a linearized penalized problem, as described in Proposition 5. The construction of the penalized operator is based on solving the eigen-value problem (3.1). In [3], the corresponding eigen-function ϕu\phi_{u} is proved to be bounded in LL^{\infty} with polynomial weight (1+|ξ|)s(1+|\xi|)^{s}. To prove wgLx,ξ\|wg\|_{L^{\infty}_{x,\xi}}, the first step is to control the eigen-function ϕu\phi_{u} in LL^{\infty} with exponential weight. We use a modified linear Boltzmann operator,

θϕu\displaystyle\mathcal{L}_{\theta}\phi_{u} =Q(M,Meθ|ξ|2ϕu)+Q(Meθ|ξ|2ϕu,M)Meθ|ξ|2=ν(ξ)ϕuKθϕu.\displaystyle=-\frac{Q(M,\sqrt{M}e^{-\theta|\xi|^{2}}\phi_{u})+Q(\sqrt{M}e^{-\theta|\xi|^{2}}\phi_{u},M)}{\sqrt{M}e^{-\theta|\xi|^{2}}}=\nu(\xi)\phi_{u}-K_{\theta}\phi_{u}.

The modified linear operator KθK_{\theta} shares a structure similar to the original operator KK (see Lemma 3). The eigen-value problem associated with the modified operator can be solved in the same spirit. We obtain the eigen-function to the original problem as eθ|ξ|2ϕue^{-\theta|\xi|^{2}}\phi_{u} with the desired weight(see Lemma 8 for detail).

Subsequently, we employ a fixed-point argument in the ww-weighted LL^{\infty} space to establish the well-posedness and the continuity, for the linearized penalized problem in Proposition 6, and after, for the nonlinear penalized problem, in Proposition 8.

2. Regularity

2-a. Weighted C1C^{1} estimate. The construction of the derivative involves fixed-point argument to the penalized problem (3.11) with an a-priori weighted C1C^{1} estimate. In the following, we illustrate the main difficulty and idea in the a-priori estimate(Lemma 12).

The difficulty of the singularity 1ξ1+u\frac{1}{\xi_{1}+u} is addressed by the proposed kinetic weight α(x,ξ)\alpha(x,\xi). To control its rate of change along the characteristic(Lemma 5), we set c=1/8c=1/8 and thus this growth rate can be controlled by the collision frequency ν\nu in (1.5).

The derivative along the characteristic is given by the piece-wise formula (4.5)-(4.10). The main difficulty comes from the contribution of the linear operator K(xg)K(\partial_{x}g) in (4.8). By employing the Grad estimate (2.2) to K(xg)K(\partial_{x}g), we see a dξ\mathrm{d}\xi^{\prime} integration in this term as

0tdseν(ts)3𝐤(ξ,ξ)xg(x(ξ1+u)(ts),ξ)dξ.\displaystyle\int^{t}_{0}\mathrm{d}se^{-\nu(t-s)}\int_{\mathbb{R}^{3}}\mathbf{k}(\xi,\xi^{\prime})\partial_{x}g(x-(\xi_{1}+u)(t-s),\xi^{\prime})\mathrm{d}\xi^{\prime}.

From a standard technique, we iterate along the characteristic with velocity ξ\xi^{\prime} again and obtain a double Duhamel’s formula(in (4.15)):

0tdseν(ts)3𝐤(ξ,ξ)0sdseν(ss)3𝐤(ξ,ξ′′)xg(x(ξ1+u)(ts)(ξ1+u)(ss),ξ′′).\displaystyle\int_{0}^{t}\mathrm{d}se^{-\nu(t-s)}\int_{\mathbb{R}^{3}}\mathbf{k}(\xi,\xi^{\prime})\int^{s}_{0}\mathrm{d}s^{\prime}e^{-\nu(s-s^{\prime})}\int_{\mathbb{R}^{3}}\mathbf{k}(\xi^{\prime},\xi^{\prime\prime})\partial_{x}g(x-(\xi_{1}+u)(t-s)-(\xi_{1}^{\prime}+u)(s-s^{\prime}),\xi^{\prime\prime}).

To control this term, we expect to utilize the estimate on g\|g\|_{\infty} or gain a smallness contribution from the time integration. To achieve our goal, we split the ds\mathrm{d}s^{\prime} integral into two regions: ssεs-s^{\prime}\leq\varepsilon and ss>εs-s^{\prime}>\varepsilon. When ss>εs-s^{\prime}>\varepsilon, we observe the following change of variable

ξ1[g(y(ξ1+u)(ss),ξ′′)](ss)=xg(y(ξ1+u)(ss),ξ′′).\displaystyle\frac{\partial_{\xi^{\prime}_{1}}[g(y-(\xi^{\prime}_{1}+u)(s-s^{\prime}),\xi^{\prime\prime})]}{-(s-s^{\prime})}=\partial_{x}g(y-(\xi^{\prime}_{1}+u)(s-s^{\prime}),\xi^{\prime\prime}).

With the lower bound of sss-s^{\prime}, we convert the xx-derivative xg\partial_{x}g into a velocity ξ1\xi_{1} derivative ξ1[g]\partial_{\xi_{1}}[g]. Via an integration by part, we remove the derivative in ξ1[g]\partial_{\xi_{1}}[g] and control the gg using the LL^{\infty} estimate mentioned in the previous paragraphs(Theorem 2). On the other hand, the case ss<εs-s^{\prime}<\varepsilon corresponds to a small time contribution, we need to incorporate the nonlocal operator K(xg)K(\partial_{x}g) with the kinetic weight α\alpha. By introducing the kinetic weight α\alpha in the Duhamel’s formula and isolating αxgLξ\|\alpha\partial_{x}g\|_{L^{\infty}_{\xi}}, we arrive at the following integral:

tεtdseν(ξ)(ts)3dξeC|ξξ|2|ξξ|1α(x(ts)(ξ1+u),ξ).\displaystyle\int_{t-\varepsilon}^{t}\mathrm{d}se^{-\nu(\xi)(t-s)}\int_{\mathbb{R}^{3}}\mathrm{d}\xi^{\prime}\frac{e^{-C|\xi-\xi^{\prime}|^{2}}}{|\xi-\xi^{\prime}|}\frac{1}{\alpha(x-(t-s)(\xi_{1}+u),\xi^{\prime})}. (1.23)

This type of estimate was first studied in [19] when the domain is bounded and strictly convex. In our case, the integrability in dξ\mathrm{d}\xi^{\prime} arises from the additional x2x^{2} term in (1.8). The dξ\mathrm{d}\xi^{\prime} integration can be explicitly computed as a function of ξ,s\xi,s (see (2.23) and (2.24) for detail):

tεtdseν(ξ)(ts)ln(1+|1x(ξ1+u)(ts)|2).\displaystyle\int_{t-\varepsilon}^{t}\mathrm{d}se^{-\nu(\xi)(t-s)}\ln\Big{(}1+\Big{|}\frac{1}{x-(\xi_{1}+u)(t-s)}\Big{|}^{2}\Big{)}.

We aim to control this integral by 1α(x,v)\frac{1}{\alpha(x,v)} to close the weighted C1C^{1} estimate αxg.\|\alpha\partial_{x}g\|_{\infty}. Despite the lack of strict convexity and boundedness, our setting has one beneficial aspect - the spatial variable is one-dimensional. Along the characteristic, the spatial variable can be explicitly computed as x(ξ1+u)(ts)x-(\xi_{1}+u)(t-s). We tackle this integration by carefully comparing the scale of 1x(ξ1+u)(ts)\frac{1}{x-(\xi_{1}+u)(t-s)} with the scale of 1α(x,v)\frac{1}{\alpha(x,v)}(approximately 1|ξ1+u|2+x2\frac{1}{\sqrt{|\xi_{1}+u|^{2}+x^{2}}} in (1.8)). We refer the detailed analysis and conclusion of this integral to Lemma 6.

The contribution of the nonlinear operator (4.10) can be controlled in the same spirit. The corresponding integral reads

0tdseν(ts)xΓ(g,g)(x(ξ1+u)(ts),ξ)dξ\displaystyle\int^{t}_{0}\mathrm{d}se^{-\nu(t-s)}\partial_{x}\Gamma(g,g)(x-(\xi_{1}+u)(t-s),\xi)\mathrm{d}\xi
wgLx,ξ0tdeν(ts)3𝐤(ξ,ξ)|xg(x(ξ1+u)(ts),ξ)|dξ.\displaystyle\lesssim\|wg\|_{L^{\infty}_{x,\xi}}\int_{0}^{t}\mathrm{d}e^{-\nu(t-s)}\int_{\mathbb{R}^{3}}\mathbf{k}(\xi,\xi^{\prime})|\partial_{x}g(x-(\xi_{1}+u)(t-s),\xi^{\prime})|\mathrm{d}\xi^{\prime}.

Here the ww weight plays an important role to have the kernel 𝐤(ξ,ξ)\mathbf{k}(\xi,\xi^{\prime}) in the integration, as emphasized in Remark 6. The smallness of wgLx,ξ\|wg\|_{L^{\infty}_{x,\xi}} plays the same role as the small time contribution discussed in the previous paragraph. In fact, the large time integration includes an additional growing factor in the time scale tt, as stated in Lemma 6. Consequently, we set tt to be large but fixed, and absorb it using the smallness of wgLx,ξ\|wg\|_{L^{\infty}_{x,\xi}}.

2-b. W1,pW^{1,p} estimate. The W1,pW^{1,p} estimate without weight in (1.21) is derived after obtaining the weighted C1C^{1} estimate. In the previous paragraph we establish the weighted C1C^{1} estimate to the penalized problem gg. The solution ff to (1.4) is set to be (see Section 3.4 for detail)

f(x,ξ)=eγxg(x,ξ).f(x,\xi)=e^{-\gamma x}g(x,\xi).

The exponential decay factor eγxe^{-\gamma x} and the velocity weight in wθ~(ξ)αxgLx,ξ\|w_{\tilde{\theta}}(\xi)\alpha\partial_{x}g\|_{L^{\infty}_{x,\xi}} provide the integrability as x,|ξ|x,|\xi|\to\infty. In (1.21), the constraint of p<2p<2 arises from the local integrability of the term 1αp(x,ξ)\frac{1}{\alpha^{p}(x,\xi)}. The local integral of 1αp(x,ξ)1(|ξ1+u|2+x2)p/2\frac{1}{\alpha^{p}(x,\xi)}\sim\frac{1}{(|\xi_{1}+u|^{2}+x^{2})^{p/2}} corresponds to a two-dimensional integration involving the variables ξ1\xi_{1} and xx. Therefore, this integral over x(0,1)x\in(0,1) is bounded for p<2p<2, and the integral over x(δ,1)x\in(\delta,1) is bounded by some constant CδC_{\delta} for δ>0\delta>0 and p=2p=2. This justifies the Hloc1H^{1}_{loc} estimate in (1.22).

Outline. In Section 2, we provide the properties of the kinetic weight and Boltzmann operator as preliminary material. In Section 3, we introduce the penalized problem and analyze its continuity as well as the exponential weighted LL^{\infty} estimate. This analysis allows us to justify the assumption (1.19) and conclude Theorem 2 after removing the penalization. In Section 4, we apply the properties of kinetic weight to conclude Theorem 1 by establishing the weighted C1C^{1} and W1,pW^{1,p} estimate for p<2p<2.

2. Preliminary

First, we document the well-posedness result of (1.4) in [3].

Theorem 3 (Theorem 2.1 in [3]).

There exists ε\varepsilon, rr, γ\gamma and CC such that if the boundary data fbf_{b} (1.7) satisfies

fb=fb and (1+|ξ|)3fbLξε,f_{b}\circ\mathcal{R}=f_{b}\text{ and }\|(1+|\xi|)^{3}f_{b}\|_{L^{\infty}_{\xi}}\leq\varepsilon, (2.1)

for each 0<|u|r0<|u|\leq r. Then (1.4) with boundary condition (1.7) has a unique solution that satisfies

f(x,ξ)=f(x,ξ) for a.e (x,ξ)+×3f(x,\mathcal{R}\xi)=f(x,\xi)\text{ for a.e }(x,\xi)\in\mathbb{R}_{+}\times\mathbb{R}^{3}

and the uniform decay estimate

(1+|ξ|)3f(x,ξ)LξCεeγx\|(1+|\xi|)^{3}f(x,\xi)\|_{L^{\infty}_{\xi}}\leq C\varepsilon e^{-\gamma x}

if and only if the boundary data fbf_{b} satisfies further conditions

(ξ1+u)Y1[u]u,γ[fb]=(ξ1+u)Y2[u]u,γ[fb]=0.\langle(\xi_{1}+u)Y_{1}[u]\mathfrak{R}_{u,\gamma}[f_{b}]\rangle=\langle(\xi_{1}+u)Y_{2}[u]\mathfrak{R}_{u,\gamma}[f_{b}]\rangle=0.

Here Y1[u]Y_{1}[u], Y2[u]Y_{2}[u], and u,γ\mathfrak{R}_{u,\gamma} are defined in Appendix A.

2.1. Properties of the Boltzmann operator in (1.5) and (1.6).

Lemma 1.

The linear Boltzmann operator K(f)K(f) in (1.4) is given by

Kf(x,ξ)=3𝐤(ξ,ξ)f(x,ξ)dξ.\displaystyle Kf(x,\xi)=\int_{\mathbb{R}^{3}}\mathbf{k}(\xi,\xi^{\prime})f(x,\xi^{\prime})\mathrm{d}\xi^{\prime}. (2.2)

The kernel 𝐤(ξ,ξ)=𝐤1(ξ,ξ)+𝐤2(ξ,ξ)\mathbf{k}(\xi,\xi^{\prime})=\mathbf{k}_{1}(\xi,\xi^{\prime})+\mathbf{k}_{2}(\xi,\xi^{\prime}) is given by the Grad estimate [14]:

𝐤1(ξ,ξ)\displaystyle\mathbf{k}_{1}(\xi,\xi^{\prime}) =C𝐤1|ξξ|e|ξ|2+|ξ|24,\displaystyle=C_{\mathbf{k}_{1}}|\xi-\xi^{\prime}|e^{-\frac{|\xi|^{2}+|\xi^{\prime}|^{2}}{4}}, (2.3)
𝐤2(ξ,ξ)\displaystyle\mathbf{k}_{2}(\xi,\xi^{\prime}) =C𝐤21|ξξ|e18|ξξ|218(|ξ|2|ξ|2)2|ξξ|2.\displaystyle=C_{\mathbf{k}_{2}}\frac{1}{|\xi-\xi^{\prime}|}e^{-\frac{1}{8}|\xi-\xi^{\prime}|^{2}-\frac{1}{8}\frac{(|\xi|^{2}-|\xi^{\prime}|^{2})^{2}}{|\xi-\xi^{\prime}|^{2}}}. (2.4)

The kernel satisfies

|𝐤(ξ,ξ)|𝐤ϱ(ξ,ξ),𝐤ϱ(ξ,ξ):=eϱ|ξξ|2/|ξξ|.|\mathbf{k}(\xi,\xi^{\prime})|\lesssim\mathbf{k}^{\varrho}(\xi,\xi^{\prime}),\ \ \mathbf{k}^{\varrho}(\xi,\xi^{\prime}):=e^{-\varrho|\xi-\xi^{\prime}|^{2}}/|\xi-\xi^{\prime}|.

For ν\nu and Γ\Gamma in (1.4), we have

ν(ξ)1+|ξ|,|ξν(ξ)|1,\nu(\xi)\gtrsim 1+|\xi|,\quad|\nabla_{\xi}\nu(\xi)|\lesssim 1, (2.5)
w1+|ξ|Γ(f,g)(x,ξ)Lx,ξwfLx,ξ×wgLx,ξ,\begin{split}\Big{\|}\frac{w}{1+|\xi|}\Gamma(f,g)(x,\xi)\Big{\|}_{L^{\infty}_{x,\xi}}&\lesssim\|wf\|_{L^{\infty}_{x,\xi}}\times\|wg\|_{L^{\infty}_{x,\xi}},\end{split} (2.6)
|xΓ(f,g)(x,ξ)|[1+|ξ|]wfLx,ξ|xg(x,ξ)|+wfLx,ξ3𝐤(ξ,ξ)|xg(x,ξ)|dξ+wgLx,ξ3𝐤(ξ,ξ)|xf(x,ξ)|dξ.\begin{split}|\nabla_{x}\Gamma(f,g)(x,\xi)|&\lesssim[1+|\xi|]\|wf\|_{L^{\infty}_{x,\xi}}|\nabla_{x}g(x,\xi)|+\|wf\|_{L^{\infty}_{x,\xi}}\int_{\mathbb{R}^{3}}\mathbf{k}(\xi,\xi^{\prime})|\nabla_{x}g(x,\xi^{\prime})|\mathrm{d}\xi^{\prime}\\ &+\|wg\|_{L^{\infty}_{x,\xi}}\int_{\mathbb{R}^{3}}\mathbf{k}(\xi,\xi^{\prime})|\nabla_{x}f(x,\xi^{\prime})|\mathrm{d}\xi^{\prime}.\end{split} (2.7)
Proof.

The proof of (2.3) – (2.5) can be found in [14]. The proof of (2.6) can be found in [17].

We only prove (2.7). We take xx-derivative to have

|xΓ(f,g)|\displaystyle|\nabla_{x}\Gamma(f,g)| =|Γ(xf,g)+Γ(f,xg)|\displaystyle=|\Gamma(\nabla_{x}f,g)+\Gamma(f,\nabla_{x}g)|
wfLx,ξ|Γ(eθ||2,xg)|+wgLx,ξ|Γ(xf,eθ||2)|.\displaystyle\leq\|wf\|_{L^{\infty}_{x,\xi}}\Big{|}\Gamma(e^{-\theta|\cdot|^{2}},\nabla_{x}g)\Big{|}+\|wg\|_{L^{\infty}_{x,\xi}}\Big{|}\Gamma(\nabla_{x}f,e^{-\theta|\cdot|^{2}})\Big{|}.

The Γ\Gamma terms above have the same structure as the linear operator \mathcal{L} in (1.5) with replacing μ\mu by a different exponent μeθ|ξ|2\sqrt{\mu}e^{-\theta|\xi|^{2}}. Then (2.7) follows the expression of KfKf in (2.3) and (2.4) with replacing 1/81/8 by another coefficient. For ease of notation, we keep the same 𝐤(ξ,ξ)\mathbf{k}(\xi,\xi^{\prime}) in (2.7).

Lemma 2.

In the linear operator (1.5), the collision frequency ν(ξ)\nu(\xi) satisfies

ν0[1+|ξ|]ν(ξ)ν1[1+|ξ|].\nu_{0}[1+|\xi|]\leq\nu(\xi)\leq\nu_{1}[1+|\xi|]. (2.8)

The kernel of \mathcal{L} is

KerL=Span(X+,X,X0,ξ2M,ξ3M),\text{Ker}L=\text{Span}(X_{+},X_{-},X_{0},\xi_{2}\sqrt{M},\xi_{3}\sqrt{M}),

where

X±=130(|ξ|2+15ξ1)M,X0=110(|ξ|25)M.X_{\pm}=\frac{1}{\sqrt{30}}(|\xi|^{2}+\sqrt{15}\xi_{1})\sqrt{M},\ \ X_{0}=\frac{1}{\sqrt{10}}(|\xi|^{2}-5)\sqrt{M}. (2.9)

Denote

ϕ:=3ϕ(ξ)dξ.\langle\phi\rangle:=\int_{\mathbb{R}^{3}}\phi(\xi)\mathrm{d}\xi.

The family (X+,X0,X,ξ2,ξ3)(X_{+},X_{0},X_{-},\xi_{2},\xi_{3}) is orthonormal in L2(3;dξ)L^{2}(\mathbb{R}^{3};\mathrm{d}\xi), and is orthogonal for the bilinear form (f,g)ξ1fg(f,g)\to\langle\xi_{1}fg\rangle, with

ξ1X±2=±53,ξ1X02=ξ1X22=ξ1ξ32=0.\langle\xi_{1}X_{\pm}^{2}\rangle=\pm\sqrt{\frac{5}{3}},\ \ \langle\xi_{1}X_{0}^{2}\rangle=\langle\xi_{1}X_{2}^{2}\rangle=\langle\xi_{1}\xi_{3}^{2}\rangle=0.
Proof.

The proof is standard and we omit it. ∎

Lemma 3.

Let 0θ<140\leq\theta<\frac{1}{4}, denote 𝐤θ(ξ,ξ):=𝐤(ξ,ξ)eθ|ξ|2eθ|ξ|2.\mathbf{k}_{\theta}(\xi,\xi^{\prime}):=\mathbf{k}(\xi,\xi^{\prime})\frac{e^{\theta|\xi|^{2}}}{e^{\theta|\xi^{\prime}|^{2}}}. Then we have

3𝐤(ξ,ξ)eθ|ξ|2eθ|ξ|2dξC1+|ξ|.\int_{\mathbb{R}^{3}}\mathbf{k}(\xi,\xi^{\prime})\frac{e^{\theta|\xi|^{2}}}{e^{\theta|\xi^{\prime}|^{2}}}\mathrm{d}\xi^{\prime}\lesssim\frac{C}{1+|\xi|}. (2.10)

And there exists Cθ>0C_{\theta}>0

𝐤θ(ξ,ξ)eCθ|ξξ|2|ξξ|.\mathbf{k}_{\theta}(\xi,\xi^{\prime})\lesssim\frac{e^{-C_{\theta}|\xi-\xi^{\prime}|^{2}}}{|\xi-\xi^{\prime}|}. (2.11)

The derivative on 𝐤(ξ,ξ)\mathbf{k}(\xi,\xi^{\prime}) shares similar property: for 0<θ~θ,0<\tilde{\theta}\ll\theta,

|ξ𝐤(ξ,ξ)|eθ~|ξ|2eθ~|ξ|2[1+|ξ|2]eCθ|ξξ|2|ξξ|2.|\nabla_{\xi}\mathbf{k}(\xi,\xi^{\prime})|\frac{e^{\tilde{\theta}|\xi|^{2}}}{e^{\tilde{\theta}|\xi^{\prime}|^{2}}}\lesssim\frac{[1+|\xi|^{2}]e^{-C_{\theta}|\xi-\xi^{\prime}|^{2}}}{|\xi-\xi^{\prime}|^{2}}. (2.12)
Proof.

The proof of (2.10) and (2.11) can be found in [17]. We provide the proof of (2.12).

Taking the derivative to (2.3) and (2.4) we have

v𝐤1(ξ,ξ)\displaystyle\nabla_{v}\mathbf{k}_{1}(\xi,\xi^{\prime}) =ξξ|ξξ|𝐤1(ξ,ξ)ξ𝐤1(ξ,ξ),\displaystyle=\frac{\xi-\xi^{\prime}}{|\xi-\xi^{\prime}|}\mathbf{k}_{1}(\xi,\xi^{\prime})-\xi\mathbf{k}_{1}(\xi,\xi^{\prime}),
v𝐤2(ξ,ξ)\displaystyle\nabla_{v}\mathbf{k}_{2}(\xi,\xi^{\prime}) =ξξ|ξξ|2𝐤2(ξ,ξ)\displaystyle=\frac{\xi-\xi^{\prime}}{|\xi-\xi^{\prime}|^{2}}\mathbf{k}_{2}(\xi,\xi^{\prime})
𝐤2(ξ,ξ)[ξξ4+ξ(|ξ|2|ξ|2)|ξξ|2(|ξ|2|ξ|2)2(ξξ)4|ξξ|4].\displaystyle-\mathbf{k}_{2}(\xi,\xi^{\prime})\Big{[}\frac{\xi-\xi^{\prime}}{4}+\frac{\xi(|\xi^{\prime}|^{2}-|\xi|^{2})|\xi-\xi^{\prime}|^{2}-(|\xi^{\prime}|^{2}-|\xi|^{2})^{2}(\xi-\xi^{\prime})}{4|\xi-\xi^{\prime}|^{4}}\Big{]}.

Since |ξ|2|ξ|2=|ξξ|2+2ξ(ξξ)|\xi^{\prime}|^{2}-|\xi|^{2}=|\xi^{\prime}-\xi|^{2}+2\xi\cdot(\xi^{\prime}-\xi), we have

||ξ|2|ξ|2||ξξ|2+|ξ||ξξ|,\displaystyle\big{|}|\xi^{\prime}|^{2}-|\xi|^{2}\big{|}\lesssim|\xi^{\prime}-\xi|^{2}+|\xi||\xi^{\prime}-\xi|,
||ξ|2|ξ|2|2|ξξ|4+|ξ|2|ξξ|2.\displaystyle\big{|}|\xi^{\prime}|^{2}-|\xi|^{2}\big{|}^{2}\lesssim|\xi^{\prime}-\xi|^{4}+|\xi|^{2}|\xi^{\prime}-\xi|^{2}.

This leads to

|ξ𝐤(ξ,ξ)eθ~|ξ|2eθ~|ξ|2|\displaystyle\Big{|}\nabla_{\xi}\mathbf{k}(\xi,\xi^{\prime})\frac{e^{\tilde{\theta}|\xi|^{2}}}{e^{\tilde{\theta}|\xi^{\prime}|^{2}}}\Big{|} [1+|ξ|2+|ξ|2|ξξ|+|ξξ|+[1+|ξ|]][𝐤1(ξ,ξ)+𝐤2(ξ,ξ)]eθ~|ξ|2eθ~|ξ|2\displaystyle\lesssim\big{[}\frac{1+|\xi^{\prime}|^{2}+|\xi|^{2}}{|\xi-\xi^{\prime}|}+|\xi-\xi^{\prime}|+[1+|\xi|]\big{]}[\mathbf{k}_{1}(\xi,\xi^{\prime})+\mathbf{k}_{2}(\xi,\xi^{\prime})]\frac{e^{\tilde{\theta}|\xi|^{2}}}{e^{\tilde{\theta}|\xi^{\prime}|^{2}}}
[1+|ξ|2|ξξ|+|ξξ|+[1+|ξ|]]𝐤Cθ(ξ,ξ)\displaystyle\lesssim\big{[}\frac{1+|\xi|^{2}}{|\xi-\xi^{\prime}|}+|\xi-\xi^{\prime}|+[1+|\xi|]\big{]}\mathbf{k}^{C_{\theta}}(\xi,\xi^{\prime})
=[1+|ξ|2|ξξ|+|ξξ|+[1+|ξ|]]eCθ|ξξ|2|ξξ|1+|ξ|2|ξξ|ec|ξξ|2|ξξ|\displaystyle=\big{[}\frac{1+|\xi|^{2}}{|\xi-\xi^{\prime}|}+|\xi-\xi^{\prime}|+[1+|\xi|]\big{]}\frac{e^{-C_{\theta}|\xi-\xi^{\prime}|^{2}}}{|\xi-\xi^{\prime}|}\lesssim\frac{1+|\xi|^{2}}{|\xi-\xi^{\prime}|}\frac{e^{-c|\xi-\xi^{\prime}|^{2}}}{|\xi-\xi^{\prime}|}

for some c<Cθc<C_{\theta}. In the second line we have applied (2.10). In the last line we used that for c<Cθc<C_{\theta}, we have

eCθ|ξξ|2ec|ξξ|2|ξξ|,eCθ|ξξ|2ec|ξξ|2|ξξ|2.\displaystyle e^{-C_{\theta}|\xi-\xi^{\prime}|^{2}}\lesssim\frac{e^{-c|\xi-\xi^{\prime}|^{2}}}{|\xi-\xi^{\prime}|},\ e^{-C_{\theta}|\xi-\xi^{\prime}|^{2}}\lesssim\frac{e^{-c|\xi-\xi^{\prime}|^{2}}}{|\xi-\xi^{\prime}|^{2}}.

For ease of notation, we conclude (2.12) with coefficient CθC_{\theta}.

2.2. Properties of kinetic weight α\alpha in (1.8).

A key property of the kinetic weight (1.8) is that α~\tilde{\alpha} grows exponentially fast with a factor cc along the characteristic. We take

c:=18,c:=\frac{1}{8}, (2.13)

so that the exponential growth can be controlled by a faster exponential decay from the collision frequency ν(ξ)\nu(\xi) in (2.8).

Lemma 4 (Velocity Lemma).

Along the characteristic, whenever x0x\geq 0 and x(ξ1+u)s0x-(\xi_{1}+u)s\geq 0, for α~(x,ξ)\tilde{\alpha}(x,\xi) defined in (1.8), we have

ecν0s/2α~(xs(ξ1+u),ξ)α~(x,ξ)ecν0s/2α~(xs(ξ1+u),ξ).e^{-c\nu_{0}s/2}\tilde{\alpha}(x-s(\xi_{1}+u),\xi)\leq\tilde{\alpha}(x,\xi)\leq e^{c\nu_{0}s/2}\tilde{\alpha}(x-s(\xi_{1}+u),\xi). (2.14)
Proof.

We take spatial derivative to α~(x,ξ)\tilde{\alpha}(x,\xi) and have

|(ξ1+u)xα~(x,ξ)|\displaystyle|(\xi_{1}+u)\partial_{x}\tilde{\alpha}(x,\xi)|
=|(ξ1+u)(cν0)2xα~(x,ξ)|=|(cν0)1/2(ξ1+u)(cν0)3/2x|α~(x,ξ)\displaystyle=\Big{|}(\xi_{1}+u)\frac{(c\nu_{0})^{2}x}{\tilde{\alpha}(x,\xi)}\Big{|}=\frac{|(c\nu_{0})^{1/2}(\xi_{1}+u)(c\nu_{0})^{3/2}x|}{\tilde{\alpha}(x,\xi)}
(cν0)(ξ1+u)2+(cν0)3x22α~(x,ξ)=cν0(α~(x,ξ))22α~(x,ξ)=cν0α~(x,ξ)2.\displaystyle\leq\frac{(c\nu_{0})(\xi_{1}+u)^{2}+(c\nu_{0})^{3}x^{2}}{2\tilde{\alpha}(x,\xi)}=\frac{c\nu_{0}(\tilde{\alpha}(x,\xi))^{2}}{2\tilde{\alpha}(x,\xi)}=\frac{c\nu_{0}\tilde{\alpha}(x,\xi)}{2}. (2.15)

Since

ddsα~(xs(ξ1+u),ξ)\displaystyle\frac{\mathrm{d}}{\mathrm{d}s}\tilde{\alpha}(x-s(\xi_{1}+u),\xi) =(ξ1+u)xα~(xs(ξ1+u),ξ),\displaystyle=-(\xi_{1}+u)\partial_{x}\tilde{\alpha}(x-s(\xi_{1}+u),\xi),

by (2.15), we have

ddsα~(xs(ξ1+u),ξ)\displaystyle\frac{\mathrm{d}}{\mathrm{d}s}\tilde{\alpha}(x-s(\xi_{1}+u),\xi) cν0α~(xs(ξ1+u),ξ)2.\displaystyle\leq\frac{c\nu_{0}\tilde{\alpha}(x-s(\xi_{1}+u),\xi)}{2}.

By Gronwall’s inequality, we conclude (2.14).

With the extra cut-off function, the weight (1.10) shares similar property as demonstrated in the following lemma:

Lemma 5.

Along the characteristic, when x0x\geq 0 and x(ξ1+u)s0x-(\xi_{1}+u)s\geq 0, for α(x,ξ)\alpha(x,\xi) defined in (1.10), we have

e2cν0sα(xs(ξ1+u),ξ)α(x,ξ)e2cν0sα(xs(ξ1+u),ξ).e^{-2c\nu_{0}s}\alpha(x-s(\xi_{1}+u),\xi)\leq\alpha(x,\xi)\leq e^{2c\nu_{0}s}\alpha(x-s(\xi_{1}+u),\xi). (2.16)
Proof.

First we prove that χ(s)\chi(s) in (1.9) has the following property:

sχ(s)4χ(s).s\chi^{\prime}(s)\leq 4\chi(s). (2.17)

By (1.9), when s2s\geq 2, sχ(s)=04χ(s)s\chi^{\prime}(s)=0\leq 4\chi(s). When s12s\leq\frac{1}{2}, we have χ(s)=s,\chi(s)=s, and thus sχ(s)=s4χ(s)=4ss\chi^{\prime}(s)=s\leq 4\chi(s)=4s. When 12<s<2\frac{1}{2}<s<2, since χ(s)1\chi^{\prime}(s)\leq 1, we have sχ(s)s<2=4χ(1/2)4χ(s)s\chi^{\prime}(s)\leq s<2=4\chi(1/2)\leq 4\chi(s). Then we conclude (2.17).

Then we compute

|(ξ1+u)xα(x,ξ)|\displaystyle|(\xi_{1}+u)\partial_{x}\alpha(x,\xi)|
=|(ξ1+u)χ(α~(x,ξ))xα~(x,ξ)|\displaystyle=|(\xi_{1}+u)\chi^{\prime}(\tilde{\alpha}(x,\xi))\partial_{x}\tilde{\alpha}(x,\xi)|
=χ(α~(x,ξ))|(ξ1+u)xα~(x,ξ)|cν02χ(α~(x,ξ))α~(x,ξ)\displaystyle=\chi^{\prime}(\tilde{\alpha}(x,\xi))|(\xi_{1}+u)\partial_{x}\tilde{\alpha}(x,\xi)|\leq\frac{c\nu_{0}}{2}\chi^{\prime}(\tilde{\alpha}(x,\xi))\tilde{\alpha}(x,\xi)
2cν0χ(α~(x,ξ))=2cν0α(x,ξ).\displaystyle\leq 2c\nu_{0}\chi(\tilde{\alpha}(x,\xi))=2c\nu_{0}\alpha(x,\xi).

In the third line, we applied the computation in (2.15). In the last line, we used (2.17). Then by

ddsα(xs(ξ1+u),ξ)=(ξ1+u)xα(xs(ξ1+u),ξ)\frac{\mathrm{d}}{\mathrm{d}s}\alpha(x-s(\xi_{1}+u),\xi)=-(\xi_{1}+u)\partial_{x}\alpha(x-s(\xi_{1}+u),\xi)

and Gronwall’s inequality, we conclude (2.16).

The next lemma addresses the integral (1.23) mentioned in Section 1.3, which consists of the weight 1/α1/\alpha and K(f)K(f) in Lemma 3.

Lemma 6.

