This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

On Property-(P1)(P_{1}) in Banach Spaces

Teena Thomas Department of Mathematics
Indian Institute of Technology Hyderabad
India, E-mail :[email protected]/[email protected]
Abstract.

We discuss a set-valued generalization of strong proximinality in Banach spaces, introduced by J. Mach [Continuity properties of Chebyshev centers. J. Approx. Theory, 29(3):223–230, 1980] as property-(P1)(P_{1}). For a Banach space XX, a closed convex subset VV of XX and a subclass \mathscr{F} of the closed bounded subsets of XX, this property, defined for the triplet (X,V,)(X,V,\mathscr{F}), describes simultaneous strong proximinality of VV at each of the sets in \mathscr{F}. We establish that if the closed unit ball of a closed subspace of a Banach space XX possesses property-(P1)(P_{1}) for each of the classes of closed bounded, compact and finite subsets of XX, then so does the subspace. It is also proved that the closed unit ball of an MM-ideal in an L1L_{1}-predual space satisfies property-(P1)(P_{1}) for the compact subsets of the space. For a Choquet simplex KK, we provide a sufficient condition for the closed unit ball of a finite co-dimensional closed subspace of A(K)A(K) to satisfy property-(P1)(P_{1}) for the compact subsets of A(K)A(K). This condition also helps to establish the equivalence of strong proximinality of the closed unit ball of a finite co-dimensional subspace of A(K)A(K) and property-(P1)(P_{1}) of the closed unit ball of the subspace for the compact subsets of A(K)A(K). Further, for a compact Hausdorff space SS, a characterization is provided for a strongly proximinal finite co-dimensional closed subspace of C(S)C(S) in terms of property-(P1)(P_{1}) of the subspace and that of its closed unit ball for the compact subsets of C(S)C(S). We generalize this characterization for a strongly proximinal finite co-dimensional closed subspace of an L1L_{1}-predual space. As a consequence, we prove that such a subspace is a finite intersection of hyperplanes such that the closed unit ball of each of these hyperplanes satisfy property-(P1)(P_{1}) for the compact subsets of the L1L_{1}-predual space and vice versa. We conclude this article by providing an example of a closed subspace of a non-reflexive Banach space which satisfies 1121\frac{1}{2}-ball property and does not admit restricted Chebyshev center for a closed bounded subset of the Banach space.

Key words and phrases:
Property-(P1)(P_{1}), strong proximinality, restricted Chebyshev center, L1L_{1}-predual, MM-ideal, 1121\frac{1}{2}-ball property.
2010 Mathematics Subject Classification:
Primary 41A65, 41A50. Secondary 52A07, 46E15.

1. Introduction

The concepts of best simultaneous approximation and in particular, proximinality in Banach spaces are of great interest and significance in approximation theory. The classical (restricted) Chebyshev center problem stems from these concepts. With its first appearance in [11], the notion of strong proximinality rose to prominence, which is evident through [3], [7], [8] and [14][16]. This article aims to explore its generalization, introduced as property-(P1)(P_{1}) in [20], in certain objects of the class of Banach spaces.

In this article, we consider Banach spaces only over the real field \mathbb{R} and all the subspaces considered are assumed to be closed. Let XX be a Banach space. For xXx\in X and r>0r>0, B[x,r]B[x,r] denotes the closed ball centered at xx with radius rr. In particular, for simplicity, we denote the closed unit ball B[0,1]B[0,1] by BXB_{X}. The dual space of XX is denoted by XX^{\ast}. If YY is a subspace of XX, then BY=BXYB_{Y}=B_{X}\cap Y. For a non-empty closed convex subset VV of XX, let 𝒞(V)\mathcal{CB}(V), 𝒦(V)\mathcal{K}(V) and (V)\mathcal{F}(V) denote the classes of all non-empty closed bounded subsets of VV, non-empty compact subsets of VV and non-empty finite subsets of VV respectively.

Let B𝒞(X)B\in\mathcal{CB}(X) and VV be a non-empty closed convex subset of XX. For each xXx\in X, let r(x,B)=sup{xb:bB}r(x,B)=\sup\{\|x-b\|:b\in B\} and for each λ>0\lambda>0, let Sλ(B)={xX:r(x,B)λ}S_{\lambda}(B)=\{x\in X:r(x,B)\leq\lambda\}. The restricted Chebyshev radius of BB with respect to(in short, w.r.t.) VV in XX is denoted by radV(B)\emph{rad}_{V}(B) and is defined as radV(B)=infvVr(v,B)\emph{rad}_{V}(B)=\inf_{v\in V}r(v,B). A point vXv\in X is called a restricted Chebyshev center of BB w.r.t. VV in XX if vSradV(B)(B)Vv\in S_{\emph{rad}_{V}(B)}(B)\cap V. We denote the set of all restricted Chebyshev centers of BB w.r.t. VV in XX by centV(B)\emph{cent}_{V}(B). For δ>0\delta>0, we define centV(B,δ)={vV:r(v,B)radV(B)+δ}\emph{cent}_{V}(B,\delta)=\{v\in V:r(v,B)\leq\emph{rad}_{V}(B)+\delta\}. Let us note here that centV(B,δ)=SradV(B)+δ(B)V.\emph{cent}_{V}(B,\delta)=S_{\emph{rad}_{V}(B)+\delta}(B)\cap V. If V=XV=X, then radX(B)\emph{rad}_{X}(B) is called the Chebyshev radius of BB in XX and the elements in centX(B)\emph{cent}_{X}(B) are called the Chebyshev centers of BB in XX.

Definition 1.1 ([21]).

Let VV be a non-empty closed convex subset of XX and 𝒞(X)\mathscr{F}\subseteq\mathcal{CB}(X). Then the pair (V,)(V,\mathscr{F}) is said to satisfy the restricted center property(in short, r.c.p.) if for each FF\in\mathscr{F}, centV(F)\textrm{cent}_{V}(F)\neq\emptyset.

A non-empty closed convex subset VV of XX is said to be proximinal in XX if for each xXx\in X, centV({x})\emph{cent}_{V}(\{x\})\neq\emptyset. For each xXx\in X, we denote centV({x})\emph{cent}_{V}(\{x\}) by PV(x)P_{V}(x) and radV({x})=infvVxv\emph{rad}_{V}(\{x\})=\inf_{v\in V}\|x-v\| is the distance of the point xx from VV, which we denote by d(x,V)d(x,V). We say a subspace YY of XX is ball proximinal in XX if BYB_{Y} is proximinal in XX.

The following definition is a stronger form of proximinality, which was introduced in [11].

Definition 1.2.

A proximinal subset VV of a Banach space XX is said to be strongly proximinal at xXx\in X if for each ε>0\varepsilon>0, there exists δ(ε,x)>0\delta(\varepsilon,x)>0 such that PV(x,δ)PV(x)+εBXP_{V}(x,\delta)\subseteq P_{V}(x)+\varepsilon B_{X}, where PV(x,δ)=centV({x},δ)P_{V}(x,\delta)=\textrm{cent}_{V}(\{x\},\delta). We say that VV is strongly proximinal in XX if it is strongly proximinal at all points in XX.

A subspace YY of a Banach space XX is said to be strongly ball proximinal in XX if BYB_{Y} is strongly proximinal in XX.

The set-valued analogue of strong proximinality was first introduced by J. Mach in [20] and is defined as follows.

Definition 1.3.

Let XX be a Banach space, VV be a non-empty closed convex subset of XX and 𝒞(X)\mathscr{F}\subseteq\mathcal{CB}(X) such that (V,)(V,\mathscr{F}) has r.c.p.. Then the triplet (X,V,)(X,V,\mathscr{F}) has property-(P1)(P_{1}) if for each ε>0\varepsilon>0 and FF\in\mathscr{F}, there exists δ(ε,F)>0\delta(\varepsilon,F)>0 such that centV(F,δ)centV(F)+εBX.\textrm{cent}_{V}(F,\delta)\subseteq\textrm{cent}_{V}(F)+\varepsilon B_{X}.

It is clear from the definition of property-(P1)(P_{1}) that if VV is a subspace and \mathscr{F} is the class of all singleton subsets of XX, then VV is strongly proximinal in XX if (X,V,)(X,V,\mathscr{F}) has property-(P1)(P_{1}). Now, with the same notations as in Definition 1.3, an equivalent way of saying that the triplet (X,V,)(X,V,\mathscr{F}) satisfies property-(P1)(P_{1}) is if the sequence {vn}V\{v_{n}\}\subseteq V is such that r(vn,F)radV(F)r(v_{n},F)\rightarrow\emph{rad}_{V}(F), then d(vn,centV(F))0d(v_{n},\emph{cent}_{V}(F))\rightarrow 0. Examples of triplets satisfying property-(P1)(P_{1}) can be found in [20].

It is proved in [3] that the notion of strong ball proximinality is stronger than that of strong proximinality for a subspace of a Banach space. In Section 2, we explore such a connection between the notion of property-(P1)(P_{1}) of a subspace of a Banach space XX and that of its closed unit ball for 𝒞(X)\mathcal{CB}(X), 𝒦(X)\mathcal{K}(X) and (X)\mathcal{F}(X). In Sections 3 and 4, we mainly investigate property-(P1)(P_{1}) in the class of L1L_{1}-predual spaces. Let us recall some of the basic notions and well-known results in an L1L_{1}-predual space.

Definition 1.4.

A Banach space X is said to be an L1L_{1}-predual space if XX^{\ast} is isometric to an L1(μ)L_{1}(\mu) space, where (Ω,Σ,μ)(\varOmega,\varSigma,\mu) is a positive measure space.

J. Lindenstrauss characterized L1L_{1}-predual spaces in terms of the intersection properties of the balls in these spaces in [18].

Definition 1.5.

Let XX be a Banach space and nn\in\mathbb{N}. Then XX is said to have the n.2.I.P.n.2.I.P. if for every family of pairwise intersecting balls {B[xi,ri]:i=1,,n}\{B[x_{i},r_{i}]:i=1,\ldots,n\}, i=1nB[xi,ri]\bigcap_{i=1}^{n}B[x_{i},r_{i}]\neq\emptyset.

A detailed study on these intersection properties can be found in [18]. It is proved in [18, Theorem 6.1] that XX is an L1L_{1}-predual space if and only if for each nn\in\mathbb{N}, XX has n.2.I.P.n.2.I.P.. The class of spaces of real-valued continuous functions on a compact Hausdorff space SS equipped with supremum norm, denoted by C(S)C(S) and that of spaces of real-valued affine continuous functions on a Choquet simplex KK equipped with supremum norm, denoted by A(K)A(K), are two major subclasses of the L1L_{1}-predual spaces (see [2] and [18]). We refer [1] and [2] for a detailed study on Choquet simplex and Choquet theory in general. For a closed convex set VV, the set of all extreme points of VV is denoted by ext(V)ext(V). If μ\mu is a regular Borel measure on a compact Hausdorff space SS, then the support of μ\mu is denoted by S(μ)S(\mu).

The differentiability notion, introduced in [9] as strongly subdifferentiable(in short, SSD) points, characterizes strongly proximinal hyperplanes. In [11], it is proved that for a Banach space XX and xXx^{\ast}\in X^{\ast}, xx^{\ast} is an SSD-point of XX^{\ast} if and only if the kernel of xx^{\ast}, denoted by ker(x)ker(x^{\ast}), is strongly proximinal in XX. It is also established that if YY is a strongly proximinal finite co-dimensional subspace of a Banach space, then the annihilator of YY, denoted by YY^{\perp}, is contained in the set of all SSD-points of XX^{\ast}. If XX is an L1L_{1}-predual space, then the converse is also true(see [16, Proposition 3.20]).

Let us now recall another notion in a Banach space, which is stronger than proximinality, called as an MM-ideal. A detailed study of MM-ideals can be found in [13].

Definition 1.6.

Let XX be a Banach space.

  1. (1)

    A linear projection PP on XX is said to be an LL-projection if x=Px+xPx\|x\|=\|Px\|+\|x-Px\|, for each xXx\in X.

  2. (2)

    A subspace JJ of a Banach space XX is said to be an LL-summand in XX if it is the range of an LL-projection.

  3. (3)

    A subspace JJ of a Banach space XX is said to be an MM-ideal in XX if JJ^{\perp} is an LL-summand.

Another subclass of the L1L_{1}-predual spaces is the class of MM-ideals in an L1L_{1}-predual space. It is proved in [20] that if JJ is an MM-ideal in an L1L_{1}-predual space XX, then (X,J,𝒦(X))(X,J,\mathcal{K}(X)) satisfies property-(P1)(P_{1}). This motivates us to investigate if the triplet (X,BJ,𝒦(X))(X,B_{J},\mathcal{K}(X)) also satisfies property-(P1)(P_{1}) or not. The answer is in the affirmative and is proved in Section 3. For a Choquet simplex KK, if μA(K)\mu\in A(K)^{\ast}, then it means μC(K)\mu\in C(K)^{\ast} is a restriction map on A(K)A(K). Now, if YY is a finite co-dimensional subspace of A(K)A(K), then we prove in Theorem 3.7 that (A(K),BY,𝒦(A(K)))(A(K),B_{Y},\mathcal{K}(A(K))) satisfies property-(P1)(P_{1}) by imposing the conditions that the support of each of the defining measures of the subspace is finite and is contained in ext(K)ext(K). As a consequence, in particular, the condition that the support of each of the defining measures of the subspace is contained in ext(K)ext(K) also establishes that the closed unit ball BYB_{Y} being strongly proximinal in A(K)A(K) is equivalent to the triplet (A(K),BY,𝒦(A(K)))(A(K),B_{Y},\mathcal{K}(A(K))) satisfying property-(P1)(P_{1}). Further, in Sections 3, we also prove that for a compact Hausdorff space SS, YY is a strongly proximinal finite co-dimensional subspace of C(S)C(S) if and only if the triplet (C(S),BY,𝒦(C(S)))(C(S),B_{Y},\mathcal{K}(C(S))) satisfies property-(P1)(P_{1}). The equivalence of the triplets (C(S),Y,𝒦(C(S)))(C(S),Y,\mathcal{K}(C(S))) and (C(S),BY,𝒦(C(S)))(C(S),B_{Y},\mathcal{K}(C(S))) satisfying property-(P1)(P_{1}) is also established. These results are then generalized in Section 4 for a strongly proximinal finite co-dimensional subspace of an L1L_{1}-predual space, thereby adding two more characterizations to the list in [14, Theorem 2.6].

