This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

On nn-Hom-pre-Lie superalgebras structures and their representations

Othmen Ncib, Sihem Sendi    Othmen Ncib1 111 E-mail: [email protected] ,  Sihem Sendi1 222E-mail: [email protected]
1. University of Gafsa, Faculty of Sciences Gafsa, 2112 Gafsa, Tunisia
Abstract

In this paper, we introduce the notion of nn-Hom-pre-Lie superalgebras. We investigate the representation theory of nn-Hom-pre-Lie superalgebras and we give some related results and structures based on Rota-Baxter operators, 𝒪\mathcal{O}-operators and Nijenhuis operators. Moreover, we study relationships between nn-Hom-pre-Lie superalgebras and its induced Hom-pre-Lie superalgebras. The same procedure is applied for the representations of nn- Hom-pre-Lie superalgebras.

Key words:Hom-pre-Lie superalgebras, nn-Hom-pre-Lie superalgebras, representation, 𝒪\mathcal{O}-operators.

Mathematics Subject Classification: 17A42, 17B10.

1 Introduction

The notion of nn-Lie algebras was introduced in 19851985 by Filippov [26], so it was given a classification of the (n+1)(n+1)-dimensional nn-Lie algebras over an algebraically closed field of characteristic zero. The structure of nn-Lie algebras is very different from that of Lie algebras due to the nn-ary multilinear operations involved. The n=3n=3 case, i.e. 33-ary multilinear operation, first appeared in Nambu’s work [39] in the description of simultaneous classical dynamics of three particles. Hom-(super) generalization of this structures called nn-Hom-Lie (super)algebras was studied in [7, 49, 5, 2] (see also [36], for more details).

Pre-Lie algebras (called also left-symmetric algebras, Vinberg algebras, quasi associative algebras) are a class of a natural algebraic systems appearing in many fields in mathematics and mathematical physics. They were first mentioned by Cayley in 1890 [11] as a kind of rooted tree algebra and later arose again from the study of convex homogeneous cones [47], affine manifold and affine structures on Lie groups [32], and deformation of associative algebras [27]. They play an important role in the study of symplectic and complex structures on Lie groups and Lie algebras [6, 8, 9, 10, 34], phases spaces of Lie algebras [12, 33], certain integrable systems [18], classical and quantum Yang–Baxter equations [24], combinatorics [25], quantum field theory [23] and operads [20]. See [15], and the survey [19] and the references therein for more details. Recently, pre-Lie superalgebras, the 2\mathbb{Z}_{2}-graded version of pre-Lie algebras also appeared in many others fields; see, for example, [1, 20, 27, 46]. Classifications of complexes pre-Lie superalgebras in dimensions two and three have been given recently, by Zhang and Bai [14]. See [4, 21, 30, 31] about further results. The notion of Hom-pre-Lie algebras is a twisted analog of pre-Lie algebras, where the pre-Lie algebra identity is twisted by a self linear map, called the structure map. This notion was introduced in [37]. There is a close relationship between Hom-pre- Lie algebras and Hom-Lie algebras: a Hom-pre-Lie algebra (𝒜,,α)(\mathcal{A},\circ,\alpha) gives rise to a Hom-Lie algebra (𝒜,[,]C,α)(\mathcal{A},[\cdot,\cdot]^{C},\alpha) via the commutator bracket, which is called the subadjacent Hom-Lie algebra and denoted by 𝒜C\mathcal{A}^{C}. Hom-pre-Lie algebras play several roles, among them and the most important are the problems related to the representations of the Hom-Lie algebras. We can explain this in terms that the map L:𝒜𝔤𝔩(𝒜)L:\mathcal{A}\to\mathfrak{gl}(\mathcal{A}), defined by Lx(y)=xyL_{x}(y)=x\circ y for all x,y𝒜x,y\in\mathcal{A}, gives rise to a representation of the subadjacent Hom-Lie algebra 𝒜C\mathcal{A}^{C} on 𝒜\mathcal{A} with respect to α𝔤𝔩(𝒜)\alpha\in\mathfrak{gl}(\mathcal{A}). On the other hand, Hom-pre-Lie algebras play an important role in the construction of Hom-Lie 22-algebras [43]. Recently, Hom-pre-Lie algebras were studied from several aspects: The geometrization of Hom-pre-Lie algebras was studied in [50], universal α\alpha-central extensions of Hom-pre-Lie algebras were studied in [44] and the bialgebra theory of Hom-pre-Lie algebras was studied in [45]. Some generalizations of pre-lie algebra have been studied, among which are given in [38], as the authors introduce the notion of nn-pre-Lie algebra, which gives a nn-Lie algebra naturally and its left multiplication operator gives rise to a representation of this nn-Lie algebra. An nn-pre-Lie algebra can also be obtained through the action of a relative Rota-Baxter operator on an nn-Lie algebra. For (n=3)(n=3), see [13, 22] for more details. In [28], the authors describe the symplectic structures and phase spaces of 33-Hom–Lie algebras from the structures of 33-Hom–pre-Lie algebras. The same work has been introduced in the general case of n-pre-Lie algebras[29].

Representations theory of different algebraic structures is an important subject of study in algebra and diverse areas. They appear in many fields of mathematics and physics. In particular, they appear in deformation and cohomology theory among other areas. In this paper, we have to talk about the representation of algebraic structures of Lie and Hom-Lie type which are introduced in several works. The notion of representation introduced for Hom–Lie algebras in[42]; see also[16]. The extension of this work to the nn-ary and nn-ary-Hom-super cases has been given in [5, 2]. Some other extensions are given in several works such as the representation of Hom-Lie superalgebras, BiHom-Lie superalgebras, (Hom)-Lie Rinehart (super)algebras, (nn)-(Hom)-Poisson (super)algebras… (see [48, 40, 17, 35], for more details). In this paper we base on the representation theory of Hom-pre-Lie algebras. This notion was introduced in [45] in the study of Hom-pre-Lie bialgebras (Hom-left-symmetric bialgebras). In [41], the authors gave the natural formula of a dual representation, which is nontrivial and showed that there is well defined tensor product of two representations of a Hom-pre-Lie algebra. A generalization of the notion of representation of pre-Lie algebras was introduced in [29], in which the authors defined the representation of nn-pre-Lie algebras and gave some other associated results. In this paper, we generalize this notion in the Hom-super case and we give some related results.

This paper is organized as follows. In Section 22, we recall some definitions and known results about nn-Lie superalgebras and nn-Hom-Lie superalgebras. We also recall some examples for these structures. In Section 33, we introduce the notion of nn-Hom-pre-Lie superalgebras and their representations and we give some important results and related structures. In Section 44, we provide a construction procedure of nn-Hom-pre-Lie superalgebras starting from a Hom-pre-Lie superalgebra and an even (n2)(n-2)-linear form satisfies specific conditions. Moreover, we applied same procedure for the representations of nn-Hom-pre-Lie superalgebras.

Throughout this paper, we will for simplicity of exposition assume that 𝕂\mathbb{K} is an algebraically closed field of characteristic zero, even though for most of the general definitions and results in the paper this assumption is not essential.

A vector space VV is said to be a 2\mathbb{Z}_{2}-graded if we are given a family (Vi)i2(V_{i})_{i\in\mathbb{Z}_{2}} of vector subspace of VV such that V=V0V1.V=V_{0}\oplus V_{1}. The symbol |x||x| always implies that xx is a 2\mathbb{Z}_{2}-homogeneous element and |x||x| is the 2\mathbb{Z}_{2}-degree. In the sequel, we will denote by (𝒜)\mathcal{H(A)} the set of all homogeneous elements of 𝒜\mathcal{A} and (𝒜n)\mathcal{H}(\mathcal{A}^{n}) refers to the set of tuples with homogeneous elements.

Notations: For any X=(x1,,xn)(𝒜n)X=(x_{1},\cdots,x_{n})\in\mathcal{H}(\mathcal{A}^{n}), we need the following notations

|X|=k=1n|xk|,|X|i=k=in|xk|,|X|i=k=1i|xk|and|X|ij=k=ij|xk|.|X|=\displaystyle\sum_{k=1}^{n}|x_{k}|,\;\;|X|_{i}=\displaystyle\sum_{k=i}^{n}|x_{k}|,\;\;|X|^{i}=\displaystyle\sum_{k=1}^{i}|x_{k}|\;\;\text{and}\;\;|X|^{j}_{i}=\displaystyle\sum_{k=i}^{j}|x_{k}|.

2 Preliminaries and Basics

In this section, we give some preliminaries and basic results on nn-(Hom)-Lie superalgebras and nn-(Hom)-pre-Lie superalgebras.

Definition 2.1.

An nn-Lie superalgebra is a pair (𝒩,[,,])(\mathcal{N},[\cdot,\cdots,\cdot]) consisting of a 2\mathbb{Z}_{2}-graded vector space 𝒩=𝒩0¯𝒩1¯\mathcal{N}=\mathcal{N}_{\overline{0}}\oplus\mathcal{N}_{\overline{1}} and a multilinear map [,,]:𝒩×𝒩××𝒩ntimes𝒩[\cdot,\cdots,\cdot]:\underbrace{\mathcal{N}\times\mathcal{N}\times\cdots\times\mathcal{N}}_{n\;times}\to\mathcal{N}, satisfying

|[x1,,xn]|\displaystyle|[x_{1},\cdots,x_{n}]| =|Xn|,\displaystyle=|X_{n}|, (2.1)
|x1,,xi,xi+1,,xn|\displaystyle|x_{1},\cdots,x_{i},x_{i+1},\cdots,x_{n}| =(1)|xi||xi+1||x1,,xi+1,xi,,xn|,\displaystyle=-(-1)^{|x_{i}||x_{i+1}|}|x_{1},\cdots,x_{i+1},x_{i},\cdots,x_{n}|, (2.2)
[x1,,xn1,[y1,,yn]]\displaystyle\big{[}x_{1},\dots,x_{n-1},[y_{1},\dots,y_{n}]\big{]} =i=1n(1)|X|n1|Y|i1[y1,,yi1,[x1,,xn1,yi],yi+1,,yn],\displaystyle=\sum_{i=1}^{n}(-1)^{|X|^{n-1}|Y|^{i-1}}\big{[}y_{1},\dots,y_{i-1},[x_{1},\dots,x_{n-1},y_{i}],y_{i+1},\cdots,y_{n}\big{]}, (2.3)

for any xi,yj(𝒩), 1i,jnx_{i},y_{j}\in\mathcal{H}(\mathcal{N}),\;1\leq i,j\leq n.

Remark 2.1.

.

  1. 1.

    When 𝒩1¯={0}\mathcal{N}_{\overline{1}}=\{0\}, then 𝒩\mathcal{N} is actually an nn-Lie algebra.

  2. 2.

    The condition (2.2) is equivalent to

    [x1,,xi,,xj,,xn]=(1)|X|i+1j1(|xi|+|xj|)+|xi||xj|[x1,,xj,,xi,,xn], 1i<jn.\displaystyle\left[x_{1},\dots,x_{i},\dots,x_{j},\dots,x_{n}\right]=-(-1)^{|X|^{j-1}_{i+1}(|x_{i}|+|x_{j}|)+|x_{i}||x_{j}|}\left[x_{1},\dots,x_{j},\dots,x_{i},\dots,x_{n}\right],\;\forall\;1\leq i<j\leq n. (2.4)
Example 2.1.

Let 𝒩=𝒩0¯𝒩1¯\mathcal{N}=\mathcal{N}_{\overline{0}}\oplus\mathcal{N}_{\overline{1}} be an (n+1)(n+1)-dimensional 2\mathbb{Z}_{2}-vector space, where 𝒩0¯=<e1,,en>\mathcal{N}_{\overline{0}}=<e_{1},\cdots,e_{n}> and 𝒩1¯=<en+1>\mathcal{N}_{\overline{1}}=<e_{n+1}>. Define the even super-skew-symmetric nn-linear map [,,]:n𝒩𝒩[\cdot,\cdots,\cdot]:\wedge^{n}\mathcal{N}\to\mathcal{N} by

[e1,,ei^,,en,en+1]=en+1,1in,[e_{1},\cdots,\hat{e_{i}},\cdots,e_{n},e_{n+1}]=e_{n+1},\;\forall 1\leq i\leq n,

where ei^\hat{e_{i}} means that the element eie_{i} is omitted. Then (𝒩,[,,])(\mathcal{N},[\cdot,\cdots,\cdot]) is an nn-Lie superalgebra.

Definition 2.2.

An nn-Hom-Lie superalgebra is a tuple (𝒩,[,,],α1,,αn1)(\mathcal{N},[\cdot,\cdots,\cdot],\alpha_{1},\cdots,\alpha_{n-1}) consisting of a 2\mathbb{Z}_{2}-graded vector space 𝒩=𝒩0¯𝒩1¯\mathcal{N}=\mathcal{N}_{\overline{0}}\oplus\mathcal{N}_{\overline{1}}, a multilinear map [,,]:𝒩×𝒩××𝒩ntimes𝒩[\cdot,\cdots,\cdot]:\underbrace{\mathcal{N}\times\mathcal{N}\times\cdots\times\mathcal{N}}_{n\;times}\to\mathcal{N} and a family (αi)1in1(\alpha_{i})_{1\leq i\leq n-1} of even linear maps αi:𝒩𝒩\alpha_{i}:\mathcal{N}\to\mathcal{N} such that the conditions (2.1) and (2.2) are satisfied and for all X=(x1,,xn1),Y=(y1,,yn)(𝒩)X=(x_{1},\cdots,x_{n-1}),Y=(y_{1},\cdots,y_{n})\in\mathcal{H}(\mathcal{N}), we have

[α1(x1),,αn1(xn1),[y1,,yn]]=i=1n(1)|X|n1|Y|i1[α1(y1),,αi1(yi1),[x1,,xn1,yi],αi+1(yi+1),,αn1(yn)].\big{[}\alpha_{1}(x_{1}),\dots,\alpha_{n-1}(x_{n-1}),[y_{1},\dots,y_{n}]\big{]}=\sum_{i=1}^{n}(-1)^{|X|^{n-1}|Y|^{i-1}}\big{[}\alpha_{1}(y_{1}),\dots,\alpha_{i-1}(y_{i-1}),[x_{1},\dots,x_{n-1},y_{i}],\alpha_{i+1}(y_{i+1}),\cdots,\alpha_{n-1}(y_{n})\big{]}. (2.5)

We also see that if α1==αn1=id𝒩\alpha_{1}=\cdots=\alpha_{n-1}=id_{\mathcal{N}}, then 𝒩\mathcal{N} is just an nn-Lie superalgebra.

Definition 2.3.

An n-Hom Lie superalgebra (N,[,,],α1,,αn1)(N,[\cdot,\cdots,\cdot],\alpha_{1},\cdots,\alpha_{n-1}) is multiplicative, if (αi)1in1(\alpha_{i})_{1\leq i\leq n-1} with α1==αn1=α\alpha_{1}=\cdots=\alpha_{n-1}=\alpha and satisfying

α([x1,,xn])=[α(x1),,α(xn)],\alpha([x_{1},\cdots,x_{n}])=[\alpha(x_{1}),\cdots,\alpha(x_{n})],
[α(x1),,α(xn1),[y1,,yn]]=i=1n(1)|X|n1|Y|i1[α(y1),,α(yi1),[x1,,xn1,yi],α(yi+1),,α(yn)],[\alpha(x_{1}),\cdots,\alpha(x_{n-1}),[y_{1},\cdots,y_{n}]]=\sum^{n}_{i=1}(-1)^{|X|^{n-1}|Y|^{i-1}}[\alpha(y_{1}),\cdots,\alpha(y_{i-1}),[x_{1},\cdots,x_{n-1},y_{i}],\alpha(y_{i+1}),\cdots,\alpha(y_{n})], (2.6)

for any xi,yi(𝒩)x_{i},y_{i}\in\mathcal{H}(\mathcal{N}).

Furthermore, if α\alpha is bijective then the nn-Hom-Lie superalgebra (𝒩,[,,],α)(\mathcal{N},[\cdot,\cdots,\cdot],\alpha) is called a regular nn-Hom-Lie superalgebra.
For convenience, from now on, we always assume that (𝒩,[,,],α)(\mathcal{N},[\cdot,\cdots,\cdot],\alpha) is a multiplicative n-Hom Lie superalgebra over 𝕂\mathbb{K} unless otherwise stated.

Example 2.2.

Let 𝒩=𝒩0¯𝒩1¯\mathcal{N}=\mathcal{N}_{\overline{0}}\oplus\mathcal{N}_{\overline{1}} be an (n+1)(n+1)-dimensional 2\mathbb{Z}_{2}-vector space, where 𝒩0¯=<e1,,en>\mathcal{N}_{\overline{0}}=<e_{1},\cdots,e_{n}> and 𝒩1¯=<en+1>\mathcal{N}_{\overline{1}}=<e_{n+1}>. Define the even super-skew-symmetric nn-linear map [,,]:n𝒩𝒩[\cdot,\cdots,\cdot]:\wedge^{n}\mathcal{N}\to\mathcal{N} by

[e1,,ei^,,en,en+1]=(1)i+1en+1,1in,[e_{1},\cdots,\hat{e_{i}},\cdots,e_{n},e_{n+1}]=(-1)^{i+1}e_{n+1},\;\forall 1\leq i\leq n,

where ei^\hat{e_{i}} means that the element eie_{i} is omitted and the even linear map α:𝒩𝒩\alpha:\mathcal{N}\to\mathcal{N} defines on the basis of 𝒩\mathcal{N} by

α(ei)=ei, 1inandα(en+1)=0.\alpha(e_{i})=e_{i},\;1\leq i\leq n\;\;\text{and}\;\;\alpha(e_{n+1})=0.

Then (𝒩,[,,],α)(\mathcal{N},[\cdot,\cdots,\cdot],\alpha) is a multiplicative nn-Hom-Lie superalgebra.

Definition 2.4.

A representation of an nn-Hom-Lie superalgebra (𝒜,[,,],α)(\mathcal{A},[\cdot,\cdots,\cdot],\alpha) is a triple (V,ρ,αV)(V,\rho,\alpha_{V}) consisting of a 2\mathbb{Z}_{2}-graded vector space VV, an even skew-symmetric multilinear map ρ:𝒜n1gl(V)\rho:\mathcal{A}^{n-1}\to gl(V) and an even linear map αV:VV\alpha_{V}:V\to V such that for all x1,,xn1,y1,,yn(𝒜)x_{1},\cdots,x_{n-1},y_{1},\cdots,y_{n}\in\mathcal{H}(\mathcal{A}), we have

ρ(α(x1),,α(xn1))αV=αVρ(x1,,xn1),\displaystyle\rho(\alpha(x_{1}),\cdots,\alpha(x_{n-1}))\alpha_{V}=\alpha_{V}\rho(x_{1},\cdots,x_{n-1}), (2.7)
ρ(α(x1),,α(xn1))ρ(y1,,yn1)(1)|X|n1|Y|n1ρ(α(y1),,α(yn1))ρ(x1,,xn1)\displaystyle\rho(\alpha(x_{1}),\cdots,\alpha(x_{n-1}))\rho(y_{1},\cdots,y_{n-1})-(-1)^{|X|^{n-1}|Y|^{n-1}}\rho(\alpha(y_{1}),\cdots,\alpha(y_{n-1}))\rho(x_{1},\cdots,x_{n-1})
=i=1n1(1)|X|n1|Y|i1ρ(α(y1),,α(yi1),[x1,,xn1,yi],α(yi+1),α(yn1))αV,\displaystyle=\displaystyle\sum_{i=1}^{n-1}(-1)^{|X|^{n-1}|Y|^{i-1}}\rho(\alpha(y_{1}),\cdots,\alpha(y_{i-1}),[x_{1},\cdots,x_{n-1},y_{i}],\alpha(y_{i+1}),\cdots\alpha(y_{n-1}))\alpha_{V}, (2.8)
ρ(α(x1),,ρ(xn2),[y1,,yn])αV\displaystyle\rho(\alpha(x_{1}),\cdots,\rho(x_{n-2}),[y_{1},\cdots,y_{n}])\alpha_{V}
=i=1n(1)ni(1)|X|n2(|Y|+|yi|)+|yi||Y|i+1ρ(α(y1),,yi^,,α(yn))ρ(x1,,xn2,yi).\displaystyle=\displaystyle\sum_{i=1}^{n}(-1)^{n-i}(-1)^{|X|^{n-2}(|Y|+|y_{i}|)+|y_{i}||Y|_{i+1}}\rho(\alpha(y_{1}),\cdots,\hat{y_{i}},\cdots,\alpha(y_{n}))\rho(x_{1},\cdots,x_{n-2},y_{i}). (2.9)
Example 2.3.

Defining for any integer s0s\geq 0 the αs\alpha^{s}-adjoint representation of an nn-Hom-Lie superalgebra (𝒩,[,,],α)(\mathcal{N},[\cdot,\cdots,\cdot],\alpha) on 𝒩n1\mathcal{N}^{\otimes n-1} as follows

adx1,,xn1s(x)=[αs(x1),,αs(xn1),x]for allxi,x(𝒩), 1in1.ad^{s}_{x_{1},\cdots,x_{n-1}}(x)=[\alpha^{s}(x_{1}),\cdots,\alpha^{s}(x_{n-1}),x]\;\;\text{for all}\;x_{i},x\in\mathcal{H}(\mathcal{N}),\;1\leq i\leq n-1.

Let us denote the αs\alpha^{s}-adjoint representation of the nn-Hom-Lie superalgebra (𝒩,[,,],α)(\mathcal{N},[\cdot,\cdots,\cdot],\alpha) by the triple (𝒩,ads,α)(\mathcal{N},ad^{s},\alpha). We also denote adx1,,xn10ad^{0}_{x_{1},\cdots,x_{n-1}} simply by adx1,,xn1ad_{x_{1},\cdots,x_{n-1}} for any x1,,xn1(𝒩)x_{1},\cdots,x_{n-1}\in\mathcal{H}(\mathcal{N}).

Example 2.4.

Let (𝒩,[,,],α)(\mathcal{N},[\cdot,\cdots,\cdot],\alpha) be a regular nn-Hom-Lie superalgebra and (V,ρ,αV)(V,\rho,\alpha_{V}) be an nn-Hom-Lie superalgebra representation with αV\alpha_{V} being an invertible linear map. Define ρ:𝒩n1End(V)\rho^{*}:\mathcal{N}^{n-1}\to End(V^{*}) as usual by

<ρ(x1,,xn1)(ξ),u>=<ξ,ρ(x1,,xn1)(u)>,xi(𝒩),1in1,u(V),ξV.<\rho^{*}(x_{1},\cdots,x_{n-1})(\xi),u>=-<\xi,\rho(x_{1},\cdots,x_{n-1})(u)>,\;\forall x_{i}\in\mathcal{H}(\mathcal{N}),1\leq i\leq n-1,\;u\in\mathcal{H}(V),\;\xi\in V^{*}.

