This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.



On multi-interpolated multiple zeta values

Markus Kuba Markus Kuba [Uncaptioned image]
Department Applied Mathematics and Physics
FH - Technikum Wien
Höchstädtplatz 6
1200 Wien, Austria
[email protected]
Abstract.

In this note we introduce multi-interpolated multiple zeta values. We provide a basic decomposition of these objects involving ordered partitions. We also obtain identities for special instances of multi-interpolated multiple zeta values ζt({s}k)\zeta^{\vec{t}}(\{s\}_{k}), generalizing earlier results. Moreover, we introduce a product for multi-interpolated multiple zeta values.

Key words and phrases:
Multi-interpolated multiple zeta values, interpolated multiple zeta values, multiple zeta values
2010 Mathematics Subject Classification:
05A15, 11M32

1. Introduction

The multiple zeta values, henceforth MZVs, are defined by

ζ(i1,,ik)=1>>k111i1kik,\zeta(i_{1},\dots,i_{k})=\sum_{\ell_{1}>\cdots>\ell_{k}\geq 1}\frac{1}{\ell_{1}^{i_{1}}\cdots\ell_{k}^{i_{k}}},

with admissible indices (i1,,ik)k(i_{1},\dots,i_{k})\in\mathbb{N}^{k} satisfying i12i_{1}\geq 2, ij1i_{j}\geq 1 for 2jk2\leq j\leq k, see Hoffman [7] and Zagier [28]. We refer to i1++iki_{1}+\dots+i_{k} as the weight of this MZV, and kk as its depth. For a comprehensive overview as well as a great many pointers to the literature we refer to the survey of Zudilin [29]. An important variant of the MZVs are the so-called multiple zeta star values, abbreviated by MZSVs, where equality is allowed:

ζ(i1,,ik)=1k111i1kik.\begin{split}\zeta^{\star}(i_{1},\dots,i_{k})&=\sum_{\ell_{1}\geq\cdots\geq\ell_{k}\geq 1}\frac{1}{\ell_{1}^{i_{1}}\cdots\ell_{k}^{i_{k}}}.\end{split}

Yamamoto [27] introduced a generalization ζt\zeta^{t} called interpolated multiple zeta values of both ζ\zeta and ζ\zeta^{\star}. Noting that,

ζ(i1,,ik)==,or+ζ(i1i2ik),\zeta^{\star}(i_{1},\dots,i_{k})=\sum_{\circ=\text{``},\text{''}\text{or}\,\text{``}+\text{''}}\zeta(i_{1}\circ i_{2}\dots\circ i_{k}),

let the parameter σ\sigma denote the number of plus in the expression i1i2iki_{1}\circ i_{2}\dots\circ i_{k}. Interpolated multiple zeta values are defined by

ζt(i1,,ik)==,or+tσζ(i1i2ik).\zeta^{t}(i_{1},\dots,i_{k})=\sum_{\circ=\text{``},\text{''}\text{or}\,\text{``}+\text{''}}t^{\sigma}\zeta(i_{1}\circ i_{2}\dots\circ i_{k}). (1)

Thus, the series ζt(i1,,ik)\zeta^{t}(i_{1},\dots,i_{k}) is a polynomial in tt and interpolates between MZVs, ζ0=ζ\zeta^{0}=\zeta, and MZSVs, ζ1=ζ\zeta^{1}=\zeta^{\star}. Equivalently, the interpolated MZVs can be defined as

ζt(i1,,ik)=1k1tσ(1,,k)1i1kik,\zeta^{t}(i_{1},\dots,i_{k})=\sum_{\ell_{1}\geq\cdots\geq\ell_{k}\geq 1}\frac{t^{\sigma(\ell_{1},\dots,\ell_{k})}}{\ell_{1}^{i_{1}}\cdots\ell_{k}^{i_{k}}}, (2)

where σ\sigma is given by the number of equalities:

σ(1,,k)=|{1rk1r=r+1}|.\sigma(\ell_{1},\dots,\ell_{k})=|\{1\leq r\leq k-1\mid\ell_{r}=\ell_{r+1}\}|. (3)

It turned out that the interpolated series satisfies many identities generalizing or unifying earlier result for multiple zeta and zeta star values, see for example Yamamoto [27] for a generalization of the sum identity as well as many other results, and also Hoffman and Ihara [12] or Hoffman [8, 11] for further results. We also refer to Tanaka and Wakabayashi [24] for a proof of Kawashima’s relations, to Wakabayashi [26] as well as Li and Qin [19] for Double shuffle and Hoffman’s relations, and to Li [18] for a recent study of algebraic aspects, including extended double shuffle relations, symmetric sum formulas and restricted sum formulas.

Most important, the so-called tt-harmonic product t\stackrel{{\scriptstyle t}}{{\ast}} was introduced by Yamamoto [27] for the interpolated MZVs, see also [8, 11, 12]. It satisfies

ζt((i1,,ik)t(j1,,j))=ζt(i1,,ik)ζt(j1,,j),\zeta^{t}\big{(}(i_{1},\dots,i_{k})\stackrel{{\scriptstyle t}}{{\ast}}(j_{1},\dots,j_{\ell})\big{)}=\zeta^{t}(i_{1},\dots,i_{k})\cdot\zeta^{t}(j_{1},\dots,j_{\ell}), (4)

where the product t\stackrel{{\scriptstyle t}}{{\ast}} is actually defined in an algebraic way (see Section 4). Hoffman and Ihara used a general algebra framework, leading, amongst others to expressions for interpolated MZVs ζt({s}k)\zeta^{t}(\{s\}_{k}) in terms of Bell polynomials and ordinary single argument zeta values, m1m\geq 1. Here and throughout this work {s}k\{s\}_{k} means ss repeated kk times.

In this work we introduce a generalization σ\vec{\sigma} of the parameter σ\sigma (3), generalizing interpolated MZVs (2) to what we call multi-interpolated MZVs. This allows to gain more insight into structural decompositions of ordinary interpolated MZVs, as well as a link to the 𝔱\mathfrak{t}-values of Hoffman [10]. Our results are the following. First, we obtain in Theorem 1 a decomposition of multi-interpolated multiple zeta values using ordered partitions. Second, we obtain several identities for multi-interpolated multiple zeta values, ζt({s}k)\zeta^{\vec{t}}(\{s\}_{k}), see Theorem 2 and Corollary 1, generalizing earlier results for ζt({s}k)\zeta^{t}(\{s\}_{k}). Third, as our main result we introduce in Section 4 a product t\stackrel{{\scriptstyle\vec{t}}}{{\ast}} for multi-interpolated multiple zeta values, generalizing (4). Interestingly, it turns out that the product t\stackrel{{\scriptstyle\vec{t}}}{{\ast}} involves a non-commutative variable t\vec{t}, in contrast to the earlier tt-harmonic product t\stackrel{{\scriptstyle t}}{{\ast}} for interpolated MZVs.

2. Multi-interpolated multiple zeta values and related multiple zeta values

Definition 1 (Multi-interpolated multiple zeta values).

Given integers (i1,,ik)(i_{1},\dots,i_{k}) with i12i_{1}\geq 2, k1k\geq 1 and a sequence of variables t=(t1,t2,)\vec{t}=(t_{1},t_{2},\dots). For our purpose we assume that tj[1;1]t_{j}\in[-1;1], jj\in\mathbb{N}. The multi-interpolated multiple zeta value ζt(i1,,ik)\zeta^{\vec{t}}(i_{1},\dots,i_{k}) is defined by

ζt(i1,,ik)=1k1tσ()1i1kik=1k1j=1tjσj(1,,k)1i1kik,\zeta^{\vec{t}}(i_{1},\dots,i_{k})=\sum_{\ell_{1}\geq\cdots\geq\ell_{k}\geq 1}\frac{\vec{t}^{\vec{\sigma}(\vec{\ell})}}{\ell_{1}^{i_{1}}\dots\ell_{k}^{i_{k}}}=\sum_{\ell_{1}\geq\cdots\geq\ell_{k}\geq 1}\frac{\prod_{j=1}^{\infty}t_{j}^{\sigma_{j}(\ell_{1},\dots,\ell_{k})}}{\ell_{1}^{i_{1}}\dots\ell_{k}^{i_{k}}}, (5)

with parameter σj\sigma_{j} denoting the number of equalities of the integer jj\in\mathbb{N}:

σj(1,,k)=|{1rk1r=r+1=j}|.\sigma_{j}(\ell_{1},\dots,\ell_{k})=|\{1\leq r\leq k-1\mid\ell_{r}=\ell_{r+1}=j\}|. (6)
Remark 1.

Note that the parameters σj\sigma_{j} refine the parameter σ\sigma (3) due to the identity

σ=j1σj.\sigma=\sum_{j\geq 1}\sigma_{j}.

Hence, by setting tj=tt_{j}=t, j1j\geq 1, which we write in a slight abuse of notation simply as t=t\vec{t}=t, we have

j=1tjσj()=tj=1σj()=tσ(),\prod_{j=1}^{\infty}t_{j}^{\sigma_{j}(\vec{\ell})}=t^{\sum_{j=1}^{\infty}\sigma_{j}(\vec{\ell})}=t^{\sigma(\vec{\ell})}, (7)

so that ζt(i1,,ik)\zeta^{\vec{t}}(i_{1},\dots,i_{k}) reduces to ζt(i1,,ik)\zeta^{t}(i_{1},\dots,i_{k}).

Example 1 (Multi-interpolated MZVs: depth one).

For depth one, the multi-interpolated MZVs reduce to ordinary zeta values:

ζt(i)=ζt(i)=ζ(i),i>1.\zeta^{\vec{t}}(i)=\zeta^{t}(i)=\zeta(i),\quad i>1.
Example 2 (Multi-interpolated MZVs: depth two).

The set {121}\{\ell_{1}\geq\ell_{2}\geq 1\} is split into two parts,

{121}={1>21}{1=21},\{\ell_{1}\geq\ell_{2}\geq 1\}=\{\ell_{1}>\ell_{2}\geq 1\}\cup\{\ell_{1}=\ell_{2}\geq 1\},

leading to

ζt(i1,i2)\displaystyle\zeta^{\vec{t}}(i_{1},i_{2}) =121tσ()1i12i2=1>2111i12i2+1ti1+i2=ζ(i1,i2)+1ti1+i2.\displaystyle=\sum_{\ell_{1}\geq\ell_{2}\geq 1}\frac{\vec{t}^{\vec{\sigma}(\vec{\ell})}}{\ell_{1}^{i_{1}}\ell_{2}^{i_{2}}}=\sum_{\ell_{1}>\ell_{2}\geq 1}\frac{1}{\ell_{1}^{i_{1}}\ell_{2}^{i_{2}}}+\sum_{\ell\geq 1}\frac{t_{\ell}}{\ell^{i_{1}+i_{2}}}=\zeta(i_{1},i_{2})+\sum_{\ell\geq 1}\frac{t_{\ell}}{\ell^{i_{1}+i_{2}}}. (8)

Here we used tσ()=1\vec{t}^{\vec{\sigma}(\vec{\ell})}=1 for {1>21}\vec{\ell}\in\{\ell_{1}>\ell_{2}\geq 1\} and tσ()=t\vec{t}^{\vec{\sigma}(\vec{\ell})}=t_{\ell} for {=1=21}\vec{\ell}\in\{\ell=\ell_{1}=\ell_{2}\geq 1\}. In the special case t=t\vec{t}=t (7) we reobtain the ordinary interpolated MZVs and the evaluation

ζt(i1,i2)=ζ(i1,i2)+tζ(i1+i2).\zeta^{t}(i_{1},i_{2})=\zeta(i_{1},i_{2})+t\cdot\zeta(i_{1}+i_{2}).

In our previous example, different basic objects like 1ti1+i2\sum_{\ell\geq 1}\frac{t_{\ell}}{\ell^{i_{1}+i_{2}}} appeared, compared to the ordinary interpolated MZVs. Thus, in order to analyze multi-interpolated MZVs, we need another generalization, which includes interpolated MZVs (thus, also ordinary MZVs and MZSVs), as well as the atomic parts of the multi-interpolated truncated MZVs.

Definition 2.