We now recall the notion of 1121\frac{1}{2}-ball property, which was first introduced in [22].

Definition 1.7.

A subspace YY of a Banach space XX is said to have 1121\frac{1}{2}-ball property in XX if for each yYy\in Y, xXx\in X and r1,r2>0r_{1},r_{2}>0, if xy<r1+r2\|x-y\|<r_{1}+r_{2} and YB[x,r2]Y\cap B[x,r_{2}]\neq\emptyset, then YB[y,r1]B[x,r2]Y\cap B[y,r_{1}]\cap B[x,r_{2}]\neq\emptyset.

It is proved in [7, Proposition 3.3] that if YY satisfies 1121\frac{1}{2}-ball property in a Banach space XX, then YY is strongly proximinal in XX. In Section 5, we provide an example of a hyperplane in a non-reflexive Banach space XX which satisfies 1121\frac{1}{2}-ball property and does not satisfy r.c.p. for (X)\mathcal{F}(X).

2. Property-(P1)(P_{1}) of a Banach space in relation to that of its closed unit ball

In this section, for a subspace YY of a Banach space XX, we prove that if =𝒞(X)\mathscr{F}=\mathcal{CB}(X), 𝒦(X)\mathcal{K}(X) or (X)\mathcal{F}(X) such that (X,BY,)(X,B_{Y},\mathscr{F}) has property-(P1)(P_{1}) then so does (X,Y,)(X,Y,\mathscr{F}). The ideas used are similar to the ones in [3]. If λ>0\lambda>0, then for a non-empty set AXA\subseteq X, the set {λa:aA}\{\lambda a:a\in A\} is denoted by λA\lambda A.

Lemma 2.1.

Let YY be a subspace of a Banach space XX and B𝒞(X)B\in\mathcal{CB}(X).

  • ((i))

    For each λ>0\lambda>0, λcentBY(1λB)=centλBY(B)\lambda\textrm{cent}_{B_{Y}}(\frac{1}{\lambda}B)=\textrm{cent}_{\lambda B_{Y}}(B).

  • ((ii))

    For each λsupbBb+radY(B)\lambda\geq\sup_{b\in B}\|b\|+\textrm{rad}_{Y}(B), centY(B)centλBY(B)\textrm{cent}_{Y}(B)\subseteq\textrm{cent}_{\lambda B_{Y}}(B).

  • ((iii))

    For each λ>supbBb+radY(B)\lambda>\sup_{b\in B}\|b\|+\textrm{rad}_{Y}(B), centY(B)=centλBY(B)\textrm{cent}_{Y}(B)=\textrm{cent}_{\lambda B_{Y}}(B).

Proof.

(i)(i). Let λ>0\lambda>0 and y0BYy_{0}\in B_{Y}. λy0λcentBY(1λB)\lambda y_{0}\in\lambda\emph{cent}_{B_{Y}}(\frac{1}{\lambda}B) \Leftrightarrow for each yBYy\in B_{Y}, r(y0,1λB)r(y,1λB)r(y_{0},\frac{1}{\lambda}B)\leq r(y,\frac{1}{\lambda}B) \Leftrightarrow for each yBYy\in B_{Y}, r(λy0,B)r(λy,B)r(\lambda y_{0},B)\leq r(\lambda y,B) \Leftrightarrow λy0centλBY(B)\lambda y_{0}\in\emph{cent}_{\lambda B_{Y}}(B).

(ii)(ii). Let λsupbBb+radY(B)\lambda\geq\sup_{b\in B}\|b\|+\emph{rad}_{Y}(B) and y0centY(B)y_{0}\in\emph{cent}_{Y}(B). Then for each bBb\in B, y0b+y0bsupbBb+r(y0,B)=supbBb+radY(B)λ\|y_{0}\|\leq\|b\|+\|y_{0}-b\|\leq\sup_{b\in B}\|b\|+r(y_{0},B)=\sup_{b\in B}\|b\|+\emph{rad}_{Y}(B)\leq\lambda. Hence, y0λBYy_{0}\in\lambda B_{Y} and it follows that y0centλBY(B)y_{0}\in\emph{cent}_{\lambda B_{Y}}(B).

(iii)(iii). Let λ>supbBb+radY(B)\lambda>\sup_{b\in B}\|b\|+\emph{rad}_{Y}(B) and y0centλBY(B)y_{0}\in\emph{cent}_{\lambda B_{Y}}(B). Let R=radY(B)R=\emph{rad}_{Y}(B). It is easy to see that for each δ>0\delta>0, R=inf{r(y,B):ySR+δ(B)Y}R=\inf\{r(y,B):y\in S_{R+\delta}(B)\cap Y\}. In particular, let δ=λ(supbBb+R)\delta=\lambda-(\sup_{b\in B}\|b\|+R). If ySR+δ(B)Yy\in S_{R+\delta}(B)\cap Y, then yλBYy\in\lambda B_{Y}. Hence, r(y0,B)r(y,B)r(y_{0},B)\leq r(y,B). It follows that y0centY(B)y_{0}\in\emph{cent}_{Y}(B). ∎

Proposition 2.2.

Let YY be a subspace of a Banach space XX and =𝒞(X)\mathscr{F}=\mathcal{CB}(X), 𝒦(X)\mathcal{K}(X) or (X)\mathcal{F}(X). If (BY,)(B_{Y},\mathscr{F}) has r.c.p., then so does (Y,)(Y,\mathscr{F}).

Proof.

We prove the result only for 𝒞(X)\mathcal{CB}(X) because the same proof works for 𝒦(X)\mathcal{K}(X) and (X)\mathcal{F}(X). Let B𝒞(X)B\in\mathcal{CB}(X) and λ>supbBb+radY(B)\lambda>\sup_{b\in B}\|b\|+\emph{rad}_{Y}(B). Since (BY,𝒞(X))(B_{Y},\mathcal{CB}(X)) has r.c.p., (BY,𝒞(BX))(B_{Y},\mathcal{CB}(B_{X})) has r.c.p.. Therefore, (λBY,𝒞(λBX))(\lambda B_{Y},\mathcal{CB}(\lambda B_{X})) has r.c.p.. Clearly, for each bBb\in B, bλBXb\in\lambda B_{X}. Therefore, from Lemma 2.1 (iii)(iii), centY(B)=centλBY(B)\emph{cent}_{Y}(B)=\emph{cent}_{\lambda B_{Y}}(B)\neq\emptyset. ∎

Proposition 2.3.

Let YY be a subspace of a Banach space XX and B𝒞(X)B\in\mathcal{CB}(X). Then

  • ((i))

    For each λ>0\lambda>0 and δ>0\delta>0, centλBY(B,δ)=λcentBY(1λB,δλ)\textrm{cent}_{\lambda B_{Y}}(B,\delta)=\lambda\textrm{cent}_{B_{Y}}(\frac{1}{\lambda}B,\frac{\delta}{\lambda}).

  • ((ii))

    For each λ>0\lambda>0, (X,λBY,{B})(X,\lambda B_{Y},\{B\}) has property-(P1)(P_{1}) if and only if (X,BY,{1λB})(X,B_{Y},\{\frac{1}{\lambda}B\}) has property-(P1)(P_{1}).

  • ((iii))

    Let =𝒞(X)\mathscr{F}=\mathcal{CB}(X), 𝒦(X)\mathcal{K}(X) or (X)\mathcal{F}(X). If (X,BY,)(X,B_{Y},\mathscr{F}) has property-(P1)(P_{1}), then so does (X,Y,)(X,Y,\mathscr{F}).

Proof.

(i)(i) follows from a similar argument as in Lemma 2.1 (i)(i).

(ii)(ii) easily follows from (i)(i).

(iii)(iii). We prove the result only for 𝒞(X)\mathcal{CB}(X) because the same proof works for 𝒦(X)\mathcal{K}(X) and (X)\mathcal{F}(X). Assume (X,BY,𝒞(X))(X,B_{Y},\mathcal{CB}(X)) has property-(P1)(P_{1}). Obviously, (X,BY,𝒞(BX))(X,B_{Y},\mathcal{CB}(B_{X})) has property-(P1)(P_{1}) and from Proposition 2.2, it follows that (Y,𝒞(X))(Y,\mathcal{CB}(X)) has r.c.p.. Let B𝒞(X)B\in\mathcal{CB}(X) and λ>supbBb+radY(B)\lambda>\sup_{b\in B}\|b\|+\emph{rad}_{Y}(B). Therefore, (X,BY,{1λB})(X,B_{Y},\{\frac{1}{\lambda}B\}) has property-(P1)(P_{1}) and hence, from (ii)(ii), (X,λBY,{B})(X,\lambda B_{Y},\{B\}) has property-(P1)(P_{1}). Now, using the same argument as in Lemma 2.1 (iii)(iii), for 0<δ<λ(supbBb+radY(B))0<\delta<\lambda-(\sup_{b\in B}\|b\|+\emph{rad}_{Y}(B)), centY(B,δ)λBY\emph{cent}_{Y}(B,\delta)\subseteq\lambda B_{Y} and hence, centY(B,δ)=centλBY(B,δ)\emph{cent}_{Y}(B,\delta)=\emph{cent}_{\lambda B_{Y}}(B,\delta). Also, centY(B)=centλBY(B)\emph{cent}_{Y}(B)=\emph{cent}_{\lambda B_{Y}}(B). It follows that (X,Y,{B})(X,Y,\{B\}) has property-(P1)(P_{1}). Therefore, (X,Y,𝒞(X))(X,Y,\mathcal{CB}(X)) has property-(P1)(P_{1}). ∎

3. Property-(P1)(P_{1}) in some L1L_{1}-predual spaces

In this section, we study property-(P1)(P_{1}) in few important subclasses of the class of L1L_{1}-predual spaces.

We first aim to show that if JJ is an MM-ideal in an L1L_{1}-predual space XX, then the triplet (X,BJ,𝒦(X))(X,B_{J},\mathcal{K}(X)) satisfies property-(P1)(P_{1}). The following lemma is obtained by minor modifications to the proof of [19, Lemma 2.1].

Lemma 3.1.

Let XX be an L1L_{1}-predual space, JJ be an MM-ideal in XX, F𝒦(X)F\in\mathcal{K}(X), {x1,,xn}X\{x_{1},\ldots,x_{n}\}\subseteq X and r,r1,,rn>0r,r_{1},\ldots,r_{n}>0. If for each xFx\in F, B[x,r]JB[x,r]\cap J\neq\emptyset; for each i=1,,ni=1,\dots,n, B[xi,ri]JB[x_{i},r_{i}]\cap J\neq\emptyset and i=1nB[xi,ri]Sr(F)\bigcap_{i=1}^{n}B[x_{i},r_{i}]\cap S_{r}(F)\neq\emptyset, then i=1nB[xi,ri]Sr(F)J.\bigcap_{i=1}^{n}B[x_{i},r_{i}]\cap S_{r}(F)\cap J\neq\emptyset.

Theorem 3.2.

Let XX be an L1L_{1}-predual space and JJ be an MM-ideal in XX. Then (X,BJ,𝒦(X))(X,B_{J},\mathcal{K}(X)) has property-(P1)(P_{1}).

Proof.

Let ε>0\varepsilon>0 and F𝒦(X)F\in\mathcal{K}(X). Let xcentBJ(F,ε)=SradBJ(F)+ε(F)BJx\in\emph{cent}_{B_{J}}(F,\varepsilon)=S_{\emph{rad}_{B_{J}}(F)+\varepsilon}(F)\cap B_{J}. Obviously, B[x,ε]BXB[x,\varepsilon]\cap B_{X}\neq\emptyset and for each yFy\in F, B[x,ε]B[y,radBJ(F)]B[x,\varepsilon]\cap B[y,\emph{rad}_{B_{J}}(F)]\neq\emptyset. By [16, Corollary 4.8], JJ is ball proximinal in XX. Hence for each yFy\in F, B[y,d(y,BJ)]BJB[y,d(y,B_{J})]\cap B_{J}\neq\emptyset. Also, clearly, for each yFy\in F, d(y,BJ)radBJ(F)d(y,B_{J})\leq\emph{rad}_{B_{J}}(F). It follows that for each yFy\in F, B[y,radBJ(F)]BXB[y,\emph{rad}_{B_{J}}(F)]\cap B_{X}\neq\emptyset. By [19, Theorem 2.2], centJ(F)=SradJ(F)(F)J\emph{cent}_{J}(F)=S_{\emph{rad}_{J}(F)}(F)\cap J\neq\emptyset. Since radJ(F)radBJ(F)\emph{rad}_{J}(F)\leq\emph{rad}_{B_{J}}(F), SradBJ(F)(F).S_{\emph{rad}_{B_{J}}(F)}(F)\neq\emptyset. Now, {B[y,radBJ(F)]:yF}{B[x,ε],BX}\left\{B[y,\emph{rad}_{B_{J}}(F)]:y\in F\right\}\cup\left\{B[x,\varepsilon],B_{X}\right\} is a collection of closed balls which intersect pairwise. Therefore, by [18, Theorem 4.5, pg. 38] and [17, Theorem 6, pg. 212],

B[x,ε]SradBJ(F)(F)BX.B[x,\varepsilon]\cap S_{\emph{rad}_{B_{J}}(F)}(F)\cap B_{X}\neq\emptyset.

It is easily observed that each of the above closed balls intersects JJ. Therefore, by Lemma 3.1,

B[x,ε]SradBJ(F)(F)BXJ.B[x,\varepsilon]\cap S_{\emph{rad}_{B_{J}}(F)}(F)\cap B_{X}\cap J\neq\emptyset.

For a compact Hausdorff space SS, the next main result in this section provides a characterization for a strongly proximinal finite co-dimensional subspace YY of C(S)C(S) in terms of property-(P1)(P_{1}) of the triplets (C(S),Y,𝒦(C(S)))(C(S),Y,\mathcal{K}(C(S))) and (C(S),BY,𝒦(C(S)))(C(S),B_{Y},\mathcal{K}(C(S))). To this end, we need the following lemma, which also aids in proving other results in this article.

