This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

On NSOP2\mathrm{NSOP}_{2} Theories

Scott Mutchnik
Abstract.

Answering a question of Džamonja and Shelah, we show that every NSOP2\mathrm{NSOP}_{2} theory is NSOP1\mathrm{NSOP}_{1}.

1. Introduction

One of the most exciting areas of research in modern model theory is the classification along various dividing lines of non-simple but otherwise tame theories, especially NSOPn\mathrm{NSOP}_{n} theories for 1n31\leq n\leq 3. The first two of these properties, introduced in [12], require the nonexistence of certain trees:

Definition 1.1.

A theory TT is NSOP1\mathrm{NSOP}_{1} if there does not exist a formula φ(x,y)\varphi(x,y) and tuples {bη}η2<ω\{b_{\eta}\}_{\eta\in 2^{<\omega}} so that {φ(x,bσn)}nω\{\varphi(x,b_{\sigma\upharpoonleft n})\}_{n\in\omega} is consistent for any σ2ω\sigma\in 2^{\omega}, but for any η2η10\eta_{2}\unrhd\eta_{1}\smallfrown\langle 0\rangle, {φ(x,bη2),φ(x,bη11)}\{\varphi(x,b_{\eta_{2}}),\varphi(x,b_{\eta_{1}\smallfrown\langle 1\rangle})\} is inconsistent. Otherwise it is SOP1\mathrm{SOP}_{1}.

Definition 1.2.

A theory TT is NSOP2\mathrm{NSOP}_{2} if there does not exist a formula φ(x,y)\varphi(x,y) and tuples {bη}η2<ω\{b_{\eta}\}_{\eta\in 2^{<\omega}} so that {φ(x,bσn)}nω\{\varphi(x,b_{\sigma\upharpoonleft n})\}_{n\in\omega} is consistent for any σ2ω\sigma\in 2^{\omega}, but for incomparable η1\eta_{1} and η2\eta_{2}, {φ(x,bη1),φ(x,bη2)}\{\varphi(x,b_{\eta_{1}}),\varphi(x,b_{\eta_{2}})\} is inconsistent. Otherwise it is SOP2\mathrm{SOP}_{2}.

The property NSOP3\mathrm{NSOP}_{3} is introduced in [29] as part of a family of notions NSOPn\mathrm{NSOP}_{n} for n3n\geq 3:

Definition 1.3.

A theory TT is NSOPn\mathrm{NSOP}_{n} (that is, does not have the n-strong order property) if there is no definable relation R(x1,x2)R(x_{1},x_{2}) with no nn-cycles, but with tuples {ai}iω\{a_{i}\}_{i\in\omega} with R(ai,aj)\models R(a_{i},a_{j}) for i<ji<j. Otherwise it is SOPn\mathrm{SOP}_{n}.

Fact 1.4.

([29], [12]) Simple theories are NSOP1\mathrm{NSOP}_{1}, and NSOPn\mathrm{NSOP}_{n} theories are NSOPm\mathrm{NSOP}_{m} for nmn\leq m.

In [30] it is shown that TfeqT^{*}_{feq}, the model companion of the theory of parametrized equivalence relations, is NSOP1\mathrm{NSOP}_{1} but not simple; a limited number of further examples have since been found by various authors. Yet the main problem, posed by Džamonja and Shelah in [12], has remained unsolved:

Problem 1.5.

Are all NSOP3\mathrm{NSOP}_{3} theories NSOP2\mathrm{NSOP}_{2}? Are all NSOP2\mathrm{NSOP}_{2} theories NSOP1\mathrm{NSOP}_{1}?

In this paper we answer the latter question in the positive:

Theorem 1.6.

All NSOP2\mathrm{NSOP}_{2} theories are NSOP1\mathrm{NSOP}_{1}.

One reason for the significance of this problem comes from Shelah and Usvyatsov’s proposal in [30] to characterize classes of theories both internally in terms of the structure of their sufficiently saturated models, and externally in terms of orders on theories. The NSOP2\mathrm{NSOP}_{2} theories have a deep external characterization: under the generalized continuum hypothesis, Džamonja and Shelah [12] show that maximality in the order \lhd^{*}, an order related to the Keisler order, implies a combinatorial property related to SOP2\mathrm{SOP}_{2}, which Shelah and Usvyatsov then show in [30] to be the same as SOP2\mathrm{SOP}_{2}; later, Malliaris and Shelah in [24] show the equivalence between SOP2\mathrm{SOP}_{2} and \lhd^{*}-maximality under the generalized continuum hypothesis. On the other hand, NSOP1\mathrm{NSOP}_{1} theories can be characterized internally not only in terms of trees, but through the theory of independence, in analogy with stability theory. It is well known that simple theories are characterized as those theories where forking and dividing behave in certain ways as they do in stable theories; for example, symmetry of forking characterizes simple theories. In [16], Kaplan and Ramsey show that Kim-forking, or forking witnessed by invariant Morley sequences, is the correct way of extending the theory of forking to NSOP1\mathrm{NSOP}_{1} theories from simple theories. By relaxing the requirement of base monotonicity, they extend the Kim-Pillay characterization of simple theories in terms of the existence of abstract independence relations to NSOP1\mathrm{NSOP}_{1} theories, and, more concretely, characterize NSOP1\mathrm{NSOP}_{1} theories by the symmetry of Kim-independence, by the independence theorem for Kim-independence, and by a variant of Kim’s lemma in simple theories, asserting that Kim-dividing of a formula, rather than dividing, is witnessed by any invariant Morley sequence. Our result that NSOP1\mathrm{NSOP}_{1} theories coincide with NSOP2\mathrm{NSOP}_{2} theories therefore shows a surprising agreement between dividing lines related to Keisler’s order and dividing lines related to independence.

We outline the paper and give a word on the strategy for the proof. In section 3, we develop in general theories a version of a construction used by Chernikov and Kaplan in [6] to study forking and dividing in NTP2\mathrm{NTP}_{2} theories. In [1], Adler initiated the study of abstract relations between sets in a model, generalizing some of the properties of forking-independence, coheirs, and other concrete relations from model theory, and provided a set of potential axioms for these relations111Other than Adler’s work in [1] and Conant’s work on free amalgamation theories in [8], an additional observation which ultimately led us to the proof of this result is found in [11], where d’Elbée proposes the problem of explaining the apparent ubiquity of additional independence relations with no known concrete model-theoretic independence relations in NSOP1\mathrm{NSOP}_{1} theories, such as strong independence existing alongside Kim-independence in the theory ACFG\mathrm{ACFG} (introduced as part of a more general class in [13]) of algebraically closed fields with a generic additive subgroup. He observes that just as in the case of free amalgamation of generic functional structures in [22] or generic incidence structures in [10], these stronger independence relations can be used to prove the equivalence of forking and dividing for complete types in many known NSOP1\mathrm{NSOP}_{1} theories. Before proving Theorem 1.6, we gave some very weak axioms (including stationarity, a feature of the examples considered by [11]) for abstract relations between sets over a model, which appeared to be very common in NSOP\mathrm{NSOP} theories including strictly NSOP1\mathrm{NSOP}_{1} theories and NSOP4\mathrm{NSOP}_{4} theories, and proved that theories with such a relation could not be NSOP2\mathrm{NSOP}_{2}; instead of considering Morley sequences in canonical coheirs as in the below, we used \mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}-independent sequences for the abstract relation \mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}, in the sense of Definition 7.5 of [8]. Note also that the property quasi-strong finite character considered below is a property of the examples in [11].. We notice that the construction of Chernikov and Kaplan can be relativized to relations between sets satisfying certain axioms, obtaining new relations between sets from old ones, and iterate this construction to obtain a canonical class of coheirs in any theory.

In section 4, we study this canonical class of coheirs in NSOP2\mathrm{NSOP}_{2} theories. Before the development of Kaplan and Ramsey’s theory of Kim-independence in NSOP1\mathrm{NSOP}_{1} theories in [16], Chernikov [5] proposed finding a theory of independence for NSOP2\mathrm{NSOP}_{2} theories, and the proof of our main result comes from our efforts to answer this proposal. Just as in [6], Chernikov and Kaplan’s construction gives maximal classes in the dividing order of Ben Yaacov and Chernikov [33], we show that in NSOP2\mathrm{NSOP}_{2} theories our variant of this construction gives minimal classes in the restriction of this order to coheir Morley sequences, proving an analogue of Kim’s lemma. As a by-product of this construction, we also initiate the theory of independence in a class related to the NATP\mathrm{NATP} theories of Ahn and Kim [2], the study of which was further developed by Ahn, Kim and Lee in [3], showing that under this assumption Kim-forking and Kim-dividing coincide for coheir Morley sequences. (See [20] for the question of finding an analogue for NSOP1\mathrm{NSOP}_{1} theories of the role that NTP2\mathrm{NTP}_{2} theories play relative to simple theories, and developing Kim-independence in that analogue; that Kim-forking coincides with Kim-dividing for coheir Morley sequences in a related class gives us preliminary evidence that NATP\mathrm{NATP} completes this analogy.)

In section 5, we investigate behavior similar to NSOP1\mathrm{NSOP}_{1} theories in NSOP2\mathrm{NSOP}_{2} theories. We introduce the notion of Conant-independence, which will generalize the relation AMaBA\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{a}_{M}B defined by acl(MA)acl(MB)=M\mathrm{acl}(MA)\cap\mathrm{acl}(MB)=M in the free amalgamation theories introduced by Conant [8] (based on concepts used to study the isometry groups of Urysohn spheres in [32]); see the following section. While it will end up coinciding with Kim-independence in our case, we studied a version of Conant-independence in a potentially strictly NSOP1\mathrm{NSOP}_{1}, potentially SOP3\mathrm{SOP}_{3} generalization of free amalgamation theories in [26]. Conant-independence in NSOP2\mathrm{NSOP}_{2} theories can be defined as Kim-independence relative to canonical Morley sequences, just as a\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{a} is Kim-independence relative to free amalgamation Morley sequences (as in lemma 7.7 of [8]); it can also be defined by forcing Kim’s lemma on Kim-independence, requiring a formula to divide with respect to every Morley sequence instead of just one, as suggested in tentative remarks of Kim in [17] in his discussion of strong dividing in subtle theories. We show that many of Ramsey and Kaplan’s arguments on Kim-independence in NSOP1\mathrm{NSOP}_{1} theories in [16] can be generalized to Conant-independence in NSOP2\mathrm{NSOP}_{2} theories, including a chain condition, symmetry and a weak independnece theorem. (But as is apparent in [8] and [26], similar behavior can occur in a SOP3\mathrm{SOP}_{3} theory, which is why the following section is essential to the proof of our main result.)

In section 6, we conclude the proof of Theorem 1.6. One consequence of Conant’s free amalgamation axioms (say, the freedom, closure and stationarity axioms, in Defintion 2.1 in [8]) is the following:

Let \mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}} denote free amalgamation and A1MaBA_{1}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{a}_{M}B, A2MaCA_{2}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{a}_{M}C, and BMCB\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{M}C with A1MA2A_{1}\equiv_{M}A_{2}. Then there is some AMaBCA\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{a}_{M}BC with AMBA1A\equiv_{MB}A_{1} and AMCA2A\equiv_{MC}A_{2}.

We will have shown in the prior section that Conant-independence is symmetric, and that a similar fact holds, roughly, when replacing free amalgamation with canonical coheirs and a\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{a} with Conant-independence. Conant shows in [8] that modular free amalgamation theories must either be simple or SOP3\mathrm{SOP}_{3} (see [14] for a related result on countably categorical Hrushovski constructions), starting with a failure of forking-independence to coincide with a\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{a} (because forking-independence cannot be symmetric unless a theory is simple) and using the above fact to build up a configuration giving SOP3\mathrm{SOP}_{3}. Starting, analogously, with the assumption that an NSOP2\mathrm{NSOP}_{2} theory TT is SOP1\mathrm{SOP}_{1}, so Kim-dividing independence is not symmetric and therefore fails to coincide with Conant-independence, we simulate Conant’s construction of an instance of SOP3\mathrm{SOP}_{3}. In short, we show that a NSOP2\mathrm{NSOP}_{2} theory is either NSOP1\mathrm{NSOP}_{1} or SOP3\mathrm{SOP}_{3}. But a NSOP2\mathrm{NSOP}_{2} theory is of course not SOP3\mathrm{SOP}_{3}, so it must be NSOP1\mathrm{NSOP}_{1}.

2. Preliminaries

We let a,b,c,d,e,A,B,Ca,b,c,d,e,A,B,C denote sets, potentially with an enumeration depending on context, and x,y,z,X,Y,Zx,y,z,X,Y,Z denote tuples of variables. We let 𝕄\mathbb{M} denote a sufficiently saturated model of a theory TT and let MM denote an elementary submodel. We write ABAB to denote the union (or concatenation) of the sets AA and BB, and write II, JJ, etc. for infinite sequences (or sometimes trees) of tuples or an infinite linearly ordered set.