Let t1t\gg 1, TtT\leq t and xT(ξ1+u)0x-T(\xi_{1}+u)\geq 0. For T>1T>1, we have

tTtdseν(ξ)(ts)/23dξeC|ξξ|2|ξξ|1α(x(ts)(ξ1+u),ξ)tα(x,ξ).\displaystyle\int^{t}_{t-T}\mathrm{d}se^{-\nu(\xi)(t-s)/2}\int_{\mathbb{R}^{3}}\mathrm{d}\xi^{\prime}\frac{e^{-C|\xi-\xi^{\prime}|^{2}}}{|\xi-\xi^{\prime}|}\frac{1}{\alpha(x-(t-s)(\xi_{1}+u),\xi^{\prime})}\lesssim\frac{t}{\alpha(x,\xi)}. (2.18)

For T1T\leq 1, we have

tTtdseν(ξ)(ts)/23dξeC|ξξ|2|ξξ|1α(x(ts)(ξ1+u),ξ)T+Tln(t)α(x,ξ).\displaystyle\int^{t}_{t-T}\mathrm{d}se^{-\nu(\xi)(t-s)/2}\int_{\mathbb{R}^{3}}\mathrm{d}\xi^{\prime}\frac{e^{-C|\xi-\xi^{\prime}|^{2}}}{|\xi-\xi^{\prime}|}\frac{1}{\alpha(x-(t-s)(\xi_{1}+u),\xi^{\prime})}\lesssim\frac{\sqrt{T}+T\ln(t)}{\alpha(x,\xi)}. (2.19)

In result, for ε1\varepsilon\ll 1 such that εln(t)1\varepsilon\ln(t)\ll 1 and xε(ξ1+u)0x-\varepsilon(\xi_{1}+u)\geq 0,

tεtdseν(ξ)(ts)/23dξeC|ξξ|2|ξξ|1α(x(ts)(ξ1+u),ξ)ε+εln(t)α(x,ξ).\displaystyle\int^{t}_{t-\varepsilon}\mathrm{d}se^{-\nu(\xi)(t-s)/2}\int_{\mathbb{R}^{3}}\mathrm{d}\xi^{\prime}\frac{e^{-C|\xi-\xi^{\prime}|^{2}}}{|\xi-\xi^{\prime}|}\frac{1}{\alpha(x-(t-s)(\xi_{1}+u),\xi^{\prime})}\lesssim\frac{\sqrt{\varepsilon}+\varepsilon\ln(t)}{\alpha(x,\xi)}. (2.20)
Remark 7.

We note that there is a time-growing factor tt in the upper bound. In the steady problem, we will fix tt to be large and fixed, and this factor will be damped by either eν(ξ)te^{-\nu(\xi)t} or γ\gamma(e.g. see (3.10) and (4.14)).

Proof.

We only consider the case α(x(ts)(ξ1+u),ξ)=α~(x(ts)(ξ1+u),ξ)\alpha(x-(t-s)(\xi_{1}+u),\xi^{\prime})=\tilde{\alpha}(x-(t-s)(\xi_{1}+u),\xi^{\prime}). For the other case, from (1.9), we have α(x(ts)(ξ1+u),ξ)12\alpha(x-(t-s)(\xi_{1}+u),\xi^{\prime})\geq\frac{1}{2}, this leads to

tTtdseν(ξ)(ts)/23dξ𝟏αα~eC|ξξ|2|ξξ|α(x(ts)(ξ1+u),ξ)\displaystyle\int_{t-T}^{t}\mathrm{d}se^{-\nu(\xi)(t-s)/2}\int_{\mathbb{R}^{3}}\mathrm{d}\xi^{\prime}\mathbf{1}_{\alpha\neq\tilde{\alpha}}\frac{e^{-C|\xi-\xi^{\prime}|^{2}}}{|\xi-\xi^{\prime}|\alpha(x-(t-s)(\xi_{1}+u),\xi^{\prime})}
tTtdseν(ξ)(ts)/23dξeC|ξξ||ξξ|min{1,T}min{1,T}α(x,ξ).\displaystyle\lesssim\int_{t-T}^{t}\mathrm{d}se^{-\nu(\xi)(t-s)/2}\int_{\mathbb{R}^{3}}\mathrm{d}\xi^{\prime}\frac{e^{-C|\xi-\xi^{\prime}|}}{|\xi-\xi^{\prime}|}\lesssim\min\{1,T\}\lesssim\frac{\min\{1,T\}}{\alpha(x,\xi)}.

The last inequality follows from (1.11).

Then we focus on

tTtdseν(ξ)(ts)/23dξeC|ξξ|2|ξξ|1(ξ1+u)2+(cν0)2(x(ts)(ξ1+u))2.\int_{t-T}^{t}\mathrm{d}se^{-\nu(\xi)(t-s)/2}\int_{\mathbb{R}^{3}}\mathrm{d}\xi^{\prime}\frac{e^{-C|\xi-\xi^{\prime}|^{2}}}{|\xi-\xi^{\prime}|}\frac{1}{\sqrt{(\xi_{1}^{\prime}+u)^{2}+(c\nu_{0})^{2}(x-(t-s)(\xi_{1}+u))^{2}}}.

Step 1: integral over dξ\mathrm{d}\xi^{\prime}.

First we compute the dξ\mathrm{d}\xi^{\prime} integral. We use a notation

η:=ξ+(u,0,0).\eta:=\xi+(u,0,0). (2.21)

We apply a change of variable ξ+(u,0,0)ξ\xi^{\prime}+(u,0,0)\to\xi^{\prime}. Denote ξ=(0,ξ2,ξ3)\xi_{\parallel}=(0,\xi_{2},\xi_{3}), then the dξ\mathrm{d}\xi^{\prime} integral reads

3eC|ξξ|2|ξξ|1(ξ1+u)2+(cν0)2(x(ξ1+u)(ts))2dξ\displaystyle\int_{\mathbb{R}^{3}}\frac{e^{-C|\xi-\xi^{\prime}|^{2}}}{|\xi-\xi^{\prime}|}\frac{1}{\sqrt{(\xi_{1}^{\prime}+u)^{2}+(c\nu_{0})^{2}(x-(\xi_{1}+u)(t-s))^{2}}}\mathrm{d}\xi^{\prime}
=3eC|ηξ|2|ηξ|1|ξ1|2+(cν0)2(x(ξ1+u)(ts))2dξ\displaystyle=\int_{\mathbb{R}^{3}}\frac{e^{-C|\eta-\xi^{\prime}|^{2}}}{|\eta-\xi^{\prime}|}\frac{1}{\sqrt{|\xi_{1}^{\prime}|^{2}+(c\nu_{0})^{2}(x-(\xi_{1}+u)(t-s))^{2}}}\mathrm{d}\xi^{\prime}
eC|ηξ|2|ηξ|eC|η1ξ1|2|ξ1|2+(cν0)2(x(ξ1+u)(ts))2dξ1\displaystyle\lesssim\iint\frac{e^{-C|\eta_{\parallel}-\xi^{\prime}_{\parallel}|^{2}}}{|\eta_{\parallel}-\xi^{\prime}_{\parallel}|}\int_{\mathbb{R}}\frac{e^{-C|\eta_{1}-\xi^{\prime}_{1}|^{2}}}{\sqrt{|\xi^{\prime}_{1}|^{2}+(c\nu_{0})^{2}(x-(\xi_{1}+u)(t-s))^{2}}}\mathrm{d}\xi_{1}^{\prime}
eC|η1ξ1|2|ξ1|2+(cν0)2(x(ξ1+u)(ts))2dξ1\displaystyle\lesssim\int_{\mathbb{R}}\frac{e^{-C|\eta_{1}-\xi^{\prime}_{1}|^{2}}}{\sqrt{|\xi^{\prime}_{1}|^{2}+(c\nu_{0})^{2}(x-(\xi_{1}+u)(t-s))^{2}}}\mathrm{d}\xi_{1}^{\prime}
=𝟏|ξ1|2|η1|+𝟏|ξ1|>2|η1|dξ1\displaystyle=\int_{\mathbb{R}}\mathbf{1}_{|\xi_{1}^{\prime}|\leq 2|\eta_{1}|}+\mathbf{1}_{|\xi_{1}^{\prime}|>2|\eta_{1}|}\mathrm{d}\xi_{1}^{\prime}
02|η1|1|ξ1|2+(cν0)2(x(ξ1+u)(ts))2dξ1\displaystyle\lesssim\int_{0}^{2|\eta_{1}|}\frac{1}{\sqrt{|\xi^{\prime}_{1}|^{2}+(c\nu_{0})^{2}(x-(\xi_{1}+u)(t-s))^{2}}}\mathrm{d}\xi_{1}^{\prime}
+eC|ξ1|2/4|ξ1|2+(cν0)2(x(ξ1+u)(ts))2dξ1\displaystyle+\int_{\mathbb{R}}\frac{e^{-C|\xi_{1}^{\prime}|^{2}/4}}{\sqrt{|\xi^{\prime}_{1}|^{2}+(c\nu_{0})^{2}(x-(\xi_{1}+u)(t-s))^{2}}}\mathrm{d}\xi_{1}^{\prime}
1+[01+02|η1|]1|ξ1|2+(cν0)2(x(ξ1+u)(ts))2dξ1.\displaystyle\lesssim 1+\Big{[}\int_{0}^{1}+\int_{0}^{2|\eta_{1}|}\Big{]}\frac{1}{\sqrt{|\xi^{\prime}_{1}|^{2}+(c\nu_{0})^{2}(x-(\xi_{1}+u)(t-s))^{2}}}\mathrm{d}\xi_{1}^{\prime}. (2.22)

In the second last line we used that for |ξ1|>2|η1||\xi_{1}^{\prime}|>2|\eta_{1}|,

|η1ξ1||ξ1||η1||ξ1||ξ1|2=|ξ1|2.\displaystyle|\eta_{1}-\xi_{1}^{\prime}|\geq|\xi_{1}^{\prime}|-|\eta_{1}|\geq|\xi_{1}^{\prime}|-\frac{|\xi_{1}^{\prime}|}{2}=\frac{|\xi_{1}^{\prime}|}{2}.

In the last line we used

1eC|ξ1|2/4|ξ1|2+(cν0)2(x(ξ1+u)(ts))21.\displaystyle\int_{1}^{\infty}\frac{e^{-C|\xi_{1}^{\prime}|^{2}/4}}{\sqrt{|\xi^{\prime}_{1}|^{2}+(c\nu_{0})^{2}(x-(\xi_{1}+u)(t-s))^{2}}}\lesssim 1.

The integral in (2.22) reads

02|η1|1|ξ1|2+(cν0)2(x(ξ1+u)(ts))2dξ1\displaystyle\int_{0}^{2|\eta_{1}|}\frac{1}{\sqrt{|\xi^{\prime}_{1}|^{2}+(c\nu_{0})^{2}(x-(\xi_{1}+u)(t-s))^{2}}}\mathrm{d}\xi_{1}^{\prime}
=ln(|ξ1|2+(cν0)2(x(ξ1+u)(ts))2+|ξ1|)|02|η1|\displaystyle=\ln\Big{(}\sqrt{|\xi_{1}^{\prime}|^{2}+(c\nu_{0})^{2}(x-(\xi_{1}+u)(t-s))^{2}}+|\xi_{1}^{\prime}|\Big{)}\Big{|}_{0}^{2|\eta_{1}|}
=ln(4|η1|2+(cν0)2(x(ξ1+u)(ts))2+2|η1|)\displaystyle=\ln\Big{(}\sqrt{4|\eta_{1}|^{2}+(c\nu_{0})^{2}(x-(\xi_{1}+u)(t-s))^{2}}+2|\eta_{1}|\Big{)}
ln((cν0)2(x(ξ1+u)(ts))2)\displaystyle-\ln\Big{(}\sqrt{(c\nu_{0})^{2}(x-(\xi_{1}+u)(t-s))^{2}}\Big{)}
=ln(1+|2η1(cν0)(x(ξ1+u)(ts))|2+|2η1(cν0)(x(ξ1+u)(ts))|).\displaystyle=\ln\Big{(}\sqrt{1+\Big{|}\frac{2\eta_{1}}{(c\nu_{0})(x-(\xi_{1}+u)(t-s))}\Big{|}^{2}}+\Big{|}\frac{2\eta_{1}}{(c\nu_{0})(x-(\xi_{1}+u)(t-s))}\Big{|}\Big{)}. (2.23)

Similarly

011|ξ1|2+(cν0)2(x(ξ1+u)(ts))2dξ1\displaystyle\int_{0}^{1}\frac{1}{\sqrt{|\xi^{\prime}_{1}|^{2}+(c\nu_{0})^{2}(x-(\xi_{1}+u)(t-s))^{2}}}\mathrm{d}\xi_{1}^{\prime}
=ln(1+|1(cν0)(x(ξ1+u)(ts))|2+|1(cν0)(x(ξ1+u)(ts))|).\displaystyle=\ln\Big{(}\sqrt{1+\Big{|}\frac{1}{(c\nu_{0})(x-(\xi_{1}+u)(t-s))}\Big{|}^{2}}+\Big{|}\frac{1}{(c\nu_{0})(x-(\xi_{1}+u)(t-s))}\Big{|}\Big{)}. (2.24)

Step 2: integral over ds\mathrm{d}s.

Then we compute the ds\mathrm{d}s integral:

tTtdseν(ξ)(ts)/2(2.22)tTtdseν(ξ)(ts)/2[1+(2.23)+(2.24)].\displaystyle\int_{t-T}^{t}\mathrm{d}se^{-\nu(\xi)(t-s)/2}\eqref{xi_integral}\lesssim\int_{t-T}^{t}\mathrm{d}se^{-\nu(\xi)(t-s)/2}[1+\eqref{ln_bdd_eta}+\eqref{ln_bdd_1}].

The contribution of the constant is bounded as

tTtdseν(ξ)(ts)/2min{1,T}min{1,T}α(x,ξ),\displaystyle\int_{t-T}^{t}\mathrm{d}se^{-\nu(\xi)(t-s)/2}\lesssim\min\{1,T\}\lesssim\frac{\min\{1,T\}}{\alpha(x,\xi)},

where we have used (1.11).

Then we consider the contribution of (2.23) and (2.24). We split the discussion into ξ1+u<0\xi_{1}+u<0 and ξ1+u>0\xi_{1}+u>0.

Step 2-1: case of ξ1+u<0\xi_{1}+u<0. We have xx(ξ1+u)(ts)x\leq x-(\xi_{1}+u)(t-s).

Contribution of (2.23).

If |η1|/(cν0x)1|\eta_{1}|/(c\nu_{0}x)\leq 1, then |η1|/[cν0(x(ξ1+u)(ts))]1|\eta_{1}|/[c\nu_{0}(x-(\xi_{1}+u)(t-s))]\leq 1 for all tTstt-T\leq s\leq t, this leads to (2.23) 1\lesssim 1 and thus

tTtds𝟏|η1|/(cν0x)1eν(ξ)(ts)/2(2.23)min{1,T}min{1,T}α(x,ξ).\displaystyle\int_{t-T}^{t}\mathrm{d}s\mathbf{1}_{|\eta_{1}|/(c\nu_{0}x)\leq 1}e^{-\nu(\xi)(t-s)/2}\eqref{ln_bdd_eta}\lesssim\min\{1,T\}\leq\frac{\min\{1,T\}}{\alpha(x,\xi)}.

Then we consider |η1|/(cν0x)>1|\eta_{1}|/(c\nu_{0}x)>1. From (2.21), we have η1=ξ1+u\eta_{1}=\xi_{1}+u. Then

α(x,ξ)\displaystyle\alpha(x,\xi) (ξ1+u)2+(cν0)2x2|ξ1+u|+cν0x<2|ξ1+u|.\displaystyle\leq\sqrt{(\xi_{1}+u)^{2}+(c\nu_{0})^{2}x^{2}}\leq|\xi_{1}+u|+c\nu_{0}x<2|\xi_{1}+u|.

Thus we have

1|ξ1+u|\displaystyle\frac{1}{|\xi_{1}+u|} 2α(x,ξ).\displaystyle\leq\frac{2}{\alpha(x,\xi)}. (2.25)

We bound (2.23) by

(2.23)\displaystyle\eqref{ln_bdd_eta} 1+ln|η1(cν0)(x(ξ1+u)(ts))|\displaystyle\lesssim 1+\ln\Big{|}\frac{\eta_{1}}{(c\nu_{0})(x-(\xi_{1}+u)(t-s))}\Big{|}
1+|ln|η1||+|ln|x(ξ1+u)(ts)||.\displaystyle\lesssim 1+|\ln|\eta_{1}||+|\ln|x-(\xi_{1}+u)(t-s)||. (2.26)

The contribution of |ln|η1|||\ln|\eta_{1}|| can be bounded as

tTteν(ξ)(ts)/2|ln|η1||ds\displaystyle\int_{t-T}^{t}e^{-\nu(\xi)(t-s)/2}|\ln|\eta_{1}||\mathrm{d}s min{1,T}|ln|η1||[1+|ξ|]=𝟏|ξ1+u|1+𝟏|ξ1+u|<1\displaystyle\lesssim\min\{1,T\}\frac{|\ln|\eta_{1}||}{[1+|\xi|]}=\mathbf{1}_{|\xi_{1}+u|\geq 1}+\mathbf{1}_{|\xi_{1}+u|<1}
min{1,T}|ln(2ξ+2)|[1+|ξ|]+min{1,T}|ξ1+u|min{1,T}α(x,ξ).\displaystyle\lesssim\min\{1,T\}\frac{|\ln(2|\xi|+2)|}{[1+|\xi|]}+\frac{\min\{1,T\}}{|\xi_{1}+u|}\lesssim\frac{\min\{1,T\}}{\alpha(x,\xi)}. (2.27)

Here for |ξ1+u|<1|\xi_{1}+u|<1 we used ln|ξ1+u|1|ξ1+u|\ln|\xi_{1}+u|\leq\frac{1}{|\xi_{1}+u|}. For the other case we used |u|1|u|\ll 1 and |ξ1+u|1|\xi_{1}+u|\geq 1 to derive |ξ1+u|<2|ξ1||\xi_{1}+u|<2|\xi_{1}|, and thus

ln(|ξ1+u|)ln(2|ξ1|)ln(2|ξ|+2).\displaystyle\ln(|\xi_{1}+u|)\leq\ln(2|\xi_{1}|)\leq\ln(2|\xi|+2).

Then we compute the contribution of the last term of (2.26), which reads

tTteν(ξ)(ts)/2|ln|x(ξ1+u)(ts)||ds\displaystyle\int_{t-T}^{t}e^{-\nu(\xi)(t-s)/2}|\ln|x-(\xi_{1}+u)(t-s)||\mathrm{d}s
=tTt𝟏x(ξ1+u)(ts)1+𝟏x(ξ1+u)(ts)<1ds\displaystyle=\int_{t-T}^{t}\mathbf{1}_{x-(\xi_{1}+u)(t-s)\geq 1}+\mathbf{1}_{x-(\xi_{1}+u)(t-s)<1}\mathrm{d}s
tTt𝟏x(ξ1+u)(ts)1eν(ξ)(ts)/2ln((ξ1+u)/(cν0)(ξ1+u)(ts))ds\displaystyle\leq\int_{t-T}^{t}\mathbf{1}_{x-(\xi_{1}+u)(t-s)\geq 1}e^{-\nu(\xi)(t-s)/2}\ln(-(\xi_{1}+u)/(c\nu_{0})-(\xi_{1}+u)(t-s))\mathrm{d}s
+tTt𝟏x(ξ1+u)(ts)<1eν(ξ)(ts)/2|ln((ξ1+u)(ts))|ds\displaystyle+\int_{t-T}^{t}\mathbf{1}_{x-(\xi_{1}+u)(t-s)<1}e^{-\nu(\xi)(t-s)/2}|\ln(-(\xi_{1}+u)(t-s))|\mathrm{d}s
tTteν(ξ)(ts)/2[|ln|ξ1+u||+|ln(ts)|+|ln(ts+1cν0)|]ds\displaystyle\lesssim\int_{t-T}^{t}e^{-\nu(\xi)(t-s)/2}[|\ln|\xi_{1}+u||+|\ln(t-s)|+|\ln(t-s+\frac{1}{c\nu_{0}})|]\mathrm{d}s (2.28)
min{1,T}|ln|ξ1+u||[1+|ξ|]+min{1,|T|+|Tln(T)|}α(x,ξ)min{1,|T|+|Tln(T)|}α(x,ξ).\displaystyle\lesssim\min\{1,T\}\frac{|\ln|\xi_{1}+u||}{[1+|\xi|]}+\frac{\min\{1,|T|+|T\ln(T)|\}}{\alpha(x,\xi)}\lesssim\frac{\min\{1,|T|+|T\ln(T)|\}}{\alpha(x,\xi)}.

In the third line, we used x<|η1|cν0=(ξ1+u)cν0x<\frac{|\eta_{1}|}{c\nu_{0}}=-\frac{(\xi_{1}+u)}{c\nu_{0}} for ξ1+u<0\xi_{1}+u<0. In the last line, we applied the same computation (2.27) for the first term in (2.28). For the rest terms in (2.28), we used the following computation:

tTteν(ξ)(ts)/2[|ln(ts)|+|ln(ts+1cν0)|]ds=tTt𝟏ts1+𝟏ts1ds\displaystyle\int_{t-T}^{t}e^{-\nu(\xi)(t-s)/2}[|\ln(t-s)|+|\ln(t-s+\frac{1}{c\nu_{0}})|]\mathrm{d}s=\int_{t-T}^{t}\mathbf{1}_{t-s\geq 1}+\mathbf{1}_{t-s\leq 1}\mathrm{d}s
𝟏T1tTt1eν(ξ)(ts)/2|ts+1cν0|ds+0min{1,T}|ln(s)|+|ln(s+1cν0)|ds\displaystyle\lesssim\mathbf{1}_{T\geq 1}\int_{t-T}^{t-1}e^{-\nu(\xi)(t-s)/2}|t-s+\frac{1}{c\nu_{0}}|\mathrm{d}s+\int_{0}^{\min\{1,T\}}|\ln(s)|+|\ln(s+\frac{1}{c\nu_{0}})|\mathrm{d}s
𝟏T1[1+1cν0]+0min{1,T}|ln(s)|ds\displaystyle\lesssim\mathbf{1}_{T\geq 1}[1+\frac{1}{c\nu_{0}}]+\int_{0}^{\min\{1,T\}}|\ln(s)|\mathrm{d}s
min{1,T}+min{1,|T|+|Tln(T)|}\displaystyle\lesssim\min\{1,T\}+\min\{1,|T|+|T\ln(T)|\}
min{1,|T|+|Tln(T)|}min{1,|T|+|Tln(T)|}α(x,ξ).\displaystyle\lesssim\min\{1,|T|+|T\ln(T)|\}\leq\frac{\min\{1,|T|+|T\ln(T)|\}}{\alpha(x,\xi)}. (2.29)

We conclude

tTteν(ξ)(ts)/2(2.23)dsmin{1,|T|+|Tln(T)|}α(x,ξ).\displaystyle\int_{t-T}^{t}e^{-\nu(\xi)(t-s)/2}\eqref{ln_bdd_eta}\mathrm{d}s\lesssim\frac{\min\{1,|T|+|T\ln(T)|\}}{\alpha(x,\xi)}. (2.30)

Contribution of (2.24).

If 1/(cν0x)11/(c\nu_{0}x)\leq 1, we have (2.24)1\lesssim 1 and thus

tTtdseν(ξ)(ts)/2𝟏1/(cν0x)1(2.24)dsmin{1,T}α(x,ξ).\displaystyle\int_{t-T}^{t}\mathrm{d}se^{-\nu(\xi)(t-s)/2}\mathbf{1}_{1/(c\nu_{0}x)\leq 1}\eqref{ln_bdd_1}\mathrm{d}s\lesssim\frac{\min\{1,T\}}{\alpha(x,\xi)}.

Then we suppose cν0x1c\nu_{0}x\leq 1. If cν0x<|η1|c\nu_{0}x<|\eta_{1}|, we bound (2.24) similarly as (2.26):

(2.24)\displaystyle\eqref{ln_bdd_1} 1+|ln(x(ξ1+u)(ts))|.\displaystyle\lesssim 1+|\ln(x-(\xi_{1}+u)(t-s))|. (2.31)

We follow the same computation as in (2.28) to conclude

tTtdseν(ξ)(ts)/2𝟏1/(cν0x)1,cν0x<|η1|(2.24)dsmin{1,|T|+|Tln(T)|}α(x,ξ).\displaystyle\int_{t-T}^{t}\mathrm{d}se^{-\nu(\xi)(t-s)/2}\mathbf{1}_{1/(c\nu_{0}x)\leq 1,c\nu_{0}x<|\eta_{1}|}\eqref{ln_bdd_1}\mathrm{d}s\lesssim\frac{\min\{1,|T|+|T\ln(T)|\}}{\alpha(x,\xi)}.

If cν0x|η1|c\nu_{0}x\geq|\eta_{1}|, we have

α(x,ξ)\displaystyle\alpha(x,\xi) |ξ1+u|2+(cν0)2x22cν0x,\displaystyle\leq\sqrt{|\xi_{1}+u|^{2}+(c\nu_{0})^{2}x^{2}}\leq 2c\nu_{0}x,

which leads to

1cν0x\displaystyle\frac{1}{c\nu_{0}x} 2α(x,ξ).\displaystyle\leq\frac{2}{\alpha(x,\xi)}. (2.32)

Then we use the bound (2.31) and further compute

tTtdseν(ξ)(ts)/2|ln(x(ξ1+u)(ts))|=tTt[𝟏x(ξ1+u)(ts)1+𝟏x(ξ1+u)(ts)1]\displaystyle\int_{t-T}^{t}\mathrm{d}se^{-\nu(\xi)(t-s)/2}|\ln(x-(\xi_{1}+u)(t-s))|=\int_{t-T}^{t}[\mathbf{1}_{x-(\xi_{1}+u)(t-s)\leq 1}+\mathbf{1}_{x-(\xi_{1}+u)(t-s)\geq 1}]
tTt𝟏x(ξ1+u)(ts)1eν(ξ)(ts)/2|ln(x)|ds\displaystyle\leq\int_{t-T}^{t}\mathbf{1}_{x-(\xi_{1}+u)(t-s)\leq 1}e^{-\nu(\xi)(t-s)/2}|\ln(x)|\mathrm{d}s
+tTt𝟏x(ξ1+u)(ts)>1eν(ξ)(ts)/2ln(x+cν0x(ts))ds\displaystyle+\int_{t-T}^{t}\mathbf{1}_{x-(\xi_{1}+u)(t-s)>1}e^{-\nu(\xi)(t-s)/2}\ln(x+c\nu_{0}x(t-s))\mathrm{d}s
|ln(x)|tTteν(ξ)(ts)/2[1+ln(1+cν0(ts))]ds\displaystyle\lesssim|\ln(x)|\int_{t-T}^{t}e^{-\nu(\xi)(t-s)/2}[1+\ln(1+c\nu_{0}(t-s))]\mathrm{d}s
|ln(x)|min{1,|T|+|Tln(T)|}min{1,|T|+|Tln(T)|}|x|\displaystyle\lesssim|\ln(x)|\min\{1,|T|+|T\ln(T)|\}\lesssim\frac{\min\{1,|T|+|T\ln(T)|\}}{|x|}
min{1,|T|+|Tln(T)|}α(x,ξ).\displaystyle\lesssim\frac{\min\{1,|T|+|T\ln(T)|\}}{\alpha(x,\xi)}.

In the second last line, for the first inequality we applied the same computation (2.29), for the second inequality we used x1cν0x\leq\frac{1}{c\nu_{0}}. In the last inequality, we used (2.32).

We conclude

tTteν(ξ)(ts)/2(2.24)dsmin{1,|T|+|Tln(T)|}α(x,ξ).\displaystyle\int_{t-T}^{t}e^{-\nu(\xi)(t-s)/2}\eqref{ln_bdd_1}\mathrm{d}s\lesssim\frac{\min\{1,|T|+|T\ln(T)|\}}{\alpha(x,\xi)}. (2.33)

Step 2-2: case of ξ1+u>0\xi_{1}+u>0. In such case x(ξ1+u)(ts)<xx-(\xi_{1}+u)(t-s)<x.

Contribution of (2.23).

When |η1|/(cν0x)1|\eta_{1}|/(c\nu_{0}x)\geq 1, we have 1/|ξ1+u|1/α(x,ξ)1/|\xi_{1}+u|\lesssim 1/\alpha(x,\xi). Then we use the same bound (2.26) for (2.23), where the contribution of the first two terms are independent of xx, and thus can be bounded using the same computation in (2.27). We only need to compute the contribution of |ln(x(ξ1+u)(ts))||\ln(x-(\xi_{1}+u)(t-s))|. We split the integral into x(ξ1+u)(ts)1x-(\xi_{1}+u)(t-s)\geq 1 and x(ξ1+u)(ts)1x-(\xi_{1}+u)(t-s)\leq 1. For the first case, we have

tTt𝟏x(ξ1+u)(ts)1eν(ξ)(ts)/2|ln(x(ξ1+u)(ts))|ds\displaystyle\int_{t-T}^{t}\mathbf{1}_{x-(\xi_{1}+u)(t-s)\geq 1}e^{-\nu(\xi)(t-s)/2}|\ln(x-(\xi_{1}+u)(t-s))|\mathrm{d}s
tTt𝟏x(ξ1+u)(ts)1eν(ξ)(ts)/2|ln((ξ1+u)/(cν0)(ξ1+u)(ts))|ds\displaystyle\leq\int_{t-T}^{t}\mathbf{1}_{x-(\xi_{1}+u)(t-s)\geq 1}e^{-\nu(\xi)(t-s)/2}|\ln((\xi_{1}+u)/(c\nu_{0})-(\xi_{1}+u)(t-s))|\mathrm{d}s
tTteν(ξ)(ts)/2|ln(ξ1+u)|ds+tTt𝟏1/(cν0)(ts)0eν(ξ)(ts)/2|ln(1/(cν0)(ts))|ds\displaystyle\lesssim\int_{t-T}^{t}e^{-\nu(\xi)(t-s)/2}|\ln(\xi_{1}+u)|\mathrm{d}s+\int_{t-T}^{t}\mathbf{1}_{1/(c\nu_{0})-(t-s)\geq 0}e^{-\nu(\xi)(t-s)/2}|\ln(1/(c\nu_{0})-(t-s))|\mathrm{d}s
min{1,T}|ln(ξ1+u)|[1+|ξ|]+0min{1/(cν0),T}|ln(s)|ds\displaystyle\lesssim\min\{1,T\}\frac{|\ln(\xi_{1}+u)|}{[1+|\xi|]}+\int_{0}^{\min\{1/(c\nu_{0}),T\}}|\ln(s)|\mathrm{d}s
min{1,T}|ln(ξ1+u)|[1+|ξ|]+min{1,|T|+|Tln(T)|}min{1,|T|+|Tln(T)|}α(x,ξ).\displaystyle\lesssim\min\{1,T\}\frac{|\ln(\xi_{1}+u)|}{[1+|\xi|]}+\min\{1,|T|+|T\ln(T)|\}\lesssim\frac{\min\{1,|T|+|T\ln(T)|\}}{\alpha(x,\xi)}. (2.34)

In the last inequality we used the same computation in (2.27).

For the second case x(ξ1+u)(ts)1x-(\xi_{1}+u)(t-s)\leq 1, without loss of generality, we assume x(ξ1+u)T<1x-(\xi_{1}+u)T<1, otherwise, the integration vanishes. We use a change of variable y=x(ξ1+u)(ts)y=x-(\xi_{1}+u)(t-s) with dy=(ξ1+u)ds\mathrm{d}y=(\xi_{1}+u)\mathrm{d}s and x(ξ1+u)Tymin{1,x}x-(\xi_{1}+u)T\leq y\leq\min\{1,x\}, then

tTt𝟏x(ξ1+u)(ts)1eν(ξ)(ts)/2|ln(x(ξ1+u)(ts))|ds\displaystyle\int_{t-T}^{t}\mathbf{1}_{x-(\xi_{1}+u)(t-s)\leq 1}e^{-\nu(\xi)(t-s)/2}|\ln(x-(\xi_{1}+u)(t-s))|\mathrm{d}s
x(ξ1+u)Tmin{1,x}eν(ξ)xyξ1+u/2|ln(y)|1ξ1+udy1ξ1+ux(ξ1+u)Tmin{1,x}|ln(y)|dy\displaystyle\leq\int_{x-(\xi_{1}+u)T}^{\min\{1,x\}}e^{-\nu(\xi)\frac{x-y}{\xi_{1}+u}/2}|\ln(y)|\frac{1}{\xi_{1}+u}\mathrm{d}y\leq\frac{1}{\xi_{1}+u}\int^{\min\{1,x\}}_{x-(\xi_{1}+u)T}|\ln(y)|\mathrm{d}y
1ξ1+u0min{1,(ξ1+u)T}|ln(y)|dy\displaystyle\leq\frac{1}{\xi_{1}+u}\int_{0}^{\min\{1,(\xi_{1}+u)T\}}|\ln(y)|\mathrm{d}y (2.35)
1ξ1+umin{1,|(ξ1+u)T|+|(ξ1+u)Tln((ξ1+u)T)|}\displaystyle\lesssim\frac{1}{\xi_{1}+u}\min\{1,|(\xi_{1}+u)T|+|(\xi_{1}+u)T\ln((\xi_{1}+u)T)|\} (2.36)
min{1,T}α(x,ξ).\displaystyle\lesssim\frac{\min\{1,\sqrt{T}\}}{\alpha(x,\xi)}. (2.37)

In the third line, we use the fact that the integral domain is on 0<y10<y\leq 1, and the length of the integral domain is bounded by min{1,x}[x(ξ1+u)T]min{1,(ξ1+u)T}\min\{1,x\}-[x-(\xi_{1}+u)T]\lesssim\min\{1,(\xi_{1}+u)T\}. In the last line, in the case of (ξ1+u)T>1(\xi_{1}+u)T>1, we have 1ξ1+u<T\frac{1}{\xi_{1}+u}<T, and thus from (2.25),

1ξ1+umin{T,1α(x,ξ)}min{1,T}α(x,ξ).\displaystyle\frac{1}{\xi_{1}+u}\lesssim\min\{T,\frac{1}{\alpha(x,\xi)}\}\lesssim\frac{\min\{1,T\}}{\alpha(x,\xi)}.