For k1k\geq 1 let j1,,jk0j_{1},\dots,j_{k}\geq 0 denote integers. We introduce multiple zeta values with variables t=(t1,t2,)\vec{t}=(t_{1},t_{2},\dots) and admissible indices (i1,,ik)(i_{1},\dots,i_{k}) satisfying i12i_{1}\geq 2, ij1i_{j}\geq 1 for 2jk2\leq j\leq k,

ζ((tj1,i1),,(tjk,ik))=1>>k1t1j1tkjk1i1kik.\zeta\big{(}(\vec{t}^{j_{1}},i_{1}),\dots,(\vec{t}^{j_{k}},i_{k})\big{)}=\sum_{\ell_{1}>\cdots>\ell_{k}\geq 1}\frac{t_{\ell_{1}}^{j_{1}}\cdots t_{\ell_{k}}^{j_{k}}}{\ell_{1}^{i_{1}}\cdots\ell_{k}^{i_{k}}}.
Remark 2 (Connection to multiple 𝔱\mathfrak{t}-values).

The definition above also covers the multiple 𝔱\mathfrak{t}-values of Hoffman [10]. The 𝔱\mathfrak{t}-values [22] and multiple 𝔱\mathfrak{t}-values [10] are defined by

𝔱(i1,,ik)=1>>k1iodd11i1kik.\mathfrak{t}(i_{1},\dots,i_{k})=\sum_{\begin{subarray}{c}\ell_{1}>\cdots>\ell_{k}\geq 1\\ \ell_{i}\text{odd}\end{subarray}}\frac{1}{\ell_{1}^{i_{1}}\cdots\ell_{k}^{i_{k}}}. (9)

We note in passing that 𝔱(i)=(12i)ζ(i)\mathfrak{t}(i)=(1-2^{-i})\zeta(i). Setting t=(1(1))/2t_{\ell}=(1-(-1)^{\ell})/2, 1\ell\geq 1, and j1==jk=1j_{1}=\dots=j_{k}=1 leads to

ζ((t,i1),,(t,ik))=𝔱(i1,,ik).\zeta\big{(}(\vec{t},i_{1}),\dots,(\vec{t},i_{k})\big{)}=\mathfrak{t}(i_{1},\dots,i_{k}).

Note that for j=0j_{\ell}=0, 1k1\leq\ell\leq k, or t=1t_{\ell}=1, 1\ell\geq 1, we simply write ii_{\ell} instead of (1,i)(\vec{1},i_{\ell}). The MZSVs with variables t=(t1,t2,)\vec{t}=(t_{1},t_{2},\dots) and also the multi-interpolated generalizations ζt((tj1,i1),,(tjk,ik))\zeta^{\vec{t}}\big{(}(\vec{t}^{j_{1}},i_{1}),\dots,(\vec{t}^{j_{k}},i_{k})\big{)} are defined accordingly. For t1=1t_{\ell_{1}}=-1, 1k\ell_{1}\geq k, the value j1=1j_{1}=1 is also admissible; this leads to alternating MZVs. The generalized MZVs in Definition 2 can be generalized further by setting um=(um,1,um,2,)\vec{u}_{m}=(u_{m,1},u_{m,2},\dots) and we get

ζ((u1,i1),,(uk,ik))=1>>k1u1,1uk,k1i1kik,\zeta\big{(}(\vec{u}_{1},i_{1}),\dots,(\vec{u}_{k},i_{k})\big{)}=\sum_{\ell_{1}>\cdots>\ell_{k}\geq 1}\frac{u_{1,\ell_{1}}\cdots u_{k,\ell_{k}}}{\ell_{1}^{i_{1}}\cdots\ell_{k}^{i_{k}}}, (10)

such that for um=tjm\vec{u}_{m}=\vec{t}^{j_{m}}, 1mk1\leq m\leq k we reobtain our earlier definition, but for and um=(xmn)n1\vec{u}_{m}=(x_{m}^{n})_{n\geq 1} we obtain multiple polylogarithms. Moreover, mixture models of multiple 𝔱\mathfrak{t}-values and zeta values can be obtained by suitable choices of um\vec{u}_{m}.

Example 3 (Multi-interpolated MZVs: depth three).

We decompose ζt(i1,i2,i3)\zeta^{\vec{t}}(i_{1},i_{2},i_{3}) into summands by splitting the underlying set into four parts:

{1231}\displaystyle\{\ell_{1}\geq\ell_{2}\geq\ell_{3}\geq 1\} ={1>2>31}{1>2=31}\displaystyle=\{\ell_{1}>\ell_{2}>\ell_{3}\geq 1\}\cup\{\ell_{1}>\ell_{2}=\ell_{3}\geq 1\}
{1=2>31}{1=2=31},\displaystyle\quad\cup\{\ell_{1}=\ell_{2}>\ell_{3}\geq 1\}\cup\{\ell_{1}=\ell_{2}=\ell_{3}\geq 1\},

such that

ζt(i1,i2,i3)\displaystyle\zeta^{\vec{t}}(i_{1},i_{2},i_{3}) =1231tσ()1i12i23i3\displaystyle=\sum_{\ell_{1}\geq\ell_{2}\geq\ell_{3}\geq 1}\frac{\vec{t}^{\vec{\sigma}(\vec{\ell})}}{\ell_{1}^{i_{1}}\ell_{2}^{i_{2}}\ell_{3}^{i_{3}}}
=ζ(i1,i2,i3)+ζ(i1,(t,i2+i3))+ζ((t,i1+i2),i3)+ζ((t2,i1+i2+i3)).\displaystyle=\zeta(i_{1},i_{2},i_{3})+\zeta(i_{1},(\vec{t},i_{2}+i_{3}))+\zeta((\vec{t},i_{1}+i_{2}),i_{3})+\zeta((\vec{t}^{2},i_{1}+i_{2}+i_{3})).

A natural specialization of ζt(i1,,ik)\zeta^{\vec{t}}(i_{1},\dots,i_{k}) are even-odd interpolations.

Example 4 (Even-odd interpolated multiple zeta values).

Given the multi-interpolated MZV ζt(i1,,ik)\zeta^{\vec{t}}(i_{1},\dots,i_{k}), we choose t2m=tEt_{2m}=t_{E} and t2m1=tOt_{2m-1}=t_{O}, m1m\geq 1, obtaining the even-odd interpolation

ζtE,tO(i1,,ik)=1k1tEσE(1,,k)tOσO(1,,k)1i1kik,\zeta^{t_{E},t_{O}}(i_{1},\dots,i_{k})=\sum_{\ell_{1}\geq\cdots\geq\ell_{k}\geq 1}\frac{t_{E}^{\sigma_{E}(\ell_{1},\dots,\ell_{k})}\cdot t_{O}^{\sigma_{O}(\ell_{1},\dots,\ell_{k})}}{\ell_{1}^{i_{1}}\cdots\ell_{k}^{i_{k}}},

where σE\sigma_{E} and σO\sigma_{O} are given by the number of even and odd equalities (6), respectively. Note that here, variants of the multiple 𝔱\mathfrak{t}-values of Hoffman [10], see (9), naturally appear, as well as mixtures of multiple zeta and 𝔱\mathfrak{t}-values (or multiple Hurwitz-zeta values); for example, in the case of depth two we obtain from Example 2, (8) the decomposition

ζt(i1,i2)\displaystyle\zeta^{\vec{t}}(i_{1},i_{2}) =ζ(i1,i2)+tE12i1+i2ζ(i1+i2)+tO𝔱(i1+i2).\displaystyle=\zeta(i_{1},i_{2})+t_{E}\cdot\frac{1}{2^{i_{1}+i_{2}}}\zeta(i_{1}+i_{2})+t_{O}\cdot\mathfrak{t}(i_{1}+i_{2}).

2.1. Ordered partitions and multi-interpolated MZVs

Motivated by the special cases of depth one, two and three in Examples 12 and 3, and also the very definition of interpolated MZVs (1), we provide a representation of multi-interpolated MZVs in terms of the values in Definition 2. We start from the representation of interpolated multiple zeta values by ordered partitions 𝒫(k)\mathcal{P}(k) of the integer kk, also called compositions. We associate to each ordered partition 𝐩=(p1,,pr)𝒫(k)\mathbf{p}=(p_{1},\dots,p_{r})\in\mathcal{P}(k) a map from k\mathbb{N}^{k} to (𝐩)\mathbb{N}^{\mathcal{L}(\mathbf{p})}, where (.)\mathcal{L}(.) denote the length of the ordered partition:

𝐩(i1,,ik)=(j1=1P1ij1,j1=P1+1P2ij1,jr=Pr1+1Prijr).\mathbf{p}(i_{1},\dots,i_{k})=(\sum_{j_{1}=1}^{P_{1}}i_{j_{1}},\sum_{j_{1}=P_{1}+1}^{P_{2}}i_{j_{1}}\dots,\sum_{j_{r}=P_{r-1}+1}^{P_{r}}i_{j_{r}}).

Here we use the convention Pj==1jpP_{j}=\sum_{\ell=1}^{j}p_{\ell}. Then,

ζt(i1,,ik)=𝐩𝒫(k)tk(𝐩)ζ(𝐩(i1,,ik)),\zeta^{t}(i_{1},\dots,i_{k})=\sum_{\mathbf{p}\in\mathcal{P}(k)}t^{k-\mathcal{L}(\mathbf{p})}\zeta(\mathbf{p}(i_{1},\dots,i_{k})),

as each 𝐩=(p1,,pr)𝒫(k)\mathbf{p}=(p_{1},\dots,p_{r})\in\mathcal{P}(k) corresponds to a unique partition of the set

M={1k1}=𝐩𝒫(k)𝐩(M)M=\{\ell_{1}\geq\dots\geq\ell_{k}\geq 1\}=\bigcup_{\mathbf{p}\in\mathcal{P}(k)}\mathbf{p}(M)

into subsets

𝐩(M)={1k1:1==P1>>Pr1+1==Pr}.\mathbf{p}(M)=\{\ell_{1}\geq\dots\geq\ell_{k}\geq 1\colon\ell_{1}=\dots=\ell_{P_{1}}>\dots>\ell_{P_{r-1}+1}=\dots=\ell_{P_{r}}\}.

Consequently, we obtain the following representation.

Theorem 1.

The multi-interpolated multiple zeta values ζt(i1,,ik)\zeta^{\vec{t}}(i_{1},\dots,i_{k}), with kk\in\mathbb{N} and arguments i1>1i_{1}>1, i2,,iki_{2},\dots,i_{k}\in\mathbb{N}, can be expressed in terms of ordered partitions 𝐩𝒫(k)\mathbf{p}\in\mathcal{P}(k):

ζt(i1,,ik)=𝐩𝒫(k)ζ((tp11,j1=1P1ij1),(tpr1,jr=Pr1+1Prijr)).\displaystyle\zeta^{\vec{t}}(i_{1},\dots,i_{k})=\sum_{\mathbf{p}\in\mathcal{P}(k)}\zeta\Big{(}(\vec{t}^{p_{1}-1},\sum_{j_{1}=1}^{P_{1}}i_{j_{1}})\dots,(\vec{t}^{p_{r}-1},\sum_{j_{r}=P_{r-1}+1}^{P_{r}}i_{j_{r}})\Big{)}.
Proof.
ζt(i1,,ik)\displaystyle\zeta^{\vec{t}}(i_{1},\dots,i_{k}) =1k1tσ()1i1kik=(1,,k)Mtσ()1i1kik\displaystyle=\sum_{\ell_{1}\geq\cdots\geq\ell_{k}\geq 1}\frac{\vec{t}^{\vec{\sigma}(\vec{\ell})}}{\ell_{1}^{i_{1}}\dots\ell_{k}^{i_{k}}}=\sum_{(\ell_{1},\dots,\ell_{k})\in M}\frac{\vec{t}^{\vec{\sigma}(\vec{\ell})}}{\ell_{1}^{i_{1}}\dots\ell_{k}^{i_{k}}}
=𝐩𝒫(k)(1,,k)𝐩(M)tσ()1i1kik\displaystyle=\sum_{\mathbf{p}\in\mathcal{P}(k)}\sum_{(\ell_{1},\dots,\ell_{k})\in\mathbf{p}(M)}\frac{\vec{t}^{\vec{\sigma}(\vec{\ell})}}{\ell_{1}^{i_{1}}\dots\ell_{k}^{i_{k}}}
=𝐩𝒫(k)ζ((tp11,j1=1P1ij1),,(tpr1,jr=Pr1+1Prijr)).\displaystyle=\sum_{\mathbf{p}\in\mathcal{P}(k)}\zeta\Big{(}(\vec{t}^{p_{1}-1},\sum_{j_{1}=1}^{P_{1}}i_{j_{1}}),\dots,(\vec{t}^{p_{r}-1},\sum_{j_{r}=P_{r-1}+1}^{P_{r}}i_{j_{r}})\Big{)}.