Relations between sets

Roughly following the axioms for abstract independence relations in [1], as well as others that are standard in the literature, we define the following axioms for relations AMBA\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{M}B between sets over a model:

Invariance: For all σAut(𝕄)\sigma\in\mathrm{Aut}(\mathbb{M}), AMBA\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{M}B implies σ(A)σ(M)σ(B)\sigma(A)\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{\sigma(M)}\sigma(B).

Full existence: For MA,B𝕄M\subseteq A,B\subseteq\mathbb{M}, there is always some AMAA^{\prime}\equiv_{M}A with AMBA\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{M}B.

Left extension: If AMBA\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{M}B and ACA\subseteq C, there is some BABB^{\prime}\equiv_{A}B with CMBC\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{M}B^{\prime}.

Right extension: If AMBA\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{M}B and BCB\subseteq C, there is some ABAA^{\prime}\equiv_{B}A with AMCA^{\prime}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{M}C.

Left monotonicity: If AMBA\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{M}B and MAAM\subseteq A^{\prime}\subseteq A, then AMBA^{\prime}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{M}B

Right monotonicity: If AMBA\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{M}B and MBBM\subseteq B^{\prime}\subseteq B, then AMBA\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{M}B^{\prime}

(We will refer to the two previous properties, taken together, as monotonicity.)

Symmetry: If AMBA\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{M}B then BMAB\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{M}A

Coheirs and Morley sequences

A global type pp is a complete type over 𝕄\mathbb{M}. For pS(A)p\in S(A) for MAM\subseteq A, we say pp is finitely satisfiable over MM or a coheir extension of its restriction to MM if every formula in pp is satisfiable in MM. Global types pp finitely satisfiable in MM are invariant over MM: whether φ(x,b)\varphi(x,b) belongs to pp for φ\varphi a formula without parameters, depends only on the type of the parameter bb over MM. We write aMuba\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{u}_{M}b to denote that tp(a/Mb)\mathrm{tp}(a/Mb) is finitely satisfiable in MM. We let aMhba\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{M}^{h}b denote bMuab\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{u}_{M}a. The relation u\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{u} (over models) is well-known to satisfy all of the above properties other than symmetry. We say {bi}iI\{b_{i}\}_{i\in I}, for II potentially finite, is a coheir sequence over MM if biMub<ib_{i}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{u}_{M}b_{<i} for iIi\in I. We say a coheir sequence {bi}iI\{b_{i}\}_{i\in I}, for II infinite, is moreover a coheir Morley sequence over MM if there is a fixed global type p(x)p(x) finitely satisfiable in MM so that bip(x)|{Mbj}j<ib_{i}\models p(x)|_{\{Mb_{j}\}_{j<i}} for iIi\in I. The type of a coheir Morley sequence over MM (indexed by a given set) is well-known to depend only on p(x)p(x), and coheir Morley sequences are known to be indiscernible; the type of a coheir sequence over MM depends only on the global coheirs over MM extending the tp(bi/Mb<i)\mathrm{tp}(b_{i}/Mb_{<i}).

NSOP1\mathrm{NSOP}_{1} theories and Kim-dividing

In this paper we use nonstandard terminology: Kim-dividing, etc. are defined in terms of Morley sequences in invariant types over MM rather than finitely satisfiable types over MM in [16]. The reason why we do this is that u\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{u} is known to satisfy left extension. This will do us no harm for our main result, though when we briefly consider Kim-forking in some NATP\mathrm{NATP} theories, we will note the nonstandard usage.

Definition 2.1.

A formula φ(x,b)\varphi(x,b) Kim-divides over MM if there is an coheir Morley sequence {bi}iω\{b_{i}\}_{i\in\omega} starting with bb so that {φ(x,bi)}iω\{\varphi(x,b_{i})\}_{i\in\omega} is inconsistent (equivalently, kk-inconsistent for some kk: any subset of size kk is inconsistent). A formula φ(x,b)\varphi(x,b) Kim-forks over MM if it implies a (finite) disjunction of formulas Kim-dividing over MM. We write aMKdba\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{Kd}_{M}b, and say that aa is Kim-dividing independent from bb over MM if tp(a/Mb)\mathrm{tp}(a/Mb) does not include any formulas Kim-dividing over MM.

The following follows directly from Proposition 5.2 of [7]; see also Proposition 3.22 of [16] (where the evident argument for the version for invariant types is given) and Theorem 5.16 of [16] for the full symmetry characterization of NSOP1\mathrm{NSOP}_{1}.

Fact 2.2.

Symmetry of Kd\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{Kd} implies NSOP1\mathrm{NSOP}_{1}.

NSOP2\mathrm{NSOP}_{2} theories

A characterization of SOP2\mathrm{SOP}_{2} as kk-TP1\mathrm{TP}_{1} was proven by Kim and Kim in [18], where they also introduce the notion of weak kk-TP1\mathrm{TP}_{1}, prove that it implies SOP1\mathrm{SOP}_{1}, and conjecture that it also implies SOP2\mathrm{SOP}_{2}:

Definition 2.3.

The theory TT has weak kk-TP1\mathrm{TP}_{1} if there exists a formula φ(x,y)\varphi(x,y) and tuples {bη}ηω<ω\{b_{\eta}\}_{\eta\in\omega^{<\omega}} so that {φ(x,bσn)}nω\{\varphi(x,b_{\sigma\upharpoonleft n})\}_{n\in\omega} is consistent for any σωω\sigma\in\omega^{\omega}, but for pairwise incomparable η1,ηkω<ω\eta_{1}\ldots,\eta_{k}\in\omega^{<\omega} with common meet, {φ(x,bηi)}i=1k\{\varphi(x,b_{\eta_{i}})\}_{i=1}^{k} is inconsistent.

Later, Chernikov and Ramsey, in Theorem 4.8 of [7], claim to show that weak kk-TP1\mathrm{TP}_{1} implies SOP2\mathrm{SOP}_{2}, but their proof is incorrect; the embedded tree {bη}ηω<ω\{b_{\eta}\}_{\eta\in\omega^{<\omega}} in the proof of that theorem is not actually strongly indiscernible over the parameter set CC. In an earlier version of this paper, we used this result. In this section, we will introduce an equivalent form of SOP2\mathrm{SOP}_{2} that will suffice for our argument, and use the same method as [7] to give a proof that will work to show this equivalence despite failing for weak kk-TP1\mathrm{TP}_{1}.

Definition 2.4.

(Proposition 2.51, item IIIa, [102]). A list η1,,ηnω<ω\eta_{1},\ldots,\eta_{n}\in\omega^{<\omega} is a descending comb if and only if it is an antichain so that η1<lex<lexηn\eta_{1}<_{\mathrm{lex}}\ldots<_{\mathrm{lex}}\eta_{n}, and so that, for 1k<n1\leq k<n, η1ηk+1η1ηk.\eta_{1}\wedge\ldots\wedge\eta_{k+1}\lhd\eta_{1}\wedge\ldots\wedge\eta_{k}.

So for example, all descending combs of length nn have the same quantifier-free type in the language {<lex,,}\{<_{\mathrm{lex}},\lhd,\wedge\} as the descending comb 0n11,1\langle 0\rangle^{n-1}\smallfrown\langle 1\rangle,\ldots\langle 1\rangle; meanwhile, 00,01,10,11\langle 00\rangle,\langle 01\rangle,\langle 10\rangle,\langle 11\rangle is an example of a lexicographically ordered antichain that is not a descending comb.

Definition 2.5.

(Definitions 11 and 12, [31]) For tuples η¯,η¯ω<ω\overline{\eta},\overline{\eta}^{\prime}\in\omega^{<\omega} of elements of ω<ω\omega^{<\omega}, we write η¯0η¯\overline{\eta}\sim_{0}\overline{\eta}^{\prime} to mean that η¯\overline{\eta} has the same quantifier-free type in the language {<lex,,}\{<_{\mathrm{lex}},\lhd,\wedge\} as η¯\overline{\eta}^{\prime}. For (bη)ηω<ω(b_{\eta})_{\eta\in\omega^{<\omega}} a tree-indexed set of tuples and η¯=η1,,ηnω<ω\overline{\eta}=\eta_{1},\ldots,\eta_{n}\in\omega^{<\omega} an nn-tuple of elements of ω<ω\omega^{<\omega}, we write bη¯=:bη1bηnb_{\overline{\eta}}=:b_{\eta_{1}}\ldots b_{\eta_{n}}, and call (bη)ηω<ω(b_{\eta})_{\eta\in\omega^{<\omega}} strongly indiscernible over a set AA if for all tuples η¯,η¯ω<ω\overline{\eta},\overline{\eta}^{\prime}\in\omega^{<\omega} of elements of ω<ω\omega^{<\omega} with η¯0η¯\overline{\eta}\sim_{0}\overline{\eta}^{\prime}, bη¯Abη¯b_{\overline{\eta}}\equiv_{A}b_{\overline{\eta}^{\prime}}.

Fact 2.6.

(Theorem 16, [31]; see [28] for an alternate proof) Let (bη)ηω<ω(b_{\eta})_{\eta\in\omega^{<\omega}} be a tree-indexed set of tuples, and AA a set. Then there is (cη)ηω<ω(c_{\eta})_{\eta\in\omega^{<\omega}} strongly indiscernible over AA so that for any tuple η¯ω<ω\overline{\eta}\in\omega^{<\omega} of elements of ω<ω\omega^{<\omega} and φ(x)L(A)\varphi(x)\in L(A), if φ(bη¯)\models\varphi(b_{\overline{\eta^{\prime}}}) for all η¯0η\overline{\eta}^{\prime}\sim_{0}\eta, then φ(cη¯)\models\varphi(c_{\overline{\eta}}).

Definition 2.7.

The theory TT has kk-DCTP1\mathrm{DCTP}_{1} if there exists a formula φ(x,y)\varphi(x,y) and tuples {bη}ηω<ω\{b_{\eta}\}_{\eta\in\omega^{<\omega}} so that {φ(x,bσn)}nω\{\varphi(x,b_{\sigma\upharpoonleft n})\}_{n\in\omega} is consistent for any σωω\sigma\in\omega^{\omega}, but for any descending comb η1,ηkω<ω\eta_{1}\ldots,\eta_{k}\in\omega^{<\omega}, {φ(x,bηi)}i=1k\{\varphi(x,b_{\eta_{i}})\}_{i=1}^{k} is inconsistent.

Lemma 2.8.

For any k>1k>1, a theory has SOP2\mathrm{SOP}_{2} if and only if it has kk-DCTP1\mathrm{DCTP}_{1}.

Proof.

(\Rightarrow) The property 22-DCTP1\mathrm{DCTP}_{1} follows directly from Fact 4.2, [7].

(\Leftarrow) We follow the proof of theorem 4.8 of ([7]), which is incorrect for the claimed result. Let {bη}ηω<ω\{b_{\eta}\}_{\eta\in\omega^{<\omega}} witness DCTP1\mathrm{DCTP}_{1} with the formula φ(x,y)\varphi(x,y). By fact 2.6, we can assume {bη}ηω<ω\{b_{\eta}\}_{\eta\in\omega^{<\omega}} is strongly indiscernible (as paths and descending combs are preserved under 0\sim_{0}-equivalence), and will produce a witness to SOP2\mathrm{SOP}_{2}. Let ηi=0i1\eta_{i}=\langle 0\rangle^{i}\smallfrown\langle 1\rangle (so that, say, ηn,,η0\eta_{n},\ldots,\eta_{0} will form a descending comb), and let nn be maximal so that