Lemma 3.3.

Let VV be a non-empty closed convex subset of a Banach space XX and B𝒞(X)B\in\mathcal{CB}(X). Then for every ε>0\varepsilon>0 and γ>0\gamma>0, there exists δ>0\delta>0 such that

centV(B,γ+δ)centV(B,γ)+εBX.\textrm{cent}_{V}(B,\gamma+\delta)\subseteq\textrm{cent}_{V}(B,\gamma)+\varepsilon B_{X}.
Proof.

Let ε>0\varepsilon>0, γ>0\gamma>0 and R=radV(B)R=\emph{rad}_{V}(B). We choose δ>0\delta>0 such that δ<min{R,εγ6R+4γ}\delta<\min\left\{R,\frac{\varepsilon\gamma}{6R+4\gamma}\right\}. Let vcentV(B,γ+δ)v\in\emph{cent}_{V}(B,\gamma+\delta). Then r(v,B)R+γ+δr(v,B)\leq R+\gamma+\delta. Further, let vcentV(B,γ2)v^{\prime}\in\emph{cent}_{V}\left(B,\frac{\gamma}{2}\right). We define λ=2δ2δ+γ\lambda=\frac{2\delta}{2\delta+\gamma} and v~=(1λ)v+λv\tilde{v}=(1-\lambda)v+\lambda v^{\prime}. After performing some easy calculations, for each bBb\in B, we obtain v~b<R+γ\|\tilde{v}-b\|<R+\gamma and hence, it follows that r(v~,B)R+γr(\tilde{v},B)\leq R+\gamma. Also, for each bBb\in B,

vv~λ(vb+vb)<2δ2δ+γ(3R+2γ)<ε.\|v-\tilde{v}\|\leq\lambda(\|v-b\|+\|v^{\prime}-b\|)<\frac{2\delta}{2\delta+\gamma}\left(3R+2\gamma\right)<\varepsilon.

Remark 3.4.

If XX is an L1L_{1}-predual space, then it follows from [4, Corollary 3.4] and [18, Theorem 4.5, p. 38] that for each F𝒦(X)F\in\mathcal{K}(X), centX(F)\textrm{cent}_{X}(F)\neq\emptyset.

Theorem 3.5.

Let SS be a compact Hausdorff space and {μ1,,μn}C(S)\{\mu_{1},\ldots,\mu_{n}\}\subseteq C(S)^{\ast} such that for each i=1,,ni=1,\ldots,n, μi=1\|\mu_{i}\|=1. If for each i=1,,ni=1,\ldots,n, S(μi)S(\mu_{i}) is finite and Y=i=1nker(μi)Y=\bigcap_{i=1}^{n}ker(\mu_{i}), then (C(S),BY,𝒦(C(S)))(C(S),B_{Y},\mathcal{K}(C(S))) has property-(P1)(P_{1}).

Proof.

We employ techniques similar to those used in the proof of [15, Proposition 4.2]. We prove the result only for n=2n=2 because the same ideas work to prove the result for n2n\neq 2. Let μ1=i=1mαiδki\mu_{1}=\sum_{i=1}^{m}\alpha_{i}\delta_{k_{i}}, μ2=j=1rβjδtj\mu_{2}=\sum_{j=1}^{r}\beta_{j}\delta_{t_{j}}, Y=ker(μ1)ker(μ2)Y=ker(\mu_{1})\cap ker(\mu_{2}) and F𝒦(C(S))F\in\mathcal{K}(C(S)).

Case 1: S(μ1)S(μ2)=S(\mu_{1})\cap S(\mu_{2})=\emptyset.

Let us define

A={(γ1,,γm,γ1,,γr)[1,1]m+r:i=1mαiγi=0 and j=1rβjγj=0}A=\left\{(\gamma_{1},\ldots,\gamma_{m},\gamma^{\prime}_{1},\ldots,\gamma^{\prime}_{r})\in[-1,1]^{m+r}:\sum_{i=1}^{m}\alpha_{i}\gamma_{i}=0\mbox{ and }\sum_{j=1}^{r}\beta_{j}\gamma^{\prime}_{j}=0\right\} (1)

and

α=inf{supfFmax1im1jr{|γif(ki)|,|γjf(tj)|}:(γ1,,γm,γ1,,γr)A}.\alpha=\inf\left\{\sup_{f\in F}\max_{\begin{subarray}{c}1\leq i\leq m\\ 1\leq j\leq r\end{subarray}}\{|\gamma_{i}-f(k_{i})|,|\gamma^{\prime}_{j}-f(t_{j})|\}:(\gamma_{1},\ldots,\gamma_{m},\gamma^{\prime}_{1},\ldots,\gamma^{\prime}_{r})\in A\right\}. (2)

For each fFf\in F, the continuity of the map

(γ1,,γm,γ1,,γr)max1im1jr{|γif(ki)|,|γjf(tj)|}(\gamma_{1},\ldots,\gamma_{m},\gamma^{\prime}_{1},\ldots,\gamma^{\prime}_{r})\mapsto\max_{\begin{subarray}{c}1\leq i\leq m\\ 1\leq j\leq r\end{subarray}}\{|\gamma_{i}-f(k_{i})|,|\gamma^{\prime}_{j}-f(t_{j})|\}

on m+r\mathbb{R}^{m+r} implies the lower semicontinuity of the map

(γ1,,γm,γ1,,γr)supfFmax1im1jr{|γif(ki)|,|γjf(tj)|}(\gamma_{1},\ldots,\gamma_{m},\gamma^{\prime}_{1},\ldots,\gamma^{\prime}_{r})\mapsto\sup_{f\in F}\max_{\begin{subarray}{c}1\leq i\leq m\\ 1\leq j\leq r\end{subarray}}\{|\gamma_{i}-f(k_{i})|,|\gamma^{\prime}_{j}-f(t_{j})|\}

on m+r\mathbb{R}^{m+r}. The set Am+rA\subseteq\mathbb{R}^{m+r} is non-empty and compact and hence, the infimum in (2) is attained. Let (η1,,ηm,η1,,ηr)A(\eta_{1},\ldots,\eta_{m},\eta^{\prime}_{1},\ldots,\eta^{\prime}_{r})\in A be such that

α=supfFmax1im1jr{|ηif(ki)|,|ηjf(tj)|}.\alpha=\sup_{f\in F}\max_{\begin{subarray}{c}1\leq i\leq m\\ 1\leq j\leq r\end{subarray}}\{|\eta_{i}-f(k_{i})|,|\eta^{\prime}_{j}-f(t_{j})|\}. (3)

Therefore, for each fFf\in F,

α+ηif(ki)α+ηi for i=1,,m and α+ηjf(tj)α+ηj for j=1,,r.\begin{split}&-\alpha+\eta_{i}\leq f(k_{i})\leq\alpha+\eta_{i}\mbox{ for }i=1,\ldots,m\mbox{ and }\\ &-\alpha+\eta^{\prime}_{j}\leq f(t_{j})\leq\alpha+\eta^{\prime}_{j}\mbox{ for }j=1,\ldots,r.\\ \end{split} (4)

Let R=radBY(F)R=\emph{rad}_{B_{Y}}(F). It follows from the definition of α\alpha that RαR\geq\alpha. Therefore, from the inequalities in (4), it follows that for each fFf\in F,

R+ηif(ki)R+ηi for i=1,,m and R+ηjf(tj)R+ηj for j=1,,r.\begin{split}&-R+\eta_{i}\leq f(k_{i})\leq R+\eta_{i}\mbox{ for }i=1,\ldots,m\mbox{ and }\\ &-R+\eta^{\prime}_{j}\leq f(t_{j})\leq R+\eta^{\prime}_{j}\mbox{ for }j=1,\ldots,r.\\ \end{split} (5)

Now, from Remark 3.4, centC(S)(F)=SradC(S)(F)(F)\emph{cent}_{C(S)}(F)=S_{\emph{rad}_{C(S)}(F)}(F)\neq\emptyset. Since radC(S)(F)R\emph{rad}_{C(S)}(F)\leq R, SR(F)S_{R}(F)\neq\emptyset. By [15, Proposition 4.2], YY is ball proximinal in C(S)C(S). Therefore, for each fFf\in F, B[f,d(f,BY)]BYB[f,d(f,B_{Y})]\cap B_{Y}\neq\emptyset. It follows that for each fFf\in F, B[f,R]BC(S)B[f,R]\cap B_{C(S)}\neq\emptyset. Since C(S)C(S) is an L1L_{1}-predual space and FF is compact, by [18, Theorem 4.5, pg. 38], SR(F)BC(S).S_{R}(F)\cap B_{C(S)}\neq\emptyset. Let g0BC(S)SR(F)g_{0}\in B_{C(S)}\cap S_{R}(F). Then for each fFf\in F and tSt\in S,

f(t)Rg0(t)f(t)+R.f(t)-R\leq g_{0}(t)\leq f(t)+R. (6)

It follows that for tSt\in S,

supfFf(t)RinffFf(t)+R.\sup_{f\in F}f(t)-R\leq\inf_{f\in F}f(t)+R. (7)

It also follows from (6) that for each fFf\in F and tSt\in S,

1Rf(t)R+1.-1-R\leq f(t)\leq R+1. (8)

Now, choose gBC(S)g\in B_{C(S)} such that g(ki)=ηig(k_{i})=\eta_{i}, for i=1,,mi=1,\ldots,m and g(tj)=ηjg(t_{j})=\eta^{\prime}_{j}, for j=1,,rj=1,\ldots,r. Let h0:Sh_{0}:S\rightarrow\mathbb{R} be defined as h0=min{g,inffFf+R}h_{0}=\min\{g,\inf_{f\in F}f+R\}. The compactness of FF ensures h0C(S)h_{0}\in C(S). Further, define h:Sh:S\rightarrow\mathbb{R} as h=max{h0,supfFfR}h=\max\{h_{0},\sup_{f\in F}f-R\}. Then from the inequalities in (5), (7) and (8), it follows that hBC(S)h\in B_{C(S)}; h(ki)=ηih(k_{i})=\eta_{i}, for i=1,,mi=1,\ldots,m; h(tj)=ηjh(t_{j})=\eta^{\prime}_{j}, for j=1,,rj=1,\ldots,r and for each tSt\in S, supfFf(t)Rh(t)inffFf(t)+R.\sup_{f\in F}f(t)-R\leq h(t)\leq\inf_{f\in F}f(t)+R. Therefore, hcentBY(F)h\in\emph{cent}_{B_{Y}}(F).

Now, we prove that (C(S),BY,{F})(C(S),B_{Y},\{F\}) satisfies property-(P1)(P_{1}). Let ε>0\varepsilon>0. Let X=m+rX=\mathbb{R}^{m+r}, equipped with the supremum norm and

F~={xf=(f(k1),,f(km),f(t1),,f(tr))X:fF}𝒦(X).\tilde{F}=\{x_{f}=(f(k_{1}),\ldots,f(k_{m}),f(t_{1}),\ldots,f(t_{r}))\in X:f\in F\}\in\mathcal{K}(X).

Subcase 1: R=αR=\alpha.

Due to the compactness of the set AA, (X,A,𝒞(X))(X,A,\mathcal{CB}(X)) has property-(P1)(P_{1}). Hence, there exists 0<δ<ε0<\delta<\varepsilon such that centA(F~,δ)centA(F~)+εBX\emph{cent}_{A}(\tilde{F},\delta)\subseteq\emph{cent}_{A}(\tilde{F})+\varepsilon B_{X}.

Let gcentBY(F,δ)g\in\emph{cent}_{B_{Y}}(F,\delta). Then xg=(g(k1),,g(km),g(t1),,g(tr))centA(F~,δ)x_{g}=(g(k_{1}),\ldots,g(k_{m}),g(t_{1}),\ldots,g(t_{r}))\in\emph{cent}_{A}(\tilde{F},\delta). Therefore, there exists z=(z1,,zm,z1,,zr)centA(F~)z=(z_{1},\ldots,z_{m},z^{\prime}_{1},\ldots,z^{\prime}_{r})\in\emph{cent}_{A}(\tilde{F}) such that xgzε\|x_{g}-z\|\leq\varepsilon. Now, choose gBC(S)g^{\prime}\in B_{C(S)} such that g(ki)=zig^{\prime}(k_{i})=z_{i}, for i=1,,mi=1,\ldots,m and g(tj)=zjg^{\prime}(t_{j})=z^{\prime}_{j}, for j=1,,rj=1,\ldots,r. Let f1=max{supfFfR,gε,1}f_{1}=\max\{\sup_{f\in F}f-R,g-\varepsilon,-1\} and f2=min{inffFf+R,g+ε,1}f_{2}=\min\{\inf_{f\in F}f+R,g+\varepsilon,1\}. Then f1gf2f_{1}\leq g^{\prime}\leq f_{2} on {k1,,km,t1,,tr}\{k_{1},\ldots,k_{m},t_{1},\ldots,t_{r}\}. Let h1=max{f1,g}h_{1}=\max\{f_{1},g^{\prime}\} and h2=min{h1,f2}h_{2}=\min\{h_{1},f_{2}\}. Since r(g,F)R+δ<R+εr(g,F)\leq R+\delta<R+\varepsilon. It follows that supfFfRg+ε\sup_{f\in F}f-R\leq g+\varepsilon and gεinffFf+Rg-\varepsilon\leq\inf_{f\in F}f+R. Also, from the inequalities in (8)(\ref{eqn2.9}), it follows that supfFfR1\sup_{f\in F}f-R\leq 1 and 1inffFf+R-1\leq\inf_{f\in F}f+R. Further, since gBYg\in B_{Y}, 1g1-1\leq g\leq 1 and hence, gε1g-\varepsilon\leq 1. Therefore, f1f2f_{1}\leq f_{2} and f1h1f_{1}\leq h_{1}. We can then conclude that h2=gh_{2}=g^{\prime} on {k1,,km,t1,,tr}\{k_{1},\ldots,k_{m},t_{1},\ldots,t_{r}\} and f1h2f2f_{1}\leq h_{2}\leq f_{2} on SS. Therefore, h2BYh_{2}\in B_{Y}, supfFfRh2inffFf+R\sup_{f\in F}f-R\leq h_{2}\leq\inf_{f\in F}f+R and gεh2g+εg-\varepsilon\leq h_{2}\leq g+\varepsilon. This implies h2centBY(F)h_{2}\in\emph{cent}_{B_{Y}}(F) and gh2ε\|g-h_{2}\|\leq\varepsilon. Hence, (C(S),BY,{F})(C(S),B_{Y},\{F\}) satisfies property-(P1)(P_{1}).