3. Multi-interpolated MZVs with repeated arguments

In the following we provide results for ζt({s}k)\zeta^{\vec{t}}(\{s\}_{k}), generalizing earlier results for ζ({s}k)\zeta(\{s\}_{k}) [3], as well as ζt({s}k)\zeta^{t}(\{s\}_{k}) [12]. Our proofs are based on generating functions and symbolic combinatorial constructions.

Theorem 2.

The generating function Θ(z,t)=k0ζt({s}k)zk\Theta(z,\vec{t})=\sum_{k\geq 0}\zeta^{\vec{t}}(\{s\}_{k})z^{k} of the multi-interpolated MZVs ζt({s}k)\zeta^{\vec{t}}(\{s\}_{k}) is given by

Θ(z,t)=m=1(1+1msz11msztm)=exp(j=1zjj(ζ(tj,js)ζ((t1)j,js))).\Theta(z,\vec{t})=\prod_{m=1}^{\infty}\Big{(}1+\frac{\frac{1}{m^{s}}\cdot z}{1-\frac{1}{m^{s}}zt_{m}}\Big{)}=\exp\Big{(}\sum_{j=1}^{\infty}\frac{z^{j}}{j}\cdot\big{(}\zeta(\vec{t}^{j},js)-\zeta((\vec{t}-\vec{1})^{j},js)\big{)}\Big{)}.

From the generating function we deduce several representations. We collect the definition of the complete Bell polynomials Bn(x1,,xn)B_{n}(x_{1},\dots,x_{n}), determined by the identity

exp(1z!x)=j0Bj(x1,,xj)j!zj,\exp\Big{(}\sum_{\ell\geq 1}\frac{z^{\ell}}{\ell!}x_{\ell}\Big{)}=\sum_{j\geq 0}\frac{B_{j}(x_{1},\dots,x_{j})}{j!}z^{j},

such that

Bk(x1,,xk)=m1+2m2++kmk=kk!m1!m2!mn!(x11!)m1(xkk!)mk.B_{k}(x_{1},\dots,x_{k})=\sum_{m_{1}+2m_{2}+\dots+km_{k}=k}\frac{k!}{m_{1}!m_{2}!\cdot m_{n}!}\left(\frac{x_{1}}{1!}\right)^{m_{1}}\dots\left(\frac{x_{k}}{k!}\right)^{m_{k}}.
Corollary 1.

The values ζt({s}k)\zeta^{\vec{t}}(\{s\}_{k}) satisfy

ζt({s}k)==0kζ({(t,s)})ζ({(1t,s)}k),\zeta^{\vec{t}}(\{s\}_{k})=\sum_{\ell=0}^{k}\zeta^{\star}(\{(\vec{t},s)\}_{\ell})\cdot\zeta\big{(}\{(\vec{1}-\vec{t},s)\}_{k-\ell}\big{)},

where ζ({(t,s)}0)=ζ({(t,s)}0)=1\zeta(\{(\vec{t},s)\}_{0})=\zeta^{\star}(\{(\vec{t},s)\}_{0})=1.

Moreover,

ζt({s}k)=1k!Bk(x1,,xk),\zeta^{\vec{t}}(\{s\}_{k})=\frac{1}{k!}B_{k}(x_{1},\dots,x_{k}),

with xj=(j1)!(ζ((tj,js))ζ(((t1)j,js)))x_{j}=(j-1)!\Big{(}\zeta((\vec{t}^{j},js))-\zeta\big{(}((\vec{t}-\vec{1})^{j},js)\big{)}\Big{)}, 1jk1\leq j\leq k.

Remark 3.

Both expressions are also true for the truncated variants. The Bell polynomial expression also leads to a third representation of ζt({s}k)\zeta^{\vec{t}}(\{s\}_{k}) in terms of a determinant. A determinantal expression for Bk(x1,,xk)B_{k}(x_{1},\dots,x_{k}) is given in [4] based on [5, 15]; another expression is obtained by using modified Bell polynomials Qk(x1,,xk)Q_{k}(x_{1},\dots,x_{k}), given by

Qk(x1,,xk)\displaystyle Q_{k}(x_{1},\dots,x_{k}) =1k!Bk(0!x1,1!x2,,(k1)!xk)\displaystyle=\frac{1}{k!}B_{k}(0!x_{1},1!x_{2},\dots,(k-1)!x_{k})
=m1+2m2++kmk=k1m1!m2!mn!(x11)m1(xkk)mk\displaystyle=\sum_{m_{1}+2m_{2}+\dots+km_{k}=k}\frac{1}{m_{1}!m_{2}!\cdot m_{n}!}\left(\frac{x_{1}}{1}\right)^{m_{1}}\dots\left(\frac{x_{k}}{k}\right)^{m_{k}}

by MacDonald [20] (see Hoffman [9] for additional properties): with

Qk(x1,,xk)=1k!(x1100x2x120xk1xk2xk3(k1)xkxk1xk2x1).Q_{k}(x_{1},\dots,x_{k})=\frac{1}{k!}\cdot\left(\begin{matrix}x_{1}&-1&0&\dots&0\\ x_{2}&x_{1}&-2&\dots&0\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ x_{k-1}&x_{k-2}&x_{k-3}&\dots&-(k-1)\\ x_{k}&x_{k-1}&x_{k-2}&\dots&x_{1}\\ \end{matrix}\right).
Proof of Theorem 2.

We use the symbolic constructions [6]: let 𝒵m={m}\mathcal{Z}_{m}=\{m\} be a combinatorial class of size one, 1mn1\leq m\leq n. Due to the sequence construction we can describe the class of multisets m\mathcal{B}_{m} of 𝒵m\mathcal{Z}_{m} as follows

m=SEQ(𝒵m)={ϵ}+𝒵m+𝒵m×𝒵m+𝒵m×𝒵m×𝒵m+;\mathcal{B}_{m}=\text{SEQ}(\mathcal{Z}_{m})=\{\epsilon\}+\mathcal{Z}_{m}+\mathcal{Z}_{m}\times\mathcal{Z}_{m}+\mathcal{Z}_{m}\times\mathcal{Z}_{m}\times\mathcal{Z}_{m}+\dots;

Thus, the generating function

Bm(z)=βmw(β)tσ(β)z|β|=1+ϵβmw(β)t|β|1z|β|B_{m}(z)=\sum_{\beta\in\mathcal{B}_{m}}w(\beta)t^{\sigma(\beta)}z^{|\beta|}=1+\sum_{\epsilon\neq\beta\in\mathcal{B}_{m}}w(\beta)t^{|\beta|-1}z^{|\beta|}

with weight w(β)=1ms|β|w(\beta)=\frac{1}{m^{s\cdot|\beta|}}, is given by

Bm(z)=1+j=1tmj11(ms)jzj=1+1msz11mstmz.B_{m}(z)=1+\sum_{j=1}^{\infty}t_{m}^{j-1}\frac{1}{(m^{s})^{j}}z^{j}=1+\frac{\frac{1}{m^{s}}z}{1-\frac{1}{m^{s}}\cdot t_{m}z}.

Let

n,k={=(k,k1,1)k:1k21n}.\mathcal{M}_{n,k}=\{\vec{\ell}=(\ell_{k},\ell_{k-1}\dots,\ell_{1})\in\mathbb{N}^{k}\colon 1\leq\ell_{k}\leq\dots\leq\ell_{2}\leq\ell_{1}\leq n\}.

All multisets n=k=1n,k\mathcal{M}_{n}=\bigcup_{k=1}^{\infty}\mathcal{M}_{n,k}, with kk-multisets of {1,2,,n}\{1,2,\dots,n\} can be combinatorially generated by

n=1×2××n.\mathcal{M}_{n}=\mathcal{B}_{1}\times\mathcal{B}_{2}\times\dots\times\mathcal{B}_{n}.

Hence, the generating function Θn(z,t)\Theta_{n}(z,\vec{t}) is given by the stated formula. The result for the non-truncated multiple zeta values follow by taking the limit. Then, we use the explog\exp-\log representation and the expansion of ln(1z)\ln(1-z) to get

Θ(z,t)\displaystyle\Theta(z,\vec{t}) =exp(m=1ln(1z(tm1)ms)ln(1ztmms))\displaystyle=\exp\left(\sum_{m=1}^{\infty}\ln\Big{(}1-\frac{z(t_{m}-1)}{m^{s}}\Big{)}-\ln\Big{(}1-\frac{zt_{m}}{m^{s}}\Big{)}\right)
=exp(m=1j=1zjjtmj(tm1)jmjs)\displaystyle=\exp\left(\sum_{m=1}^{\infty}\sum_{j=1}^{\infty}\frac{z^{j}}{j}\cdot\frac{t_{m}^{j}-(t_{m}-1)^{j}}{m^{js}}\right)
=exp(j=1zjj(ζ((tj,js))ζ(((t1)j,js)))).\displaystyle=\exp\left(\sum_{j=1}^{\infty}\frac{z^{j}}{j}\Big{(}\zeta((\vec{t}^{j},js))-\zeta(((\vec{t}-\vec{1})^{j},js))\Big{)}\right).

Proof of Corollary 1.

From the expression for Θ(z,t)\Theta(z,\vec{t}) we get

ζt({s}k)=[zk]Θ(z,t)=[zk](m=1(1+(1tm)zms))(m=111ztmms).\zeta^{\vec{t}}(\{s\}_{k})=[z^{k}]\Theta(z,\vec{t})=[z^{k}]\left(\prod_{m=1}^{\infty}\Big{(}1+\frac{(1-t_{m})z}{m^{s}}\Big{)}\right)\left(\prod_{m=1}^{\infty}\frac{1}{1-\frac{zt_{m}}{m^{s}}}\right).

The former expression is exactly the generating function of ζ({(1t,s)}k)\zeta(\{(\vec{1}-\vec{t},s)\}_{k}), whereas the latter expression is the generating function of ζ({(t,s)}k)\zeta^{\star}(\{(\vec{t},s)\}_{k}). ∎

4. A product for multi-interpolated zeta values

We discuss algebraic properties of the multi-interpolated multiple zeta values. Following Hoffman [8, 11, 12] and Yamamoto [27], let 𝒜={z1,z2,}\mathcal{A}=\{z_{1},z_{2},\dots\} denote a countable set of letters. Let 𝒜\mathbb{Q}\langle\mathcal{A}\rangle denote the rational non-commutative polynomial algebra and 𝔥1\mathfrak{h}^{1} the underlying rational vector space of 𝒜\mathbb{Q}\langle\mathcal{A}\rangle. There are two products \ast and \star on 𝔥1\mathfrak{h}^{1} defined by

x1=1x=x,x1=1x=x,x\ast 1=1\ast x=x,\quad x\star 1=1\star x=x,

For words x=aux=au, y=bvy=bv we have

xy=a(ubv)+b(auv)+ab(uv),x\ast y=a(u\ast bv)+b(au\ast v)+a\diamond b(u\ast v), (11)

whereas

xy=a(ubv)+b(auv)ab(uv).x\star y=a(u\star bv)+b(au\star v)-a\diamond b(u\star v). (12)

Here, \diamond denotes the commutative product

zizj=zi+j,z_{i}\diamond z_{j}=z_{i+j}, (13)

and zi1=1zi=0z_{i}\diamond 1=1\diamond z_{i}=0. The product \ast corresponds to the multiplication of multiple zeta values, whereas the \star product to the multiple zeta star values.

Remark 4.

It is well known that if the \diamond product is defined trivially by xy=0x\diamond y=0, then both products reduce to the shuffle product: ==\shuffle\ast=\star=\shuffle.

Let 𝔥0\mathfrak{h}^{0} be the subspace of 𝔥1\mathfrak{h}^{1} generated by 1 and monomials that do not start with z1z_{1}, then the linear map Z:𝔥0𝐑Z\colon\mathfrak{h}^{0}\to\mathbf{R}, defined by

Z(zi1zik)=ζ(i1,,ik)Z(z_{i_{1}}\dots z_{i_{k}})=\zeta(i_{1},\dots,i_{k}) (14)

and Z(1)=1Z(1)=1 is a homomorphism from (𝔥0;)(\mathfrak{h}^{0};\ast) to the reals.