{φ(x,bηi0α):i<n,α<ω}\{\varphi(x,b_{\eta_{i}\smallfrown\langle 0\rangle^{\alpha}}):i<n,\alpha<\omega\}

is consistent; by consistency of the paths, nn will be at least 11, and by inconsistency of descending combs of size kk, nn will be at most kk. Let C={bηi0α:i<n1,α<ω}C=\{b_{\eta_{i}\smallfrown\langle 0\rangle^{\alpha}}:i<n-1,\alpha<\omega\}. We see that, say, μ=0n1\mu=\langle 0\rangle_{n-1} sits strictly above the meets of any two or more of the ηi\eta_{i} for i<n1i<n-1 in the order \lhd, and is incomparable to and lexicographically to the left of ηn2\eta^{n-2} when n>1n>1, so the appropriately tree-indexed subset {cη}ηω<ω\{c_{\eta}\}_{\eta\in\omega^{<\omega}} of {bη}ηω<ω\{b_{\eta}\}_{\eta\in\omega^{<\omega}} consisting of those bηb_{\eta} with μη\mu\unlhd\eta (that is, where cη=bμηc_{\eta}=b_{\mu\smallfrown\eta}) really is strongly indiscernible over CC. By strong indiscernibility of {bη}ηω<ω\{b_{\eta}\}_{\eta\in\omega^{<\omega}} and the fact that {φ(x,bηi0α):i<n,α<ω}\{\varphi(x,b_{\eta_{i}\smallfrown\langle 0\rangle^{\alpha}}):i<n,\alpha<\omega\} is consistent, {φ(x,c00α):i<n,α<ω}{φ(x,c):cC}\{\varphi(x,c_{\langle 0\rangle\smallfrown\langle 0\rangle^{\alpha}}):i<n,\alpha<\omega\}\cup\{\varphi(x,c):c\in C\} is consistent; let dd realize it, and by Ramsey, compactness and an automorphism over CC, we can assume {c00α}α<ω\{c_{\langle 0\rangle\smallfrown\langle 0\rangle^{\alpha}}\}_{\alpha<\omega} is indiscernible over dCdC. On the other hand, for p(y,z¯)=tp(d,{c00α}α<ω/C)p(y,\overline{z})=\mathrm{tp}(d,\{c_{\langle 0\rangle\smallfrown\langle 0\rangle^{\alpha}}\}_{\alpha<\omega}/C), we see that p(y,{c00α}α<ω)p(y,{c10α}α<ω)p(y,\{c_{\langle 0\rangle\smallfrown\langle 0\rangle^{\alpha}}\}_{\alpha<\omega})\cup p(y,\{c_{\langle 1\rangle\smallfrown\langle 0\rangle^{\alpha}}\}_{\alpha<\omega}) is inconsistent, by strong indiscernibility of {bη}ηω<ω\{b_{\eta}\}_{\eta\in\omega^{<\omega}} and inconsistency (by maximality of nn) of {φ(x,bηi0α):in,α<ω}\{\varphi(x,b_{\eta_{i}\smallfrown\langle 0\rangle^{\alpha}}):i\leq n,\alpha<\omega\} (noting that, say, p(y,{c00α}α<ω)p(y,\{c_{\langle 0\rangle\smallfrown\langle 0\rangle^{\alpha}}\}_{\alpha<\omega}) contains {bηi0α:i<n1,α<ω}\{b_{\eta_{i}\smallfrown\langle 0\rangle^{\alpha}}:i<n-1,\alpha<\omega\}). This is exactly what the “path collapse lemma,” Lemma 4.6 of [7], tells us that we need to obtain SOP2\mathrm{SOP}_{2}. ∎

Though the proof of Theorem 4.8 of [7] is incorrect, that theorem (albeit, not a “local” version) will be a corollary of our main result, Theorem 1.6, and the result of [18] that weak kk-TP1\mathrm{TP}_{1} implies SOP1\mathrm{SOP}_{1}. (Note that SOP2\mathrm{SOP}_{2} is just weak 22-TP1\mathrm{TP}_{1}).

Corollary 2.8.1.

(to Theorem 1.6) For any kk, a theory has weak kk-TP1\mathrm{TP}_{1} if and only if it has SOP2\mathrm{SOP}_{2}.

3. Canonical coheirs in any theory

The following section will require no assumptions on TT. Iterating a similar construction to the one used by Chernikov and Kaplan in [6] to prove the equivalence of forking and dividing for formulas in NTP2\mathrm{NTP}_{2} theories, we will contruct a canonical class of coheir extensions in any theory. This class will end up satisfying a variant of the “Kim’s lemma for Kim-dividing” in NSOP1\mathrm{NSOP}_{1} theories (Theorem 3.16 of [16]) when considered in a NSOP2\mathrm{NSOP}_{2} theory.

Proposition 3.1.

Let TT be any theory. Consider relations \mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}} between sets over a model that are stronger that h\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{h}, satisfy invariance, monotonicity, full existence and right extension, and satisfy the coheir chain condition: if aMba\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{M}b and I={bi}iωI=\{b_{i}\}_{i\in\omega} is a coheir Morley sequence starting with bb, then there is some IMII^{\prime}\equiv_{M}I with aMIa\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{M}I^{\prime} and each term of II^{\prime} satisfying tp(b/Ma)\mathrm{tp}(b/Ma). There is a weakest such relation CK\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{\mathrm{CK}}.

The “weakest” clause is not necessary for the main result, but we include it anyway to show our construction is canonical.

We start by relativizing the notions of Kim-dividing, Kim-forking, and quasi-dividing (Definition 3.2 of [6]) to an MM-invariant ideal on the definable subsets of 𝕄\mathbb{M}.

Definition 3.2.

Let \mathcal{I} be an MM-invariant ideal on the definable subsets of 𝕄\mathbb{M}. A formula φ(x,b)\varphi(x,b) \mathcal{I}-Kim-divides over MM if there is a coheir Morley sequence {bi}iω\{b_{i}\}_{i\in\omega} starting with bb so that for some kk, the intersection of some (any) kk-element subset of {φ(𝕄,bi)}iω\{\varphi(\mathbb{M},b_{i})\}_{i\in\omega} belongs to \mathcal{I}. We say φ(x,b)\varphi(x,b) \mathcal{I}-Kim-forks over 𝕄\mathbb{M} if it implies a (finite) disjunction of formulas \mathcal{I}-Kim-dividing over MM. We say φ(x,b)\varphi(x,b) \mathcal{I}-quasi-divides over MM if there are b1,,bnb_{1},\ldots,b_{n} with bMbib\equiv_{M}b_{i} so that i=1nφ(𝕄,bi)\cap_{i=1}^{n}\varphi(\mathbb{M},b_{i})\in\mathcal{I}.

We say φ(x,b)ψ(x,c)\varphi(x,b)\vdash^{\mathcal{I}}\psi(x,c) if φ(𝕄,b)\ψ(𝕄,c)\varphi(\mathbb{M},b)\backslash\psi(\mathbb{M},c)\in\mathcal{I}.

The proof of the following lemma is adapted straightforwardly from the proof of the “broom lemma” of Chernikov and Kaplan (Lemma 3.1 of [6])222Alex Kruckman, in a personal communication with the author, discussed an alternative to this proof for showing the properness of the ideal corresponding to the independence result of CK\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{\mathrm{CK}}, with the broom lemma as a corollary, which works for invariant Morley sequences as well as coheir Morley sequences; it is based on unpublished work of James Hanson on the concept of “fracturing,” a generalization of quasi-forking and quasi-dividing.. For the convenience of the reader we give a simplified proof of the modified version; note that this version is just a rephrasing in terms of ideals of Lemma 4.19 in [4]:

Lemma 3.3.

(“\mathcal{I}-broom lemma”) Suppose

α(x,e)ψ(x,c)i=1Nφi(x,ai)\alpha(x,e)\vdash^{\mathcal{I}}\psi(x,c)\vee\bigvee_{i=1}^{N}\varphi_{i}(x,a_{i})

with φi(x,ai)\varphi_{i}(x,a_{i}) \mathcal{I}-Kim-dividing over MM with respect to P(x)P(x) and cMua1aNc\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{u}_{M}a_{1}\ldots a_{N}. Then there are some e1,eme_{1},\ldots e_{m} with eiMee_{i}\equiv_{M}e so that i=1mα(x,ei)ψ(x,c)\bigwedge_{i=1}^{m}\alpha(x,e_{i})\vdash^{\mathcal{I}}\psi(x,c). In particular, \mathcal{I}-Kim-forking implies \mathcal{I}-quasi-dividing over MM.

Proof.

We need the following claim:

Claim 3.4.

Let a1,,ana^{1},\ldots,a^{n} begin a coheir Morley sequence in a global type qq finitely satisfiable over MM. Let aMaia\equiv_{M}a^{i} and let bb be any tuple. Then there are b1,,bnb^{1},\ldots,b^{n} so that b1a1,,bnanb^{1}a^{1},\ldots,b^{n}a^{n} begin a coheir Morley sequence and biaiMbab^{i}a^{i}\equiv_{M}ba. (The same is true for Coheir morley sequences themselves, rather than just their initial segments).

Proof.

Left extension for u\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{u} gives a global type rr finitely satisfiable over MM extending both qq and tp(ab/M)\mathrm{tp}(ab/M). Now take a coheir Morley sequence in rr and apply an automorphism. The parenthetical is similar. ∎

Now we can prove the lemma by induction on NN. Write i=1N1φi(x,ai)\bigvee_{i=1}^{N-1}\varphi_{i}(x,a_{i}) as φ(x,b)\varphi(x,b), and let a=aNa=a_{N}. Let pp be a global coheir extension of tp(c/Mba)\mathrm{tp}(c/Mba). Let (ai)i=1n(a^{i})_{i=1}^{n} be such that aiuai1,,a1a^{i}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{u}a^{i-1},\ldots,a^{1} and aiMaa^{i}\equiv_{M}a for 1in1\leq i\leq n and i=1nφN(x,ai)\wedge_{i=1}^{n}\varphi_{N}(x,a^{i})\vdash^{\mathcal{I}}\bot. By the claim, find b1,bnb^{1},\ldots b^{n} so that aibiuai1bi1a1b1a^{i}b^{i}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{u}a^{i-1}b^{i-1}\ldots a^{1}b^{1} and aibiMaba^{i}b^{i}\equiv_{M}ab for 1in1\leq i\leq n. Then we can assume cp|Maba1b1anbnc\models p|_{Maba^{1}b^{1}\ldots a^{n}b^{n}}. From cMua1b1anbnc\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{u}_{M}a^{1}b^{1}\ldots a^{n}b^{n}, together with aibiuai1bi1a1b1a^{i}b^{i}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{u}a^{i-1}b^{i-1}\ldots a^{1}b^{1} for 1in1\leq i\leq n, it is easy to check cai+1bi+1anbnMuaibica^{i+1}b^{i+1}\ldots a^{n}b^{n}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{u}_{M}a^{i}b^{i} for 0in0\leq i\leq n, and therefore

cbi+1bnMubicb^{i+1}\ldots b^{n}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{M}^{u}b^{i}

for 0i<n0\leq i<n.

Now for 1in1\leq i\leq n we have caibiMcabca^{i}b^{i}\equiv_{M}cab. Let eicaibiMecabe_{i}ca^{i}b^{i}\equiv_{M}ecab for 1in1\leq i\leq n. Then

α(x,ei)ψ(x,c)i=1nφ(x,bi)i=1nφN(x,ai)\bigwedge\alpha(x,e_{i})\vdash^{\mathcal{I}}\psi(x,c)\vee\bigvee_{i=1}^{n}\varphi(x,b^{i})\vee\bigwedge_{i=1}^{n}\varphi_{N}(x,a^{i})

But by choice of the aia^{i},

α(x,ei)ψ(x,c)i=1nφ(x,bi)\bigwedge\alpha(x,e_{i})\vdash^{\mathcal{I}}\psi(x,c)\vee\bigvee_{i=1}^{n}\varphi(x,b^{i})

Now for 1in1\leq i\leq n, because biMbb^{i}\equiv_{M}b, φ(x,bi)\varphi(x,b^{i}) will be of the form j=1N1φj(x,aj)\bigvee_{j=1}^{N-1}\varphi_{j}(x,a^{\prime}_{j}) for φj(x,aj)\varphi_{j}(x,a^{\prime}_{j}) \mathcal{I}-Kim-dividing over MM. So, as the first of nn steps, we can apply cb2bnub1cb^{2}\ldots b^{n}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{u}b^{1} and the inductive hypothesis on NN to find some conjunction β(x,e¯)\beta(x,\overline{e}) of conjugates of α(x,ei)\bigwedge\alpha(x,e_{i}) (which will therefore be a conjunction of conjugates of α(x,e)\alpha(x,e)) so that

β(x,e¯)ψ(x,c)i=2nφ(x,bi)\beta(x,\overline{e})\vdash^{\mathcal{I}}\psi(x,c)\vee\bigvee_{i=2}^{n}\varphi(x,b^{i})

Repeating n1n-1 more times, we are done.

We now begin our construction. The following terminology comes from the notion of strong finite character (used in e.g. [7]).

Definition 3.5.

Let \mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}} be an invariant relation between sets over a model. We say that \mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}} satisfies quasi-strong finite character if for p,qp,q complete types over some model MM, {a,bp(x)q(y):aMb}\{a,b\models p(x)\cup q(y):a\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{M}b\} is type-definable.

Definition 3.6.

Let \mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}} be an invariant relation between sets over a model satisfying monotonicity, right extension and quasi-strong finite character, and fix a complete type P(x)P(x) over a model MM.

(1) A set of formulas {φi(x,bi)}iI\{\varphi_{i}(x,b_{i})\}_{i\in I} is hh^{\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}}-inconsistent with respect to P(x)P(x) if there is no aP(x)a\models P(x) with aM{bi}iIa\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{M}\{b_{i}\}_{i\in I} and φi(a,bi)\models\varphi_{i}(a,b_{i}) for all iIi\in I.