Subcase 2: R>αR>\alpha.

Let β=Rα\beta=R-\alpha. By Lemma 3.3, there exists 0<δ<ε0<\delta<\varepsilon such that centA(F~,β+δ)centA(F~,β)+εBX\emph{cent}_{A}(\tilde{F},\beta+\delta)\subseteq\emph{cent}_{A}(\tilde{F},\beta)+\varepsilon B_{X}.

Let gcentBY(F,δ)g\in\emph{cent}_{B_{Y}}(F,\delta). Then xg=(g(k1),,g(km),g(t1),,g(tr))centA(F~,β+δ)x_{g}=(g(k_{1}),\ldots,g(k_{m}),g(t_{1}),\ldots,g(t_{r}))\in\emph{cent}_{A}(\tilde{F},\beta+\delta). Therefore, there exists z=(z1,,zm,z1,,zr)centA(F~,β)z=(z_{1},\ldots,z_{m},z^{\prime}_{1},\ldots,z^{\prime}_{r})\in\emph{cent}_{A}(\tilde{F},\beta) such that xgzε\|x_{g}-z\|\leq\varepsilon. Therefore, r(z,F~)α+β=Rr(z,\tilde{F})\leq\alpha+\beta=R. Now, choose gBC(S)g^{\prime}\in B_{C(S)} such that g(ki)=zig^{\prime}(k_{i})=z_{i} and g(tj)=zjg^{\prime}(t_{j})=z^{\prime}_{j}, for i=1,,mi=1,\ldots,m and j=1,,rj=1,\ldots,r. Then by following the same steps as in the last paragraph of Subcase 1, we can prove that (C(S),BY,{F})(C(S),B_{Y},\{F\}) satisfies property-(P1)(P_{1}).

Case 2: S(μ1)S(μ2)S(\mu_{1})\cap S(\mu_{2})\neq\emptyset.

Without loss of generality, for simplicity, we assume that S(μ1)S(μ2)={k1,,ks}S(\mu_{1})\cap S(\mu_{2})=\{k_{1},\ldots,k_{s}\}, where ki=tik_{i}=t_{i}, for 1ismin{m,r}1\leq i\leq s\leq\min\{m,r\}. Let us define

B={(γ1,,γm,γ1,,γr)[1,1]m+r:γi=γi for 1is;i=1mαiγi=0 and j=1rβjγj=0}\begin{split}B=\{(\gamma_{1},\ldots,\gamma_{m},\gamma^{\prime}_{1},\ldots,\gamma^{\prime}_{r})\in[-1,1]^{m+r}:\gamma_{i}=\gamma^{\prime}_{i}\mbox{ for }1\leq&i\leq s;\sum_{i=1}^{m}\alpha_{i}\gamma_{i}=0\\ &\mbox{ and }\sum_{j=1}^{r}\beta_{j}\gamma^{\prime}_{j}=0\}\end{split} (9)

and

α=inf{supfFmax1im1jr{|γif(ki)|,|γjf(tj)|}:(γ1,,γm,γ1,,γr)B}.\alpha^{\prime}=\inf\left\{\sup_{f\in F}\max_{\begin{subarray}{c}1\leq i\leq m\\ 1\leq j\leq r\end{subarray}}\{|\gamma_{i}-f(k_{i})|,|\gamma^{\prime}_{j}-f(t_{j})|\}:(\gamma_{1},\ldots,\gamma_{m},\gamma^{\prime}_{1},\ldots,\gamma^{\prime}_{r})\in B\right\}. (10)

Applying the same argument as in Case 1, we can show that the infimum in (10) is attained say at (η1,,ηm,η1,,ηr)B(\eta_{1},\ldots,\eta_{m},\eta^{\prime}_{1},\ldots,\eta^{\prime}_{r})\in B. We further proceed the same way as in Case 1 to first prove that centBY(F)\emph{cent}_{B_{Y}}(F)\neq\emptyset and then that (C(S),BY,{F})(C(S),B_{Y},\{F\}) satisfies property-(P1)(P_{1}). ∎

We now prove our main result.

Theorem 3.6.

Let SS be a compact Hausdorff space and YY be a finite co-dimensional subspace of C(S)C(S). Then the following statements are equivalent :

  • ((i))

    YY is strongly proximinal in C(S)C(S).

  • ((ii))

    YY is strongly ball proximinal in C(S)C(S).

  • ((iii))

    (C(S),Y,𝒦(C(S)))(C(S),Y,\mathcal{K}(C(S))) has property-(P1)(P_{1}).

  • ((iv))

    (C(S),BY,𝒦(C(S)))(C(S),B_{Y},\mathcal{K}(C(S))) has property-(P1)(P_{1}).

  • ((v))

    Y{μC(S):μ is an SSD-point of C(S)}Y^{\perp}\subseteq\{\mu\in C(S)^{\ast}:\mu\mbox{ is an SSD-point of }C(S)^{\ast}\}.

Proof.

By [15, Theorem 4.3], (i)(ii)(v)(i)\Leftrightarrow(ii)\Leftrightarrow(v). The implication (v)(iv)(v)\Rightarrow(iv) follows from [8, Theorem 2.1] and Theorem 3.5. Also, clearly, (iii)(i)(iii)\Rightarrow(i) and from Proposition 2.3, (iv)(iii)(iv)\Rightarrow(iii). ∎

For a Choquet simplex KK and a finite co-dimensional subspace YY of A(K)A(K), the following result provides a sufficient condition for the triplet (A(K),BY,𝒦(A(K)))(A(K),B_{Y},\mathcal{K}(A(K))) to satisfy property-(P1)(P_{1}). The convex hull of a non-empty subset AA of KK is denoted by conv(A)conv(A).

Theorem 3.7.

Let KK be a Choquet simplex and {μ1,,μn}A(K)\{\mu_{1},\ldots,\mu_{n}\}\subseteq A(K)^{\ast} such that for each i=1,,ni=1,\ldots,n, μi=1\|\mu_{i}\|=1. If for each i=1,,ni=1,\ldots,n, S(μi)S(\mu_{i}) is finite, S(μi)ext(K)S(\mu_{i})\subseteq ext(K) and Y=i=1nker(μi)Y=\bigcap_{i=1}^{n}ker(\mu_{i}), then (A(K),BY,𝒦(A(K)))(A(K),B_{Y},\mathcal{K}(A(K))) has property-(P1)(P_{1}).

Proof.

We employ techniques similar to those used in the proof of [15, Theorem 5.4]. We prove the result only for n=2n=2 because the same ideas work to prove the result for n2n\neq 2. Let μ1=i=1mαiδki\mu_{1}=\sum_{i=1}^{m}\alpha_{i}\delta_{k_{i}} and μ2=j=1rβjδtj\mu_{2}=\sum_{j=1}^{r}\beta_{j}\delta_{t_{j}} and Y=ker(μ1)ker(μ2)Y=ker(\mu_{1})\cap ker(\mu_{2}). Let F𝒦(A(K))F\in\mathcal{K}(A(K)).

Case 1: S(μ1)S(μ2)=S(\mu_{1})\cap S(\mu_{2})=\emptyset.

Let α,A\alpha,A be as defined in the proof of Case 1 of Theorem 3.5 and following the same argument as in that proof, let (η1,,ηm,η1,,ηr)A(\eta_{1},\ldots,\eta_{m},\eta^{\prime}_{1},\ldots,\eta^{\prime}_{r})\in A be such that

α=supfFmax1im1jr{|ηif(ki)|,|ηjf(tj)|}.\alpha=\sup_{f\in F}\max_{\begin{subarray}{c}1\leq i\leq m\\ 1\leq j\leq r\end{subarray}}\{|\eta_{i}-f(k_{i})|,|\eta^{\prime}_{j}-f(t_{j})|\}.

Let R=radBY(F)R=\emph{rad}_{B_{Y}}(F). Then from the definition of α\alpha it follows that RαR\geq\alpha and hence for each fFf\in F,

R+ηif(ki)R+ηi for i=1,,m and R+ηjf(tj)R+ηj for j=1,,r.\begin{split}&-R+\eta_{i}\leq f(k_{i})\leq R+\eta_{i}\mbox{ for }i=1,\ldots,m\mbox{ and }\\ &-R+\eta^{\prime}_{j}\leq f(t_{j})\leq R+\eta^{\prime}_{j}\mbox{ for }j=1,\ldots,r.\\ \end{split} (11)

It follows from Remark 3.4 that centA(K)(F)=SradA(K)(F)(F)\emph{cent}_{A(K)}(F)=S_{\emph{rad}_{A(K)}(F)}(F)\neq\emptyset. Since radA(K)(F)R\emph{rad}_{A(K)}(F)\leq R, SR(F)S_{R}(F)\neq\emptyset. By [15, Theorem 5.4], YY is ball proximinal in A(K)A(K). Therefore, for each fFf\in F, B[f,d(f,BY)]BYB[f,d(f,B_{Y})]\cap B_{Y}\neq\emptyset. For each fFf\in F, since d(f,BY)Rd(f,B_{Y})\leq R, it follows that BA(K)B[f,R]B_{A(K)}\cap B[f,R]\neq\emptyset. Hence, by [18, Theorem 4.5, pg. 38], BA(K)SR(F).B_{A(K)}\cap S_{R}(F)\neq\emptyset. Let g0BA(K)SR(F)g_{0}\in B_{A(K)}\cap S_{R}(F). Then for each fFf\in F and tKt\in K,

f(t)Rg0(t)f(t)+R.f(t)-R\leq g_{0}(t)\leq f(t)+R. (12)

It follows that for tKt\in K,

supfFf(t)RinffFf(t)+R.\sup_{f\in F}f(t)-R\leq\inf_{f\in F}f(t)+R. (13)

It also follows from (12) that for each fFf\in F and tKt\in K,

1Rf(t)R+1.-1-R\leq f(t)\leq R+1. (14)

Let us choose gBC(K)g\in B_{C(K)} such that g(ki)=ηig(k_{i})=\eta_{i}, for i=1,,mi=1,\ldots,m and g(tj)=ηjg(t_{j})=\eta^{\prime}_{j}, for j=1,,rj=1,\ldots,r. Define h0:Kh_{0}:K\rightarrow\mathbb{R} as follows: for each tKt\in K,

h0(t)={inffFf(t)+R, if g(t)inffFf(t)+Rg(k), if supfFf(t)Rg(t)inffFf(t)+RsupfFf(t)R, if g(t)supfFf(t)R.h_{0}(t)=\begin{cases}\inf_{f\in F}f(t)+R&\mbox{, if }g(t)\geq\inf_{f\in F}f(t)+R\\ g(k)&\mbox{, if }\sup_{f\in F}f(t)-R\leq g(t)\leq\inf_{f\in F}f(t)+R\\ \sup_{f\in F}f(t)-R&\mbox{, if }g(t)\leq\sup_{f\in F}f(t)-R.\\ \end{cases}

The compactness of FF and the inequalities in (14) ensure h0BC(K)h_{0}\in B_{C(K)}. By the definition of h0h_{0}, supfFfRh0inffFf+R\sup_{f\in F}f-R\leq h_{0}\leq\inf_{f\in F}f+R on KK. From the inequalities in (11), it follows that for i=1,,mi=1,\ldots,m, h0(ki)=ηih_{0}(k_{i})=\eta_{i} and for j=1,,rj=1,\ldots,r, h0(tj)=ηjh_{0}(t_{j})=\eta^{\prime}_{j}. Hence, i=1mαih0(ki)=0=j=1rβjh0(tj)\sum_{i=1}^{m}\alpha_{i}h_{0}(k_{i})=0=\sum_{j=1}^{r}\beta_{j}h_{0}(t_{j}).

Now, by [1, Theorem II.3.12], there exists hBA(K)h\in B_{A(K)} such that for each i=1,,mi=1,\ldots,m and j=1,,rj=1,\ldots,r, h(ki)=h0(ki)h(k_{i})=h_{0}(k_{i}) and h(tj)=h0(tj)h(t_{j})=h_{0}(t_{j}). Let G=conv({k1,,km,t1,,tr})G=conv(\{k_{1},\ldots,k_{m},t_{1},\ldots,t_{r}\}). Then GG is a closed face of KK. Further, for each fFf\in F, fRhf+Rf-R\leq h\leq f+R on GG and hence, supfFfRhinffFf+R\sup_{f\in F}f-R\leq h\leq\inf_{f\in F}f+R on GG. Also, 1h1-1\leq h\leq 1 on GG. Therefore, from the inequalities in (14), it follows that

max{1,supfFfR}hmin{1,inffFf+R} on G\max\left\{-1,\sup_{f\in F}f-R\right\}\leq h\leq\min\left\{1,\inf_{f\in F}f+R\right\}\mbox{ on }G

and

max{1,supfFfR}min{1,inffFf+R} on K.\max\left\{-1,\sup_{f\in F}f-R\right\}\leq\min\left\{1,\inf_{f\in F}f+R\right\}\mbox{ on }K.

Note that max{1,supfFfR}\max\left\{-1,\sup_{f\in F}f-R\right\} and min{1,inffFf+R}-\min\left\{1,\inf_{f\in F}f+R\right\} are convex continuous functions on KK. Therefore, by [2, Corollary 7.7, p. 73], there exists h~A(K)\tilde{h}\in A(K) such that h~=h\tilde{h}=h on GG and max{1,supfFfR}h~min{1,inffFf+R}\max\left\{-1,\sup_{f\in F}f-R\right\}\leq\tilde{h}\leq\min\left\{1,\inf_{f\in F}f+R\right\} on KK. It follows that h~centBY(F)\tilde{h}\in\emph{cent}_{B_{Y}}(F).