Yamamoto [27] introduced the interpolated product t\stackrel{{\scriptstyle t}}{{\ast}}, generalizing (11) and (12): 1=\stackrel{{\scriptstyle 1}}{{\ast}}=\star, 0=\stackrel{{\scriptstyle 0}}{{\ast}}=\ast. He also introduced a map ZtZ^{t} from 𝔥0\mathfrak{h}^{0} to 𝐑\mathbf{R}. It maps a word x=zi1zik𝔥0x=z_{i_{1}}\dots z_{i_{k}}\in\mathfrak{h}^{0} to an interpolated MZV:

Zt(zi1zik)=ζt(i1,,ik).Z^{t}(z_{i_{1}}\dots z_{i_{k}})=\zeta^{t}(i_{1},\dots,i_{k}).

Moreover, for x,y𝔥0x,y\in\mathfrak{h}^{0} the product t\stackrel{{\scriptstyle t}}{{\ast}} satisfies the important relation

Zt(xty)=Zt(x)Zt(y).Z^{t}(x\stackrel{{\scriptstyle t}}{{\ast}}y)=Z^{t}(x)\cdot Z^{t}(y).

The refinement of interpolated MZVs to multi-interpolated MZVs in Definition 1 suggests to look at corresponding generalizations of the map ZtZ^{t} and the product t\stackrel{{\scriptstyle t}}{{\ast}}. In the following we introduce a multi-interpolated product t\stackrel{{\scriptstyle\vec{t}}}{{\ast}}, as well as a map ZtZ^{\vec{t}} such that for x,y𝔥0x,y\in\mathfrak{h}^{0} it holds

Zt(xty)=Zt(x)Zt(y).Z^{\vec{t}}(x\stackrel{{\scriptstyle\vec{t}}}{{\ast}}y)=Z^{\vec{t}}(x)\cdot Z^{\vec{t}}(y). (15)

In order to make this precise, we first define the map ZtZ^{\vec{t}}. For this purpose, we introduce a new variable, which we denote with t\vec{t}. It does not commute with any letters ziz_{i} of the alphabet 𝒜\mathcal{A}. Let 𝒜,t\mathbb{Q}\langle\mathcal{A},\vec{t}\rangle denote the algebra of noncommutative polynomials in the letters z1,z2,𝒜z_{1},z_{2},\dots\in\mathcal{A} and the symbol t\vec{t}, where we denote with tm\vec{t}^{m} a string consisting of mm occurrences of t\vec{t}, m0m\geq 0. We denote with 𝔥2\mathfrak{h}^{2} the subspace, generated by 1 and monomials that do not start with tjz1\vec{t}^{j}z_{1}, j0j\geq 0 or end with a letter t\vec{t}. Non-empty words x𝔥2x\in\mathfrak{h}^{2} have the form

x=tm1zi1tm2zi2tmnzin,x=\vec{t}^{m_{1}}z_{i_{1}}\vec{t}^{m_{2}}z_{i_{2}}\dots\vec{t}^{m_{n}}z_{i_{n}}, (16)

with n1n\geq 1 and m1,m10m_{1},\dots m_{1}\geq 0, where i11i_{1}\neq 1.

The map ZtZ^{\vec{t}} has domain 𝔥2\mathfrak{h}^{2} and codomain 𝐑[[t]]\mathbf{R}[[\vec{t}]] and sends words x𝔥2x\in\mathfrak{h}^{2} (16) to multiple zeta values with variables t1,t2,t_{1},t_{2},\dots, as introduced in Definition 2:

Zt(tm1zi1tm2zi2tmnzin)=ζt((tm1,i1),(tm2,i2),,(tmn,in)).Z^{\vec{t}}(\vec{t}^{m_{1}}z_{i_{1}}\vec{t}^{m_{2}}z_{i_{2}}\dots\vec{t}^{m_{n}}z_{i_{n}})=\zeta^{\vec{t}}\big{(}(\vec{t}^{m_{1}},i_{1}),(\vec{t}^{m_{2}},i_{2}),\dots,(\vec{t}^{m_{n}},i_{n})\big{)}. (17)

For the structural analysis of ZtZ^{\vec{t}} we will revisit the map ZZ (14), as well as the ordinary stuffle product \ast (11). We extend the domain and codomain of ZZ to 𝔥2\mathfrak{h}^{2} and 𝐑[[t]]\mathbf{R}[[\vec{t}]], respectively:

Z(tm1zi1tm2zi2tmnzin)=ζ((tm1,i1),(tm2,z2)(tmn,in)).Z(\vec{t}^{m_{1}}z_{i_{1}}\vec{t}^{m_{2}}z_{i_{2}}\dots\vec{t}^{m_{n}}z_{i_{n}})=\zeta\big{(}(\vec{t}^{m_{1}},i_{1}),(\vec{t}^{m_{2}},z_{2})\dots(\vec{t}^{m_{n}},i_{n})\big{)}. (18)
Example 5.

We emphasize the non-commutativity of the letter t\vec{t} with the letters zj𝒜z_{j}\in\mathcal{A}. Let x=zi1tzi2x=z_{i_{1}}\vec{t}z_{i_{2}} and y=tzi1zi2y=\vec{t}z_{i_{1}}z_{i_{2}}. Then,

Z(x)=Z(zi1tzi2)=1>21t21i12i2Z(y)=Z(tzi1zi2)=1>21t11i12i2.Z(x)=Z(z_{i_{1}}\vec{t}z_{i_{2}})=\sum_{\ell_{1}>\ell_{2}\geq 1}\frac{t_{\ell_{2}}}{\ell_{1}^{i_{1}}\ell_{2}^{i_{2}}}\neq Z(y)=Z(\vec{t}z_{i_{1}}z_{i_{2}})=\sum_{\ell_{1}>\ell_{2}\geq 1}\frac{t_{\ell_{1}}}{\ell_{1}^{i_{1}}\ell_{2}^{i_{2}}}.

In contrast for t=t\vec{t}=t, see Remark 1, we would have obtained the same result tζ(i1,i2)t\cdot\zeta(i_{1},i_{2}), as

zi1tzi2=tzi1zi2.z_{i_{1}}tz_{i_{2}}=tz_{i_{1}}z_{i_{2}}.

Next, define how ordinary stuffle product \ast (11) for MZVs acts on words in 𝔥2\mathfrak{h}^{2}. Let x=tm1a1u𝔥2x=\vec{t}^{m_{1}}a_{1}u\in\mathfrak{h}^{2} with u=tm2a2tmnanu=\vec{t}^{m_{2}}a_{2}\dots\vec{t}^{m_{n}}a_{n} and y=tk1b1v𝔥2y=\vec{t}^{k_{1}}b_{1}v\in\mathfrak{h}^{2} with v=tk2a2tkrbrv=\vec{t}^{k_{2}}a_{2}\dots\vec{t}^{k_{r}}b_{r}, with a,bj𝒜a_{\ell},b_{j}\in\mathcal{A}, 1n1\leq\ell\leq n and 1jr1\leq j\leq r. Then, xyx\ast y is defined by

xy=tm1a1(uy)+tk1b1(xv)+(tm1a1tk1b1)(uv).x\ast y=\vec{t}^{m_{1}}a_{1}(u\ast y)+\vec{t}^{k_{1}}b_{1}(x\ast v)+(\vec{t}^{m_{1}}a_{1}\diamond\vec{t}^{k_{1}}b_{1})(u\ast v). (19)

where we extend the definition of the product \diamond (13) to

tczitdzj=tc+dzi+j,c,d0.\vec{t}^{c}z_{i}\diamond\vec{t}^{d}z_{j}=\vec{t}^{c+d}z_{i+j},\quad c,d\geq 0. (20)

Next, we introduce the product t\stackrel{{\scriptstyle\vec{t}}}{{\ast}}.

Definition 3 (Product t\stackrel{{\scriptstyle\vec{t}}}{{\ast}}).

Let x,y𝔥0x,y\in\mathfrak{h}^{0} denote two words and t\vec{t} a variable non-commutative with the letters zk𝒜z_{k}\in\mathcal{A}. If y=1y=1 then

xt1=1tx=x.x\stackrel{{\scriptstyle\vec{t}}}{{\ast}}1=1\stackrel{{\scriptstyle\vec{t}}}{{\ast}}x=x.

For x=a𝒜x=a\in\mathcal{A} and y=b𝒜y=b\in\mathcal{A} single letter words we have

xty=atb=ab+ba+(12t)ab.x\stackrel{{\scriptstyle\vec{t}}}{{\ast}}y=a\stackrel{{\scriptstyle\vec{t}}}{{\ast}}b=ab+ba+(1-2\vec{t})a\diamond b.

For words x=au𝔥0x=au\in\mathfrak{h}^{0}, y=bv𝔥0y=bv\in\mathfrak{h}^{0} we have

xty=a(utbv)+b(autv)+(12t)ab(utv)+(t2t)ab(utv).x\stackrel{{\scriptstyle\vec{t}}}{{\ast}}y=a(u\stackrel{{\scriptstyle\vec{t}}}{{\ast}}bv)+b(au\stackrel{{\scriptstyle\vec{t}}}{{\ast}}v)+(1-2\vec{t})a\diamond b(u\stackrel{{\scriptstyle\vec{t}}}{{\ast}}v)+(\vec{t}^{2}-\vec{t})a\diamond b\diamond(u\stackrel{{\scriptstyle\vec{t}}}{{\ast}}v).
Remark 5.

Our definition looks similar to the definition of Yamamoto [27]. Indeed, when the variable t\vec{t} is evaluated into tt (7), then t=t\stackrel{{\scriptstyle\vec{t}}}{{\ast}}\ =\ \stackrel{{\scriptstyle t}}{{\ast}}. We emphasize again the key difference, namely the non-commutativity of t\vec{t} with the letters zk𝒜z_{k}\in\mathcal{A} as .

Remark 6.

By (5) and (15) we are mainly interested in words x,y𝔥0x,y\in\mathfrak{h}^{0}. However, we can readily extend the definition of t\stackrel{{\scriptstyle\vec{t}}}{{\ast}} to words x,y𝔥2x,y\in\mathfrak{h}^{2}, compare with (19):

xty=tm1a1(uttk1b1v)+tk1b1(tm1a1utv)+(12t)tm1+k1a1b1(utv)+(t2t)tm1+k1a1b1(utv).\begin{split}x\stackrel{{\scriptstyle\vec{t}}}{{\ast}}y&=\vec{t}^{m_{1}}a_{1}(u\stackrel{{\scriptstyle\vec{t}}}{{\ast}}\vec{t}^{k_{1}}b_{1}v)+\vec{t}^{k_{1}}b_{1}(\vec{t}^{m_{1}}a_{1}u\stackrel{{\scriptstyle\vec{t}}}{{\ast}}v)+(1-2\vec{t})\vec{t}^{m_{1}+k_{1}}a_{1}\diamond b_{1}(u\stackrel{{\scriptstyle\vec{t}}}{{\ast}}v)\\ &\quad+(\vec{t}^{2}-\vec{t})\vec{t}^{m_{1}+k_{1}}a_{1}\diamond b_{1}\diamond(u\stackrel{{\scriptstyle\vec{t}}}{{\ast}}v).\end{split}
Example 6.

Let x=a=zix=a=z_{i} and y=b=zjy=b=z_{j}. Then

xty=zitzj=zizj+zjzi+(12t)zi+j.x\stackrel{{\scriptstyle\vec{t}}}{{\ast}}y=z_{i}\stackrel{{\scriptstyle\vec{t}}}{{\ast}}z_{j}=z_{i}z_{j}+z_{j}z_{i}+(1-2\vec{t})z_{i+j}.
Example 7.

Let x=a=zix=a=z_{i} and y=bzk=zjzky=bz_{k}=z_{j}z_{k}.

xty\displaystyle x\stackrel{{\scriptstyle\vec{t}}}{{\ast}}y =zizjzk+zj(zitzk)+(12t)zi+jzk+(t2t)zi+j+k\displaystyle=z_{i}z_{j}z_{k}+z_{j}(z_{i}\stackrel{{\scriptstyle\vec{t}}}{{\ast}}z_{k})+(1-2\vec{t})z_{i+j}z_{k}+(\vec{t}^{2}-\vec{t})z_{i+j+k}
=zizjzk+zjzizk+zjzkzi+zj(12t)zi+k\displaystyle=z_{i}z_{j}z_{k}+z_{j}z_{i}z_{k}+z_{j}z_{k}z_{i}+z_{j}(1-2\vec{t})z_{i+k}
+(12t)zi+jzk+(t2t)zi+j+k.\displaystyle\quad+(1-2\vec{t})z_{i+j}z_{k}+(\vec{t}^{2}-\vec{t})z_{i+j+k}.