However, in general ρ\rho^{*} is not a representation of 𝒩\mathcal{N} anymore. Let us define the map ρ:𝒩n1End(V)\rho^{\star}:\mathcal{N}^{n-1}\to End(V^{\ast}) by

<ρ(x1,,xn1)(ξ),v>:\displaystyle<\rho^{\star}(x_{1},\cdots,x_{n-1})(\xi),v>: =<ρ(α(x1),,α(xn1))((αV2)(ξ)),v>\displaystyle=<\rho^{\ast}(\alpha(x_{1}),\cdots,\alpha(x_{n-1}))((\alpha_{V}^{-2})^{\ast}(\xi)),v> (2.10)
=<ξ,ρ(α1(x1),,α1(xn1))(αV2(v))>,\displaystyle=-<\xi,\rho(\alpha^{-1}(x_{1}),\cdots,\alpha^{-1}(x_{n-1}))(\alpha_{V}^{-2}(v))>,

for all ξV,x1,,xn1(𝒩)\xi\in V^{\ast},\;x_{1},\cdots,x_{n-1}\in\mathcal{H}(\mathcal{N}) and vVv\in V. Then, the triple (V,ρ,(αV1))(V^{\ast},\rho^{\star},(\alpha_{V}^{-1})^{*}) is a representation of the nn-Hom-Lie superalgebra (𝒩,[,,],α)(\mathcal{N},[\cdot,\cdots,\cdot],\alpha) on the dual vector space VV^{\ast} with respect to the map (αV1)(\alpha_{V}^{-1})^{\ast}. This is also known as the “dual representation” to (V,ρ,αV)(V,\rho,\alpha_{V}).
In particular, let us also recall that the “coadjoint representation” of a regular nn-Hom-Lie superalgebra (𝒩,[,,],α)(\mathcal{N},[\cdot,\cdots,\cdot],\alpha) on 𝒩\mathcal{N}^{\ast} with respect to (α1)(\alpha^{-1})^{\ast} is given by the triple (𝒩,ad,(α1))(\mathcal{N}^{\ast},ad^{\star},(\alpha^{-1})^{\ast}), where

<ad(x1,,xn1)(ξ),x>\displaystyle<ad^{\star}(x_{1},\cdots,x_{n-1})(\xi),x> =<ξ,ad(α1(x1),,α1(xn1))(α2(x))>\displaystyle=-<\xi,ad(\alpha^{-1}(x_{1}),\cdots,\alpha^{-1}(x_{n-1}))(\alpha^{-2}(x))> (2.11)
=<ξ,[α1(x1),,α1(xn1),α2(x)]>,\displaystyle=-<\xi,[\alpha^{-1}(x_{1}),\cdots,\alpha^{-1}(x_{n-1}),\alpha^{-2}(x)]>, (2.12)

for all xi,x(𝒩), 1in1,ξ𝒩x_{i},x\in\mathcal{H}(\mathcal{N}),\;1\leq i\leq n-1,\;\xi\in\mathcal{N}^{\ast}.

Proposition 2.5.

([40]) Let (𝒩,[,,],α)(\mathcal{N},[\cdot,\cdots,\cdot],\alpha) be an nn-Hom-Lie superalgebra, ρ:Λn1𝒩gl(V)\rho:\Lambda^{n-1}\mathcal{N}\to gl(V) and αV:VV\alpha_{V}:V\to V are two even linear maps. Then (𝒩V,[,,]𝒩V,α+αV)(\mathcal{N}\oplus V,[\cdot,\cdots,\cdot]_{\mathcal{N}\oplus V},\alpha+\alpha_{V}) is an nn-Hom-Lie superalgebra if and only if (V,ρ,αV)(V,\rho,\alpha_{V}) is a representation of (𝒩,[,,],α)(\mathcal{N},[\cdot,\cdots,\cdot],\alpha), where

[x1+a1,,xn+an]𝒩V=[x1,,xn]+k=1n(1)|xk||X|k+1ρ(x1,,xk^,,xn)ak,[x_{1}+a_{1},\cdots,x_{n}+a_{n}]_{\mathcal{N}\oplus V}=[x_{1},\cdots,x_{n}]+\displaystyle\sum_{k=1}^{n}(-1)^{|x_{k}||X|_{k+1}}\rho(x_{1},\cdots,\hat{x_{k}},\cdots,x_{n})a_{k}, (2.13)

for all x1,,xn(𝒩)x_{1},\cdots,x_{n}\in\mathcal{H}(\mathcal{N}) and a1,,an(V)a_{1},\cdots,a_{n}\in\mathcal{H}(V).

Definition 2.5.

Let (𝒩,[,,],α)(\mathcal{N},[\cdot,\cdots,\cdot],\alpha) be an nn-Hom-Lie superalgebra and ss be a non-negative integer. Then, an even linear operator :𝒩𝒩\mathcal{R}:\mathcal{N}\to\mathcal{N} is called an ss-Rota–Baxter operator of weight λ\lambda on (𝒩,[,,],α)(\mathcal{N},[\cdot,\cdots,\cdot],\alpha) if α=α\mathcal{R}\circ\alpha=\alpha\circ\mathcal{R} and the following identity is satisfied:

[R(x1),,R(xn)]=R(I[n]λ|I|1[R^(x1),,R^(xi),,R^(xn)]),[R(x_{1}),\dots,R(x_{n})]=R\Big{(}\sum\limits_{\emptyset\neq I\subseteq[n]}\lambda^{|I|-1}[\hat{R}(x_{1}),\dots,\hat{R}(x_{i}),\dots,\hat{R}(x_{n})]\Big{)}, (2.14)

where R^(xi):=R^I(xi):={xi,iI,αsR(xi),iI for all x1,,xn𝒩.\hat{R}(x_{i}):=\hat{R}_{I}(x_{i}):=\left\{\begin{array}[]{ll}x_{i},&i\in I,\\ \alpha^{s}R(x_{i}),&i\not\in I\end{array}\right.\text{ for all }x_{1},\dots,x_{n}\in\mathcal{N}.

For α=Id\alpha=Id, then we recover the notion of Rota–Baxter operators on an nn-Lie superalgebra.

Definition 2.6.

Let (𝒩,[,,],α)(\mathcal{N},[\cdot,\cdots,\cdot],\alpha) be an nn-Hom-Lie superalgebra and (V,ρ,αV)(V,\rho,\alpha_{V}) a representation. An even linear map T:V𝒩T:V\rightarrow\mathcal{N} is called an 𝒪\mathcal{O}-operator associated to (V,ρ,αV)(V,\rho,\alpha_{V}) if TT satisfies

αT=TαV,\alpha\circ T=T\circ\alpha_{V}, (2.15)
[T(u1),,T(un)]=T(i=1n(1)ni(1)|ui||U|i+1ρ(T(u1),,T(ui)^,,T(un))(ui)),[T(u_{1}),\cdots,T(u_{n})]=T\Big{(}\sum_{i=1}^{n}(-1)^{n-i}(-1)^{|u_{i}||U|_{i+1}}\rho(T(u_{1}),\cdots,\widehat{T(u_{i})},\cdots,T(u_{n}))(u_{i})\Big{)}, (2.16)

for all ui(V), 1inu_{i}\in\mathcal{H}(V),\;1\leq i\leq n. An 𝒪\mathcal{O}-operator associated to the adjoint representation (A,ad,α)(A,ad,\alpha) is called a Rota-Baxter operator of weight λ=0\lambda=0.

Remark 2.2.

Recall the αs\alpha^{s}-adjoint representation (𝒩,ads,α)(\mathcal{N},ad^{s},\alpha) of an nn-Hom-Lie superalgebra (𝒩,[,,],α)(\mathcal{N},[\cdot,\cdots,\cdot],\alpha) for any integer s0s\geq 0 given in Example 2.3. Then, an ss-Rota–Baxter operator of weight 0 on the nn-Hom-Lie superalgebra (𝒩,[,,],α)(\mathcal{N},[\cdot,\cdots,\cdot],\alpha) is an 𝒪\mathcal{O}-operator on (𝒩,[,,],α)(\mathcal{N},[\cdot,\cdots,\cdot],\alpha) with respect to the representation (𝒩,ads,α)(\mathcal{N},ad^{s},\alpha). Thus, the notion of 𝒪\mathcal{O}-operators is a generalization of Rota–Baxter operators and therefore also known as relative or generalized Rota–Baxter operators.

Example 2.6.

Let (V,ρ,αV)(V,\rho,\alpha_{V}) be a representation of an nn-Hom-Lie Superalgebra (𝒩,[,,],α)(\mathcal{N},[\cdot,\cdots,\cdot],\alpha) and T:V𝒩T:V\rightarrow\mathcal{N} is an 𝒪\mathcal{O}-operator associated to (V,ρ,αV)(V,\rho,\alpha_{V}). A pair (ϕ𝒩,ϕV)(\phi_{\mathcal{N}},\phi_{V}) is an endomorphism of the 𝒪\mathcal{O}-operator TT if

TϕV\displaystyle T\circ\phi_{V} =ϕ𝒩Tand\displaystyle=\phi_{\mathcal{N}}\circ T\quad\mbox{and}
ρ(ϕ𝒩(x1),,ϕ𝒩(xn1)))(ϕV(v))\displaystyle\rho(\phi_{\mathcal{N}}(x_{1}),\cdots,\phi_{\mathcal{N}}(x_{n-1})))(\phi_{V}(v)) =ϕV(ρ(x1,,xn1)(v)),for all xi𝒩, 1in1,vV.\displaystyle=\phi_{V}(\rho(x_{1},\cdots,x_{n-1})(v)),\quad\mbox{for all }x_{i}\in\mathcal{N},\;1\leq i\leq n-1,~{}v\in V.

Let us consider the nn-Hom-Lie superalgebra (𝒩,[,,,]ϕ𝒩,ϕ𝒩)(\mathcal{N},[\cdot,\cdots,\cdot,]_{\phi_{\mathcal{N}}},\phi_{\mathcal{N}}) obtained by composition, where the nn-Hom-Lie bracket is given by

[,,,]ϕ𝒩:=ϕ𝒩[,,].[\cdot,\cdots,\cdot,]_{\phi_{\mathcal{N}}}:=\phi_{\mathcal{N}}\circ[\cdot,\cdots,\cdot].

If we consider the composition ρϕV:=ϕVρ\rho_{\phi_{V}}:=\phi_{V}\circ\rho, then the triple (V,ρϕV,ϕV)(V,\rho_{\phi_{V}},\phi_{V}) is an nn-Hom-Lie superalgebra representation of (𝒩,[,,]ϕ𝒩,ϕ𝒩)(\mathcal{N},[\cdot,\cdots,\cdot]_{\phi_{\mathcal{N}}},\phi_{\mathcal{N}}). Moreover,

[T(u1),,T(un)]ϕ𝒩\displaystyle[T(u_{1}),\cdots,T(u_{n})]_{\phi_{\mathcal{N}}} =ϕ𝒩([T(u1),,T(un)])\displaystyle=\phi_{\mathcal{N}}([T(u_{1}),\cdots,T(u_{n})])
=ϕ𝒩(T(i=1n(1)ni(1)|ui||U|i+1ρ(T(u1),,T(ui)^,,T(un))(ui)))\displaystyle=\phi_{\mathcal{N}}\Big{(}T\Big{(}\sum_{i=1}^{n}(-1)^{n-i}(-1)^{|u_{i}||U|_{i+1}}\rho(T(u_{1}),\cdots,\widehat{T(u_{i})},\cdots,T(u_{n}))(u_{i})\Big{)}\Big{)}
=T(i=1n(1)ni(1)|ui||U|i+1ρϕV(T(u1),,T(ui)^,,T(un))(ui))\displaystyle=T\Big{(}\sum_{i=1}^{n}(-1)^{n-i}(-1)^{|u_{i}||U|_{i+1}}\rho_{\phi_{V}}(T(u_{1}),\cdots,\widehat{T(u_{i})},\cdots,T(u_{n}))(u_{i})\Big{)}

for all uiV, 1inu_{i}\in V,\;1\leq i\leq n. Clearly, it follows that the map T:V𝒩T:V\rightarrow\mathcal{N} is an 𝒪\mathcal{O}-operator on the nn-Hom-Lie superalgebra (𝒩,[,,]ϕ𝒩,ϕ𝒩)(\mathcal{N},[\cdot,\cdots,\cdot]_{\phi_{\mathcal{N}}},\phi_{\mathcal{N}}) with respect to the nn-Hom-Lie superalgebra representation (V,ρϕV,ϕV)(V,\rho_{\phi_{V}},\phi_{V}).

In the following, we give a characterization of an 𝒪\mathcal{O}-operator TT in terms of an nn-Hom-Lie subalgebra structure on the graph of TT defined by

Gr(T)={(T(u),u)/uV}.Gr(T)=\{(T(u),u)/\;u\in V\}.
Proposition 2.7.

An even linear map T:𝒩VT:\mathcal{N}\to V is an 𝒪\mathcal{O}-operator on the nn-Hom-Lie superalgebra (𝒩,[,,],α)(\mathcal{N},[\cdot,\cdots,\cdot],\alpha) with respect to the representation (V,ρ,αV)(V,\rho,\alpha_{V}) if and only if Gr(T)Gr(T) is an nn-Hom-Lie subalgebra of the semi-direct product nn-Hom-Lie superalgebra (𝒩V,[,,]𝒩V,α+αV)(\mathcal{N}\oplus V,[\cdot,\cdots,\cdot]_{\mathcal{N}\oplus V},\alpha+\alpha_{V}), defined in Proposition 2.5.

Proof.

Let (Tuk,uk)Gr(T), 1kn(Tu_{k},u_{k})\in Gr(T),\;1\leq k\leq n. Then, if TT is an 𝒪\mathcal{O}-operator on (𝒩,[,,],α)(\mathcal{N},[\cdot,\cdots,\cdot],\alpha), we have

[(Tu1,u1),,(Tun,un)]𝒩V\displaystyle[(Tu_{1},u_{1}),\cdots,(Tu_{n},u_{n})]_{\mathcal{N}\oplus V} =[Tu1,,Tun],k=1n(1)|uk||U|k+1ρ(Tu1,,Tuk^,,Tun)uk\displaystyle=[Tu_{1},\cdots,Tu_{n}],\displaystyle\sum_{k=1}^{n}(-1)^{|u_{k}||U|_{k+1}}\rho(Tu_{1},\cdots,\widehat{Tu_{k}},\cdots,Tu_{n})u_{k}
=T(k=1n(1)nk(1)|uk||U|k+1ρ(Tu1,,Tuk^,,Tun)uk),\displaystyle=T\big{(}\displaystyle\sum_{k=1}^{n}(-1)^{n-k}(-1)^{|u_{k}||U|_{k+1}}\rho(Tu_{1},\cdots,\widehat{Tu_{k}},\cdots,Tu_{n})u_{k}\big{)},
k=1n(1)|uk||U|k+1ρ(Tu1,,Tuk^,,Tun)ukGr(T),\displaystyle\displaystyle\sum_{k=1}^{n}(-1)^{|u_{k}||U|_{k+1}}\rho(Tu_{1},\cdots,\widehat{Tu_{k}},\cdots,Tu_{n})u_{k}\in Gr(T),

which implies that Gr(T)Gr(T) is a subalgebra of the semi-direct product nn-Hom-Lie superalgebra (𝒩V,[,,]𝒩V,α+αV)(\mathcal{N}\oplus V,[\cdot,\cdots,\cdot]_{\mathcal{N}\oplus V},\alpha+\alpha_{V}).

In the other hand, if Gr(T)Gr(T) is a subalgebra of the semi-direct product nn-Hom-Lie superalgebra (𝒩V,[,,]𝒩V,α+αV)(\mathcal{N}\oplus V,[\cdot,\cdots,\cdot]_{\mathcal{N}\oplus V},\alpha+\alpha_{V}), then we have

[(Tu1,u1),,(Tun,un)]𝒩V\displaystyle[(Tu_{1},u_{1}),\cdots,(Tu_{n},u_{n})]_{\mathcal{N}\oplus V} =[Tu1,,Tun],k=1n(1)|uk||U|k+1ρ(Tu1,,Tuk^,,Tun)ukGr(T),\displaystyle=[Tu_{1},\cdots,Tu_{n}],\displaystyle\sum_{k=1}^{n}(-1)^{|u_{k}||U|_{k+1}}\rho(Tu_{1},\cdots,\widehat{Tu_{k}},\cdots,Tu_{n})u_{k}\in Gr(T),

which gives that [Tu1,,Tun]=T(k=1n(1)|uk||U|k+1ρ(Tu1,,Tuk^,,Tun)uk)[Tu_{1},\cdots,Tu_{n}]=T\Big{(}\displaystyle\sum_{k=1}^{n}(-1)^{|u_{k}||U|_{k+1}}\rho(Tu_{1},\cdots,\widehat{Tu_{k}},\cdots,Tu_{n})u_{k}\Big{)}. Therefore TT is an 𝒪\mathcal{O}-operator on (𝒩,[,,],α)(\mathcal{N},[\cdot,\cdots,\cdot],\alpha). ∎

It is of course that there are some other characterizations of the 𝒪\mathcal{O}-operators on an nn-Hom-Lie superalgebras, among them and this most interesting the characterization in term of a Nijenhuis operators. In the following Proposition, we characterize 𝒪\mathcal{O}-operators on nn-Hom-Lie superalgebras in terms of the Nijenhuis operators. In the following, we need to define the Nijenhuis operator on an nn-Hom-Lie superalgebras (𝒩,[,,],α)(\mathcal{N},[\cdot,\cdots,\cdot],\alpha), as an even linear map N:𝒩𝒩N:\mathcal{N}\to\mathcal{N} which satisfies the following identity

[N(x1),,N(xn)]=N(I[n]N|I|1[N^(x1),,N^(xi),,N^(xn)]),[N(x_{1}),\cdots,N(x_{n})]=N\big{(}\sum\limits_{\emptyset\neq I\subseteq[n]}N^{|I|-1}[\hat{N}(x_{1}),\dots,\hat{N}(x_{i}),\dots,\hat{N}(x_{n})]\big{)}, (2.17)

where N^(xi):=N^I(xi):={xi,iI,N(xi),iI for all x1,,xn(𝒩).\hat{N}(x_{i}):=\hat{N}_{I}(x_{i}):=\left\{\begin{array}[]{ll}x_{i},&i\in I,\\ N(x_{i}),&i\not\in I\end{array}\right.\text{ for all }x_{1},\dots,x_{n}\in\mathcal{H}(\mathcal{N}).

Proposition 2.8.

Let (V,ρ,αV)(V,\rho,\alpha_{V}) be a representation of an nn-Hom-Lie superalgebra (𝒩,[,,],α)(\mathcal{N},[\cdot,\cdots,\cdot],\alpha) and T:V𝒩T:V\to\mathcal{N} an even linear map. Then TT is an 𝒪\mathcal{O}-operator on (𝒩,[,,],α)(\mathcal{N},[\cdot,\cdots,\cdot],\alpha) with respect to (V,ρ,αV)(V,\rho,\alpha_{V}) if and only if the operator

NT=[0T00]:𝒩V𝒩VN_{T}=\begin{bmatrix}0&T\\ 0&0\end{bmatrix}:\mathcal{N}\oplus V\rightarrow\mathcal{N}\oplus V

is a Nijenhuis operator on the semi-direct product nn-Hom-Lie superalgebra (𝒩V,[,,]𝒩V,α+αV)(\mathcal{N}\oplus V,[\cdot,\cdots,\cdot]_{\mathcal{N}\oplus V},\alpha+\alpha_{V}).

Proof.

By using the Definition of the map NTN_{T} and the bracket [,,]𝒩V[\cdot,\cdots,\cdot]_{\mathcal{N}\oplus V}, we have

[NT(x1+u1),,NT(xn+un)]𝒩V\displaystyle[N_{T}(x_{1}+u_{1}),\cdots,N_{T}(x_{n}+u_{n})]_{\mathcal{N}\oplus V} =[T(u1)+0,,T(un)+0]\displaystyle=[T(u_{1})+0,\cdots,T(u_{n})+0]
=[T(u1),,T(un)],\displaystyle=[T(u_{1}),\cdots,T(u_{n})],

and by the obvious result NTk=0,k2N_{T}^{k}=0,\;\forall k\geq 2, we have

NT(I[n]NT|I|1[NT^(x1+u1),,NT^(xi+ui),,NT^(xn+un)]𝒩V)\displaystyle N_{T}\big{(}\sum\limits_{\emptyset\neq I\subseteq[n]}N_{T}^{|I|-1}[\hat{N_{T}}(x_{1}+u_{1}),\dots,\hat{N_{T}}(x_{i}+u_{i}),\dots,\hat{N_{T}}(x_{n}+u_{n})]_{\mathcal{N}\oplus V}\big{)}
=NT(i=1n[NT(x1+u1),,xi+ui,,NT(xn+un)]𝒩V)\displaystyle=N_{T}\big{(}\displaystyle\sum_{i=1}^{n}[N_{T}(x_{1}+u_{1}),\cdots,x_{i}+u_{i},\cdots,N_{T}(x_{n}+u_{n})]_{\mathcal{N}\oplus V}\big{)}
=NT(i=1n[T(u1),,xi+ui,,T(un)]𝒩V)\displaystyle=N_{T}\big{(}\displaystyle\sum_{i=1}^{n}[T(u_{1}),\cdots,x_{i}+u_{i},\cdots,T(u_{n})]_{\mathcal{N}\oplus V}\big{)}
=NT(i=1n[T(u1),,xi,,T(un)]+i=1n(1)|ui||U|i+1ρ(T(u1),,T(ui)^,,T(un))(ui))\displaystyle=N_{T}\big{(}\displaystyle\sum_{i=1}^{n}[T(u_{1}),\cdots,x_{i},\cdots,T(u_{n})]+\displaystyle\sum_{i=1}^{n}(-1)^{|u_{i}||U|_{i+1}}\rho(T(u_{1}),\cdots,\hat{T(u_{i})},\cdots,T(u_{n}))(u_{i})\big{)}
=T(i=1n(1)|ui||U|i+1ρ(T(u1),,T(ui)^,,T(un))(ui)),\displaystyle=T\big{(}\displaystyle\sum_{i=1}^{n}(-1)^{|u_{i}||U|_{i+1}}\rho(T(u_{1}),\cdots,\hat{T(u_{i})},\cdots,T(u_{n}))(u_{i})\big{)},

for all xi(𝒩),ui(V)x_{i}\in\mathcal{H}(\mathcal{N}),\;u_{i}\in\mathcal{H}(V). By a direct computation, we conclude that

NT(I[n]NT|I|1[NT^(x1+u1),,NT^(xi+ui),,NT^(xn+un)]𝒩V)\displaystyle N_{T}\big{(}\sum\limits_{\emptyset\neq I\subseteq[n]}N_{T}^{|I|-1}[\hat{N_{T}}(x_{1}+u_{1}),\dots,\hat{N_{T}}(x_{i}+u_{i}),\dots,\hat{N_{T}}(x_{n}+u_{n})]_{\mathcal{N}\oplus V}\big{)}
=NT(I[n]NT|I|1[NT^(x1+u1),,NT^(xi+ui),,NT^(xn+un)]𝒩V)\displaystyle=N_{T}\big{(}\sum\limits_{\emptyset\neq I\subseteq[n]}N_{T}^{|I|-1}[\hat{N_{T}}(x_{1}+u_{1}),\dots,\hat{N_{T}}(x_{i}+u_{i}),\dots,\hat{N_{T}}(x_{n}+u_{n})]_{\mathcal{N}\oplus V}\big{)}

if and only if

[T(u1),,T(un)]=T(i=1n(1)|ui||U|i+1ρ(T(u1),,T(ui)^,,T(un))(ui)),[T(u_{1}),\cdots,T(u_{n})]=T\big{(}\displaystyle\sum_{i=1}^{n}(-1)^{|u_{i}||U|_{i+1}}\rho(T(u_{1}),\cdots,\hat{T(u_{i})},\cdots,T(u_{n}))(u_{i})\big{)},

for all xi(𝒩),ui(V)x_{i}\in\mathcal{H}(\mathcal{N}),\;u_{i}\in\mathcal{H}(V), which gives the result. ∎

3 nn-Hom-pre-Lie superalgebras and their representations

In [19], the author introduced the notion of pre-Lie algebras and given their representation, some other practical results are also studied, among those which are most interesting the cohomology and deformations of pre-Lie algebras. This notion has been extended in more general cases (for more details see [29]). In this section we introduce the notion of nn-Hom-pre-Lie superalgebras and define their representation also we give some algebraic structures and results concerning this notion.

3.1 nn-Hom-pre-Lie superalgebras

Definition 3.1.