Now, we prove that (A(K),BY,{F})(A(K),B_{Y},\{F\}) satisfies property-(P1)(P_{1}). Let ε>0\varepsilon>0. Let X=m+rX=\mathbb{R}^{m+r}, equipped with the supremum norm and

F~={xf=(f(k1),,f(km),f(t1),,f(tr))X:fF}𝒦(X).\tilde{F}=\{x_{f}=(f(k_{1}),\ldots,f(k_{m}),f(t_{1}),\ldots,f(t_{r}))\in X:f\in F\}\in\mathcal{K}(X).

Subcase 1: R=αR=\alpha.

The set AXA\subseteq X is compact and hence, (X,A,𝒞(X))(X,A,\mathcal{CB}(X)) has property-(P1)(P_{1}). Therefore, there exists 0<δ<ε0<\delta<\varepsilon such that centA(F~,δ)centA(F~)+εBX\emph{cent}_{A}(\tilde{F},\delta)\subseteq\emph{cent}_{A}(\tilde{F})+\varepsilon B_{X}.

Let gcentBY(F,δ)g\in\emph{cent}_{B_{Y}}(F,\delta). Then xg=(g(k1),,g(km),g(t1),,g(tr))centA(F~,δ)x_{g}=(g(k_{1}),\ldots,g(k_{m}),g(t_{1}),\ldots,g(t_{r}))\in\emph{cent}_{A}(\tilde{F},\delta). Therefore, there exists z=(z1,,zm,z1,,zr)centA(F~)z=(z_{1},\ldots,z_{m},z^{\prime}_{1},\ldots,z^{\prime}_{r})\in\emph{cent}_{A}(\tilde{F}) such that xgzε\|x_{g}-z\|\leq\varepsilon. Now, choose gBC(K)g^{\prime}\in B_{C(K)} such that g(ki)=zig^{\prime}(k_{i})=z_{i} and g(tj)=zjg^{\prime}(t_{j})=z^{\prime}_{j}, for i=1,,mi=1,\ldots,m and j=1,,rj=1,\ldots,r. Then by [1, Theorem II.3.12], there exists hBA(K)h^{\prime}\in B_{A(K)} such that h(ki)=g(ki)=zih^{\prime}(k_{i})=g^{\prime}(k_{i})=z_{i}, for i=1,,mi=1,\ldots,m and h(tj)=g(tj)=zjh^{\prime}(t_{j})=g^{\prime}(t_{j})=z^{\prime}_{j}, for j=1,,rj=1,\ldots,r. Therefore, i=1mαih(ki)=0=j=1rβjh(tj)\sum_{i=1}^{m}\alpha_{i}h^{\prime}(k_{i})=0=\sum_{j=1}^{r}\beta_{j}h^{\prime}(t_{j}).

Let G=conv({k1,,km,t1,,tr})G=conv(\{k_{1},\ldots,k_{m},t_{1},\ldots,t_{r}\}). Then GG is a closed face of KK. Clearly, supfFfRhinffFf+R\sup_{f\in F}f-R\leq h^{\prime}\leq\inf_{f\in F}f+R on GG, gεhg+εg-\varepsilon\leq h^{\prime}\leq g+\varepsilon on GG and 1h1-1\leq h^{\prime}\leq 1 on GG. Since r(g,F)R+δ<R+εr(g,F)\leq R+\delta<R+\varepsilon, it follows that supfFfRg+ε\sup_{f\in F}f-R\leq g+\varepsilon on KK and gεinffFf+Rg-\varepsilon\leq\inf_{f\in F}f+R on KK. Since gBYg\in B_{Y}, 1g1-1\leq g\leq 1 and hence gε1g-\varepsilon\leq 1 on KK. Therefore,

max{supfFfR,gε,1}hmin{inffFf+R,g+ε,1} on G\max\left\{\sup_{f\in F}f-R,g-\varepsilon,-1\right\}\leq h^{\prime}\leq\min\left\{\inf_{f\in F}f+R,g+\varepsilon,1\right\}\mbox{ on }G

and

max{supfFfR,gε,1}min{inffFf+R,g+ε,1} on K.\max\left\{\sup_{f\in F}f-R,g-\varepsilon,-1\right\}\leq\min\left\{\inf_{f\in F}f+R,g+\varepsilon,1\right\}\mbox{ on }K.

Also, note that max{supfFfR,gε,1}\max\{\sup_{f\in F}f-R,g-\varepsilon,-1\} and min{inffFf+R,g+ε,1}-\min\{\inf_{f\in F}f+R,g+\varepsilon,1\} are convex continuous functions on KK. Therefore, by [2, Corollary 7.7, p. 73], there exists hA(K)h\in A(K) such that h=hh=h^{\prime} on GG and

max{supfFfR,gε,1}hmin{inffFf+R,g+ε,1} on K.\max\{\sup_{f\in F}f-R,g-\varepsilon,-1\}\leq h\leq\min\{\inf_{f\in F}f+R,g+\varepsilon,1\}\mbox{ on }K.

It follows that hcentBY(F)h\in\emph{cent}_{B_{Y}}(F) such that ghε\|g-h\|\leq\varepsilon. Hence, (A(K),BY,{F})(A(K),B_{Y},\{F\}) satisfies property-(P1)(P_{1}).

Subcase 2: R>αR>\alpha.

Let β=Rα\beta=R-\alpha. By Lemma 3.3, there exists 0<δ<ε0<\delta<\varepsilon such that centA(F~,β+δ)centA(F~,β)+εBX\emph{cent}_{A}(\tilde{F},\beta+\delta)\subseteq\emph{cent}_{A}(\tilde{F},\beta)+\varepsilon B_{X}.

Let gcentBY(F,δ)g\in\emph{cent}_{B_{Y}}(F,\delta). Then xg=(g(k1),,g(km),g(t1),,g(tr))centA(F~,β+δ)x_{g}=(g(k_{1}),\ldots,g(k_{m}),g(t_{1}),\ldots,g(t_{r}))\in\emph{cent}_{A}(\tilde{F},\beta+\delta). Therefore, there exists z=(z1,,zm,z1,,zr)centA(F~,β)z=(z_{1},\ldots,z_{m},z^{\prime}_{1},\ldots,z^{\prime}_{r})\in\emph{cent}_{A}(\tilde{F},\beta) such that xgzε\|x_{g}-z\|\leq\varepsilon. Therefore, r(z,F~)α+β=Rr(z,\tilde{F})\leq\alpha+\beta=R. Now, choose gBC(K)g^{\prime}\in B_{C(K)} such that g(ki)=zig^{\prime}(k_{i})=z_{i} and g(tj)=zjg^{\prime}(t_{j})=z^{\prime}_{j}, for i=1,,mi=1,\ldots,m and j=1,,rj=1,\ldots,r. Therefore, by [1, Theorem II.3.12], there exists hBA(K)h^{\prime}\in B_{A(K)} such that h(ki)=g(ki)=zih^{\prime}(k_{i})=g^{\prime}(k_{i})=z_{i}, for i=1,,mi=1,\ldots,m and h(tj)=g(tj)=zjh^{\prime}(t_{j})=g^{\prime}(t_{j})=z^{\prime}_{j}, for j=1,,rj=1,\ldots,r. Then by following the same steps as in the last paragraph of Subcase 1, we can prove that (A(K),BY,{F})(A(K),B_{Y},\{F\}) satisfies property-(P1)(P_{1}).

Case 2: S(μ1)S(μ2)S(\mu_{1})\cap S(\mu_{2})\neq\emptyset.

Without loss of generality, for simplicity, we assume that S(μ1)S(μ2)={k1,,ks}S(\mu_{1})\cap S(\mu_{2})=\{k_{1},\ldots,k_{s}\}, where ki=tik_{i}=t_{i}, for 1ismin{m,r}1\leq i\leq s\leq\min\{m,r\}. Let BB and α\alpha^{\prime} be defined as in the proof of Case 2 of Theorem 3.5. We further proceed the same way as in Case 1 to prove that (A(K),BY,{F})(A(K),B_{Y},\{F\}) satisfies property-(P1)(P_{1}). ∎

The following result is an easy consequence of [15, Theorem 5.3], Theorem 3.7, Proposition 2.3 and [14, Theorem 2.6].

Theorem 3.8.

Let KK be a Choquet simplex; {μ1,,μn}A(K)\{\mu_{1},\ldots,\mu_{n}\}\subseteq A(K)^{\ast} be such that for each i=1,,ni=1,\ldots,n, S(μi)ext(K)S(\mu_{i})\subseteq ext(K) and Y=i=1nker(μi)Y=\bigcap_{i=1}^{n}ker(\mu_{i}). Then the following are equivalent:

  • ((i))

    YY is strongly proximinal in A(K)A(K).

  • ((ii))

    YY is strongly ball proximinal in A(K)A(K).

  • ((iii))

    (A(K),Y,𝒦(A(K)))(A(K),Y,\mathcal{K}(A(K))) has property-(P1)(P_{1}).

  • ((iv))

    (A(K),BY,𝒦(A(K)))(A(K),B_{Y},\mathcal{K}(A(K))) has property-(P1)(P_{1}).

  • ((v))

    Y{μA(K):μ is an SSD-point of A(K)}Y^{\perp}\subseteq\{\mu\in A(K)^{\ast}:\mu\mbox{ is an SSD-point of }A(K)^{\ast}\}.

4. Characterization of strongly proximinal finite co-dimensional subspaces of L1L_{1}-predual spaces in terms of property-(P1)(P_{1})

In this section, our main aim is to generalize the characterization in Theorem 3.6 for the strongly proximinal finite co-dimensional subspaces of an L1L_{1}-predual space. To this end, we need few technical lemmas.

For a Banach space XX, the Hausdorff metric, denoted by dHd_{H}, on 𝒞(X)\mathcal{CB}(X) is defined as follows: for each B1,B2𝒞(X)B_{1},B_{2}\in\mathcal{CB}(X),

dH(B1,B2)=inf{a>0:B1B2+aB(0,1) and B2B1+aB(0,1)}.d_{H}(B_{1},B_{2})=\inf\{a>0:B_{1}\subseteq B_{2}+aB(0,1)\mbox{ and }B_{2}\subseteq B_{1}+aB(0,1)\}.

The following lemma is proved in [6, Theorem 2.5]. We include the proof here for the sake of completeness.

Lemma 4.1.

Let VV be a non-empty closed convex subset of a Banach space XX and F1,F2𝒞(X)F_{1},F_{2}\in\mathcal{CB}(X). Then for each vVv\in V, |r(v,F1)r(v,F2)|dH(F1,F2)|r(v,F_{1})-r(v,F_{2})|\leq d_{H}(F_{1},F_{2}) and |radV(F1)radV(F2)|dH(F1,F2).|\textrm{rad}_{V}(F_{1})-\textrm{rad}_{V}(F_{2})|\leq d_{H}(F_{1},F_{2}).

Proof.

Let vVv\in V. Now, let yF1y\in F_{1} and ε>0\varepsilon>0. Choose zF2z\in F_{2} such that yz<dH(F1,F2)+ε\|y-z\|<d_{H}(F_{1},F_{2})+\varepsilon. Then

vyvz+zy<r(v,F2)+dH(F1,F2)+ε.\|v-y\|\leq\|v-z\|+\|z-y\|<r(v,F_{2})+d_{H}(F_{1},F_{2})+\varepsilon.

It follows that

r(v,F1)r(v,F2)+dH(F1,F2).r(v,F_{1})\leq r(v,F_{2})+d_{H}(F_{1},F_{2}). (15)

Further, after swapping F1F_{1} with F2F_{2} in the above argument, we obtain the following inequality.

r(v,F2)r(v,F1)+dH(F1,F2).r(v,F_{2})\leq r(v,F_{1})+d_{H}(F_{1},F_{2}). (16)

The first conclusion of the result follows from the inequalities in (15)(\ref{eqnlem3.0}) and (16)(\ref{eqnlem3.1}).

The inequalities in (15)(\ref{eqnlem3.0}) and (16)(\ref{eqnlem3.1}) hold true for every vVv\in V and hence, the final conclusion of the result follows. ∎

Lemma 4.2.

Let YY be a subspace of a Banach space. Then for each F𝒦(X)F\in\mathcal{K}(X), radBY(F)=radBY(F)\textrm{rad}_{B_{Y^{\perp\perp}}}(F)=\textrm{rad}_{B_{Y}}(F).

Proof.

First we prove the result for each set in (X)\mathcal{F}(X). Let F={x1,,xn}(X)F=\{x_{1},\ldots,x_{n}\}\in\mathcal{F}(X). Clearly, radBY(F)radBY(F)\emph{rad}_{B_{Y^{\perp\perp}}}(F)\leq\emph{rad}_{B_{Y}}(F). Suppose radBY(F)<radBY(F)\emph{rad}_{B_{Y^{\perp\perp}}}(F)<\emph{rad}_{B_{Y}}(F). Let us choose ε>0\varepsilon>0 and ΦBY\Phi\in B_{Y^{\perp\perp}} such that r(Φ,F)<radBY(F)εr(\Phi,F)<\emph{rad}_{B_{Y}}(F)-\varepsilon. Now, choose 0<ε<ε1+r(Φ,F)0<\varepsilon^{\prime}<\frac{\varepsilon}{1+r(\Phi,F)} and define E=span{x1,,xn,Φ}XE=span\{x_{1},\ldots,x_{n},\Phi\}\subseteq X^{\ast\ast}. Then by the extended version of principle of local reflexivity in [5, Theorem 3.2], there exists a bounded linear map T:EXT:E\rightarrow X such that T(xi)=xiT(x_{i})=x_{i}, for each i=1,,ni=1,\ldots,n; T(Φ)YT(\Phi)\in Y and T1+ε\|T\|\leq 1+\varepsilon^{\prime}. Let y=T(Φ)1+εBYy=\frac{T(\Phi)}{1+\varepsilon^{\prime}}\in B_{Y}. Then for each i=1,,ni=1,\ldots,n,

xiyT(xi)T(Φ)+T(Φ)T(Φ)1+ε(1+ε)xiΦ+εr(Φ,F)+ε(1+r(Φ,F))<r(Φ,F)+ε.\begin{split}\|x_{i}-y\|&\leq\|T(x_{i})-T(\Phi)\|+\left\|T(\Phi)-\frac{T(\Phi)}{1+\varepsilon^{\prime}}\right\|\\ &\leq(1+\varepsilon^{\prime})\|x_{i}-\Phi\|+\varepsilon^{\prime}\\ &\leq r(\Phi,F)+\varepsilon^{\prime}(1+r(\Phi,F))\\ &<r(\Phi,F)+\varepsilon.\\ \end{split} (17)

It follows that r(y,F)r(Φ,F)+εr(y,F)\leq r(\Phi,F)+\varepsilon. Now, from the inequalities radBY(F)r(y,F)\emph{rad}_{B_{Y}}(F)\leq r(y,F) and r(Φ,F)<radBY(F)εr(\Phi,F)<\emph{rad}_{B_{Y}}(F)-\varepsilon, it follows radBY(F)<radBY(F)\emph{rad}_{B_{Y}}(F)<\emph{rad}_{B_{Y}}(F), which is a contradiction. Therefore, radBY(F)=radBY(F)\emph{rad}_{B_{Y^{\perp\perp}}}(F)=\emph{rad}_{B_{Y}}(F).