In the case of (ξ1+u)T1(\xi_{1}+u)T\leq 1, for T>1T>1, by (2.25) we bound (2.35)1ξ1+umin{1,T}α(x,ξ).\lesssim\frac{1}{\xi_{1}+u}\lesssim\frac{\min\{1,T\}}{\alpha(x,\xi)}. For T1T\leq 1, from (ξ1+u)T1(\xi_{1}+u)T\leq 1 we have |ln((ξ1+u)T)|1(ξ1+u)T|\ln((\xi_{1}+u)T)|\lesssim\frac{1}{\sqrt{(\xi_{1}+u)T}} and

(ξ1+u)T+|(ξ1+u)Tln((ξ1+u)T)|ξ1+u\displaystyle\frac{(\xi_{1}+u)T+|(\xi_{1}+u)T\ln((\xi_{1}+u)T)|}{\xi_{1}+u}
=T+|Tln((ξ1+u)T)|=𝟏(ξ1+u)1+𝟏(ξ1+u)<1\displaystyle=T+|T\ln((\xi_{1}+u)T)|=\mathbf{1}_{(\xi_{1}+u)\geq 1}+\mathbf{1}_{(\xi_{1}+u)<1}
T+𝟏ξ1+u1T(ξ1+u)T+𝟏ξ1+u<1[Tln(T)+T|ln(ξ1+u)|]\displaystyle\lesssim T+\mathbf{1}_{\xi_{1}+u\geq 1}\frac{T}{\sqrt{(\xi_{1}+u)T}}+\mathbf{1}_{\xi_{1}+u<1}[T\ln(T)+T|\ln(\xi_{1}+u)|] (2.38)
T+T+|Tln(T)|+Tξ1+uTα(x,ξ)min{1,T}α(x,ξ).\displaystyle\lesssim T+\sqrt{T}+|T\ln(T)|+\frac{T}{\xi_{1}+u}\lesssim\frac{\sqrt{T}}{\alpha(x,\xi)}\lesssim\frac{\min\{1,\sqrt{T}\}}{\alpha(x,\xi)}.

In the last line, we used (2.25) and T1T\leq 1.

Then we focus on the scenario that |η1|/(cν0x)1|\eta_{1}|/(c\nu_{0}x)\leq 1, if |η1|(cν0)(x(ξ1+u)(ts))|\eta_{1}|\leq(c\nu_{0})(x-(\xi_{1}+u)(t-s)) for all tTstt-T\leq s\leq t, then we have (2.23)1\lesssim 1 and thus

tTt𝟏|η1|(cν0)(x(ξ1+u)(ts))(2.23)ds\displaystyle\int_{t-T}^{t}\mathbf{1}_{|\eta_{1}|\leq(c\nu_{0})(x-(\xi_{1}+u)(t-s))}\eqref{ln_bdd_eta}\mathrm{d}s min{1,T}α(x,ξ).\displaystyle\lesssim\frac{\min\{1,T\}}{\alpha(x,\xi)}.

If |η1|>(cν0)(x(ξ1+u)(ts))|\eta_{1}|>(c\nu_{0})(x-(\xi_{1}+u)(t-s)) for some tT<s<tt-T<s<t, then there is a unique tt^{\prime} such that |η1|=(cν0)(x(ξ1+u)(tt))|\eta_{1}|=(c\nu_{0})(x-(\xi_{1}+u)(t-t^{\prime})). Denote x=x(ξ1+u)(tt)x^{\prime}=x-(\xi_{1}+u)(t-t^{\prime}). Then

|η1|(cν0)(x(ξ1+u)(ts))>1 for all tTs<t,\displaystyle\frac{|\eta_{1}|}{(c\nu_{0})(x^{\prime}-(\xi_{1}+u)(t^{\prime}-s))}>1\text{ for all }t-T\leq s<t^{\prime},
|η1|(cν0)(x(ξ1+u)(ts))1 for all tst.\displaystyle\frac{|\eta_{1}|}{(c\nu_{0})(x-(\xi_{1}+u)(t-s))}\leq 1\text{ for all }t^{\prime}\leq s\leq t.

By the observation above, we split the ss-integral into two parts. The first part is bounded as

tteν(ξ)(ts)/2(2.23)dstteν(ξ)(ts)/2dsmin{1,T}α(x,ξ).\displaystyle\int_{t^{\prime}}^{t}e^{-\nu(\xi)(t-s)/2}\eqref{ln_bdd_eta}\mathrm{d}s\lesssim\int_{t^{\prime}}^{t}e^{-\nu(\xi)(t-s)/2}\mathrm{d}s\lesssim\frac{\min\{1,T\}}{\alpha(x,\xi)}.

For the second part, we have η1(cν0)x1\frac{\eta_{1}}{(c\nu_{0})x^{\prime}}\geq 1, and thus

1|ξ1+u|1α(x,ξ).\displaystyle\frac{1}{|\xi_{1}+u|}\lesssim\frac{1}{\alpha(x^{\prime},\xi)}.

Then the integral for the second part reads

tTteν(ξ)(ts)/2(2.23)ds=eν(ξ)(tt)/2tTteν(ξ)(ts)/2(2.23)ds.\displaystyle\int_{t-T}^{t^{\prime}}e^{-\nu(\xi)(t-s)/2}\eqref{ln_bdd_eta}\mathrm{d}s=e^{-\nu(\xi)(t-t^{\prime})/2}\int_{t-T}^{t^{\prime}}e^{-\nu(\xi)(t^{\prime}-s)/2}\eqref{ln_bdd_eta}\mathrm{d}s.

Note that

(2.23)\displaystyle\eqref{ln_bdd_eta} =ln(1+|2η1(cν0)(x(ξ1+u)(ts))|2+|2η1(cν0)(x(ξ1+u)(ts))|).\displaystyle=\ln\Big{(}\sqrt{1+\Big{|}\frac{2\eta_{1}}{(c\nu_{0})(x^{\prime}-(\xi_{1}+u)(t^{\prime}-s))}\Big{|}^{2}}+\Big{|}\frac{2\eta_{1}}{(c\nu_{0})(x^{\prime}-(\xi_{1}+u)(t^{\prime}-s))}\Big{|}\Big{)}.

Following the same computation as (2.34), (2.37) for the case |η1|/(cν0x)>1|\eta_{1}|/(c\nu_{0}x)>1, we replace xx by xx^{\prime} and conclude that

tTteν(ξ)(ts)/2(2.23)dseν(ξ)(tt)/2min{1,T}α(x,ξ)\displaystyle\int_{t-T}^{t^{\prime}}e^{-\nu(\xi)(t-s)/2}\eqref{ln_bdd_eta}\mathrm{d}s\lesssim e^{-\nu(\xi)(t-t^{\prime})/2}\frac{\min\{1,\sqrt{T}\}}{\alpha(x^{\prime},\xi)}
eν0(tt)/2e2cν0(tt)min{1,T}α(x,ξ)min{1,T}α(x,ξ).\displaystyle\lesssim e^{-\nu_{0}(t-t^{\prime})/2}e^{2c\nu_{0}(t-t^{\prime})}\frac{\min\{1,\sqrt{T}\}}{\alpha(x,\xi)}\leq\frac{\min\{1,\sqrt{T}\}}{\alpha(x,\xi)}.

In the second line, we have used Lemma 5 with 2c=142c=\frac{1}{4}.

Combining with (2.34) and (2.37), we conclude that

tTteν(ξ)(ts)/2(2.23)dsmin{1,T}α(x,ξ).\displaystyle\int_{t-T}^{t}e^{-\nu(\xi)(t-s)/2}\eqref{ln_bdd_eta}\mathrm{d}s\lesssim\frac{\min\{1,\sqrt{T}\}}{\alpha(x,\xi)}. (2.39)

Contribution of (2.24).

If 1/(x(ξ1+u)(ts))11/(x-(\xi_{1}+u)(t-s))\leq 1 for all ss, then (2.24)1\lesssim 1 so that the contribution of (2.24) is bounded by min{1,T}/α(x,ξ)\min\{1,T\}/\alpha(x,\xi). Thus we only consider the integral over x(ξ1+u)(ts)1x-(\xi_{1}+u)(t-s)\leq 1:

tTt𝟏x(ξ1+u)(ts)1eν(ξ)(ts)/2|ln(x(ξ1+u)(ts))|ds.\displaystyle\int_{t-T}^{t}\mathbf{1}_{x-(\xi_{1}+u)(t-s)\leq 1}e^{-\nu(\xi)(t-s)/2}|\ln(x-(\xi_{1}+u)(t-s))|\mathrm{d}s. (2.40)

In such a case, we have x(ξ1+u)T<1x-(\xi_{1}+u)T<1. We apply a change of variable y=x(ξ1+u)(ts)y=x-(\xi_{1}+u)(t-s), with x(ξ1+u)Tymin{x,1}x-(\xi_{1}+u)T\leq y\leq\min\{x,1\}. Then

(2.40)\displaystyle\eqref{s_integral} x(ξ1+u)Tmin{x,1}eν(ξ)xyξ1+u/2|ln(y)|1ξ1+udy.\displaystyle\leq\int_{x-(\xi_{1}+u)T}^{\min\{x,1\}}e^{-\nu(\xi)\frac{x-y}{\xi_{1}+u}/2}|\ln(y)|\frac{1}{\xi_{1}+u}\mathrm{d}y. (2.41)

If x>2x>2, we apply (2.36) to have

(2.40)\displaystyle\eqref{s_integral} eν(ξ)2(ξ1+u)1ξ1+ux(ξ1+u)Tmin{x,1}|ln(y)|dy\displaystyle\leq e^{-\frac{\nu(\xi)}{2(\xi_{1}+u)}}\frac{1}{\xi_{1}+u}\int_{x-(\xi_{1}+u)T}^{\min\{x,1\}}|\ln(y)|\mathrm{d}y
eν(ξ)2(ξ1+u)1ξ1+u0min{1,(ξ1+u)T}|ln(y)|dy\displaystyle\lesssim e^{-\frac{\nu(\xi)}{2(\xi_{1}+u)}}\frac{1}{\xi_{1}+u}\int_{0}^{\min\{1,(\xi_{1}+u)T\}}|\ln(y)|\mathrm{d}y
eν(ξ)2(ξ1+u)min{1,(ξ1+u)T+|(ξ1+u)Tln((ξ1+u)T)|}ξ1+u.\displaystyle\lesssim e^{-\frac{\nu(\xi)}{2(\xi_{1}+u)}}\frac{\min\{1,(\xi_{1}+u)T+|(\xi_{1}+u)T\ln((\xi_{1}+u)T)|\}}{\xi_{1}+u}.

For (ξ1+u)T1(\xi_{1}+u)T\geq 1 we have 1ξ1+uT\frac{1}{\xi_{1}+u}\leq T, from eν(ξ)2(ξ1+u)ξ1+u1\frac{e^{-\frac{\nu(\xi)}{2(\xi_{1}+u)}}}{\xi_{1}+u}\lesssim 1, we further have

eν(ξ)2(ξ1+u)ξ1+u\displaystyle\frac{e^{-\frac{\nu(\xi)}{2(\xi_{1}+u)}}}{\xi_{1}+u} min{1,eν(ξ)2(ξ1+u)T}min{1,T}α(x,ξ).\displaystyle\lesssim\min\{1,e^{-\frac{\nu(\xi)}{2(\xi_{1}+u)}}T\}\lesssim\frac{\min\{1,T\}}{\alpha(x,\xi)}.

For (ξ1+u)T<1(\xi_{1}+u)T<1 and T>1T>1, from eν(ξ)2(ξ1+u)ξ1+u1\frac{e^{-\frac{\nu(\xi)}{2(\xi_{1}+u)}}}{\xi_{1}+u}\lesssim 1 we have

(2.40)𝟏T>1\displaystyle\eqref{s_integral}\mathbf{1}_{T>1} eν(ξ)2(ξ1+u)ξ1+u𝟏T>1min{1,T}α(x,ξ)𝟏T>1.\displaystyle\lesssim\frac{e^{-\frac{\nu(\xi)}{2(\xi_{1}+u)}}}{\xi_{1}+u}\mathbf{1}_{T>1}\lesssim\frac{\min\{1,T\}}{\alpha(x,\xi)}\mathbf{1}_{T>1}.

For (ξ1+u)T<1(\xi_{1}+u)T<1 and T1T\leq 1, from eν(ξ)2(ξ1+u)ξ1+u1\frac{e^{-\frac{\nu(\xi)}{2(\xi_{1}+u)}}}{\sqrt{\xi_{1}+u}}\lesssim 1 we have

eν(ξ)2(ξ1+u)(ξ1+u)T+|(ξ1+u)Tln((ξ1+u)T)|ξ1+u\displaystyle e^{-\frac{\nu(\xi)}{2(\xi_{1}+u)}}\frac{(\xi_{1}+u)T+|(\xi_{1}+u)T\ln((\xi_{1}+u)T)|}{\xi_{1}+u}
eν(ξ)2(ξ1+u)[T+T(ξ1+u)T]Tmin{1,T}α(x,ξ).\displaystyle\lesssim e^{-\frac{\nu(\xi)}{2(\xi_{1}+u)}}[T+\frac{T}{\sqrt{(\xi_{1}+u)T}}]\lesssim\sqrt{T}\lesssim\frac{\min\{1,\sqrt{T}\}}{\alpha(x,\xi)}.

Then we consider x2x\leq 2. We further discuss two cases. The first case is |η1|/(cν0x)1/(2tcν0)|\eta_{1}|/(c\nu_{0}x)\leq 1/(2tc\nu_{0}), which implies x>2t|η1|x>2t|\eta_{1}|. Then

α(x,ξ)\displaystyle\alpha(x,\xi) (ξ1+u)2+(cν0)2x2(ξ1+u)+cν0x\displaystyle\leq\sqrt{(\xi_{1}+u)^{2}+(c\nu_{0})^{2}x^{2}}\leq(\xi_{1}+u)+c\nu_{0}x
x2t+cν0xx,\displaystyle\leq\frac{x}{2t}+c\nu_{0}x\lesssim x,

here we used t1t\gg 1. Thus we derive 1x1/α(x,ξ).\frac{1}{x}\lesssim 1/\alpha(x,\xi).

Since 0st0\leq s\leq t, we have

x(ξ1+u)(ts)\displaystyle x-(\xi_{1}+u)(t-s) =x2+x2(ξ1+u)(ts)\displaystyle=\frac{x}{2}+\frac{x}{2}-(\xi_{1}+u)(t-s)
x2+t|η1|t|η1|=x2.\displaystyle\geq\frac{x}{2}+t|\eta_{1}|-t|\eta_{1}|=\frac{x}{2}.

Then we have

tTteν(ξ)(ts)/2|ln(x(ξ1+u)(ts))|ds\displaystyle\int_{t-T}^{t}e^{-\nu(\xi)(t-s)/2}|\ln(x-(\xi_{1}+u)(t-s))|\mathrm{d}s
min{1,T}max{|ln(x)|,|ln(x/2)|}min{1,T}xmin{1,T}α(x,ξ),\displaystyle\leq\min\{1,T\}\max\{|\ln(x)|,|\ln(x/2)|\}\lesssim\frac{\min\{1,T\}}{x}\leq\frac{\min\{1,T\}}{\alpha(x,\xi)},

where we have used x2x\leq 2.

The other case is |η1|/(cν0x)>1/(2tcν0)|\eta_{1}|/(c\nu_{0}x)>1/(2tc\nu_{0}), which implies 2t|η1|>x2t|\eta_{1}|>x. We have

α(x,ξ)\displaystyle\alpha(x,\xi) (ξ1+u)+(cν0)x(ξ1+u)(1+2tcν0),\displaystyle\leq(\xi_{1}+u)+(c\nu_{0})x\leq(\xi_{1}+u)(1+2tc\nu_{0}),

which leads to

1ξ1+u\displaystyle\frac{1}{\xi_{1}+u} 1+2tcν0α(x,ξ).\displaystyle\leq\frac{1+2tc\nu_{0}}{\alpha(x,\xi)}.

In this case we apply (2.41) with (2.35) and (2.36) to have

(2.41)\displaystyle\eqref{cov_y} (2.35)1ξ1+umin{1,|(ξ1+u)T|+|(ξ1+u)Tln((ξ1+u)T)|}.\displaystyle\leq\eqref{third}\leq\frac{1}{\xi_{1}+u}\min\{1,|(\xi_{1}+u)T|+|(\xi_{1}+u)T\ln((\xi_{1}+u)T)|\}.

When (ξ1+u)T>1(\xi_{1}+u)T>1, we have 1ξ1+u<T\frac{1}{\xi_{1}+u}<T and

(2.41)\displaystyle\eqref{cov_y} 1ξ1+umin{T,tα(x,ξ)}min{T,t}α(x,ξ).\displaystyle\lesssim\frac{1}{\xi_{1}+u}\lesssim\min\{T,\frac{t}{\alpha(x,\xi)}\}\lesssim\frac{\min\{T,t\}}{\alpha(x,\xi)}.

When (ξ1+u)T1(\xi_{1}+u)T\leq 1, for T>1T>1 we use (2.35) to bound

(2.41)𝟏T>1\displaystyle\eqref{cov_y}\mathbf{1}_{T>1} 𝟏T>1ξ1+u𝟏T>1tα(x,ξ).\displaystyle\lesssim\frac{\mathbf{1}_{T>1}}{\xi_{1}+u}\lesssim\frac{\mathbf{1}_{T>1}t}{\alpha(x,\xi)}.

For T<1T<1, we follow the computation in (2.38) to have

(2.41)T+T+|Tln(T)|+T𝟏ξ1+u1|ln(ξ1+u)|\displaystyle\eqref{cov_y}\lesssim T+\sqrt{T}+|T\ln(T)|+T\mathbf{1}_{\xi_{1}+u\leq 1}|\ln(\xi_{1}+u)|
T+T𝟏1ξ1+u1ln(1ξ1+u)\displaystyle\lesssim\sqrt{T}+T\mathbf{1}_{\frac{1}{\xi_{1}+u}\geq 1}\ln(\frac{1}{\xi_{1}+u})
T+Tln(1+2tcν0α(x,ξ))T+Tln(t)+T|ln(α(x,ξ))|\displaystyle\lesssim\sqrt{T}+T\ln(\frac{1+2tc\nu_{0}}{\alpha(x,\xi)})\lesssim\sqrt{T}+T\ln(t)+T|\ln(\alpha(x,\xi))|
T+Tln(t)α(x,ξ).\displaystyle\lesssim\frac{\sqrt{T}+T\ln(t)}{\alpha(x,\xi)}.

In the last inequality we used α(x,ξ)1\alpha(x,\xi)\lesssim 1 to have |ln(α(x,ξ))|1α(x,ξ)|\ln(\alpha(x,\xi))|\lesssim\frac{1}{\alpha(x,\xi)}.

We conclude that

tTteν(ξ)(ts)/2(2.24)ds𝟏T>1t+𝟏T1[T+Tln(t)]α(x,ξ).\displaystyle\int_{t-T}^{t}e^{-\nu(\xi)(t-s)/2}\eqref{ln_bdd_1}\mathrm{d}s\lesssim\frac{\mathbf{1}_{T>1}t+\mathbf{1}_{T\leq 1}[\sqrt{T}+T\ln(t)]}{\alpha(x,\xi)}. (2.42)

Step 3: conclusion

In summary, in the case of ξ1+u<0\xi_{1}+u<0 in Step 2-1 and the contribution of (2.23) in the case of ξ1+u>0\xi_{1}+u>0 in Step 2-2, we collect (2.30), (2.33) and (2.39) to have

tTteν(ξ)(ts)/2(2.23)+𝟏ξ1+u<0(2.24)ds\displaystyle\int_{t-T}^{t}e^{-\nu(\xi)(t-s)/2}\eqref{ln_bdd_eta}+\mathbf{1}_{\xi_{1}+u<0}\eqref{ln_bdd_1}\mathrm{d}s min{1,T}α(x,ξ),\displaystyle\lesssim\frac{\min\{1,\sqrt{T}\}}{\alpha(x,\xi)},

which satisfies (2.18) for T>1T>1 and (2.19) for T1T\leq 1.

For the contribution of (2.24) in the case of ξ1+u>0\xi_{1}+u>0 in Step 2-2, we use (2.42) to have

tTt𝟏ξ1+u>0(2.24)ds\displaystyle\int_{t-T}^{t}\mathbf{1}_{\xi_{1}+u>0}\eqref{ln_bdd_1}\mathrm{d}s 𝟏T>1t+𝟏T1[T+Tln(t)]α(x,ξ),\displaystyle\lesssim\frac{\mathbf{1}_{T>1}t+\mathbf{1}_{T\leq 1}[\sqrt{T}+T\ln(t)]}{\alpha(x,\xi)},

which also satisfies (2.18) and (2.19).

The proof of Lemma 6 directly implies the following result:

Lemma 7.
0tdseν(ξ)(ts)3dξeC|ξ|2α(x(ξ1+u)(ts),ξ)tα(x,ξ),\int^{t}_{0}\mathrm{d}se^{-\nu(\xi)(t-s)}\int_{\mathbb{R}^{3}}\mathrm{d}\xi^{\prime}\frac{e^{-C|\xi^{\prime}|^{2}}}{\alpha(x-(\xi_{1}+u)(t-s),\xi^{\prime})}\lesssim\frac{t}{\alpha(x,\xi)}, (2.43)
0tdseν(ξ)(ts)3dξw1(ξ)3dξ′′eC|ξξ′′|2|ξξ′′|α(x(ξ1+u)(ts),ξ′′)dξ′′tα(x,ξ).\int^{t}_{0}\mathrm{d}se^{-\nu(\xi)(t-s)}\int_{\mathbb{R}^{3}}\mathrm{d}\xi^{\prime}w^{-1}(\xi^{\prime})\int_{\mathbb{R}^{3}}\mathrm{d}\xi^{\prime\prime}\frac{e^{-C|\xi^{\prime}-\xi^{\prime\prime}|^{2}}}{|\xi^{\prime}-\xi^{\prime\prime}|\alpha(x-(\xi_{1}+u)(t-s),\xi^{\prime\prime})}\mathrm{d}\xi^{\prime\prime}\lesssim\frac{t}{\alpha(x,\xi)}. (2.44)
Proof.

Proof of (2.43). The integral over dξ\mathrm{d}\xi^{\prime} is bounded as

1+011|ξ1|2+(cν0)2(x(ξ1+u)(ts))2dξ1=1+(2.24).\displaystyle 1+\int_{0}^{1}\frac{1}{\sqrt{|\xi^{\prime}_{1}|^{2}+(c\nu_{0})^{2}(x-(\xi_{1}+u)(t-s))^{2}}}\mathrm{d}\xi_{1}^{\prime}=1+\eqref{ln_bdd_1}.

Here, we applied the same computation as (2.22). Then follow Step 2 in the proof of Lemma 6 to conclude the lemma.

Proof of (2.43). Again following the computation of (2.22), with η=ξ+(u,0,0)\eta=\xi^{\prime}+(u,0,0), the dξdξ′′\mathrm{d}\xi^{\prime}\mathrm{d}\xi^{\prime\prime} integral is bounded as

3eθ|η|2dηeC|η1ξ1′′|2|ξ1′′|2+(cν0)2(x(ξ1+u)(ts))2dξ1′′\displaystyle\int_{\mathbb{R}^{3}}e^{-\theta|\eta|^{2}}\mathrm{d}\eta\int_{\mathbb{R}}\frac{e^{-C|\eta_{1}-\xi_{1}^{\prime\prime}|^{2}}}{\sqrt{|\xi_{1}^{\prime\prime}|^{2}+(c\nu_{0})^{2}(x-(\xi_{1}+u)(t-s))^{2}}}\mathrm{d}\xi_{1}^{\prime\prime}
eC1|ξ1′′|2|ξ1′′|2+(cν0)2(x(ξ1+u)(ts))2dξ1′′1+(2.24).\displaystyle\lesssim\int_{\mathbb{R}}\frac{e^{-C_{1}|\xi_{1}^{\prime\prime}|^{2}}}{\sqrt{|\xi_{1}^{\prime\prime}|^{2}+(c\nu_{0})^{2}(x-(\xi_{1}+u)(t-s))^{2}}}\mathrm{d}\xi_{1}^{\prime\prime}\lesssim 1+\eqref{ln_bdd_1}.

Here we choose C1=ε2CC_{1}=\frac{\varepsilon}{2}C for some ε>0\varepsilon>0 such that θ>εC\theta>\varepsilon C and

θ|η1|2C|η1ξ1′′|2\displaystyle-\theta|\eta_{1}|^{2}-C|\eta_{1}-\xi^{\prime\prime}_{1}|^{2} θ|η1|2εC|η1ξ1′′|2(θεC)|η1|2+2εCη1ξ′′εC|ξ′′|2\displaystyle\leq-\theta|\eta_{1}|^{2}-\varepsilon C|\eta_{1}-\xi^{\prime\prime}_{1}|^{2}\leq(-\theta-\varepsilon C)|\eta_{1}|^{2}+2\varepsilon C\eta_{1}\xi^{\prime\prime}-\varepsilon C|\xi^{\prime\prime}|^{2}
(θεC+2εC)(εCεC2)|ξ′′|2.\displaystyle\leq(\theta-\varepsilon C+2\varepsilon C)-(\varepsilon C-\frac{\varepsilon C}{2})|\xi^{\prime\prime}|^{2}.

3. Continuity and exponential decay in ξ\xi.

In this section, we conclude justify the assumption (1.19) and conclude Theorem 2.

We start from proving the continuity and ww-weighted LL^{\infty} estimate of the linearized penalized problem (3.11) in Proposition 6, then we will move onto the nonlinear penalized problem (3.31) in Proposition 8. At the end of this section, we will make use of the penalized problem to recover the solution the boundary layer problem (1.4).

To define the penalized problem (3.11), we denote +\prod_{+} as the orthogonal projection on X+X_{+}:

+g=gX+X+.\prod_{+}g=\langle gX_{+}\rangle X_{+}.

Here, X+X_{+} is defined in (2.9), and the inner product is defined in (1.15).

Denote ϕu\phi_{u} to be the eigen-function of the following eigen-value problem:

{ϕu=τu(ξ1+u)ϕu,(ξ1+u)ϕu2=u.\begin{cases}&\mathcal{L}\phi_{u}=\tau_{u}(\xi_{1}+u)\phi_{u},\\ &\langle(\xi_{1}+u)\phi_{u}^{2}\rangle=-u.\end{cases} (3.1)

3.1. Continuity and ww-weighted LL^{\infty} estimate of the eigen-value problem (3.1).

For u0u\neq 0, we define

ψu:=ϕuϕ0u.\psi_{u}:=\frac{\phi_{u}-\phi_{0}}{u}. (3.2)

For uu near 0, it was shown in [3] that there exists solution ϕuLξ2Lξ,s\phi_{u}\in L^{2}_{\xi}\cap L^{\infty,s}_{\xi} to (3.1):

Proposition 4 (Proposition 3.1 in [3]).

There exists r>0r>0 and real analytic function uτu3u\to\tau_{u}\in\mathbb{R}^{3} with |τu|u|\tau_{u}|\sim u and real analytic map uϕudom()u\to\phi_{u}\in\mathcal{H}\cap dom(\mathcal{L}) with 0<|u|<r0<|u|<r such that ϕu\phi_{u} satisfies (3.1). Furthermore, there exists a positive constant CsC_{s} such that for each s0s\geq 0, ϕu\phi_{u} satisfies

(1+|ξ|)sϕuLξCs\|(1+|\xi|)^{s}\phi_{u}\|_{L^{\infty}_{\xi}}\leq C_{s} (3.3)

for all s0s\geq 0 uniformly in u(r,0)(0,r)u\in(-r,0)\cup(0,r).

Remark 8.

In [3], the linearization reads F=M+MfF=M+Mf, and their statement regarding (3.1) reads as following. The eigen-function of the following eigen-value problem

{Q(Mϕu,M)Q(M,Mϕu)M=τu(ξ1+u)ϕu3(ξ1+u)ϕu2Mdξ=u\begin{cases}&\frac{-Q(M\phi_{u},M)-Q(M,M\phi_{u})}{M}=\tau_{u}(\xi_{1}+u)\phi_{u}\\ &\int_{\mathbb{R}^{3}}(\xi_{1}+u)\phi_{u}^{2}M\mathrm{d}\xi=-u\end{cases}

satisfies

(1+|ξ|)sϕuMLξCs.\displaystyle\|(1+|\xi|)^{s}\phi_{u}\sqrt{M}\|_{L^{\infty}_{\xi}}\leq C_{s}.

By substituting ϕuM\phi_{u}\sqrt{M} by ϕu\phi_{u}, this statement is exactly Proposition 4.

First we show that the eigen-function in (3.1) is continuous and decays exponentially in ξ3\xi\in\mathbb{R}^{3}.

Lemma 8.

For the eigen-function ϕu\phi_{u} in Proposition 4, we have

ϕuC(3).\phi_{u}\in C(\mathbb{R}^{3}). (3.4)

Recall the exponential weight in (1.13), the eigen-function in (3.1) further satisfies

wϕuLξ<.\|w\phi_{u}\|_{L^{\infty}_{\xi}}<\infty. (3.5)
Proof.

Proof of (3.4). From (3.1), the solution ϕu\phi_{u} satisfies

ϕu\displaystyle\phi_{u} =1ν(ξ)τu(ξ1+u)Kϕu.\displaystyle=\frac{1}{\nu(\xi)-\tau_{u}(\xi_{1}+u)}K\phi_{u}. (3.6)

Since |u|<r|u|<r for some small rr, on RHS we have ν(ξ)τu(ξ1+u)>ν(ξ)2\nu(\xi)-\tau_{u}(\xi_{1}+u)>\frac{\nu(\xi)}{2}. We use the contradiction argument to show that ϕu\phi_{u} is continuous.

Suppose ϕu\phi_{u} is not continuous at some ξ=ξ0\xi=\xi^{0}, then at ξ=ξ0\xi=\xi^{0}, RHS of (3.6) reads

1ν(ξ0)τu(ξ10+u)ξ3𝐤(ξ0,ξ)ϕu(ξ)dξ.\displaystyle\frac{1}{\nu(\xi^{0})-\tau_{u}(\xi^{0}_{1}+u)}\int_{\xi^{\prime}\in\mathbb{R}^{3}}\mathbf{k}(\xi^{0},\xi^{\prime})\phi_{u}(\xi^{\prime})\mathrm{d}\xi^{\prime}.

The first term is continuous in ξ0\xi^{0} due to τu1\tau_{u}\ll 1. For the second term, note that from (3.3), ϕuLξ\phi_{u}\in L^{\infty}_{\xi}, the second term is differentiable at ξ0\xi^{0} from (2.12):

|ξ3ξ𝐤(ξ0,ξ)ϕu(ξ)dξ|[1+ξ0]23eC|ξξ0|2|ξξ0|2dξ<.\displaystyle\Big{|}\int_{\xi^{\prime}\in\mathbb{R}^{3}}\nabla_{\xi}\mathbf{k}(\xi^{0},\xi^{\prime})\phi_{u}(\xi^{\prime})\mathrm{d}\xi^{\prime}\Big{|}\lesssim[1+\xi_{0}]^{2}\int_{\mathbb{R}^{3}}\frac{e^{-C|\xi^{\prime}-\xi^{0}|^{2}}}{|\xi^{\prime}-\xi^{0}|^{2}}\mathrm{d}\xi^{\prime}<\infty.

Since both terms are continuous, we conclude (3.4) by contradiction.

Proof of (3.5). For θ<14\theta<\frac{1}{4}, we consider a variant of perturbation around the Maxwellian as

F(x,ξ)=M+Meθ|ξ|2f.\displaystyle F(x,\xi)=M+\sqrt{M}e^{-\theta|\xi|^{2}}f.

Then we denote the corresponding linear Boltzmann operator as

θf\displaystyle\mathcal{L}_{\theta}f =Q(M,Meθ|ξ|2f)+Q(Meθ|ξ|2f,M)Meθ|ξ|2=ν(ξ)fKθf.\displaystyle=-\frac{Q(M,\sqrt{M}e^{-\theta|\xi|^{2}}f)+Q(\sqrt{M}e^{-\theta|\xi|^{2}}f,M)}{\sqrt{M}e^{-\theta|\xi|^{2}}}=\nu(\xi)f-K_{\theta}f. (3.7)

With the extra weight eθ|ξ|2e^{\theta|\xi|^{2}} and θ<14\theta<\frac{1}{4}, KθfK_{\theta}f can be expressed as

Kθf(ξ)=3𝐤θ(ξ,ξ)f(ξ)dξ=3𝐤(ξ,ξ)eθ|ξ|2eθ|ξ|2f(ξ)dξ,\displaystyle K_{\theta}f(\xi)=\int_{\mathbb{R}^{3}}\mathbf{k}_{\theta}(\xi,\xi^{\prime})f(\xi^{\prime})\mathrm{d}\xi^{\prime}=\int_{\mathbb{R}^{3}}\mathbf{k}(\xi,\xi^{\prime})\frac{e^{\theta|\xi|^{2}}}{e^{\theta|\xi^{\prime}|^{2}}}f(\xi^{\prime})\mathrm{d}\xi^{\prime},

here 𝐤θ(ξ,ξ)\mathbf{k}_{\theta}(\xi,\xi^{\prime}) is given in Lemma 3, which has the form in (2.3), (2.4) with different coefficients in the exponent( due to (2.10) and see Lemma 3 in [17] for the proof).

Therefore, θ\mathcal{L}_{\theta} is still self-adjoint, and KθK_{\theta} is still a bounded operator from Lξ2L^{2}_{\xi} to Lξ,1/2L^{\infty,1/2}_{\xi}, and from Lξ,sL^{\infty,s}_{\xi} to Lξ,s+1L^{\infty,s+1}_{\xi}. Here

L,s(3):={ϕL(3)|(1+|ξ|)sϕL(3)}.L^{\infty,s}(\mathbb{R}^{3}):=\{\phi\in L^{\infty}(\mathbb{R}^{3})|(1+|\xi|)^{s}\phi\in L^{\infty}(\mathbb{R}^{3})\}.