(2) A formula φ(x,b)\varphi(x,b) hh^{\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}}-Kim-divides with respect to P(x)P(x) if there is a coheir Morley sequence {bi}iω\{b_{i}\}_{i\in\omega} starting with bb so that {φ(x,bi)}iω\{\varphi(x,b_{i})\}_{i\in\omega} is hh^{\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}}-inconsistent with respect to P(x)P(x).

(3) A formula hh^{\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}}-Kim-forks with respect to P(x)P(x) if it implies a disjunction of formulas hh^{\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}}-Kim-dividing with respect to P(x)P(x).

(4) A formula φ(x,b)\varphi(x,b) hh^{\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}}-quasi-divides over MM with respect to P(x)P(x) if there are b1,,bnb_{1},\ldots,b_{n} with biMbb_{i}\equiv_{M}b and {φ(x,bi)}i=1n\{\varphi(x,b_{i})\}_{i=1}^{n} hh^{\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}}-inconsistent with respect to P(x)P(x).

Lemma 3.7.

(1) The sets defined by formulas φ(x,b)\varphi(x,b) so that {φ(x,b)}\{\varphi(x,b)\} is hh^{\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}}-inconsistent with respect to P(x)P(x) form an MM-invariant ideal P(x)\mathcal{I}^{\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}}_{P(x)}.

(2) A set {φi(x,bi)}iI\{\varphi_{i}(x,b_{i})\}_{i\in I} is hh^{\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}}-inconsistent with respect to P(x)P(x) if and only if some finite subset is (so its conjunction defines a set in the ideal P(x)\mathcal{I}^{\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}}_{P(x)}.)

Proof.

For (1), it suffices to show (a) that if x(φ(x,b)ψ(x,c))\models\forall x(\varphi(x,b)\rightarrow\psi(x,c)), and ψ(x,c)\psi(x,c) is hh^{\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}}-inconsistent with respect to P(x)P(x), then φ(x,b)\varphi(x,b) is hh^{\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}}-inconsistent with respect to P(x)P(x), and (b) that if both φ(x,b)\varphi(x,b) and ψ(x,c)\psi(x,c) are hh^{\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}}-inconsistent with respect to P(x)P(x) then so is φ(x,b)ψ(x,c)\varphi(x,b)\vee\psi(x,c). For (a), suppose otherwise; then there is some realization aa of P(x)P(x) with φ(a,b)\models\varphi(a,b) and aMba\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{M}b. By right extension, we can assume aMbca\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{M}bc. But then ψ(a,c)\models\psi(a,c), and by right monotonicity, aMca\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{M}c, contradicting that ψ(x,c)\psi(x,c) is hh^{\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}}-inconsistent with respect to P(x)P(x). For (b), suppose otherwise; then there is some realization aa of P(x)P(x) with φ(a,b)ψ(a,c)\models\varphi(a,b)\vee\psi(a,c) and aMbca\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{M}bc; without loss of generality, φ(a,b)\models\varphi(a,b), and by right monotonicity, aMba\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{M}b, contradicting that φ(x,b)\varphi(x,b) is hh^{\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}}-inconsistent with respect to P(x)P(x). The proof of (a) also gives us the fact that a set {φi(x,bi)}iI\{\varphi_{i}(x,b_{i})\}_{i\in I} is hh^{\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}}-inconsistent with respect to P(x)P(x) if some finite subset is (so its conjunction defines a set in the ideal P(x)\mathcal{I}^{\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}}_{P(x)}). To complete (2), we show the “only if” direction. If {φi(x,bi)}iI\{\varphi_{i}(x,b_{i})\}_{i\in I} is hh^{\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}}-inconsistent with respect to P(x)P(x) then there is no realization aa of P(x){φi(x,bi)}iIP(x)\cup\{\varphi_{i}(x,b_{i})\}_{i\in I} with aM{bi}iIa\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{M}\{b_{i}\}_{i\in I}. But the set of realizations aa of P(x)P(x) that satisfy aM{bi}iIa\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{M}\{b_{i}\}_{i\in I} is, by quasi-strong finite character, type-definable. So by compactness, there must be some finite I0II_{0}\subseteq I so there is no realization aa of P(x){φi(x,bi)}iI0P(x)\cup\{\varphi_{i}(x,b_{i})\}_{i\in I_{0}} with aM{bi}iIa\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{M}\{b_{i}\}_{i\in I}. But if there is a realization aa of P(x){φi(x,bi)}iI0P(x)\cup\{\varphi_{i}(x,b_{i})\}_{i\in I_{0}} with aM{bi}iI0a\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{M}\{b_{i}\}_{i\in I_{0}}, then we can even get aM{bi}iIa\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{M}\{b_{i}\}_{i\in I} by right-extension, so {φi(x,bi)}iI0\{\varphi_{i}(x,b_{i})\}_{i\in I_{0}} will be as desired. ∎

Corollary 3.7.1.

For all formulas, hh^{\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}}-Kim-forking with respect to P(x)P(x) implies hh^{\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}}-quasi-dividing with respect to P(x)P(x).

Proof.

By Lemma 3.7, hh^{\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}}-Kim-dividing with respect to P(x)P(x) is just P(x)\mathcal{I}^{\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}}_{P(x)}-Kim-dividing. Apply Lemma 3.3 to P(x)\mathcal{I}^{\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}}_{P(x)}. ∎

Lemma 3.8.

If a formula φ(x,b)\varphi(x,b) is hh^{\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}}-inconsistent with respect to P(x)P(x), then it is hh^{\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}}-inconsistent with respect to any complete type Q(x,y)Q(x,y) extending P(x)P(x). So the same is true for hh^{\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}}-Kim-dividing and hh^{\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}}-Kim-forking.

Proof.

Suppose otherwise. Then there is a realization acac of Q(x,y){φ(x,b)}Q(x,y)\cup\{\varphi(x,b)\} with acMbac\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{M}b. So by left monotonicity, aMba\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{M}b, but aa realizes P(x){φ(x,b)}P(x)\cup\{\varphi(x,b)\}, a contradiction. ∎

We are now in a position to study derived independence relations:

Definition 3.9.

Let \mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}} be an invariant relation between sets over a model satisfying monotonicity, right extension and quasi-strong finite character. Then we define aMba\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{\prime}_{M}b to mean that tp(a/Mb)\mathrm{tp}(a/Mb) does not contain any formulas hh^{\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}}-Kim-forking with respect to tp(a/M)\mathrm{tp}(a/M).

Lemma 3.10.

Suppose \mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}} is an invariant relation between sets over a model satisfying monotonicity, right extension, quasi-strong finite character, and full existence. Then so is \mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{\prime}.

Proof.

Invariance is obviously inherited from \mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}. Quasi-strong finite character is by construction and right extension is also standard from the construction: if aMba\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{\prime}_{M}b but, for some c𝕄c\in\mathbb{M} there is no aMbaa^{\prime}\equiv_{Mb}a with aMbca\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{\prime}_{M}bc, then tp(a/Mb)\mathrm{tp}(a/Mb) must imply a disjunction of formulas with parameters in MbcMbc hh^{\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}}-Kim-forking with respect to P(x)P(x); some formula in tp(a/Mb)\mathrm{tp}(a/Mb) must then imply this disjunction, which will then hh^{\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}}-Kim-fork with respect to P(x)P(x), contradicting aMba\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{\prime}_{M}b. Right monotonicity is by definition. Left monotonicity is Lemma 3.8. It remains to show full existence; the proof is a straightforward generalization of the proof of Lemma 3.7 of [6]. By right extension, it suffices to show that bMMb\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{\prime}_{M}M for any tuple bb (the “existence” property that is implied by full existence). Suppose otherwise; then tp(b/M)\mathrm{tp}(b/M) contains a formula φ(x,m)\varphi(x,m) for mMm\in M that hh^{\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}}-Kim-forks over MM. By Corollary 3.7.1, φ(x,m)\varphi(x,m) hh^{\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}}-quasi-divides over MM. Since mMm\in M, this just means that φ(x,m)tp(b/M)\varphi(x,m)\in\mathcal{I}_{\mathrm{tp}(b/M)}^{\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}}. But since φ(x,m)tp(b/M)\varphi(x,m)\in\mathrm{tp}(b/M), this contradicts full existence for \mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}. ∎

The next observation is required to produce a relation with the coheir chain condition:

Lemma 3.11.

Let \mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}} be as in Lemma 3.10 and suppose aMba\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{\prime}_{M}b. Then for I={bi}iωI=\{b_{i}\}_{i\in\omega} a coheir Morley sequence starting with bb, there is IMII^{\prime}\equiv_{M}I with aMIa\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{M}I^{\prime} and each term of II^{\prime} satisfying tp(b/Ma)\mathrm{tp}(b/Ma). In particular, \mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{\prime} implies \mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}, so hh^{\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}}-Kim-forking implies hh^{\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{\prime}}-Kim-forking.

Proof.

Suppose otherwise: then for q=tp(a,b/M)q=\mathrm{tp}(a,b/M), iωq(x,bi)\cup_{i\in\omega}q(x,b_{i}) is hh^{\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}}-inconsistent with respect to tp(a/M)\mathrm{tp}(a/M), so by part (2) of Lemma 3.7, some finite subset must be hh^{\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}}-inconsistent with respect to tp(a/M)\mathrm{tp}(a/M). This gives us a formula in q(x,b)q(x,b) that hh^{\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}}-Kim divides with respect to tp(a/M)\mathrm{tp}(a/M), a contradiction. ∎

Note that h\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{h} satisfies the assumptions of Lemma 3.10. Now define inductively, (0)=h\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{(0)}=\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{h}, (n+1)=((n))\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{(n+1)}=(\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{(n)})^{{}^{\prime}}. Let CK=i=0(n)\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{\mathrm{CK}}=\bigcap_{i=0}^{\infty}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{(n)}. Then because h(n)h^{\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{(n)}}-Kim-forking implies h(n+1)h^{\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{(n+1)}}-Kim-forking, and aMCKba\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{\mathrm{CK}}_{M}b means that tp(a/Mb)\mathrm{tp}(a/Mb) does not contain a h(n)h^{\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{(n)}}-Kim-forking formula for any nn, right extension and quasi-strong finite character are standard. Monotonicity and invariance follows from monotonicity and invariance of the (n)\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{(n)}. By right extension for CK\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{\mathrm{CK}}, full existence for CK\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{\mathrm{CK}} would follow from the existence property bMCKMb\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{\mathrm{CK}}_{M}M for any bb, but this just follows from full existence for each of the (n)\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{(n)}. Finally, the coheir chain condition follows from Lemma 3.11 together with quasi-strong finite character for the (n)\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{(n)} and compactness.

It remains to show that CK\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{\mathrm{CK}} is the weakest relation implying h\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{h} and satisfying these properties. Let \mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}} be some other such relation and assume by induction that \mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}} implies (n)\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{(n)} Assume aMba\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{M}b; we show aM(n+1)ba\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{(n+1)}_{M}b. Suppose otherwise; by right extension for \mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}, we can assume tp(a/Mb)\mathrm{tp}(a/Mb) contains a formula φ(x,b)\varphi(x,b) that h(n)h^{\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{(n)}}-Kim-divides with respect to tp(a/M)\mathrm{tp}(a/M). Let I={bi}iωI=\{b_{i}\}_{i\in\omega} be a coheir Morley sequence starting with bb witnessing this. Then by the coheir chain condition for \mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}, there is some aa^{\prime} with aMIa^{\prime}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{M}I, so in particular aM(n)Ia^{\prime}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{(n)}_{M}I by induction, and with abiMaba^{\prime}b_{i}\equiv_{M}ab for iωi\in\omega, so in particular with aa^{\prime} satisfying {φ(x,bi)}iω\{\varphi(x,b_{i})\}_{i\in\omega}, a contradiction.

This completes the proof of Proposition 3.1.

Remark 3.12.

If 𝕄𝕄\mathbb{M}^{\prime}\succ\mathbb{M} is a very large (sufficiently saturated) model, then CK\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{\mathrm{CK}} as computed in 𝕄\mathbb{M}^{\prime} restricts to CK\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{\mathrm{CK}} as computed in 𝕄\mathbb{M}. We can see that CK\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{\mathrm{CK}} has this property as it is true for h\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{h} and is preserved by going from (n)\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{(n)} to (n+1)\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{(n+1)}. However, it is also immediate that invariance, monotonicity, full existence and right extension, and the coheir chain condition are preserved on restriction.

4. Canonical coheirs in NSOP2\mathrm{NSOP}_{2} theories

The goal of this section is to prove a version of “Kim’s lemma for Kim-dividing” for canonical Morley sequences in NSOP2\mathrm{NSOP}_{2} theories.

Lemma 4.1.

Let p(x)p(x) be a type over MM. Then it has a global extension q(x)q(x) so that for all tuples b𝕄b\in\mathbb{M}, if cq|Mbc\models q|Mb, then bMCKcb\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{\mathrm{CK}}_{M}c. So in particular, qq is a global coheir of p(x)p(x).