In order to obtain the result (15) we need more insight into the map ZtZ^{\vec{t}}. We will realize the map ZtZ^{\vec{t}} using the map ZZ (14), (18) and a new operator StS^{\vec{t}}, generalizing the interpolating operator in [27].

Definition 4 (Multi-interpolation operator).

For the empty word 1 and a single letter a𝒜a\in\mathcal{A} the multi-interpolation operator StS^{\vec{t}} is defined as

St(1)=1,St(a)=a.S^{\vec{t}}(1)=1,\quad S^{\vec{t}}(a)=a.

For x=au𝔥0x=au\in\mathfrak{h}^{0}, where uu denotes a substring, we set

St(x)=St(au)=aSt(u)+taSt(u).S^{\vec{t}}(x)=S^{\vec{t}}(au)=aS^{\vec{t}}(u)+\vec{t}a\diamond S^{\vec{t}}(u). (21)
Remark 7.

Of course, one can also consider words x𝔥2x\in\mathfrak{h}^{2},

x=tm1a1u,u=tm2a2tmnan,x=\vec{t}^{m_{1}}a_{1}u,\quad u=\vec{t}^{m_{2}}a_{2}\dots\vec{t}^{m_{n}}a_{n},

where we define

St(x)=St(tm1a1u)=tm1a1St(u)+tm1+1a1St(u).S^{\vec{t}}(x)=S^{\vec{t}}(\vec{t}^{m_{1}}a_{1}u)=\vec{t}^{m_{1}}a_{1}S^{\vec{t}}(u)+\vec{t}^{m_{1}+1}a_{1}\diamond S^{\vec{t}}(u). (22)
Example 8.

Let x=zizjzkx=z_{i}z_{j}z_{k} denote word of length three. Then

St(x)\displaystyle S^{\vec{t}}(x) =ziSt(zjzk)+tziSt(zjzk)\displaystyle=z_{i}S^{\vec{t}}(z_{j}z_{k})+\vec{t}z_{i}\diamond S^{\vec{t}}(z_{j}z_{k})
=zizjzk+zitzjzk+tzizjzk+tzitzjzk\displaystyle=z_{i}z_{j}z_{k}+z_{i}\vec{t}z_{j}\diamond z_{k}+\vec{t}z_{i}\diamond z_{j}z_{k}+\vec{t}z_{i}\diamond\vec{t}z_{j}\diamond z_{k}
=zizjzk+zitzj+k+tzi+jzk+t2zi+j+k.\displaystyle=z_{i}z_{j}z_{k}+z_{i}\vec{t}z_{j+k}+\vec{t}z_{i+j}z_{k}+\vec{t}^{2}z_{i+j+k}.

This corresponds exactly to the decomposition of the multi-interpolated multiple zeta value ζt(i,j,k)\zeta^{\vec{t}}(i,j,k) in Example 3 and we see that

(ZSt)(zizjzk)=Zt(zizjzk).(Z\circ S^{\vec{t}})(z_{i}z_{j}z_{k})=Z^{\vec{t}}(z_{i}z_{j}z_{k}).

In order to describe St(x)S^{\vec{t}}(x) for a word xx let RnR_{n}, nn\in\mathbb{N}, denote the set of subsequences r=(r0,,rs)r=(r_{0},\dots,r_{s}) of (0,,n)(0,\dots,n) such that r0=0r_{0}=0 and rs=nr_{s}=n. For such rr and a word x=a1anx=a_{1}\dots a_{n}, we define the word Conrt(x)\text{Con}_{r}^{\vec{t}}(x) with respect to t\vec{t}. It is the weighted contraction of xx with respect to rr, weighted according

Conrt(x)=tr1r01b1tr2r11b2trsrs11bs,bi=ari+1ari+1.\text{Con}_{r}^{\vec{t}}(x)=\vec{t}^{r_{1}-r_{0}-1}b_{1}\cdot\vec{t}^{r_{2}-r_{1}-1}b_{2}\cdots\vec{t}^{r_{s}-r_{s-1}-1}b_{s},\quad b_{i}=a_{r_{i}+1}\diamond\dots\diamond a_{r_{i+1}}. (23)
Lemma 1 (Properties - Multi-interpolation operator).

Let x=a1anx=a_{1}\dots a_{n}. The operator StS^{\vec{t}} has the properties

  1. a)

    St(x)=rRnConrt(x)S^{\vec{t}}(x)=\sum_{r\in R_{n}}\text{Con}_{r}^{\vec{t}}(x),

  2. b)

    (St1)nx=0(S^{\vec{t}}-1)^{n}x=0,

  3. c)

    Assume that symbols t1\vec{t}_{1}, t2\vec{t}_{2} commute with each other, but are non-commutative with respect to letters zk𝒜z_{k}\in\mathcal{A}. Let \circ denote the operator composition, then

    St1+t2=St1St2.S^{\vec{t}_{1}+\vec{t}_{2}}=S^{\vec{t}_{1}}\circ S^{\vec{t}_{2}}.
  4. d)

    Let b𝒜b\in\mathcal{A}:

    bSt(x)=St(bx).b\diamond S^{\vec{t}}(x)=S^{\vec{t}}(b\diamond x).
Remark 8.

Note that for t=t\vec{t}=t the weighted contraction simplifies to

Conrt(x)=ti=1s(riri11)Conr(x)=tnsConr(x)=tσ(r)Conr(x),\text{Con}_{r}^{\vec{t}}(x)=t^{\sum_{i=1}^{s}(r_{i}-r_{i-1}-1)}\text{Con}_{r}(x)=t^{n-s}\text{Con}_{r}(x)=t^{\sigma(r)}\text{Con}_{r}(x),

where Conr(x)=b1bs\text{Con}_{r}(x)=b_{1}\cdots b_{s} denotes the standard contraction operator of [27].

Proof of Lemma 1.

The first part follows directly from the definition. Part (b) is shown using induction. We actually prove the stronger statement that (St1)nx=0(S^{\vec{t}}-1)^{n}x=0 for x=tm1a1tm2a2tmnan𝔥2x=\vec{t}^{m_{1}}a_{1}\vec{t}^{m_{2}}a_{2}\dots\vec{t}^{m_{n}}a_{n}\in\mathfrak{h}^{2}. The statement is obviously true for an empty word 11, as well as a single letter word x=tmax=\vec{t}^{m}a. Let x=tm1a1ux=\vec{t}^{m_{1}}a_{1}u with a1a_{1} a single letter and u=tm2a2tmnanu=\vec{t}^{m_{2}}a_{2}\dots\vec{t}^{m_{n}}a_{n} the subword. By

(St1)nx=tm1(St1)n1(St1)a1u.(S^{\vec{t}}-1)^{n}x=\vec{t}^{m_{1}}(S^{\vec{t}}-1)^{n-1}(S^{\vec{t}}-1)a_{1}u.

By a slight generalization of part a we observe (St1)a1u(S^{\vec{t}}-1)a_{1}u is a combination of words of length less or equal n1n-1. Hence, by the induction hypothesis the expression is equal to zero. For part (c) we have to argue in combinatorial way, reducing the identity to a counting problem. By definition part a) and (23), we have

St1+t2(x)=rRn(t1+t2)r1r01b1(t1+t2)rsrs11bs.S^{\vec{t}_{1}+\vec{t}_{2}}(x)=\sum_{r\in R_{n}}(\vec{t}_{1}+\vec{t}_{2})^{r_{1}-r_{0}-1}b_{1}\cdots(\vec{t}_{1}+\vec{t}_{2})^{r_{s}-r_{s-1}-1}b_{s}.

Assume that 1is1\leq i\leq s and ρi=riri11\rho_{i}=r_{i}-r_{i-1}-1. Expanding by the binomial theorem gives

(t1+t2)ρi==0ρi(ρi)t1ρit2.(\vec{t}_{1}+\vec{t}_{2})^{\rho_{i}}=\sum_{\ell=0}^{\rho_{i}}\binom{\rho_{i}}{\ell}\vec{t}_{1}^{\rho_{i}-\ell}\vec{t}_{2}^{\ell}.

For each resulting block bi=ari+1ari+1b_{i}=a_{r_{i}+1}\diamond\dots\diamond a_{r_{i+1}}, there have to be exactly ρi\rho_{i} contractions leading to it. Out of these ρi\rho_{i} contractions, we can choose 0ρi0\leq\ell\leq\rho_{i} of them to stem from the application of St2S^{\vec{t}_{2}}. The subblocks leading to bib_{i} all have the common prefactor t2\vec{t}_{2}^{\ell}, as already \ell contractions have occurred. As there are in total ρi\rho_{i} letters merged into bib_{i}, we have (ρi)\binom{\rho_{i}}{\ell} words in Conrt(x)\text{Con}_{r}^{\vec{t}}(x), with rRnr\in R_{n}, leading after application of St1S^{\vec{t}_{1}} to the block bib_{i}. The application of St1S^{\vec{t}_{1}} to these words leads to an additional factor t1ρi\vec{t}_{1}^{\rho_{i}-\ell}, as we contract the remaining letters to obtain bib_{i}. Concerning the final statement (d) we observe that

St(bx)\displaystyle S^{\vec{t}}(b\diamond x) =St(btm1a1u)=St(tm1ba1u)\displaystyle=S^{\vec{t}}(b\diamond\vec{t}^{m_{1}}a_{1}u)=S^{\vec{t}}\big{(}\vec{t}^{m_{1}}b\diamond a_{1}u\big{)}
=tm1ba1St(u)+tm1+1ba1St(u)\displaystyle=\vec{t}^{m_{1}}b\diamond a_{1}S^{\vec{t}}(u)+\vec{t}^{m_{1}+1}b\diamond a_{1}\diamond S^{\vec{t}}(u)
=b(tm1a1St(u)+tm1+1a1St(u))=bSt(x).\displaystyle=b\diamond\big{(}\vec{t}^{m_{1}}a_{1}S^{\vec{t}}(u)+\vec{t}^{m_{1}+1}a_{1}\diamond S^{\vec{t}}(u)\big{)}=b\diamond S^{\vec{t}}(x).

We also collect another property of 𝒮t\mathcal{S}^{\vec{t}} when combined a suitably defined derivative.

Definition 5 (Derivative for symbol t\vec{t}).

The action of the differential operator ddt\frac{d}{d\vec{t}} to x𝔥2x\in\mathfrak{h}^{2} is given as follows. For x=a𝔥0x=a\in\mathfrak{h}^{0} we have

ddta=0,ddttma=mtm1a.\frac{d}{d\vec{t}}a=0,\quad\frac{d}{d\vec{t}}\vec{t}^{m}a=m\cdot\vec{t}^{m-1}a.

For x=tm1a1u𝔥2x=\vec{t}^{m_{1}}a_{1}u\in\mathfrak{h}^{2} with u=tm2a2tmnanu=\vec{t}^{m_{2}}a_{2}\dots\vec{t}^{m_{n}}a_{n} with n2n\geq 2 we define

ddtx=m1tm11a1u+tm1a1ddtu,\frac{d}{d\vec{t}}x=m_{1}\vec{t}^{m_{1}-1}a_{1}u+\vec{t}^{m_{1}}a_{1}\frac{d}{d\vec{t}}u,

We observe the following.

Lemma 2.

Let x=a1anx=a_{1}\dots a_{n}. The differential operator ddt\frac{d}{d\vec{t}} acting on St(x)S^{\vec{t}}(x) can be decomposed into contractions:

ddtSt(x)=k=1n1St(a1ak1akak+1ak+2an).\frac{d}{d\vec{t}}S^{\vec{t}}(x)=\sum_{k=1}^{n-1}S^{\vec{t}}(a_{1}\dots a_{k-1}a_{k}\diamond a_{k+1}a_{k+2}\dots a_{n}).
Proof.