The kernel of θ\mathcal{L}_{\theta} is given by (1,ξi,|ξ|2)Meθ|ξ|2Lξ2(1,\xi_{i},|\xi|^{2})\sqrt{M}e^{\theta|\xi|^{2}}\in L^{2}_{\xi}. Then applying the same argument in Proposition 3.1 in [3], for |u|1|u|\ll 1, there exists ϕθLξ2Lξ,s\phi_{\theta}\in L^{2}_{\xi}\cap L^{\infty,s}_{\xi} for any s>0s>0 to the following eigen-value problem

{θϕθ=τu(ξ1+u)ϕθ,3(ξ1+u)|ϕθ|2dξ=u.\begin{cases}&\mathcal{L}_{\theta}\phi_{\theta}=\tau_{u}(\xi_{1}+u)\phi_{\theta},\\ &\int_{\mathbb{R}^{3}}(\xi_{1}+u)|\phi_{\theta}|^{2}\mathrm{d}\xi=-u.\end{cases}

Then for some constant C=C(θ,u)C=C(\theta,u), ϕ=eθ|ξ|2ϕθ\phi=e^{-\theta|\xi|^{2}}\phi_{\theta} is an eigen-function of the following problem

{ϕ=τu(ξ1+u)ϕ,(ξ1+u)|ϕ|2=C(θ,u).\begin{cases}&\mathcal{L}\phi=\tau_{u}(\xi_{1}+u)\phi,\\ &\langle(\xi_{1}+u)|\phi|^{2}\rangle=C(\theta,u).\end{cases}

Through rescaling, we conclude that the eigen-function ϕu\phi_{u} in (3.1) satisfies (3.5).

In the following lemma, we bound ψu\psi_{u} in the ww-weighted LL^{\infty} norm. Here we recall the definition of ψu\psi_{u} in (3.2).

Lemma 9.

For the eigen-function ϕu\phi_{u} in (3.1) in Proposition 4, we further have

wψuLξ=wϕuϕ0uLξ1,\|w\psi_{u}\|_{L^{\infty}_{\xi}}=\big{\|}w\frac{\phi_{u}-\phi_{0}}{u}\big{\|}_{L^{\infty}_{\xi}}\lesssim 1, (3.8)

where the inequality in (3.8) does not depend on uu.

Proof.

Following the proof of Proposition 3.1 in [3], for zz near 0, there exists ϕz\phi_{z} and λ(z)=u(z)z\lambda(z)=u(z)z which are analytic in zz such that

T(z)ϕ(z):=(zξ1)ϕ(z)=λ(z)ϕ(z).\displaystyle T(z)\phi(z):=(\mathcal{L}-z\xi_{1})\phi(z)=\lambda(z)\phi(z).

Denoting ϕ˙z\dot{\phi}_{z} as the derivative with respect to zz, then we have

ϕ˙zzξ1ϕ˙zξ1ϕz=λ(z)ϕ˙z+λ˙(z)ϕz,\displaystyle\mathcal{L}\dot{\phi}_{z}-z\xi_{1}\dot{\phi}_{z}-\xi_{1}\phi_{z}=\lambda(z)\dot{\phi}_{z}+\dot{\lambda}(z)\phi_{z},

which is equivalent to

[ν(ξ)z(ξ1+u)]ϕ˙z=Kϕ˙z+(λ˙(z)+ξ1)ϕz.\displaystyle[\nu(\xi)-z(\xi_{1}+u)]\dot{\phi}_{z}=K\dot{\phi}_{z}+(\dot{\lambda}(z)+\xi_{1})\phi_{z}.

Since ϕz\phi_{z} is analytic in zz (also see Proposition 4), we have ϕ˙zLξ21\|\dot{\phi}_{z}\|_{L^{2}_{\xi}}\lesssim 1. Combining with [1+ξ]ϕzLξ1\|[1+\xi]\phi_{z}\|_{L^{\infty}_{\xi}}\lesssim 1 from Proposition 4, and the fact that KK is bounded from Lξ2L^{2}_{\xi} to Lξ,1/2L^{\infty,1/2}_{\xi}, we conclude that

ϕ˙zLξKϕ˙zν(ξ)Lξ+[1+ξ]ϕzLξ1.\displaystyle\|\dot{\phi}_{z}\|_{L^{\infty}_{\xi}}\lesssim\big{\|}\frac{K\dot{\phi}_{z}}{\nu(\xi)}\big{\|}_{L^{\infty}_{\xi}}+\|[1+\xi]\phi_{z}\|_{L^{\infty}_{\xi}}\lesssim 1. (3.9)

From the Taylor’s theorem, ϕuϕ0u=ϕ˙u¯\frac{\phi_{u}-\phi_{0}}{u}=\dot{\phi}_{\bar{u}} for some u¯[0,u]\bar{u}\in[0,u].

To prove (3.8), we apply the same argument in the proof of Lemma 8. With the modified linear operator θ\mathcal{L}_{\theta} defined in (3.7), we apply the same computation of (3.9) to the eigen-value problem [θzξ1]ϕθ(z)=λ(z)ϕθ(z)[\mathcal{L}_{\theta}-z\xi_{1}]\phi_{\theta}(z)=\lambda(z)\phi_{\theta}(z) and deduce that

ϕ˙θ(z)Lξ1.\displaystyle\|\dot{\phi}_{\theta}(z)\|_{L^{\infty}_{\xi}}\lesssim 1.

Then we conclude (3.8) from the Taylor’s theorem and the fact that ϕ˙(z)=eθ|ξ|2ϕ˙θ(z)\dot{\phi}(z)=e^{-\theta|\xi|^{2}}\dot{\phi}_{\theta}(z).

3.2. Continuity and ww-weighted LL^{\infty} estimate of the linearized penalized problem

With ψu\psi_{u} defined in (3.2), we define

𝐩ug=(ξ1+u)ψugϕu,𝐏ug=ψug(ξ1+u)ϕu.\mathbf{p}_{u}g=-\langle(\xi_{1}+u)\psi_{u}g\rangle\phi_{u},\ \ \mathbf{P}_{u}g=-\langle\psi_{u}g\rangle(\xi_{1}+u)\phi_{u}.

Now we define the linearized penalized problem in the following proposition.

Proposition 5 (Proposition 5.3 and Proposition 5.6 in [3]).

Define the linearized penalized collision operator as

pg:=g+2γ+((ξ1+u)g)+2γ𝐩ugγ(ξ1+u)g.\mathcal{L}^{p}g:=\mathcal{L}g+2\gamma\prod_{+}((\xi_{1}+u)g)+2\gamma\mathbf{p}_{u}g-\gamma(\xi_{1}+u)g. (3.10)

Here γ\gamma is a small constant γ1\gamma\ll 1.

Let QLx,ξ2Q\in L^{2}_{x,\xi}. There exists a unique solution gg to the following linearized penalized problem

{(ξ1+u)xg+pg=Q,x>0,ξ3g(0,ξ)=gb(ξ),ξ1+u>0.\begin{cases}&(\xi_{1}+u)\partial_{x}g+\mathcal{L}^{p}g=Q,\ x>0,\ \xi\in\mathbb{R}^{3}\\ &g(0,\xi)=g_{b}(\xi),\ \xi_{1}+u>0.\end{cases} (3.11)

Moreover, this solution satisfies the L2L^{2}-estimate

νgLx,ξ2C2[QLx,ξ2+νgbLξ2].\|\nu g\|_{L^{2}_{x,\xi}}\leq C_{2}\big{[}\|Q\|_{L^{2}_{x,\xi}}+\|\nu g_{b}\|_{L^{2}_{\xi}}\big{]}. (3.12)

If we further assume QQ and gbg_{b} satisfy

(1+|ξ|)3gbLξ,(1+|ξ|)2QLx,ξ,Q(x,)ker,\displaystyle(1+|\xi|)^{3}g_{b}\in L^{\infty}_{\xi},\ \ (1+|\xi|)^{2}Q\in L^{\infty}_{x,\xi},\ \ Q(x,\cdot)\perp\ker\mathcal{L},

then the solution further satisfies the LL^{\infty}-estimate

(1+|ξ|)3gLx,ξC[(1+|ξ|)3gbLξ+(1+|ξ|)2QLx,ξ+gLx,ξ2].\displaystyle\|(1+|\xi|)^{3}g\|_{L^{\infty}_{x,\xi}}\leq C\big{[}\|(1+|\xi|)^{3}g_{b}\|_{L^{\infty}_{\xi}}+\|(1+|\xi|)^{2}Q\|_{L^{\infty}_{x,\xi}}+\|g\|_{L^{2}_{x,\xi}}\big{]}. (3.13)
Remark 9.

Here we note that the LL^{\infty} estimate in (3.13) is controlled by the L2L^{2} estimate gLx,ξ2\|g\|_{L^{2}_{x,\xi}}, and thus it can be further bounded using (3.12):

(1+|ξ|)3gLx,ξC[(1+|ξ|)3gbLξ+eδx(1+|ξ|)2QLx,ξ].\displaystyle\|(1+|\xi|)^{3}g\|_{L^{\infty}_{x,\xi}}\leq C\big{[}\|(1+|\xi|)^{3}g_{b}\|_{L^{\infty}_{\xi}}+\|e^{\delta x}(1+|\xi|)^{2}Q\|_{L^{\infty}_{x,\xi}}\big{]}.

Denote

Kpg\displaystyle-K^{p}g =Kg+2γ+((ξ1+u)g)+2γ𝐩ug,\displaystyle=-Kg+2\gamma\prod_{+}((\xi_{1}+u)g)+2\gamma\mathbf{p}_{u}g, (3.14)

so that pg=[ν(ξ)γ(ξ1+u)]gKpg\mathcal{L}^{p}g=[\nu(\xi)-\gamma(\xi_{1}+u)]g-K^{p}g. With the ww-weighted estimate for the eigen-function problem in Lemma 8, we have the following property for KpK^{p}:

Lemma 10.
KpgLx,ξ2gLx,ξ2.\|K^{p}g\|_{L^{2}_{x,\xi}}\lesssim\|g\|_{L^{2}_{x,\xi}}. (3.15)
w(ξ)Kpg(ξ)Lx,ξwgLx,ξ.\|w(\xi)K^{p}g(\xi)\|_{L^{\infty}_{x,\xi}}\lesssim\|wg\|_{L^{\infty}_{x,\xi}}. (3.16)
Proof.

Proof of (3.15). Clearly KfLx,ξ2fLx,ξ2\|Kf\|_{L^{2}_{x,\xi}}\lesssim\|f\|_{L^{2}_{x,\xi}}. For the rest, the contribution of +(ξ1+u)g\prod_{+}(\xi_{1}+u)g is bounded as

χ+(ξ1+u)g,χ+Lx,ξ22\displaystyle\|\chi_{+}\langle(\xi_{1}+u)g,\chi_{+}\rangle\|_{L^{2}_{x,\xi}}^{2} +×3e|ξ|24(3|g(x,ξ)|2dξ)(3(ξ1+u)2e|ξ|24dξ)dxdξ\displaystyle\lesssim\iint_{\mathbb{R}^{+}\times\mathbb{R}^{3}}e^{-\frac{|\xi|^{2}}{4}}\big{(}\int_{\mathbb{R}^{3}}|g(x,\xi^{\prime})|^{2}\mathrm{d}\xi^{\prime}\big{)}\big{(}\int_{\mathbb{R}^{3}}(\xi_{1}^{\prime}+u)^{2}e^{-\frac{|\xi^{\prime}|^{2}}{4}}\mathrm{d}\xi^{\prime}\big{)}\mathrm{d}x\mathrm{d}\xi
+×3|g(x,ξ)|2dxdξ=gLx,ξ22.\displaystyle\lesssim\iint_{\mathbb{R}^{+}\times\mathbb{R}^{3}}|g(x,\xi^{\prime})|^{2}\mathrm{d}x\mathrm{d}\xi^{\prime}=\|g\|^{2}_{L^{2}_{x,\xi}}.

The contribution of 𝐩ug\mathbf{p}_{u}g is bounded as

ϕu(ξ1+u)ψugLx,ξ22\displaystyle\|\phi_{u}\langle(\xi_{1}+u)\psi_{u}g\rangle\|_{L^{2}_{x,\xi}}^{2}
+×3wϕuLξ2w2(ξ)(3|g(x,ξ)|2dξ)wψuLx,ξ2(3(ξ1+u)2w2(ξ)dξ)dxdξ\displaystyle\lesssim\iint_{\mathbb{R}^{+}\times\mathbb{R}^{3}}\|w\phi_{u}\|_{L^{\infty}_{\xi}}^{2}w^{-2}(\xi)\big{(}\int_{\mathbb{R}^{3}}|g(x,\xi^{\prime})|^{2}\mathrm{d}\xi^{\prime}\big{)}\|w\psi_{u}\|_{L^{\infty}_{x,\xi}}^{2}\big{(}\int_{\mathbb{R}^{3}}(\xi^{\prime}_{1}+u)^{2}w^{-2}(\xi^{\prime})\mathrm{d}\xi^{\prime}\big{)}\mathrm{d}x\mathrm{d}\xi
+×3|g(x,ξ)|2dxdξgLx,ξ22.\displaystyle\lesssim\iint_{\mathbb{R}^{+}\times\mathbb{R}^{3}}|g(x,\xi^{\prime})|^{2}\mathrm{d}x\mathrm{d}\xi^{\prime}\|g\|_{L^{2}_{x,\xi}}^{2}.

Here we have applied Hölder inequality to (ξ1+u)ψug\langle(\xi_{1}+u)\psi_{u}g\rangle and used Lemma 8 and Lemma 9.

Proof of (3.16). The contribution of KK in KpK^{p} can be controlled using Lemma 3:

wKgLx,ξwgLx,ξ3𝐤(ξ,ξ)w(ξ)w(ξ)dξwgLx,ξ.\displaystyle\|wKg\|_{L^{\infty}_{x,\xi}}\leq\|wg\|_{L^{\infty}_{x,\xi}}\int_{\mathbb{R}^{3}}\mathbf{k}(\xi,\xi^{\prime})\frac{w(\xi)}{w(\xi^{\prime})}\mathrm{d}\xi^{\prime}\lesssim\|wg\|_{L^{\infty}_{x,\xi}}.

The contribution of +(ξ1+u)g\prod_{+}(\xi_{1}+u)g is bounded as

w(ξ)χ+(ξ1+u)g,χ+wgLx,ξ(ξ1+u)eθ|ξ|2,χ+wgLx,ξ.\displaystyle w(\xi)\chi_{+}\langle(\xi_{1}+u)g,\chi_{+}\rangle\lesssim\|wg\|_{L^{\infty}_{x,\xi}}\langle(\xi_{1}+u)e^{-\theta|\xi|^{2}},\chi_{+}\rangle\lesssim\|wg\|_{L^{\infty}_{x,\xi}}. (3.17)

The contribution of 𝐩ug\mathbf{p}_{u}g can be bounded using Proposition 4 and Lemma 8:

|w(ξ)ϕu(ξ)(ξ1+u)ψug|wϕuLx,ξwgLx,ξ|(ξ1+u)ψueθ|ξ|2|\displaystyle|w(\xi)\phi_{u}(\xi)\langle(\xi_{1}+u)\psi_{u}g\rangle|\leq\|w\phi_{u}\|_{L^{\infty}_{x,\xi}}\|wg\|_{L^{\infty}_{x,\xi}}|\langle(\xi_{1}+u)\psi_{u}e^{-\theta|\xi|^{2}}\rangle|
wϕuLx,ξwgLx,ξψuLξ2wgLx,ξ.\displaystyle\lesssim\|w\phi_{u}\|_{L^{\infty}_{x,\xi}}\|wg\|_{L^{\infty}_{x,\xi}}\|\psi_{u}\|_{L^{2}_{\xi}}\lesssim\|wg\|_{L^{\infty}_{x,\xi}}. (3.18)

Then we conclude the lemma.

In the following proposition, we improve the result in Proposition 5 by establishing the continuity and ww-weighted LL^{\infty} estimate.

Proposition 6.

Suppose all conditions in Proposition 5 are satisfied. We assume gb(ξ)C(3)g_{b}(\xi)\in C(\mathbb{R}^{3}), and QQ is continuous away from 𝒟\mathcal{D} defined in (1.14), then the unique solution gg of (3.11) is continuous away from 𝒟\mathcal{D}. If we further assume wgbLξ<\|wg_{b}\|_{L^{\infty}_{\xi}}<\infty and w[1+|ξ|]QLx,ξ<\big{\|}\frac{w}{[1+|\xi|]}Q\big{\|}_{L^{\infty}_{x,\xi}}<\infty, the solution in Proposition 5 satisfies

wgLx,ξC[wgbLξ+w[1+|ξ|]QLx,ξ+gLx,ξ2].\|wg\|_{L^{\infty}_{x,\xi}}\leq C\big{[}\|wg_{b}\|_{L^{\infty}_{\xi}}+\big{\|}\frac{w}{[1+|\xi|]}Q\big{\|}_{L^{\infty}_{x,\xi}}+\|g\|_{L^{2}_{x,\xi}}\big{]}. (3.19)
Remark 10.

By the L2L^{2} bound (3.12), for some δ1\delta\ll 1, (3.19) can be further bounded as

wgLx,ξC[wgbLξ+eδxw[1+|ξ|]QLx,ξ].\|wg\|_{L^{\infty}_{x,\xi}}\leq C\big{[}\|wg_{b}\|_{L^{\infty}_{\xi}}+\big{\|}e^{\delta x}\frac{w}{[1+|\xi|]}Q\big{\|}_{L^{\infty}_{x,\xi}}\big{]}. (3.20)
Proof.

We consider a variant of (3.11):

{(ξ1+u)xg+[ν(ξ)γ(ξ1+u)]gλKpg=Qg(0,ξ)=gb(ξ),ξ1+u>0.\begin{cases}&(\xi_{1}+u)\partial_{x}g+[\nu(\xi)-\gamma(\xi_{1}+u)]g-\lambda K^{p}g=Q\\ &g(0,\xi)=g_{b}(\xi),\ \xi_{1}+u>0.\end{cases} (3.21)

It is straightforward to apply the same argument in [3] to show that (3.21) is well-posed and satisfies both estimates (3.12) and (3.13) uniformly in λ\lambda. To obtain the LξL^{\infty}_{\xi} estimate with exponential weight w(ξ)w(\xi), we will prove the a-priori estimate in Step 1, and in Step 2, we will use fixed point argument to justify that the solution gg indeed satisfies (3.19) and is continuous away from 𝒟\mathcal{D}.

Step 1. A-priori estimate. In this step we prove the following statement: suppose the solution to (3.21) satisfies wgLx,ξ<\|wg\|_{L^{\infty}_{x,\xi}}<\infty, then we have

wgLx,ξwgbLξ+w[1+|ξ|]QLx,ξ+gLx,ξ2.\|wg\|_{L^{\infty}_{x,\xi}}\lesssim\|wg_{b}\|_{L^{\infty}_{\xi}}+\big{\|}\frac{w}{[1+|\xi|]}Q\big{\|}_{L^{\infty}_{x,\xi}}+\|g\|_{L^{2}_{x,\xi}}. (3.22)

Here the inequality does not depend on λ\lambda.

We denote G(ξ):=g(x,ξ)LxG(\xi):=\|g(x,\xi)\|_{L^{\infty}_{x}}. Applying the Duhamel’s principle and taking sup\sup in xx, we have

G(ξ)\displaystyle G(\xi) |gb(ξ)|+|KpG(ξ)|ν(ξ)γ|ξ1+u|+Q(x,ξ)Lxν(ξ)γ|ξ1+u|.\displaystyle\leq|g_{b}(\xi)|+\frac{|K^{p}G(\xi)|}{\nu(\xi)-\gamma|\xi_{1}+u|}+\frac{\|Q(x,\xi)\|_{L^{\infty}_{x}}}{\nu(\xi)-\gamma|\xi_{1}+u|}. (3.23)

To estimate wG(ξ)wG(\xi), we first estimate w|KpG|w|K^{p}G|. We apply Lemma 3 to compute the contribution of KK in KpK^{p} as

w(ξ)KG(ξ)=w(ξ)3𝐤(ξ,ξ)G(ξ)dξ\displaystyle w(\xi)KG(\xi)=w(\xi)\int_{\mathbb{R}^{3}}\mathbf{k}(\xi,\xi^{\prime})G(\xi^{\prime})\mathrm{d}\xi^{\prime}
=|ξ|>N or |ξξ|<1N𝐤θ(ξ,ξ)w(ξ)G(ξ)dξ+|ξ|N and |ξξ|1N𝐤θ(ξ,ξ)w(ξ)G(ξ)dξ\displaystyle=\int_{|\xi^{\prime}|>N\text{ or }|\xi^{\prime}-\xi|<\frac{1}{N}}\mathbf{k}_{\theta}(\xi,\xi^{\prime})w(\xi^{\prime})G(\xi^{\prime})\mathrm{d}\xi^{\prime}+\int_{|\xi^{\prime}|\leq N\text{ and }|\xi^{\prime}-\xi|\geq\frac{1}{N}}\mathbf{k}_{\theta}(\xi,\xi^{\prime})w(\xi^{\prime})G(\xi^{\prime})\mathrm{d}\xi^{\prime}
o(1)wGLξ+|ξ|NG(ξ)dξo(1)wGLξ+CNGLξ2.\displaystyle\leq o(1)\|wG\|_{L^{\infty}_{\xi}}+\int_{|\xi^{\prime}|\leq N}G(\xi^{\prime})\mathrm{d}\xi^{\prime}\lesssim o(1)\|wG\|_{L^{\infty}_{\xi}}+C_{N}\|G\|_{L^{2}_{\xi}}. (3.24)

In the last line, in the first inequality, we used 𝐤θ(ξ,ξ)w(ξ)N1\mathbf{k}_{\theta}(\xi,\xi^{\prime})w(\xi^{\prime})\lesssim_{N}1 when |ξ|N,|ξξ|1N|\xi^{\prime}|\leq N,\ |\xi^{\prime}-\xi|\geq\frac{1}{N}; when |ξξ|<1N|\xi^{\prime}-\xi|<\frac{1}{N}, we directly have |ξξ|<1N𝐤θ(ξ,ξ)dξo(1)\int_{|\xi^{\prime}-\xi|<\frac{1}{N}}\mathbf{k}_{\theta}(\xi,\xi^{\prime})\mathrm{d}\xi^{\prime}\lesssim o(1); when |ξ|>N|\xi^{\prime}|>N, we further split the case into |ξ|<N2|\xi|<\frac{N}{2} and |ξ|>N2|\xi|>\frac{N}{2}, for the first case we have |ξξ|>N2|\xi-\xi^{\prime}|>\frac{N}{2}, and thus |ξξ|>N2𝐤θ(ξ,ξ)dξo(1)\int_{|\xi^{\prime}-\xi|>\frac{N}{2}}\mathbf{k}_{\theta}(\xi,\xi^{\prime})\mathrm{d}\xi^{\prime}\lesssim o(1); for the second case we have 𝟏|ξ|>N23𝐤θ(ξ,ξ)dξo(1)\mathbf{1}_{|\xi|>\frac{N}{2}}\int_{\mathbb{R}^{3}}\mathbf{k}_{\theta}(\xi,\xi^{\prime})\mathrm{d}\xi^{\prime}\lesssim o(1) from (2.10). In the last inequality, we have used the Hölder inequality in the bounded space |ξ|N|\xi^{\prime}|\leq N.

The contribution of γ+((ξ1+u)g)\gamma\prod_{+}((\xi_{1}+u)g) and γ𝐩ug\gamma\mathbf{p}_{u}g can be controlled using (3.17) and (3.18), with the extra constant γ1\gamma\ll 1:

γwGLξo(1)wGLξ.\displaystyle\gamma\|wG\|_{L^{\infty}_{\xi}}\leq o(1)\|wG\|_{L^{\infty}_{\xi}}. (3.25)

Combining (3.23), (3.24) and (3.25), we conclude that

wGLξ\displaystyle\|wG\|_{L^{\infty}_{\xi}} wgbLξ+GLξ2+w[1+|ξ|]QLx,ξ.\displaystyle\lesssim\|wg_{b}\|_{L^{\infty}_{\xi}}+\|G\|_{L_{\xi}^{2}}+\big{\|}\frac{w}{[1+|\xi|]}Q\big{\|}_{L^{\infty}_{x,\xi}}. (3.26)

The L2(dξ;Lx)L^{2}(\mathrm{d}\xi;L^{\infty}_{x}) estimate GLξ2\|G\|_{L^{2}_{\xi}} follows from (5.19) in [3]:

GLξ22gbLξ2+CQL2(dξ;Lx)+gLx,ξ2,\displaystyle\|G\|_{L^{2}_{\xi}}\leq 2\|g_{b}\|_{L^{2}_{\xi}}+C\|Q\|_{L^{2}(\mathrm{d}\xi;L^{\infty}_{x})}+\|g\|_{L^{2}_{x,\xi}},

where we can further control the RHS as

GLξ2wgbLξ+w[1+|ξ|]QLx,ξ+gLx,ξ2.\displaystyle\|G\|_{L^{2}_{\xi}}\lesssim\|wg_{b}\|_{L^{\infty}_{\xi}}+\big{\|}\frac{w}{[1+|\xi|]}Q\big{\|}_{L^{\infty}_{x,\xi}}+\|g\|_{L^{2}_{x,\xi}}. (3.27)

Combining (3.27) and (3.26), we conclude (3.22).

Step 2. Fixed point argument.

For fixed boundary data gb(ξ)g_{b}(\xi), we denote λ1\mathcal{L}_{\lambda}^{-1} to be the solution operator associated with (3.21), i.e, the solution to (3.21) is g=λ1(Q)g=\mathcal{L}_{\lambda}^{-1}(Q).

We define a Banach space as

𝒳:={g(x,ξ):wgLx,ξ<,gLx,ξ2<,gC(+×3\𝒟)},\mathcal{X}:=\Big{\{}g(x,\xi):\|wg\|_{L^{\infty}_{x,\xi}}<\infty,\ \|g\|_{L^{2}_{x,\xi}}<\infty,\ \ g\in C(\mathbb{R}^{+}\times\mathbb{R}^{3}\backslash\mathcal{D})\Big{\}}, (3.28)

with the associated norm

g𝒳:=wgLx,ξ+gLx,ξ2.\|g\|_{\mathcal{X}}:=\|wg\|_{L^{\infty}_{x,\xi}}+\|g\|_{L^{2}_{x,\xi}}.

We start from λ=0\lambda=0 and define an operator as

Tλg=01(λKpg+Q).T_{\lambda}g=\mathcal{L}_{0}^{-1}(\lambda K^{p}g+Q).

When g𝒳g\in\mathcal{X}, from the assumption, we have that both g,QC(+×3\𝒟)g,Q\in C(\mathbb{R}^{+}\times\mathbb{R}^{3}\backslash\mathcal{D}). The continuity of KpgK^{p}g follows from the fact that KgKg is continuous and ϕu,χ+\phi_{u},\chi_{+} are continuous functions from Lemma 8. Since gbC(3)g_{b}\in C(\mathbb{R}^{3}), without the contribution of KpK^{p} acting on TλgT_{\lambda}g, we conclude that Tλg=01(λKpg+Q)C(+×3\𝒟)T_{\lambda}g=\mathcal{L}_{0}^{-1}(\lambda K^{p}g+Q)\in C(\mathbb{R}^{+}\times\mathbb{R}^{3}\backslash\mathcal{D}).

Again, without the contribution of KpTλgK^{p}T_{\lambda}g, wTλgLx,ξ\|wT_{\lambda}g\|_{L^{\infty}_{x,\xi}} can be directly controlled by (3.26), which is bounded. Thus we can apply the a-priori estimate (3.22) with the L2L^{2} estimate (3.12) to have

TλgLx,ξ2+wTλgLx,ξ\displaystyle\|T_{\lambda}g\|_{L^{2}_{x,\xi}}+\|wT_{\lambda}g\|_{L^{\infty}_{x,\xi}}
wgbLξ+λKpg+QLx,ξ2+w[1+|ξ|]QLx,ξ+λwKpgLx,ξ+TλgLx,ξ2\displaystyle\lesssim\|wg_{b}\|_{L^{\infty}_{\xi}}+\|\lambda K^{p}g+Q\|_{L^{2}_{x,\xi}}+\big{\|}\frac{w}{[1+|\xi|]}Q\big{\|}_{L^{\infty}_{x,\xi}}+\lambda\|wK^{p}g\|_{L^{\infty}_{x,\xi}}+\|T_{\lambda}g\|_{L^{2}_{x,\xi}}
wgbLξ+w[1+|ξ|]QLx,ξ+λgLx,ξ2+λwgLx,ξ+QLx,ξ2.\displaystyle\lesssim\|wg_{b}\|_{L^{\infty}_{\xi}}+\big{\|}\frac{w}{[1+|\xi|]}Q\big{\|}_{L^{\infty}_{x,\xi}}+\lambda\|g\|_{L^{2}_{x,\xi}}+\lambda\|wg\|_{L^{\infty}_{x,\xi}}+\|Q\|_{L^{2}_{x,\xi}}. (3.29)

Here we have used Lemma 10. From the assumption that QLx,ξ2,w[1+|ξ|]QLx,ξ,wgbLξ,g𝒳<\|Q\|_{L^{2}_{x,\xi}},\|\frac{w}{[1+|\xi|]}Q\|_{L^{\infty}_{x,\xi}},\|wg_{b}\|_{L^{\infty}_{\xi}},\|g\|_{\mathcal{X}}<\infty, we conclude that Tλg𝒳.T_{\lambda}g\in\mathcal{X}.

Given g1,g2𝒳g_{1},g_{2}\in\mathcal{X}, then gT:=Tλ(g1g2)g_{T}:=T_{\lambda}(g_{1}-g_{2}) satisfies

{(ξ1+u)xgT+[ν(ξ)γ(ξ1+u)]gT=λKp(g1g2)gT(0,ξ)=0,ξ1+u>0.\begin{cases}&(\xi_{1}+u)\partial_{x}g_{T}+[\nu(\xi)-\gamma(\xi_{1}+u)]g_{T}=-\lambda K^{p}(g_{1}-g_{2})\\ &g_{T}(0,\xi)=0,\ \xi_{1}+u>0.\end{cases}

Again we apply the a-priori estimate (3.22). With (3.12) and Lemma 10, we have

gT𝒳\displaystyle\|g_{T}\|_{\mathcal{X}} =wgTLx,ξ+gTLx,ξ2\displaystyle=\|wg_{T}\|_{L^{\infty}_{x,\xi}}+\|g_{T}\|_{L^{2}_{x,\xi}}
λKp(g1g2)Lx,ξ2+λwKp(g1g2)Lx,ξ+gTLx,ξ2\displaystyle\lesssim\lambda\|K^{p}(g_{1}-g_{2})\|_{L^{2}_{x,\xi}}+\lambda\|wK^{p}(g_{1}-g_{2})\|_{L^{\infty}_{x,\xi}}+\|g_{T}\|_{L^{2}_{x,\xi}}
λg1g2Lx,ξ2+λw(g1g2)Lx,ξ+λKp(g1g2)Lx,ξ2\displaystyle\lesssim\lambda\|g_{1}-g_{2}\|_{L^{2}_{x,\xi}}+\lambda\|w(g_{1}-g_{2})\|_{L^{\infty}_{x,\xi}}+\lambda\|K^{p}(g_{1}-g_{2})\|_{L^{2}_{x,\xi}}
Cλg1g2𝒳.\displaystyle\leq C\lambda\|g_{1}-g_{2}\|_{\mathcal{X}}. (3.30)

Then we choose λ=λ(C)\lambda_{*}=\lambda_{*}(C) to be small enough such that λC12\lambda_{*}C\leq\frac{1}{2}, then for 0λλ0\leq\lambda\leq\lambda_{*}, from the Banach fixed point theorem we conclude that TλT_{\lambda} has a fixed point, i.e, there exists g𝒳g\in\mathcal{X} such that Tλg=gT_{\lambda}g=g, which is equivalent to g=01(λKg+Q)g=\mathcal{L}_{0}^{-1}(\lambda Kg+Q), and

(ξ1+u)xg+[ν(ξ)γ(ξ1+u)]gλKpg=Q.\displaystyle(\xi_{1}+u)\partial_{x}g+[\nu(\xi)-\gamma(\xi_{1}+u)]g-\lambda K^{p}g=Q.

Therefore, the solution to (3.21) is continuous away from 𝒟\mathcal{D} and satisfies g𝒳<\|g\|_{\mathcal{X}}<\infty for 0λλ0\leq\lambda\leq\lambda_{*}.

Next we define

Tλ+λg=λ1(λKg+Q).T_{\lambda_{*}+\lambda}g=\mathcal{L}^{-1}_{\lambda_{*}}(\lambda Kg+Q).

Since the estimates (3.12) and (3.22) are uniform in λ\lambda, we can apply a similar fixed-point argument in (3.30) to conclude that there exists a fixed point Tλ+λg=gT_{\lambda+\lambda_{*}}g=g for g𝒳g\in\mathcal{X}. Step by step, we can conclude that 11(Q)\mathcal{L}_{1}^{-1}(Q), the solution to (3.11), is in 𝒳\mathcal{X} and thus is continuous away from 𝒟\mathcal{D}.

3.3. Continuity and ww-weighted LL^{\infty} estimate of the nonlinear penalized problem

With the continuity and ww-weighted Lx,ξL^{\infty}_{x,\xi} estimate of the eigenfunction and the linearized penalized problem in Lemma 8 and Proposition 6, we are ready to prove the continuity and ww-weighted Lx,ξL^{\infty}_{x,\xi} estimate of the nonlinear penalized problem. The nonlinear problem is given by

{(ξ1+u)xg+pg=eγx(𝐈𝐏u)Γ(ghϕu,ghϕu),h(x)=eγx0e(τu2γ)zψuΓ(ghϕu,ghϕu)(x+z)dz,g(0,ξ)=fb(ξ)+h(0)ϕu(ξ),ξ1+u>0.\begin{cases}&(\xi_{1}+u)\partial_{x}g+\mathcal{L}^{p}g=e^{-\gamma x}(\mathbf{I}-\mathbf{P}_{u})\Gamma(g-h\phi_{u},g-h\phi_{u}),\\ &h(x)=-e^{-\gamma x}\int_{0}^{\infty}e^{(\tau_{u}-2\gamma)z}\langle\psi_{u}\Gamma(g-h\phi_{u},g-h\phi_{u})\rangle(x+z)\mathrm{d}z,\\ &g(0,\xi)=f_{b}(\xi)+h(0)\phi_{u}(\xi),\ \ \xi_{1}+u>0.\end{cases} (3.31)

The well-posedness of the nonlinear problem is already established in [3]:

Proposition 7 (Proposition 6.1 in [3]).