Proof.

In a very large 𝕄𝕄\mathbb{M}^{\prime}\succ\mathbb{M}, full existence and invariance for CK\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{\mathrm{CK}}, and an automorphism, gives us a realization cc^{\prime} of p(x)p(x) with 𝕄MCKc\mathbb{M}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{\mathrm{CK}}_{M}c^{\prime}. Now take q(x)q(x) to be tp(c/𝕄)\mathrm{tp}(c^{\prime}/\mathbb{M}), and the lemma follows by monotonicity on the left. ∎

Definition 4.2.

We call q(x)q(x) as in Lemma 4.1 a canonical coheir, and a coheir Morley sequence in it a canonical Morley sequence.

Theorem 4.3.

Let TT be NSOP2\mathrm{NSOP}_{2}. Suppose a canonical Morley sequence witnesses Kim-dividing of a formula φ(x,b)\varphi(x,b) over MM. Then there is a finite bound (depending only on φ(x,y)\varphi(x,y) and the degree of Kim-dividing witnessed by the canonical Morley sequence) on the length of a coheir sequence {bi}i=1n\{b_{i}\}_{i=1}^{n} over MM of realizations of tp(b/M)\mathrm{tp}(b/M) so that {φ(x,bi)}i=1n\{\varphi(x,b_{i})\}_{i=1}^{n} is consistent. In particular, every coheir Morley sequence starting with bb witnesses Kim-dividing of φ(x,b)\varphi(x,b) over MM.

To start, we introduce the notion of a coheir tree in a general theory TT.

Definition 4.4.

Let pp be any type over MM. We say that a tree (bη)ηωn(b_{\eta})_{\eta\in\omega^{\leq n}} of realizations of pp is a coheir tree in pp if

(1) for each μω<n\mu\in\omega^{<n}, ({bη}ημi)i=0(\{b_{\eta}\}_{\eta\unrhd\mu\smallfrown\langle i\rangle})_{i=0}^{\infty} (the sequence consisting of the subtrees above a fixed node) is a coheir Morley sequence over MM.

(2) there are global coheir extensions q0,,qnq_{0},\ldots,q_{n} of pp so that for each μωnm\mu\in\omega^{n-m}, bμqm|{bη}ημb_{\mu}\models q_{m}|_{\{b_{\eta}\}_{\eta\rhd\mu}}.

The key lemma of this section allows us to construct coheir trees in any theory so that sequences of nodes with common meet are canonical Morley sequences. Abusing the language by nodes, paths, etc. we often refer to the tuples which they index; the term “descending comb” will have a similar meaning in a tree of finite height or a set of subtrees as it does in ω<ω\omega^{<\omega}.

Lemma 4.5.

Let p(x)p(x) be any type over MM. Let q(x)q(x) be a canonical coheir extension of p(x)p(x). Let b0,,bnb_{0},\ldots,b_{n} be a coheir sequence over MM of realizations of pp. Then there is a coheir tree indexed by ωn\omega^{\leq n}, any path of which, read in the direction of the root, realizes tp(b0bn/M)\mathrm{tp}(b_{0}\ldots b_{n}/M), and descending comb of which, read in lexicographic order, begin a canonical Morley sequence in q(x)q(x).

Proof.

We need the following claim:

Claim 4.6.

If aMCKba\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{\mathrm{CK}}_{M}b and II is a coheir tree in tp(b/M)\mathrm{tp}(b/M), then there is some IMII^{\prime}\equiv_{M}I with aMCKIa\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{\mathrm{CK}}_{M}I^{\prime} (so in particular IMuaI^{\prime}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{u}_{M}a) each term of which satisfies tp(b/Ma)\mathrm{tp}(b/Ma).

Proof.

Let I={bη}ηωnI=\{b_{\eta}\}_{\eta\in\omega^{\leq n}}; we find I={bη}ηωnI^{\prime}=\{b^{\prime}_{\eta}\}_{\eta\in\omega^{\leq n}} as desired. The proof is by downward induction on kk: suppose {bη}ηζnk\{b^{\prime}_{\eta}\}_{\eta\unrhd\zeta_{n-k}} is already constructed, and we construct {bη}ηζn(k+1)\{b^{\prime}_{\eta}\}_{\eta\unrhd\zeta_{n-(k+1)}}. First, {bη}ηζn(k+1)\{b^{\prime}_{\eta}\}_{\eta\rhd\zeta_{n-(k+1)}} comes directly from the chain condition. Second, by left extension for u\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{u}, find some copy JJ of {bη}ηζn(k+1)\{b^{\prime}_{\eta}\}_{\eta\rhd\zeta_{n-(k+1)}} over MM with JMu{bη}ηζn(k+1)J\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{u}_{M}\{b^{\prime}_{\eta}\}_{\eta\rhd\zeta_{n-(k+1)}} and some arbitrary term of JJ satisfying the conjugate to M{bη}ηζn(k+1)M\{b^{\prime}_{\eta}\}_{\eta\rhd\zeta_{n-(k+1)}} of tp(bζn(k+1)/M{bη}ηζn(k+1))\mathrm{tp}(b_{\zeta_{n-(k+1)}}/M\{b_{\eta}\}_{\eta\rhd\zeta_{n-(k+1)}}) (that is, qk+1(x)|M{bη}ηζn(k+1)q_{k+1}(x)|_{M\{b^{\prime}_{\eta}\}_{\eta\rhd\zeta_{n-(k+1)}}} from Definition 4.4). Then use the chain condition to find some JM{bη}ηζn(k+1)JJ^{\prime}\equiv_{M\{b^{\prime}_{\eta}\}_{\eta\rhd\zeta_{n-(k+1)}}}J with JMa{bη}ηζn(k+1)J^{\prime}\equiv_{Ma}\{b^{\prime}_{\eta}\}_{\eta\rhd\zeta_{n-(k+1)}} and aMCK{bη}ηζn(k+1)Ja\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{\mathrm{CK}}_{M}\{b^{\prime}_{\eta}\}_{\eta\rhd\zeta_{n-(k+1)}}J^{\prime}. Finally, using monotonicity on the right, discard all the terms of JJ^{\prime} other than the one corresponding to the chosen term of JJ, to obtain bζn(k+1)b^{\prime}_{\zeta_{n-(k+1)}}. ∎

Now by induction, it suffices to show this for a coheir sequence b0,bn+1b_{0}\ldots,b_{n+1} assuming In=(bη)ηωnI_{n}=(b_{\eta})_{\eta\in\omega^{\leq n}} is already constructed for b0,bnb_{0}\ldots,b_{n}. First, we find a long coheir sequence {Ini}i=0α\{I_{n}^{i}\}_{i=0}^{\alpha} of realizations of tp(In/M)\mathrm{tp}(I_{n}/M) so that each node of InγI_{n}^{\gamma} satisfies q(x)|M{Ini}i<γq(x)|_{M\{I_{n}^{i}\}_{i<\gamma}}; then having taken it long enough, we can find a coheir Morley sequence {Ini}i=0ω\{I_{n}^{i}\}_{i=0}^{\omega} with the same property, preserving the condition on descending combs. (Any descending comb inside of these copies will either lie inside of one copy of InI_{n}, so will of course begin a descending Morley sequence inside of q(x)q(x) by the induction hypothesis, or will consist of a descending comb inside one copy IniI_{n}^{i} followed by an additional node of a later copy InjI_{n}^{j} for i<ji<j, which will indeed continue the Morley sequence in q(x)q(x) begun by the previous nodes.) Suppose {Ini}i<γ\{I_{n}^{i}\}_{i<\gamma} already constructed; taking a={Ini}i<γa=\{I_{n}^{i}\}_{i<\gamma} in the above claim and bq(x)|M{Ini}i<γb\models q(x)|_{M\{I_{n}^{i}\}_{i<\gamma}}, we can choose InγI^{\gamma}_{n} to be the II^{\prime} given by the claim.

Now let qn+1q_{n+1} be a global extension, finitely satisfiable in MM, of tp(bn+1/Mb0bn)\mathrm{tp}(b_{n+1}/Mb_{0}\ldots b_{n}). Then we take bqn+1(x)|M{Ini}i=0b\models q_{n+1}(x)|_{M\{I_{n}^{i}\}_{i=0}^{\infty}} as the new root, guaranteeing the condition on paths. Now reindex accordingly.

We can now prove Theorem 4.3. Let q(x)q(x) be a canonical coheir extension of tp(b/M)\mathrm{tp}(b/M) and kk the degree of Kim-dividing for φ(x,b)\varphi(x,b) witnessed by a canonical Morley sequence in q(x)q(x). Let {bi}i=0n\{b_{i}\}_{i=0}^{n} be a coheir sequence over MM of realizations of tp(b/M)\mathrm{tp}(b/M) so that {φ(x,bi)}i=0n\{\varphi(x,b_{i})\}_{i=0}^{n} is consistent. Then the coheir tree given by the previous lemma gives the first n+1n+1 levels of an instance of kk-DCTP1\mathrm{DCTP}_{1}: the kk-dividing witnessed by canonical Morley sequences in q(x)q(x) gives the inconsistency condition for descending combs of size kk, and the consistency of {φ(x,bi)}i=0n\{\varphi(x,b_{i})\}_{i=0}^{n} gives the consistency of the paths. So if nn is without bound, we must have kk-DCTP1\mathrm{DCTP}_{1} for φ(x,y)\varphi(x,y) by compactness, and thus SOP2\mathrm{SOP}_{2} by lemma 2.8. This concludes the proof of 4.3.

We have some applications of this proof to a notion related to the NATP\mathrm{NATP} theories introduced by Ahn and Kim in [2], and studied in greater depth by Ahn, Kim and Lee in [3], assuming the NATP\mathrm{NATP} analogue of lemma 2.8. The result for NATP\mathrm{NATP} theories would be interesting because while NSOP1\mathrm{NSOP}_{1} theories are NATP\mathrm{NATP} [2], as Ahn, Kim and Lee have shown in [3], there are examples of NATP\mathrm{NATP} SOP1\mathrm{SOP}_{1} theories. The following is the original definition from [2]:

Definition 4.7.

The theory TT has NATP\mathrm{NATP} (the negation of the antichain tree property) if there does not exist a formula φ(x,y)\varphi(x,y) and tuples {bη}η2<ω\{b_{\eta}\}_{\eta\in 2^{<\omega}} so that {φ(x,bσn)}nω\{\varphi(x,b_{\sigma\upharpoonleft n})\}_{n\in\omega} is 22-inconsistent for any σ2ω\sigma\in 2^{\omega}, but for pairwise incompararable η1,,ηl2<ω\eta_{1},\ldots,\eta_{l}\in 2^{<\omega}, {φ(x,bηi)}i=1l\{\varphi(x,b_{\eta_{i}})\}_{i=1}^{l} is consistent.

In [3], Ahn, Kim and Lee define a theory to have kk-ATP\mathrm{ATP} if the above fails replacing 22-inconsistency with kk-inconsistency, and show that for any k2k\geq 2, a theory fails to be NATP\mathrm{NATP} (that is, has 22-ATP\mathrm{ATP}) if and only if it has kk-ATP\mathrm{ATP}. That is, they show the analogue for NATP\mathrm{NATP} theories of results of Kim and Kim in [18] on NSOP2\mathrm{NSOP}_{2} theories, but of not those claimed by Chernikov and Ramsey in [7], nor of the above Lemma 2.8. One might ask whether, for any kk, the following definition is equivalent to the failure of NATP\mathrm{NATP}:

Definition 4.8.

The theory TT has kk-DCTP2\mathrm{DCTP}_{2} if there exists a formula φ(x,y)\varphi(x,y) and tuples {bη}η2<ω\{b_{\eta}\}_{\eta\in 2^{<\omega}} so that {φ(x,bσn)}nω\{\varphi(x,b_{\sigma\upharpoonleft n})\}_{n\in\omega} is kk-inconsistent for any σ2ω\sigma\in 2^{\omega}, but for any descending comb η1,ηl2<ω\eta_{1}\ldots,\eta_{l}\in 2^{<\omega}, {φ(x,bηi)}i=1l\{\varphi(x,b_{\eta_{i}})\}_{i=1}^{l} is consistent.

If so, then the following applies to NATP\mathrm{NATP} theories:

Theorem 4.9.

Let TT be a theory so that, for all k2k\geq 2, TT does not have kk-DCTP2\mathrm{DCTP}_{2}. Let MM be any model and bb any tuple. Then there is a global type extending tp(b/M)\mathrm{tp}(b/M), finitely satisfiable in MM, so that for any formula φ(x,y)\varphi(x,y) with parameters in MM, if coheir Morley sequences in this type do not witness Kim-dividing of φ(x,b)\varphi(x,b), no coheir Morley sequence over MM starting with bb witnesses Kim-dividing of φ(x,b)\varphi(x,b) over MM.