Now, for a set F𝒦(X)F\in\mathcal{K}(X), it follows from Lemma 4.1; the fact that for each ε>0\varepsilon>0, there exists a finite ε\varepsilon-net FεF_{\varepsilon} such that dH(Fε,F)<εd_{H}(F_{\varepsilon},F)<\varepsilon and the first part of the proof that radBY(F)=radBY(F)\emph{rad}_{B_{Y^{\perp\perp}}}(F)=\emph{rad}_{B_{Y}}(F). ∎

Lemma 4.3.

Let YY be a subspace of a Banach space XX. If (X,BY,𝒦(X))(X^{\ast\ast},B_{Y^{\perp\perp}},\mathcal{K}(X)) has property-(P1)(P_{1}), then for each F𝒦(X)F\in\mathcal{K}(X) and yYy\in Y, d(y,centBY(F))=d(y,centBY(F))d(y,\textrm{cent}_{B_{Y^{\perp\perp}}}(F))=d(y,\textrm{cent}_{B_{Y}}(F)).

Proof.

We follow the proof technique of [14, Lemma 2.2]. Let F𝒦(X)F\in\mathcal{K}(X) and yYy\in Y. Define r=d(y,centBY(F))r=d(y,\emph{cent}_{B_{Y^{\perp\perp}}}(F)) and r=radBY(F)r^{\prime}=\emph{rad}_{B_{Y}}(F). By Lemma 4.2, r=radBY(F)r^{\prime}=\emph{rad}_{B_{Y^{\perp\perp}}}(F) and hence, for each δ>0\delta>0, centBY(F,δ)centBY(F,δ)\emph{cent}_{B_{Y}}(F,\delta)\subseteq\emph{cent}_{B_{Y^{\perp\perp}}}(F,\delta). Therefore, by our assumption, for each ε>0\varepsilon>0, there exists δε>0\delta_{\varepsilon}>0 such that d(v,centBY(F))<εd(v,\emph{cent}_{B_{Y^{\perp\perp}}}(F))<\varepsilon, whenever vcentBY(F,δε)v\in\emph{cent}_{B_{Y}}(F,\delta_{\varepsilon}).

Now, let ε>0\varepsilon>0 be fixed.

Let us choose 0<β<ε30<\beta<\frac{\varepsilon}{3} and define δ=δε22\delta=\delta_{\frac{\varepsilon}{2^{2}}}. For each mm\in\mathbb{N}, let FmFF_{m}\subseteq F be finite δ2m+2\frac{\delta}{2^{m+2}}-net such that FmFm+1F_{m}\subseteq F_{m+1} and define rm=radBY(Fm)r^{\prime}_{m}=\emph{rad}_{B_{Y}}(F_{m}). By Lemma 4.2, rm=radBY(Fm)r^{\prime}_{m}=\emph{rad}_{B_{Y^{\perp\perp}}}(F_{m}). Therefore, by Lemma 3.3, for each mm\in\mathbb{N} and ε>0\varepsilon^{\prime}>0, there exists 0<γεm<δ20<\gamma^{m}_{\varepsilon^{\prime}}<\frac{\delta}{2} such that d(v,centBY(Fm,k=1mδ2k+1))<εd(v,\emph{cent}_{B_{Y^{\perp\perp}}}(F_{m},\sum_{k=1}^{m}\frac{\delta}{2^{k+1}}))<\varepsilon^{\prime}, whenever vcentBY(Fm,k=1mδ2k+1+γεm)v\in\emph{cent}_{B_{Y}}(F_{m},\sum_{k=1}^{m}\frac{\delta}{2^{k+1}}+\gamma^{m}_{\varepsilon^{\prime}}).

Now, since centBY(F1,δ22)\emph{cent}_{B_{Y^{\perp\perp}}}(F_{1},\frac{\delta}{2^{2}}) is ww^{\ast}-compact, it is proximinal and hence there exists Φ0centBY(F1,δ22)\Phi_{0}\in\emph{cent}_{B_{Y^{\perp\perp}}}(F_{1},\frac{\delta}{2^{2}}) such that d(y,centBY(F1,δ22))=yΦ0d(y,\emph{cent}_{B_{Y^{\perp\perp}}}(F_{1},\frac{\delta}{2^{2}}))=\|y-\Phi_{0}\|. Define r0=d(y,centBY(F1,δ22))r_{0}=d(y,\emph{cent}_{B_{Y^{\perp\perp}}}(F_{1},\frac{\delta}{2^{2}})). It is easy to see that centBY(F)centBY(F1,δ22)\emph{cent}_{B_{Y^{\perp\perp}}}(F)\subseteq\emph{cent}_{B_{Y^{\perp\perp}}}(F_{1},\frac{\delta}{2^{2}}). Indeed, it follows from Lemma 4.1 that rr1+δ23r^{\prime}\leq r^{\prime}_{1}+\frac{\delta}{2^{3}} and hence, for ΦcentBY(F)\Phi^{\prime}\in\emph{cent}_{B_{Y^{\perp\perp}}}(F), r(Φ,F1)r(Φ,F)=rr1+δ23<r1+δ22.r(\Phi^{\prime},F_{1})\leq r(\Phi^{\prime},F)=r^{\prime}\leq r^{\prime}_{1}+\frac{\delta}{2^{3}}<r^{\prime}_{1}+\frac{\delta}{2^{2}}. Therefore, it follows that r0rr_{0}\leq r.

Choose 0<ε1<min{3β22(r0+1),γβ2211+r1+δ22}0<\varepsilon_{1}<\min\left\{\frac{3\beta}{2^{2}(r_{0}+1)},\frac{\gamma^{1}_{\frac{\beta}{2^{2}}}}{1+r^{\prime}_{1}+\frac{\delta}{2^{2}}}\right\}. Let E1=span{F1{y,Φ0}}XE_{1}=span\{F_{1}\cup\{y,\Phi_{0}\}\}\subseteq X^{\ast\ast}. Then by the extended version of principle of local reflexivity in [5, Theorem 3.2], there exists a bounded linear map T1:E1XT_{1}:E_{1}\rightarrow X such that T1(x)=xT_{1}(x)=x, for each xF1x\in F_{1}; T1(y)=yT_{1}(y)=y; T1(Φ0)YT_{1}(\Phi_{0})\in Y and T11+ε1\|T_{1}\|\leq 1+\varepsilon_{1}. Now, let y1=T1(Φ0)1+ε1BYy_{1}=\frac{T_{1}(\Phi_{0})}{1+\varepsilon_{1}}\in B_{Y}. Then

yy1T1(y)T1(Φ0)+T1(Φ0)T1(Φ0)1+ε1(1+ε1)r0+ε1r+ε1(1+r0)<r+3β22.\begin{split}\|y-y_{1}\|&\leq\|T_{1}(y)-T_{1}(\Phi_{0})\|+\left\|T_{1}(\Phi_{0})-\frac{T_{1}(\Phi_{0})}{1+\varepsilon_{1}}\right\|\\ &\leq(1+\varepsilon_{1})r_{0}+\varepsilon_{1}\\ &\leq r+\varepsilon_{1}(1+r_{0})\\ &<r+\frac{3\beta}{2^{2}}.\\ \end{split} (18)

Also, for each xF1x\in F_{1},

xy1T1(x)T1(Φ0)+T1(Φ0)T1(Φ0)1+ε1(1+ε1)r(Φ0,F1)+ε1r1+δ22+ε1(1+r1+δ22)<r1+δ22+γβ221.\begin{split}\|x-y_{1}\|&\leq\|T_{1}(x)-T_{1}(\Phi_{0})\|+\left\|T_{1}(\Phi_{0})-\frac{T_{1}(\Phi_{0})}{1+\varepsilon_{1}}\right\|\\ &\leq(1+\varepsilon_{1})r(\Phi_{0},F_{1})+\varepsilon_{1}\\ &\leq r^{\prime}_{1}+\frac{\delta}{2^{2}}+\varepsilon_{1}\left(1+r^{\prime}_{1}+\frac{\delta}{2^{2}}\right)\\ &<r^{\prime}_{1}+\frac{\delta}{2^{2}}+\gamma^{1}_{\frac{\beta}{2^{2}}}.\\ \end{split} (19)

It follows that r(y1,F1)r1+δ22+γβ221.r(y_{1},F_{1})\leq r^{\prime}_{1}+\frac{\delta}{2^{2}}+\gamma^{1}_{\frac{\beta}{2^{2}}}. Thus, y1centBY(F1,δ22+γβ221)y_{1}\in\emph{cent}_{B_{Y}}(F_{1},\frac{\delta}{2^{2}}+\gamma^{1}_{\frac{\beta}{2^{2}}}). This implies d(y1,centBY(F1,δ22))<β22d(y_{1},\emph{cent}_{B_{Y^{\perp\perp}}}(F_{1},\frac{\delta}{2^{2}}))<\frac{\beta}{2^{2}}. Now, let Φ1centBY(F1,δ22)\Phi_{1}\in\emph{cent}_{B_{Y^{\perp\perp}}}(F_{1},\frac{\delta}{2^{2}}) such that y1Φ1<β22\|y_{1}-\Phi_{1}\|<\frac{\beta}{2^{2}}.

Let us make the following observation. Let xF2x\in F_{2}. Then there exists x1F1x_{1}\in F_{1} such that xx1<δ23\|x-x_{1}\|<\frac{\delta}{2^{3}} and hence,

xΦ1xx1+x1Φ1<δ23+r(Φ1,F1)δ23+r1+δ22r2+δ22+δ23.\begin{split}\|x-\Phi_{1}\|&\leq\|x-x_{1}\|+\|x_{1}-\Phi_{1}\|\\ &<\frac{\delta}{2^{3}}+r(\Phi_{1},F_{1})\\ &\leq\frac{\delta}{2^{3}}+r^{\prime}_{1}+\frac{\delta}{2^{2}}\\ &\leq r^{\prime}_{2}+\frac{\delta}{2^{2}}+\frac{\delta}{2^{3}}.\\ \end{split} (20)

It follows that r(Φ1,F2)r2+δ22+δ23r(\Phi_{1},F_{2})\leq r^{\prime}_{2}+\frac{\delta}{2^{2}}+\frac{\delta}{2^{3}}.

Choose 0<ε2<min{β23(1+β22),γβ2321+r2+δ22+δ23}0<\varepsilon_{2}<\min\left\{\frac{\beta}{2^{3}(1+\frac{\beta}{2^{2}})},\frac{\gamma^{2}_{\frac{\beta}{2^{3}}}}{1+r^{\prime}_{2}+\frac{\delta}{2^{2}}+\frac{\delta}{2^{3}}}\right\}. Let E2=span{F2{Φ1,y1}}XE_{2}=span\{F_{2}\cup\{\Phi_{1},y_{1}\}\}\subseteq X^{\ast\ast}. Then, again by principle of local reflexivity, there exists a bounded linear map T2:E2XT_{2}:E_{2}\rightarrow X such that T2(x)=xT_{2}(x)=x, for each xF2x\in F_{2}; T2(y1)=y1T_{2}(y_{1})=y_{1}; T2(Φ1)YT_{2}(\Phi_{1})\in Y and T21+ε2\|T_{2}\|\leq 1+\varepsilon_{2}. Now, let y2=T2(Φ1)1+ε2BYy_{2}=\frac{T_{2}(\Phi_{1})}{1+\varepsilon_{2}}\in B_{Y}. Then

y1y2T2(y1)T2(Φ1)+T2(Φ1)T2(Φ1)1+ε2<(1+ε2)β22+ε2=β22+ε2(1+β22)<β22+β23=3β23.\begin{split}\|y_{1}-y_{2}\|&\leq\|T_{2}(y_{1})-T_{2}(\Phi_{1})\|+\left\|T_{2}(\Phi_{1})-\frac{T_{2}(\Phi_{1})}{1+\varepsilon_{2}}\right\|\\ &<(1+\varepsilon_{2})\frac{\beta}{2^{2}}+\varepsilon_{2}\\ &=\frac{\beta}{2^{2}}+\varepsilon_{2}\left(1+\frac{\beta}{2^{2}}\right)\\ &<\frac{\beta}{2^{2}}+\frac{\beta}{2^{3}}=\frac{3\beta}{2^{3}}.\\ \end{split} (21)

Also, for each xF2x\in F_{2},

xy2T2(x)T2(Φ1)+T2(Φ1)T2(Φ1)1+ε2(1+ε2)r(Φ1,F2)+ε2r2+δ22+δ23+ε2(1+r2+δ22+δ23)<r2+δ22+δ23+γβ232.\begin{split}\|x-y_{2}\|&\leq\|T_{2}(x)-T_{2}(\Phi_{1})\|+\left\|T_{2}(\Phi_{1})-\frac{T_{2}(\Phi_{1})}{1+\varepsilon_{2}}\right\|\\ &\leq(1+\varepsilon_{2})r(\Phi_{1},F_{2})+\varepsilon_{2}\\ &\leq r^{\prime}_{2}+\frac{\delta}{2^{2}}+\frac{\delta}{2^{3}}+\varepsilon_{2}\left(1+r^{\prime}_{2}+\frac{\delta}{2^{2}}+\frac{\delta}{2^{3}}\right)\\ &<r^{\prime}_{2}+\frac{\delta}{2^{2}}+\frac{\delta}{2^{3}}+\gamma^{2}_{\frac{\beta}{2^{3}}}.\\ \end{split} (22)

It follows that r(y2,F2)r2+δ22+δ23+γβ232.r(y_{2},F_{2})\leq r^{\prime}_{2}+\frac{\delta}{2^{2}}+\frac{\delta}{2^{3}}+\gamma^{2}_{\frac{\beta}{2^{3}}}. Thus, y2centBY(F2,δ22+δ23+γβ232)y_{2}\in\emph{cent}_{B_{Y}}(F_{2},\frac{\delta}{2^{2}}+\frac{\delta}{2^{3}}+\gamma^{2}_{\frac{\beta}{2^{3}}}). This implies d(y2,centBY(F2,δ22+δ23))<β23d(y_{2},\emph{cent}_{B_{Y^{\perp\perp}}}(F_{2},\frac{\delta}{2^{2}}+\frac{\delta}{2^{3}}))<\frac{\beta}{2^{3}}. Now, let Φ2centBY(F2,δ22+δ23)\Phi_{2}\in\emph{cent}_{B_{Y^{\perp\perp}}}(F_{2},\frac{\delta}{2^{2}}+\frac{\delta}{2^{3}}) such that y2Φ2<β23\|y_{2}-\Phi_{2}\|<\frac{\beta}{2^{3}}. Similar to the earlier observation, we can conclude that r(Φ2,F3)r3+δ22+δ23+δ24.r(\Phi_{2},F_{3})\leq r^{\prime}_{3}+\frac{\delta}{2^{2}}+\frac{\delta}{2^{3}}+\frac{\delta}{2^{4}}.