Suppose the boundary data fb(ξ)f_{b}(\xi) satisfy (2.1). There exists a unique solution (g,h)(g,h) to (3.31) such that

g(x,ξ)=g(x,ξ)g(x,\mathcal{R}\xi)=g(x,\xi)

and for ε1\varepsilon\ll 1,

(1+|ξ|)3gLx,ξ+hLxCε.\|(1+|\xi|)^{3}g\|_{L^{\infty}_{x,\xi}}+\|h\|_{L^{\infty}_{x}}\leq C\varepsilon.

In the following proposition, we construct the continuity and ww-weighted Lx,ξL^{\infty}_{x,\xi} estimate of the nonlinear problem.

Proposition 8.

Suppose the boundary data (2.1) further satisfies (1.17). Then the solution in Proposition 7 satisfies

h(x)C(+),g(x,ξ)C(+×3\𝒟),wgLx,ξ+hLxCε.h(x)\in C(\mathbb{R}^{+}),\ \ g(x,\xi)\in C(\mathbb{R}^{+}\times\mathbb{R}^{3}\backslash\mathcal{D}),\ \ \|wg\|_{L^{\infty}_{x,\xi}}+\|h\|_{L^{\infty}_{x}}\leq C\varepsilon.
Proof.

For some C>0C>0 specified later, we denote a Banach space as

𝒳1:=\displaystyle\mathcal{X}_{1}:= {(g,h):wgLx,ξ+hLx2Cε,g(x,ξ)=g(x,ξ),\displaystyle\big{\{}(g,h):\|wg\|_{L^{\infty}_{x,\xi}}+\|h\|_{L^{\infty}_{x}}\leq 2C\varepsilon,\ g(x,\mathcal{R}\xi)=g(x,\xi),
 and hC(3),gC(+×3\𝒟)},\displaystyle\ \ \text{ and }h\in C(\mathbb{R}^{3}),\ g\in C(\mathbb{R}^{+}\times\mathbb{R}^{3}\backslash\mathcal{D})\big{\}}, (3.32)

with norm given by

(g,h)𝒳1:=wgLx,ξ+hLx.\|(g,h)\|_{\mathcal{X}_{1}}:=\|wg\|_{L^{\infty}_{x,\xi}}+\|h\|_{L^{\infty}_{x}}.

Given (g~,h~)𝒳1(\tilde{g},\tilde{h})\in\mathcal{X}_{1}, we focus on the following linear problem:

{(ξ1+u)xg+pg=eγx(missingPu)Γ(g~h~ϕu,g~h~ϕu),h(x)=eγx0e(τu2γ)zψuΓ(g~h~ϕu,g~h~ϕu)(x+z)dz,g(0,ξ)=fb(ξ)+h(0)ϕu(ξ),ξ1+u>0.\begin{cases}&(\xi_{1}+u)\partial_{x}g+\mathcal{L}^{p}g=e^{-\gamma x}(\mathbf{\mathbf{missing}}{P}_{u})\Gamma(\tilde{g}-\tilde{h}\phi_{u},\tilde{g}-\tilde{h}\phi_{u}),\\ &h(x)=-e^{-\gamma x}\int_{0}^{\infty}e^{(\tau_{u}-2\gamma)z}\langle\psi_{u}\Gamma(\tilde{g}-\tilde{h}\phi_{u},\tilde{g}-\tilde{h}\phi_{u})\rangle(x+z)\mathrm{d}z,\\ &g(0,\xi)=f_{b}(\xi)+h(0)\phi_{u}(\xi),\ \ \xi_{1}+u>0.\end{cases} (3.33)

The well-posedness of the above system is given by Proposition 5, with ww-weighted estimate given in Proposition 6. Then we denote 𝒮\mathcal{S} as the map from (g~,h~)(\tilde{g},\tilde{h}) to the solution (g,h)(g,h): 𝒮((g~,h~))=(g,h)\mathcal{S}((\tilde{g},\tilde{h}))=(g,h).

By the continuity of h~\tilde{h} and g~\tilde{g} from (g~,h~)𝒳1(\tilde{g},\tilde{h})\in\mathcal{X}_{1}, we conclude the continuity of h(x)h(x) from the continuity of ϕu\phi_{u} in Lemma 8.

Since fbf_{b} is continuous from (1.17) and ϕu\phi_{u} is continuous in Lemma 8, g(0,ξ)g(0,\xi) is continuous. Then the continuity of gg follows from Proposition 6, with the continuity of ϕu\phi_{u}, g(0,ξ)g(0,\xi), and the assumption that (g~,h~)𝒳1(\tilde{g},\tilde{h})\in\mathcal{X}_{1}.

Applying (2.6), we have the estimate for the nonlinear term Γ\Gamma as

w[1+|ξ|]Γ(g~h~ϕu,g~h~ϕu)Lx,ξw(g~h~ϕu)Lx,ξ2\displaystyle\Big{\|}\frac{w}{[1+|\xi|]}\Gamma(\tilde{g}-\tilde{h}\phi_{u},\tilde{g}-\tilde{h}\phi_{u})\Big{\|}_{L^{\infty}_{x,\xi}}\lesssim\|w(\tilde{g}-\tilde{h}\phi_{u})\|_{L^{\infty}_{x,\xi}}^{2}
wg~Lx,ξ2+wϕuLx,ξ2h~Lx2(g~,h~)𝒳12.\displaystyle\lesssim\|w\tilde{g}\|^{2}_{L^{\infty}_{x,\xi}}+\|w\phi_{u}\|_{L^{\infty}_{x,\xi}}^{2}\|\tilde{h}\|_{L^{\infty}_{x}}^{2}\lesssim\|(\tilde{g},\tilde{h})\|_{\mathcal{X}_{1}}^{2}. (3.34)

In the last inequality we have applied Lemma 8.

Thus we bound h(x)h(x) in (3.33) as

hLx\displaystyle\|h\|_{L^{\infty}_{x}} w[1+|ξ|]ΓLx,ξψu[1+|ξ|]wψuLξ2(g~,h~)𝒳12(g~,h~)𝒳12.\displaystyle\lesssim\Big{\|}\frac{w}{[1+|\xi|]}\Gamma\Big{\|}_{L^{\infty}_{x,\xi}}\Big{\langle}\psi_{u}\frac{[1+|\xi|]}{w}\Big{\rangle}\lesssim\|\psi_{u}\|_{L^{2}_{\xi}}\|(\tilde{g},\tilde{h})\|_{\mathcal{X}_{1}}^{2}\lesssim\|(\tilde{g},\tilde{h})\|_{\mathcal{X}_{1}}^{2}. (3.35)

Here we have used Proposition 4.

For the boundary condition, we have

gb=fb+h(0)ϕu,\displaystyle g_{b}=f_{b}+h(0)\phi_{u},

then from Lemma 8 and (3.35), we have

wgbLξwfbLξ+wϕuLξhLxwfbLξ+(g~,h~)𝒳12.\displaystyle\|wg_{b}\|_{L^{\infty}_{\xi}}\leq\|wf_{b}\|_{L^{\infty}_{\xi}}+\|w\phi_{u}\|_{L^{\infty}_{\xi}}\|h\|_{L^{\infty}_{x}}\lesssim\|wf_{b}\|_{L^{\infty}_{\xi}}+\|(\tilde{g},\tilde{h})\|_{\mathcal{X}_{1}}^{2}. (3.36)

Now we apply (3.20) to gg in (3.33), and we take δ=γ\delta=\gamma to have

wgLx,ξ\displaystyle\|wg\|_{L^{\infty}_{x,\xi}} wgbLξ+e(δγ)xw[1+|ξ|](𝐈𝐏u)Γ(g~h~ϕu,g~h~ϕu)Lx,ξ\displaystyle\lesssim\|wg_{b}\|_{L^{\infty}_{\xi}}+\Big{\|}e^{(\delta-\gamma)x}\frac{w}{[1+|\xi|]}(\mathbf{I}-\mathbf{P}_{u})\Gamma(\tilde{g}-\tilde{h}\phi_{u},\tilde{g}-\tilde{h}\phi_{u})\Big{\|}_{L^{\infty}_{x,\xi}}
wfbLξ+(g~,h~)𝒳12.\displaystyle\lesssim\|wf_{b}\|_{L^{\infty}_{\xi}}+\|(\tilde{g},\tilde{h})\|_{\mathcal{X}_{1}}^{2}. (3.37)

In the second line we have used (3.36) and (3.34), and applied the following computation for 𝐏u\mathbf{P}_{u}:

w[1+|ξ|]ψuΓ(g~h~ϕu,g~h~ϕu)(ξ1+u)ϕuLx,ξ\displaystyle\Big{\|}\frac{w}{[1+|\xi|]}\langle\psi_{u}\Gamma(\tilde{g}-\tilde{h}\phi_{u},\tilde{g}-\tilde{h}\phi_{u})\rangle(\xi_{1}+u)\phi_{u}\Big{\|}_{L^{\infty}_{x,\xi}}
wϕuLξw[1+|ξ|]ΓLx,ξψ[1+|ξ|]w(ξ)wϕuLξψLξ2w[1+|ξ|]ΓLx,ξw[1+|ξ|]ΓLx,ξ.\displaystyle\lesssim\|w\phi_{u}\|_{L^{\infty}_{\xi}}\Big{\|}\frac{w}{[1+|\xi|]}\Gamma\Big{\|}_{L^{\infty}_{x,\xi}}\Big{\langle}\psi\frac{[1+|\xi|]}{w(\xi)}\Big{\rangle}\lesssim\|w\phi_{u}\|_{L^{\infty}_{\xi}}\|\psi\|_{L^{2}_{\xi}}\Big{\|}\frac{w}{[1+|\xi|]}\Gamma\Big{\|}_{L^{\infty}_{x,\xi}}\lesssim\Big{\|}\frac{w}{[1+|\xi|]}\Gamma\Big{\|}_{L^{\infty}_{x,\xi}}. (3.38)

Combining (3.35) and (3.37), we conclude that for some C>0C>0,

(g,h)𝒳1\displaystyle\|(g,h)\|_{\mathcal{X}_{1}} CwfbLξ+C(g~,h~)𝒳12.\displaystyle\leq C\|wf_{b}\|_{L^{\infty}_{\xi}}+C\|(\tilde{g},\tilde{h})\|_{\mathcal{X}_{1}}^{2}.

Then we let ε\varepsilon in (1.17) be small enough such that 4C2ε<14C^{2}\varepsilon<1. Then if (g~,h~)𝒳12Cε\|(\tilde{g},\tilde{h})\|_{\mathcal{X}_{1}}\leq 2C\varepsilon, we have

(g,h)𝒳1Cε+4C3ε22Cε.\displaystyle\|(g,h)\|_{\mathcal{X}_{1}}\leq C\varepsilon+4C^{3}\varepsilon^{2}\leq 2C\varepsilon. (3.39)

Combining the continuity of gg, hh and (3.39), we conclude that (g,h)𝒳1(g,h)\in\mathcal{X}_{1}.

It remains to prove the contraction property. Given (g~1,h~1),(g~2,h~2)𝒳1(\tilde{g}_{1},\tilde{h}_{1}),(\tilde{g}_{2},\tilde{h}_{2})\in\mathcal{X}_{1} as the source terms in (3.33), we denote the corresponding solutions as (g1,h1),(g2,h2)(g_{1},h_{1}),(g_{2},h_{2}). The equations for g1g2,h1h2g_{1}-g_{2},h_{1}-h_{2} read

{(ξ1+u)x(g1g2)+p(g1g2)=eγx(𝐈𝐏u)Σ,Σ=Γ(g~1g~2(h~1h~2)ϕu,g~1h~1ϕu)+Γ(g~2h~2ϕu,g~1g~2(h~1h~2)ϕu),(h1h2)(x)=eγx0e(τu2γ)zψuΣ(x+z)dz,(g1g2)(0,ξ)=(h1h2)(0)ϕu(ξ),ξ1+u>0.\begin{cases}&(\xi_{1}+u)\partial_{x}(g_{1}-g_{2})+\mathcal{L}^{p}(g_{1}-g_{2})=e^{-\gamma x}(\mathbf{I}-\mathbf{P}_{u})\Sigma,\\ &\Sigma=\Gamma(\tilde{g}_{1}-\tilde{g}_{2}-(\tilde{h}_{1}-\tilde{h}_{2})\phi_{u},\tilde{g}_{1}-\tilde{h}_{1}\phi_{u})+\Gamma(\tilde{g}_{2}-\tilde{h}_{2}\phi_{u},\tilde{g}_{1}-\tilde{g}_{2}-(\tilde{h}_{1}-\tilde{h}_{2})\phi_{u}),\\ &(h_{1}-h_{2})(x)=-e^{-\gamma x}\int_{0}^{\infty}e^{(\tau_{u}-2\gamma)z}\langle\psi_{u}\Sigma\rangle(x+z)\mathrm{d}z,\\ &(g_{1}-g_{2})(0,\xi)=(h_{1}-h_{2})(0)\phi_{u}(\xi),\ \ \xi_{1}+u>0.\end{cases} (3.40)

Applying (2.6) and the same computation in (3.34), the source term is bounded as

w[1+|ξ|]ΣLx,ξ\displaystyle\Big{\|}\frac{w}{[1+|\xi|]}\Sigma\Big{\|}_{L^{\infty}_{x,\xi}} w[g~1g~2(h~1h~2)ϕu]Lx,ξ[w(g~1h~1ϕu)Lx,ξ+w(g~2h~2ϕu)Lx,ξ]\displaystyle\lesssim\|w[\tilde{g}_{1}-\tilde{g}_{2}-(\tilde{h}_{1}-\tilde{h}_{2})\phi_{u}]\|_{L^{\infty}_{x,\xi}}\big{[}\|w(\tilde{g}_{1}-\tilde{h}_{1}\phi_{u})\|_{L^{\infty}_{x,\xi}}+\|w(\tilde{g}_{2}-\tilde{h}_{2}\phi_{u})\|_{L^{\infty}_{x,\xi}}\big{]}
[(g~1,h~1)𝒳1+(g~2,h~2)𝒳1](g~1g~2,h~1h~2)𝒳1ε(g~1g~2,h~1h~2)𝒳1.\displaystyle\lesssim[\|(\tilde{g}_{1},\tilde{h}_{1})\|_{\mathcal{X}_{1}}+\|(\tilde{g}_{2},\tilde{h}_{2})\|_{\mathcal{X}_{1}}]\|(\tilde{g}_{1}-\tilde{g}_{2},\tilde{h}_{1}-\tilde{h}_{2})\|_{\mathcal{X}_{1}}\lesssim\varepsilon\|(\tilde{g}_{1}-\tilde{g}_{2},\tilde{h}_{1}-\tilde{h}_{2})\|_{\mathcal{X}_{1}}.

Then we apply the same computation in (3.35) to bound h1h2h_{1}-h_{2} as

h1h2Lx\displaystyle\|h_{1}-h_{2}\|_{L^{\infty}_{x}} w[1+|ξ|]ΣLx,ξε(g~1g~2,h~1h~2)𝒳1.\displaystyle\lesssim\Big{\|}\frac{w}{[1+|\xi|]}\Sigma\Big{\|}_{L^{\infty}_{x,\xi}}\lesssim\varepsilon\|(\tilde{g}_{1}-\tilde{g}_{2},\tilde{h}_{1}-\tilde{h}_{2})\|_{\mathcal{X}_{1}}. (3.41)

We denote the incoming boundary as (g1g2)b(g_{1}-g_{2})_{b}, then it is bounded similarly as (3.41):

w(g1g2)bLξ\displaystyle\|w(g_{1}-g_{2})_{b}\|_{L^{\infty}_{\xi}} h1h2Lxε(g~1g~2,h~1h~2)𝒳1.\displaystyle\lesssim\|h_{1}-h_{2}\|_{L^{\infty}_{x}}\lesssim\varepsilon\|(\tilde{g}_{1}-\tilde{g}_{2},\tilde{h}_{1}-\tilde{h}_{2})\|_{\mathcal{X}_{1}}.

Now we apply (3.20) with δ=γ\delta=\gamma and similar computation in (3.37) to bound g1g2g_{1}-g_{2} as

w(g1g2)Lx,ξ\displaystyle\|w(g_{1}-g_{2})\|_{L^{\infty}_{x,\xi}} w(g1g2)bLξ+w[1+|ξ|](𝐈𝐏u)ΣLx,ξε(g~1g~2,h~1h~2)𝒳1.\displaystyle\lesssim\|w(g_{1}-g_{2})_{b}\|_{L^{\infty}_{\xi}}+\Big{\|}\frac{w}{[1+|\xi|]}(\mathbf{I}-\mathbf{P}_{u})\Sigma\Big{\|}_{L^{\infty}_{x,\xi}}\lesssim\varepsilon\|(\tilde{g}_{1}-\tilde{g}_{2},\tilde{h}_{1}-\tilde{h}_{2})\|_{\mathcal{X}_{1}}. (3.42)

Combining (3.41) and (3.42) we conclude that for some C1>0C_{1}>0,

(g1g2,h1h2)𝒳1\displaystyle\|(g_{1}-g_{2},h_{1}-h_{2})\|_{\mathcal{X}_{1}} C1ε(g~1g~2,h~1h~2)𝒳1.\displaystyle\leq C_{1}\varepsilon\|(\tilde{g}_{1}-\tilde{g}_{2},\tilde{h}_{1}-\tilde{h}_{2})\|_{\mathcal{X}_{1}}. (3.43)

Last we take ε\varepsilon to be small such that C1ε<1C_{1}\varepsilon<1. We conclude the proposition from the Banach fixed-point theorem.

3.4. Proof of Theorem 2

Finally, the solution of the boundary layer problem (1.4) is constructed by assuming further condition (1.18) on the boundary data. The solution reads

f(x,ξ)=eγxg(x,ξ)eγxh(x)ϕu(ξ),f(x,\xi)=e^{-\gamma x}g(x,\xi)-e^{-\gamma x}h(x)\phi_{u}(\xi),

where g,hg,h are the unique solution constructed in Proposition 7. With the continuity of g,h,ϕug,h,\phi_{u} and ww-weighted estimate of g,ϕg,\phi established in Lemma 8 and Proposition 8, we conclude Theorem 2.

4. Weighted C1C^{1} estimate and W1,pW^{1,p} estimate for p<2p<2 without weight

In the section, we will conclude Theorem 1 by applying the weight α\alpha in (1.8) with its property in Section 2.2.

We begin with proving the existence of derivative to the damped transport equation

{(ξ1+u)xf(x,ξ)+νf(x,ξ)=Qf(0,ξ)|ξ1+u>0=fb(ξ).\begin{cases}&(\xi_{1}+u)\partial_{x}f(x,\xi)+\nu f(x,\xi)=Q\\ &f(0,\xi)|_{\xi_{1}+u>0}=f_{b}(\xi).\end{cases} (4.1)
Lemma 11.

Suppose |Q|<|Q|<\infty and xQ\partial_{x}Q exists. Then xf(x,ξ)\partial_{x}f(x,\xi) exists.

Proof.

First we consider the case of ξ1+u=0\xi_{1}+u=0. Then f(x,ξ)f(x,\xi) can be expressed as

f(x,ξ)=eν(ξ)tf(x,ξ)+0tdseν(ξ)(ts)Q(x,ξ).\displaystyle f(x,\xi)=e^{-\nu(\xi)t}f(x,\xi)+\int^{t}_{0}\mathrm{d}se^{-\nu(\xi)(t-s)}Q(x,\xi).

The difference quotient reads

f(x+ε,ξ)f(x,ξ)ε=eν(ξ)tf(x+ε,ξ)f(x,ξ)ε+0tdseν(ξ)(ts)Q(x+ε,ξ)Q(x,ξ)ε,\displaystyle\frac{f(x+\varepsilon,\xi)-f(x,\xi)}{\varepsilon}=e^{-\nu(\xi)t}\frac{f(x+\varepsilon,\xi)-f(x,\xi)}{\varepsilon}+\int^{t}_{0}\mathrm{d}se^{-\nu(\xi)(t-s)}\frac{Q(x+\varepsilon,\xi)-Q(x,\xi)}{\varepsilon},

thus

(1eν(ξ)t)f(x+ε,ξ)f(x,ξ)ε=0tdseν(ξ)(ts)Q(x+ε,ξ)Q(x,ξ)ε.\displaystyle(1-e^{-\nu(\xi)t})\frac{f(x+\varepsilon,\xi)-f(x,\xi)}{\varepsilon}=\int^{t}_{0}\mathrm{d}se^{-\nu(\xi)(t-s)}\frac{Q(x+\varepsilon,\xi)-Q(x,\xi)}{\varepsilon}.

From the assumption that xQ\partial_{x}Q exists, we can pass ε\varepsilon to 0 to conclude that xf(x,ξ)\partial_{x}f(x,\xi) exists for ξ1+u=0\xi_{1}+u=0.

Next, we consider the case of ξ1+u0\xi_{1}+u\neq 0. Then from the equation (4.1), we have |xf|=|Qνfξ1+u|<|\partial_{x}f|=\Big{|}\frac{Q-\nu f}{\xi_{1}+u}\Big{|}<\infty from wfLx,ξ<\|wf\|_{L^{\infty}_{x,\xi}}<\infty. Thus xf(x,ξ)\partial_{x}f(x,\xi) exists.

4.1. Weighted C1C^{1} estimate of the linearized penalized problem

Before we construct the derivative of the linearized penalized problem, we first establish an a-priori estimate in the following lemma:

Lemma 12 (A-priori weighted C1C^{1} estimate).

Let gg be the solution of the linearized problem (3.11), suppose xg\partial_{x}g exists and satisfies

(ξ1+u)x(xg)+p(xg)=xQ,x>0,ξ3.\displaystyle(\xi_{1}+u)\partial_{x}(\partial_{x}g)+\mathcal{L}^{p}(\partial_{x}g)=\partial_{x}Q,\ x>0,\ \xi\in\mathbb{R}^{3}.

If we further assume wθ~αxgLx,ξ<\|w_{\tilde{\theta}}\alpha\partial_{x}g\|_{L^{\infty}_{x,\xi}}<\infty, then we have

wθ~αxgLx,ξwgLx,ξ+wgbLξ+wθ~(ξ)Q(0,ξ)Lξ\displaystyle\|w_{\tilde{\theta}}\alpha\partial_{x}g\|_{L^{\infty}_{x,\xi}}\lesssim\|wg\|_{L^{\infty}_{x,\xi}}+\|wg_{b}\|_{L^{\infty}_{\xi}}+\|w_{\tilde{\theta}}(\xi)Q(0,\xi)\|_{L^{\infty}_{\xi}}
+supx,ξ[wθ~α(x,ξ)max{0,𝟏ξ1+u>0(txξ1+u)}tdse(ν(ξ)γ(ξ1+u))(ts)|xQ(x(ξ1+u)(ts),ξ)|](4.2).\displaystyle+\underbrace{\sup_{x,\xi}\Big{[}w_{\tilde{\theta}}\alpha(x,\xi)\int^{t}_{\max\{0,\mathbf{1}_{\xi_{1}+u>0}(t-\frac{x}{\xi_{1}+u})\}}\mathrm{d}se^{-(\nu(\xi)-\gamma(\xi_{1}+u))(t-s)}|\partial_{x}Q(x-(\xi_{1}+u)(t-s),\xi)|\Big{]}}_{\eqref{aprior_deri}_{*}}. (4.2)
Proof.

First we let 1t1\ll t be large and fixed, so that

1t1,eν0t/41 and teν0t/41.\frac{1}{t}\ll 1,\ \ e^{-\nu_{0}t/4}\ll 1\text{ and }te^{-\nu_{0}t/4}\ll 1. (4.3)

Recall the definition of KpK^{p} in (3.14). We denote

ν¯(ξ):=ν(ξ)γ(ξ1+u)ν(ξ)2ν0(ξ)2:=ν0[1+|ξ|]2.\bar{\nu}(\xi):=\nu(\xi)-\gamma(\xi_{1}+u)\geq\frac{\nu(\xi)}{2}\geq\frac{\nu_{0}(\xi)}{2}:=\frac{\nu_{0}[1+|\xi|]}{2}. (4.4)

By method of characteristic, we express gg as

g(x,ξ)\displaystyle g(x,\xi) =[𝟏xξ1+u>t+𝟏ξ1+u<0]eν¯(ξ)tg(x(ξ1+u)t,ξ)\displaystyle=[\mathbf{1}_{\frac{x}{\xi_{1}+u}>t}+\mathbf{1}_{\xi_{1}+u<0}]e^{-\bar{\nu}(\xi)t}g(x-(\xi_{1}+u)t,\xi)
+𝟏0<xξ1+uteν¯(ξ)xξ1+ug(0,ξ)\displaystyle\ +\mathbf{1}_{0<\frac{x}{\xi_{1}+u}\leq t}e^{-\bar{\nu}(\xi)\frac{x}{\xi_{1}+u}}g(0,\xi)
+max{0,𝟏ξ1+u>0(txξ1+u)}tdseν¯(ξ)(ts)Kpg(x(ξ1+u)(ts),ξ)\displaystyle\ +\int^{t}_{\max\{0,\mathbf{1}_{\xi_{1}+u>0}(t-\frac{x}{\xi_{1}+u})\}}\mathrm{d}se^{-\bar{\nu}(\xi)(t-s)}K^{p}g(x-(\xi_{1}+u)(t-s),\xi)
+max{0,𝟏ξ1+u>0(txξ1+u)}tdseν¯(ξ)(ts)Q(x(ξ1+u)(ts),ξ).\displaystyle\ +\int^{t}_{\max\{0,\mathbf{1}_{\xi_{1}+u>0}(t-\frac{x}{\xi_{1}+u})\}}\mathrm{d}se^{-\bar{\nu}(\xi)(t-s)}Q(x-(\xi_{1}+u)(t-s),\xi).

From the assumption that xg\partial_{x}g exists, we take derivative to the above formula to have

xg(x,ξ)\displaystyle\partial_{x}g(x,\xi) =[𝟏xξ1+u>t+𝟏ξ1+u<0]eν¯(ξ)txg(x(ξ1+u)t,ξ)\displaystyle=[\mathbf{1}_{\frac{x}{\xi_{1}+u}>t}+\mathbf{1}_{\xi_{1}+u<0}]e^{-\bar{\nu}(\xi)t}\partial_{x}g(x-(\xi_{1}+u)t,\xi) (4.5)
𝟏0<xξ1+utν¯(ξ)ξ1+ueν¯(ξ)xξ1+ug(0,ξ)\displaystyle\ -\mathbf{1}_{0<\frac{x}{\xi_{1}+u}\leq t}\frac{\bar{\nu}(\xi)}{\xi_{1}+u}e^{-\bar{\nu}(\xi)\frac{x}{\xi_{1}+u}}g(0,\xi) (4.6)
𝟏0<xξ1+ut1ξ1+ueν¯(ξ)xξ1+uKpg(0,ξ)\displaystyle\ -\mathbf{1}_{0<\frac{x}{\xi_{1}+u}\leq t}\frac{1}{\xi_{1}+u}e^{-\bar{\nu}(\xi)\frac{x}{\xi_{1}+u}}K^{p}g(0,\xi) (4.7)
+max{0,𝟏ξ1+u>0(txξ1+u)}tdseν¯(ξ)(ts)Kpxg(x(ξ1+u)(ts),ξ)\displaystyle\ +\int^{t}_{\max\{0,\mathbf{1}_{\xi_{1}+u>0}(t-\frac{x}{\xi_{1}+u})\}}\mathrm{d}se^{-\bar{\nu}(\xi)(t-s)}K^{p}\partial_{x}g(x-(\xi_{1}+u)(t-s),\xi) (4.8)
𝟏0<xξ1+ut1ξ1+ueν¯(ξ)xξ1+uQ(0,ξ)\displaystyle\ -\mathbf{1}_{0<\frac{x}{\xi_{1}+u}\leq t}\frac{1}{\xi_{1}+u}e^{-\bar{\nu}(\xi)\frac{x}{\xi_{1}+u}}Q(0,\xi) (4.9)
+max{0,𝟏ξ1+u>0(txξ1+u)}tdseν¯(ξ)(ts)xQ(x(ξ1+u)(ts),ξ).\displaystyle\ +\int^{t}_{\max\{0,\mathbf{1}_{\xi_{1}+u>0}(t-\frac{x}{\xi_{1}+u})\}}\mathrm{d}se^{-\bar{\nu}(\xi)(t-s)}\partial_{x}Q(x-(\xi_{1}+u)(t-s),\xi). (4.10)

We estimate (4.5) - (4.10) term by term.

For (4.5), we apply (4.4) and to have

|(4.5)|\displaystyle|\eqref{p_x_1}| eν0t/2wθ~αxgLx,ξwθ~(ξ)α(x(ξ1+u)t,ξ)eν0t/4wθ~αxgLx,ξwθ~(ξ)α(x,ξ).\displaystyle\lesssim e^{-\nu_{0}t/2}\frac{\|w_{\tilde{\theta}}\alpha\partial_{x}g\|_{L^{\infty}_{x,\xi}}}{w_{\tilde{\theta}}(\xi)\alpha(x-(\xi_{1}+u)t,\xi)}\lesssim e^{-\nu_{0}t/4}\frac{\|w_{\tilde{\theta}}\alpha\partial_{x}g\|_{L^{\infty}_{x,\xi}}}{w_{\tilde{\theta}}(\xi)\alpha(x,\xi)}.

In the last inequality, we applied Lemma 5 with c=1/8c=1/8.

For (4.6), we use (1.12) to have

|(4.6)|\displaystyle|\eqref{p_x_2}| 1α(0,ξ)eν0x2(ξ1+u)[1+|ξ|]w(ξ)wgbLξ\displaystyle\lesssim\frac{1}{\alpha(0,\xi)}e^{-\frac{\nu_{0}x}{2(\xi_{1}+u)}}\frac{[1+|\xi|]}{w(\xi)}\|wg_{b}\|_{L^{\infty}_{\xi}}
1wθ~(ξ)α(x,ξ)eν0x4(ξ1+u)eν0x2(ξ1+u)wgbLξwgbLξwθ~(ξ)α(x,ξ).\displaystyle\lesssim\frac{1}{w_{\tilde{\theta}}(\xi)\alpha(x,\xi)}e^{\frac{\nu_{0}x}{4(\xi_{1}+u)}}e^{-\frac{\nu_{0}x}{2(\xi_{1}+u)}}\|wg_{b}\|_{L^{\infty}_{\xi}}\lesssim\frac{\|wg_{b}\|_{L^{\infty}_{\xi}}}{w_{\tilde{\theta}}(\xi)\alpha(x,\xi)}. (4.11)

In the second line we applied Lemma 5 with s=x/(ξ1+u)s=x/(\xi_{1}+u) and c=18c=\frac{1}{8}.

For (4.7), we first consider the contribution of KgKg. Applying Lemma 3, we have

1ξ1+ueν¯(ξ)xξ1+u1wθ~(ξ)3𝐤(ξ,ξ)wθ~(ξ)wθ~(ξ)wθ~(ξ)g(0,ξ)dξ\displaystyle\frac{1}{\xi_{1}+u}e^{-\bar{\nu}(\xi)\frac{x}{\xi_{1}+u}}\frac{1}{w_{\tilde{\theta}}(\xi)}\int_{\mathbb{R}^{3}}\mathbf{k}(\xi,\xi^{\prime})\frac{w_{\tilde{\theta}}(\xi)}{w_{\tilde{\theta}}(\xi^{\prime})}w_{\tilde{\theta}}(\xi^{\prime})g(0,\xi^{\prime})\mathrm{d}\xi^{\prime}
1α(0,ξ)eν0x2(ξ1+u)wgLx,ξ1α(x,ξ)wgLx,ξ,\displaystyle\lesssim\frac{1}{\alpha(0,\xi)}e^{-\frac{\nu_{0}x}{2(\xi_{1}+u)}}\|wg\|_{L^{\infty}_{x,\xi}}\lesssim\frac{1}{\alpha(x,\xi)}\|wg\|_{L^{\infty}_{x,\xi}},

in the last inequality we applied the same computation as (4.11).

For the contribution of γ+((ξ1+u)g)\gamma\prod_{+}((\xi_{1}+u)g) and γ𝐩ug\gamma\mathbf{p}_{u}g in (4.7), we have

1wθ~(ξ)eν¯(ξ)xξ1+uξ1+uγwθ~(ξ)[+((ξ1+u)g(0))+𝐩ug(0)]\displaystyle\frac{1}{w_{\tilde{\theta}}(\xi)}\frac{e^{-\bar{\nu}(\xi)\frac{x}{\xi_{1}+u}}}{\xi_{1}+u}\gamma w_{\tilde{\theta}}(\xi)\big{[}\prod_{+}((\xi_{1}+u)g(0))+\mathbf{p}_{u}g(0)\big{]}
1wθ~(ξ)γξ1+ueν¯(ξ)xξ1+uwgLx,ξwgLx,ξwθ~(ξ)α(x,ξ).\displaystyle\lesssim\frac{1}{w_{\tilde{\theta}}(\xi)}\frac{\gamma}{\xi_{1}+u}e^{-\bar{\nu}(\xi)\frac{x}{\xi_{1}+u}}\|wg\|_{L^{\infty}_{x,\xi}}\lesssim\frac{\|wg\|_{L^{\infty}_{x,\xi}}}{w_{\tilde{\theta}}(\xi)\alpha(x,\xi)}.

Here we have applied the same computation in (3.17) and (3.18).

Thus we conclude the estimate for (4.7) as

|(4.7)|\displaystyle|\eqref{p_x_3}| wgLx,ξα(x,ξ).\displaystyle\lesssim\frac{\|wg\|_{L^{\infty}_{x,\xi}}}{\alpha(x,\xi)}.