This follows from the same construction. The following corollary is standard; see Corollary 3.16 of [6] for a similar argument:

Corollary 4.9.1.

If, for all k2k\geq 2, TT does not have kk-DCTP2\mathrm{DCTP}_{2}, then Kim-forking (with respect to coheir Morley sequences) coincides with Kim-dividing (with respect to coheir Morley sequences).

5. Conant-independence in NSOP2\mathrm{NSOP}_{2} theories

We introduce a notion of independence which will generalize, in the proof of the main result of this paper, the role played by a\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{a} in the free amalgamation theories introduced in [8]. The notation K\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}} comes from the related notion of Kim-independence from [16], K\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K}; a similar notion involving dividing with respect to all (invariant) Morley sequences is suggested in tentative remarks of Kim in [17].

Definition 5.1.

Let MM be a model and φ(x,b)\varphi(x,b) a formula. We say φ(x,b)\varphi(x,b) Conant-divides over MM if for every coheir Morley sequence {bi}iω\{b_{i}\}_{i\in\omega} over MM starting with bb, {φ(x,bi)}iω\{\varphi(x,b_{i})\}_{i\in\omega} is inconsistent. We say φ(x,b)\varphi(x,b) Conant-forks over MM if and only if it implies a disjunction of formulas Conant-dividing over MM. We say aa is Conant-independent from bb over MM, written aMKba\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}b, if tp(a/Mb)\mathrm{tp}(a/Mb) does not contain any formulas Conant-forking over MM.

Note that this definition differs from the standard definition of Conant-independence given in [26], in that it uses coheir Morley sequences rather than invariant Morley sequences. In [21] Alex Kruckman and the author show how to carry out this proof with the standard Conant-independence. We may also dualize Theorem 3.10 of [19].

Proposition 5.2.

In any theory TT, Conant-forking coincides with Conant-dividing for formulas, and K\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}} has right extension.

Proof.

We see first of all that Conant-dividing is preserved under adding and removing unused parameters: it suffices to show that if xφ(x,a)φ(x,ab)\models\forall x\varphi(x,a)\leftrightarrow\varphi^{\prime}(x,ab) then φ(x,a)\varphi(x,a) Conant-divides over MM if and only if φ(x,ab)\varphi^{\prime}(x,ab) Conant-divides over MM. Let {aibi}iω\{a_{i}b_{i}\}_{i\in\omega} be a coheir Morley sequence starting with abab witnessing the failure of Conant-dividing of the latter; then {ai}iω\{a_{i}\}_{i\in\omega} witnesses the failure of Conant-dividing of the former. Conversely, let {ai}iω\{a_{i}\}_{i\in\omega} be a coheir Morley sequence starting with aa witnessing the failure of Conant-dividing of φ(x,a)\varphi(x,a); then by Claim 3.4 and an automorphism there are {bi}iω\{b_{i}\}_{i\in\omega} so that {aibi}iω\{a_{i}b_{i}\}_{i\in\omega} is a coheir Morley sequence starting with abab, and this will witness the failure of Conant-dividing of φ(x,ab)\varphi^{\prime}(x,ab). The result is now standard, following, say, the proof in [16] of the analogous fact for Kim-dividing under Kim’s lemma. Suppose φ(x,b)\varphi(x,b) Conant-forks over MM but does not Conant-divide over MM; by the above we can assume it implies a disjunction of the form i=1nφi(x,b)\bigvee_{i=1}^{n}\varphi_{i}(x,b) where φi(x,b)\varphi_{i}(x,b) Conant-divides over MM. Let {bi}iω\{b_{i}\}_{i\in\omega} be a coheir Morley sequence starting with bb witnessing the failure of Conant-dividing, so there is some aa realizing {φ(x,bi)}iω\{\varphi(x,b_{i})\}_{i\in\omega}. Then by the pigeonhole principle, there is some 1kn1\leq k\leq n so that aa realizes infinitely many of the φk(x,bi)\varphi_{k}(x,b_{i}). By an automorphism this contradicts Conant-dividing of φk(x,b).\varphi_{k}(x,b).

Right extension is standard and exactly as in Lemma 3.10: if aMKba\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}b but there is no aMbaa^{\prime}\equiv_{Mb}a with aMKbca^{\prime}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}bc, then tp(a/Mb)\mathrm{tp}(a/Mb) must imply a disjunction of formulas with parameters in MbcMbc Conant-forking over MM; some formula in tp(a/Mb)\mathrm{tp}(a/Mb) must then imply this disjunction, which will then Conant-fork over MM, contradicting aMKba\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}b. ∎

The following is immediate from Theorem 4.3:

Corollary 5.2.1.

Let TT be NSOP2\mathrm{NSOP}_{2}. Then a formula Conant-divides (so Conant-forks) over MM if and only if it Kim-divides with respect to some (any) canonical Morley sequence.

We develop the theory of Conant-independence in NSOP2\mathrm{NSOP}_{2} theories in analogy with the theory of Kim-independence in NSOP1\mathrm{NSOP}_{1} theories.

Proposition 5.3.

(Canonical Chain Condition): Let TT be NSOP2\mathrm{NSOP}_{2} and suppose aMKba\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}b. Then for any canonical Morley sequence II starting with bb, we can find some IMbII^{\prime}\equiv_{Mb}I indiscernible over aa; any such II^{\prime} will satisfy aMKIa\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}I^{\prime}.

Proof.

This is similar to the proof of, say, the analogous fact about Kim-independence in NSOP1\mathrm{NSOP}_{1} theories (Proposition 3.21 of [16]). The existence of such an II^{\prime} follows from the previous corollary by Ramsey and compactness. To get aMKIa\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}I^{\prime}, let I={bi}iωI^{\prime}=\{b_{i}\}_{i\in\omega}; it suffices to show aMKb0bn1a\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}b_{0}\ldots b_{n-1} for any nn. But {binbin+1bin+(n1)}iω\{b_{in}b_{in+1}\ldots b_{in+(n-1)}\}_{i\in\omega} is a coheir Morley sequence over MM starting with b0bn1b_{0}\ldots b_{n-1}, each term of which satisfies {b0bn1/Ma}\{b_{0}\ldots b_{n-1}/Ma\}, so aMKb0bn1a\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}b_{0}\ldots b_{n-1} follows. ∎

Theorem 5.4.

Let TT be NSOP2\mathrm{NSOP}_{2}. Then Conant-independence is symmetric.

Proof.

Suppose otherwise, so for some a,b𝕄a,b\in\mathbb{M}, aMKba\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}b but bb is Conant-dependent on aa over MM. We use aMKba\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}b to build trees as in the proof of symmetry of Kim-independence for NSOP1\mathrm{NSOP}_{1} theories (the construction is Lemma 5.11 of [16].) Specifically, what we want is, for any nn, a tree (In,Jn)=({aη}ηωn,{bσ}σωn)(I_{n},J_{n})=(\{a_{\eta}\}_{\eta\in\omega^{\leq n}},\{b_{\sigma}\}_{\sigma\in\omega^{n}}), infinitely branching at the first n+1n+1 levels and then with each aσa_{\sigma} for σωn\sigma\in\omega^{n} at level n+1n+1 followed by a single additional leaf bσb_{\sigma} at level n+2n+2, satisfying the following properties:

(1) For ησ\eta\unlhd\sigma, aηbσMaba_{\eta}b_{\sigma}\equiv_{M}ab

(2) For ηω<n\eta\in\omega^{<n}, the subtrees above η\eta form a canonical coheir sequence indiscernible over aηa_{\eta}, so by Proposition 5.3, aηa_{\eta} is Conant-independent over MM from those branches taken together.

Suppose (In,Jn)(I_{n},J_{n}) already constructed; we construct (In+1,Jn+1)(I_{n+1},J_{n+1}). We see that the root aa_{\emptyset} of (In,Jn)(I_{n},J_{n}) is Conant-independent from the rest of the tree, (In,Jn)(I_{n},J_{n})^{*}: for n=0n=0 this is just the assumption aMKba\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}b, where we allow ab=aba_{\emptyset}b_{\emptyset}=ab, while for n>0n>0 this is (2). So by extension we find aM(InJn)aa_{\emptyset}^{\prime}\equiv_{M(I_{n}J_{n})^{*}}a_{\emptyset} (so guaranteeing (1)), to be the root of (In+1,Jn+1)(I_{n+1},J_{n+1}), with aMKInJna\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}I_{n}J_{n}. Then by Proposition 5.3, find some canonical Morley sequence {(In,Jn)i}iω\{(I_{n},J_{n})^{i}\}_{i\in\omega} starting with (In,Jn)(I_{n},J_{n}) indiscernible over MaMa^{\prime}_{\emptyset}, guaranteeing (2), and reindex accordingly.

Now let φ(x,a)tp(b/Ma)\varphi(x,a)\in\mathrm{tp}(b/Ma) (so φ(x,y)\varphi(x,y) is assumed to have parameters in MM) witness the Conant-dependence of bb on aa over MM and let kk be the (strict) bound supplied by Theorem 4.3. We show InI_{n} gives the first n+1n+1 levels of an instance of kk-DCTP1\mathrm{DCTP}_{1} for φ(x,y)\varphi(x,y), giving a contradiction to NSOP2\mathrm{NSOP}_{2} by compactness and lemma 2.8. Consistency of the paths comes from (1). As for the inconsistency of a descending comb of size kk, it follows from (2) (and the same reasoning as in the proof of Lemma 4.5) that a descending comb forms a coheir sequence, so the inconsistency follows by choice of kk. ∎

Note that by constructing a tree of size κ\kappa and using an Erdős-Rado version of fact 2.6 (see Lemma 5.10 of [16] for a result of this kind for similar kind of indiscernible tree, itself based on Theorem 1.13 of [15]), we could have assumed the tree we constructed in the above proof to be strongly indiscernible. It follows that we could have only used that if a canonical Morley sequence witnesses Kim-dividing of a formula, then so does any coheir Morley sequence; the statement of Theorem 4.3 is somewhat stronger. (In fact, by using a local version of the chain condition–if aMKba\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}b and φ(a,b)\models\varphi(a,b), then there is some coheir Morley sequence I={bi}iωI=\{b_{i}\}_{i\in\omega} so that biMbb_{i}\equiv_{M}b, φ(a,bi)\models\varphi(a,b_{i}) for iωi\in\omega, and aMKIa\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}I–we could have avoided Theorem 4.3 altogether up to this point, but we have not yet found a suitable replacement for the below “weak independence theorem” that does not require it. We leave the details to the reader.)

We next aim to prove a version of the “weak independence theorem.” To formulate this, we need the following strengthening of Lemma 4.1:

Lemma 5.5.

Let p(x)p(x) be a type over MM. Then there is some global extension q(x)q(x) of p(x)p(x) so that, for all tuples b𝕄b\in\mathbb{M} if c𝕄c\in\mathbb{M} with cq(x)|Mbc\models q(x)|_{Mb}, then for any a𝕄a\in\mathbb{M} there is aMcaa^{\prime}\equiv_{Mc}a with a𝕄a^{\prime}\in\mathbb{M} so that tp(ac/Mb)\mathrm{tp}(a^{\prime}c/Mb) extends to a canonical coheir of tp(ac/M)=tp(ac/M)\mathrm{tp}(a^{\prime}c/M)=\mathrm{tp}(ac/M). So in particular, q(x)q(x) is a canonical coheir of p(x)p(x).

Proof.

Working again in a very large 𝕄𝕄\mathbb{M}^{\prime}\succ\mathbb{M}, find 𝕄1M𝕄\mathbb{M}_{1}\equiv_{M}\mathbb{M} with 𝕄MCK𝕄1\mathbb{M}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{\mathrm{CK}}_{M}\mathbb{M}_{1} using full existence for CK\mathrm{\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{CK}}. Find a realization c′′c^{\prime\prime} of p(x)p(x) in 𝕄1\mathbb{M}_{1} and let q(x)q(x) be its type over 𝕄\mathbb{M}. Now suppose b𝕄b\in\mathbb{M} and c𝕄c\in\mathbb{M} with cq(x)|Mbc\models q(x)|_{Mb}, and let a𝕄a\in\mathbb{M}. Then there is some a′′𝕄1a^{\prime\prime}\in\mathbb{M}_{1} with a′′c′′Maca^{\prime\prime}c^{\prime\prime}\equiv_{M}ac. Because c′′Mbcc^{\prime\prime}\equiv_{Mb}c, there is some a𝕄a^{\prime}\in\mathbb{M} with a′′c′′Mbaca^{\prime\prime}c^{\prime\prime}\equiv_{Mb}a^{\prime}c. Together with a′′c′′Maca^{\prime\prime}c^{\prime\prime}\equiv_{M}ac, it follows that aMcaa^{\prime}\equiv_{Mc}a. And tp(ac/Mb)\mathrm{tp}(a^{\prime}c/Mb) extends to tp(a′′c′′/𝕄)\mathrm{tp}(a^{\prime\prime}c^{\prime\prime}/\mathbb{M}), which it remains to show is canonical. But by right monotonicity, 𝕄MCKa′′c′′\mathbb{M}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{\mathrm{CK}}_{M}a^{\prime\prime}c^{\prime\prime}, so the result follows by left monotonicity (see also the proof of Lemma 4.1). ∎

Definition 5.6.