An nn-Hom-pre-Lie superalgebra is a triple (𝒜,{,,},α)(\mathcal{A},\{\cdot,\cdots,\cdot\},\alpha) consisting of a 2\mathbb{Z}_{2}-graded vector space 𝒜\mathcal{A}, an even multilinear map {,,}:n𝒜𝒜\{\cdot,\cdots,\cdot\}:\wedge^{n}\mathcal{A}\to\mathcal{A} super-skew-symmetric on the first (n1)(n-1) terms and an even linear map α:𝒜𝒜\alpha:\mathcal{A}\to\mathcal{A} such that for all xi,yi(𝒜), 1inx_{i},y_{i}\in\mathcal{H}(\mathcal{A}),\;1\leq i\leq n, the following identities are satisfied:

{α(x1),,α(xn1),{y1,,yn}}\displaystyle\{\alpha(x_{1}),\cdots,\alpha(x_{n-1}),\{y_{1},\cdots,y_{n}\}\} =\displaystyle= i=1n1(1)|Y|i1|X|n1{α(y1),,α(yi1),[x1,,xn1,yi]C,α(yi+1),,α(yn)}\displaystyle\sum_{i=1}^{n-1}(-1)^{|Y|^{i-1}|X|^{n-1}}\{\alpha(y_{1}),\cdots,\alpha(y_{i-1}),[x_{1},\cdots,x_{n-1},y_{i}]^{C},\alpha(y_{i+1}),\cdots,\alpha(y_{n})\} (3.1)
+(1)|Y|n1|X|n1{α(y1),,α(yn1),{x1,,xn1,yn}},\displaystyle+(-1)^{|Y|^{n-1}|X|^{n-1}}\{\alpha(y_{1}),\cdots,\alpha(y_{n-1}),\{x_{1},\cdots,x_{n-1},y_{n}\}\},
{[x1,,xn]C,α(y1),,α(yn1)}\displaystyle\{[x_{1},\cdots,x_{n}]^{C},\alpha(y_{1}),\cdots,\alpha(y_{n-1})\} =\displaystyle= i=1n(1)ni(1)|xi||X|i+1n{α(x1),,x^i,,α(xn),{xi,y1,,yn1}},\displaystyle\sum_{i=1}^{n}(-1)^{n-i}(-1)^{|x_{i}||X|^{n}_{i+1}}\{\alpha(x_{1}),\cdots,\widehat{x}_{i},\cdots,\alpha(x_{n}),\{x_{i},y_{1},\cdots,y_{n-1}\}\}, (3.2)

where [,,]C[\cdot,\cdots,\cdot]^{C} is defined by

[x1,,xn]C=i=1n(1)ni(1)|xi||X|i+1n{x1,,xi^,,xn,xi},xi(𝒜),1in.[x_{1},\cdots,x_{n}]^{C}=\sum_{i=1}^{n}(-1)^{n-i}(-1)^{|x_{i}||X|^{n}_{i+1}}\{x_{1},\cdots,\widehat{x_{i}},\cdots,x_{n},x_{i}\},\quad\forall x_{i}\in\mathcal{H}(\mathcal{A}),1\leq i\leq n. (3.3)
Proposition-Definition 3.1.

Let (𝒜,{,,},α)(\mathcal{A},\{\cdot,\cdots,\cdot\},\alpha) be an nn-Hom-pre-Lie superalgebra. Then (𝒜,[,,]C,α)(\mathcal{A},[\cdot,\cdots,\cdot]^{C},\alpha), where [,,]C[\cdot,\cdots,\cdot]^{C} is given by Eq. (3.3) is an nn-Hom-Lie superalgebra called the sub-adjacent nn-Hom-Lie superalgebra of (𝒜,{,,},α)(\mathcal{A},\{\cdot,\cdots,\cdot\},\alpha), and denoted by 𝒜c\mathcal{A}^{c}. (𝒜,{,,},α)(\mathcal{A},\{\cdot,\cdots,\cdot\},\alpha) is called a compatible nn-Hom-pre-Lie superalgebra of the nn-Hom-Lie superalgebra 𝒜c\mathcal{A}^{c}.

Proof.

Let xi,yi(𝒜), 1inx_{i},y_{i}\in\mathcal{H}(\mathcal{A}),\;1\leq i\leq n. For all 1kn11\leq k\leq n-1, then by using the definition of [,,]C[\cdot,\cdots,\cdot]^{C}, we have:

[x1,,xk,xk+1,,xn1,xn]C\displaystyle[x_{1},\cdots,x_{k},x_{k+1},\cdots,x_{n-1},x_{n}]^{C} =i=1n(1)ni(1)|xi||X|i+1n{x1,,xi^,xk,xk+1,,xn,xi}\displaystyle=\sum_{i=1}^{n}(-1)^{n-i}(-1)^{|x_{i}||X|^{n}_{i+1}}\{x_{1},\cdots,\widehat{x_{i}}\cdots,x_{k},x_{k+1},\cdots,x_{n},x_{i}\}
+i=1n(1)ni(1)|xi||X|i+1n{x1,,xk,xk+1,,xi^,xn,xi}\displaystyle+\sum_{i=1}^{n}(-1)^{n-i}(-1)^{|x_{i}||X|^{n}_{i+1}}\{x_{1},\cdots,x_{k},x_{k+1},\cdots,\widehat{x_{i}}\cdots,x_{n},x_{i}\}
+(1)nk(1)|xk||X|k+1n{x1,,xk1,xk+1,,xn,xk}\displaystyle+(-1)^{n-k}(-1)^{|x_{k}||X|^{n}_{k+1}}\{x_{1},\cdots,x_{k-1},x_{k+1},\cdots,x_{n},x_{k}\}
+(1)nk1(1)|xk+1||X|k+2n{x1,,xk,xk+2,,xn,xk+1}\displaystyle+(-1)^{n-k-1}(-1)^{|x_{k+1}||X|^{n}_{k+2}}\{x_{1},\cdots,x_{k},x_{k+2},\cdots,x_{n},x_{k+1}\}
=(1)|xk||xk+1|(i=1n(1)ni(1)|xi||X|i+1n{x1,,xi^,xk+1,xk,,xn,xi}\displaystyle=-(-1)^{|x_{k}||x_{k+1}|}\Big{(}\sum_{i=1}^{n}(-1)^{n-i}(-1)^{|x_{i}||X|^{n}_{i+1}}\{x_{1},\cdots,\widehat{x_{i}}\cdots,x_{k+1},x_{k},\cdots,x_{n},x_{i}\}
+i=1n(1)ni(1)|xi||X|i+1n{x1,,xk+1,xk,,xi^,xn,xi}\displaystyle+\sum_{i=1}^{n}(-1)^{n-i}(-1)^{|x_{i}||X|^{n}_{i+1}}\{x_{1},\cdots,x_{k+1},x_{k},\cdots,\widehat{x_{i}}\cdots,x_{n},x_{i}\}
+(1)nk1(1)|xk||X|k+2n{x1,,xk1,xk+1,,xn,xk}\displaystyle+(-1)^{n-k-1}(-1)^{|x_{k}||X|^{n}_{k+2}}\{x_{1},\cdots,x_{k-1},x_{k+1},\cdots,x_{n},x_{k}\}
+(1)nk(1)|xk+1|(|xk|+|X|k+2n){x1,,xk,xk+2,,xn,xk+1})\displaystyle+(-1)^{n-k}(-1)^{|x_{k+1}|(|x_{k}|+|X|^{n}_{k+2})}\{x_{1},\cdots,x_{k},x_{k+2},\cdots,x_{n},x_{k+1}\}\Big{)}
=(1)|xk||xk+1|[x1,,xk+1,xk,,xn1,xn]C,\displaystyle=-(-1)^{|x_{k}||x_{k+1}|}[x_{1},\cdots,x_{k+1},x_{k},\cdots,x_{n-1},x_{n}]^{C},

which implies that [,,]C[\cdot,\cdots,\cdot]^{C} is super-skew-symmetric. It remains to show that [,,]C[\cdot,\cdots,\cdot]^{C} satisfies condition (2.6).
On the one hand, we have

M\displaystyle M =[α(x1),,α(xn1),[y1,,yn]C]C\displaystyle=[\alpha(x_{1}),\cdots,\alpha(x_{n-1}),[y_{1},\cdots,y_{n}]^{C}]^{C}
=i=1n1(1)ni(1)|xi|(|X|i+1n1+|Y|){α(x1),,α(xi)^,,α(xn1),[y1,,yn]C,α(xi)}\displaystyle=\displaystyle\sum_{i=1}^{n-1}(-1)^{n-i}(-1)^{|x_{i}|(|X|^{n-1}_{i+1}+|Y|)}\{\alpha(x_{1}),\cdots,\hat{\alpha(x_{i})},\cdots,\alpha(x_{n-1}),[y_{1},\cdots,y_{n}]^{C},\alpha(x_{i})\}
+{α(x1),,α(xn1),[y1,,yn]C}\displaystyle+\{\alpha(x_{1}),\cdots,\alpha(x_{n-1}),[y_{1},\cdots,y_{n}]^{C}\}
=i=1n1j=1n1(1)i+j(1)|xi|(|X|i+1n1+|Y|)(1)|yj||Y|j+1n{α(x1),,α(xi)^,,α(xn1),{y1,,yj^,,yn,yj},α(xi)}\displaystyle=\displaystyle\sum_{i=1}^{n-1}\displaystyle\sum_{j=1}^{n-1}(-1)^{i+j}(-1)^{|x_{i}|(|X|^{n-1}_{i+1}+|Y|)}(-1)^{|y_{j}||Y|^{n}_{j+1}}\{\alpha(x_{1}),\cdots,\hat{\alpha(x_{i})},\cdots,\alpha(x_{n-1}),\{y_{1},\cdots,\hat{y_{j}},\cdots,y_{n},y_{j}\},\alpha(x_{i})\}
+i=1n1(1)ni(1)|xi|(|X|i+1n1+|Y|){α(x1),,α(xi)^,,α(xn1),{y1,,,yn},α(xi)}\displaystyle+\displaystyle\sum_{i=1}^{n-1}(-1)^{n-i}(-1)^{|x_{i}|(|X|^{n-1}_{i+1}+|Y|)}\{\alpha(x_{1}),\cdots,\hat{\alpha(x_{i})},\cdots,\alpha(x_{n-1}),\{y_{1},\cdots,\cdots,y_{n}\},\alpha(x_{i})\}
+j=1n1(1)nj(1)|yj||Y|j+1n{α(x1),,α(xn1),{y1,,yj^,,yn,yj}}+{α(x1),,α(xn1),{y1,,,yn}}.\displaystyle+\displaystyle\sum_{j=1}^{n-1}(-1)^{n-j}(-1)^{|y_{j}||Y|^{n}_{j+1}}\{\alpha(x_{1}),\cdots,\alpha(x_{n-1}),\{y_{1},\cdots,\hat{y_{j}},\cdots,y_{n},y_{j}\}\}+\{\alpha(x_{1}),\cdots,\alpha(x_{n-1}),\{y_{1},\cdots,\cdots,y_{n}\}\}.

On the other hand, we have

N\displaystyle N =i=1n(1)|X|n1|Y|i1[α(y1),,α(yi1),[x1,,xn1,yi]C,α(yi+1),,α(yn)]C\displaystyle=\displaystyle\sum_{i=1}^{n}(-1)^{|X|^{n-1}|Y|^{i-1}}[\alpha(y_{1}),\cdots,\alpha(y_{i-1}),[x_{1},\cdots,x_{n-1},y_{i}]^{C},\alpha(y_{i+1}),\cdots,\alpha(y_{n})]^{C}
=i=1nj=1i1(1)nj(1)|X|n1|Y|i1(1)|yj|(|X|n1+|Y|j+1n){α(y1),,α(yj)^,,[x1,,xn1,yi]C,,α(yn),α(yj)}\displaystyle=\displaystyle\sum_{i=1}^{n}\displaystyle\sum_{j=1}^{i-1}(-1)^{n-j}(-1)^{|X|^{n-1}|Y|^{i-1}}(-1)^{|y_{j}|(|X|^{n-1}+|Y|^{n}_{j+1})}\{\alpha(y_{1}),\cdots,\hat{\alpha(y_{j})},\cdots,[x_{1},\cdots,x_{n-1},y_{i}]^{C},\cdots,\alpha(y_{n}),\alpha(y_{j})\}
+i=1nj=i+1n1(1)nj(1)|X|n1|Y|i1(1)|yj||Y|j+1n{α(y1),,[x1,,xn1,yi]C,,α(yj)^,,α(yn),α(yj)}\displaystyle+\displaystyle\sum_{i=1}^{n}\displaystyle\sum_{j=i+1}^{n-1}(-1)^{n-j}(-1)^{|X|^{n-1}|Y|^{i-1}}(-1)^{|y_{j}||Y|^{n}_{j+1}}\{\alpha(y_{1}),\cdots,[x_{1},\cdots,x_{n-1},y_{i}]^{C},\cdots,\hat{\alpha(y_{j})},\cdots,\alpha(y_{n}),\alpha(y_{j})\}
+i=1n(1)ni(1)|X|n1|Y|i1(1)|Y|i+1n(|X|n1+|yi|){α(y1),,α(yi1),α(yi+1),,α(yn),[x1,,xn1,yi]C}\displaystyle+\displaystyle\sum_{i=1}^{n}(-1)^{n-i}(-1)^{|X|^{n-1}|Y|^{i-1}}(-1)^{|Y|^{n}_{i+1}(|X|^{n-1}+|y_{i}|)}\{\alpha(y_{1}),\cdots,\alpha(y_{i-1}),\alpha(y_{i+1}),\cdots,\alpha(y_{n}),[x_{1},\cdots,x_{n-1},y_{i}]^{C}\}
+i=1n(1)|X|n1|Y|i1{α(y1),,α(yi1),[x1,,xn1,yi]C,α(yi+1),,α(yn)}\displaystyle+\displaystyle\sum_{i=1}^{n}(-1)^{|X|^{n-1}|Y|^{i-1}}\{\alpha(y_{1}),\cdots,\alpha(y_{i-1}),[x_{1},\cdots,x_{n-1},y_{i}]^{C},\alpha(y_{i+1}),\cdots,\alpha(y_{n})\}
=i=1nj=1i1(1)nj(1)|X|n1|Y|i1(1)|yj|(|X|n1+|Y|j+1n){α(y1),,α(yj)^,,[x1,,xn1,yi]C,,α(yn),α(yj)}\displaystyle=\displaystyle\sum_{i=1}^{n}\displaystyle\sum_{j=1}^{i-1}(-1)^{n-j}(-1)^{|X|^{n-1}|Y|^{i-1}}(-1)^{|y_{j}|(|X|^{n-1}+|Y|^{n}_{j+1})}\{\alpha(y_{1}),\cdots,\hat{\alpha(y_{j})},\cdots,[x_{1},\cdots,x_{n-1},y_{i}]^{C},\cdots,\alpha(y_{n}),\alpha(y_{j})\}
+i=1nj=i+1n1(1)nj(1)|X|n1|Y|i1(1)|yj||Y|j+1n{α(y1),,[x1,,xn1,yi]C,,α(yj)^,,α(yn),α(yj)}\displaystyle+\displaystyle\sum_{i=1}^{n}\displaystyle\sum_{j=i+1}^{n-1}(-1)^{n-j}(-1)^{|X|^{n-1}|Y|^{i-1}}(-1)^{|y_{j}||Y|^{n}_{j+1}}\{\alpha(y_{1}),\cdots,[x_{1},\cdots,x_{n-1},y_{i}]^{C},\cdots,\hat{\alpha(y_{j})},\cdots,\alpha(y_{n}),\alpha(y_{j})\}
+i=1n1(1)ni(1)|X|n1|Y|i1(1)|Y|i+1n(|X|n1+|yi|){α(y1),,α(yi1),α(yi+1),,α(yn),[x1,,xn1,yi]C}\displaystyle+\displaystyle\sum_{i=1}^{n-1}(-1)^{n-i}(-1)^{|X|^{n-1}|Y|^{i-1}}(-1)^{|Y|^{n}_{i+1}(|X|^{n-1}+|y_{i}|)}\{\alpha(y_{1}),\cdots,\alpha(y_{i-1}),\alpha(y_{i+1}),\cdots,\alpha(y_{n}),[x_{1},\cdots,x_{n-1},y_{i}]^{C}\}
+i=1n1(1)ni(1)|X|n1|Y|i1(1)|Y|i+1n(|X|n1+|yi|){α(y1),,α(yn1),{x1,,xi^,xn1,yn,xi}}\displaystyle+\displaystyle\sum_{i=1}^{n-1}(-1)^{n-i}(-1)^{|X|^{n-1}|Y|^{i-1}}(-1)^{|Y|^{n}_{i+1}(|X|^{n-1}+|y_{i}|)}\{\alpha(y_{1}),\cdots,\alpha(y_{n-1}),\{x_{1},\cdots,\hat{x_{i}}\cdots,x_{n-1},y_{n},x_{i}\}\}
+{α(y1),,α(yn1),{x1,,xn1,yn}}+i=1n(1)|yi||Y|i1{[x1,,xn1,yi]C,α(y1),,α(yi1),α(yi+1),,α(yn)}.\displaystyle+\{\alpha(y_{1}),\cdots,\alpha(y_{n-1}),\{x_{1},\cdots,x_{n-1},y_{n}\}\}+\displaystyle\sum_{i=1}^{n}(-1)^{|y_{i}||Y|_{i-1}}\{[x_{1},\cdots,x_{n-1},y_{i}]^{C},\alpha(y_{1}),\cdots,\alpha(y_{i-1}),\alpha(y_{i+1}),\cdots,\alpha(y_{n})\}.

Using the identities (3.1)-(3.2) and by a direct computation, we find MN=0M-N=0, which implies that [,,]C[\cdot,\cdots,\cdot]^{C} gives an nn-Hom-Lie superalgebra structure on 𝒜\mathcal{A}.

Let (𝒜,{,,},α)(\mathcal{A},\{\cdot,\cdots,\cdot\},\alpha) be an nn-Hom-pre-Lie superalgebra. Defining the two even multiplications L,R:n1𝒜gl(𝒜)L,R:\wedge^{n-1}\mathcal{A}\rightarrow gl(\mathcal{A}) by

L(x1,,xn1)xn={x1,,xn1,xn},L(x_{1},\cdots,x_{n-1})x_{n}=\{x_{1},\cdots,x_{n-1},x_{n}\}, (3.4)

and

R(x1,,xn1)xn={xn,x1,,xn1},R(x_{1},\cdots,x_{n-1})x_{n}=\{x_{n},x_{1},\cdots,x_{n-1}\}, (3.5)

for all xi(𝒜),1inx_{i}\in\mathcal{H}(\mathcal{A}),1\leq i\leq{n}.

LL is called left multiplication and RR is called right multiplication. If there is an nn-Hom-pre-Lie superalgebra structure on its dual space 𝒜\mathcal{A}^{*}, we denote the left multiplication and right multiplication by \mathcal{L} and \mathcal{R} respectively.

By the definitions of an nn-Hom-pre-Lie superalgebra and a representation of an nn-Hom-Lie superalgebra, we immediately obtain :

Proposition 3.2.

With the above notations, (A,L,α)(A,L,\alpha) is a representation of the nn-Hom-Lie superalgebra (𝒜,[,,]C,α)(\mathcal{A},[\cdot,\cdots,\cdot]^{C},\alpha). On the other hand, let 𝒜\mathcal{A} be a vector space with an nn-linear map {,,}:(n1𝒜)𝒜𝒜\{\cdot,\cdots,\cdot\}:(\wedge^{n-1}\mathcal{A})\otimes\mathcal{A}\rightarrow\mathcal{A} . Then (𝒜,{,,},α)(\mathcal{A},\{\cdot,\cdots,\cdot\},\alpha) is an nn-Hom-pre-Lie superalgebra if [,,]C[\cdot,\cdots,\cdot]^{C} defined by Eq. (3.3) is an nn-Hom-Lie superalgebra and the left multiplication LL defined by Eq. (3.4) gives a representation of this nn-Hom-Lie superalgebra.

Proof.

We skip the straightforward proof. ∎

Proposition 3.3.

Let T:VAT:V\rightarrow A be an 𝒪\mathcal{O}-operator on an nn-Hom-Lie superalgebra (𝒜,[,,],α)(\mathcal{A},[\cdot,\cdots,\cdot],\alpha) with respect to the representation (V,ρ,αV)(V,\rho,\alpha_{V}) . Then there exists an nn-Hom-pre-Lie superalgebra structure on VV given by

{u1,,un}T=ρ(Tu1,,Tun1)un,ui(V),1in.\{u_{1},\cdots,u_{n}\}_{T}=\rho(Tu_{1},\cdots,Tu_{n-1})u_{n},\quad\forall~{}u_{i}\in\mathcal{H}(V),1\leq i\leq n. (3.6)

In particular; If V=𝒜V=\mathcal{A}, let P:𝒜𝒜P:\mathcal{A}\rightarrow\mathcal{A} be a Rota-Baxter operator of weight zero associated to (𝒜,ad)(\mathcal{A},ad). Then the compatible nn-Hom-pre-Lie superalgebra on 𝒜\mathcal{A} is given by

{x1,,xn}P=[P(x1),,P(xn1),xn],\{x_{1},\cdots,x_{n}\}_{P}=[P(x_{1}),\cdots,P(x_{n-1}),x_{n}], (3.7)

for any x1,,xn(𝒜)x_{1},\cdots,x_{n}\in\mathcal{H}(\mathcal{A}).

Proof.

Let ui,vi(V), 1inu_{i},v_{i}\in\mathcal{H}(V),\;1\leq i\leq n, then by using (2.8), (2.16) and (3.6), we have:

{αV(u1),,αV(un1),{v1,,vn}T}T(1)|U|n1|V|n1{αV(v1),,αV(vn1),{u1,,un}T}T\displaystyle\{\alpha_{V}(u_{1}),\cdots,\alpha_{V}(u_{n-1}),\{v_{1},\cdots,v_{n}\}_{T}\}_{T}-(-1)^{|U|^{n-1}|V|^{n-1}}\{\alpha_{V}(v_{1}),\cdots,\alpha_{V}(v_{n-1}),\{u_{1},\cdots,u_{n}\}_{T}\}_{T}
={αV(u1),,αV(un1),ρ(Tv1,,Tvn1)(vn)}T(1)|U|n1|V|n1{αV(v1),,αV(vn1),ρ(Tu1,,Tun1)(un)}T\displaystyle=\{\alpha_{V}(u_{1}),\cdots,\alpha_{V}(u_{n-1}),\rho(Tv_{1},\cdots,Tv_{n-1})(v_{n})\}_{T}-(-1)^{|U|^{n-1}|V|^{n-1}}\{\alpha_{V}(v_{1}),\cdots,\alpha_{V}(v_{n-1}),\rho(Tu_{1},\cdots,Tu_{n-1})(u_{n})\}_{T}
=ρ(T(αV(u1)),,T(αV(un1)))ρ(Tv1,,Tvn1)(vn)(1)|U|n1|V|n1ρ(T(αV(v1)),,T(αV(vn1)))ρ(Tu1,,Tun1)(un)\displaystyle=\rho\big{(}T(\alpha_{V}(u_{1})),\cdots,T(\alpha_{V}(u_{n-1}))\big{)}\rho\big{(}Tv_{1},\cdots,Tv_{n-1}\big{)}(v_{n})-(-1)^{|U|^{n-1}|V|^{n-1}}\rho\big{(}T(\alpha_{V}(v_{1})),\cdots,T(\alpha_{V}(v_{n-1}))\big{)}\rho\big{(}Tu_{1},\cdots,Tu_{n-1}\big{)}(u_{n})
=ρ(α(Tu1),,α(Tun1))ρ(Tv1,,Tvn1)(vn)(1)|U|n1|V|n1ρ(α(Tv1),,α(Tvn1))ρ(Tu1,,Tun1)(un)\displaystyle=\rho\big{(}\alpha(Tu_{1}),\cdots,\alpha(Tu_{n-1})\big{)}\rho\big{(}Tv_{1},\cdots,Tv_{n-1}\big{)}(v_{n})-(-1)^{|U|^{n-1}|V|^{n-1}}\rho\big{(}\alpha(Tv_{1}),\cdots,\alpha(Tv_{n-1})\big{)}\rho\big{(}Tu_{1},\cdots,Tu_{n-1}\big{)}(u_{n})
=i=1n1(1)|U|n1|V|i1ρ(α(Tv1),,α(Tvi1),[Tu1,,Tun1,Tvi],,α(Tvn1))αV\displaystyle=\displaystyle\sum_{i=1}^{n-1}(-1)^{|U|^{n-1}|V|^{i-1}}\rho\big{(}\alpha(Tv_{1}),\cdots,\alpha(Tv_{i-1}),[Tu_{1},\cdots,Tu_{n-1},Tv_{i}],\cdots,\alpha(Tv_{n-1})\big{)}\alpha_{V}
=i=1n1(1)|U|n1|V|i1ρ(α(Tv1),,α(Tvi1),T(j=1n1(1)ni(1)|uj||U|j+1ρ(Tu1,,Tuj^,Tun1,Tvi)uj),,α(Tvn1))αV\displaystyle=\displaystyle\sum_{i=1}^{n-1}(-1)^{|U|^{n-1}|V|^{i-1}}\rho\Big{(}\alpha(Tv_{1}),\cdots,\alpha(Tv_{i-1}),\displaystyle T\Big{(}\sum_{j=1}^{n-1}(-1)^{n-i}(-1)^{|u_{j}||U|_{j+1}}\rho(Tu_{1},\cdots,\hat{Tu_{j}},\cdots Tu_{n-1},Tv_{i})u_{j}\Big{)},\cdots,\alpha(Tv_{n-1})\Big{)}\alpha_{V}
+i=1n1(1)|U|n1|V|i1ρ(α(Tv1),,α(Tvi1),T(ρ(Tu1,,Tun1)vi),,α(Tvn1))αV\displaystyle+\displaystyle\sum_{i=1}^{n-1}(-1)^{|U|^{n-1}|V|^{i-1}}\rho\Big{(}\alpha(Tv_{1}),\cdots,\alpha(Tv_{i-1}),T(\rho(Tu_{1},\cdots,Tu_{n-1})v_{i}),\cdots,\alpha(Tv_{n-1})\Big{)}\alpha_{V}
=i=1n1(1)|U|n1|V|i1ρ(T(αV(v1)),,T(αV(vi1)),T([u1,,un1,vi]VC),,T(αV(vn1)))αV\displaystyle=\displaystyle\sum_{i=1}^{n-1}(-1)^{|U|^{n-1}|V|^{i-1}}\rho\Big{(}T(\alpha_{V}(v_{1})),\cdots,T(\alpha_{V}(v_{i-1})),T([u_{1},\cdots,u_{n-1},v_{i}]_{V}^{C}),\cdots,T(\alpha_{V}(v_{n-1}))\Big{)}\alpha_{V}
=i=1n1(1)|U|n1|V|i1{αV(v1),,αV(vi1),[u1,,un1,vi]VC,,αV(vn1)}T,\displaystyle=\displaystyle\sum_{i=1}^{n-1}(-1)^{|U|^{n-1}|V|^{i-1}}\{\alpha_{V}(v_{1}),\cdots,\alpha_{V}(v_{i-1}),[u_{1},\cdots,u_{n-1},v_{i}]_{V}^{C},\cdots,\alpha_{V}(v_{n-1})\}_{T},

which gives that the identity (3.1) is satisfied on VV. By the same way we show that the identity (3.2) is satisfied. Then (V,ρ,αV)(V,\rho,\alpha_{V}) is an nn-Hom-pre-Lie superalgebra.
If V=𝒜V=\mathcal{A}, the result is obvious. ∎

Corollary 3.4.