We provide two different proofs. First, we argue in a combinatorial way. By Lemma 1 (a) each word in St(x)S^{\vec{t}}(x) has the form

Conrt(x)=tr1r01b1tr2r11b2trsrs11bs,bi=ari+1ari+1.\text{Con}_{r}^{\vec{t}}(x)=\vec{t}^{r_{1}-r_{0}-1}b_{1}\cdot\vec{t}^{r_{2}-r_{1}-1}b_{2}\cdots\vec{t}^{r_{s}-r_{s-1}-1}b_{s},\quad b_{i}=a_{r_{i}+1}\diamond\dots\diamond a_{r_{i+1}}.

Application of the derivative to Conrt(x)\text{Con}_{r}^{\vec{t}}(x) leads to ss words, each with multiplicative factor ρi=riri11\rho_{i}=r_{i}-r_{i-1}-1 and the corresponding power of t\vec{t} at position ii diminished by one. Out of the words in k=1n1St(a1ak1akak+1an)\sum_{k=1}^{n-1}S^{\vec{t}}(a_{1}\dots a_{k-1}a_{k}\diamond a_{k+1}\dots a_{n}) exactly the words with ri1krir_{i-1}\leq k\leq r_{i} can be mapped to the resulting word in ddtConrt(x)\frac{d}{d\vec{t}}\text{Con}_{r}^{\vec{t}}(x). Since every word in ddtConrt(x)\frac{d}{d\vec{t}}\text{Con}_{r}^{\vec{t}}(x) is covered like this, we obtain the stated result.

Our second proof uses induction. We use the shorthand notation ai,j=aiaja_{i,j}=a_{i}\dots a_{j} for iji\leq j. We have

ddtSt(x)=ddt(a1St(a2,n)+ta1St(a2,n))=a1ddtSt(a2,n)+ddtta1St(a2,n).\frac{d}{d\vec{t}}S^{\vec{t}}(x)=\frac{d}{d\vec{t}}\Big{(}a_{1}S^{\vec{t}}(a_{2,n})+\vec{t}a_{1}\diamond S^{\vec{t}}(a_{2,n})\Big{)}=a_{1}\frac{d}{d\vec{t}}S^{\vec{t}}(a_{2,n})+\frac{d}{d\vec{t}}\vec{t}a_{1}\diamond S^{\vec{t}}(a_{2,n}).

The term St(a2,n)S^{\vec{t}}(a_{2,n}) is directly covered by the induction hypothesis. By the ordinary product rule and by Lemma 1 (d) we get further

ddtta1St(a2,n)=St(a1a2a3,n)+tddtSt((a1a2)a3,n).\frac{d}{d\vec{t}}\vec{t}a_{1}\diamond S^{\vec{t}}(a_{2,n})=S^{\vec{t}}(a_{1}\diamond a_{2}a_{3,n})+\vec{t}\frac{d}{d\vec{t}}S^{\vec{t}}\big{(}(a_{1}\diamond a_{2})a_{3,n}\big{)}.

The induction hypothesis applies to the second summand and we get

ddtSt(a1a2,n)=ddtSt((a1a2)a3,n)\displaystyle\frac{d}{d\vec{t}}S^{\vec{t}}(a_{1}\diamond a_{2,n})=\frac{d}{d\vec{t}}S^{\vec{t}}\big{(}(a_{1}\diamond a_{2})a_{3,n}\big{)}
=St((a1a2a3)a4,n)++St((a1a2)a3,n2(an1an)).\displaystyle=S^{\vec{t}}\big{(}(a_{1}\diamond a_{2}\diamond a_{3})a_{4,n}\big{)}+\dots+S^{\vec{t}}\big{(}(a_{1}\diamond a_{2})a_{3,n-2}(a_{n-1}\diamond a_{n})\big{)}.

Collecting all contributions, the induction hypothesis implies that

ddtSt(x)\displaystyle\frac{d}{d\vec{t}}S^{\vec{t}}(x) =a1k=2nSt(a2,k1(akak+1)ak+2,n)+St((a1a2)a3,n)\displaystyle=a_{1}\sum_{k=2}^{n}S^{\vec{t}}\big{(}a_{2,k-1}(a_{k}\diamond a_{k+1})a{k+2,n}\big{)}+S^{\vec{t}}\big{(}(a_{1}\diamond a_{2})a_{3,n}\big{)}
+t(St((a1a2a3)a4,n)++St((a1a2)a3,n2(an1an))).\displaystyle+\vec{t}\Big{(}S^{\vec{t}}\big{(}(a_{1}\diamond a_{2}\diamond a_{3})a_{4,n}\big{)}+\dots+S^{\vec{t}}\big{(}(a_{1}\diamond a_{2})a_{3,n-2}(a_{n-1}\diamond a_{n})\big{)}\Big{)}.

On the other hand, we can decompose the righthandside of the equation.

k=1n1St(a1,k1(akak+1)ak+2,n)=St((a1a2)a3,n)\displaystyle\sum_{k=1}^{n-1}S^{\vec{t}}\big{(}a_{1,k-1}(a_{k}\diamond a_{k+1})a_{k+2,n}\big{)}=S^{\vec{t}}((a_{1}\diamond a_{2})a_{3,n})
+k=2n1St(a1,k1(akak+1)ak+2,n)\displaystyle\quad+\sum_{k=2}^{n-1}S^{\vec{t}}\big{(}a_{1,k-1}(a_{k}\diamond a_{k+1})a_{k+2,n}\big{)}

Furthermore,

St(a1,k1akak+1,n)\displaystyle S^{\vec{t}}\big{(}a_{1,k-1}a_{k}\diamond a_{k+1,n}\big{)} =a1St(a2,k1(akak+1)ak+2,n)\displaystyle=a_{1}S^{\vec{t}}\big{(}a_{2,k-1}(a_{k}\diamond a_{k+1})a_{k+2,n}\big{)}
+tSt((a1a2)a3,k1(akak+1)ak+2,n).\displaystyle\quad+\vec{t}S^{\vec{t}}\big{(}(a_{1}\diamond a_{2})a_{3,k-1}(a_{k}\diamond a_{k+1})a_{k+2,n}\big{)}.

This provides the induction step and thus the stated result. ∎

A direct application of Lemma 2 is a generalization of the so-called alternating sum formula [14]:

k=0n(1)k(a1ak)S(anak+1)=0.\sum_{k=0}^{n}(-1)^{k}(a_{1}\cdots a_{k})\ast S(a_{n}\cdots a_{k+1})=0. (24)

This formula was extended to interpolated MZVs [27, Proposition 3.7]

k=0n(1)kSt(a1ak)S1t(anak+1)=0.\sum_{k=0}^{n}(-1)^{k}S^{t}(a_{1}\cdots a_{k})\ast S^{1-t}(a_{n}\cdots a_{k+1})=0.
Theorem 3 (Alternating sum formula).

The multi-interpolation operator StS^{\vec{t}} satisfies

k=0n(1)kSt(a1ak)S1t(anak+1)=0.\sum_{k=0}^{n}(-1)^{k}S^{\vec{t}}(a_{1}\cdots a_{k})\ast S^{\vec{1}-\vec{t}}(a_{n}\cdots a_{k+1})=0.
Proof.

We use induction with respect to nn. For n=1n=1 we have

St(a1)1S1t(a1)1=a1a1=0.S^{\vec{t}}(a_{1})\cdot 1-S^{\vec{1}-\vec{t}}(a_{1})\cdot 1=a_{1}-a_{1}=0.

For n=2n=2 observe that

St(a1a2)1St(a1)S1t(a2)+S1t(a2a1)\displaystyle S^{\vec{t}}(a_{1}a_{2})\cdot 1-S^{\vec{t}}(a_{1})S^{\vec{1}-\vec{t}}(a_{2})+S^{\vec{1}-\vec{t}}(a_{2}a_{1})
=a1a2+ta1a2(a1a2+a2a1a1a2)+a2a1+(1t)a2a1=0.\displaystyle\quad=a_{1}a_{2}+\vec{t}a_{1}\diamond a_{2}-\big{(}a_{1}a_{2}+a_{2}a_{1}-a_{1}\diamond a_{2}\big{)}+a_{2}a_{1}+(\vec{1}-\vec{t})a_{2}\diamond a_{1}=0.

Assume now that n2n\geq 2. We observe that the left-hand side is given by a sum of words of the form x=t1mb1tkmbkx=\vec{t}^{m}_{1}b_{1}\dots\vec{t}^{m}_{k}b_{k}, with 1kn1\leq k\leq n plus words without any powers of t\vec{t}. By the original alternating sum formula (24) we know that for t=0\vec{t}=0 the truth of the statement. If there are words of a specific length kk of the form x=t1mb1tkmbkx=\vec{t}^{m}_{1}b_{1}\dots\vec{t}^{m}_{k}b_{k}, such that their sum does not vanish, then the derivative ddt\frac{d}{d\vec{t}} results in words of the form t1mb1tmr1brtkmbk\vec{t}^{m}_{1}b_{1}\dots\vec{t}^{m_{r}-1}b_{r}\dots\vec{t}^{m}_{k}b_{k}, 1rk1\leq r\leq k, which cannot vanish either. Hence, it suffices to prove that

ddtk=0n(1)kSt(a1,k)S1t(An,k+1)=0,\frac{d}{d\vec{t}}\sum_{k=0}^{n}(-1)^{k}S^{\vec{t}}(a_{1,k})\ast S^{\vec{1}-\vec{t}}(A_{n,k+1})=0,

where used again the shorthand notation ai,j=aiaja_{i,j}=a_{i}\dots a_{j} for iji\leq j and also Aj,i=ajaiA_{j,i}=a_{j}\dots a_{i}. We can now proceed identically to [27] and obtain for this derivative of the left-hand side by Lemma 2 and the Leibniz rule

k=2n(1)ki=1k1St(a1,i1aiai+1ai+2,k)S1t(An,k+1)\displaystyle\sum_{k=2}^{n}(-1)^{k}\sum_{i=1}^{k-1}S^{\vec{t}}(a_{1,i-1}a_{i}\diamond a_{i+1}a_{i+2,k})\ast S^{\vec{1}-\vec{t}}(A_{n,k+1})
k=0n2(1)ki=k+1n1St(a1,k)S1t(An,i+2ai+1aiAi1,k)\displaystyle\quad-\sum_{k=0}^{n-2}(-1)^{k}\sum_{i=k+1}^{n-1}S^{\vec{t}}(a_{1,k})\ast S^{\vec{1}-\vec{t}}(A_{n,i+2}a_{i+1}\diamond a_{i}A_{i-1,k})
=i=1n1(k=0i1(1)kSt(a1,k)S1t(An,i+2ai+1aiAi1,k)\displaystyle=-\sum_{i=1}^{n-1}\bigg{(}\sum_{k=0}^{i-1}(-1)^{k}S^{\vec{t}}(a_{1,k})\ast S^{\vec{1}-\vec{t}}(A_{n,i+2}a_{i+1}\diamond a_{i}A_{i-1,k})
+k=i+1n(1)k1St(a1,i1aiai+1ai+2,k)S1t(An,k+1).)\displaystyle\quad+\sum_{k=i+1}^{n}(-1)^{k-1}S^{\vec{t}}(a_{1,i-1}a_{i}\diamond a_{i+1}a_{i+2,k})\ast S^{\vec{1}-\vec{t}}(A_{n,k+1}).\bigg{)}

By the induction hypothesis the sums inside the brackets vanish, which proves the stated result. ∎

Now we turn to the statement of our main result.

Theorem 4.

Let t\stackrel{{\scriptstyle\vec{t}}}{{\ast}} denote the commutative product on the algebra 𝒜[t]\mathbb{Q}\langle\mathcal{A}\rangle[\vec{t}]. The map StS^{\vec{t}} is an isomorphism from (𝔥2,t)(\mathfrak{h}^{2},\stackrel{{\scriptstyle\vec{t}}}{{\ast}}) to (𝔥2,t)(\mathfrak{h}^{2},\stackrel{{\scriptstyle\vec{t}}}{{\ast}}), such that

St(xty)=St(x)St(y).S^{\vec{t}}(x\stackrel{{\scriptstyle\vec{t}}}{{\ast}}y)=S^{\vec{t}}(x)\ast S^{\vec{t}}(y).

The map ZtZ^{\vec{t}} (17) can be decomposed into the map ZZ (14), (18) and the multi-interpolation operator StS^{\vec{t}} (21), such that Zt=ZStZ^{\vec{t}}=Z\circ S^{\vec{t}}. Moreover,

Zt(xty)=Zt(x)Zt(y).Z^{\vec{t}}(x\stackrel{{\scriptstyle\vec{t}}}{{\ast}}y)=Z^{\vec{t}}(x)\cdot Z^{\vec{t}}(y).
Remark 9.