We call q(x)q(x) as in Lemma 5.5 a strong canonical coheir, and a coheir Morley sequence in it a strong canonical Morley sequence.

The proof of the following is as in Proposition 6.10 of [16]:

Proposition 5.7.

(Weak Independence Theorem) Assume TT is NSOP2\mathrm{NSOP}_{2}. Let a1MKb1a_{1}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}b_{1}, a2MKb2a_{2}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}b_{2}, a1Ma2a_{1}\equiv_{M}a_{2}, and tp(b2/Mb1)\mathrm{tp}(b_{2}/Mb_{1}) extends to a strong canonical coheir q(x)q(x) of tp(b2/M)\mathrm{tp}(b_{2}/M). Then there exists a realization aa of tp(a1/Mb1)tp(a2/Mb2)\mathrm{tp}(a_{1}/Mb_{1})\cup\mathrm{tp}(a_{2}/Mb_{2}) with aMKb1b2a\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}b_{1}b_{2}.

Proof.

We start with the following claim, proven exactly as in [16] but with canonical rather than invariant Morley sequences:

Claim 5.8.

There exists some b2b^{\prime}_{2} with a1b2Ma2b2a_{1}b^{\prime}_{2}\equiv_{M}a_{2}b_{2} and a1MKb1b2a_{1}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}b_{1}b^{\prime}_{2}.

Proof.

It is enough by symmetry of K\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}} to find b2b^{\prime}_{2} with a1b2Ma2b2a_{1}b^{\prime}_{2}\equiv_{M}a_{2}b_{2} and b1b2MKa1b_{1}b^{\prime}_{2}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}a_{1}. If p(x,a2)=tp(b2/Ma2)p(x,a_{2})=\mathrm{tp}(b_{2}/Ma_{2}) (leaving implied, throughout the proof of this claim, any parameters in MM in types and formulas), then by a2MKb2a_{2}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}b_{2} and symmetry we have b2MKa2b_{2}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}a_{2}, so because a1Ma2a_{1}\equiv_{M}a_{2} we know that p(x,a1)p(x,a_{1}) contains no formulas Conant-forking over MM. It suffices to show consistency of

p(x,a1){¬φ(x,b1,a1):φ(x,y,a1) Conant-forks over M}p(x,a_{1})\cup\{\neg\varphi(x,b_{1},a_{1}):\varphi(x,y,a_{1})\text{ Conant-forks over }M\}

Otherwise, by compactness and equivalence of Conant-forking with Conant-dividing, we must have p(x,a1)φ(x,b1,a1)p(x,a_{1})\vdash\varphi(x,b_{1},a_{1}) for some φ(x,y,z)\varphi(x,y,z) with φ(x,y,a1)\varphi(x,y,a_{1}) Conant-dividing over MM. By symmetry, b1MKa1b_{1}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}_{M}^{K^{*}}a_{1}. So Proposition 5.3 yields a canonical Morley sequence {a1i}iω\{a_{1}^{i}\}_{i\in\omega} starting with a1a_{1} and indiscernible over Mb1Mb_{1}. So

i=0ωp(x,a1i){φ(x,b1,a1i)}iω\bigcup_{i=0}^{\omega}p(x,a_{1}^{i})\vdash\{\varphi(x,b_{1},a^{i}_{1})\}_{i\in\omega}

But because p(x,a1)p(x,a_{1}) contains no formulas Conant-dividing over MM and {a1i}iω\{a_{1}^{i}\}_{i\in\omega} is a canonical Morley sequence, i=0p(x,a1i)\bigcup_{i=0}^{\infty}p(x,a_{1}^{i}) is consistent, so {φ(x,b1,a1i)}iω\{\varphi(x,b_{1},a^{i}_{1})\}_{i\in\omega} and therefore {φ(x,y,a1i)}iω\{\varphi(x,y,a^{i}_{1})\}_{i\in\omega} is consistent. But this contradicts the fact that φ(x,y,a1)\varphi(x,y,a_{1}) Conant-divides over MM. ∎

We now complete the proof of the proposition. Let p2(x,b2)=tp(a2/Mb2)p_{2}(x,b_{2})=\mathrm{tp}(a_{2}/Mb_{2}) (with parameters in MM left implied); we have to show that tp(a1/Mb1)p2(x,b2)\mathrm{tp}(a_{1}/Mb_{1})\cup p_{2}(x,b_{2}) has a realization aa with aMKb1b2a\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}b_{1}b_{2}. So for b2′′Mb1b2b^{\prime\prime}_{2}\equiv_{Mb_{1}}b_{2} with b2′′q(x)|Mb1b2b^{\prime\prime}_{2}\models q(x)|_{Mb_{1}b^{\prime}_{2}}, it suffices to show that tp(a1/Mb1)p2(x,b2′′)\mathrm{tp}(a_{1}/Mb_{1})\cup p_{2}(x,b^{\prime\prime}_{2}) has a realization aa with aMKb1b2′′a\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}b_{1}b^{\prime\prime}_{2}. Using b2′′Mb2Mb2b^{\prime\prime}_{2}\equiv_{M}b_{2}\equiv_{M}b^{\prime}_{2}, we find b1b^{\prime}_{1} with b1b2′′Mb1b2b^{\prime}_{1}b^{\prime\prime}_{2}\equiv_{M}b_{1}b^{\prime}_{2}; using Lemma 5.5, we can assume tp(b1b2′′/Mb1b2)\mathrm{tp}(b^{\prime}_{1}b^{\prime\prime}_{2}/Mb_{1}b^{\prime}_{2}) extends to a canonical coheir of its restriction to MM. So b1b2′′,b1b2b^{\prime}_{1}b^{\prime\prime}_{2},b_{1}b^{\prime}_{2} begins a canonical Morley sequence II over MM, and by Proposition 5.3 and an automorphism, there is some aMb1b2a1a\equiv_{Mb_{1}b^{\prime}_{2}}a_{1} with aMKIa\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}I and therefore aMKb1b2′′a\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}b_{1}b^{\prime\prime}_{2}, and with II indiscernible over MaMa. By aMb1a1a\equiv_{Mb_{1}}a_{1} we have that aa realizes tp(a1/Mb1)\mathrm{tp}(a_{1}/Mb_{1}), and by ab2′′Mab2Ma1b2Ma2b2ab^{\prime\prime}_{2}\equiv_{M}ab^{\prime}_{2}\equiv_{M}a_{1}b^{\prime}_{2}\equiv_{M}a_{2}b_{2} we have that aa realizes p2(x,b2′′)p_{2}(x,b^{\prime\prime}_{2}).

6. NSOP2\mathrm{NSOP}_{2} and NSOP1\mathrm{NSOP}_{1} theories

We are now ready to prove that if TT is NSOP2\mathrm{NSOP}_{2}, it is NSOP1\mathrm{NSOP}_{1}. The proof follows Conant’s proof (Theorem 7.17 of [8]) that certain free amalgamation theories are either simple or SOP3\mathrm{SOP}_{3}. As anticipated in Section 5, K\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}} will play the role of a\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{a}, while (strong) canonical Morley sequences will play the role of Morley sequences in the free amalgamation relation. This makes sense, as Lemma 7.6 of [8] shows that a\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{a} is just Kim-independence with respect to Morley sequences in the free amalgamation relation, while Conant-independence in a NSOP2\mathrm{NSOP}_{2} theory is Kim-independence with respect to canonical Morley sequences. Similarly to how Conant uses free amalgamation and a\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{a} to show that a (modular) free amalgamation theory is either simple or SOP3\mathrm{SOP}_{3}, we will show by strong canonical types and K\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}} that if TT is NSOP2\mathrm{NSOP}_{2}, then

TT is either NSOP1\mathrm{NSOP}_{1} or SOP3\mathrm{SOP}_{3}

and therefore must be NSOP1\mathrm{NSOP}_{1}. (In [26], we generalize Conant’s work by studying abstract independence relations in potentially strictly NSOP1\mathrm{NSOP}_{1} or SOP3\mathrm{SOP}_{3} theories, finding a more general set of axioms for these relations than Conant’s free amalgamation axioms under which the NSOP1\mathrm{NSOP}_{1}-SOP3\mathrm{SOP}_{3} dichotomy holds and showing relationships with Conant-independence for invariant rather than coheir Morley sequences–note that in Conant’s free amalgamation theories, this is just a\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{a}.)

We begin our proof.

Assume TT is NSOP2\mathrm{NSOP}_{2} and suppose TT is SOP1\mathrm{SOP}_{1}. Obviously Kim-dividing independence, Kd\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{Kd}, implies K\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}; the reverse implication would imply that Kd\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{Kd} is symmetric, contradicting SOP1\mathrm{SOP}_{1} by Fact 2.2. So there are aMKba\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}b with aa Kim-dividing dependent on bb over MM; let r(x,y)=tp(a,b/M)r(x,y)=\mathrm{tp}(a,b/M), and let {bi}i\{b_{i}\}_{i\in\mathbb{N}} be a coheir Morley sequence over MM starting with bb such that {r(x,bi)}iω\{r(x,b_{i})\}_{i\in\omega} is kk-inconsistent for some kk. The following corresponds to Claim 1 of the proof of Theorem 7.17 in [8], but requires a different argument; see also [23] and footnote 1 of [27], for another argument involving the proof of Proposition 3.14 of [16]:

Claim 6.1.

We can assume k=2k=2. More precisely, there are a~,b~𝕄\tilde{a},\tilde{b}\in\mathbb{M} with a~MKb~\tilde{a}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}\tilde{b} and some coheir Morley sequence {b~i}i\{\tilde{b}_{i}\}_{i\in\mathbb{N}} over MM starting with b~\tilde{b} such that, for r~(x~,y~)=:tp(a~,b~/M)\tilde{r}(\tilde{x},\tilde{y})=:\mathrm{tp}(\tilde{a},\tilde{b}/M), {r~(x,b~i)}iω\{\tilde{r}(x,\tilde{b}_{i})\}_{i\in\omega} is 22-inconsistent.

Proof.

In particular there is no realization aa^{\prime} of {r(x,bi)}i<k\{r(x,b_{i})\}_{i<k} with aMKb0bk1a^{\prime}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}b_{0}\ldots b_{k-1}. Let kk^{*} be the maximal value of kk without this property, and b~=b0bk1\tilde{b}=b_{0}\ldots b_{k^{*}-1}. Then {b~i}iω={bikbik+k1}i\{\tilde{b}_{i}\}_{i\in\omega}=\{b_{ik^{*}}\ldots b_{ik^{*}+k^{*}-1}\}_{i\in\mathbb{N}} is a coheir Morley sequence starting with b¯\overline{b}. Let aMKb¯a^{\prime}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}\overline{b} realize {r(x,bi)}i<k\{r(x,b_{i})\}_{i<k^{*}}, and let r(x,y)=tp(a,b~/M)r^{\prime}(x,y)=\mathrm{tp}(a^{\prime},\tilde{b}/M). Then by maximality and symmetry, there is no realization a′′a^{\prime\prime} of r(x,b~0)r(x,b~1)r^{\prime}(x,\tilde{b}_{0})\cup r^{\prime}(x,\tilde{b}_{1}) with b~0b~1MKa′′\tilde{b}_{0}\tilde{b}_{1}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}a^{\prime\prime}. So there is no coheir Morley sequence {ai}i\{a^{\prime}_{i}\}_{i\in\mathbb{N}} starting with aa^{\prime}, every term of which realizes r(x,b~0)r(x,b~1)r^{\prime}(x,\tilde{b}_{0})\cup r^{\prime}(x,\tilde{b}_{1}). But by aMKb~a^{\prime}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}\tilde{b}, symmetry and Proposition 5.3, there is some Mb~M\tilde{b}-indiscernible canonical Morley sequence II starting with aa so that IMKb~I\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}\tilde{b}. So let a~\tilde{a} be II and b~\tilde{b} with b¯\overline{b}. Since r~(x~,b~)=tp(I/Mb~)\tilde{r}(\tilde{x},\tilde{b})=\mathrm{tp}(I/M\tilde{b}) contains i=1nr(xi,b~)\cup^{n}_{i=1}r^{\prime}(x_{i},\tilde{b}), a~\tilde{a} and b~\tilde{b} are as desired. ∎

Now replace aa with a~\tilde{a} and bb with b~\tilde{b}, as in claim 6.1; let ρ(x,y)r(x,y)=tp(a,b/M)\rho(x,y)\in r(x,y)=\mathrm{tp}(a,b/M) be such that {r(x,bi)}iω\{r(x,b_{i})\}_{i\in\omega} is 22-inconsistent, by compactness. We have b1MKb0b_{1}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}b_{0}, in analogy with Claim 2 of the proof of Theorem 7.17 of [8], because b1Mub0b_{1}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{u}_{M}b_{0} and clearly u\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{u} implies K\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}.