With the above conditions, (V,[,,]C,α)(V,[\cdot,\cdots,\cdot]^{C},\alpha) is an nn-Hom-Lie superalgebra as the sub-adjacent nn-Hom-Lie superalgebra of the nn-Hom-pre-Lie superalgebra given in Proposition 3.3, and TT is an nn-Hom-Lie superalgebra morphism from (V,[,,]C,α)(V,[\cdot,\cdots,\cdot]^{C},\alpha) to (𝒜,[,,],α)(\mathcal{A},[\cdot,\cdots,\cdot],\alpha). Furthermore, T(V)={Tv|vV}AT(V)=\{Tv\;|\;v\in V\}\subset A is an nn-Hom-Lie subalgebra of 𝒜\mathcal{A} and there is an induced nn-Hom-pre-Lie superalgebra structure {,,}T(V)\{\cdot,\cdots,\cdot\}_{T(V)} on T(V)T(V) given by

{Tu1,,Tun}T(V):=T{u1,,un},ui(V),1in.\{Tu_{1},\cdots,Tu_{n}\}_{T(V)}:=T\{u_{1},\cdots,u_{n}\},\quad\;\forall u_{i}\in\mathcal{H}(V),1\leq i\leq n. (3.8)
Proposition 3.5.

Let (𝒜,[,,],α)(\mathcal{A},[\cdot,\cdots,\cdot],\alpha) be an nn-Hom-Lie superalgebra. Then there exists a compatible nn-Hom-pre-Lie superalgebra if and only if there exists an invertible 𝒪\mathcal{O}-operator T:V𝒜T:V\rightarrow\mathcal{A} with respect to a representation (V,ρ,αV)(V,\rho,\alpha_{V}). Furthermore, the compatible nn-Hom-pre-Lie structure on 𝒜\mathcal{A} is given by

{x1,,xn}A=Tρ(x1,,xn1)T1(xn),xi(𝒜),1in.\{x_{1},\cdots,x_{n}\}_{A}=T\rho(x_{1},\cdots,x_{n-1})T^{-1}(x_{n}),\;\forall x_{i}\in\mathcal{H}(\mathcal{A}),1\leq i\leq n. (3.9)
Proof.

This is a direct computation, we apply Proposition 3.3 and corollary 3.4 for T(V)=𝒜T(V)=\mathcal{A}. ∎

3.2 Representations of nn-Hom-pre-Lie superalgebras

In this subsection, we introduce the notion of a representation of an nn-Hom-pre-Lie superalgebras which is the Hom-super case of [29], so we give the construction of the corresponding semi-direct product nn-Hom-pre-Lie superalgebra and we give some other results related this notion.

Definition 3.2.

Let (𝒜,{,,},α)(\mathcal{A},\{\cdot,\cdots,\cdot\},\alpha) be an nn-Hom-pre-Lie superalgebra. A representation of (𝒜,{,,},α)(\mathcal{A},\{\cdot,\cdots,\cdot\},\alpha) on a 2\mathbb{Z}_{2}-graded vector space VV is the given of a triple (l,r,αV)(l,r,\alpha_{V}), where l:n1𝒜gl(V)l:\wedge^{n-1}\mathcal{A}\rightarrow gl(V) is a representation of the nn-Hom-Lie superalgebra 𝒜c\mathcal{A}^{c} on VV, r:𝒜××𝒜gl(V)r:\mathcal{A}\times\cdots\times\mathcal{A}\rightarrow gl(V) is an even (n1)(n-1)-linear map super-skew-symmetric on the first (n2)(n-2) terms and αV:VV\alpha_{V}:V\to V is an even linear maps such that for all x1,,xn,y1,,yn(𝒜)x_{1},\cdots,x_{n},y_{1},\cdots,y_{n}\in\mathcal{H}(\mathcal{A}), the following identities holds:

αVr(x1,,xn1)=r(α(x1),,α(xn1))αV,\displaystyle\bullet\alpha_{V}r(x_{1},\cdots,x_{n-1})=r(\alpha(x_{1}),\cdots,\alpha(x_{n-1}))\alpha_{V}, (3.10)
l(α(x1),,α(xn1))r(y1,,yn1)=(1)|X|n1|Y|n1r(α(y1),,α(yn1))μ(x1,,xn1)\displaystyle\bullet l(\alpha(x_{1}),\cdots,\alpha(x_{n-1}))r(y_{1},\cdots,y_{n-1})=(-1)^{|X|^{n-1}|Y|^{n-1}}r(\alpha(y_{1}),\cdots,\alpha(y_{n-1}))\mu(x_{1},\cdots,x_{n-1})
+i=1n2(1)|X|n1|Y|i1r(α(y1),,α(yi1),[x1,,xn1,yi]C,α(yi+1),,α(yn1))αV\displaystyle+\sum_{i=1}^{n-2}(-1)^{|X|^{n-1}|Y|^{i-1}}r(\alpha(y_{1}),\cdots,\alpha(y_{i-1}),[x_{1},\cdots,x_{n-1},y_{i}]^{C},\alpha(y_{i+1}),\cdots,\alpha(y_{n-1}))\alpha_{V} (3.11)
+(1)|X|n1|Y|n2r(α(y1),,α(yn2),{x1,,xn1,yn1})αV,\displaystyle+(-1)^{|X|^{n-1}|Y|^{n-2}}r(\alpha(y_{1}),\cdots,\alpha(y_{n-2}),\{x_{1},\cdots,x_{n-1},y_{n-1}\})\alpha_{V},
r([x1,,xn]C,α(y1),,α(yn2))αV=i=1n(1)ni(1)|xi||X|i+1nl(α(x1),,α(xi)^,,α(xn))r(xi,y1,,yn2),\displaystyle\bullet r([x_{1},\cdots,x_{n}]^{C},\alpha(y_{1}),\cdots,\alpha(y_{n-2}))\alpha_{V}=\sum_{i=1}^{n}(-1)^{n-i}(-1)^{|x_{i}||X|_{i+1}^{n}}l(\alpha(x_{1}),\cdots,\widehat{\alpha(x_{i})},\cdots,\alpha(x_{n}))r(x_{i},y_{1},\cdots,y_{n-2}), (3.12)
r(α(x1),,α(xn2),{y1,,yn})αV=(1)|X|n2|Y|n1l(α(y1),,α(yn1))r(x1,,xn2,yn)\displaystyle\bullet r(\alpha(x_{1}),\cdots,\alpha(x_{n-2}),\{y_{1},\cdots,y_{n}\})\alpha_{V}=(-1)^{|X|^{n-2}|Y|^{n-1}}l(\alpha(y_{1}),\cdots,\alpha(y_{n-1}))r(x_{1},\cdots,x_{n-2},y_{n})
+i=1n1(1)i+1(1)(|X|n2+|yi|)|Y|i+1n+|X|n2|Y|i1r(α(y1),,α(yi)^,,α(yn))μ(x1,,xn2,yi),\displaystyle+\sum_{i=1}^{n-1}(-1)^{i+1}(-1)^{(|X|^{n-2}+|y_{i}|)|Y|^{n}_{i+1}+|X|^{n-2}|Y|^{i-1}}r(\alpha(y_{1}),\cdots,\widehat{\alpha(y_{i})},\cdots,\alpha(y_{n}))\mu(x_{1},\cdots,x_{n-2},y_{i}), (3.13)
r(α(y1),,α(yn1))μ(x1,,xn1)=(1)|X|n1|Y|n1l(α(x1),,α(xn1))r(y1,,yn1)\displaystyle\bullet r(\alpha(y_{1}),\cdots,\alpha(y_{n-1}))\mu(x_{1},\cdots,x_{n-1})=(-1)^{|X|^{n-1}|Y|^{n-1}}l(\alpha(x_{1}),\cdots,\alpha(x_{n-1}))r(y_{1},\cdots,y_{n-1})
+i=1n1(1)i(1)|xi||x|i+1n1r(α(x1),,α(xi)^,,α(xn1),{xi,y1,,yn1})αV,\displaystyle+\sum_{i=1}^{n-1}(-1)^{i}(-1)^{|x_{i}||x|^{n-1}_{i+1}}r(\alpha(x_{1}),\cdots,\widehat{\alpha(x_{i})},\cdots,\alpha(x_{n-1}),\{x_{i},y_{1},\cdots,y_{n-1}\})\alpha_{V}, (3.14)

where μ(x1,,xn1)=l(x1,,xn1)+i=1n1(1)i(1)|xi||X|i+1n1r(x1,,xi^,,xn1,xi)\quad\mu(x_{1},\cdots,x_{n-1})=l(x_{1},\cdots,x_{n-1})+\displaystyle\sum_{i=1}^{n-1}(-1)^{i}(-1)^{|x_{i}||X|^{n-1}_{i+1}}r(x_{1},\cdots,\widehat{x_{i}},\cdots,x_{n-1},x_{i}).

Let (𝒜,{,,},α)(\mathcal{A},\{\cdot,\cdots,\cdot\},\alpha) be an nn-Hom-pre-Lie superalgebra and (l,αV)(l,\alpha_{V}) a representation of the sub-adjacent nn-Hom-pre-Lie superalgebra 𝒜c\mathcal{A}^{c} on VV . Then (l,r,αV)(l,r,\alpha_{V}) is a representation of the nn-Hom-pre-Lie superalgebra (𝒜,{,,},α)(\mathcal{A},\{\cdot,\cdots,\cdot\},\alpha) on the 2\mathbb{Z}_{2}-graded vector space VV. It is obvious that (𝒜,L,R,α)(\mathcal{A},L,R,\alpha) is a representation of an nn-Hom-pre-Lie superalgebra on itself, which is called the adjoint representation.

Theorem 3.6.

Let (V,l,r)(V,l,r) be a representation of an nn-pre-Lie superalgebra (𝒜,{,,})(\mathcal{A},\{\cdot,\cdots,\cdot\}). Let αVgl(V)\alpha_{V}\in gl(V) and αgl(𝒜)\alpha\in gl(\mathcal{A}) two morphisms such that

αVl(x1,,xn1)=l(α(x1),,α(xn1))αV,αVr(x1,,xn1)=r(α(x1),,α(xn1))αV,\alpha_{V}l(x_{1},\cdots,x_{n-1})=l(\alpha(x_{1}),\cdots,\alpha(x_{n-1}))\alpha_{V},\;\;\;\alpha_{V}r(x_{1},\cdots,x_{n-1})=r(\alpha(x_{1}),\cdots,\alpha(x_{n-1}))\alpha_{V},

for all xi(𝒜), 1in1x_{i}\in\mathcal{H}(\mathcal{A}),\;1\leq i\leq n-1. Then (V,l~,r~,αV)(V,\widetilde{l},\widetilde{r},\alpha_{V}) is a representation on the nn-Hom-pre-Lie superalgebras (𝒜,{,,}αC,α)(\mathcal{A},\{\cdot,\cdots,\cdot\}_{\alpha}^{C},\alpha), where l~=αVl\widetilde{l}=\alpha_{V}\circ l, r~=αVr\widetilde{r}=\alpha_{V}\circ r and {,,}αC=α{,,}C\{\cdot,\cdots,\cdot\}_{\alpha}^{C}=\alpha\circ\{\cdot,\cdots,\cdot\}^{C}.

Proof.

Let xi,yi(𝒜), 1inx_{i},y_{i}\in\mathcal{H}(\mathcal{A}),\;1\leq i\leq n, then by condition (3.10), we have

αVr~(x1,,xn1)\displaystyle\alpha_{V}\widetilde{r}(x_{1},\cdots,x_{n-1}) =αVαVr(x1,,xn1)=αVr(α(x1),,α(xn1))αV\displaystyle=\alpha_{V}\alpha_{V}r(x_{1},\cdots,x_{n-1})=\alpha_{V}r(\alpha(x_{1}),\cdots,\alpha(x_{n-1}))\alpha_{V}
=r~(α(x1),,α(xn1))αV.\displaystyle=\widetilde{r}(\alpha(x_{1}),\cdots,\alpha(x_{n-1}))\alpha_{V}.

Then, the condition (3.10) is satisfied by r~\widetilde{r}. By the same way, we show that the conditions (3.11)-(3.14) hold. The theorem is proved. ∎

Proposition 3.7.

Let (𝒜,{,,},α)(\mathcal{A},\{\cdot,\cdots,\cdot\},\alpha) be an nn-Hom-pre-Lie superalgebra, VV a 2\mathbb{Z}_{2}-graded vector space and l,r:n1𝒜gl(V)l,r:\otimes^{n-1}\mathcal{A}\rightarrow gl(V) two even linear maps. Then (V,l,r,αV)(V,l,r,\alpha_{V}) is a representation of 𝒜\mathcal{A} if and only if there is an nn-Hom-pre-Lie superalgebra structure ((called semi-direct product)) on the direct sum 𝒜V\mathcal{A}\oplus V of vector spaces, defined by

{x1+u1,,xn+un}𝒜V=\displaystyle\{x_{1}+u_{1},\cdots,x_{n}+u_{n}\}_{\mathcal{A}\oplus V}= {x1,,xn}+l(x1,,xn1)(un)\displaystyle\{x_{1},\cdots,x_{n}\}+l(x_{1},\cdots,x_{n-1})(u_{n})
+i=1n1(1)i+1(1)|xi||X|i+1nr(x1,,xi^,,xn)(ui),\displaystyle+\sum_{i=1}^{n-1}(-1)^{i+1}(-1)^{|x_{i}||X|_{i+1}^{n}}r(x_{1},\cdots,\widehat{x_{i}},\cdots,x_{n})(u_{i}), (3.15)

for xi(𝒜),ui(V),1inx_{i}\in\mathcal{H}(\mathcal{A}),u_{i}\in\mathcal{H}(V),1\leq i\leq n. We denote this semi-direct product nn-Hom-pre-Lie superalgebra by 𝒜l,rαVV.\mathcal{A}\ltimes_{l,r}^{\alpha_{V}}V.

Proof.

Let xi(𝒜),ui(V), 1inx_{i}\in\mathcal{H}(\mathcal{A}),\;u_{i}\in\mathcal{H}(V),\;1\leq i\leq n, then, for all 1jn21\leq j\leq n-2, we have

{x1+u1,,xj+uj,xj+1+uj+1,,xn+un}𝒜V\displaystyle\{x_{1}+u_{1},\cdots,x_{j}+u_{j},x_{j+1}+u_{j+1},\cdots,x_{n}+u_{n}\}_{\mathcal{A}\oplus V}\;\;
={x1,,xj,xj+1,,xn}+l(x1,,xj,xj+1,,xn1)(un)+i=1j1(1)i+1(1)|xi||X|i+1n1r(x1,,xi^,,xj,xj+1,,xn)(ui)\displaystyle=\{x_{1},\cdots,x_{j},x_{j+1},\cdots,x_{n}\}+l(x_{1},\cdots,x_{j},x_{j+1},\cdots,x_{n-1})(u_{n})+\displaystyle\sum_{i=1}^{j-1}(-1)^{i+1}(-1)^{|x_{i}||X|^{n-1}_{i+1}}r(x_{1},\cdots,\hat{x_{i}},\cdots,x_{j},x_{j+1},\cdots,x_{n})(u_{i})
+i=j+2n1(1)i+1(1)|xi||X|i+1n1r(x1,,xj,xj+1,xi^,,,xn)(ui)+(1)j+1(1)|xj||X|j+1n1r(x1,,xj1,xj+1,,xn)(uj)\displaystyle+\displaystyle\sum_{i=j+2}^{n-1}(-1)^{i+1}(-1)^{|x_{i}||X|^{n-1}_{i+1}}r(x_{1},\cdots,x_{j},x_{j+1},\hat{x_{i}},\cdots,\cdots,x_{n})(u_{i})+(-1)^{j+1}(-1)^{|x_{j}||X|^{n-1}_{j+1}}r(x_{1},\cdots,x_{j-1},x_{j+1},\cdots,x_{n})(u_{j})
+(1)j(1)|xj+1||X|j+2n1r(x1,,xj,xj+2,,xn)(uj+1)\displaystyle+(-1)^{j}(-1)^{|x_{j+1}||X|^{n-1}_{j+2}}r(x_{1},\cdots,x_{j},x_{j+2},\cdots,x_{n})(u_{j+1})
=(1)|xj||xj+1|({x1,,xj+1,xj,,xn}+l(x1,,xj+1,xj,,xn1)(un)\displaystyle=-(-1)^{|x_{j}||x_{j+1}|}\Big{(}\{x_{1},\cdots,x_{j+1},x_{j},\cdots,x_{n}\}+l(x_{1},\cdots,x_{j+1},x_{j},\cdots,x_{n-1})(u_{n})
+i=1j1(1)i+1(1)|xi||X|i+1n1r(x1,,xi^,,xj+1,xj,,xn)(ui)+i=j+2n1(1)i+1(1)|xi||X|i+1n1r(x1,,xj+1,xj,xi^,,,xn)(ui)\displaystyle+\displaystyle\sum_{i=1}^{j-1}(-1)^{i+1}(-1)^{|x_{i}||X|^{n-1}_{i+1}}r(x_{1},\cdots,\hat{x_{i}},\cdots,x_{j+1},x_{j},\cdots,x_{n})(u_{i})+\displaystyle\sum_{i=j+2}^{n-1}(-1)^{i+1}(-1)^{|x_{i}||X|^{n-1}_{i+1}}r(x_{1},\cdots,x_{j+1},x_{j},\hat{x_{i}},\cdots,\cdots,x_{n})(u_{i})
+(1)j(1)|xj||X|j+2n1r(x1,,xj1,xj+1,,xn)(uj)+(1)j+1(1)|xj+1|(|xj|+|X|j+1n1)r(x1,,xj,xj+2,,xn)(uj+1))\displaystyle+(-1)^{j}(-1)^{|x_{j}||X|^{n-1}_{j+2}}r(x_{1},\cdots,x_{j-1},x_{j+1},\cdots,x_{n})(u_{j})+(-1)^{j+1}(-1)^{|x_{j+1}|(|x_{j}|+|X|^{n-1}_{j+1})}r(x_{1},\cdots,x_{j},x_{j+2},\cdots,x_{n})(u_{j+1})\Big{)}
=(1)(|xj+uj|)(|xj+1+uj+1|){x1+u1,,xj+1+uj+1,xj+uj,,xn+un}𝒜V,\displaystyle=(-1)^{(|x_{j}+uj|)(|x_{j+1}+u_{j+1}|)}\{x_{1}+u_{1},\cdots,x_{j+1}+u_{j+1},x_{j}+u_{j},\cdots,x_{n}+u_{n}\}_{\mathcal{A}\oplus V},

which implies that {,,}𝒜V\{\cdot,\cdots,\cdot\}_{\mathcal{A}\oplus V} is super-skew-symmetric on the first (n1)(n-1) terms. ∎

Let VV be a 2\mathbb{Z}_{2}-graded vector space and (V,l,r,αV)(V,l,r,\alpha_{V}) be a representation of the nn-Hom-pre-Lie superalgebra (𝒜,{,,},α)(\mathcal{A},\{\cdot,\cdots,\cdot\},\alpha) on VV. Define ρ~:n1𝒜gl(V)\widetilde{\rho}:\wedge^{n-1}\mathcal{A}\rightarrow gl(V) by

ρ~(x1,,xn1)=l(x1,,xn1)+i=1n1(1)i(1)|xi||X|i+1n1r(x1,,xi^,,xn1,xi),\widetilde{\rho}(x_{1},\cdots,x_{n-1})=l(x_{1},\cdots,x_{n-1})+\sum_{i=1}^{n-1}(-1)^{i}(-1)^{|x_{i}||X|_{i+1}^{n-1}}r(x_{1},\cdots,\widehat{x_{i}},\cdots,x_{n-1},x_{i}), (3.16)

for all x1,,xn1(𝒜).x_{1},\cdots,x_{n-1}\in\mathcal{H}(\mathcal{A}).

Proposition 3.8.

With the above notation, (V,ρ~,αV)(V,\widetilde{\rho},\alpha_{V}) is a representation of the sub-adjacent nn-Hom-Lie superalgebra (𝒜c,[,,]C,α)(\mathcal{A}^{c},[\cdot,\cdots,\cdot]^{C},\alpha) on the 2\mathbb{Z}_{2}-graded vector space VV.

Proof.