If we define ζt((i1,,ik)t(j1,,j))\zeta^{\vec{t}}\big{(}(i_{1},\dots,i_{k})\stackrel{{\scriptstyle t}}{{\ast}}(j_{1},\dots,j_{\ell})\big{)} as Zt(xty)Z^{\vec{t}}(x\stackrel{{\scriptstyle\vec{t}}}{{\ast}}y) with x=zi1zikx=z_{i_{1}}\dots z_{i_{k}} and y=zj1zjy=z_{j_{1}}\dots z_{j_{\ell}}, then we write

ζt((i1,,ik)t(j1,,j))=ζt(i1,,ik)ζt(j1,,j),\zeta^{\vec{t}}\big{(}(i_{1},\dots,i_{k})\stackrel{{\scriptstyle t}}{{\ast}}(j_{1},\dots,j_{\ell})\big{)}=\zeta^{\vec{t}}(i_{1},\dots,i_{k})\cdot\zeta^{\vec{t}}(j_{1},\dots,j_{\ell}),

compare with (4).

Example 9.

Let x=a=zix=a=z_{i} and y=b=zjy=b=z_{j}. By Example 6 we get

Zt(xty)\displaystyle Z^{\vec{t}}(x\stackrel{{\scriptstyle\vec{t}}}{{\ast}}y) =Zt(zizj)+Zt(zjzi)+Zt((12t)zi+j)\displaystyle=Z^{\vec{t}}(z_{i}z_{j})+Z^{\vec{t}}(z_{j}z_{i})+Z^{\vec{t}}\big{(}(1-2\vec{t})z_{i+j}\big{)}
=ζt(i,j)+ζt(j,i)+112ti+j\displaystyle=\zeta^{\vec{t}}(i,j)+\zeta^{\vec{t}}(j,i)+\sum_{\ell\geq 1}\frac{1-2t_{\ell}}{\ell^{i+j}}
=ζ(i,j)+ζ((i+j)t)+ζ(j,i)+ζ((i+j)t)+112ti+j\displaystyle=\zeta(i,j)+\zeta\big{(}(i+j)\vec{t}\big{)}+\zeta(j,i)+\zeta\big{(}(i+j)\vec{t}\big{)}+\sum_{\ell\geq 1}\frac{1-2t_{\ell}}{\ell^{i+j}}
=ζ(i,j)+ζ(j,i)+ζ(i+j)=ζt(i)ζt(j)=Zt(zi)Zt(zj),\displaystyle=\zeta(i,j)+\zeta(j,i)+\zeta(i+j)=\zeta^{\vec{t}}(i)\zeta^{\vec{t}}(j)=Z^{\vec{t}}(z_{i})\cdot Z^{\vec{t}}(z_{j}),

since ζt(i)=ζ(i)\zeta^{\vec{t}}(i)=\zeta(i) and ζt(j)=ζ(j)\zeta^{\vec{t}}(j)=\zeta(j).

Example 10.

Let x=a=zix=a=z_{i} and y=bzk=zjzky=bz_{k}=z_{j}z_{k}. By Example 7 we get

Zt(xty)\displaystyle Z^{\vec{t}}(x\stackrel{{\scriptstyle\vec{t}}}{{\ast}}y) =ζ(i,j,k)+ζ(i+j,k)+ζ(j,i,k)+ζ(j,i+k)+ζ(j,i,k)\displaystyle=\zeta(i,j,k)+\zeta(i+j,k)+\zeta(j,i,k)+\zeta(j,i+k)+\zeta(j,i,k)
+ζ(i,t(j+k))+ζ(t(i+j+k))+ζ(t(j+k),i),\displaystyle\quad+\zeta(i,\vec{t}(j+k))+\zeta(\vec{t}(i+j+k))+\zeta(\vec{t}(j+k),i),

which is exactly the product of Zt(zi)=ζ(i)Z^{\vec{t}}(z_{i})=\zeta(i) and Zt(zjzk)=ζ(j,k)+ζ((t,j+k))Z^{\vec{t}}(z_{j}z_{k})=\zeta(j,k)+\zeta((\vec{t},j+k)).

Proof.

By induction with respect to the number of letters zk𝒜z_{k}\in\mathcal{A}, te multi-interpolation map StS^{\vec{t}} is injective. It is also surjective, as St(St(x))=S0(x)=xS^{\vec{t}}\big{(}S^{-\vec{t}}(x)\big{)}=S^{0}(x)=x. Once, the homomorphism is established, the result for ZtZ^{\vec{t}} follows directly by Theorem 1 and Lemma 1, as well as an application of ZZ. In order to prove the homomorphism, we follow closely the strategy of [27] and also use results of, so one should give much credit to these works. For the sake of simplicity, we present the proof solely for words x,y𝔥0x,y\in\mathfrak{h}^{0}, as the general case x,y𝔥2x,y\in\mathfrak{h}^{2} is more involved, to the additional occurrences (16) of t\vec{t}. We proceed by induction with respect to the total length of the words. For x=1x=1 or y=1y=1 or both, this is obviously true. For x=ax=a and y=by=b, corresponding to Example 6, we have

St(atb)\displaystyle S^{\vec{t}}(a\stackrel{{\scriptstyle\vec{t}}}{{\ast}}b) =St(ab+ba+(12t)ab)\displaystyle=S^{\vec{t}}\big{(}ab+ba+(1-2\vec{t})a\diamond b\big{)}
=ab+tab+ba+tba+(12t)ab\displaystyle=ab+\vec{t}a\diamond b+ba+\vec{t}b\diamond a+(1-2\vec{t})a\diamond b
=ab+ba+2tab+ab2tab\displaystyle=ab+ba+2\vec{t}a\diamond b+a\diamond b-2\vec{t}a\diamond b
=ab+ba+ab=St(a)St(b).\displaystyle=ab+ba+a\diamond b=S^{\vec{t}}(a)\ast S^{\vec{t}}(b).

Assume that x=aux=au and y=bvy=bv. On one hand, we have

St(x)St(y)=(aSt(u)+taSt(u))(bSt(v)+tbSt(v)).S^{\vec{t}}(x)\ast S^{\vec{t}}(y)=\big{(}aS^{\vec{t}}(u)+\vec{t}a\diamond S^{\vec{t}}(u)\big{)}\ast\big{(}bS^{\vec{t}}(v)+\vec{t}b\diamond S^{\vec{t}}(v)\big{)}.

Let U=St(u)U=S^{\vec{t}}(u) and V=St(v)V=S^{\vec{t}}(v). Thus,

St(x)St(y)=(aU+taU)(bV+tbV).\displaystyle S^{\vec{t}}(x)\ast S^{\vec{t}}(y)=\big{(}aU+\vec{t}a\diamond U\big{)}\ast\big{(}bV+\vec{t}b\diamond V\big{)}.

Expanding the term above gives

St(x)St(y)\displaystyle S^{\vec{t}}(x)\ast S^{\vec{t}}(y) =(aU)(bV)+(aU)(tbV)\displaystyle=(aU)\ast(bV)+(aU)\ast(\vec{t}b\diamond V) (25)
+(taU)(bV)+(taU)(tbV).\displaystyle\quad+(\vec{t}a\diamond U)\ast(bV)+(\vec{t}a\diamond U)\ast(\vec{t}b\diamond V).

On the other hand, by definition of t\stackrel{{\scriptstyle\vec{t}}}{{\ast}} we have

St(xty)\displaystyle S^{\vec{t}}(x\stackrel{{\scriptstyle\vec{t}}}{{\ast}}y) =St(a(utbv))+St(b(autv))+St((12t)ab(utv))\displaystyle=S^{\vec{t}}\big{(}a(u\stackrel{{\scriptstyle\vec{t}}}{{\ast}}bv)\big{)}+S^{\vec{t}}\big{(}b(au\stackrel{{\scriptstyle\vec{t}}}{{\ast}}v)\big{)}+S^{\vec{t}}\big{(}(1-2\vec{t})a\diamond b(u\stackrel{{\scriptstyle\vec{t}}}{{\ast}}v)\big{)}
+St((t2t)ab(utv)).\displaystyle\quad+S^{\vec{t}}\big{(}(\vec{t}^{2}-\vec{t})a\diamond b\diamond(u\stackrel{{\scriptstyle\vec{t}}}{{\ast}}v)\big{)}.

By the definition of StS^{\vec{t}} we get further

St(xty)\displaystyle S^{\vec{t}}(x\stackrel{{\scriptstyle\vec{t}}}{{\ast}}y) =aSt(utbv)+taSt(utbv)\displaystyle=aS^{\vec{t}}\big{(}u\stackrel{{\scriptstyle\vec{t}}}{{\ast}}bv\big{)}+\vec{t}a\diamond S^{\vec{t}}\big{(}u\stackrel{{\scriptstyle\vec{t}}}{{\ast}}bv\big{)}
+bSt(autv)+tbSt(autv)\displaystyle\quad+bS^{\vec{t}}\big{(}au\stackrel{{\scriptstyle\vec{t}}}{{\ast}}v\big{)}+\vec{t}b\diamond S^{\vec{t}}\big{(}au\stackrel{{\scriptstyle\vec{t}}}{{\ast}}v\big{)}
+(12t)abSt(utv)+(12t)tabSt(utv)\displaystyle\quad+(1-2\vec{t})a\diamond bS^{\vec{t}}\big{(}u\stackrel{{\scriptstyle\vec{t}}}{{\ast}}v\big{)}+(1-2\vec{t})\vec{t}a\diamond b\diamond S^{\vec{t}}\big{(}u\stackrel{{\scriptstyle\vec{t}}}{{\ast}}v\big{)}
+St((t2t)ab(utv)).\displaystyle\quad+S^{\vec{t}}\big{(}(\vec{t}^{2}-\vec{t})a\diamond b\diamond(u\stackrel{{\scriptstyle\vec{t}}}{{\ast}}v)\big{)}.

Simplification by Lemma 1 gives

St(xty)\displaystyle S^{\vec{t}}(x\stackrel{{\scriptstyle\vec{t}}}{{\ast}}y) =aSt(utbv)+taSt(utbv)\displaystyle=aS^{\vec{t}}\big{(}u\stackrel{{\scriptstyle\vec{t}}}{{\ast}}bv\big{)}+\vec{t}a\diamond S^{\vec{t}}\big{(}u\stackrel{{\scriptstyle\vec{t}}}{{\ast}}bv\big{)}
+bSt(autv)+tbSt(autv)\displaystyle\quad+bS^{\vec{t}}\big{(}au\stackrel{{\scriptstyle\vec{t}}}{{\ast}}v\big{)}+\vec{t}b\diamond S^{\vec{t}}\big{(}au\stackrel{{\scriptstyle\vec{t}}}{{\ast}}v\big{)}
+(12t)abSt(utv)t2abSt(utv)).\displaystyle\quad+(1-2\vec{t})a\diamond bS^{\vec{t}}\big{(}u\stackrel{{\scriptstyle\vec{t}}}{{\ast}}v\big{)}-\vec{t}^{2}a\diamond b\diamond S^{\vec{t}}(u\stackrel{{\scriptstyle\vec{t}}}{{\ast}}v)\big{)}.

Let U=St(u)U=S^{\vec{t}}(u) and V=St(v)V=S^{\vec{t}}(v). By the induction hypothesis, we get further

St(xty)\displaystyle S^{\vec{t}}(x\stackrel{{\scriptstyle\vec{t}}}{{\ast}}y) =a(USt(bv))+ta(USt(bv))\displaystyle=a\big{(}U\ast S^{\vec{t}}(bv)\big{)}+\vec{t}a\diamond\big{(}U\ast S^{\vec{t}}(bv)\big{)}
+bSt(au)St(v)+tbSt(autv)\displaystyle\quad+bS^{\vec{t}}(au)\ast S^{\vec{t}}(v)+\vec{t}b\diamond S^{\vec{t}}\big{(}au\stackrel{{\scriptstyle\vec{t}}}{{\ast}}v\big{)}
+(12t)(ab)(UV)t2abSt(UV).\displaystyle\quad+(1-2\vec{t})(a\diamond b)(U\ast V)-\vec{t}^{2}a\diamond b\diamond S^{\vec{t}}(U\ast V).