(4.9) is directly bounded as

|(4.9)|1wθ~(ξ)α(0,ξ)eν0x2(ξ1+u)wθ~Q(0)Lξwθ~Q(0)Lξwθ~(ξ)α(x,ξ).|\eqref{p_x_5}|\lesssim\frac{1}{w_{\tilde{\theta}}(\xi)\alpha(0,\xi)}e^{-\frac{\nu_{0}x}{2(\xi_{1}+u)}}\|w_{\tilde{\theta}}Q(0)\|_{L^{\infty}_{\xi}}\lesssim\frac{\|w_{\tilde{\theta}}Q(0)\|_{L^{\infty}_{\xi}}}{w_{\tilde{\theta}}(\xi)\alpha(x,\xi)}.

The contribution of (4.10) is already included in (4.2).

For (4.8), first we compute the contribution of γ+((ξ1+u)g)\gamma\prod_{+}((\xi_{1}+u)g) and γ𝐩ug\gamma\mathbf{p}_{u}g as

γmax{0,𝟏ξ1+u>0(txξ1+u)}tdseν0[1+|ξ|](ts)/2|χ+(ξ)(ξ1+u)χ+xg(x(ξ1+u)(ts))\displaystyle\gamma\int^{t}_{\max\{0,\mathbf{1}_{\xi_{1}+u>0}(t-\frac{x}{\xi_{1}+u})\}}\mathrm{d}se^{-\nu_{0}[1+|\xi|](t-s)/2}\Big{|}\chi_{+}(\xi)\langle(\xi_{1}+u)\chi_{+}\partial_{x}g\rangle(x-(\xi_{1}+u)(t-s))
+ϕu(ξ)(ξ1+u)ψuxg(x(ξ1+u)(ts))|\displaystyle\quad\quad\quad\quad\quad+\phi_{u}(\xi)\langle(\xi_{1}+u)\psi_{u}\partial_{x}g\rangle(x-(\xi_{1}+u)(t-s))\Big{|}
γwθ~(ξ)×[wθ~χ+Lξ+wθ~ϕuLξ]αxgLx,ξ\displaystyle\lesssim\frac{\gamma}{w_{\tilde{\theta}}(\xi)}\times\big{[}\|w_{\tilde{\theta}}\chi_{+}\|_{L^{\infty}_{\xi}}+\|w_{\tilde{\theta}}\phi_{u}\|_{L^{\infty}_{\xi}}\big{]}\|\alpha\partial_{x}g\|_{L^{\infty}_{x,\xi}}
×max{0,𝟏ξ1+u>0(txξ1+u)}tdseν0[1+|ξ|](ts)/23w1/2(ξ)α(x(ξ1+u)(ts),ξ)dξ\displaystyle\times\int^{t}_{\max\{0,\mathbf{1}_{\xi_{1}+u>0}(t-\frac{x}{\xi_{1}+u})\}}\mathrm{d}se^{-\nu_{0}[1+|\xi|](t-s)/2}\int_{\mathbb{R}^{3}}\frac{w^{-1/2}(\xi^{\prime})}{\alpha(x-(\xi_{1}+u)(t-s),\xi^{\prime})}\mathrm{d}\xi^{\prime}
γtwθ~αxgLx,ξwθ~(ξ)α(x,ξ).\displaystyle\lesssim\frac{\gamma t\|w_{\tilde{\theta}}\alpha\partial_{x}g\|_{L^{\infty}_{x,\xi}}}{w_{\tilde{\theta}}(\xi)\alpha(x,\xi)}. (4.12)

In the last line we have applied Lemma 7. In the second line we used Lemma 8. In the third line, for the integration (ξ1+u)χ+xg\langle(\xi_{1}+u)\chi_{+}\partial_{x}g\rangle and (ξ1+u)ψxg\langle(\xi_{1}+u)\psi\partial_{x}g\rangle, we used Lemma 9 to have

|(ξ1+u)χ+xg+(ξ1+u)ψuxg|=3[(ξ1+u)χ+(ξ)xg(ξ)+(ξ1+u)ψu(ξ)xg(ξ)]dξ\displaystyle\big{|}\langle(\xi_{1}+u)\chi_{+}\partial_{x}g\rangle+\langle(\xi_{1}+u)\psi_{u}\partial_{x}g\rangle\big{|}=\int_{\mathbb{R}^{3}}[(\xi^{\prime}_{1}+u)\chi_{+}(\xi^{\prime})\partial_{x}g(\xi^{\prime})+(\xi_{1}^{\prime}+u)\psi_{u}(\xi^{\prime})\partial_{x}g(\xi^{\prime})]\mathrm{d}\xi^{\prime}
[wψuLξ+wχ+Lξ]αxgLx,ξ3w1/2(ξ)α(x(ξ1+u)(ts),ξ)dξ.\displaystyle\lesssim[\|w\psi_{u}\|_{L^{\infty}_{\xi}}+\|w\chi_{+}\|_{L^{\infty}_{\xi}}]\|\alpha\partial_{x}g\|_{L^{\infty}_{x,\xi}}\int_{\mathbb{R}^{3}}\frac{w^{-1/2}(\xi^{\prime})}{\alpha(x-(\xi_{1}+u)(t-s),\xi^{\prime})}\mathrm{d}\xi^{\prime}.

We conclude that

(4.5)+(4.6)+(4.7)+(4.9)+(4.10)+(4.8)γ𝐩ug and γ+((ξ1+u)g)\displaystyle\eqref{p_x_1}+\eqref{p_x_2}+\eqref{p_x_3}+\eqref{p_x_5}+\eqref{p_x_6}+\eqref{p_x_4}_{\gamma\mathbf{p}_{u}g\text{ and }\gamma\prod_{+}((\xi_{1}+u)g)}
[eν0t/4+γt]wθ~αxgLx,ξ+wgbLξ+wgLx,ξ+wθ~Q(0)Lξ+(4.2)wθ~(ξ)α(x,ξ).\displaystyle\lesssim\frac{[e^{-\nu_{0}t/4}+\gamma t]\|w_{\tilde{\theta}}\alpha\partial_{x}g\|_{L^{\infty}_{x,\xi}}+\|wg_{b}\|_{L^{\infty}_{\xi}}+\|wg\|_{L^{\infty}_{x,\xi}}+\|w_{\tilde{\theta}}Q(0)\|_{L^{\infty}_{\xi}}+\eqref{aprior_deri}_{*}}{w_{\tilde{\theta}}(\xi)\alpha(x,\xi)}. (4.13)

For the contribution of

Kxg(x(ξ1+u)(ts),ξ)=3𝐤(ξ,ξ)xg(x(ξ1+u)(ts),ξ)K\partial_{x}g(x-(\xi_{1}+u)(t-s),\xi)=\int_{\mathbb{R}^{3}}\mathbf{k}(\xi,\xi^{\prime})\partial_{x}g(x-(\xi_{1}+u)(t-s),\xi^{\prime})

in (4.8), we expand xg(x(ξ1+u)(ts),ξ)\partial_{x}g(x-(\xi_{1}+u)(t-s),\xi^{\prime}) along ξ\xi^{\prime} using (4.5) - (4.10).

In the expansion of xg(x(ξ1+u)(ts),ξ)\partial_{x}g(x-(\xi_{1}+u)(t-s),\xi^{\prime}), the contribution of the (4.5)(4.10)\eqref{p_x_1}-\eqref{p_x_6} except KgKg are bounded by (4.13) with replacing (x,ξ)(x,\xi) by (x(ξ1+u)(ts),ξ)(x-(\xi_{1}+u)(t-s),\xi^{\prime}):

1wθ~(ξ)max{0,𝟏ξ1+u>0(txξ1+u)}tdseν0[1+|ξ|](ts)/23dξwθ~(ξ)𝐤(ξ,ξ)\displaystyle\frac{1}{w_{\tilde{\theta}}(\xi)}\int^{t}_{\max\{0,\mathbf{1}_{\xi_{1}+u>0}(t-\frac{x}{\xi_{1}+u})\}}\mathrm{d}se^{-\nu_{0}[1+|\xi|](t-s)/2}\int_{\mathbb{R}^{3}}\mathrm{d}\xi^{\prime}w_{\tilde{\theta}}(\xi)\mathbf{k}(\xi,\xi^{\prime})
×[eν0t/4+γt]αwθ~xgLx,ξ+wgbLξ+wgLx,ξ+wθ~Q(0)Lξ+(4.2)wθ~(ξ)α(x(ξ1+u)(ts),ξ)\displaystyle\times\frac{[e^{-\nu_{0}t/4}+\gamma t]\|\alpha w_{\tilde{\theta}}\partial_{x}g\|_{L^{\infty}_{x,\xi}}+\|wg_{b}\|_{L^{\infty}_{\xi}}+\|wg\|_{L^{\infty}_{x,\xi}}+\|w_{\tilde{\theta}}Q(0)\|_{L^{\infty}_{\xi}}+\eqref{aprior_deri}_{*}}{w_{\tilde{\theta}}(\xi^{\prime})\alpha(x-(\xi_{1}+u)(t-s),\xi^{\prime})}
t{[eν0t/4+γt]wθ~αxgLx,ξ+wgbLξ+wgLx,ξ+wθ~Q(0)Lξ+(4.2)}wθ~(ξ)α(x,ξ).\displaystyle\lesssim\frac{t\Big{\{}[e^{-\nu_{0}t/4}+\gamma t]\|w_{\tilde{\theta}}\alpha\partial_{x}g\|_{L^{\infty}_{x,\xi}}+\|wg_{b}\|_{L^{\infty}_{\xi}}+\|wg\|_{L^{\infty}_{x,\xi}}+\|w_{\tilde{\theta}}Q(0)\|_{L^{\infty}_{\xi}}+\eqref{aprior_deri}_{*}\Big{\}}}{w_{\tilde{\theta}}(\xi)\alpha(x,\xi)}. (4.14)

In the last line, first we applied (2.11), then we applied Lemma 6.

We focus on the contribution of the KgKg in (4.8), which induces a double Duhamel formula. Denote y=x(ξ1+u)(ts)y=x-(\xi_{1}+u)(t-s), this formula equals

max{0,𝟏ξ1+u>0(txξ1+u)}tdseν¯(ξ)(ts)3dξ𝐤(ξ,ξ)\displaystyle\int^{t}_{\max\{0,\mathbf{1}_{\xi_{1}+u>0}(t-\frac{x}{\xi_{1}+u})\}}\mathrm{d}se^{-\bar{\nu}(\xi)(t-s)}\int_{\mathbb{R}^{3}}\mathrm{d}\xi^{\prime}\mathbf{k}(\xi,\xi^{\prime})
×max{0,𝟏ξ1+u>0(syξ1+u)}sdseν¯(ξ)(ss)3dξ′′𝐤(ξ,ξ′′)xg(y(ξ1+u)(ss),ξ′′).\displaystyle\times\int^{s}_{\max\{0,\mathbf{1}_{\xi_{1}^{\prime}+u>0}(s-\frac{y}{\xi_{1}^{\prime}+u})\}}\mathrm{d}s^{\prime}e^{-\bar{\nu}(\xi^{\prime})(s-s^{\prime})}\int_{\mathbb{R}^{3}}\mathrm{d}\xi^{\prime\prime}\mathbf{k}(\xi^{\prime},\xi^{\prime\prime})\partial_{x}g(y-(\xi^{\prime}_{1}+u)(s-s^{\prime}),\xi^{\prime\prime}). (4.15)

We split the ss^{\prime}-integral into

𝟏ssε(4.16)1+𝟏ss>ε(4.16)2.\displaystyle\underbrace{\mathbf{1}_{s-s^{\prime}\leq\varepsilon}}_{\eqref{s'_integral}_{1}}+\underbrace{\mathbf{1}_{s-s^{\prime}>\varepsilon}}_{\eqref{s'_integral}_{2}}. (4.16)

The contribution of (4.16)1 in (4.15) is bounded as

1wθ~(ξ)max{0,𝟏ξ1+u>0(txξ1+u)}tdseν0(ξ)(ts)/23dξ𝐤(ξ,ξ)wθ~(ξ)wθ~(ξ)\displaystyle\frac{1}{w_{\tilde{\theta}}(\xi)}\int^{t}_{\max\{0,\mathbf{1}_{\xi_{1}+u>0}(t-\frac{x}{\xi_{1}+u})\}}\mathrm{d}se^{-\nu_{0}(\xi)(t-s)/2}\int_{\mathbb{R}^{3}}\mathrm{d}\xi^{\prime}\mathbf{k}(\xi,\xi^{\prime})\frac{w_{\tilde{\theta}}(\xi)}{w_{\tilde{\theta}}(\xi^{\prime})}
×sεsdseν0(ξ)(ss)/23dξ′′𝐤(ξ,ξ′′)wθ~(ξ)wθ~αxgLx,ξwθ~(ξ′′)α(y(ξ1+u)(ss),ξ′′)\displaystyle\times\int^{s}_{s-\varepsilon}\mathrm{d}s^{\prime}e^{-\nu_{0}(\xi^{\prime})(s-s^{\prime})/2}\int_{\mathbb{R}^{3}}\mathrm{d}\xi^{\prime\prime}\mathbf{k}(\xi^{\prime},\xi^{\prime\prime})\frac{w_{\tilde{\theta}}(\xi^{\prime})\|w_{\tilde{\theta}}\alpha\partial_{x}g\|_{L^{\infty}_{x,\xi}}}{w_{\tilde{\theta}}(\xi^{\prime\prime})\alpha(y-(\xi^{\prime}_{1}+u)(s-s^{\prime}),\xi^{\prime\prime})}
1wθ~(ξ)max{0,𝟏ξ1+u>0(txξ1+u)}tdseν0(ξ)(ts)/23dξ𝐤(ξ,ξ)wθ~(ξ)wθ~(ξ)[ε+εln(t)]wθ~αxgLx,ξα(y,ξ)\displaystyle\lesssim\frac{1}{w_{\tilde{\theta}}(\xi)}\int^{t}_{\max\{0,\mathbf{1}_{\xi_{1}+u>0}(t-\frac{x}{\xi_{1}+u})\}}\mathrm{d}se^{-\nu_{0}(\xi)(t-s)/2}\int_{\mathbb{R}^{3}}\mathrm{d}\xi^{\prime}\mathbf{k}(\xi,\xi^{\prime})\frac{w_{\tilde{\theta}}(\xi)}{w_{\tilde{\theta}}(\xi^{\prime})}\frac{[\sqrt{\varepsilon}+\varepsilon\ln(t)]\|w_{\tilde{\theta}}\alpha\partial_{x}g\|_{L^{\infty}_{x,\xi}}}{\alpha(y,\xi^{\prime})}
t[ε+εln(t)]wθ~αxgLx,ξwθ~(ξ)α(x,ξ)1twθ~αxgLx,ξwθ~(ξ)α(x,ξ).\displaystyle\lesssim\frac{t[\sqrt{\varepsilon}+\varepsilon\ln(t)]\|w_{\tilde{\theta}}\alpha\partial_{x}g\|_{L^{\infty}_{x,\xi}}}{w_{\tilde{\theta}}(\xi)\alpha(x,\xi)}\lesssim\frac{1}{t}\frac{\|w_{\tilde{\theta}}\alpha\partial_{x}g\|_{L^{\infty}_{x,\xi}}}{w_{\tilde{\theta}}(\xi)\alpha(x,\xi)}. (4.17)

In the third line we applied (2.20) in Lemma 6 with (2.11) for the ds\mathrm{d}s^{\prime} integral. In the last line, we applied (2.18) with (2.11) for the ds\mathrm{d}s integral. In the last inequality we take ε=1t4\varepsilon=\frac{1}{t^{4}}, which is small since t1t\gg 1, and that

ε=1t2,t[ε+εln(t)]1t+lntt31t.\sqrt{\varepsilon}=\frac{1}{t^{2}},\ \ t[\sqrt{\varepsilon}+\varepsilon\ln(t)]\lesssim\frac{1}{t}+\frac{\ln t}{t^{3}}\lesssim\frac{1}{t}. (4.18)

For the contribution of (4.16)2 in (4.15), without loss of generality, we assume s>εs>\varepsilon. Otherwise, we bound (4.16)2 by (4.17). Then we observe the following chain rule:

ξ1[g(y(ξ1+u)(ss),ξ′′)](ss)=xg(y(ξ1+u)(ss),ξ′′).\displaystyle\frac{\partial_{\xi^{\prime}_{1}}[g(y-(\xi^{\prime}_{1}+u)(s-s^{\prime}),\xi^{\prime\prime})]}{-(s-s^{\prime})}=\partial_{x}g(y-(\xi^{\prime}_{1}+u)(s-s^{\prime}),\xi^{\prime\prime}). (4.19)

In such case ssεs-s^{\prime}\leq\varepsilon, we only integrate over the ξ\xi^{\prime} such that yξ1+u>ε\frac{y}{\xi_{1}^{\prime}+u}>\varepsilon, we denote

V:={ξ3:yξ1+u>ε},V~:={ξ3:yξ1+u=ε}.\displaystyle V:=\{\xi^{\prime}\in\mathbb{R}^{3}:\frac{y}{\xi^{\prime}_{1}+u}>\varepsilon\},\ \tilde{V}:=\{\xi^{\prime}\in\mathbb{R}^{3}:\frac{y}{\xi^{\prime}_{1}+u}=\varepsilon\}.

We apply (4.19) and an integration by part for dξ1\mathrm{d}\xi^{\prime}_{1} to compute this contribution as

max{0,𝟏ξ1+u>0(txξ1+u)}tdseν¯(ξ)(ts)Vdξ𝐤(ξ,ξ)\displaystyle\int^{t}_{\max\{0,\mathbf{1}_{\xi_{1}+u>0}(t-\frac{x}{\xi_{1}+u})\}}\mathrm{d}se^{-\bar{\nu}(\xi)(t-s)}\int_{V}\mathrm{d}\xi^{\prime}\mathbf{k}(\xi,\xi^{\prime})
×max{0,𝟏ξ1+u>0(syξ1+u)}sεdseν¯(ξ)(ss)3dξ′′𝐤(ξ,ξ′′)ξ1[g(y(ξ1+u)(ss),ξ′′)](ss)\displaystyle\times\int^{s-\varepsilon}_{\max\{0,\mathbf{1}_{\xi_{1}^{\prime}+u>0}(s-\frac{y}{\xi_{1}^{\prime}+u})\}}\mathrm{d}s^{\prime}e^{-\bar{\nu}(\xi^{\prime})(s-s^{\prime})}\int_{\mathbb{R}^{3}}\mathrm{d}\xi^{\prime\prime}\mathbf{k}(\xi^{\prime},\xi^{\prime\prime})\frac{\partial_{\xi^{\prime}_{1}}[g(y-(\xi^{\prime}_{1}+u)(s-s^{\prime}),\xi^{\prime\prime})]}{-(s-s^{\prime})}
=max{0,𝟏ξ1+u>0(txξ1+u)}tdseν¯(ξ)(ts)Vdξmax{0,𝟏ξ1+u>0(syξ1+u)}sεds\displaystyle=\int^{t}_{\max\{0,\mathbf{1}_{\xi_{1}+u>0}(t-\frac{x}{\xi_{1}+u})\}}\mathrm{d}se^{-\bar{\nu}(\xi)(t-s)}\int_{V}\mathrm{d}\xi^{\prime}\int^{s-\varepsilon}_{\max\{0,\mathbf{1}_{\xi_{1}^{\prime}+u>0}(s-\frac{y}{\xi_{1}^{\prime}+u})\}}\mathrm{d}s^{\prime}
×ξ1[𝐤(ξ,ξ)𝐤(ξ,ξ′′)eν¯(ξ)(ss)]3dξ′′g(y(ξ1+u)(ss),ξ′′)(ss)\displaystyle\times\partial_{\xi^{\prime}_{1}}[\mathbf{k}(\xi,\xi^{\prime})\mathbf{k}(\xi^{\prime},\xi^{\prime\prime})e^{-\bar{\nu}(\xi^{\prime})(s-s^{\prime})}]\int_{\mathbb{R}^{3}}\mathrm{d}\xi^{\prime\prime}\frac{g(y-(\xi^{\prime}_{1}+u)(s-s^{\prime}),\xi^{\prime\prime})}{-(s-s^{\prime})} (4.20)
+max{0,𝟏ξ1+u>0(txξ1+u)}tdseν¯(ξ)(ts)Vdξ𝐤(ξ,ξ)\displaystyle+\int^{t}_{\max\{0,\mathbf{1}_{\xi_{1}+u>0}(t-\frac{x}{\xi_{1}+u})\}}\mathrm{d}se^{-\bar{\nu}(\xi)(t-s)}\int_{V}\mathrm{d}\xi^{\prime}\mathbf{k}(\xi,\xi^{\prime})
×ξ1[yξ1+u]eν¯(ξ)y(ξ1+u)3dξ′′𝐤(ξ,ξ′′)g(0,ξ′′)y/(ξ1+u)\displaystyle\times\partial_{\xi^{\prime}_{1}}[\frac{y}{\xi_{1}^{\prime}+u}]e^{-\frac{\bar{\nu}(\xi^{\prime})y}{(\xi^{\prime}_{1}+u)}}\int_{\mathbb{R}^{3}}\mathrm{d}\xi^{\prime\prime}\mathbf{k}(\xi^{\prime},\xi^{\prime\prime})\frac{g(0,\xi^{\prime\prime})}{y/(\xi_{1}^{\prime}+u)} (4.21)
+max{0,𝟏ξ1+u>0(txξ1+u)}tdseν¯(ξ)(ts)V~dξ𝐤(ξ,ξ)\displaystyle+\int^{t}_{\max\{0,\mathbf{1}_{\xi_{1}+u>0}(t-\frac{x}{\xi_{1}+u})\}}\mathrm{d}se^{-\bar{\nu}(\xi)(t-s)}\int_{\tilde{V}}\mathrm{d}\xi^{\prime}\mathbf{k}(\xi,\xi^{\prime})
×sεsεdseν¯(ξ)(ss)3dξ′′𝐤(ξ,ξ′′)g(y(ξ1+u)(ss),ξ′′)(ss).\displaystyle\times\int^{s-\varepsilon}_{s-\varepsilon}\mathrm{d}s^{\prime}e^{-\bar{\nu}(\xi^{\prime})(s-s^{\prime})}\int_{\mathbb{R}^{3}}\mathrm{d}\xi^{\prime\prime}\mathbf{k}(\xi^{\prime},\xi^{\prime\prime})\frac{g(y-(\xi^{\prime}_{1}+u)(s-s^{\prime}),\xi^{\prime\prime})}{-(s-s^{\prime})}. (4.22)

For the last term, we apply wgLx,ξ<\|wg\|_{L^{\infty}_{x,\xi}}<\infty to have (4.22)=0\eqref{kk_geq_e_3}=0.

For ξ1[𝐤(ξ,ξ)𝐤(ξ,ξ′′)]\partial_{\xi^{\prime}_{1}}[\mathbf{k}(\xi,\xi^{\prime})\mathbf{k}(\xi^{\prime},\xi^{\prime\prime})] in (4.20), we use 2θ~<θ2\tilde{\theta}<\theta to have

1wθ~(ξ)max{0,𝟏ξ1+u>0(txξ1+u)}tdseν0(ξ)(ts)/23dξmax{0,𝟏ξ1+u>0(syξ1+u)}sdseν0(ξ)(ss)/2\displaystyle\frac{1}{w_{\tilde{\theta}}(\xi)}\int^{t}_{\max\{0,\mathbf{1}_{\xi_{1}+u>0}(t-\frac{x}{\xi_{1}+u})\}}\mathrm{d}se^{-\nu_{0}(\xi)(t-s)/2}\int_{\mathbb{R}^{3}}\mathrm{d}\xi^{\prime}\int^{s}_{\max\{0,\mathbf{1}_{\xi_{1}^{\prime}+u>0}(s-\frac{y}{\xi_{1}^{\prime}+u})\}}\mathrm{d}s^{\prime}e^{-\nu_{0}(\xi^{\prime})(s-s^{\prime})/2}
×wθ~(ξ)w2θ~(ξ)3dξ′′|ξ1𝐤(ξ,ξ)𝐤(ξ,ξ′′)+𝐤(ξ,ξ)ξ1𝐤(ξ,ξ′′)|w2θ~(ξ)w2θ~(ξ′′)wgLx,ξε\displaystyle\times\frac{w_{\tilde{\theta}}(\xi)}{w_{2\tilde{\theta}}(\xi^{\prime})}\int_{\mathbb{R}^{3}}\mathrm{d}\xi^{\prime\prime}\Big{|}\partial_{\xi^{\prime}_{1}}\mathbf{k}(\xi,\xi^{\prime})\mathbf{k}(\xi^{\prime},\xi^{\prime\prime})+\mathbf{k}(\xi,\xi^{\prime})\partial_{\xi^{\prime}_{1}}\mathbf{k}(\xi^{\prime},\xi^{\prime\prime})\Big{|}\frac{w_{2\tilde{\theta}}(\xi^{\prime})}{w_{2\tilde{\theta}}(\xi^{\prime\prime})}\frac{\|wg\|_{L^{\infty}_{x,\xi}}}{\varepsilon}
wgLx,ξεwθ~(ξ)t4wgLx,ξwθ~(ξ)α(x,ξ).\displaystyle\lesssim\frac{\|wg\|_{L^{\infty}_{x,\xi}}}{\varepsilon w_{\tilde{\theta}}(\xi)}\lesssim t^{4}\frac{\|wg\|_{L^{\infty}_{x,\xi}}}{w_{\tilde{\theta}}(\xi)\alpha(x,\xi)}. (4.23)

In the last inequality we applied (1.11) and (4.18). To get the first inequality in the last line, we have applied (2.10) and (2.12) to have

wθ~(ξ)w2θ~(ξ)|ξ1𝐤(ξ,ξ)𝐤(ξ,ξ′′)+𝐤(ξ,ξ)ξ1𝐤(ξ,ξ′′)|w2θ~(ξ)w2θ~(ξ′′)\displaystyle\frac{w_{\tilde{\theta}}(\xi)}{w_{2\tilde{\theta}}(\xi^{\prime})}\Big{|}\partial_{\xi^{\prime}_{1}}\mathbf{k}(\xi,\xi^{\prime})\mathbf{k}(\xi^{\prime},\xi^{\prime\prime})+\mathbf{k}(\xi,\xi^{\prime})\partial_{\xi^{\prime}_{1}}\mathbf{k}(\xi^{\prime},\xi^{\prime\prime})\Big{|}\frac{w_{2\tilde{\theta}}(\xi^{\prime})}{w_{2\tilde{\theta}}(\xi^{\prime\prime})}
[1+|ξ|]2wθ~(ξ)|eCθ|ξξ|2|ξξ|2eCθ|ξξ′′|2|ξξ′′|+eCθ|ξξ|2|ξξ|eCθ|ξξ′′|2|ξξ′′|2|L1(dξdξ′′).\displaystyle\lesssim\frac{[1+|\xi|^{\prime}]^{2}}{w_{\tilde{\theta}}(\xi^{\prime})}\Big{|}\frac{e^{-C_{\theta}|\xi-\xi^{\prime}|^{2}}}{|\xi-\xi^{\prime}|^{2}}\frac{e^{-C_{\theta}|\xi^{\prime}-\xi^{\prime\prime}|^{2}}}{|\xi^{\prime}-\xi^{\prime\prime}|}+\frac{e^{-C_{\theta}|\xi-\xi^{\prime}|^{2}}}{|\xi-\xi^{\prime}|}\frac{e^{-C_{\theta}|\xi^{\prime}-\xi^{\prime\prime}|^{2}}}{|\xi^{\prime}-\xi^{\prime\prime}|^{2}}\Big{|}\in L^{1}(\mathrm{d}\xi^{\prime}\mathrm{d}\xi^{\prime\prime}).

For the other term ξ1eν¯(ξ)(ss)\partial_{\xi^{\prime}_{1}}e^{-\bar{\nu}(\xi^{\prime})(s-s^{\prime})} in (4.20), recall the definition of ν¯\bar{\nu} in (4.4), we apply (2.5) to bound it by (4.23) using the same computation.

Then we compute (4.21). The ξ1\xi_{1}^{\prime} derivative on y/(ξ1+u)y/(\xi_{1}^{\prime}+u) can be combined with the extra 1/(y/(ξ1+u))1/(y/(\xi_{1}^{\prime}+u)), we apply (1.12) and Lemma 5 to have

|ξ1[yξ1+u]ξ1+uy|=1|ξ1+u|1α(0,ξ)eν0y4(ξ1+u)α(y,ξ).\displaystyle\Big{|}\partial_{\xi_{1}^{\prime}}[\frac{y}{\xi^{\prime}_{1}+u}]\frac{\xi_{1}^{\prime}+u}{y}\Big{|}=\frac{1}{|\xi_{1}^{\prime}+u|}\leq\frac{1}{\alpha(0,\xi^{\prime})}\lesssim\frac{e^{\frac{\nu_{0}y}{4(\xi_{1}^{\prime}+u)}}}{\alpha(y,\xi^{\prime})}.

Then we proceed the computation as

|(4.21)|\displaystyle|\eqref{kk_geq_e_2}| 1wθ~(ξ)max{0,𝟏ξ1+u>0(txξ1+u)}tdseν0(ξ)(ts)/23dξ𝐤(ξ,ξ)wθ~(ξ)wθ~(ξ)\displaystyle\lesssim\frac{1}{w_{\tilde{\theta}}(\xi)}\int^{t}_{\max\{0,\mathbf{1}_{\xi_{1}+u>0}(t-\frac{x}{\xi_{1}+u})\}}\mathrm{d}se^{-\nu_{0}(\xi)(t-s)/2}\int_{\mathbb{R}^{3}}\mathrm{d}\xi^{\prime}\mathbf{k}(\xi,\xi^{\prime})\frac{w_{\tilde{\theta}}(\xi)}{w_{\tilde{\theta}}(\xi^{\prime})}
×eν0y4(ξ1+u)wgLx,ξα(y,ξ)3dξ′′𝐤(ξ,ξ′′)wθ~(ξ)wθ~(ξ′′)twgLx,ξwθ~(ξ)α(x,ξ).\displaystyle\times e^{-\frac{\nu_{0}y}{4(\xi_{1}^{\prime}+u)}}\frac{\|wg\|_{L^{\infty}_{x,\xi}}}{\alpha(y,\xi^{\prime})}\int_{\mathbb{R}^{3}}\mathrm{d}\xi^{\prime\prime}\mathbf{k}(\xi^{\prime},\xi^{\prime\prime})\frac{w_{\tilde{\theta}}(\xi^{\prime})}{w_{\tilde{\theta}}(\xi^{\prime\prime})}\lesssim\frac{t\|wg\|_{L^{\infty}_{x,\xi}}}{w_{\tilde{\theta}}(\xi)\alpha(x,\xi)}. (4.24)

In the last inequality we applied (2.18) in Lemma 6 with (2.11).

Collecting (4.17), (4.23) and (4.24) we conclude

|(4.15)|\displaystyle|\eqref{kk}| 1twθ~αxgLx,ξ+t4[wgbLξ+wgLx,ξ]wθ~(ξ)α(x,ξ).\displaystyle\lesssim\frac{\frac{1}{t}\|w_{\tilde{\theta}}\alpha\partial_{x}g\|_{L^{\infty}_{x,\xi}}+t^{4}[\|wg_{b}\|_{L^{\infty}_{\xi}}+\|wg\|_{L^{\infty}_{x,\xi}}]}{w_{\tilde{\theta}}(\xi)\alpha(x,\xi)}.

This, together with (4.14), leads to the estimate

(4.8)\displaystyle\eqref{p_x_4} [1t+teν0t/4+t2γ]wθ~αxgLx,ξ+t4[wgbLξ+wgLx,ξ+wθ~Q(0)Lξ+(4.2)]wθ~(ξ)α(x,ξ).\displaystyle\lesssim\frac{[\frac{1}{t}+te^{-\nu_{0}t/4}+t^{2}\gamma]\|w_{\tilde{\theta}}\alpha\partial_{x}g\|_{L^{\infty}_{x,\xi}}+t^{4}[\|wg_{b}\|_{L^{\infty}_{\xi}}+\|wg\|_{L^{\infty}_{x,\xi}}+\|w_{\tilde{\theta}}Q(0)\|_{L^{\infty}_{\xi}}+\eqref{aprior_deri}_{*}]}{w_{\tilde{\theta}}(\xi)\alpha(x,\xi)}. (4.25)

(4.13) and (4.25) leads to the estimate for xg(x,ξ)\partial_{x}g(x,\xi):

|xg(x,ξ)|\displaystyle|\partial_{x}g(x,\xi)| (4.25).\displaystyle\lesssim\eqref{4_bdd}.

Applying (4.3) to a fixed tt, we choose a smaller γ\gamma in (3.10) such that t2γ1t^{2}\gamma\ll 1, we conclude the lemma by

wθ~αxgLx,ξ\displaystyle\|w_{\tilde{\theta}}\alpha\partial_{x}g\|_{L^{\infty}_{x,\xi}} t4[wgbLξ+wgLx,ξ+wθ~Q(0)Lξ+(4.2)].\displaystyle\lesssim t^{4}[\|wg_{b}\|_{L^{\infty}_{\xi}}+\|wg\|_{L^{\infty}_{x,\xi}}+\|w_{\tilde{\theta}}Q(0)\|_{L^{\infty}_{\xi}}+\eqref{aprior_deri}_{*}].

In the following lemma, we construct the derivative to the linearized penalized problem.

Lemma 13.

Suppose xQ\partial_{x}Q exists and satisfies (4.2)<\eqref{aprior_deri}_{*}<\infty, wθ~QLx,ξ<\|w_{\tilde{\theta}}Q\|_{L^{\infty}_{x,\xi}}<\infty, then the derivative of the unique solution to linearized penalized problem in (3.11) exists, and it is given by

(ξ1+u)x(xg)+p(xg)=xQ.\displaystyle(\xi_{1}+u)\partial_{x}(\partial_{x}g)+\mathcal{L}^{p}(\partial_{x}g)=\partial_{x}Q.

Moreover, the derivative satisfies (4.2).

Proof.