By Proposition 3.7, we have the semi-direct product nn-Hom-pre-Lie superalgebra 𝒜l,rαVV.\mathcal{A}\ltimes^{\alpha_{V}}_{l,r}V. Consider its sub-adjacent nn-Hom-Lie superalgebra structure [,,]C[\cdot,\cdots,\cdot]^{C}, we have for any xi(𝒜),ui(V)x_{i}\in\mathcal{H}(\mathcal{A}),\;u_{i}\in\mathcal{H}(V)

[x1+u1,,xn+un]𝒜VC=i=1n(1)ni(1)|xi||X|i+1n{x1+u1,,xi+ui^,,xn+un,xi+ui}𝒜V\displaystyle\quad\;[x_{1}+u_{1},\cdots,x_{n}+u_{n}]_{\mathcal{A}\oplus V}^{C}=\sum_{i=1}^{n}(-1)^{n-i}(-1)^{|x_{i}||X|^{n}_{i+1}}\{x_{1}+u_{1},\cdots,\widehat{x_{i}+u_{i}},\cdots,x_{n}+u_{n},x_{i}+u_{i}\}_{\mathcal{A}\oplus V}
=i=1n(1)ni(1)|xi||X|i+1n{x1,,xi^,,xn,xi}+i=1n(1)ni(1)|xi||X|i+1nl(x1,,xi^,,xn)(ui)\displaystyle=\sum_{i=1}^{n}(-1)^{n-i}(-1)^{|x_{i}||X|^{n}_{i+1}}\{x_{1},\cdots,\widehat{x_{i}},\cdots,x_{n},x_{i}\}+\sum_{i=1}^{n}(-1)^{n-i}(-1)^{|x_{i}||X|^{n}_{i+1}}l(x_{1},\cdots,\widehat{x_{i}},\cdots,x_{n})(u_{i})
+i=1n(1)ni(1i<jn(1)j(1)|X|j+1n(|xi|+|xj|)+|xi||X|i+1j1+|xi||xj|r(x1,,xi^,,xj^,,xn,xi)(uj)\displaystyle+\sum_{i=1}^{n}(-1)^{n-i}\Big{(}\sum_{1\leq i<j\leq n}(-1)^{j}(-1)^{|X|^{n}_{j+1}(|x_{i}|+|x_{j}|)+|x_{i}||X|^{j-1}_{i+1}+|x_{i}||x_{j}|}r(x_{1},\cdots,\widehat{x_{i}},\cdots,\widehat{x_{j}},\cdots,x_{n},x_{i})(u_{j})
+1j<in(1)j+1(1)|X|j+1n(|xi|+|xj|)+|xj||X|j+1i1+|xi||xj|r(x1,,xj^,,xi^,,xn,xi)(uj))\displaystyle+\sum_{1\leq j<i\leq n}(-1)^{j+1}(-1)^{|X|^{n}_{j+1}(|x_{i}|+|x_{j}|)+|x_{j}||X|^{i-1}_{j+1}+|x_{i}||x_{j}|}r(x_{1},\cdots,\widehat{x_{j}},\cdots,\widehat{x_{i}},\cdots,x_{n},x_{i})(u_{j})\Big{)}
=[x1,,xn]C+i=1n(1)ni(1)|xi||X|i+1n(l(x1,,xi^,,xn)(ui)\displaystyle=[x_{1},\cdots,x_{n}]^{C}+\sum_{i=1}^{n}(-1)^{n-i}(-1)^{|x_{i}||X|^{n}_{i+1}}\Big{(}l(x_{1},\cdots,\widehat{x_{i}},\cdots,x_{n})(u_{i}) (3.17)
+1i<jn(1)j(1)j(1)|X|j+1n(|xi|+|xj|)+|xi||X|i+1j1+|xi||xj|r(x1,,xi^,,xj^,,xn,xi)(uj)\displaystyle+\sum_{1\leq i<j\leq n}(-1)^{j}(-1)^{j}(-1)^{|X|^{n}_{j+1}(|x_{i}|+|x_{j}|)+|x_{i}||X|^{j-1}_{i+1}+|x_{i}||x_{j}|}r(x_{1},\cdots,\widehat{x_{i}},\cdots,\widehat{x_{j}},\cdots,x_{n},x_{i})(u_{j})
+1j<in(1)j+1(1)|X|j+1n(|xi|+|xj|)+|xj||X|j+1i1+|xi||xj|r(x1,,xj^,,xi^,,xn,xi)(uj)\displaystyle+\sum_{1\leq j<i\leq n}(-1)^{j+1}(-1)^{|X|^{n}_{j+1}(|x_{i}|+|x_{j}|)+|x_{j}||X|^{i-1}_{j+1}+|x_{i}||x_{j}|}r(x_{1},\cdots,\widehat{x_{j}},\cdots,\widehat{x_{i}},\cdots,x_{n},x_{i})(u_{j})
=[x1,,xn]C+k=1n(1)nk(1)|xk||X|k+1nρ~(x1,,xk^,,xn)(uk).\displaystyle=[x_{1},\cdots,x_{n}]^{C}+\sum_{k=1}^{n}(-1)^{n-k}(-1)^{|x_{k}||X|^{n}_{k+1}}\;\widetilde{\rho}(x_{1},\cdots,\widehat{x_{k}},\cdots,x_{n})(u_{k}). (3.18)

By Proposition 2.5, (V,ρ~,αV)(V,\widetilde{\rho},\alpha_{V}) is a representation of the sub-adjacent nn-Hom-Lie superalgebra (Ac,[,,]C,α)(A^{c},[\cdot,\cdots,\cdot]^{C},\alpha) on the 2\mathbb{Z}_{2}-vector space VV. The proof is finished. ∎

If (l,r,αV)=(L,R,αV)(l,r,\alpha_{V})=(L,R,\alpha_{V}) is a representation of an nn-Hom-pre-Lie superalgebra (𝒜,{,,},α)(\mathcal{A},\{\cdot,\cdots,\cdot\},\alpha), then ρ~=ad\widetilde{\rho}=ad is the adjoint representation of the sub-adjacent nn-Hom-Lie superalgebra (𝒜c,[,,]C,α)(\mathcal{A}^{c},[\cdot,\cdots,\cdot]^{C},\alpha) on itself.

Corollary 3.9.

Let (V,l,r,αV)(V,l,r,\alpha_{V}) be a representation of an nn-Hom-pre-Lie superalgebra (𝒜,{,,},α)(\mathcal{A},\{\cdot,\cdots,\cdot\},\alpha) on VV. Then the semi-product nn-Hom-pre-Lie superalgebras 𝒜l,rαVV\mathcal{A}\ltimes^{\alpha_{V}}_{l,r}V and 𝒜ρ~αVV\mathcal{A}\ltimes^{\alpha_{V}}_{\widetilde{\rho}}V given by the representations (V,l,r,αV)(V,l,r,\alpha_{V}) and (V,ρ~,0,αV)(V,\widetilde{\rho},0,\alpha_{V}) respectively have the same sub-adjacent nn-Hom-Lie superalgebra 𝒜cρ~αVV\mathcal{A}^{c}\ltimes^{\alpha_{V}}_{\widetilde{\rho}}V given by (3.18).

Let (V,l,r,αV)(V,l,r,\alpha_{V}) be a representation of an nn-Hom-pre-Lie superalgebra (𝒜,{,,},α)(\mathcal{A},\{\cdot,\cdots,\cdot\},\alpha). In the sequel, we always assume that αV\alpha_{V} is invertible to study the dual representation. For all x1,,xn1(𝒜),u(V),ξVx_{1},\cdots,x_{n-1}\in\mathcal{H}(\mathcal{A}),\;u\in\mathcal{H}(V),\;\xi\in V^{*}, define ρ~,r:n1𝒜gl(V)\widetilde{\rho}^{*},r^{*}:\otimes^{n-1}\mathcal{A}\to gl(V^{*}) by

<ρ~(x1,,xn1)(ξ),u>=<ξ,ρ~(x1,,xn1)(u)>,<\widetilde{\rho}^{*}(x_{1},\cdots,x_{n-1})(\xi),u>=-<\xi,\widetilde{\rho}(x_{1},\cdots,x_{n-1})(u)>,

and

<r(x1,,xn1)(ξ),u>=<ξ,r(x1,,xn1)(u)>.<r^{*}(x_{1},\cdots,x_{n-1})(\xi),u>=-<\xi,r(x_{1},\cdots,x_{n-1})(u)>.

Then, define ρ~,r:n1𝒜gl(V)\widetilde{\rho}^{\star},r^{\star}:\otimes^{n-1}\mathcal{A}\to gl(V^{*}) by

ρ~(x1,,xn1)(ξ):=ρ~(α(x1),,α(xn1))((αV2)(ξ)),\widetilde{\rho}^{\star}(x_{1},\cdots,x_{n-1})(\xi):=\widetilde{\rho}^{*}(\alpha(x_{1}),\cdots,\alpha(x_{n-1}))((\alpha_{V}^{-2})^{*}(\xi)), (3.19)
r(x1,,xn1)(ξ):=r(α(x1),,α(xn1))((αV2)(ξ)).r^{\star}(x_{1},\cdots,x_{n-1})(\xi):=r^{*}(\alpha(x_{1}),\cdots,\alpha(x_{n-1}))((\alpha_{V}^{-2})^{*}(\xi)). (3.20)
Theorem 3.10.

Let (V,l,r,αV)(V,l,r,\alpha_{V}) be a representation of an nn-Hom-pre-Lie superalgebra (𝒜,{,,},α)(\mathcal{A},\{\cdot,\cdots,\cdot\},\alpha) on VV where αV\alpha_{V} is invertible. Then (V,ρ~,r,(αV1))(V^{*},\widetilde{\rho}^{\star},-r^{\star},(\alpha_{V}^{-1})^{*}) is a representation of the nn-Hom-pre-Lie superalgebra (𝒜,{,,},α)(\mathcal{A},\{\cdot,\cdots,\cdot\},\alpha) on VV^{*}, which is called the dual representation of the representation (V,l,r,αV)(V,l,r,\alpha_{V}).

Proof.

By Proposition 3.8, (V,ρ~,αV)(V,\widetilde{\rho},\alpha_{V}) is a representation of the sub-adjacent nn-Hom-Lie superalgebra (𝒜c,[,,]C,α)(\mathcal{A}^{c},[\cdot,\cdots,\cdot]^{C},\alpha) on VV. By Example 2.10, (V,ρ~,(αV1))(V^{*},\widetilde{\rho}^{\star},(\alpha_{V}^{-1})^{*}) is a representation of the sub-adjacent nn-Lie algebra (𝒜c,[,,]C,α)(\mathcal{A}^{c},[\cdot,\cdots,\cdot]^{C},\alpha) on the dual vector space VV^{*}. It is straightforward to deduce that other conditions of Definition 3.2 also holds. We leave details to readers. ∎

The tensor product of two representations of an nn-Hom-pre-Lie superalgebras is still a representation.

Theorem 3.11.

Let (𝒜,{,,},α)(\mathcal{A},\{\cdot,\cdots,\cdot\},\alpha) is an nn-Hom-pre-Lie superalgebra, (V1,lV1,rV1,αV1)(V_{1},l_{V_{1}},r_{V_{1}},\alpha_{V_{1}}) and (V2,lV2,rV2,αV2)(V_{2},l_{V_{2}},r_{V_{2}},\alpha_{V_{2}}) its representations. Then (V1V2,lV1αV2+αV1(lV2rV2),rV1αV2,αV1αV2)(V_{1}\otimes V_{2},l_{V_{1}}\otimes\alpha_{V_{2}}+\alpha_{V_{1}}\otimes(l_{V_{2}}-r_{V_{2}}),r_{V_{1}}\otimes\alpha_{V_{2}},\alpha_{V_{1}}\otimes\alpha_{V_{2}}) is a representation of (𝒜,{,,},α)(\mathcal{A},\{\cdot,\cdots,\cdot\},\alpha).

Proof.

By using the fact that (V1,lV1,rV1,αV1)(V_{1},l_{V_{1}},r_{V_{1}},\alpha_{V_{1}}) and (V2,lV2,rV2,αV2)(V_{2},l_{V_{2}},r_{V_{2}},\alpha_{V_{2}}) are representations of (𝒜,{,,},α)(\mathcal{A},\{\cdot,\cdots,\cdot\},\alpha), then for all x1,,xn,y1,,yn1(𝒜)x_{1},\cdots,x_{n},y_{1},\cdots,y_{n-1}\in\mathcal{H}(\mathcal{A}), we have:

\displaystyle\bullet (αV1αV2)(rV1αV2)(x1,,xn1)(rV1αV2)(αV1αV2)(α(x1),,α(xn1))\displaystyle(\alpha_{V_{1}}\otimes\alpha_{V_{2}})\circ(r_{V_{1}}\otimes\alpha_{V_{2}})(x_{1},\cdots,x_{n-1})-(r_{V_{1}}\otimes\alpha_{V_{2}})\circ(\alpha_{V_{1}}\otimes\alpha_{V_{2}})(\alpha(x_{1}),\cdots,\alpha(x_{n-1}))
=(αV1rV1(x1,,xn))(αV2αV2)(rV1(α(x1),,α(xn1))αV1)(αV2αV2)\displaystyle=(\alpha_{V_{1}}\circ r_{V_{1}}(x_{1},\cdots,x_{n}))\otimes(\alpha_{V_{2}}\otimes\alpha_{V_{2}})-(r_{V_{1}}(\alpha(x_{1}),\cdots,\alpha(x_{n-1}))\circ\alpha_{V_{1}})\otimes(\alpha_{V_{2}}\circ\alpha_{V_{2}})
=0\displaystyle=0
\displaystyle\bullet (lV1αV2+αV1(lV2rV2))(α(x1),,α(xn1))(rV1αV2)(y1,,yn1)\displaystyle(l_{V_{1}}\otimes\alpha_{V_{2}}+\alpha_{V_{1}}\otimes(l_{V_{2}}-r_{V_{2}}))(\alpha(x_{1}),\cdots,\alpha(x_{n-1}))\circ(r_{V_{1}}\otimes\alpha_{V_{2}})(y_{1},\cdots,y_{n-1})
(1)|X|n1|Y|n1(rV1αV2)(α(y1),,α(yn1))μV1V2(x1,,xn1)\displaystyle-(-1)^{|X|^{n-1}|Y|^{n-1}}(r_{V_{1}}\otimes\alpha_{V_{2}})(\alpha(y_{1}),\cdots,\alpha(y_{n-1}))\circ\mu_{V_{1}\otimes V_{2}}(x_{1},\cdots,x_{n-1})
+i=1n2(1)|X|n1|Y|i1(rV1αV2)(α(y1),,α(yi1),[x1,,xn1,yi]C,α(yi+1),,α(yn1))(αV1αV2)\displaystyle+\sum_{i=1}^{n-2}(-1)^{|X|^{n-1}|Y|^{i-1}}(r_{V_{1}}\otimes\alpha_{V_{2}})(\alpha(y_{1}),\cdots,\alpha(y_{i-1}),[x_{1},\cdots,x_{n-1},y_{i}]^{C},\alpha(y_{i+1}),\cdots,\alpha(y_{n-1}))\circ(\alpha_{V_{1}}\otimes\alpha_{V_{2}})
+(1)|X|n1|Y|n2(rV1αV2)(α(y1),,α(yn2),{x1,,xn1,yn1})(αV1αV2)\displaystyle+(-1)^{|X|^{n-1}|Y|^{n-2}}(r_{V_{1}}\otimes\alpha_{V_{2}})(\alpha(y_{1}),\cdots,\alpha(y_{n-2}),\{x_{1},\cdots,x_{n-1},y_{n-1}\})\circ(\alpha_{V_{1}}\otimes\alpha_{V_{2}})
=(lV1(α(x1),,α(xn1))rV1(y1,,yn1))(αV2αV2)\displaystyle=(l_{V_{1}}(\alpha(x_{1}),\cdots,\alpha(x_{n-1}))\circ r_{V_{1}}(y_{1},\cdots,y_{n-1}))\otimes(\alpha_{V_{2}}\circ\alpha_{V_{2}})
+((αV1rV1)(y1,,yn1))(lV2(α(x1),,α(xn1))αV2\displaystyle+((\alpha_{V_{1}}\circ r_{V_{1}})(y_{1},\cdots,y_{n-1}))\otimes(l_{V_{2}}(\alpha(x_{1}),\cdots,\alpha(x_{n-1}))\circ\alpha_{V_{2}}
((αV1rV1)(y1,,yn1))(rV2(α(x1),,α(xn1))αV2\displaystyle-((\alpha_{V_{1}}\circ r_{V_{1}})(y_{1},\cdots,y_{n-1}))\otimes(r_{V_{2}}(\alpha(x_{1}),\cdots,\alpha(x_{n-1}))\circ\alpha_{V_{2}}
(1)|X|n1|Y|n1(rV1αV2)(α(y1),,α(yn2)((lV1αV2+αV1(lV2rV2))(x1,,xn1)\displaystyle-(-1)^{|X|^{n-1}|Y|^{n-1}}(r_{V_{1}}\otimes\alpha_{V_{2}})(\alpha(y_{1}),\cdots,\alpha(y_{n-2})\circ((l_{V_{1}}\otimes\alpha_{V_{2}}+\alpha_{V_{1}}\otimes(l_{V_{2}}-r_{V_{2}}))(x_{1},\cdots,x_{n-1})
+i=1n1(1)i(1)|Xi||X|i+1n1(rV1αV2)(x1,,xi^,,xn1,xi))\displaystyle+\sum_{i=1}^{n-1}(-1)^{i}(-1)^{|X_{i}||X|_{i+1}^{n-1}}(r_{V_{1}}\otimes\alpha_{V_{2}})(x_{1},\cdots,\hat{x_{i}},\cdots,x_{n-1},x_{i}))
+i=1n2(1)|X|n1|Y|i1(rV1(α(y1),,α(yi1),[x1,,xn1,yi]C,α(yi+1),,α(yn1))αV1)(αV2αV2)\displaystyle+\sum_{i=1}^{n-2}(-1)^{|X|^{n-1}|Y|^{i-1}}(r_{V_{1}}(\alpha(y_{1}),\cdots,\alpha(y_{i-1}),[x_{1},\cdots,x_{n-1},y_{i}]^{C},\alpha(y_{i+1}),\cdots,\alpha(y_{n-1}))\circ\alpha_{V_{1}})\otimes(\alpha_{V_{2}}\circ\alpha_{V_{2}})
+(1)|X|n1|Y|n2(rV1(α(y1),,α(yn2),{x1,,xn1,yn1})αV1)(αV2αV2)\displaystyle+(-1)^{|X|^{n-1}|Y|^{n-2}}(r_{V_{1}}(\alpha(y_{1}),\cdots,\alpha(y_{n-2}),\{x_{1},\cdots,x_{n-1},y_{n-1}\})\circ\alpha_{V_{1}})\otimes(\alpha_{V_{2}}\circ\alpha_{V_{2}})
=(lV1(α(x1),,α(xn1))rV1(y1,,yn1))(αV2αV2)\displaystyle=(l_{V_{1}}(\alpha(x_{1}),\cdots,\alpha(x_{n-1}))\circ r_{V_{1}}(y_{1},\cdots,y_{n-1}))\otimes(\alpha_{V_{2}}\circ\alpha_{V_{2}})
+((αV1rV1)(y1,,yn1))(lV2(α(x1),,α(xn1))αV2\displaystyle+((\alpha_{V_{1}}\circ r_{V_{1}})(y_{1},\cdots,y_{n-1}))\otimes(l_{V_{2}}(\alpha(x_{1}),\cdots,\alpha(x_{n-1}))\circ\alpha_{V_{2}}
((αV1rV1)(y1,,yn1))(rV2(α(x1),,α(xn1))αV2\displaystyle-((\alpha_{V_{1}}\circ r_{V_{1}})(y_{1},\cdots,y_{n-1}))\otimes(r_{V_{2}}(\alpha(x_{1}),\cdots,\alpha(x_{n-1}))\circ\alpha_{V_{2}}
(1)|X|n1|Y|n1(rV1(α(y1),,α(yn1)(lV1(x1,,xn1))(αV2αV2)\displaystyle-(-1)^{|X|^{n-1}|Y|^{n-1}}(r_{V_{1}}(\alpha(y_{1}),\cdots,\alpha(y_{n-1})\circ(l_{V_{1}}(x_{1},\cdots,x_{n-1}))\otimes(\alpha_{V_{2}}\circ\alpha_{V_{2}})
(1)|X|n1|Y|n1(rV1(α(y1),,α(yn1)αV1))(αV2lV2(x1,,xn1)\displaystyle-(-1)^{|X|^{n-1}|Y|^{n-1}}(r_{V_{1}}(\alpha(y_{1}),\cdots,\alpha(y_{n-1})\circ\alpha_{V_{1}}))\otimes(\alpha_{V_{2}}\circ l_{V_{2}}(x_{1},\cdots,x_{n-1})
+(1)|X|n1|Y|n1(rV1(α(y1),,α(yn1)αV1))(αV2rV2(x1,,xn1)\displaystyle+(-1)^{|X|^{n-1}|Y|^{n-1}}(r_{V_{1}}(\alpha(y_{1}),\cdots,\alpha(y_{n-1})\circ\alpha_{V_{1}}))\otimes(\alpha_{V_{2}}\circ r_{V_{2}}(x_{1},\cdots,x_{n-1})
(1)|X|n1|Y|n1i=1n1(1)i(1)|Xi||X|i+1n1(rV1(α(y1),,α(yn1)rV1(x1,,xi^,,xn1,xi))(αV2αV2)\displaystyle-(-1)^{|X|^{n-1}|Y|^{n-1}}\sum_{i=1}^{n-1}(-1)^{i}(-1)^{|X_{i}||X|_{i+1}^{n-1}}(r_{V_{1}}(\alpha(y_{1}),\cdots,\alpha(y_{n-1})\circ r_{V_{1}}(x_{1},\cdots,\hat{x_{i}},\cdots,x_{n-1},x_{i}))\otimes(\alpha_{V_{2}}\circ\alpha_{V_{2}})
+i=1n2(1)|X|n1|Y|i1(rV1(α(y1),,α(yi1),[x1,,xn1,yi]C,α(yi+1),,α(yn1))αV1)(αV2αV2)\displaystyle+\sum_{i=1}^{n-2}(-1)^{|X|^{n-1}|Y|^{i-1}}(r_{V_{1}}(\alpha(y_{1}),\cdots,\alpha(y_{i-1}),[x_{1},\cdots,x_{n-1},y_{i}]^{C},\alpha(y_{i+1}),\cdots,\alpha(y_{n-1}))\circ\alpha_{V_{1}})\otimes(\alpha_{V_{2}}\circ\alpha_{V_{2}})
+(1)|X|n1|Y|n2(rV1(α(y1),,α(yn2),{x1,,xn1,yn1})αV1)(αV2αV2)\displaystyle+(-1)^{|X|^{n-1}|Y|^{n-2}}(r_{V_{1}}(\alpha(y_{1}),\cdots,\alpha(y_{n-2}),\{x_{1},\cdots,x_{n-1},y_{n-1}\})\circ\alpha_{V_{1}})\otimes(\alpha_{V_{2}}\circ\alpha_{V_{2}})
=0\displaystyle=0
(rV1αV2)([x1,,xn]C,α(y1),,α(yn2))(αV1αV2)\displaystyle\bullet(r_{V_{1}}\otimes\alpha_{V_{2}})([x_{1},\cdots,x_{n}]^{C},\alpha(y_{1}),\cdots,\alpha(y_{n-2}))\circ(\alpha_{V_{1}}\otimes\alpha_{V_{2}})
i=1n(1)ni(1)|xi||X|i+1n(lV1αV2+αV1(lV2rV2))(α(x1),,α(xi)^),,α(xn))(rV1αV2)(xi,y1,,yn2)\displaystyle-\sum_{i=1}^{n}(-1)^{n-i}(-1)^{|x_{i}||X|_{i+1}^{n}}(l_{V_{1}}\otimes\alpha_{V_{2}}+\alpha_{V_{1}}\otimes(l_{V_{2}}-r_{V_{2}}))(\alpha(x_{1}),\cdots,\widehat{\alpha(x_{i})}),\cdots,\alpha(x_{n}))\circ(r_{V_{1}}\otimes\alpha_{V_{2}})(x_{i},y_{1},\cdots,y_{n-2})
=(rV1([x1,,xn]C,α(y1),,α(yn2))αV1)(αV2αV2)\displaystyle=(r_{V_{1}}([x_{1},\cdots,x_{n}]^{C},\alpha(y_{1}),\cdots,\alpha(y_{n-2}))\circ\alpha_{V_{1}})\otimes(\alpha_{V_{2}}\circ\alpha_{V_{2}})
i=1n(1)ni(1)|xi||X|i+1n(lV1(α(x1),,α(xi^),,α(xn))(rV1(xi,y1,,yn2))(αV2αV2)\displaystyle-\sum_{i=1}^{n}(-1)^{n-i}(-1)^{|x_{i}||X|_{i+1}^{n}}(l_{V_{1}}(\alpha(x_{1}),\cdots,\widehat{\alpha(x_{i}}),\cdots,\alpha(x_{n}))\circ(r_{V_{1}}(x_{i},y_{1},\cdots,y_{n-2}))\otimes(\alpha_{V_{2}}\circ\alpha_{V_{2}})
i=1n(1)ni(1)|xi||X|i+1n(αV1rV1(xi,y1,,yn2))(lV2(α(x1),,α(xi^),,α(xn))αV2)\displaystyle-\sum_{i=1}^{n}(-1)^{n-i}(-1)^{|x_{i}||X|_{i+1}^{n}}(\alpha_{V_{1}}\circ r_{V_{1}}(x_{i},y_{1},\cdots,y_{n-2}))\otimes(l_{V_{2}}(\alpha(x_{1}),\cdots,\widehat{\alpha(x_{i}}),\cdots,\alpha(x_{n}))\circ\alpha_{V_{2}})
+i=1n(1)ni(1)|xi||X|i+1n(αV1rV1(xi,y1,,yn2))(rV2(α(x1),,α(xi^),,α(xn))αV2)\displaystyle+\sum_{i=1}^{n}(-1)^{n-i}(-1)^{|x_{i}||X|_{i+1}^{n}}(\alpha_{V_{1}}\circ r_{V_{1}}(x_{i},y_{1},\cdots,y_{n-2}))\otimes(r_{V_{2}}(\alpha(x_{1}),\cdots,\widehat{\alpha(x_{i}}),\cdots,\alpha(x_{n}))\circ\alpha_{V_{2}})
=0.\displaystyle=0.