Fix a strong canonical coheir extension q(x)q(x) of p(x)=tp(b/M)p(x)=\mathrm{tp}(b/M). We wish to construct, by induction, a configuration {bi1bi2}iω\{b^{1}_{i}b_{i}^{2}\}_{i\in\omega} with the following properties:

(1) For JnJ_{n} the sequence beginning with bi2b_{i}^{2} for i<ni<n and then continuing with bi1b_{i}^{1} for ini\geq n, JnJ_{n} is a strong canonical Morley sequence in q(x)q(x).

(2) For iji\leq j, bi1bj2Mb0b1b_{i}^{1}b_{j}^{2}\equiv_{M}b_{0}b_{1}

(3) b10bn1MKb02bn2b^{0}_{1}\ldots b^{1}_{n}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}b^{2}_{0}\ldots b^{2}_{n} for any nωn\in\omega.

Then by aMKba\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}b (1) gives consistent sequences of instances of r(x,y)r(x,y), while (2) gives inconsistent pairs by claim 6.1, so we can get an instance of SOP3\mathrm{SOP}_{3} from this configuration exactly as in the argument at the end of the proof of Theorem 7.17 in [8], which we will reproduce for the convenience of the reader.

We make repeated use of symmetry for K\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}} throughout. Suppose {bi1bi2}in\{b^{1}_{i}b_{i}^{2}\}_{i\leq n} already constructed. We start by adding bn+11b^{1}_{n+1}, and then add bn+12b^{2}_{n+1}. If we take bn+11q(x)|Mb01b02bn1bn2b^{1}_{n+1}\models q(x)|_{Mb^{1}_{0}b^{2}_{0}\ldots b^{1}_{n}b^{2}_{n}} then (1) and (2) are preserved up to this point, and (3) is preserved by the following claim (which also holds of Kim-independence in NSOP1\mathrm{NSOP}_{1} theories):

Claim 6.2.

If aMKba\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}b and tp(c/Mab)\mathrm{tp}(c/Mab) extends to an MM-invariant type q(x)q(x), then acMKbac\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}b.

Proof.

By Proposition 5.3, let I={bi}i<ωI=\{b_{i}\}_{i<\omega} be an MaMa-indiscernible canonical Morley sequence over MM starting with bb. Choose cq|MIac^{*}\models q|_{MIa}, so for i<ωi<\omega, biaMcb0a=bab_{i}a\equiv_{Mc^{*}}b_{0}a=ba. Since I={bi}i<ωI=\{b_{i}\}_{i<\omega} form a coheir Morley sequence with biMacbb_{i}\equiv_{Mac^{*}}b for i<ωi<\omega, acMKbac^{*}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}b by 5.2, so acKbac\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}b as ctp(c/ab)c^{*}\models\mathrm{tp}(c/ab).

Now by b1MKb0b_{1}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}b_{0} and the fact that J0J_{0} is still a (strong) canonical Morley sequence up to this point, we can find a realization bMKb01bn+11b_{*}\mathop{\mathchoice{\displaystyle\kern 5.71527pt\hbox to0.0pt{\hss$\displaystyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\displaystyle\smile$\hss}\kern 5.71527pt}{\textstyle\kern 5.71527pt\hbox to0.0pt{\hss$\textstyle\mid$\hss}\lower 3.87495pt\hbox to0.0pt{\hss$\textstyle\smile$\hss}\kern 5.71527pt}{\scriptstyle\kern 2.80048pt\hbox to0.0pt{\hss$\scriptstyle\mid$\hss}\lower 1.89871pt\hbox to0.0pt{\hss$\scriptstyle\smile$\hss}\kern 2.80048pt}{\scriptscriptstyle\kern 1.42882pt\hbox to0.0pt{\hss$\scriptscriptstyle\mid$\hss}\lower 0.96873pt\hbox to0.0pt{\hss$\scriptscriptstyle\smile$\hss}\kern 1.42882pt}}^{K^{*}}_{M}b^{1}_{0}\ldots b^{1}_{n+1} of {t(bi1,y)}i=1n+1\{t(b^{1}_{i},y)\}_{i=1}^{n+1} for t(x,y)=tp(b0b1/M)t(x,y)=\mathrm{tp}(b_{0}b_{1}/M) by Proposition 5.3 and an automorphism. Take bq(x)|Mb02bn2b^{*}\models q(x)|_{Mb^{2}_{0}\ldots b^{2}_{n}}, so bMbb^{*}\equiv_{M}b_{*}; then this together with (3) allows us to apply Proposition 5.7 to the conjugate q1q_{1} of tp(b01bn+11/Mb)\mathrm{tp}(b^{1}_{0}\ldots b^{1}_{n+1}/Mb_{*}) under an automorphism taking bb_{*} to bb^{*}, and q2=tp(b01bn+11/Mb02bn2)q_{2}=\mathrm{tp}(b^{1}_{0}\ldots b^{1}_{n+1}/Mb^{2}_{0}\ldots b^{2}_{n}). This and an automorphism (over b02bn2b^{2}_{0}\ldots b^{2}_{n}, taking the Conant-independent joint realization of q1q_{1} and q2q_{2} to b01bn+11b^{1}_{0}\ldots b^{1}_{n+1}) gives us our desired bn+12b^{2}_{n+1} (as the image of bb^{*} under this automorphism.)

Now having constructed the configuration, let ana_{n} realize the consistent set of instances of r(x,y)r(x,y) coming from JnJ_{n}, and let di=(bi1,bi2)d_{i}=(b^{1}_{i},b_{i}^{2}), z=(y1,y2)z=(y^{1},y^{2}), ϕ(x,y)=ρ(x,y1)\phi(x,y)=\rho(x,y_{1}), ψ(x,z)=ρ(x,y2)\psi(x,z)=\rho(x,y_{2}). As in the proof of Theorem 7.17 of [8], these satisfy the hypotheses of the following fact:

Fact 6.3.

(Corrected version of proposition 7.2, [8]333Gabriel Conant, in a personal communication with the author ([9]), noted this correction to Proposition 7.2 of [8], and plans to publicize this in a future corrigendum. See also Observation 6.15 of [25] for an earlier version of this fact, which can also be used here.)

Suppose there are sequences {ai}i<ω\{a_{i}\}_{i<\omega}, {di}i<ω\{d_{i}\}_{i<\omega}, and ϕ(x,y)\phi(x,y), ψ(x,y)\psi(x,y) so that

(i) φ(ai,dj)\models\varphi(a_{i},d_{j}) for all i<ji<j and ψ(ai,dj)\psi(a_{i},d_{j}) for all iji\geq j

(ii) for all i<ji<j, φ(x,bi)ψ(x,bj)\varphi(x,b_{i})\cup\psi(x,b_{j}) is inconsistent

Then TT is SOP3\mathrm{SOP}_{3}.

So TT is SOP3\mathrm{SOP}_{3}.

This concludes the proof of the main result of this paper.

Acknowledgements The author would like to thank Mark Kamsma and Itay Kaplan, as well as seminar participants at Hebrew University of Jerusalem, Imperial College London, and Université Claude Bernard Lyon 1 for many helpful edits and comments.

References

  • [1] Hans Adler. A geometric introduction to forking and thorn-forking. Journal of Mathematical Logic, 9, 2009.
  • [2] JinHoo Ahn and Joonhee Kim. SOP1\mathrm{SOP}_{1}, SOP2\mathrm{SOP}_{2}, and antichain tree property, preprint. Available at https://arxiv.org/abs/2003.10030. 2020.
  • [3] JinHoo Ahn, Joonhee Kim, and Junguk Lee. On the antichain tree property, preprint. Available at https://arxiv.org/abs/2106.03779. 2021.
  • [4] Artem Chernikov. Theories without the tree property of the second kind. Annals of Pure and Applied Logic, 165(2):695–723, 2014.
  • [5] Artem Chernikov. NTP1\mathrm{NTP}_{1} theories, presentation slides. Paris. Available at https://www.math.ucla.edu/ chernikov/slides/ParisSeminar2015.pdf. June 2015.
  • [6] Artem Chernikov and Itay Kaplan. Forking and dividing in NTP2\mathrm{NTP}_{2} theories. The Journal of Symbolic Logic, 77(1):1–20, 2012.
  • [7] Artem Chernikov and Nicholas Ramsey. On model-theoretic tree properties. Journal of Mathematical Logic, 16(2):1650009, 2016.
  • [8] Gabriel Conant. An axiomatic approach to free amalgamation. The Journal of Symbolic Logic, 82(2):648–671, 2017.
  • [9] Gabriel Conant, Personal communication. 2023.
  • [10] GABRIEL CONANT and ALEX KRUCKMAN. Independence in generic incidence structures. The Journal of Symbolic Logic, 84(2):750–780, 2019.
  • [11] Christian D’Elbée. Forking, imaginaries, and other features of ACFG. The Journal of Symbolic Logic, 86(2):669–700, 2021.
  • [12] Mirna Džamonja and Saharon Shelah. On \lhd^{*}-maximality. Annals of Pure and Applied Logic, 125(1-3):119–158, 2004.
  • [13] Christian d’Elbée. Generic expansions by a reduct. Journal of Mathematical Logic, 21(03):2150016, 2021.
  • [14] David E. Evans and Mark Wing Ho Wong. Some remarks on generic structures. Journal of Symbolic Logic, 74(4):1143 – 1154, 2009.
  • [15] Rami P. Grossberg, José Iovino, and Olivier Lessmann. A primer of simple theories. Archive for Mathematical Logic, 41:541–580, 2002.
  • [16] Itay Kaplan and Nicholas Ramsey. On kim-independence. Journal of the European Mathematical Society, 22, 02 2017.
  • [17] Byunghan Kim. NTP1\mathrm{NTP}_{1} theories, presentation slides. BIRS Workshop, Seoul. Available at https://www.birs.ca/workshops/2009/09w5113/files/Kim.pdf. February 2009.
  • [18] Byunghan Kim and Hyeung-Joon Kim. Notions around tree property 1. Annals of Pure and Applied Logic, 162(9):698–709, 2011.
  • [19] Joonhee Kim and Hyoyoon Lee. Some remarks on kim-dividing in NATP\mathrm{NATP} theories, Preprint. Available at https://arxiv.org/pdf/2211.04213.pdf. 2022,.
  • [20] Alex Kruckman. Research statement., Available at https://akruckman.faculty.wesleyan.edu/files/2019/07/researchstatement.pdf.
  • [21] Alex Kruckman and Scott Mutchnik, Personal communication. 2022.
  • [22] Alex Kruckman and Nicholas Ramsey. Generic expansion and Skolemization in NSOP1\mathrm{NSOP}_{1} theories. Annals of Pure and Applied Logic, 169(8):755–774, aug 2018.
  • [23] Hyoyoon Lee, Personal communication. Feb. 10, 2023.
  • [24] Maryanthe Malliaris and Saharon Shelah. Model-theoretic applications of cofinality spectrum problems. Israel Journal of Mathematics, 220(2):947–1014, 2017.
  • [25] M.E. Malliaris. Edge distribution and density in the characteristic sequence. Annals of Pure and Applied Logic, 162(1):1–19, 2010.
  • [26] Scott Mutchnik. Conant-independence in generalized free amalgamation theories, Preprint. Available at https://arxiv.org/abs/2210.07527. 2022.
  • [27] Scott Mutchnik. Properties of independence in NSOP3\mathrm{NSOP}_{3} theories, Preprint. Available at https://arxiv.org/abs/2305.09908. 2023.
  • [28] Lynn Scow. Indiscernibles, em-types, and ramsey classes of trees. Notre Dame Journal of Formal Logic, 56(3):429–447, 2015.
  • [29] Saharon Shelah. Toward classifying unstable theories. Annals of Pure and Applied Logic, 80(3):229–255, 1996.
  • [30] Saharon Shelah and Alexander Usvyatsov. More on SOP1\mathrm{SOP}_{1} and SOP2\mathrm{SOP}_{2}. Annals of Pure and Applied Logic, 155(1):16–31, 2008.
  • [31] Kota Takeuchi and Akito Tsuboi. On the existence of indiscernible trees. Annals of Pure and Applied Logic, 163(12):1891–1902, 2012.
  • [32] Katrin Tent and Martin Ziegler. On the isometry group of the Urysohn space. Journal of the London Mathematical Society, 87(1):289–303, nov 2012.
  • [33] Itaï Ben Yaacov and Artem Chernikov. An independence theorem for NTP2\mathrm{NTP}_{2} theories. The Journal of Symbolic Logic, 79(1):135–153, 2014.