Proceeding inductively, we get a sequence {yn}BY\{y_{n}\}\subseteq B_{Y} such that ynyn+1<3β2n+2\|y_{n}-y_{n+1}\|<\frac{3\beta}{2^{n+2}} and r(yn,Fn)rn+k=1nδ2k+1+γβ2n+1n<r+k=1nδ2k+1+δ2.r(y_{n},F_{n})\leq r^{\prime}_{n}+\sum_{k=1}^{n}\frac{\delta}{2^{k+1}}+\gamma^{n}_{\frac{\beta}{2^{n+1}}}<r^{\prime}+\sum_{k=1}^{n}\frac{\delta}{2^{k+1}}+\frac{\delta}{2}. Clearly, {yn}\{y_{n}\} is Cauchy in BYB_{Y} and hence, let z1BYz_{1}\in B_{Y} such that z1=limnynz_{1}=\lim_{n\rightarrow\infty}y_{n}. Then yz1r+n=13β2n+1=r+3β2<r+ε2\|y-z_{1}\|\leq r+\sum_{n=1}^{\infty}\frac{3\beta}{2^{n+1}}=r+\frac{3\beta}{2}<r+\frac{\varepsilon}{2}.

Now, let ε>0\varepsilon^{\prime}>0 and xFx\in F. Then there exists n0n_{0}\in\mathbb{N} such that δ2n0<ε3\frac{\delta}{2^{n_{0}}}<\frac{\varepsilon^{\prime}}{3}, yn0z1<ε3\|y_{n_{0}}-z_{1}\|<\frac{\varepsilon^{\prime}}{3} and k=1n0δ2k+1<δ2+ε3\sum_{k=1}^{n_{0}}\frac{\delta}{2^{k+1}}<\frac{\delta}{2}+\frac{\varepsilon^{\prime}}{3} and xn0Fn0x_{n_{0}}\in F_{n_{0}} such that xxn0<δ2n0+2\|x-x_{n_{0}}\|<\frac{\delta}{2^{n_{0}+2}}. Therefore,

xz1xxn0+xn0yn0+yn0z1<δ2n0+2+r(yn0,Fn0)+ε3<ε3+r+k=1n0δ2k+1+δ2+ε3<r+δ+ε.\begin{split}\|x-z_{1}\|&\leq\|x-x_{n_{0}}\|+\|x_{n_{0}}-y_{n_{0}}\|+\|y_{n_{0}}-z_{1}\|\\ &<\frac{\delta}{2^{n_{0}+2}}+r(y_{n_{0}},F_{n_{0}})+\frac{\varepsilon^{\prime}}{3}\\ &<\frac{\varepsilon^{\prime}}{3}+r^{\prime}+\sum_{k=1}^{n_{0}}\frac{\delta}{2^{k+1}}+\frac{\delta}{2}+\frac{\varepsilon^{\prime}}{3}\\ &<r^{\prime}+\delta+\varepsilon^{\prime}.\\ \end{split} (23)

It follows that r(z1,F)r+δ+ε.r(z_{1},F)\leq r^{\prime}+\delta+\varepsilon^{\prime}. Since ε\varepsilon^{\prime} is arbitrary, r(z1,F)r+δ=r+δε22r(z_{1},F)\leq r^{\prime}+\delta=r^{\prime}+\delta_{\frac{\varepsilon}{2^{2}}}.

Thus, z1centBY(F,δε22)z_{1}\in\emph{cent}_{B_{Y}}(F,\delta_{\frac{\varepsilon}{2^{2}}}) and hence, d(z1,centBY(F))<ε22d(z_{1},\emph{cent}_{B_{Y^{\perp\perp}}}(F))<\frac{\varepsilon}{2^{2}}. Now, for each mm\in\mathbb{N}, choose a finite δε/232m+2\frac{\delta_{\varepsilon/2^{3}}}{2^{m+2}}-net GmFG_{m}\subseteq F such that GmGm+1G_{m}\subseteq G_{m+1}. Therefore, there exists ψcentBY(G1,δε/2322)\psi\in\emph{cent}_{B_{Y^{\perp\perp}}}(G_{1},\frac{\delta_{\varepsilon/2^{3}}}{2^{2}}) such that z1ψ<ε22\|z_{1}-\psi\|<\frac{\varepsilon}{2^{2}}. Then by applying similar arguments as above, there exists an element z2BYz_{2}\in B_{Y} such that z1z2<ε22\|z_{1}-z_{2}\|<\frac{\varepsilon}{2^{2}} and r(z2,F)r+δε23r(z_{2},F)\leq r^{\prime}+\delta_{\frac{\varepsilon}{2^{3}}}.

Again, proceeding inductively, we get a sequence {zn}BY\{z_{n}\}\subseteq B_{Y} such that znzn+1<ε2n+1\|z_{n}-z_{n+1}\|<\frac{\varepsilon}{2^{n+1}} and r(zn,F)r+δε2n+1r(z_{n},F)\leq r^{\prime}+\delta_{\frac{\varepsilon}{2^{n+1}}}. Without loss of generality, we assume δε2n+10\delta_{\frac{\varepsilon}{2^{n+1}}}\rightarrow 0. Clearly, {zn}\{z_{n}\} is Cauchy in BYB_{Y} and hence, let z0BYz_{0}\in B_{Y} such that z0=limnznz_{0}=\lim_{n\rightarrow\infty}z_{n}. Let xFx\in F. Then xz0=limnxznlimnr(zn,F)=r\|x-z_{0}\|=\lim_{n\rightarrow\infty}\|x-z_{n}\|\leq\lim_{n\rightarrow\infty}r(z_{n},F)=r^{\prime}. It follows that r(z0,F)rr(z_{0},F)\leq r^{\prime} and hence, z0centBY(F)z_{0}\in\emph{cent}_{B_{Y}}(F). Also, yz0r+n=1ε2n=r+ε\|y-z_{0}\|\leq r+\sum_{n=1}^{\infty}\frac{\varepsilon}{2^{n}}=r+\varepsilon. Therefore, d(y,centBY(F))yz0d(y,centBY(F))+εd(y,\emph{cent}_{B_{Y}}(F))\leq\|y-z_{0}\|\leq d(y,\emph{cent}_{B_{Y^{\perp\perp}}}(F))+\varepsilon. Since ε\varepsilon is arbitrary, d(y,centBY(F))d(y,centBY(F))d(y,\emph{cent}_{B_{Y}}(F))\leq d(y,\emph{cent}_{B_{Y^{\perp\perp}}}(F)). This proves the result. ∎

The following result connects property-(P1)(P_{1}) of the closed unit ball of a subspace of a Banach space with its bidual. It is proved using an argument similar to that in the proof of [14, Proposition 2.3].

Proposition 4.4.

Let YY be a subspace of a Banach space XX. If (X,BY,𝒦(X))(X^{\ast\ast},B_{Y^{\perp\perp}},\mathcal{K}(X)) has property-(P1)(P_{1}), then (X,BY,𝒦(X))(X,B_{Y},\mathcal{K}(X)) has property-(P1)(P_{1}).

Proof.

Let F𝒦(X)F\in\mathcal{K}(X). It follows from the proof of Lemma 4.3 that centBY(F)\emph{cent}_{B_{Y}}(F)\neq\emptyset. Now, let {yn}\{y_{n}\} be a sequence in BYB_{Y} such that r(yn,F)radBY(F)r(y_{n},F)\rightarrow\emph{rad}_{B_{Y}}(F). By Lemma 4.2, radBY(F)=radBY(F)\emph{rad}_{B_{Y}}(F)=\emph{rad}_{B_{Y^{\perp\perp}}}(F). Therefore, d(yn,centBY(F))0d(y_{n},\emph{cent}_{B_{Y^{\perp\perp}}}(F))\rightarrow 0. Hence, by Lemma 4.3, d(yn,centBY(F))0d(y_{n},\emph{cent}_{B_{Y}}(F))\rightarrow 0. Therefore, (X,BY,{F})(X,B_{Y},\{F\}) satisfies property (P1)(P_{1}). ∎

The next result characterizes property-(P1)(P_{1}) of the closed unit ball of a finite co-dimensional subspace of an L1L_{1}-predual space in terms of property-(P1)(P_{1}) of the closed unit ball of its bidual.

Proposition 4.5.

Let YY be a finite co-dimensional subspace of an L1L_{1}-predual space XX. Then (X,BY,𝒦(X))(X,B_{Y},\mathcal{K}(X)) has property-(P1)(P_{1}) if and only if (X,BY,𝒦(X))(X^{\ast\ast},B_{Y^{\perp\perp}},\mathcal{K}(X^{\ast\ast})) has property-(P1)(P_{1}).

Proof.

Assume (X,BY,𝒦(X))(X,B_{Y},\mathcal{K}(X)) has property-(P1)(P_{1}). Then, in particular, YY is strongly ball proximinal in XX. Now, using an argument similar to that in the proof of [14, Proposition 2.4] and Theorem 3.6, it follows that (X,BY,𝒦(X))(X^{\ast\ast},B_{Y^{\perp\perp}},\mathcal{K}(X^{\ast\ast})) has property-(P1)(P_{1}).

The converse of the result follows from Proposition 4.4. ∎

For a Banach space XX, the result in [14, Corollary 2.5] shows strong ball proximinality through the weak-dense subset XX in XX^{\ast\ast}. In the following result, we demonstrate the same for property-(P1)(P_{1}) by following a similar argument.

Corollary 4.6.

Let XX be an L1L_{1}-predual space and ZZ be a finite co-dimensional weak-closed subspace of XX^{\ast\ast}. If (X,BZ,𝒦(X))(X^{\ast\ast},B_{Z},\mathcal{K}(X)) has property-(P1)(P_{1}), then so does (X,BZ,𝒦(X))(X^{\ast\ast},B_{Z},\mathcal{K}(X^{\ast\ast})).

Proof.

Since ZZ is a finite co-dimensional weak-closed subspace of XX^{\ast\ast}, there exists a basis {x1,,xn}X\{x^{\ast}_{1},\ldots,x^{\ast}_{n}\}\subseteq X^{\ast} for ZZ^{\perp}. Now, let Y=i=1nker(xi)Y=\bigcap_{i=1}^{n}ker(x^{\ast}_{i}). Then Y=ZY^{\perp\perp}=Z. Hence, by Proposition 4.4, (X,BY,𝒦(X))(X,B_{Y},\mathcal{K}(X)) has property-(P1)(P_{1}). Therefore, the result follows from Proposition 4.5. ∎

We now prove the main result of this section.

Theorem 4.7.

Let YY be a finite co-dimensional subspace of an L1L_{1}-predual space XX. Then the following are equivalent:

  • ((i))

    YY is strongly proximinal in XX.

  • ((ii))

    YY is strongly ball proximinal in XX.

  • ((iii))

    (X,Y,𝒦(X))(X,Y,\mathcal{K}(X)) has property-(P1)(P_{1}).

  • ((iv))

    (X,BY,𝒦(X))(X,B_{Y},\mathcal{K}(X)) has property-(P1)(P_{1}).

  • ((v))

    Y{xX:x is an SSD-point of X}Y^{\perp}\subseteq\{x^{\ast}\in X^{\ast}:x^{\ast}\mbox{ is an SSD-point of }X^{\ast}\}.

Proof.

By [14, Theorem 2.6], (i)(ii)(v)(i)\Leftrightarrow(ii)\Leftrightarrow(v). Obviously, (iii)(i)(iii)\Rightarrow(i) and from Proposition 2.3, (iv)(iii)(iv)\Rightarrow(iii).

Now, we prove that (ii)(iv)(ii)\Rightarrow(iv). Assume YY is strongly ball proximinal in XX. Since (ii)(i)(ii)\Rightarrow(i), by [16, Theorem 3.10], YY^{\perp\perp} is strongly proximinal in XX^{\ast\ast}. Now, by [18, Theorem 6.1], XX^{\ast\ast} is isometric to C(S)C(S), for some compact Hausdorff space SS. It follows from [8, Theorem 2.1] and Theorem 3.6 that (X,BY,𝒦(X))(X^{\ast\ast},B_{Y^{\perp\perp}},\mathcal{K}(X^{\ast\ast})) has property-(P1)(P_{1}). Then, by Proposition 4.5, (X,BY,𝒦(X))(X,B_{Y},\mathcal{K}(X)) has property-(P1)(P_{1}). ∎

We conclude this section by presenting characterizations for a strongly proximinal finite co-dimensional subspace of an L1L_{1}-predual space which are similar and in addition to those stated in [14, Corollary 2.7].