By the same way, we show that the conditions (3.13) and (3.14) hold. The proposition is proved. ∎

Lemma 3.12.

Let (V,l,r,αV)(V,l,r,\alpha_{V}) be a representation of an nn-Hom-pre-Lie superalgebra (𝒜,{,,},α)(\mathcal{A},\{\cdot,\cdots,\cdot\},\alpha). Then we have

(ρ~)=ρ~and(r)=r,(\widetilde{\rho}^{\star})^{\star}=\widetilde{\rho}\;\;\text{and}\;\;(r^{\star})^{\star}=r,

where ρ~\widetilde{\rho}^{\star} and rr^{\star} defined by (3.19) and (3.20) respectively.

Proof.

Let xi(𝒜), 1in1,ξVx_{i}\in\mathcal{H}(\mathcal{A}),\;1\leq i\leq n-1,\;\xi\in V^{\ast} and uVu\in V, then we have

<(ρ~)(x1,,xn1)(u),ξ>\displaystyle<(\widetilde{\rho}^{\star})^{\star}(x_{1},\cdots,x_{n-1})(u),\xi> =<(ρ~)(α(x1),,α(xn1))(αV2(u)),ξ>\displaystyle=<(\widetilde{\rho}^{\star})^{\ast}(\alpha(x_{1}),\cdots,\alpha(x_{n-1}))(\alpha_{V}^{2}(u)),\xi>
=<αV2(u),ρ~(α(x1),,α(xn1))(ξ)>\displaystyle=-<\alpha_{V}^{2}(u),\widetilde{\rho}^{\star}(\alpha(x_{1}),\cdots,\alpha(x_{n-1}))(\xi)>
=<αV2(u),ρ~(α2(x1),,α2(xn1))((αV2)(ξ))>\displaystyle=-<\alpha_{V}^{2}(u),\widetilde{\rho}^{\ast}(\alpha^{2}(x_{1}),\cdots,\alpha^{2}(x_{n-1}))((\alpha_{V}^{-2})^{\ast}(\xi))>
=<ρ~(α2(x1),,α2(xn1))(αV2(u)),((αV2)(ξ))>\displaystyle=<\widetilde{\rho}(\alpha^{2}(x_{1}),\cdots,\alpha^{2}(x_{n-1}))(\alpha_{V}^{2}(u)),((\alpha_{V}^{-2})^{\ast}(\xi))>
=<ρ~(x1,,xn1)(u),ξ>,\displaystyle=<\widetilde{\rho}(x_{1},\cdots,x_{n-1})(u),\xi>,

Then (ρ~)=ρ~(\widetilde{\rho}^{\star})^{\star}=\widetilde{\rho}. Similarly, we have (r)=r(r^{\star})^{\star}=r. ∎

Proposition 3.13.

Let (V,l,r,αV)(V,l,r,\alpha_{V}) be a representation of an nn-Hom-pre-Lie superalgebra (𝒜,{,,},α)(\mathcal{A},\{\cdot,\cdots,\cdot\},\alpha), where αV\alpha_{V} is invertible. Then the dual representation of (V,ρ~,r,(αV1))(V^{*},\widetilde{\rho}^{\star},-r^{\star},(\alpha_{V}^{-1})^{*}) is (V,ρ~,r,αV)(V,\widetilde{\rho},-r,\alpha_{V}).

Proof.

It is obviously that (V)=V(V^{\ast})^{\ast}=V and (((αV1))1)=αV(((\alpha_{V}^{-1})^{\ast})^{-1})^{\ast}=\alpha_{V}. Using also Lemma 3.12, we obtain the result. ∎

Proposition 3.14.

Let (V,l,r,αV)(V,l,r,\alpha_{V}) be a representation of an nn-Hom-pre-Lie superalgebra (𝒜,{,,},α)(\mathcal{A},\{\cdot,\cdots,\cdot\},\alpha), where αV\alpha_{V} is invertible. Then the following conditions are equivalent:

  1. 1.

    The quadruple (V,ρ~,r,αV)(V,\widetilde{\rho},-r,\alpha_{V}) is a representation of the nn-Hom-pre-Lie superalgebra (𝒜,{,,},α)(\mathcal{A},\{\cdot,\cdots,\cdot\},\alpha).

  2. 2.

    The quadruple (V,ρ~+r,r,(αV1))(V^{\ast},\widetilde{\rho}^{\star}+r^{\star},r^{\star},(\alpha_{V}^{-1})^{\ast}) is a representation of the nn-Hom-pre-Lie superalgebra (𝒜,{,,},α)(\mathcal{A},\{\cdot,\cdots,\cdot\},\alpha).

  3. 3.

    r(α(x1),,α(xn1))r(y1,,yn1)=(1)|X|n1|Y|n1r(α(y1),,α(yn1))r(x1,,xn1),r(\alpha(x_{1}),\cdots,\alpha(x_{n-1}))r(y_{1},\cdots,y_{n-1})=-(-1)^{|X|^{n-1}|Y|^{n-1}}r(\alpha(y_{1}),\cdots,\alpha(y_{n-1}))r(x_{1},\cdots,x_{n-1}), for all xi,yi(𝒜), 1in1.x_{i},y_{i}\in\mathcal{H}(\mathcal{A}),\;1\leq i\leq n-1.

Proof.

The equivalence of conditions 11 and 22 is deduced directly from the Theorem 3.10 and Proposition 3.13. By using the fact that (V,l,r,αV)(V,l,r,\alpha_{V}) is a representation of an nn-Hom-pre-Lie superalgebra (𝒜,{,,},α)(\mathcal{A},\{\cdot,\cdots,\cdot\},\alpha), we deduce that conditions 11 and 33 are equivalent. ∎

Corollary 3.15.

Let (𝒜,{,,},α)(\mathcal{A},\{\cdot,\cdots,\cdot\},\alpha) be a regular nn-Hom-pre-Lie superalgebra. Then (𝒜,ad,R,(αV1))(\mathcal{A}^{\ast},ad^{\star},-R^{\star},(\alpha_{V}^{-1})^{\ast}) is a representation of (𝒜,{,,},α)(\mathcal{A},\{\cdot,\cdots,\cdot\},\alpha).

Definition 3.3.

Let (𝒜,{,,},α)(\mathcal{A},\{\cdot,\cdots,\cdot\},\alpha) be an nn-Hom-pre-Lie superalgebra and (V,l,r,αV)(V,l,r,\alpha_{V}) be a representation. An even linear map T:V𝒜T:V\rightarrow\mathcal{A} is called an 𝒪\mathcal{O}-operator associated to (V,l,r,αV)(V,l,r,\alpha_{V}) if TT satisfies

αT=TαV,\alpha\circ T=T\circ\alpha_{V}, (3.21)
{Tu1,,Tun}=T(l(Tu1,,Tun1)(un)+i=1n1(1)i+1(1)|ui||U|i+1nr(Tu1,,Tui^,,Tun)(ui)),\{Tu_{1},\cdots,Tu_{n}\}=T\Big{(}l(Tu_{1},\cdots,Tu_{n-1})(u_{n})+\sum_{i=1}^{n-1}(-1)^{i+1}(-1)^{|u_{i}||U|^{n}_{i+1}}r(Tu_{1},\cdots,\widehat{Tu_{i}},\cdots,Tu_{n})(u_{i})\Big{)}, (3.22)

ui(V), 1in\forall u_{i}\in\mathcal{H}(V),\;1\leq i\leq n. If (V,l,r,αV)=(𝒜,L,R,α)(V,l,r,\alpha_{V})=(\mathcal{A},L,R,\alpha), then TT is called a Rota-Baxter operator on 𝒜\mathcal{A} of weight zero denoted by PP.

Proposition 3.16.

Let PP be a Rota-Baxter operator of weight zero on an nn-Hom-pre-Lie superalgebra (𝒜,{,,},α)(\mathcal{A},\{\cdot,\cdots,\cdot\},\alpha). Then (𝒜,{,,}P,α)(\mathcal{A},\{\cdot,\cdots,\cdot\}_{P},\alpha) is an nn-Hom-pre-Lie superalgebra where {,,}P\{\cdot,\cdots,\cdot\}_{P} is defined by

{x1,,xn}P=i=1n{P(x1),,P(xi1),xi,P(xi+1),,P(xn)},\{x_{1},\cdots,x_{n}\}_{P}=\displaystyle\sum_{i=1}^{n}\{P(x_{1}),\cdots,P(x_{i-1}),x_{i},P(x_{i+1}),\cdots,P(x_{n})\},

for all xi(𝒜), 1inx_{i}\in\mathcal{H}(\mathcal{A}),\;1\leq i\leq n.

To show this proposition we need the following lemma.

Lemma 3.17.

Let PP be a Rota-Baxter operator of weight zero on an nn-Hom-pre-Lie superalgebra (𝒜,{,,},α)(\mathcal{A},\{\cdot,\cdots,\cdot\},\alpha). Then PP is a Rota-Baxter operator of weight zero on the sub-adjacent n-Hom-Lie superalgebra 𝒜C\mathcal{A}^{C}.

Proof.

It is obvious that αP=Pα\alpha\circ P=P\circ\alpha.
Let xi(𝒜), 1inx_{i}\in\mathcal{H}(\mathcal{A}),\;1\leq i\leq n, we have

[P(x1),,P(xn)]C\displaystyle[P(x_{1}),\cdots,P(x_{n})]^{C} =i=1n(1)ni(1)|xi||X|i+1n{P(x1),,P(xi)^,,P(xn),P(xi)}\displaystyle=\displaystyle\sum_{i=1}^{n}(-1)^{n-i}(-1)^{|x_{i}||X|^{n}_{i+1}}\{P(x_{1}),\cdots,\hat{P(x_{i})},\cdots,P(x_{n}),P(x_{i})\}
=i=1n(1)ni(1)|xi||X|i+1nP(j=1n{P(x1),,xj,,P(xi)^,,P(xn),P(xi)})\displaystyle=\displaystyle\sum_{i=1}^{n}(-1)^{n-i}(-1)^{|x_{i}||X|^{n}_{i+1}}P\Big{(}\displaystyle\sum_{j=1}^{n}\{P(x_{1}),\cdots,x_{j},\cdots,\hat{P(x_{i})},\cdots,P(x_{n}),P(x_{i})\}\Big{)}
=P(j=1ni=1n(1)ni(1)|xi||X|i+1n{P(x1),,xj,,P(xi)^,,P(xn),P(xi)})\displaystyle=P\Big{(}\displaystyle\sum_{j=1}^{n}\displaystyle\sum_{i=1}^{n}(-1)^{n-i}(-1)^{|x_{i}||X|^{n}_{i+1}}\{P(x_{1}),\cdots,x_{j},\cdots,\hat{P(x_{i})},\cdots,P(x_{n}),P(x_{i})\}\Big{)}
=P(j=1n[P(x1),,xj,,P(xn)]).\displaystyle=P\Big{(}\displaystyle\sum_{j=1}^{n}[P(x_{1}),\cdots,x_{j},\cdots,P(x_{n})]\Big{)}.

Then PP is a Rota-Baxter operator on (𝒜C,[,,]C,α)(\mathcal{A}^{C},[\cdot,\cdots,\cdot]^{C},\alpha)

Remark 3.1.

P({x1,,xn}p)={P(x1),,P(xn)},xi(𝒜), 1inP(\{x_{1},\cdots,x_{n}\}_{p})=\{P(x_{1}),\cdots,P(x_{n})\},\;\forall x_{i}\in\mathcal{H}(\mathcal{A}),\;1\leq i\leq n.

Proof of Proposition 3.16.

Let xi,yi(𝒜), 1in1x_{i},y_{i}\in\mathcal{H}(\mathcal{A}),\;1\leq i\leq n-1. By using Remark 3.1 and condition (3.1), we have

{α(x1),,α(xn1),{y1,,yn}P}P\displaystyle\{\alpha(x_{1}),\cdots,\alpha(x_{n-1}),\{y_{1},\cdots,y_{n}\}_{P}\}_{P} =i=1n1{P(α(x1)),,α(xi),,P(α(xn1)),P({y1,,yn}P)}\displaystyle=\displaystyle\sum_{i=1}^{n-1}\{P(\alpha(x_{1})),\cdots,\alpha(x_{i}),\cdots,P(\alpha(x_{n-1})),P(\{y_{1},\cdots,y_{n}\}_{P})\}
+{P(α(x1)),,P(α(xn1)),{y1,,yn}P}\displaystyle+\{P(\alpha(x_{1})),\cdots,P(\alpha(x_{n-1})),\{y_{1},\cdots,y_{n}\}_{P}\}
=i=1n1{P(α(x1)),,α(xi),,P(α(xn1)),{P(y1),,P(yn)}}\displaystyle=\displaystyle\sum_{i=1}^{n-1}\{P(\alpha(x_{1})),\cdots,\alpha(x_{i}),\cdots,P(\alpha(x_{n-1})),\{P(y_{1}),\cdots,P(y_{n})\}\}
+i=1n{P(α(x1)),,P(α(xn1)),{P(y1),,yi,,P(yn)}}\displaystyle+\displaystyle\sum_{i=1}^{n}\{P(\alpha(x_{1})),\cdots,P(\alpha(x_{n-1})),\{P(y_{1}),\cdots,y_{i},\cdots,P(y_{n})\}\}
=i=1n1j=1n1(1)|X|n1|Y|j1{α(P(y1)),,[P(x1),,xi,,P(xn1),P(yj)]C,,α(P(yn))}\displaystyle=\displaystyle\sum_{i=1}^{n-1}\displaystyle\sum_{j=1}^{n-1}(-1)^{|X|^{n-1}|Y|^{j-1}}\{\alpha(P(y_{1})),\cdots,[P(x_{1}),\cdots,x_{i},\cdots,P(x_{n-1}),P(y_{j})]^{C},\cdots,\alpha(P(y_{n}))\}
+(1)|X|n1|Y|n1{α(P(y1)),,α(P(yn1)),{P(x1),,xi,,P(xi),P(yn)}}\displaystyle+(-1)^{|X|^{n-1}|Y|^{n-1}}\{\alpha(P(y_{1})),\cdots,\alpha(P(y_{n-1})),\{P(x_{1}),\cdots,x_{i},\cdots,P(x_{i}),P(y_{n})\}\}
+i=1nj=1i1(1)|X|n1|Y|j1{α(P(y1)),,[P(x1),,P(xn1),P(yj)]C,,α(yi),,α(P(yn))}\displaystyle+\displaystyle\sum_{i=1}^{n}\displaystyle\sum_{j=1}^{i-1}(-1)^{|X|^{n-1}|Y|^{j-1}}\{\alpha(P(y_{1})),\cdots,[P(x_{1}),\cdots,P(x_{n-1}),P(y_{j})]^{C},\cdots,\alpha(y_{i}),\cdots,\alpha(P(y_{n}))\}
+i=1nj=i+1n1(1)|X|n1|Y|j1{α(P(y1)),,α(yi),,[P(x1),,P(xn1),P(yj)]C,,α(P(yn))}\displaystyle+\displaystyle\sum_{i=1}^{n}\displaystyle\sum_{j=i+1}^{n-1}(-1)^{|X|^{n-1}|Y|^{j-1}}\{\alpha(P(y_{1})),\cdots,\alpha(y_{i}),\cdots,[P(x_{1}),\cdots,P(x_{n-1}),P(y_{j})]^{C},\cdots,\alpha(P(y_{n}))\}
+i=1n(1)|X|n1|Y|i1{α(P(y1)),,[P(x1),,P(xn1),yj]C,,α(P(yn))}\displaystyle+\displaystyle\sum_{i=1}^{n}(-1)^{|X|^{n-1}|Y|^{i-1}}\{\alpha(P(y_{1})),\cdots,[P(x_{1}),\cdots,P(x_{n-1}),y_{j}]^{C},\cdots,\alpha(P(y_{n}))\}
+(1)|X|n1|Y|n1{α(P(y1)),,α(yi),,α(P(yn1)),{P(x1),,P(xn1),P(yn)}}.\displaystyle+(-1)^{|X|^{n-1}|Y|^{n-1}}\{\alpha(P(y_{1})),\cdots,\alpha(y_{i}),\cdots,\alpha(P(y_{n-1})),\{P(x_{1}),\cdots,P(x_{n-1}),P(y_{n})\}\}.

By using (3.1), a direct computation gives that

{α(x1),,α(xn1),{y1,,yn}P}P\displaystyle\{\alpha(x_{1}),\cdots,\alpha(x_{n-1}),\{y_{1},\cdots,y_{n}\}_{P}\}_{P} =i=1n1(1)|X|n1|Y|i1{α(y1),,α(yi1),{x1,,xn1,yi}P,α(yi+1),,α(yn)}P\displaystyle=\displaystyle\sum_{i=1}^{n-1}(-1)^{|X|^{n-1}|Y|^{i-1}}\{\alpha(y_{1}),\cdots,\alpha(y_{i-1}),\{x_{1},\cdots,x_{n-1},y_{i}\}_{P},\alpha(y_{i+1}),\cdots,\alpha(y_{n})\}_{P}
+(1)|X|n1|Y|n1{α(y1),,α(yn1),{x1,,xn1,yn}P}P,\displaystyle+(-1)^{|X|^{n-1}|Y|^{n-1}}\{\alpha(y_{1}),\cdots,\alpha(y_{n-1}),\{x_{1},\cdots,x_{n-1},y_{n}\}_{P}\}_{P},

which implies that {,,}P\{\cdot,\cdots,\cdot\}_{P} satisfies the condition (3.1). By the same way, we show that the condition (3.2) satisfies by {,,}P\{\cdot,\cdots,\cdot\}_{P}. Then {,,}P\{\cdot,\cdots,\cdot\}_{P} gives an nn-Hom-pre-Lie superalgebra structure on 𝒜\mathcal{A}. ∎

Proposition 3.18.

Let (P1,P2)(P_{1},P_{2}) be a pair of commuting Rota-Baxter operators (of weight zero) on an nn-Hom-Lie superalgebra (𝒜,[,,],α)(\mathcal{A},[\cdot,\cdots,\cdot],\alpha). Then P2P_{2} is a Rota-Baxter operator (of weight zero) on the associated nn-Hom-pre-Lie superalgebra defined by

{x1,,xn}=[P1(x1),,P1(xn1),xn],xi(𝒜),1in.\{x_{1},\cdots,x_{n}\}=[P_{1}(x_{1}),\cdots,P_{1}(x_{n-1}),x_{n}],\;\forall x_{i}\in\mathcal{H}(\mathcal{A}),1\leq i\leq n.
Proof.

For any xi(𝒜), 1inx_{i}\in\mathcal{H}(\mathcal{A}),\;1\leq i\leq n, we have

αP2=P2α\displaystyle\quad\alpha\circ P_{2}=P_{2}\circ\alpha
{P2(x1),,P2(xn)}=[P1(P2(x1)),,P1(P2(xn1)),P2(xn)]\displaystyle\quad\;\{P_{2}(x_{1}),\cdots,P_{2}(x_{n})\}=[P_{1}(P_{2}(x_{1})),\cdots,P_{1}(P_{2}(x_{n-1})),P_{2}(x_{n})]
=[P2(P1(x1)),,P2(P1(xn1)),P2(xn)]\displaystyle=[P_{2}(P_{1}(x_{1})),\cdots,P_{2}(P_{1}(x_{n-1})),P_{2}(x_{n})]
=P2([P2(P1(x1)),,P2(P1(xn1)),xn]\displaystyle=P_{2}\Big{(}[P_{2}(P_{1}(x_{1})),\cdots,P_{2}(P_{1}(x_{n-1})),x_{n}]
+i=1n1(1)ni(1)|xi||X|i+1n[P2(P1(x1)),,P2(P1(xi))^,,P2(P1(xn1)),P1(xi)])\displaystyle+\sum_{i=1}^{n-1}(-1)^{n-i}(-1)^{|x_{i}||X|^{n}_{i+1}}[P_{2}(P_{1}(x_{1})),\cdots,\widehat{P_{2}(P_{1}(x_{i}))},\cdots,P_{2}(P_{1}(x_{n-1})),P_{1}(x_{i})]\Big{)}
=P2({P2(x1),,P2(xn1),xn}\displaystyle=P_{2}\Big{(}\{P_{2}(x_{1}),\cdots,P_{2}(x_{n-1}),x_{n}\}
+i=1n1(1)i+1(1)|xi||X|i+1n{xi,P2(x1),,P2(xi)^,,P2(xn1),P2(xn)}).\displaystyle+\sum_{i=1}^{n-1}(-1)^{i+1}(-1)^{|x_{i}||X|^{n}_{i+1}}\{x_{i},P_{2}(x_{1}),\cdots,\widehat{P_{2}(x_{i})},\cdots,P_{2}(x_{n-1}),P_{2}(x_{n})\}\Big{)}.

Then P2P_{2} is a Rota-Baxter operator (of weight zero) on the nn-Hom-pre-Lie superalgebra (A,{,,},α)(A,\{\cdot,\cdots,\cdot\},\alpha). ∎

4 nn-Hom-pre-Lie superalgebras induced by Hom-pre-Lie superalgebras

In [29], the authors introduced the construction of an (n+1)(n+1)-pre-Lie algebra from an nn-pre-Lie algebra using the trace map. In this section we generalize this construction to the super-Hom case by a new approach which is the construction of an nn-Hom-pre-Lie superalgebras from a Hom-pre-Lie superalgebras, the same work has been studied in the Lie case ( see [36]). We start with the data of an even super-skew-symmetric (n2)(n-2)-linear form Φ:𝒜××𝒜𝕂\Phi:\mathcal{A}\times\cdots\times\mathcal{A}\to\mathbb{K} (i.e. Φ(x1,,xn2)=0,xi(𝒜), 1in2\Phi(x_{1},\cdots,x_{n-2})=0,\;\forall x_{i}\in\mathcal{H}(\mathcal{A}),\;1\leq i\leq n-2, where |x1|++|xn2|1[2]|x_{1}|+\cdots+|x_{n-2}|\equiv 1[2]) and we define from this form an nn-linear map which is super-skew-symmetric on the first (n1)(n-1) variables. Let us define a Hom-pre-Lie superalgebra as a triple (𝒜,,α)(\mathcal{A},\circ,\alpha) consisting of a 2\mathbb{Z}_{2}-vector space 𝒜\mathcal{A}, an even bilinear map :𝒜×𝒜𝒜\circ:\mathcal{A}\times\mathcal{A}\to\mathcal{A} and an even linear map α:𝒜𝒜\alpha:\mathcal{A}\to\mathcal{A}, such that the following condition hold:

𝔞𝔰𝔰(x,y,z)(1)|x||y|𝔞𝔰𝔰(y,x,z)=0,x,y,z(𝒜),\mathfrak{ass}(x,y,z)-(-1)^{|x||y|}\mathfrak{ass}(y,x,z)=0,\;\forall x,y,z\in\mathcal{H}(\mathcal{A}), (4.1)

where, 𝔞𝔰𝔰(x,y,z)=α(x)(yz)(xy)α(z)\mathfrak{ass}(x,y,z)=\alpha(x)\circ(y\circ z)-(x\circ y)\circ\alpha(z).