We start by considering the derivative to the following equation:

{(ξ1+u)xg+[ν(ξ)γ(ξ1+u)]gλKpg~=Q,g(0,ξ)=gb(ξ),ξ1+u>0.\begin{cases}&(\xi_{1}+u)\partial_{x}g+[\nu(\xi)-\gamma(\xi_{1}+u)]g-\lambda K^{p}\tilde{g}=Q,\\ &g(0,\xi)=g_{b}(\xi),\ \ \xi_{1}+u>0.\end{cases} (4.26)
(ξ1+u)x(xg)+[ν(ξ)γ(ξ1+u)](xg)λKp(xg~)=xQ.\displaystyle(\xi_{1}+u)\partial_{x}(\partial_{x}g)+[\nu(\xi)-\gamma(\xi_{1}+u)](\partial_{x}g)-\lambda K^{p}(\partial_{x}\tilde{g})=\partial_{x}Q. (4.27)

We define a Banach space as

𝒳2:=\displaystyle\mathcal{X}_{2}:= {g(x,ξ):wθ~αxgLx,ξ<,wgLx,ξ<,gLx,ξ2<},\displaystyle\Big{\{}g(x,\xi):\|w_{\tilde{\theta}}\alpha\partial_{x}g\|_{L^{\infty}_{x,\xi}}<\infty,\ \ \|wg\|_{L^{\infty}_{x,\xi}}<\infty,\ \ \|g\|_{L^{2}_{x,\xi}}<\infty\Big{\}},

with associated norm

g𝒳2\displaystyle\|g\|_{\mathcal{X}_{2}} :=wθ~αxgLx,ξ+g𝒳.\displaystyle:=\|w_{\tilde{\theta}}\alpha\partial_{x}g\|_{L^{\infty}_{x,\xi}}+\|g\|_{\mathcal{X}}.

Here g𝒳\|g\|_{\mathcal{X}} is defined in (3.28).

For given g~𝒳2\tilde{g}\in\mathcal{X}_{2}, from Proposition 6 there exists a unique solution gg to (4.26). By Lemma 11, the derivative of gg exists and is given by (4.27).

We first prove that wθ~αxgLx,ξ<\|w_{\tilde{\theta}}\alpha\partial_{x}g\|_{L^{\infty}_{x,\xi}}<\infty so that we can apply the a priori estimate (4.2). From the proof of Lemma 12, xg\partial_{x}g can be expressed by (4.5) - (4.10) with replacing KpgK^{p}g by λKp(g~)\lambda K^{p}(\tilde{g}).

For (4.5), when ξ1+u=0\xi_{1}+u=0, (4.5) can be absorbed by LHS. When ξ1+u0\xi_{1}+u\neq 0, we have a uniform-in-xx bound for xg\partial_{x}g by the equation of gg in (3.11):

wθ~(ξ)xg(x,ξ)LxwgLx,ξ+wθ~QLx,ξ+wθ~Kp(g~)Lx,ξ|ξ1+u|\displaystyle\|w_{\tilde{\theta}}(\xi)\partial_{x}g(x,\xi)\|_{L^{\infty}_{x}}\leq\frac{\|wg\|_{L^{\infty}_{x,\xi}}+\|w_{\tilde{\theta}}Q\|_{L^{\infty}_{x,\xi}}+\|w_{\tilde{\theta}}K^{p}(\tilde{g})\|_{L^{\infty}_{x,\xi}}}{|\xi_{1}+u|}
wgLx,ξ+wθ~QLx,ξ+wg~Lx,ξ|ξ1+u|.\displaystyle\lesssim\frac{\|wg\|_{L^{\infty}_{x,\xi}}+\|w_{\tilde{\theta}}Q\|_{L^{\infty}_{x,\xi}}+\|w\tilde{g}\|_{L^{\infty}_{x,\xi}}}{|\xi_{1}+u|}.

Here we have applied Lemma 10. From the uniform-in-xx bound, we can multiply wθ~(ξ)w_{\tilde{\theta}}(\xi) to (4.5) - (4.10), and take supsup in xx to the LHS, so that wθ~(ξ)×(4.5)w_{\tilde{\theta}}(\xi)\times\eqref{p_x_1} can be absorbed by the LHS.

Since α(x,ξ)1\alpha(x,\xi)\leq 1, we further multiply α(x,ξ)\alpha(x,\xi) to (4.5) - (4.10), and α(x,ξ)wθ~(ξ)×(4.5)\alpha(x,\xi)w_{\tilde{\theta}}(\xi)\times\eqref{p_x_1} can also be absorbed by the LHS.

Without the contribution of KpgK^{p}g in (4.26), we can apply the same argument as the a priori estimate in Lemma 12, here we do not need to estimate (4.5), (4.7) and (4.8). Then we derive that (4.27) can be bounded by the same estimate as (4.2). Hence, for some CαC_{\alpha},

wθ~αxgLx,ξ\displaystyle\|w_{\tilde{\theta}}\alpha\partial_{x}g\|_{L^{\infty}_{x,\xi}} Cα[wgLx,ξ+wθ~Q(0)Lξ+(4.2)+(4.29)],\displaystyle\leq C_{\alpha}\Big{[}\|wg\|_{L^{\infty}_{x,\xi}}+\|w_{\tilde{\theta}}Q(0)\|_{L^{\infty}_{\xi}}+\eqref{aprior_deri}_{*}+\eqref{kp_deri_bdd}\Big{]}, (4.28)

where (4.29) corresponds to the contribution of λKp(xg~)\lambda K^{p}(\partial_{x}\tilde{g}):

λwθ~(ξ)[Kpg~(0,ξ)+α(x,ξ)max{0,𝟏ξ1+u>0(txξ1+u)}tdseν(ξ)(ts)Kpxg~(x(ξ1+u)(ts),ξ)ds]\displaystyle\lambda w_{\tilde{\theta}}(\xi)\Big{[}K^{p}\tilde{g}(0,\xi)+\alpha(x,\xi)\int^{t}_{\max\{0,\mathbf{1}_{\xi_{1}+u>0}(t-\frac{x}{\xi_{1}+u})\}}\mathrm{d}se^{-\nu(\xi)(t-s)}K^{p}\partial_{x}\tilde{g}(x-(\xi_{1}+u)(t-s),\xi)\mathrm{d}s\Big{]} (4.29)
λwg~Lx,ξ+λγtwθ~αxg~Lx,ξ\displaystyle\lesssim\lambda\|w\tilde{g}\|_{L^{\infty}_{x,\xi}}+\lambda\gamma t\|w_{\tilde{\theta}}\alpha\partial_{x}\tilde{g}\|_{L^{\infty}_{x,\xi}}
+λwθ~αxg~Lx,ξα(x,ξ)max{0,𝟏ξ1+u>0(txξ1+u)}tdseν(ξ)(ts)3dξwθ~(ξ)𝐤(ξ,ξ)wθ~(ξ)α(x(ξ1+u)(ts),ξ)\displaystyle+\lambda\|w_{\tilde{\theta}}\alpha\partial_{x}\tilde{g}\|_{L^{\infty}_{x,\xi}}\alpha(x,\xi)\int^{t}_{\max\{0,\mathbf{1}_{\xi_{1}+u>0}(t-\frac{x}{\xi_{1}+u})\}}\mathrm{d}se^{-\nu(\xi)(t-s)}\int_{\mathbb{R}^{3}}\mathrm{d}\xi^{\prime}\frac{w_{\tilde{\theta}}(\xi)\mathbf{k}(\xi,\xi^{\prime})}{w_{\tilde{\theta}}(\xi^{\prime})\alpha(x-(\xi_{1}+u)(t-s),\xi^{\prime})}
λγwg~Lx,ξ+λγtwθ~αxg~Lx,ξ+λtwθ~αxg~Lx,ξ.\displaystyle\lesssim\lambda\gamma\|w\tilde{g}\|_{L^{\infty}_{x,\xi}}+\lambda\gamma t\|w_{\tilde{\theta}}\alpha\partial_{x}\tilde{g}\|_{L^{\infty}_{x,\xi}}+\lambda t\|w_{\tilde{\theta}}\alpha\partial_{x}\tilde{g}\|_{L^{\infty}_{x,\xi}}. (4.30)

In the second line we have applied Lemma 10 to Kpg~K^{p}\tilde{g} for the first term, for the second term, we applied the same computation as (4.12) to compute the contribution of γ+((ξ1+u)g)+γ𝐩u((ξ1+u)g)\gamma\prod_{+}((\xi_{1}+u)g)+\gamma\mathbf{p}_{u}((\xi_{1}+u)g). In the last line we have used Lemma 6 with (2.11).

Combining (4.28), (4.30), g𝒳<\|g\|_{\mathcal{X}}<\infty from (3.29) and the assumption that (4.2)<\eqref{aprior_deri}_{*}<\infty, we conclude that g𝒳2g\in\mathcal{X}_{2}.

Next, for given g~1,g~2\tilde{g}_{1},\tilde{g}_{2}, we denote the associated solution as g1,g2g_{1},g_{2}. Then we apply (4.28), (4.30) and (3.30) to have

g1g2𝒳2=wθ~αx(g1g2)Lx,ξ+g1g2𝒳\displaystyle\|g_{1}-g_{2}\|_{\mathcal{X}_{2}}=\|w_{\tilde{\theta}}\alpha\partial_{x}(g_{1}-g_{2})\|_{L^{\infty}_{x,\xi}}+\|g_{1}-g_{2}\|_{\mathcal{X}}
Cαw(g1g2)Lx,ξ+[λγt+λt]Cαwθ~αx(g~1g~2)Lx,ξ+Cαλγw(g~1g~2)Lx,ξ+Cλg~1g~2𝒳\displaystyle\leq C_{\alpha}\|w(g_{1}-g_{2})\|_{L^{\infty}_{x,\xi}}+[\lambda\gamma t+\lambda t]C_{\alpha}\|w_{\tilde{\theta}}\alpha\partial_{x}(\tilde{g}_{1}-\tilde{g}_{2})\|_{L_{x,\xi}^{\infty}}+C_{\alpha}\lambda\gamma\|w(\tilde{g}_{1}-\tilde{g}_{2})\|_{L^{\infty}_{x,\xi}}+C\lambda\|\tilde{g}_{1}-\tilde{g}_{2}\|_{\mathcal{X}}
Cαλ[γt+t]wθ~αx(g~1g~2)Lx,ξ+Cαg1g2𝒳+Cαλ[γ+C]g~1g~2𝒳\displaystyle\leq C_{\alpha}\lambda[\gamma t+t]\|w_{\tilde{\theta}}\alpha\partial_{x}(\tilde{g}_{1}-\tilde{g}_{2})\|_{L^{\infty}_{x,\xi}}+C_{\alpha}\|g_{1}-g_{2}\|_{\mathcal{X}}+C_{\alpha}\lambda[\gamma+C]\|\tilde{g}_{1}-\tilde{g}_{2}\|_{\mathcal{X}}
Cαλ[γt+t]wθ~αx(g~1g~2)Lx,ξ+Cαλ[γ+2C]g~1g~2𝒳.\displaystyle\leq C_{\alpha}\lambda[\gamma t+t]\|w_{\tilde{\theta}}\alpha\partial_{x}(\tilde{g}_{1}-\tilde{g}_{2})\|_{L^{\infty}_{x,\xi}}+C_{\alpha}\lambda[\gamma+2C]\|\tilde{g}_{1}-\tilde{g}_{2}\|_{\mathcal{X}}.

Then we choose λ\lambda to be sufficiently small such that all coefficients are bounded as

Cαλ[γt+t]<1Cαλ[γ+2C]<1.\displaystyle C_{\alpha}\lambda[\gamma t+t]<1\ \ \ C_{\alpha}\lambda[\gamma+2C]<1.

By Banach fixed point theorem, there exists a unique g𝒳2g\in\mathcal{X}_{2} satisfying

{(ξ1+u)xg+[ν(ξ)γ(ξ1+u)]gλKpg=Q,g(0,ξ)=gb(ξ),ξ1+u>0,(ξ1+u)x(xg)+[ν(ξ)γ(ξ1+u)](xg)λKp(xg)=xQ.\begin{cases}&(\xi_{1}+u)\partial_{x}g+[\nu(\xi)-\gamma(\xi_{1}+u)]g-\lambda K^{p}g=Q,\\ &g(0,\xi)=g_{b}(\xi),\ \ \xi_{1}+u>0,\\ &(\xi_{1}+u)\partial_{x}(\partial_{x}g)+[\nu(\xi)-\gamma(\xi_{1}+u)](\partial_{x}g)-\lambda K^{p}(\partial_{x}g)=\partial_{x}Q.\end{cases}

From the well-posedness of (4.1), next we consider the derivative to the solution of the following problem,

{(ξ1+u)xg+[ν(ξ)γ(ξ1+u)]gλKpg=λKp(g~)+Q,g(0,ξ)=gb(ξ),ξ1+u>0,(ξ1+u)x(xg)+[ν(ξ)γ(ξ1+u)](xg)λKp(xg)=λKp(xg~)+xQ.\begin{cases}&(\xi_{1}+u)\partial_{x}g+[\nu(\xi)-\gamma(\xi_{1}+u)]g-\lambda K^{p}g=\lambda K^{p}(\tilde{g})+Q,\\ &g(0,\xi)=g_{b}(\xi),\ \ \xi_{1}+u>0,\\ &(\xi_{1}+u)\partial_{x}(\partial_{x}g)+[\nu(\xi)-\gamma(\xi_{1}+u)](\partial_{x}g)-\lambda K^{p}(\partial_{x}g)=\lambda K^{p}(\partial_{x}\tilde{g})+\partial_{x}Q.\end{cases}

With given source g~𝒳2\tilde{g}\in\mathcal{X}_{2}, from previous argument we know that xg\partial_{x}g exists and g𝒳2g\in\mathcal{X}_{2}. It is straightforward to show that one can obtain the same uniform in λ\lambda a-priori estimate (4.2). Thus (4.28) still holds. Then we apply the same fixed-point argument to show that there exists a unique gg satisfying

{(ξ1+u)xg+[ν(ξ)γ(ξ1+u)]g2λKpg=Qg(0,ξ)=gb(ξ),ξ1+u>0,(ξ1+u)x(xg)+[ν(ξ)γ(ξ1+u)](xg)2λKp(xg)=xQ.\begin{cases}&(\xi_{1}+u)\partial_{x}g+[\nu(\xi)-\gamma(\xi_{1}+u)]g-2\lambda K^{p}g=Q\\ &g(0,\xi)=g_{b}(\xi),\ \ \xi_{1}+u>0,\\ &(\xi_{1}+u)\partial_{x}(\partial_{x}g)+[\nu(\xi)-\gamma(\xi_{1}+u)](\partial_{x}g)-2\lambda K^{p}(\partial_{x}g)=\partial_{x}Q.\end{cases}

Step by step, we construct solution with coefficient 11 for Kp(xg)K^{p}(\partial_{x}g), then we conclude the lemma.

4.2. Weighted C1C^{1} estimate of nonlinear penalized problem

Next, we construct the derivative to the nonlinear problem (3.31).

Proposition 9.

The derivative to the solution of (3.31) in Proposition 8 exists. Moreover, we have the weighted C1C^{1} estimate

αxhLx,ξ+wθ~αxgLx,ξ\displaystyle\|\alpha\partial_{x}h\|_{L^{\infty}_{x,\xi}}+\|w_{\tilde{\theta}}\alpha\partial_{x}g\|_{L^{\infty}_{x,\xi}} CwgLx,ξ+CwgbLξ+ChLx.\displaystyle\leq C\|wg\|_{L^{\infty}_{x,\xi}}+C\|wg_{b}\|_{L^{\infty}_{\xi}}+C\|h\|_{L^{\infty}_{x}}. (4.31)
Proof.

We denote a Banach space as

𝒳3:={(g,h):wθ~αxgLx,ξ+αxhLx,ξ+(g,h)𝒳12Cε},\begin{split}\mathcal{X}_{3}&:=\Big{\{}(g,h):\|w_{\tilde{\theta}}\alpha\partial_{x}g\|_{L_{x,\xi}^{\infty}}+\|\alpha\partial_{x}h\|_{L^{\infty}_{x,\xi}}+\|(g,h)\|_{\mathcal{X}_{1}}\leq 2C\varepsilon\Big{\}},\end{split} (4.32)

with the associated norm defined as

(g,h)𝒳3=wθ~αxgLx,ξ+αxhLx,ξ+(g,h)𝒳1.\begin{split}\|(g,h)\|_{\mathcal{X}_{3}}&=\|w_{\tilde{\theta}}\alpha\partial_{x}g\|_{L^{\infty}_{x,\xi}}+\|\alpha\partial_{x}h\|_{L^{\infty}_{x,\xi}}+\|(g,h)\|_{\mathcal{X}_{1}}.\end{split}

Here, 𝒳1\mathcal{X}_{1} is defined in (3.32). Clearly we have (g,h)𝒳1(g,h)𝒳3\|(g,h)\|_{\mathcal{X}_{1}}\leq\|(g,h)\|_{\mathcal{X}_{3}}.

Given (g~,h~)𝒳3(\tilde{g},\tilde{h})\in\mathcal{X}_{3}, we consider the following linear problem with given sources as g~,h~\tilde{g},\tilde{h}:

{(ξ1+u)xg+pg=eγx(𝐈𝐏u)Γ(g~h~ϕu,g~h~ϕu),h(x)=eγx0e(τu2γ)zψuΓ(g~h~ϕu,g~h~ϕu)(x+z)dz,g(0,ξ)=fb(ξ)+h(0)ϕu(ξ),ξ1+u>0,(ξ1+u)x(xg)+p(xg)=x[eγx(𝐈𝐏u)Γ(g~h~ϕu,g~h~ϕu)],xh(x)=x[eγx0e(τu2γ)zψuΓ(g~h~ϕu,g~h~ϕu)(x+z)dz].\begin{cases}&(\xi_{1}+u)\partial_{x}g+\mathcal{L}^{p}g=e^{-\gamma x}(\mathbf{I}-\mathbf{P}_{u})\Gamma(\tilde{g}-\tilde{h}\phi_{u},\tilde{g}-\tilde{h}\phi_{u}),\\ &h(x)=-e^{-\gamma x}\int_{0}^{\infty}e^{(\tau_{u}-2\gamma)z}\langle\psi_{u}\Gamma(\tilde{g}-\tilde{h}\phi_{u},\tilde{g}-\tilde{h}\phi_{u})\rangle(x+z)\mathrm{d}z,\\ &g(0,\xi)=f_{b}(\xi)+h(0)\phi_{u}(\xi),\ \ \xi_{1}+u>0,\\ &(\xi_{1}+u)\partial_{x}(\partial_{x}g)+\mathcal{L}^{p}(\partial_{x}g)=\partial_{x}\Big{[}e^{-\gamma x}(\mathbf{I}-\mathbf{P}_{u})\Gamma(\tilde{g}-\tilde{h}\phi_{u},\tilde{g}-\tilde{h}\phi_{u})\Big{]},\\ &\partial_{x}h(x)=-\partial_{x}\Big{[}e^{-\gamma x}\int_{0}^{\infty}e^{(\tau_{u}-2\gamma)z}\langle\psi_{u}\Gamma(\tilde{g}-\tilde{h}\phi_{u},\tilde{g}-\tilde{h}\phi_{u})\rangle(x+z)\mathrm{d}z\Big{]}.\end{cases}

h(x)h(x) can also be expressed as

h(x)\displaystyle h(x) =eγxxe(τu2γ)(zx)ψuΓ(g~h~ϕu,g~h~ϕu)(z)dz\displaystyle=-e^{-\gamma x}\int_{x}^{\infty}e^{(\tau_{u}-2\gamma)(z-x)}\langle\psi_{u}\Gamma(\tilde{g}-\tilde{h}\phi_{u},\tilde{g}-\tilde{h}\phi_{u})\rangle(z)\mathrm{d}z
=e(γτu)xxe(τu2γ)zψuΓ(g~h~ϕu,g~h~ϕu)(z)dz.\displaystyle=-e^{(\gamma-\tau_{u})x}\int_{x}^{\infty}e^{(\tau_{u}-2\gamma)z}\langle\psi_{u}\Gamma(\tilde{g}-\tilde{h}\phi_{u},\tilde{g}-\tilde{h}\phi_{u})\rangle(z)\mathrm{d}z.

Then we take derivative to have

xh(x)=(γτu)h(x)+eγxψuΓ(g~h~ϕu,g~h~ϕu)(x).\displaystyle\partial_{x}h(x)=(\gamma-\tau_{u})h(x)+e^{-\gamma x}\langle\psi_{u}\Gamma(\tilde{g}-\tilde{h}\phi_{u},\tilde{g}-\tilde{h}\phi_{u})\rangle(x). (4.33)

From the equation of hh in (4.33), we apply (1.11) to have

αxhLx,ξ\displaystyle\|\alpha\partial_{x}h\|_{L^{\infty}_{x,\xi}} xhLxhLx+(g~,h~)𝒳12(g~,h~)𝒳12.\displaystyle\leq\|\partial_{x}h\|_{L^{\infty}_{x}}\lesssim\|h\|_{L^{\infty}_{x}}+\|(\tilde{g},\tilde{h})\|_{\mathcal{X}_{1}}^{2}\lesssim\|(\tilde{g},\tilde{h})\|_{\mathcal{X}_{1}}^{2}. (4.34)

In the second inequality, we applied (3.35) to the source term Γ\Gamma. In the last inequality, we used hLx(g~,h~)𝒳12\|h\|_{L^{\infty}_{x}}\lesssim\|(\tilde{g},\tilde{h})\|_{\mathcal{X}_{1}}^{2} from (3.35).

The well-posedness of xg\partial_{x}g is guaranteed by Lemma 13, and xg\partial_{x}g satisfies (4.2). The boundary term in (4.2) can be controlled as

wgbLξ+wθ~(ξ)Q(0,ξ)LξwfbLξ+wϕuLξhLx+(g~,h~)𝒳12ε+(g~,h~)𝒳12.\displaystyle\|wg_{b}\|_{L^{\infty}_{\xi}}+\|w_{\tilde{\theta}}(\xi)Q(0,\xi)\|_{L^{\infty}_{\xi}}\lesssim\|wf_{b}\|_{L^{\infty}_{\xi}}+\|w\phi_{u}\|_{L^{\infty}_{\xi}}\|h\|_{L^{\infty}_{x}}+\|(\tilde{g},\tilde{h})\|_{\mathcal{X}_{1}}^{2}\lesssim\varepsilon+\|(\tilde{g},\tilde{h})\|_{\mathcal{X}_{1}}^{2}. (4.35)

Here we applied (3.34) and (3.38) with wθ~(ξ)w(ξ)1+|ξ|w_{\tilde{\theta}}(\xi)\lesssim\frac{w(\xi)}{1+|\xi|} to Q(0)=(𝐈𝐏u)Γ(g~h~ϕu,g~h~ϕu)(0)Q(0)=(\mathbf{I}-\mathbf{P}_{u})\Gamma(\tilde{g}-\tilde{h}\phi_{u},\tilde{g}-\tilde{h}\phi_{u})(0) in the first inequality. In the second inequality, ε\varepsilon comes from the assumption wfbLε\|wf_{b}\|_{L^{\infty}}\leq\varepsilon in Proposition 8, and we used (3.35) to hh.

Then we evaluate (4.2)\eqref{aprior_deri}_{*} with Q=eγx(𝐈𝐏u)Γ(g~h~ϕu,g~h~ϕu)Q=e^{-\gamma x}(\mathbf{I}-\mathbf{P}_{u})\Gamma(\tilde{g}-\tilde{h}\phi_{u},\tilde{g}-\tilde{h}\phi_{u}). Note that

xQ\displaystyle\partial_{x}Q =γeγx(𝐈𝐏u)Γ(g~h~ϕu,g~h~ϕu)+eγx(𝐈𝐏u)xΓ(g~h~ϕu,g~h~ϕu).\displaystyle=-\gamma e^{-\gamma x}(\mathbf{I}-\mathbf{P}_{u})\Gamma(\tilde{g}-\tilde{h}\phi_{u},\tilde{g}-\tilde{h}\phi_{u})+e^{-\gamma x}(\mathbf{I}-\mathbf{P}_{u})\partial_{x}\Gamma(\tilde{g}-\tilde{h}\phi_{u},\tilde{g}-\tilde{h}\phi_{u}). (4.36)

The contribution of the first term on RHS of (4.36) is bounded as

wθ~(ξ)max{0,𝟏ξ1+u>0(txξ1+u)}tdseν(ξ)(ts)(𝐈𝐏u)Γ(g~h~ϕu,g~h~ϕu)(x(ξ1+u)(ts),ξ)\displaystyle w_{\tilde{\theta}}(\xi)\int^{t}_{\max\{0,\mathbf{1}_{\xi_{1}+u>0}(t-\frac{x}{\xi_{1}+u})\}}\mathrm{d}se^{-\nu(\xi)(t-s)}(\mathbf{I}-\mathbf{P}_{u})\Gamma(\tilde{g}-\tilde{h}\phi_{u},\tilde{g}-\tilde{h}\phi_{u})(x-(\xi_{1}+u)(t-s),\xi)
w[1+|ξ|](𝐈𝐏u)ΓLx,ξmax{0,𝟏ξ1+u>0(txξ1+u)}tdseν(ξ)(ts)(g~,h~)𝒳12.\displaystyle\lesssim\big{\|}\frac{w}{[1+|\xi|]}(\mathbf{I}-\mathbf{P}_{u})\Gamma\big{\|}_{L^{\infty}_{x,\xi}}\int^{t}_{\max\{0,\mathbf{1}_{\xi_{1}+u>0}(t-\frac{x}{\xi_{1}+u})\}}\mathrm{d}se^{-\nu(\xi)(t-s)}\lesssim\|(\tilde{g},\tilde{h})\|_{\mathcal{X}_{1}}^{2}. (4.37)

Here we have applied the same computation in (3.37) with wθ~(ξ)w(ξ)[1+|ξ|]w_{\tilde{\theta}}(\xi)\lesssim\frac{w(\xi)}{[1+|\xi|]}.

For (4.2)\eqref{aprior_deri}_{*}, the contribution of IxΓI\partial_{x}\Gamma in the second term of RHS of (4.36) is bounded as

wθ~(ξ)α(x,ξ)max{0,𝟏ξ1+u>0(txξ1+u)}tdseν¯(ξ)(ts)|xΓ(g~h~ϕu,g~h~ϕu)(x(ξ1+u)(ts),ξ)|.\displaystyle w_{\tilde{\theta}}(\xi)\alpha(x,\xi)\int^{t}_{\max\{0,\mathbf{1}_{\xi_{1}+u>0}(t-\frac{x}{\xi_{1}+u})\}}\mathrm{d}se^{-\bar{\nu}(\xi)(t-s)}|\partial_{x}\Gamma(\tilde{g}-\tilde{h}\phi_{u},\tilde{g}-\tilde{h}\phi_{u})(x-(\xi_{1}+u)(t-s),\xi)|.

We apply (2.7). The contribution of the first term in (2.7) is bounded as

max{0,𝟏ξ1+u>0(txξ1+u)}tdseν¯(ξ)(ts)[1+|ξ|]w(g~ϕuh~)Lx,ξ\displaystyle\int^{t}_{\max\{0,\mathbf{1}_{\xi_{1}+u>0}(t-\frac{x}{\xi_{1}+u})\}}\mathrm{d}se^{-\bar{\nu}(\xi)(t-s)}[1+|\xi|]\|w(\tilde{g}-\phi_{u}\tilde{h})\|_{L^{\infty}_{x,\xi}}
×wθ~(ξ)α(x,ξ)|[xg~xh~ϕu](x(ξ1+u)(ts),ξ)|\displaystyle\times w_{\tilde{\theta}}(\xi)\alpha(x,\xi)|[\partial_{x}\tilde{g}-\partial_{x}\tilde{h}\phi_{u}](x-(\xi_{1}+u)(t-s),\xi)|
(g~,h~)𝒳1[wθ~αxg~Lx,ξ+αxh~Lx]max{0,𝟏ξ1+u>0(txξ1+u)}tdseν0(ξ)(ts)/2[1+|ξ|]eν0(ts)/4\displaystyle\leq\|(\tilde{g},\tilde{h})\|_{\mathcal{X}_{1}}[\|w_{\tilde{\theta}}\alpha\partial_{x}\tilde{g}\|_{L^{\infty}_{x,\xi}}+\|\alpha\partial_{x}\tilde{h}\|_{L^{\infty}_{x}}]\int^{t}_{\max\{0,\mathbf{1}_{\xi_{1}+u>0}(t-\frac{x}{\xi_{1}+u})\}}\mathrm{d}se^{-\nu_{0}(\xi)(t-s)/2}[1+|\xi|]e^{\nu_{0}(t-s)/4}
(g~,h~)𝒳1[wθ~αxg~Lx,ξ+αxh~Lx]max{0,𝟏ξ1+u>0(txξ1+u)}tdseν0(ξ)(ts)/4[1+|ξ|]\displaystyle\leq\|(\tilde{g},\tilde{h})\|_{\mathcal{X}_{1}}[\|w_{\tilde{\theta}}\alpha\partial_{x}\tilde{g}\|_{L^{\infty}_{x,\xi}}+\|\alpha\partial_{x}\tilde{h}\|_{L^{\infty}_{x}}]\int^{t}_{\max\{0,\mathbf{1}_{\xi_{1}+u>0}(t-\frac{x}{\xi_{1}+u})\}}\mathrm{d}se^{-\nu_{0}(\xi)(t-s)/4}[1+|\xi|]
(g~,h~)𝒳1[wθ~αxg~Lx,ξ+αxh~Lx].\displaystyle\lesssim\|(\tilde{g},\tilde{h})\|_{\mathcal{X}_{1}}[\|w_{\tilde{\theta}}\alpha\partial_{x}\tilde{g}\|_{L^{\infty}_{x,\xi}}+\|\alpha\partial_{x}\tilde{h}\|_{L^{\infty}_{x}}]. (4.38)

In the third line we have used wθ~(ξ)[1+|ξ|]ϕuLξwϕuLξ1\|w_{\tilde{\theta}}(\xi)[1+|\xi|]\phi_{u}\|_{L^{\infty}_{\xi}}\lesssim\|w\phi_{u}\|_{L^{\infty}_{\xi}}\lesssim 1 and applied Lemma 5.

The contribution of the second and third term in (2.7) are bounded as

wθ~(ξ)α(x,ξ)w(g~ϕuh~)Lx,ξmax{0,𝟏ξ1+u>0(txξ1+u)}tdseν¯(ξ)(ts)\displaystyle w_{\tilde{\theta}}(\xi)\alpha(x,\xi)\|w(\tilde{g}-\phi_{u}\tilde{h})\|_{L^{\infty}_{x,\xi}}\int^{t}_{\max\{0,\mathbf{1}_{\xi_{1}+u>0}(t-\frac{x}{\xi_{1}+u})\}}\mathrm{d}se^{-\bar{\nu}(\xi)(t-s)}
×3dξ𝐤(ξ,ξ)|x[g~h~ϕu](x(ξ1+u)(ts),ξ)|\displaystyle\times\int_{\mathbb{R}^{3}}\mathrm{d}\xi^{\prime}\mathbf{k}(\xi,\xi^{\prime})|\partial_{x}[\tilde{g}-\tilde{h}\phi_{u}](x-(\xi_{1}+u)(t-s),\xi^{\prime})|
(g~,h~)𝒳1[wθ~αxg~Lx,ξ+αxh~Lx]α(x,ξ)max{0,𝟏ξ1+u>0(txξ1+u)}tdseν0(ξ)(ts)/2\displaystyle\leq\|(\tilde{g},\tilde{h})\|_{\mathcal{X}_{1}}[\|w_{\tilde{\theta}}\alpha\partial_{x}\tilde{g}\|_{L^{\infty}_{x,\xi}}+\|\alpha\partial_{x}\tilde{h}\|_{L^{\infty}_{x}}]\alpha(x,\xi)\int^{t}_{\max\{0,\mathbf{1}_{\xi_{1}+u>0}(t-\frac{x}{\xi_{1}+u})\}}\mathrm{d}se^{-\nu_{0}(\xi)(t-s)/2}
×3wθ~(ξ)𝐤(ξ,ξ)wθ~(ξ)α(x(ξ1+u)(ts),ξ)dξ\displaystyle\times\int_{\mathbb{R}^{3}}\frac{w_{\tilde{\theta}}(\xi)\mathbf{k}(\xi,\xi^{\prime})}{w_{\tilde{\theta}}(\xi^{\prime})\alpha(x-(\xi_{1}+u)(t-s),\xi^{\prime})}\mathrm{d}\xi^{\prime}
t(g~,h~)𝒳1[wθ~αxg~Lx,ξ+αxh~Lx].\displaystyle\lesssim t\|(\tilde{g},\tilde{h})\|_{\mathcal{X}_{1}}[\|w_{\tilde{\theta}}\alpha\partial_{x}\tilde{g}\|_{L^{\infty}_{x,\xi}}+\|\alpha\partial_{x}\tilde{h}\|_{L^{\infty}_{x}}]. (4.39)

In the fourth line we have used Lemma 8 to have ϕu(ξ)wϕuLξwθ~(ξ)\phi_{u}(\xi^{\prime})\leq\frac{\|w\phi_{u}\|_{L^{\infty}_{\xi}}}{w_{\tilde{\theta}}(\xi^{\prime})}. In the last line applied Lemma 6 with (2.11).

For (4.2)\eqref{aprior_deri}_{*}, the contribution of 𝐏uxΓ\mathbf{P}_{u}\partial_{x}\Gamma in the second term of the RHS of (4.36) is controlled as

α(x,ξ)max{0,𝟏ξ1+u>0(txξ1+u)}tdseν¯(ξ)(ts)wθ~(ξ1+u)ϕuLξwψuLξ\displaystyle\alpha(x,\xi)\int^{t}_{\max\{0,\mathbf{1}_{\xi_{1}+u>0}(t-\frac{x}{\xi_{1}+u})\}}\mathrm{d}se^{-\bar{\nu}(\xi)(t-s)}\|w_{\tilde{\theta}}(\xi_{1}+u)\phi_{u}\|_{L^{\infty}_{\xi}}\|w\psi_{u}\|_{L^{\infty}_{\xi}}
×3w1(ξ)|xΓ(g~h~ϕu,g~h~ϕu)(x(ξ1+u)(ts),ξ)|dξ.\displaystyle\times\int_{\mathbb{R}^{3}}w^{-1}(\xi^{\prime})\big{|}\partial_{x}\Gamma(\tilde{g}-\tilde{h}\phi_{u},\tilde{g}-\tilde{h}\phi_{u})(x-(\xi_{1}+u)(t-s),\xi^{\prime})\big{|}\mathrm{d}\xi^{\prime}.