Corollary 4.8.

Let YY be a finite co-dimensional subspace of an L1L_{1}-predual space XX. Then the following statements are equivalent:

  • ((i))

    (X,Y,𝒦(X))(X,Y,\mathcal{K}(X)) has property-(P1)(P_{1}).

  • ((ii))

    (X,BY,𝒦(X))(X,B_{Y},\mathcal{K}(X)) has property-(P1)(P_{1}).

  • ((iii))

    YY is the intersection of finitely many hyperplanes Y1,,YnY_{1},\ldots,Y_{n} such that for each i=1,,ni=1,\ldots,n, (X,Yi,𝒦(X))(X,Y_{i},\mathcal{K}(X)) has property-(P1)(P_{1}).

  • ((iv))

    YY is the intersection of finitely many hyperplanes Y1,,YnY_{1},\ldots,Y_{n} such that for each i=1,,ni=1,\ldots,n, (X,BYi,𝒦(X))(X,B_{Y_{i}},\mathcal{K}(X)) has property-(P1)(P_{1}).

Proof.

It follows from Theorem 4.7 and [16, Corollary 3.21] that (i)(iii)(i)\Leftrightarrow(iii) and (ii)(iv)(ii)\Leftrightarrow(iv). Clearly, (i)(ii)(i)\Leftrightarrow(ii) follows from Theorem 4.7. ∎

5. An example of a subspace which satisfies 1121\frac{1}{2}-ball property and does not have r.c.p.

A. L. Garkavi presented an example in [10] of a hyperplane in a non-reflexive Banach space which is proximinal but does not admit restricted Chebyshev center for a two-point set after a renorming. It can be observed that this hyperplane satisfies 1121\frac{1}{2}-ball property in the renormed Banach space. This in turn shows that 1121\frac{1}{2}-ball property and hence, strong proximinality is not a sufficient condition for r.c.p.. We now briefly describe Garkavi’s example and prove that it satisfies 1121\frac{1}{2}-ball property for the sake of completeness.

Example 5.1.

Let XX be a non-reflexive Banach space and Y=ker(x)Y=ker(x^{\ast}), where xX\{0}x^{\ast}\in X^{\ast}\backslash\{0\}, be a closed hyperplane in XX. Then YY is also non-reflexive and by James’ theorem, there exists a linear functional ΦY\Phi\in Y^{\ast} such that Φ=1\|\Phi\|=1 and Φ\Phi does not attain its norm on BYB_{Y}. Define D={yBY:Φ(y)34}D=\{y\in B_{Y}:\Phi(y)\geq\frac{3}{4}\} and then choose a γ>0\gamma>0 and y0Dy_{0}\in D such that B[y0,γ]YB[y_{0},\gamma]\cap Y is contained in the interior of the set DD, w.r.t. YY. Let α=inf{Φ(y):yB[y0,γ]Y}\alpha=\inf\{\Phi(y):y\in B[y_{0},\gamma]\cap Y\}. Then 34α<1\frac{3}{4}\leq\alpha<1. Further, let us define U={yBY:|Φ(y)|α}.U=\{y\in B_{Y}:|\Phi(y)|\leq\alpha\}. Now, UB[y0,γ]Y=U\cap B[y_{0},\gamma]\cap Y=\emptyset because the infimum defining α\alpha is not attained on B[y0,γ]YB[y_{0},\gamma]\cap Y.

Let us fix x0X\Yx_{0}\in X\backslash Y such that x(x0)=1x^{\ast}(x_{0})=1. We define Bγ=B[0,γ]YB_{\gamma}=B[0,\gamma]\cap Y and V=x0+BγV=x_{0}+B_{\gamma}. Let BB denote the closure of the set conv(UVV)conv(U\cup V\cup-V). Then BB is a closed bounded symmetric subset of XX. Let XX^{\prime} denote the Banach space XX, renormed to have BB as the closed unit ball. Let the renorming be denoted by .B\|.\|_{B}. Then the new norm .B\|.\|_{B} on XX^{\prime} is equivalent to the old one on XX. It is proved in [10] that YY is proximinal in XX^{\prime} and centY({0,x0+y0})=\textrm{cent}_{Y}(\{0,x_{0}+y_{0}\})=\emptyset in XX^{\prime}.

Let YY be a subspace of a Banach space XX. For an element xXx\in X and ε=0\varepsilon=0, we note here that PY(x,ε)=PY(x)P_{Y}(x,\varepsilon)=P_{Y}(x). For a non-empty subset AA of XX and xXx\in X, we denote x+A={x+a:aA}x+A=\{x+a:a\in A\}. Let us now recall a characterisation of 1121\frac{1}{2}-ball property provided in [12]. The following result follows directly from [12, Remark 6, p. 50 and Corollary 4, p. 52].

Proposition 5.2.

Let YY be a subspace of a Banach space XX. Then YY has 1121\frac{1}{2}-ball property in XX if and only if YY is proximinal in XX and for each xXx\in X and ε0\varepsilon\geq 0, PY(x,ε)={yY:d(y,PY(x))ε}P_{Y}(x,\varepsilon)=\{y\in Y:d(y,P_{Y}(x))\leq\varepsilon\}.

The proof idea for the following result is similar to that used in [3, Example 3.3].

Proposition 5.3.

Let YY be a closed hyperplane in a non-reflexive Banach space XX and XX^{\prime} be the Banach space XX with the renorming .B\|.\|_{B} as defined in the Example 5.1. Then YY satisfies 1121\frac{1}{2}-ball property in XX^{\prime}.

Proof.

Clearly, if xXx\in X^{\prime}, then there exists λ\lambda\in\mathbb{R} and yYy\in Y such that x=y+λx0x=y+\lambda x_{0}. Also, clearly, PY(y+λx0)=y+λPY(x0)P_{Y}(y+\lambda x_{0})=y+\lambda P_{Y}(x_{0}) and PY(y+λx0,δ)=y+λPY(x0,δ|λ|)P_{Y}\left(y+\lambda x_{0},\delta\right)=y+\lambda P_{Y}(x_{0},\frac{\delta}{|\lambda|}), for δ>0\delta>0 and λ0\lambda\neq 0. Therefore, applying Proposition 5.2 and by translation, it suffices to prove that for each ε0\varepsilon\geq 0, PY(x0,ε)={yY:d(y,PY(x0))ε}P_{Y}(x_{0},\varepsilon)=\{y\in Y:d(y,P_{Y}(x_{0}))\leq\varepsilon\}. Now, d(x0,Y)=1d(x_{0},Y)=1 and PY(x0)=BγP_{Y}(x_{0})=B_{\gamma}. Let ε0\varepsilon\geq 0. By [12, Remark 5, p. 50], we have {yY:d(y,PY(x0))ε}PY(x0,ε)\{y\in Y:d(y,P_{Y}(x_{0}))\leq\varepsilon\}\subseteq P_{Y}(x_{0},\varepsilon). For ε=0\varepsilon=0, it is trivial to see that PY(x0){yY:d(y,PY(x0))=0}P_{Y}(x_{0})\subseteq\{y\in Y:d(y,P_{Y}(x_{0}))=0\}. Thus, it remains to show that for each ε>0\varepsilon>0, PY(x0,ε){yY:d(y,PY(x0))ε}P_{Y}(x_{0},\varepsilon)\subseteq\{y\in Y:d(y,P_{Y}(x_{0}))\leq\varepsilon\}, or in other words, we prove that if ε>0\varepsilon>0 and yYy\in Y is such that yx0B1+ε\|y-x_{0}\|_{B}\leq 1+\varepsilon, then we have d(y,Bγ)εd(y,B_{\gamma})\leq\varepsilon.

Let yYy\in Y such that η=yx0B1+ε\eta=\|y-x_{0}\|_{B}\leq 1+\varepsilon. Without loss of generality, assume η>1\eta>1. Therefore, yx0ηB\frac{y-x_{0}}{\eta}\in B. Thus, there exists sequences {αn}\{\alpha_{n}\}, {βn}\{\beta_{n}\}, {νn}\{\nu_{n}\} [0,1]\subseteq[0,1] such that for each nn, αn+βn+νn=1\alpha_{n}+\beta_{n}+\nu_{n}=1 and sequences {un}\{u_{n}\}, {un}\{u_{n}^{\prime}\} Bγ\subseteq B_{\gamma}; {yn}U\{y_{n}\}\subseteq U such that

yx0η=limn[αnun+βnun+νnyn+(αnβn)x0].\frac{y-x_{0}}{\eta}=\lim_{n\rightarrow\infty}[\alpha_{n}u_{n}+\beta_{n}u_{n}^{\prime}+\nu_{n}y_{n}+(\alpha_{n}-\beta_{n})x_{0}].

Without loss of generality, assume αnα\alpha_{n}\rightarrow\alpha, βnβ\beta_{n}\rightarrow\beta and νnν\nu_{n}\rightarrow\nu, where α,β,ν[0,1]\alpha,\beta,\nu\in[0,1] and α+β+ν=1\alpha+\beta+\nu=1. Therefore, it follows that βα=1η\beta-\alpha=\frac{1}{\eta} and y=limnη[αun+βun+νyn]y=\lim_{n\rightarrow\infty}\eta[\alpha u_{n}+\beta u_{n}^{\prime}+\nu y_{n}]. Now, 1ηα+1η=β1\frac{1}{\eta}\leq\alpha+\frac{1}{\eta}=\beta\leq 1 and for each nn, unB\|u_{n}\|_{B}, unB\|u_{n}^{\prime}\|_{B}, ynB1\|y_{n}\|_{B}\leq 1. Therefore,

d(y,Bγ)infnyunBlim infnη[αun+βun+νyn]unB=lim infnηαun+(ηβ1)un+ηνynBηα+(ηβ1)+ην=η1ε.\begin{split}d(y,B_{\gamma})&\leq\inf_{n}\|y-u_{n}^{\prime}\|_{B}\\ &\leq\liminf_{n}\|\eta[\alpha u_{n}+\beta u_{n}^{\prime}+\nu y_{n}]-u_{n}^{\prime}\|_{B}\\ &=\liminf_{n}\|\eta\alpha u_{n}+(\eta\beta-1)u_{n}^{\prime}+\eta\nu y_{n}\|_{B}\\ &\leq\eta\alpha+(\eta\beta-1)+\eta\nu=\eta-1\leq\varepsilon.\\ \end{split} (24)

References

  • [1] Erik M. Alfsen. Compact convex sets and boundary integrals. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 57. Springer-Verlag, New York-Heidelberg, 1971.
  • [2] L. Asimow and A. J. Ellis. Convexity theory and its applications in functional analysis, volume 16 of London Mathematical Society Monographs. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1980.
  • [3] Pradipta Bandyopadhyay, Bor-Luh Lin, and T. S. S. R. K. Rao. Ball proximinality in Banach spaces. In Banach spaces and their applications in analysis, pages 251–264. Walter de Gruyter, Berlin, 2007.
  • [4] Pradipta Bandyopadhyay and T. S. S. R. K. Rao. Central subspaces of Banach spaces. J. Approx. Theory, 103(2):206–222, 2000.
  • [5] Ehrhard Behrends. On the principle of local reflexivity. Studia Math., 100(2):109–128, 1991.
  • [6] Soumitra Daptari and Tanmoy Paul. Some geometric properties of relative Chebyshev centres in Banach spaces. In Recent trends in operator theory and applications, volume 737 of Contemp. Math., pages 77–87. Amer. Math. Soc., [Providence], RI, [2019] ©2019.
  • [7] S. Dutta and Darapaneni Narayana. Strongly proximinal subspaces in Banach spaces. In Function spaces, volume 435 of Contemp. Math., pages 143–152. Amer. Math. Soc., Providence, RI, 2007.
  • [8] S. Dutta and Darapaneni Narayana. Strongly proximinal subspaces of finite codimension in C(K)C(K). Colloq. Math., 109(1):119–128, 2007.
  • [9] Carlo Franchetti and Rafael Payá. Banach spaces with strongly subdifferentiable norm. Boll. Un. Mat. Ital. B (7), 7(1):45–70, 1993.
  • [10] A. L. Garkavi. The conditional Čebyšev center of a compact set of continuous functions. Mat. Zametki, 14:469–478, 1973.
  • [11] G. Godefroy and V. Indumathi. Strong proximinality and polyhedral spaces. Rev. Mat. Complut., 14(1):105–125, 2001.
  • [12] G. Godini. Best approximation and intersections of balls. In Banach space theory and its applications (Bucharest, 1981), volume 991 of Lecture Notes in Math., pages 44–54. Springer, Berlin, 1983.
  • [13] P. Harmand, D. Werner, and W. Werner. MM-ideals in Banach spaces and Banach algebras, volume 1547 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1993.
  • [14] C. R. Jayanarayanan. Characterization of strong ball proximinality in L1L_{1}-predual spaces. J. Convex Anal., 26(2):537–542, 2019.
  • [15] C. R. Jayanarayanan and S. Lalithambigai. Strong ball proximinality and continuity of metric projection in L1L_{1}-predual spaces. J. Approx. Theory, 213:120–135, 2017.
  • [16] C. R. Jayanarayanan and Tanmoy Paul. Strong proximinality and intersection properties of balls in Banach spaces. J. Math. Anal. Appl., 426(2):1217–1231, 2015.
  • [17] H. Elton Lacey. The isometric theory of classical Banach spaces. Die Grundlehren der mathematischen Wissenschaften, Band 208. Springer-Verlag, New York-Heidelberg, 1974.
  • [18] Joram Lindenstrauss. Extension of compact operators. Mem. Amer. Math. Soc., 48:112, 1964.
  • [19] Jaroslav Mach. On the existence of best simultaneous approximation. J. Approx. Theory, 25(3):258–265, 1979.
  • [20] Jaroslav Mach. Continuity properties of Chebyshev centers. J. Approx. Theory, 29(3):223–230, 1980.
  • [21] D. V. Pai and P. T. Nowroji. On restricted centers of sets. J. Approx. Theory, 66(2):170–189, 1991.
  • [22] David T. Yost. Best approximation and intersections of balls in Banach spaces. Bull. Austral. Math. Soc., 20(2):285–300, 1979.