Let (𝒜,,α)(\mathcal{A},\circ,\alpha) be a Hom-pre-Lie superalgebra. Define the nn-ary product as follows:

{x1,,xn1,xn}Φ=k=1n1(1)k+1(1)|xk||X|k+1n1Φ(x1,,xk^,,xn1)(xkxn),\{x_{1},\cdots,x_{n-1},x_{n}\}_{\Phi}=\displaystyle\sum_{k=1}^{n-1}(-1)^{k+1}(-1)^{|x_{k}||X|^{n-1}_{k+1}}\Phi(x_{1},\cdots,\hat{x_{k}},\cdots,x_{n-1})(x_{k}\circ x_{n}), (4.2)

for all xk(𝒜), 1knx_{k}\in\mathcal{H}(\mathcal{A}),\;1\leq k\leq n.

It is clear that {,,}Φ\{\cdot,\cdots,\cdot\}_{\Phi} is an even nn-linear map.

Proposition 4.1.

The nn-ary product {,,}Φ\{\cdot,\cdots,\cdot\}_{\Phi} is super-skew-symmetric on the first (n1)(n-1) variables.

Proof.

Let x1,,xn(𝒜)x_{1},\cdots,x_{n}\in\mathcal{H}(\mathcal{A}), then for all i{1,,n2}i\in\{1,\cdots,n-2\}, we have

{x1,,xi,xi+1,,xn1,xn}Φ\displaystyle\{x_{1},\cdots,x_{i},x_{i+1},\cdots,x_{n-1},x_{n}\}_{\Phi} =1ki,i+1<n1(1)k+1(1)|xk||X|k+1n1Φ(x1,,xi,xi+1,,xk^,,xn1)(xkxn)\displaystyle=\displaystyle\sum_{1\leq k\neq i,i+1<n-1}(-1)^{k+1}(-1)^{|x_{k}||X|^{n-1}_{k+1}}\Phi(x_{1},\cdots,x_{i},x_{i+1},\cdots,\hat{x_{k}},\cdots,x_{n-1})(x_{k}\circ x_{n})
+(1)i+1(1)|xi||X|i+1n1Φ(x1,,xi^,xi+1,,xn1)(xixn)\displaystyle+(-1)^{i+1}(-1)^{|x_{i}||X|^{n-1}_{i+1}}\Phi(x_{1},\cdots,\hat{x_{i}},x_{i+1},\cdots,x_{n-1})(x_{i}\circ x_{n})
+(1)i(1)|xi+1||X|i+2n1Φ(x1,,xi,xi+1^,,xn1)(xixn)\displaystyle+(-1)^{i}(-1)^{|x_{i+1}||X|^{n-1}_{i+2}}\Phi(x_{1},\cdots,x_{i},\widehat{x_{i+1}},\cdots,x_{n-1})(x_{i}\circ x_{n})
=(1)|xi||xi+1|(1ki,i+1<n1(1)k+1(1)|xk||X|k+1n1Φ(x1,,xi+1,xi,,xk^,,xn1)(xkxn)\displaystyle=-(-1)^{|x_{i}||x_{i+1}|}\Big{(}\displaystyle\sum_{1\leq k\neq i,i+1<n-1}(-1)^{k+1}(-1)^{|x_{k}||X|^{n-1}_{k+1}}\Phi(x_{1},\cdots,x_{i+1},x_{i},\cdots,\hat{x_{k}},\cdots,x_{n-1})(x_{k}\circ x_{n})
+(1)i(1)|xi||X|i+2n1Φ(x1,,xi^,xi+1,,xn1)(i+1xn)\displaystyle+(-1)^{i}(-1)^{|x_{i}||X|^{n-1}_{i+2}}\Phi(x_{1},\cdots,\hat{x_{i}},x_{i+1},\cdots,x_{n-1})(_{i+1}\circ x_{n})
+(1)i+1(1)|xi||X|i+1n1Φ(x1,,xi,xi+1^,,xn1)i+1xn))\displaystyle+(-1)^{i+1}(-1)^{|x_{i}||X|^{n-1}_{i+1}}\Phi(x_{1},\cdots,x_{i},\widehat{x_{i+1}},\cdots,x_{n-1})_{i+1}\circ x_{n})\Big{)}
=(1)|xi||xi+1|{x1,,xi+1,xi,,xn1,xn}Φ,\displaystyle=-(-1)^{|x_{i}||x_{i+1}|}\{x_{1},\cdots,x_{i+1},x_{i},\cdots,x_{n-1},x_{n}\}_{\Phi},

which gives that {,,}Φ\{\cdot,\cdots,\cdot\}_{\Phi} is super-skew-symmetric on the first (n1)(n-1) terms. ∎

Theorem 4.2.

Let (𝒜,,α)(\mathcal{A},\circ,\alpha) be a Hom-pre-Lie superalgebra and Φ:𝒜××𝒜𝕂\Phi:\mathcal{A}\times\cdots\times\mathcal{A}\to\mathbb{K} be an even (n2)(n-2)-linear super-skew-symmetric form. Then (𝒜,{,,}Φ,α)(\mathcal{A},\{\cdot,\cdots,\cdot\}_{\Phi},\alpha) is an nn-Hom-pre-Lie superalgebra if and only if:

Φ(x1,xi,yz,xi+1,,xn3)\displaystyle\Phi(x_{1}\cdots,x_{i},y\circ z,x_{i+1},\cdots,x_{n-3}) =0,xi,y,z(𝒜), 1in3,\displaystyle=0,\;\forall x_{i},y,z\in\mathcal{H}(\mathcal{A}),\;1\leq i\leq n-3, (4.3)
Φ(αIdId)\displaystyle\Phi\circ(\alpha\otimes Id\otimes\cdots\otimes Id) =Φ,\displaystyle=\Phi, (4.4)
ΦδΦX\displaystyle\Phi\wedge\delta\Phi_{X} =0,X=(x1,,xn3)n3(𝒜),\displaystyle=0,\;\forall X=(x_{1},\cdots,x_{n-3})\in\wedge^{n-3}\mathcal{H}(\mathcal{A}), (4.5)

where

ΦδΦX(Y)=k=1n1(1)k+1(1)|yk||Y|k+1n1Φ(y1,,yk^,,yn1)Φ(X,yk),Y=(y1,,yn1)n1(𝒜),\Phi\wedge\delta\Phi_{X}(Y)=\displaystyle\sum_{k=1}^{n-1}(-1)^{k+1}(-1)^{|y_{k}||Y|^{n-1}_{k+1}}\Phi(y_{1},\cdots,\hat{y_{k}},\cdots,y_{n-1})\Phi(X,y_{k}),\;\forall Y=(y_{1},\cdots,y_{n-1})\in\wedge^{n-1}\mathcal{H}(\mathcal{A}),

and {,,}Φ\{\cdot,\cdots,\cdot\}_{\Phi} is defined by Eq. (4.2). We shall say that (𝒜,{,,}Φ,α)(\mathcal{A},\{\cdot,\cdots,\cdot\}_{\Phi},\alpha) is induced by (𝒜,,α)(\mathcal{A},\circ,\alpha).

Lemma 4.3.

If an even super-skew-symmetric (n2)(n-2)-linear form Φ:𝒜××𝒜𝕂\Phi:\mathcal{A}\times\cdots\times\mathcal{A}\to\mathbb{K} satisfies condition (4.3), then it satisfies the following condition

Φ(x1,,xi,{y1,,yn}Φ,xi+1,,xn3)=0,\Phi(x_{1},\cdots,x_{i},\{y_{1},\cdots,y_{n}\}_{\Phi},x_{i+1},\cdots,x_{n-3})=0, (4.6)

for all xi,yj(𝒜),(i,j){1,,n3}×{1,,n}.x_{i},y_{j}\in\mathcal{H}(\mathcal{A}),\;(i,j)\in\{1,\cdots,n-3\}\times\{1,\cdots,n\}.

Proof.

This is a direct computation, by using the expression of {,,}Φ\{\cdot,\cdots,\cdot\}_{\Phi}. ∎

Proof of Theorem 4.2.

Let xi,yi(𝒜), 1inx_{i},y_{i}\in\mathcal{H}(\mathcal{A}),\;1\leq i\leq n.

On the one hand, we have:

M\displaystyle M ={α(x1),,α(xn1),{y1,,yn}Φ}Φ\displaystyle=\{\alpha(x_{1}),\cdots,\alpha(x_{n-1}),\{y_{1},\cdots,y_{n}\}_{\Phi}\}_{\Phi}
=i=1n1(1)i+1(1)|xi||X|i+1n1Φ(α(x1),,α(xi)^,,α(xn1))(α(xi){y1,,yn}Φ)\displaystyle=\displaystyle\sum_{i=1}^{n-1}(-1)^{i+1}(-1)^{|x_{i}||X|^{n-1}_{i+1}}\Phi(\alpha(x_{1}),\cdots,\widehat{\alpha(x_{i})},\cdots,\alpha(x_{n-1}))(\alpha(x_{i})\circ\{y_{1},\cdots,y_{n}\}_{\Phi})
=i=1n1j=1n1(1)i+j(1)|xi||X|i+1n1+|yj||Y|j+1n1Φ(α(x1),,α(xi)^,,α(xn1))Φ(y1,,yj^,,yn1)(α(xi)(yjyn)).\displaystyle=\displaystyle\sum_{i=1}^{n-1}\displaystyle\sum_{j=1}^{n-1}(-1)^{i+j}(-1)^{|x_{i}||X|^{n-1}_{i+1}+|y_{j}||Y|_{j+1}^{n-1}}\Phi(\alpha(x_{1}),\cdots,\widehat{\alpha(x_{i})},\cdots,\alpha(x_{n-1}))\Phi(y_{1},\cdots,\hat{y_{j}},\cdots,y_{n-1})(\alpha(x_{i})\circ(y_{j}\circ y_{n})).

On the other hand, we have:

N\displaystyle N =j=1n1(1)|X|n1|Y|j1{α(y1),,α(yj1),[x1,,xn1,yj]ΦC,α(yj+1),,α(yn)}Φ\displaystyle=\displaystyle\sum_{j=1}^{n-1}(-1)^{|X|^{n-1}|Y|^{j-1}}\{\alpha(y_{1}),\cdots,\alpha(y_{j-1}),[x_{1},\cdots,x_{n-1},y_{j}]^{C}_{\Phi},\alpha(y_{j+1}),\cdots,\alpha(y_{n})\}_{\Phi}
+(1)|X|n1|Y|n1{α(y1),,α(yn1),{x1,,xn1,yn}Φ}Φ\displaystyle+(-1)^{|X|^{n-1}|Y|^{n-1}}\{\alpha(y_{1}),\cdots,\alpha(y_{n-1}),\{x_{1},\cdots,x_{n-1},y_{n}\}_{\Phi}\}_{\Phi}
=j=1n1i=1n1(1)ni(1)|X|n1|Y|j1(1)|xi|(|X|i+1n1+|yj|){α(y1),,α(yj1),{x1,,xi^,,xn1,yj,xi}Φ,α(yj+1),,α(yn)}Φ\displaystyle=\displaystyle\sum_{j=1}^{n-1}\displaystyle\sum_{i=1}^{n-1}(-1)^{n-i}(-1)^{|X|^{n-1}|Y|^{j-1}}(-1)^{|x_{i}|(|X|^{n-1}_{i+1}+|y_{j}|)}\{\alpha(y_{1}),\cdots,\alpha(y_{j-1}),\{x_{1},\cdots,\hat{x_{i}},\cdots,x_{n-1},y_{j},x_{i}\}_{\Phi},\alpha(y_{j+1}),\cdots,\alpha(y_{n})\}_{\Phi}
+j=1n1(1)|X|n1|Y|j1{α(y1),,α(yj1),{x1,,xn1,yj}Φ,α(yj+1),,α(yn)}Φ\displaystyle+\displaystyle\sum_{j=1}^{n-1}(-1)^{|X|^{n-1}|Y|^{j-1}}\{\alpha(y_{1}),\cdots,\alpha(y_{j-1}),\{x_{1},\cdots,x_{n-1},y_{j}\}_{\Phi},\alpha(y_{j+1}),\cdots,\alpha(y_{n})\}_{\Phi}
+(1)|X|n1|Y|n1{α(y1),,α(yn1),{x1,,xn1,yn}Φ}Φ\displaystyle+(-1)^{|X|^{n-1}|Y|^{n-1}}\{\alpha(y_{1}),\cdots,\alpha(y_{n-1}),\{x_{1},\cdots,x_{n-1},y_{n}\}_{\Phi}\}_{\Phi}
=N1+N2+N3,\displaystyle=N_{1}+N_{2}+N_{3},

where

N1\displaystyle N_{1} =j=1n1i=1n1(1)ni(1)|X|n1|Y|j1(1)|xi|(|X|i+1n1+|yj|){α(y1),,α(yj1),{x1,,xi^,,xn1,yk,xi}Φ,α(yj+1),,α(yn)}Φ\displaystyle=\displaystyle\sum_{j=1}^{n-1}\displaystyle\sum_{i=1}^{n-1}(-1)^{n-i}(-1)^{|X|^{n-1}|Y|^{j-1}}(-1)^{|x_{i}|(|X|^{n-1}_{i+1}+|y_{j}|)}\{\alpha(y_{1}),\cdots,\alpha(y_{j-1}),\{x_{1},\cdots,\hat{x_{i}},\cdots,x_{n-1},y_{k},x_{i}\}_{\Phi},\alpha(y_{j+1}),\cdots,\alpha(y_{n})\}_{\Phi}
=j=1n1i=1n1k=1j1(1)ni+k+1(1)γijΦ(α(y1),,α(yk)^,,α(yj1),{x1,,xi^,,xn1,yj,xi}Φ,,α(yn1))(α(yk)α(yn))\displaystyle=\displaystyle\sum_{j=1}^{n-1}\displaystyle\sum_{i=1}^{n-1}\displaystyle\sum_{k=1}^{j-1}(-1)^{n-i+k+1}(-1)^{\gamma_{ij}}\Phi(\alpha(y_{1}),\cdots,\widehat{\alpha(y_{k})},\cdots,\alpha(y_{j-1}),\{x_{1},\cdots,\hat{x_{i}},\cdots,x_{n-1},y_{j},x_{i}\}_{\Phi},\cdots,\alpha(y_{n-1}))(\alpha(y_{k})\circ\alpha(y_{n}))
+j=1n1i=1n1k=j+1n1(1)ni+k+1(1)γij+|yk||X|n1Φ(α(y1),,α(yj1),{x1,,xi^,,xn1,yj,xi}Φ,,α(yk)^,,α(yn1))(α(yk)α(yn))\displaystyle+\displaystyle\sum_{j=1}^{n-1}\displaystyle\sum_{i=1}^{n-1}\displaystyle\sum_{k=j+1}^{n-1}(-1)^{n-i+k+1}(-1)^{\gamma_{ij}+|y_{k}||X|^{n-1}}\Phi(\alpha(y_{1}),\cdots,\alpha(y_{j-1}),\{x_{1},\cdots,\hat{x_{i}},\cdots,x_{n-1},y_{j},x_{i}\}_{\Phi},\cdots,\widehat{\alpha(y_{k})},\cdots,\alpha(y_{n-1}))(\alpha(y_{k})\circ\alpha(y_{n}))
+j=1n1i=1n1(1)ni+j+1(1)θijΦ(α(y1),,α(yj)^,,α(yn1))({x1,,xi^,,xn1,yj,xi}Φα(yn))\displaystyle+\displaystyle\sum_{j=1}^{n-1}\displaystyle\sum_{i=1}^{n-1}(-1)^{n-i+j+1}(-1)^{\theta_{ij}}\Phi(\alpha(y_{1}),\cdots,\widehat{\alpha(y_{j})},\cdots,\alpha(y_{n-1}))(\{x_{1},\cdots,\hat{x_{i}},\cdots,x_{n-1},y_{j},x_{i}\}_{\Phi}\circ\alpha(y_{n}))

where

γij=|X|n1|Y|j1+|xi|(|X|i+1n1+|yj|)+|yk|(|X|n1+|Y|k+1n1),\gamma_{ij}=|X|^{n-1}|Y|^{j-1}+|x_{i}|(|X|^{n-1}_{i+1}+|y_{j}|)+|y_{k}|(|X|^{n-1}+|Y|^{n-1}_{k+1}),

and

θij=|X|n1|Y|j1+|xi|(|X|i+1n1+|yj|)+|Y|j+1n1(|X|n1+|yj|).\theta_{ij}=|X|^{n-1}|Y|^{j-1}+|x_{i}|(|X|^{n-1}_{i+1}+|y_{j}|)+|Y|^{n-1}_{j+1}(|X|^{n-1}+|y_{j}|).

Using Eq. (4.6), we notice that the first two terms of the second equality of N1N_{1} are zero, which gives that

N1\displaystyle N_{1} =j=1n1i=1n1(1)ni+j+1(1)θijΦ(α(y1),,α(yj)^,,α(yn1))({x1,,xi^,,xn1,yj,xi}Φα(yn))\displaystyle=\displaystyle\sum_{j=1}^{n-1}\displaystyle\sum_{i=1}^{n-1}(-1)^{n-i+j+1}(-1)^{\theta_{ij}}\Phi(\alpha(y_{1}),\cdots,\widehat{\alpha(y_{j})},\cdots,\alpha(y_{n-1}))(\{x_{1},\cdots,\hat{x_{i}},\cdots,x_{n-1},y_{j},x_{i}\}_{\Phi}\circ\alpha(y_{n}))
=j=1n1i=1n1k=1kin1(1)ni+j+1(1)θijkΦ(α(y1),,α(yj)^,,α(yn1))Φ(x1,,xk^,,xi^,,xn1,yj)((xkxi)α(yn))\displaystyle=\displaystyle\sum_{j=1}^{n-1}\displaystyle\sum_{i=1}^{n-1}\displaystyle\sum_{\begin{subarray}{c}k=1\\ k\neq i\end{subarray}}^{n-1}(-1)^{n-i+j+1}(-1)^{\theta_{ijk}}\Phi(\alpha(y_{1}),\cdots,\widehat{\alpha(y_{j})},\cdots,\alpha(y_{n-1}))\Phi(x_{1},\cdots,\hat{x_{k}},\cdots,\hat{x_{i}},\cdots,x_{n-1},y_{j})((x_{k}\circ x_{i})\circ\alpha(y_{n}))
+j=1n1i=1n1(1)i+j(1)θijΦ((α(y1),,α(yj)^,,α(yn1))Φ(x1,,xi^,,xn1)((yjxi)α(yn))\displaystyle+\displaystyle\sum_{j=1}^{n-1}\displaystyle\sum_{i=1}^{n-1}(-1)^{i+j}(-1)^{\theta_{ij}}\Phi((\alpha(y_{1}),\cdots,\widehat{\alpha(y_{j})},\cdots,\alpha(y_{n-1}))\Phi(x_{1},\cdots,\hat{x_{i}},\cdots,x_{n-1})((y_{j}\circ x_{i})\circ\alpha(y_{n}))
=N1+N2,\displaystyle=N^{\prime}_{1}+N^{\prime}_{2},

where θijk=θij+|xk|(|X|k+1n1+|xi|+|yj|)\theta_{ijk}=\theta_{ij}+|x_{k}|(|X|^{n-1}_{k+1}+|x_{i}|+|y_{j}|).

By the same way, we have:

N2\displaystyle N_{2} =j=1n1(1)|X|n1|Y|j1{α(y1),,α(yj1),{x1,,xn1,yj}Φ,α(yj+1),,α(yn)}Φ\displaystyle=\displaystyle\sum_{j=1}^{n-1}(-1)^{|X|^{n-1}|Y|^{j-1}}\{\alpha(y_{1}),\cdots,\alpha(y_{j-1}),\{x_{1},\cdots,x_{n-1},y_{j}\}_{\Phi},\alpha(y_{j+1}),\cdots,\alpha(y_{n})\}_{\Phi}
=j=1n1(1)j+1(1)|X|n1|Y|j1(1)|Y|j+1n1(|X|n1+|yj|)Φ(α(y1),,α(yj)^,,α(yn1))({x1,,xn1,yj}Φα(yn))\displaystyle=\displaystyle\sum_{j=1}^{n-1}(-1)^{j+1}(-1)^{|X|^{n-1}|Y|^{j-1}}(-1)^{|Y|^{n-1}_{j+1}(|X|^{n-1}+|y_{j}|)}\Phi(\alpha(y_{1}),\cdots,\widehat{\alpha(y_{j})},\cdots,\alpha(y_{n-1}))(\{x_{1},\cdots,x_{n-1},y_{j}\}_{\Phi}\circ\alpha(y_{n}))
=j=1n1i=1n1(1)i+j(1)λijΦ(α(y1),,α(yj)^,,α(yn1))Φ(x1,,xi^,,xn1)((xiyj)α(yn)),\displaystyle=\displaystyle\sum_{j=1}^{n-1}\displaystyle\sum_{i=1}^{n-1}(-1)^{i+j}(-1)^{\lambda_{ij}}\Phi(\alpha(y_{1}),\cdots,\widehat{\alpha(y_{j})},\cdots,\alpha(y_{n-1}))\Phi(x_{1},\cdots,\hat{x_{i}},\cdots,x_{n-1})((x_{i}\circ y_{j})\circ\alpha(y_{n})),

where λij=|X|n1|Y|j1+|Y|j+1n1(|X|n1+|yj|)+|xi||X|i+1n1=θij+|xi||yj|\lambda_{ij}=|X|^{n-1}|Y|^{j-1}+|Y|^{n-1}_{j+1}(|X|^{n-1}+|y_{j}|)+|x_{i}||X|^{n-1}_{i+1}=\theta_{ij}+|x_{i}||y_{j}|,

and

N3\displaystyle N_{3} =(1)|X|n1|Y|n1{α(y1),,α(yn1),{x1,,xn1,yn}Φ}Φ\displaystyle=(-1)^{|X|^{n-1}|Y|^{n-1}}\{\alpha(y_{1}),\cdots,\alpha(y_{n-1}),\{x_{1},\cdots,x_{n-1},y_{n}\}_{\Phi}\}_{\Phi}
=j=1n1(1)j+1(1)|X|n1|Y|n1(1)|yj||Y|j+1n1Φ(α(y1),,α(yj)^,,α(yn1))(α(yj){x1,,xn1,yn}Φ)\displaystyle=\displaystyle\sum_{j=1}^{n-1}(-1)^{j+1}(-1)^{|X|^{n-1}|Y|^{n-1}}(-1)^{|y_{j}||Y|^{n-1}_{j+1}}\Phi(\alpha(y_{1}),\cdots,\widehat{\alpha(y_{j})},\cdots,\alpha(y_{n-1}))(\alpha(y_{j})\circ\{x_{1},\cdots,x_{n-1},y_{n}\}_{\Phi})
=j=1n1i=1n1(1)i+j(1)νijΦ(α(y1),,α(yj)^,,α(yn1))Φ(x1,,xi^,,xn1)(α(yj)(xiyn)),\displaystyle=\displaystyle\sum_{j=1}^{n-1}\displaystyle\sum_{i=1}^{n-1}(-1)^{i+j}(-1)^{\nu_{ij}}\Phi(\alpha(y_{1}),\cdots,\widehat{\alpha(y_{j})},\cdots,\alpha(y_{n-1}))\Phi(x_{1},\cdots,\hat{x_{i}},\cdots,x_{n-1})(\alpha(y_{j})\circ(x_{i}\circ y_{n})),

where νij=|X|n1|Y|n1+|yj||Y|j+1n1+|xi||X|i+1n1=|xi||yj|+|yj||Y|j+1n1+|xi||X|i+1n1\nu_{ij}=|X|^{n-1}|Y|^{n-1}+|y_{j}||Y|^{n-1}_{j+1}+|x_{i}||X|^{n-1}_{i+1}=|x_{i}||y_{j}|+|y_{j}||Y|^{n-1}_{j+1}+|x_{i}||X|^{n-1}_{i+1}, since Φ\Phi is even.