Again we apply (2.7). The contribution of the first term in (2.7) is bounded as

α(x,ξ)wϕuLξwψuLξmax{0,𝟏ξ1+u>0(txξ1+u)}tdseν0(ξ)(ts)/2\displaystyle\alpha(x,\xi)\|w\phi_{u}\|_{L^{\infty}_{\xi}}\|w\psi_{u}\|_{L^{\infty}_{\xi}}\int^{t}_{\max\{0,\mathbf{1}_{\xi_{1}+u>0}(t-\frac{x}{\xi_{1}+u})\}}\mathrm{d}se^{-\nu_{0}(\xi)(t-s)/2}
×3w1(ξ)[1+|ξ|]w(g~h~ϕu)Lx,ξ[xg~xh~ϕu](x(ξ1+u)(ts),ξ)dξ\displaystyle\times\int_{\mathbb{R}^{3}}w^{-1}(\xi^{\prime})[1+|\xi|^{\prime}]\|w(\tilde{g}-\tilde{h}\phi_{u})\|_{L^{\infty}_{x,\xi}}[\partial_{x}\tilde{g}-\partial_{x}\tilde{h}\phi_{u}](x-(\xi_{1}+u)(t-s),\xi^{\prime})\mathrm{d}\xi^{\prime}
α(x,ξ)(g~,h~)𝒳1[αxg~Lx,ξ+αxh~Lx,ξ]\displaystyle\lesssim\alpha(x,\xi)\|(\tilde{g},\tilde{h})\|_{\mathcal{X}_{1}}[\|\alpha\partial_{x}\tilde{g}\|_{L^{\infty}_{x,\xi}}+\|\alpha\partial_{x}\tilde{h}\|_{L^{\infty}_{x,\xi}}]
×max{0,𝟏ξ1+u>0(txξ1+u)}tdseν0(ξ)(ts)/23w1/2(ξ)α(x(ξ1+u)(ts),ξ)dξ\displaystyle\times\int^{t}_{\max\{0,\mathbf{1}_{\xi_{1}+u>0}(t-\frac{x}{\xi_{1}+u})\}}\mathrm{d}se^{-\nu_{0}(\xi)(t-s)/2}\int_{\mathbb{R}^{3}}\frac{w^{-1/2}(\xi^{\prime})}{\alpha(x-(\xi_{1}+u)(t-s),\xi^{\prime})}\mathrm{d}\xi^{\prime}
t(g~,h~)𝒳1[wθ~αxg~Lx,ξ+αxh~Lx,ξ].\displaystyle\lesssim t\|(\tilde{g},\tilde{h})\|_{\mathcal{X}_{1}}[\|w_{\tilde{\theta}}\alpha\partial_{x}\tilde{g}\|_{L^{\infty}_{x,\xi}}+\|\alpha\partial_{x}\tilde{h}\|_{L^{\infty}_{x,\xi}}]. (4.40)

In the last line we have used Lemma 7.

The contribution of the second and third term in (2.7) are bounded as

α(x,ξ)(g~,h~)𝒳1max{0,𝟏ξ1+u>0(txξ1+u)}tdseν0(ξ)(ts)/2\displaystyle\alpha(x,\xi)\|(\tilde{g},\tilde{h})\|_{\mathcal{X}_{1}}\int^{t}_{\max\{0,\mathbf{1}_{\xi_{1}+u>0}(t-\frac{x}{\xi_{1}+u})\}}\mathrm{d}se^{-\nu_{0}(\xi)(t-s)/2}
×3dξw1(ξ)3dξ′′𝐤(ξ,ξ′′)[|xg~|+|xh~|](x(ξ1+u)(ts),ξ′′)\displaystyle\times\int_{\mathbb{R}^{3}}\mathrm{d}\xi^{\prime}w^{-1}(\xi^{\prime})\int_{\mathbb{R}^{3}}\mathrm{d}\xi^{\prime\prime}\mathbf{k}(\xi^{\prime},\xi^{\prime\prime})[|\partial_{x}\tilde{g}|+|\partial_{x}\tilde{h}|](x-(\xi_{1}+u)(t-s),\xi^{\prime\prime})
α(x,ξ)(g~,h~)𝒳1[αxg~Lx,ξ+αxh~Lx,ξ]\displaystyle\lesssim\alpha(x,\xi)\|(\tilde{g},\tilde{h})\|_{\mathcal{X}_{1}}[\|\alpha\partial_{x}\tilde{g}\|_{L^{\infty}_{x,\xi}}+\|\alpha\partial_{x}\tilde{h}\|_{L^{\infty}_{x,\xi}}]
×max{0,𝟏ξ1+u>0(txξ1+u)}tdseν0(ξ)(ts)/23w1(ξ)dξ3𝐤(ξ,ξ′′)α(x(ξ1+u)(ts),ξ′′)dξ′′\displaystyle\times\int^{t}_{\max\{0,\mathbf{1}_{\xi_{1}+u>0}(t-\frac{x}{\xi_{1}+u})\}}\mathrm{d}se^{-\nu_{0}(\xi)(t-s)/2}\int_{\mathbb{R}^{3}}w^{-1}(\xi^{\prime})\mathrm{d}\xi^{\prime}\int_{\mathbb{R}^{3}}\frac{\mathbf{k}(\xi^{\prime},\xi^{\prime\prime})}{\alpha(x-(\xi_{1}+u)(t-s),\xi^{\prime\prime})}\mathrm{d}\xi^{\prime\prime}
t(g~,h~)𝒳1[wθ~αxg~Lx,ξ+αxh~Lx,ξ].\displaystyle\lesssim t\|(\tilde{g},\tilde{h})\|_{\mathcal{X}_{1}}[\|w_{\tilde{\theta}}\alpha\partial_{x}\tilde{g}\|_{L^{\infty}_{x,\xi}}+\|\alpha\partial_{x}\tilde{h}\|_{L^{\infty}_{x,\xi}}]. (4.41)

In the last line we have applied (2.44) in Lemma 7.

Collecting (4.37), (4.38), (4.39), (4.40) and (4.41), we conclude that the contribution of (4.2)\eqref{aprior_deri}_{*} is bounded as

(4.2)𝟏Q=eγx(𝐈𝐏u)Γ(g~h~ϕu,g~h~ϕu)t(g~,h~)𝒳32.\displaystyle\eqref{aprior_deri}_{*}\mathbf{1}_{Q=e^{-\gamma x}(\mathbf{I}-\mathbf{P}_{u})\Gamma(\tilde{g}-\tilde{h}\phi_{u},\tilde{g}-\tilde{h}\phi_{u})}\lesssim t\|(\tilde{g},\tilde{h})\|_{\mathcal{X}_{3}}^{2}. (4.42)

It has been proved in (3.39) that given (g~,h~)𝒳12Cε\|(\tilde{g},\tilde{h})\|_{\mathcal{X}_{1}}\leq 2C\varepsilon, then (g,h)𝒳12Cε\|(g,h)\|_{\mathcal{X}_{1}}\leq 2C\varepsilon. This, combining with the estimate of xh\partial_{x}h in (4.34), the estimate for xg\partial_{x}g in (4.2), (4.35) and (4.42), implies that for some C1=C1(t)>0C_{1}=C_{1}(t)>0,

(g,h)𝒳3\displaystyle\|(g,h)\|_{\mathcal{X}_{3}} (g,h)𝒳1+(4.34)+(4.35)+(4.42)\displaystyle\leq\|(g,h)\|_{\mathcal{X}_{1}}+\eqref{p_x_h_bdd}+\eqref{p_x_bdr_term}+\eqref{deri_gamma_bdd}
C1ε+C1(g~,h~)𝒳32C1ε+4C1C2ε22Cε.\displaystyle\leq C_{1}\varepsilon+C_{1}\|(\tilde{g},\tilde{h})\|_{\mathcal{X}_{3}}^{2}\leq C_{1}\varepsilon+4C_{1}C^{2}\varepsilon^{2}\leq 2C\varepsilon.

Here we have taken CC in (4.32) to be C=C1C=C_{1} and let ε\varepsilon be small enough such that C1C2ε2=C13ε2CεC_{1}C^{2}\varepsilon^{2}=C_{1}^{3}\varepsilon^{2}\leq C\varepsilon. Therefore, we conclude that (g,h)𝒳3(g,h)\in\mathcal{X}_{3}.

Next we prove the contraction property. Given (g~1,h~1),(g~2,h~2)𝒳3(\tilde{g}_{1},\tilde{h}_{1}),(\tilde{g}_{2},\tilde{h}_{2})\in\mathcal{X}_{3}, we denote the corresponding solutions as (g1,h1),(g2,h2)(g_{1},h_{1}),(g_{2},h_{2}). Then (g1g2,h1h2)(g_{1}-g_{2},h_{1}-h_{2}) satisfies (3.40), and the derivative satisfies

{(ξ1+u)x(x(g1g2))+p(x(g1g2))=x[eγx(𝐈𝐏u)Σ],x[h1h2](x)=x[eγx0e(τu2γ)zψuΣ(x+z)dz],\begin{cases}&(\xi_{1}+u)\partial_{x}(\partial_{x}(g_{1}-g_{2}))+\mathcal{L}^{p}(\partial_{x}(g_{1}-g_{2}))=\partial_{x}\big{[}e^{-\gamma x}(\mathbf{I}-\mathbf{P}_{u})\Sigma\big{]},\\ &\partial_{x}[h_{1}-h_{2}](x)=-\partial_{x}\Big{[}e^{-\gamma x}\int_{0}^{\infty}e^{(\tau_{u}-2\gamma)z}\langle\psi_{u}\Sigma\rangle(x+z)\mathrm{d}z\Big{]},\end{cases}

here Σ\Sigma is defined in (3.40).

To estimate h1h2h_{1}-h_{2}, we apply the same computation as (4.34), with (3.41), we obtain

αx(h1h2)Lx,ξx(h1h2)Lx,ξh1h2Lx+eγxψΣLx,ξ\displaystyle\|\alpha\partial_{x}(h_{1}-h_{2})\|_{L^{\infty}_{x,\xi}}\leq\|\partial_{x}(h_{1}-h_{2})\|_{L^{\infty}_{x,\xi}}\lesssim\|h_{1}-h_{2}\|_{L^{\infty}_{x}}+\|e^{-\gamma x}\langle\psi\Sigma\rangle\|_{L^{\infty}_{x,\xi}}
w[1+|ξ|]ΣLx,ξε(g~1g~2,h~1h~2)𝒳1.\displaystyle\lesssim\big{\|}\frac{w}{[1+|\xi|]}\Sigma\big{\|}_{L^{\infty}_{x,\xi}}\lesssim\varepsilon\|(\tilde{g}_{1}-\tilde{g}_{2},\tilde{h}_{1}-\tilde{h}_{2})\|_{\mathcal{X}_{1}}. (4.43)

To estimate x(g1g2)\partial_{x}(g_{1}-g_{2}), we apply (4.2). First we compute the boundary term with Q(0)=(𝐈𝐏u)Σ(0)Q(0)=(\mathbf{I}-\mathbf{P}_{u})\Sigma(0) as

w(g1g2)bLξ+Q(0)LξwϕuLξh1h2Lx+(𝐈𝐏u)Σ(0)Lξ\displaystyle\|w(g_{1}-g_{2})_{b}\|_{L^{\infty}_{\xi}}+\|Q(0)\|_{L^{\infty}_{\xi}}\lesssim\|w\phi_{u}\|_{L^{\infty}_{\xi}}\|h_{1}-h_{2}\|_{L^{\infty}_{x}}+\|(\mathbf{I}-\mathbf{P}_{u})\Sigma(0)\|_{L^{\infty}_{\xi}}
ε(g~1g~2,h~1h~2)𝒳1+w[1+|ξ|]ΣLx,ξ+w[1+|ξ|]𝐏uΣLx,ξε(g~1g~2,h~1h~2)𝒳1.\displaystyle\lesssim\varepsilon\|(\tilde{g}_{1}-\tilde{g}_{2},\tilde{h}_{1}-\tilde{h}_{2})\|_{\mathcal{X}_{1}}+\big{\|}\frac{w}{[1+|\xi|]}\Sigma\big{\|}_{L^{\infty}_{x,\xi}}+\big{\|}\frac{w}{[1+|\xi|]}\mathbf{P}_{u}\Sigma\big{\|}_{L^{\infty}_{x,\xi}}\lesssim\varepsilon\|(\tilde{g}_{1}-\tilde{g}_{2},\tilde{h}_{1}-\tilde{h}_{2})\|_{\mathcal{X}_{1}}. (4.44)

Here we applied the same estimate for h1h2h_{1}-h_{2} in (3.41) and the same estimate for Σ\Sigma in (3.42).

For (4.2)\eqref{aprior_deri}_{*}, we express the derivative as

γeγx(𝐈𝐏u)Σ+eγx(𝐈𝐏u)(xΣ).-\gamma e^{-\gamma x}(\mathbf{I}-\mathbf{P}_{u})\Sigma+e^{-\gamma x}(\mathbf{I}-\mathbf{P}_{u})(\partial_{x}\Sigma). (4.45)

We apply the same estimate as (4.37) to the first term in (4.45), and apply the same estimate as (4.42) to the second term in (4.45), this yields

(4.2)𝟏Q=eγx(𝐈𝐏u)Σ[(g~1,h~1)𝒳1+(g~2,h~2)𝒳1](g~1g~2,h~1h~2)𝒳1\displaystyle\eqref{aprior_deri}_{*}\mathbf{1}_{Q=e^{-\gamma x}(\mathbf{I}-\mathbf{P}_{u})\Sigma}\lesssim[\|(\tilde{g}_{1},\tilde{h}_{1})\|_{\mathcal{X}_{1}}+\|(\tilde{g}_{2},\tilde{h}_{2})\|_{\mathcal{X}_{1}}]\|(\tilde{g}_{1}-\tilde{g}_{2},\tilde{h}_{1}-\tilde{h}_{2})\|_{\mathcal{X}_{1}}
+t[(g~1,h~1)𝒳3+(g~2,h~2)𝒳3](g~1g~2,h~1h~2)𝒳3\displaystyle+t[\|(\tilde{g}_{1},\tilde{h}_{1})\|_{\mathcal{X}_{3}}+\|(\tilde{g}_{2},\tilde{h}_{2})\|_{\mathcal{X}_{3}}]\|(\tilde{g}_{1}-\tilde{g}_{2},\tilde{h}_{1}-\tilde{h}_{2})\|_{\mathcal{X}_{3}}
tε(g~1g~2,h~1h~2)𝒳3.\displaystyle\lesssim t\varepsilon\|(\tilde{g}_{1}-\tilde{g}_{2},\tilde{h}_{1}-\tilde{h}_{2})\|_{\mathcal{X}_{3}}. (4.46)

Finally, we collect (4.43), (4.2), (4.44), (4.46) and (3.43) to conclude that

(g1g2,h1h2)𝒳3=wθ~αx(g1g2)Lx,ξ+αx(h1h2)Lx+(g1g2,h1h2)𝒳1\displaystyle\|(g_{1}-g_{2},h_{1}-h_{2})\|_{\mathcal{X}_{3}}=\|w_{\tilde{\theta}}\alpha\partial_{x}(g_{1}-g_{2})\|_{L^{\infty}_{x,\xi}}+\|\alpha\partial_{x}(h_{1}-h_{2})\|_{L^{\infty}_{x}}+\|(g_{1}-g_{2},h_{1}-h_{2})\|_{\mathcal{X}_{1}}
w(g1g2)Lx,ξ+tε(g~1g~2,h~1h~2)𝒳3\displaystyle\lesssim\|w(g_{1}-g_{2})\|_{L^{\infty}_{x,\xi}}+t\varepsilon\|(\tilde{g}_{1}-\tilde{g}_{2},\tilde{h}_{1}-\tilde{h}_{2})\|_{\mathcal{X}_{3}}
C2ε(g~1g~2,h~1h~2)𝒳3.\displaystyle\leq C_{2}\varepsilon\|(\tilde{g}_{1}-\tilde{g}_{2},\tilde{h}_{1}-\tilde{h}_{2})\|_{\mathcal{X}_{3}}.

Here C2C_{2} depends on tt. With small enough ε\varepsilon such that C2(t)ε<1C_{2}(t)\varepsilon<1, we conclude the proposition with Banach fixed point theorem.

4.3. Proof of Theorem 1

The unique solution to (1.4) is constructed as

f(x,ξ)=eγxg(x,ξ)eγxh(x)ϕu(ξ).f(x,\xi)=e^{-\gamma x}g(x,\xi)-e^{-\gamma x}h(x)\phi_{u}(\xi).

With h(x)h(x) and g(x)g(x) satisfying (4.31), we take xx-derivative and have

wθ~αxfLξ\displaystyle\|w_{\tilde{\theta}}\alpha\partial_{x}f\|_{L^{\infty}_{\xi}} eγx[wgLx,ξ+wϕuLξhLx]\displaystyle\lesssim e^{-\gamma x}[\|wg\|_{L^{\infty}_{x,\xi}}+\|w\phi_{u}\|_{L^{\infty}_{\xi}}\|h\|_{L^{\infty}_{x}}]
+eγx[wθ~αxgLx,ξ+wϕuLξαxhLx]eγxε.\displaystyle+e^{-\gamma x}[\|w_{\tilde{\theta}}\alpha\partial_{x}g\|_{L^{\infty}_{x,\xi}}+\|w\phi_{u}\|_{L^{\infty}_{\xi}}\|\alpha\partial_{x}h\|_{L^{\infty}_{x}}]\lesssim e^{-\gamma x}\varepsilon.

We conclude the theorem with some C¯>0\bar{C}>0.

In summary, we have

eγxwθ~αxfLx,ξε.\displaystyle\|e^{\gamma x}w_{\tilde{\theta}}\alpha\partial_{x}f\|_{L^{\infty}_{x,\xi}}\lesssim\varepsilon. (4.47)

This verifies (1.20).

Then we prove (1.21). For γ0<γ\gamma_{0}<\gamma, (4.47) leads to

wθ~/2eγ0xxfLx,ξp=(03epθ~|ξ|2/2epγ0x|xf(x,ξ)|pdξdx)1/p\displaystyle\|w_{\tilde{\theta}/2}e^{\gamma_{0}x}\partial_{x}f\|_{L^{p}_{x,\xi}}=\Big{(}\int_{0}^{\infty}\int_{\mathbb{R}^{3}}e^{p\tilde{\theta}|\xi|^{2}/2}e^{p\gamma_{0}x}|\partial_{x}f(x,\xi)|^{p}\mathrm{d}\xi\mathrm{d}x\Big{)}^{1/p}
eγxwθ~αxfLx,ξ(03e(γγ0)pxwθ~/2p(ξ)αp(x,ξ)dξdx)1/p.\displaystyle\lesssim\|e^{\gamma x}w_{\tilde{\theta}}\alpha\partial_{x}f\|_{L^{\infty}_{x,\xi}}\Big{(}\int_{0}^{\infty}\int_{\mathbb{R}^{3}}\frac{e^{-(\gamma-\gamma_{0})px}w^{-p}_{\tilde{\theta}/2}(\xi)}{\alpha^{p}(x,\xi)}\mathrm{d}\xi\mathrm{d}x\Big{)}^{1/p}. (4.48)

From the definition of α(x,ξ)\alpha(x,\xi) in (1.10), when ξ11\xi_{1}\geq 1 or x1x\geq 1, we have α(x,ξ)1\alpha(x,\xi)\gtrsim 1. Then we proceed the computation as

(4.48)\displaystyle\eqref{W1p_first_bdd} ε(2dξ2dξ3wθ~/2p(ξ2)wθ~/2p(ξ3)0e(γγ0)pxwθ~/2p(ξ1)αp(x,ξ)dξ1dx)1/p\displaystyle\lesssim\varepsilon\Big{(}\int_{\mathbb{R}^{2}}\mathrm{d}\xi_{2}\mathrm{d}\xi_{3}w^{-p}_{\tilde{\theta}/2}(\xi_{2})w^{-p}_{\tilde{\theta}/2}(\xi_{3})\int_{0}^{\infty}\int_{\mathbb{R}}\frac{e^{-(\gamma-\gamma_{0})px}w^{-p}_{\tilde{\theta}/2}(\xi_{1})}{\alpha^{p}(x,\xi)}\mathrm{d}\xi_{1}\mathrm{d}x\Big{)}^{1/p}
ε(|ξ1|1 or x1e(γγ0)pxwθ~/2p(ξ1)dξ1dx+01011[|ξ1+u|2+(cν0)2x2]p/2dξ1dx)1/p\displaystyle\lesssim\varepsilon\Big{(}\int_{|\xi_{1}|\geq 1\text{ or }x\geq 1}e^{-(\gamma-\gamma_{0})px}w_{\tilde{\theta}/2}^{-p}(\xi_{1})\mathrm{d}\xi_{1}\mathrm{d}x+\int_{0}^{1}\int_{0}^{1}\frac{1}{\big{[}|\xi_{1}+u|^{2}+(c\nu_{0})^{2}x^{2}\big{]}^{p/2}}\mathrm{d}\xi_{1}\mathrm{d}x\Big{)}^{1/p}
ε(1+01011[|ξ1|2+x2]p/2dξ1dx)1/p.\displaystyle\lesssim\varepsilon\Big{(}1+\int_{0}^{1}\int_{0}^{1}\frac{1}{\big{[}|\xi_{1}|^{2}+x^{2}\big{]}^{p/2}}\mathrm{d}\xi_{1}\mathrm{d}x\Big{)}^{1/p}. (4.49)

In the last inequality we apply the change of variable ξ1+uu\xi_{1}+u\to u and cν0xxc\nu_{0}x\to x. Note that the integral domain becomes (x,ξ1)[0,1]×[0,1]{(x,ξ1)|x2+ξ124}(x,\xi_{1})\in[0,1]\times[0,1]\subset\{(x,\xi_{1})|x^{2}+\xi_{1}^{2}\leq 4\}, then we apply the polar coordinate x=rcosθ,ξ1=rsinθx=r\cos\theta,\ \xi_{1}=r\sin\theta to have

(4.49)\displaystyle\eqref{W1p_second_bdd} ε(02π021rp(|cospθ|+|sinpθ|)rdrdθ)1/p\displaystyle\lesssim\varepsilon\Big{(}\int_{0}^{2\pi}\int_{0}^{2}\frac{1}{r^{p}(|\cos^{p}\theta|+|\sin^{p}\theta|)}r\mathrm{d}r\mathrm{d}\theta\Big{)}^{1/p}
ε(02π1|cospθ|+|sinpθ|dθ)1/pε.\displaystyle\lesssim\varepsilon\Big{(}\int_{0}^{2\pi}\frac{1}{|\cos^{p}\theta|+|\sin^{p}\theta|}\mathrm{d}\theta\Big{)}^{1/p}\lesssim\varepsilon.

In the last line, we have used p<2p<2. We conclude the W1,pW^{1,p} estimate (1.21).

To prove (1.22), similar to the computation in (4.49), we only focus on the integration over [δ,1]×[0,1][\delta,1]\times[0,1], we have

δ3wθ~(ξ)e2γ0x|xf|2dξdx\displaystyle\int_{\delta}^{\infty}\int_{\mathbb{R}^{3}}w_{\tilde{\theta}}(\xi)e^{2\gamma_{0}x}|\partial_{x}f|^{2}\mathrm{d}\xi\mathrm{d}x
ε+ε01δ11|ξ1|2+x2dξ1dx=ε+εδ11xarctan(1x)dxCδε.\displaystyle\lesssim\varepsilon+\varepsilon\int_{0}^{1}\int_{\delta}^{1}\frac{1}{|\xi_{1}|^{2}+x^{2}}\mathrm{d}\xi_{1}\mathrm{d}x=\varepsilon+\varepsilon\int_{\delta}^{1}\frac{1}{x}\arctan(\frac{1}{x})\mathrm{d}x\lesssim C_{\delta}\varepsilon.

We conclude the theorem.

Appendix A Definition of (1.18)

In the appendix we give the definition of the addition assumptions (1.18). To be specific, Y1[u]Y_{1}[u] and Y2[u]Y_{2}[u] are defined in (A.2), and u,γ\mathfrak{R}_{u,\gamma} is defined in (A.3).

The original version of the linearized penalized operator (3.10) has extra coefficients to be determined:

pg=p+α+((ξ1+u)g)+β𝐩ugγ(ξ1+u)g.\mathcal{L}^{p}g=\mathcal{L}p+\alpha\prod_{+}((\xi_{1}+u)g)+\beta\mathbf{p}_{u}g-\gamma(\xi_{1}+u)g. (A.1)

In order to remove the extra penalization terms, [3] proposed the following lemma:

Lemma 14 (Lemma 4.3 in [3]).

Let

𝒜:=[α0uβψuX+00βϕuX0αψuX+1uτuτuβψuϕu]\displaystyle\mathcal{A}:=\begin{bmatrix}\alpha&0&-u\beta\langle\psi_{u}X_{+}\rangle\\ 0&0&-\beta\langle\phi_{u}X_{0}\rangle\\ \alpha\langle\psi_{u}X_{+}\rangle&\frac{1}{u}\tau_{u}&\tau_{u}-\beta\langle\psi_{u}\phi_{u}\rangle\end{bmatrix}

For |u|1|u|\ll 1, 𝒜\mathcal{A} has three different eigenvalues. Let (l1,l2,l3)(l_{1},l_{2},l_{3}) be a real basis of left eigenvectors of 𝒜\mathcal{A}, define

Y1[u](ξ):=(X+(ξ),X0(ξ),ψu(ξ))l1(u)Y2[u](ξ):=(X+(ξ),X0(ξ),ψu(ξ))l2(u).\begin{split}Y_{1}[u](\xi):=&(X_{+}(\xi),X_{0}(\xi),\psi_{u}(\xi))\cdot l_{1}(u)\\ Y_{2}[u](\xi):=&(X_{+}(\xi),X_{0}(\xi),\psi_{u}(\xi))\cdot l_{2}(u).\end{split} (A.2)

Then for gg satisfying (3.11) with p\mathcal{L}^{p} given by (A.1), one has

(ξ1+u)X+g=(ξ1+u)ψug=0{(ξ1+u)Y1[u]g|x=0=0(ξ1+u)Y2[u]g|x=0=0.\displaystyle\langle(\xi_{1}+u)X_{+}g\rangle=\langle(\xi_{1}+u)\psi_{u}g\rangle=0\Leftrightarrow\begin{cases}\langle(\xi_{1}+u)Y_{1}[u]g\rangle|_{x=0}=0\\ \langle(\xi_{1}+u)Y_{2}[u]g\rangle|_{x=0}=0\end{cases}.

Taking α=β=2γ\alpha=\beta=2\gamma as in (3.10), we obtain a unique solution (g,h)(g,h) to the nonlinear penalized problem (3.31) as in Proposition 7 and Proposition 8. Define

u,γ[fb](ξ):=g(0,ξ),ξ3.\mathfrak{R}_{u,\gamma}[f_{b}](\xi):=g(0,\xi),\ \ \xi\in\mathbb{R}^{3}. (A.3)

Then removing the penalization in the nonlinear penalized problem (3.31) is equivalent to imposing the condition in Lemma 14:

(ξ1+u)Y1[u]u,γ[fb]=(ξ1+u)Y2[u]u,γ[fb]=0,\displaystyle\langle(\xi_{1}+u)Y_{1}[u]\mathfrak{R}_{u,\gamma}[f_{b}]\rangle=\langle(\xi_{1}+u)Y_{2}[u]\mathfrak{R}_{u,\gamma}[f_{b}]\rangle=0,

which is exactly (1.18).

Acknowledgement. The author thanks Professor Chanwoo Kim for suggesting the problem and engaging in stimulating discussion. HC is supported by NSF 2047681 and GRF grant (2130715) from RGC of Hong Kong. HC thanks the host from the Chinese University of Hong Kong, and thanks Professor Kung-Chien Wu for helpful discussion.

References

  • [1] C. Bardos, R. E. Caflisch, and B. Nicolaenko, The Milne and Kramers problems for the Boltzmann equation of a hard sphere gas, Communications on pure and applied mathematics, 39 (1986), pp. 323–352.
  • [2] C. Bardos, F. Golse, and Y. Sone, Half-space problems for the Boltzmann equation: a survey, Journal of statistical physics, 124 (2006), pp. 275–300.
  • [3] N. Bernhoff and F. Golse, On the boundary layer equations with phase transition in the kinetic theory of gases, Archive for Rational Mechanics and Analysis, 240 (2021), pp. 51–98.
  • [4] Y. Cao, J. Jang, and C. Kim, Passage from the Boltzmann equation with Diffuse Boundary to the Incompressible Euler equation with Heat Convection, arXiv preprint arXiv:2104.02169, (2021).
  • [5] Y. Cao, C. Kim, and D. Lee, Global Strong Solutions of the Vlasov–Poisson–Boltzmann System in Bounded Domains, Archive for Rational Mechanics and Analysis, (2019), pp. 1–104.
  • [6] H. Chen, Regularity of Boltzmann Equation with Cercignani–Lampis Boundary in Convex Domain, SIAM Journal on Mathematical Analysis, 54 (2022), pp. 3316–3378.
  • [7] H. Chen, R. Duan, and J. Zhang, Global dynamics of isothermal rarefied gas flows in an infinite layer, arXiv preprint arXiv:2411.17068, (2024).
  • [8] H. Chen and C. Kim, Regularity of stationary Boltzmann equation in convex domains, Archive for Rational Mechanics and Analysis, 244 (2022), pp. 1099–1222.
  • [9]  , Gradient Decay in the Boltzmann theory of Non-isothermal boundary, Archive for Rational Mechanics and Analysis, 248 (2024), p. 14.
  • [10] I.-K. Chen, C.-H. Hsia, and D. Kawagoe, Regularity for diffuse reflection boundary problem to the stationary linearized Boltzmann equation in a convex domain, in Annales de l’Institut Henri Poincaré C, Analyse non linéaire, vol. 36, Elsevier, 2019, pp. 745–782.
  • [11] I.-K. Chen, C.-H. Hsia, D. Kawagoe, and J.-K. Su, Geometric effects on w1,pw^{1,p} regularity of the stationary linearized boltzmann equation, arXiv preprint arXiv:2311.12387, (2023).
  • [12] F. Coron, F. Golse, and C. Sulem, A classification of well-posed kinetic layer problems, Communications on Pure and Applied Mathematics, 41 (1988), pp. 409–435.
  • [13] R. Esposito, Y. Guo, R. Marra, and L. Wu, Ghost effect from Boltzmann theory, arXiv preprint arXiv:2301.09427, (2023).
  • [14] R. T. Glassey, The Cauchy problem in kinetic theory, SIAM, 1996.
  • [15] F. Golse, Analysis of the boundary layer equation in the kinetic theory of gases, Bulletin of the Institute of Mathematics, Academia Sinica (New Series), 3 (2008), pp. 211–242.
  • [16] F. Golse, B. Perthame, and C. Sulem, On a boundary layer problem for the nonlinear Boltzmann equation, Archive for Rational Mechanics and Analysis, 103 (1988), pp. 81–96.
  • [17] Y. Guo, Decay and continuity of the Boltzmann equation in bounded domains, Archive for rational mechanics and analysis, 197 (2010), pp. 713–809.
  • [18] Y. Guo, C. Kim, D. Tonon, and A. Trescases, BV-regularity of the Boltzmann equation in non-convex domains, Archive for Rational Mechanics and Analysis, 220 (2016), pp. 1045–1093.
  • [19]  , Regularity of the Boltzmann equation in convex domains, Inventiones mathematicae, 207 (2017), pp. 115–290.
  • [20] F. Huang and Y. Wang, Boundary Layer Solution of the Boltzmann Equation for Diffusive Reflection Boundary Conditions in Half-Space, SIAM Journal on Mathematical Analysis, 54 (2022), pp. 3480–3534.
  • [21] F.-m. Huang, Z.-h. Jiang, and Y. Wang, Boundary layer solution of the Boltzmann equation for specular boundary condition, Acta Mathematicae Applicatae Sinica, English Series, 39 (2023), pp. 65–94.
  • [22] J. Jang and C. Kim, Incompressible Euler limit from Boltzmann equation with Diffuse Boundary Condition for Analytic data, arXiv preprint arXiv:2005.12192, (2020).
  • [23] N. Jiang and Y.-L. Luo, Knudsen boundary layer equations for full ranges of cutoff collision kernels: Maxwell reflection boundary with all accommodation coefficients in [0, 1], arXiv preprint arXiv:2407.02852, (2024).
  • [24] N. Jiang, Y.-L. Luo, Y. Wu, and T. Yang, Knudsen boundary layer equations with incoming boundary condition: full range of cutoff collision kernels and mach numbers of the far field, arXiv preprint arXiv:2501.04035, (2025).
  • [25] C. Kim, Formation and propagation of discontinuity for Boltzmann equation in non-convex domains, Communications in mathematical physics, 308 (2011), pp. 641–701.
  • [26] C. Kim and D. Lee, The Boltzmann equation with specular boundary condition in convex domains, Communications on Pure and Applied Mathematics, 71 (2018), pp. 411–504.
  • [27] T.-P. Liu and S.-H. Yu, Invariant manifolds for steady Boltzmann flows and applications, Archive for Rational Mechanics and Analysis, 209 (2013), pp. 869–997.
  • [28] Y. Sone, Molecular gas dynamics: theory, techniques, and applications, Springer, 2007.
  • [29] Y. Sone and Y. Sone, Kinetic theory and fluid dynamics, Springer, 2002.
  • [30] S. Ukai, T. Yang, and S.-H. Yu, Nonlinear boundary layers of the Boltzmann equation: I. Existence, Communications in mathematical physics, 236 (2003), pp. 373–393.
  • [31]  , Nonlinear stability of boundary layers of the Boltzmann equation, I. The case M<1M^{\infty}<-1, Communications in mathematical physics, 244 (2004), pp. 99–109.
  • [32] L. Wu and Y. Guo, Geometric correction for diffusive expansion of steady neutron transport equation, Communications in Mathematical Physics, 336 (2015), pp. 1473–1553.
  • [33] L. Wu and Z. Ouyang, Asymptotic analysis of Boltzmann equation in bounded domains, arXiv preprint arXiv:2008.10507, (2020).