If we fixed i,ki,k in the expression of N1N^{\prime}_{1}, then , we get:

N1\displaystyle N^{\prime}_{1} =j=1n1i=1n1k=1kin1(1)ni+j+1(1)θijkΦ(α(y1),,α(yj)^,,α(yn1))Φ(x1,,xk^,,xi^,,xn1,yj)((xkxi)α(yn))\displaystyle=\displaystyle\sum_{j=1}^{n-1}\displaystyle\sum_{i=1}^{n-1}\displaystyle\sum_{\begin{subarray}{c}k=1\\ k\neq i\end{subarray}}^{n-1}(-1)^{n-i+j+1}(-1)^{\theta_{ijk}}\Phi(\alpha(y_{1}),\cdots,\hat{\alpha(y_{j})},\cdots,\alpha(y_{n-1}))\Phi(x_{1},\cdots,\hat{x_{k}},\cdots,\hat{x_{i}},\cdots,x_{n-1},y_{j})((x_{k}\circ x_{i})\circ\alpha(y_{n}))
=i=1n1k=1kin1(1)ni(j=1n1(1)j+1(1)θijkΦ(α(y1),,α(yj)^,,α(yn1))Φ(x1,,xk^,,xi^,,xn1,yj))((xkxi)α(yn))\displaystyle=\displaystyle\sum_{i=1}^{n-1}\displaystyle\sum_{\begin{subarray}{c}k=1\\ k\neq i\end{subarray}}^{n-1}(-1)^{n-i}\Big{(}\displaystyle\sum_{j=1}^{n-1}(-1)^{j+1}(-1)^{\theta_{ijk}}\Phi(\alpha(y_{1}),\cdots,\hat{\alpha(y_{j})},\cdots,\alpha(y_{n-1}))\Phi(x_{1},\cdots,\hat{x_{k}},\cdots,\hat{x_{i}},\cdots,x_{n-1},y_{j})\Big{)}((x_{k}\circ x_{i})\circ\alpha(y_{n}))
=0,\displaystyle=0,

this from Eq. (4.5) and the fact that Φ\Phi is even. Moreover, if we apply condition (4.4), we find

MN\displaystyle M-N =MN2N2N3\displaystyle=M-N^{\prime}_{2}-N_{2}-N_{3}
=i=1n1j=1n1(1)i+j(1)|xi||X|i+1n1+|yj||Y|j+1n1Φ(x1,,α(xi)^,,xn1)Φ(y1,,yj^,,yn1)\displaystyle=\displaystyle\sum_{i=1}^{n-1}\displaystyle\sum_{j=1}^{n-1}(-1)^{i+j}(-1)^{|x_{i}||X|^{n-1}_{i+1}+|y_{j}||Y|_{j+1}^{n-1}}\Phi(x_{1},\cdots,\widehat{\alpha(x_{i})},\cdots,x_{n-1})\Phi(y_{1},\cdots,\hat{y_{j}},\cdots,y_{n-1})
(α(xi)(yjyn)(xiyj)α(yn))(1)|xi||yj|(α(yj)(xiyn)(yjxi)α(yn))))\displaystyle\Big{(}\alpha(x_{i})\circ(y_{j}\circ y_{n})-(x_{i}\circ y_{j})\circ\alpha(y_{n}))-(-1)^{|x_{i}||y_{j}|}(\alpha(y_{j})\circ(x_{i}\circ y_{n})-(y_{j}\circ x_{i})\circ\alpha(y_{n})))\Big{)}
=i=1n1j=1n1(1)i+j(1)|xi||X|i+1n1+|yj||Y|j+1n1Φ(x1,,α(xi)^,,xn1)Φ(y1,,yj^,,yn1)(𝔞𝔰𝔰(xi,yj,yn)(1)|xi||yj|𝔞𝔰𝔰(yj,xi,yn))\displaystyle=\displaystyle\sum_{i=1}^{n-1}\displaystyle\sum_{j=1}^{n-1}(-1)^{i+j}(-1)^{|x_{i}||X|^{n-1}_{i+1}+|y_{j}||Y|_{j+1}^{n-1}}\Phi(x_{1},\cdots,\widehat{\alpha(x_{i})},\cdots,x_{n-1})\Phi(y_{1},\cdots,\hat{y_{j}},\cdots,y_{n-1})\Big{(}\mathfrak{ass}(x_{i},y_{j},y_{n})-(-1)^{|x_{i}||y_{j}|}\mathfrak{ass}(y_{j},x_{i},y_{n})\Big{)}
=0,\displaystyle=0,

The last equality follows from the fact that (𝒜,,α)(\mathcal{A},\circ,\alpha) is a Hom-pre-Lie superalgebra. Then {,,}Φ\{\cdot,\cdots,\cdot\}_{\Phi} satisfies condition (3.1) on 𝒜\mathcal{A}. Similarly, we show that {,,}Φ\{\cdot,\cdots,\cdot\}_{\Phi} satisfies condition (3.2) on 𝒜\mathcal{A}. The theorem is proved. ∎

Let us given a Hom-pre-Lie superalgebra (𝒜,,α)(\mathcal{A},\circ,\alpha) and an even bilinear form Φ:𝒜×𝒜𝕂\Phi:\mathcal{A}\times\mathcal{A}\to\mathbb{K} satisfying conditions (4.3), (4.4) and (4.5). Then by Theorem 4.2, the triple (𝒜,{,,,}Φ,α)(\mathcal{A},\{\cdot,\cdot,\cdot,\cdot\}_{\Phi},\alpha) is a 44-Hom-pre-Lie superalgebra.

Example 4.4.

Let 𝒜=𝒜0¯𝒜1¯\mathcal{A}=\mathcal{A}_{\overline{0}}\oplus\mathcal{A}_{\overline{1}} be a two dimensional 2\mathbb{Z}_{2}-vector space with a basis {e1,e2}\{e_{1},e_{2}\}, where 𝒜0¯=<e1>\mathcal{A}_{\overline{0}}=<e_{1}> and 𝒜1¯=<e2>\mathcal{A}_{\overline{1}}=<e_{2}>. Define on the basis of 𝒜\mathcal{A} the even bilinear map :𝒜×𝒜𝒜\circ:\mathcal{A}\times\mathcal{A}\to\mathcal{A} by:

e2e2=e1,e_{2}\circ e_{2}=e_{1},

and the linear map α:𝒜𝒜\alpha:\mathcal{A}\to\mathcal{A} by:

α(e1)=0,α(e2)=e2.\alpha(e_{1})=0,\;\;\;\alpha(e_{2})=e_{2}.

Then (𝒜,,α)(\mathcal{A},\circ,\alpha) is a Hom-pre-Lie superalgebra.

Now, we define the super-skew-symmetric bilinear form Φ:𝒜×𝒜𝕂\Phi:\mathcal{A}\times\mathcal{A}\to\mathbb{K} by

Φ(e2,e2)=λ,λ𝕂.\Phi(e_{2},e_{2})=\lambda,\;\lambda\in\mathbb{K}.

It is obvious that Φ\Phi satisfies the conditions (4.3)-(4.5). Then, by Theorem 4.2, the triple (𝒜,{,,,}Φ,α)(\mathcal{A},\{\cdot,\cdot,\cdot,\cdot\}_{\Phi},\alpha) is a 44-Hom-pre-Lie superalgebra, where {,,,}Φ\{\cdot,\cdot,\cdot,\cdot\}_{\Phi} defined on the basis of 𝒜\mathcal{A} by

{e2,e2,e2,e2}Φ=λe1.\{e_{2},e_{2},e_{2},e_{2}\}_{\Phi}=\lambda e_{1}.

Quite normal and thanks to the importance of the representation theory, any reader asks the following question: Can we also extend this work to representation, i.e. is it possible to construct an nn-Hom-pre-Lie superalgebra representation from a Hom-pre-Lie superalgebra representation? The answer is yes, but the question requires us to define the representation of a Hom-pre-Lie superalgebra (𝒜,,α)(\mathcal{A},\circ,\alpha) which is defined as a quadruple (V,l,r,αV)(V,l,r,\alpha_{V}) consisting of a 2\mathbb{Z}_{2}-vector space VV, two even linear maps l,r:𝒜gl(V)l,r:\mathcal{A}\to gl(V) and an even linear map αV:VV\alpha_{V}:V\to V such that the following conditions hold:

αVl(x)\displaystyle\alpha_{V}l(x) =l(α(x))αV,x(𝒜),\displaystyle=l(\alpha(x))\alpha_{V},\;\forall x\in\mathcal{H}(\mathcal{A}), (4.7)
αVr(x)\displaystyle\alpha_{V}r(x) =r(α(x))αV,x(𝒜),\displaystyle=r(\alpha(x))\alpha_{V},\;\forall x\in\mathcal{H}(\mathcal{A}), (4.8)
l([x,y]C)αV\displaystyle l([x,y]^{C})\alpha_{V} =l(α(x))l(y)(1)|x||y|l(α(y))l(x),x,y(𝒜),\displaystyle=l(\alpha(x))l(y)-(-1)^{|x||y|}l(\alpha(y))l(x),\;\forall x,y\in\mathcal{H}(\mathcal{A}), (4.9)
r(α(y))r(x)r(xy)αV\displaystyle r(\alpha(y))r(x)-r(x\circ y)\alpha_{V} =r(α(y))l(x)(1)|x||y|r(α(x))l(y),x,y(𝒜),\displaystyle=r(\alpha(y))l(x)-(-1)^{|x||y|}r(\alpha(x))l(y),\;\forall x,y\in\mathcal{H}(\mathcal{A}), (4.10)

where [x,y]C=xy(1)|x||y|yx,x,y(𝒜)[x,y]^{C}=x\circ y-(-1)^{|x||y|}y\circ x,\;\forall x,y\in\mathcal{H}(\mathcal{A}), which is defined a Hom-Lie superalgebra on 𝒜\mathcal{A} called the subadjacent Hom-Lie superalgebra of (𝒜,,α)(\mathcal{A},\circ,\alpha).

Remark 4.1.

Conditions (4.7) and (4.9) are equivalent to saying that ll is a representation of the Hom-Lie superalgebra (𝒜,[,]C,α)(\mathcal{A},[\cdot,\cdot]^{C},\alpha) with respect to αV\alpha_{V}.

In the sequel, we allow to answer the previous question which is summarized by the following proposition.

Proposition 4.5.

Let (V,l,r,αV)(V,l,r,\alpha_{V}) be a representation of a Hom-pre-Lie superalgebra (𝒜,,α)(\mathcal{A},\circ,\alpha) and Φ\Phi be an even super-skew-symmetric (n2)(n-2)-linear form satisfying conditions (4.3)-(4.5). Then (V,lΦ,rΦ,αV)(V,l_{\Phi},r_{\Phi},\alpha_{V}) is a representation of the nn-Hom-pre-Lie superalgebra (𝒜,{,,}Φ,α)(\mathcal{A},\{\cdot,\cdots,\cdot\}_{\Phi},\alpha), where lΦ,rΦ:𝒜××𝒜End(V)l_{\Phi},r_{\Phi}:\mathcal{A}\times\cdots\times\mathcal{A}\rightarrow End(V) are two even (n1)(n-1)-linear maps defined by

lΦ(x1,,xn1)\displaystyle l_{\Phi}(x_{1},\cdots,x_{n-1}) =k=1n1(1)k+1(1)|xk||X|k+1n1Φ(x1,,xk^,,xn1)l(xk),\displaystyle=\displaystyle\sum_{k=1}^{n-1}(-1)^{k+1}(-1)^{|x_{k}||X|^{n-1}_{k+1}}\Phi(x_{1},\cdots,\hat{x_{k}},\cdots,x_{n-1})l(x_{k}), (4.11)
rΦ(x1,,xn2,xn1)\displaystyle r_{\Phi}(x_{1},\cdots,x_{n-2},x_{n-1}) =Φ(x1,,xn2)r(xn1),\displaystyle=\Phi(x_{1},\cdots,x_{n-2})r(x_{n-1}), (4.12)

for al xk(𝒜), 1kn1x_{k}\in\mathcal{H}(\mathcal{A}),\;1\leq k\leq n-1.

Proof.

Let (V,l,r,αV)(V,l,r,\alpha_{V}) be a representation of (𝒜,,α)(\mathcal{A},\circ,\alpha). Defining the map Φ𝒜V:𝒜V××𝒜V𝕂\Phi_{\mathcal{A}\oplus V}:\mathcal{A}\oplus V\times\cdots\times\mathcal{A}\oplus V\to\mathbb{K} by

Φ𝒜V(x1+u1,,xn2+un2)=Φ(x1,,xn2),xi(𝒜),ui(V), 1in2.\Phi_{\mathcal{A}\oplus V}(x_{1}+u_{1},\cdots,x_{n-2}+u_{n-2})=\Phi(x_{1},\cdots,x_{n-2}),\;x_{i}\in\mathcal{H}(\mathcal{A}),\;u_{i}\in\mathcal{H}(V),\;1\leq i\leq n-2.

Then Φ𝒜V\Phi_{\mathcal{A}\oplus V} satisfying the conditions (4.3)-(4.5) on the semi-direct product nn-Hom-pre-Lie superalgebra 𝒜l,rαVV\mathcal{A}\ltimes_{l,r}^{\alpha_{V}}V. Then by (4.2), we have an nn-Hom-pre-Lie superalgebra structure on 𝒜V\mathcal{A}\oplus V given by

{x1+u1,,xn+un}Φ𝒜V\displaystyle\{x_{1}+u_{1},\cdots,x_{n}+u_{n}\}_{\Phi_{\mathcal{A}\oplus V}} =k=1n1(1)k+1(1)|xk||X|k+1n1Φ𝒜V(x1+u1,,xk+uk^,,xn1+un1)((xk+uk)𝒜V(xn+un))\displaystyle=\displaystyle\sum_{k=1}^{n-1}(-1)^{k+1}(-1)^{|x_{k}||X|^{n-1}_{k+1}}\Phi_{\mathcal{A}\oplus V}(x_{1}+u_{1},\cdots,\widehat{x_{k}+u_{k}},\cdots,x_{n-1}+u_{n-1})\big{(}(x_{k}+u_{k})\circ_{\mathcal{A}\oplus V}(x_{n}+u_{n})\big{)}
=k=1n1(1)k+1(1)|xk||X|k+1n1Φ(x1,,xk^,,xn1)(xkxn+l(xk)(un)+(1)|xk||xn|r(xn)(uk))\displaystyle=\displaystyle\sum_{k=1}^{n-1}(-1)^{k+1}(-1)^{|x_{k}||X|^{n-1}_{k+1}}\Phi(x_{1},\cdots,\hat{x_{k}},\cdots,x_{n-1})\Big{(}x_{k}\circ x_{n}+l(x_{k})(u_{n})+(-1)^{|x_{k}||x_{n}|}r(x_{n})(u_{k})\Big{)}
={x1,,xn}Φ+lΦ(x1,,xn1)(un)+k=1n1(1)k+1(1)|xk||X|k+1n1rΦ(x1,,xk^,,xn)(uk).\displaystyle=\{x_{1},\cdots,x_{n}\}_{\Phi}+l_{\Phi}(x_{1},\cdots,x_{n-1})(u_{n})+\displaystyle\sum_{k=1}^{n-1}(-1)^{k+1}(-1)^{|x_{k}||X|^{n-1}_{k+1}}r_{\Phi}(x_{1},\cdots,\hat{x_{k}},\cdots,x_{n})(u_{k}).

By applying Proposition 3.7, we deduce that (V,lΦ,rΦ,αV)(V,l_{\Phi},r_{\Phi},\alpha_{V}) is a representation of (𝒜,{,,}Φ,α)(\mathcal{A},\{\cdot,\cdots,\cdot\}_{\Phi},\alpha). ∎

5 Conclusion

The results of this paper is to introduce the notion of nn-Hom-pre-Lie superalgebra and their representation which is very important in several theories among them and the most important the cohomology and deformations theories, we also provide some related results and structures based on Rota-Baxter operators, 𝒪\mathcal{O}-operators and Nijenhuis operators. Under some conditions, an nn-Hom-pre-Lie superalgebra gives rise to an Hom-pre-Lie superalgebra. In the future, our plan is to study cohomology and deformations of nn-Hom-pre-Lie superalgebras.

References

  • [1] K. Abdaoui, S. Mabrouk and A. Makhlouf, Rota–Baxter operators on pre-Lie superalgebras, Bulletin of the Malaysian Mathematical Sciences Society, 42(4), 1567-1606.
  • [2] K. Abdaoui, S. Mabrouk and A. Makhlouf, Cohomology of Hom-Leibniz and nn-ary Hom-Nambu-Lie superalgebras, arXiv:1406.3776v1 (2014).
  • [3] J.Zhou, G. Fan, Generalized derivations of n-Hom Lie superalgebras. Math. Aeterna 6(4), 533–550 (2016)
  • [4] M. Aguiar and J. L. Loday, Quadri-algebras, J. Pure Appl Algebra, vol. 191: (2004), 251–221.
  • [5] F. Ammar, S. Mabrouk and A. Makhlouf, Representations and cohomology of nn-ary multiplicative Hom–Nambu–Lie algebras, J. Geo. Phy, 61 (2011), 1898-1913.
  • [6] A. Andrada and S. Salamon, Complex product structure on Lie algebras, Forum Math 17 (2005), 261–295.
  • [7] Ataguema H., Makhlouf A. and Silvestrov S., Generalization of nn-ary Nambu algebras and beyond , Journal of Mathe-matical Physics 50, 1 (2009).
  • [8] B. Y. Chu, Symplectic homogeneous spaces, Trans. Amer. Math. Soc 197 (1974), 145–159.
  • [9] J. M. Dardié and A. Médina, Algèbres de Lie Kahlériennes et double extension, J. Algebra 185 (1996), 744–795.
  • [10] J. M. Dardié and A. Médina, Double extension symplectique d’un groupe de Lie symplectique, Adv. Math 117 (1996), 208–227.
  • [11] Cayley, A. On the theory of analytic forms called trees. Collected Mathematical Papers of Arthur Cayley Notices, vol. 3, pp. 242–246. Cambridge University Press, Cambridge (1890).
  • [12] C. M. Bai, A further study on non-abelian phase spaces: Left-symmetric algebraic approach and related geometry , Rev. Math. Phys, vol. 18 (2006), 545–564.
  • [13] C. Bai, G. Li and Y. Sheng, Bialgebras, the classical Yang-Baxter equation and Manin triples for 3-Lie algebras, Advances in Theoretical and Mathematical Physics,. 23.1 (2019): 27–74.
  • [14] C. M. Bai and R. Zhang, On some left-symmetric superalgebras, J. of Algebra and its applications, vol. 11 (5) (2012).
  • [15] B. Bakalov and V. Kac, Field algebras, Int. Math. Res. Not. 3 (2003) 123–159.
  • [16] S. Benayadi and A. Makhlouf, Hom–Lie algebras with symmetric invariant nondegenerate bilinear forms, J. Geo. Phy. 76 (2014) 38-60.
  • [17] A. Ben Hassine,T. Chtioui, S. Mabrouk and S. Silvestrov, Structure and cohomology of 3-Lie-Rinehart superalgebras, Communications in Algebra, 49 (2021) 4883–4904.
  • [18] M. Bordemann, Generalized Lax pairs, the modified classical Yang-Baxter equations, and affine geometry of Lie groups, Comm Math. Phys, vol. 135 (1) (1990), 201–216.
  • [19] D. Burde, Left-symmetric algebras, or pre-Lie algebras in geometry and physics, Cent. Eur. J. Math, vol. 4 (3) (2006), 323–357.
  • [20] F. Chapoton, M. Livernet, Pre-Lie algebras and the rooted trees operad, Internat. Math. Res. Notices 8 (2001), 395–408.
  • [21] H. Chen and J. Li, Left-symmetric algebra structures on the WW-algebra W(2,2)W(2,2), Linear Algebra and its applications, newblock vol. 437 (2012), 1821–1834.
  • [22] T. Chtioui, and S. Mabrouk. 33-L-dendriform algebras and generalized derivations. Filomat Vol 35, No 6 (2021).
  • [23] A. Connes and D. Kreimer, Hopf algebras, renormalization and noncommutative geometry, Comm. Math. Phys 199 (1998), 203–242.
  • [24] A. Diatta and A. Medina, Classical Yang-Baxter equation and left-invariant affine geometry on Lie groups, Manuscipta. Math 114 (2004), 477–486.
  • [25] K. Ebrahimi-Fard, Loday-type algebras and the Rota-Baxter relation, Lett. Math. Phys 61 (2002), 139–147.
  • [26] V. T. Filippov, n-Lie algebras, Sib. Mat. Zh., 1985, 26(6), 126-140.
  • [27] Gerstenhaber, M, The cohomology structure of associative ring. Ann. Math. 78, 267–288 (1963).
  • [28] Shuangjian Guo, Xiaohui Zhang and Shengxiang Wang, The constructions of 3-Hom-Lie bialgebras, arXiv:1902.03917v1 (2019).
  • [29] A. Hajjaji, T. Chtioui, S. Mabrouk and A. Makhlouf, On n-pre-Lie algebras and dendrification of n-Lie algebras, arXiv:2112.14290v1 (2021).
  • [30] X. Kong, H. Chen and C. Bai, Classification of graded left-symmetric algebra structures on Witt and Virasoro algebras, International Journal of Mathematics, vol. 22 n(2) (2011).
  • [31] X. L. Kong and C. M. Bai, Left-symmetric superalgebra structures on the super-Virasoro algebras, Pacific J. Math, vol. 235 (1) (2008), 43–55.
  • [32] Koszul, J.-L.: Domaines bornés homogènes et orbites de groupes de transformations affines. Bull. Soc. Math. Fr. 89, 515–533 (1961).
  • [33] B. A. Kupershmidt, Non-abelian phase spaces, J. Phys. A: Math. Gen, vol. 27 (1994), 2801-2809.
  • [34] A. Lichnerowicz and A. Medina, On Lie group with left-invariant symplectic or Kählerian, Lett. Math. Phys. 16 (3) (1988), 225–235.
  • [35] Juan Li, Liangyun Chen and Yongsheng Cheng, Representations of Bihom-Lie superalgebras, Lin. Mult. Alg. 67 (2019) 299-326.
  • [36] S. Mabrouk, O. Ncib and S. Silvestrov, Generalized Derivations and Rota-Baxter Operators of n-ary Hom-Nambu Superalgebras, Advances in Applied Clifford Algebras, 2021
  • [37] A. Makhlouf and S. Silvestrov, Hom-algebra structures, J. Gen. Lie Theory Appl. 2(2) (2008) 51–64.
  • [38] C. Ming, J. Liu, and Y. Ma. Lie n-algebras and cohomologies of relative Rota-Baxter operators on n-Lie algebras, arXiv preprint arXiv:2108.04076.(2021).
  • [39] Y. Nambu, Generalized Hamiltonian Dynamics, Phys. Rev., 1973, D7, 2405-2412
  • [40] Othmen Ncib, On Hom-Nambu-Poisson superalgebras structures and their representations arXiv preprint arXiv:2112.13739. (2021).
  • [41] Shanshan Liu, Lina Song and Rong Tang, Representations and cohomologies of regular Hom-pre-Lie algebras, J. Alg. App, Vol. 19, No. 08, 2050149 (2020).
  • [42] Y. Sheng, Representations of Hom-Lie Algebras, Alg. Rep. Th, 15, 1081–1098 (2012).
  • [43] Y. Sheng and D. Chen, Hom-Lie 22-algebras, J. Algebra, 376 (2013) 174–195.
  • [44] B. Sun, L. Chen and X. Zhou, On universal α\alpha-central extensions of Hom-pre-Lie algebras, arXiv:1810.09848.
  • [45] Q. Sun and H. Li, On parakähler Hom-Lie algebras and hom-left-symmetric bialgebras, Comm. Algebra,. 45(1) (2017) 105–120.
  • [46] E. A. Vasilieva and A. A. Mikhalev, Free left-symmetric superalgebras, Fund. and Applied Math 2 (1996), 611–613.
  • [47] Vinberg, E.B.: The theory of homogeneous cones. Trudy Moskov. Mat. Obsc. 12, 303–358 (1963).
  • [48] LUCA VITAGLIANO Representation of homotopy Lie-Rinehart algebras, Mathematical Proceedings of the Cambridge Philosophical Society, 158 (2015) 155 - 191.
  • [49] Yau D., On n-ary Hom-Nambu and Hom-Nambu-Lie algebras, J. Geo. Phy, 62(2012) 137-566.
  • [50] Q. Zhang, H. Yu and C. Wang, Hom-Lie algebroids and hom-left-symmetric algebroids, J. Geom. Phys. 116 (2017) 187–203.