Using again the definition of StS^{\vec{t}}, we obtain

St(xty)\displaystyle S^{\vec{t}}(x\stackrel{{\scriptstyle\vec{t}}}{{\ast}}y) =a(U(bV))+a(U(tbV))\displaystyle=a\big{(}U\ast(bV)\big{)}+a\big{(}U\ast(\vec{t}b\diamond V)\big{)}
+ta(UbV)+ta(U(tbV))\displaystyle\quad+\vec{t}a\diamond(U\ast bV)+\vec{t}a\diamond\big{(}U\ast(\vec{t}b\diamond V)\big{)}
+b((aU)V)+b((taU)V)\displaystyle\quad+b\big{(}(aU)\ast V\big{)}+b\big{(}(\vec{t}a\diamond U)\ast V\big{)}
+tb((aU)V)+tb((taU)V)\displaystyle\quad+\vec{t}b\diamond\big{(}(aU)\ast V\big{)}+\vec{t}b\diamond\big{(}(\vec{t}a\diamond U)\ast V\big{)}
+(12t)(ab)(UV)t2(ab(UV)).\displaystyle\quad+(1-2\vec{t})(a\diamond b)(U\ast V)-\vec{t}^{2}(a\diamond b\diamond(U\ast V)\big{)}.

We use the following identities of [14] (see also [27]):

(aU)(bV)\displaystyle(a\diamond U)\ast(bV) =a(U(bV))+b((aU)V)(ab)(UV),\displaystyle=a\diamond\big{(}U\ast(bV)\big{)}+b\big{(}(a\diamond U)\ast V\big{)}-(a\diamond b)(U\ast V),
(aU)(bV)\displaystyle(aU)\ast(b\diamond V) =b((aU)V)+a(U(bV))(ab)(UV),\displaystyle=b\diamond\big{(}(aU)\ast V\big{)}+a\big{(}U\ast(b\diamond V)\big{)}-(a\diamond b)(U\ast V),
(aU)(bV)\displaystyle(a\diamond U)\ast(b\diamond V) =a(U(bV))+b((aU)V)(ab)(UV).\displaystyle=a\diamond\big{(}U\ast(b\diamond V)\big{)}+b\diamond\big{(}(a\diamond U)\ast V\big{)}-(a\diamond b)\diamond(U\ast V).

They imply that

ta(U(bV))+b((taU)V)=(taU)(bV)+t(ab)(UV),\displaystyle\vec{t}a\diamond\big{(}U\ast(bV)\big{)}+b\big{(}(\vec{t}a\diamond U)\ast V\big{)}=(\vec{t}a\diamond U)\ast(bV)+\vec{t}(a\diamond b)(U\ast V),
tb((aU)V)+a(U(tbV))=(aU)(tbV)+t(ab)(UV),\displaystyle\vec{t}b\diamond\big{(}(aU)\ast V\big{)}+a\big{(}U\ast(\vec{t}b\diamond V)\big{)}=(aU)\ast(\vec{t}b\diamond V)+\vec{t}(a\diamond b)(U\ast V),
ta(U(tbV))+tb((taU)V)\displaystyle\vec{t}a\diamond\big{(}U\ast(\vec{t}b\diamond V)\big{)}+\vec{t}b\diamond\big{(}(\vec{t}a\diamond U)\ast V\big{)}
=(taU)(tbV)+t2(ab)(UV).\displaystyle\qquad=(\vec{t}a\diamond U)\ast(\vec{t}b\diamond V)+\vec{t}^{2}(a\diamond b)\diamond(U\ast V).

Together with the definition

(aU)(bV)=a(U(bV))+b((aU)V)+(ab)(UV),(aU)\ast(bV)=a\big{(}U\ast(bV)\big{)}+b((aU)\ast V)+(a\diamond b)(U\ast V),

we get the desired result

St(xty)\displaystyle S^{\vec{t}}(x\stackrel{{\scriptstyle\vec{t}}}{{\ast}}y) =(taU)(bV)+(aU)(tbV)\displaystyle=(\vec{t}a\diamond U)\ast(bV)+(aU)\ast(\vec{t}b\diamond V)
+(taU)(tbV)+(aU)(bV),\displaystyle\qquad+(\vec{t}a\diamond U)\ast(\vec{t}b\diamond V)+(aU)\ast(bV),

which equals St(x)St(y)S^{\vec{t}}(x)\ast S^{\vec{t}}(y) (25). In the general case, instead of x=aux=au and y=bvy=bv we have x=tmau𝔥2x=\vec{t}^{m}au\in\mathfrak{h}^{2} with u=tm2a2tmnanu=\vec{t}^{m_{2}}a_{2}\dots\vec{t}^{m_{n}}a_{n} and y=tkbv𝔥2y=\vec{t}^{k}bv\in\mathfrak{h}^{2} with v=tk2a2tkrbrv=\vec{t}^{k_{2}}a_{2}\dots\vec{t}^{k_{r}}b_{r}, with a,b,a,bj𝒜a,b,a_{\ell},b_{j}\in\mathcal{A}, 2n2\leq\ell\leq n and 2jr2\leq j\leq r. We can proceed very similar so the arguments are omitted. ∎

5. Outlook and summary

5.1. Open problems: properties of multi-interpolation

At the moment, it seems difficult to translate more properties for ζt(i)\zeta^{t}(\vec{i}) to ζt(i)\zeta^{\vec{t}}(\vec{i}). Yamamoto established, amongst many other things, the sum property for interpolated multiple zeta values:

k12,ki1=1nk=kζt(k1,,kn)=ζ(k)j=0n1(k1j)tj(1t)n1j,\sum_{\begin{subarray}{c}k_{1}\geq 2,k_{i}\geq 1\\ \sum_{\ell=1}^{n}k_{\ell}=k\end{subarray}}\zeta^{t}(k_{1},\dots,k_{n})=\zeta(k)\cdot\sum_{j=0}^{n-1}\binom{k-1}{j}t^{j}(1-t)^{n-1-j}, (26)

with k>nk>n. For ζt(i)\zeta^{\vec{t}}(\vec{i}) we expect that only the simplest case n=2n=2 can be easily treated in full generality:

k1=2k1ζt(k1,kk1)=ζ(k)+(k2)ζ(kt).\sum_{k_{1}=2}^{k-1}\zeta^{\vec{t}}(k_{1},k-k_{1})=\zeta(k)+(k-2)\zeta(k\vec{t}).

It is certainly desirable to obtain purely algebraic proofs of Theorem 2 and Corollary 1. Moreover, as the new definitions combine both interpolated MZVs as well as multiple 𝔱\mathfrak{t}-values, it is of interest to look deeper into a common framework for these objects.

5.2. Outlook: multi-interpolation based on ordered partitions

One can also look at different kinds interpolations. Extraction of the coefficient of tit^{i} in Yamamoto’s sum formula implies Yamamoto’s refined identity (see also [18, 19]):

k12,ki1=1nk=k𝐩n𝒫(n)n(𝐩n)=iζ(𝐩(k1,,kn))=ζ(k)(kn+i1kn1).\sum_{\begin{subarray}{c}k_{1}\geq 2,k_{i}\geq 1\\ \sum_{\ell=1}^{n}k_{\ell}=k\end{subarray}}\sum_{\begin{subarray}{c}\mathbf{p}_{n}\in\mathcal{P}(n)\\ n-\mathcal{L}(\mathbf{p}_{n})=i\end{subarray}}\zeta\big{(}\mathbf{p}(k_{1},\dots,k_{n})\big{)}=\zeta(k)\cdot\binom{k-n+i-1}{k-n-1}. (27)

For example,

k12,ki1=1nk=k(ζ(k1+k2,,kn)++ζ(k1,,kn1+kn))=(kn)ζ(k).\sum_{\begin{subarray}{c}k_{1}\geq 2,k_{i}\geq 1\\ \sum_{\ell=1}^{n}k_{\ell}=k\end{subarray}}\Big{(}\zeta\big{(}k_{1}+k_{2},\dots,k_{n})+\dots+\zeta\big{(}k_{1},\dots,k_{n-1}+k_{n})\big{)}=(k-n)\zeta(k).

This motivates a different definition of multi-interpolated MZVs, based on ordered partitions:

ζ(u)(k1,,kn)=𝐩n𝒫(n)(m=1um1Nm(𝐩n))ζ(𝐩n(k)),\zeta^{(\vec{u})}(k_{1},\dots,k_{n})=\sum_{\mathbf{p}_{n}\in\mathcal{P}(n)}\bigg{(}\prod_{m=1}^{\infty}u_{m-1}^{N_{m}(\mathbf{p}_{n})}\bigg{)}\zeta(\mathbf{p}_{n}(\vec{k})), (28)

where Nm(.)N_{m}(.) counts the number of parts of size mm in an ordered partition. Here we set u0=1u_{0}=1. Since

m=1(m1)Nm(𝐩n)=n(𝐩n)\sum_{m=1}^{\infty}(m-1)\cdot N_{m}(\mathbf{p}_{n})=n-\mathcal{L}(\mathbf{p}_{n})

we reobtain for um=tmu_{m}=t^{m} the ordinary interpolated MZVs. For example,

ζ(u)(k1,k2,k3)=u03ζ(k1,k2,k3)+u0u1(ζ(k1+k2,k3)+ζ(k1,k2+k3))+u2ζ(k1+k2+k3).\zeta^{(\vec{u})}(k_{1},k_{2},k_{3})=u_{0}^{3}\zeta(k_{1},k_{2},k_{3})+u_{0}u_{1}\big{(}\zeta(k_{1}+k_{2},k_{3})+\zeta(k_{1},k_{2}+k_{3})\big{)}+u_{2}\zeta(k_{1}+k_{2}+k_{3}).

Note that this new definition (28) of multi-interpolated MZVs can be obtained from our previous Definitions 1 and 2 by application of a formal map VV, whose action is given as follows111Actually, VV can be rigorously defined algebraically.:

V(ζ(i1tj1,,iktjk))=ζ(i1,,ik)=1kuj.V\big{(}\zeta(i_{1}\vec{t}^{j_{1}},\dots,i_{k}\vec{t}^{j_{k}})\big{)}=\zeta(i_{1},\dots,i_{k})\cdot\prod_{\ell=1}^{k}u_{j_{\ell}}.

This implies that

ζ(u)(i1,,ik)=V(ζt(i1,,ik)).\zeta^{(\vec{u})}(i_{1},\dots,i_{k})=V\big{(}\zeta^{\vec{t}}(i_{1},\dots,i_{k})\big{)}.

However, in general

V(ζt(i1,,ik)ζt(j1,,jm))V(ζt(i1,,ik))V(ζt(j1,,jm)).V\big{(}\zeta^{\vec{t}}(i_{1},\dots,i_{k})\cdot\zeta^{\vec{t}}(j_{1},\dots,j_{m})\big{)}\neq V\big{(}\zeta^{\vec{t}}(i_{1},\dots,i_{k})\big{)}\cdot V\big{(}\zeta^{\vec{t}}(j_{1},\dots,j_{m})\big{)}.

It remains to be seen if there exists a suitably defined harmonic product (u)\ast^{(\vec{u})}, or even a more general product.

5.3. Further variations

Another generalization of ζt(k1,,kn)\zeta^{t}(k_{1},\dots,k_{n}) are interpolated Schur multiple zeta values, as introduced in [2] (see also [21] for Schur multiple zeta values). We note that it is possible to introduce multi-interpolated Schur multiple zeta values, unifying interpolated Schur multiple zeta values and multi-interpolated multiple zeta values: the parameters v(𝐦)v(\mathbf{m}), counting the vertical equalities, and h(𝐦)h(\mathbf{m}), counting the horizontal equalities can be refined by taking into account the values of the equal entries, leading to tv(𝐦)(1t)h(𝐦)\vec{t}^{\vec{v}(\mathbf{m})}(\vec{1}-\vec{t})^{\vec{h}(\mathbf{m})} (see [2], Definition 2.3).

Finally, following Ohno and Wayama’s [23] generalization of the Arakawa-Kaneko multiple zeta function [1], we note that a multi-interpolated Arakawa-Kaneko multiple zeta function can be defined as follows:

ξt(k1,,kr;s)=1Γ(s)0zs1Lik1,,krt(1ez)ez1𝑑z,\xi^{\vec{t}}(k_{1},\dots,k_{r};s)=\frac{1}{\Gamma(s)}\int_{0}^{\infty}z^{s-1}\frac{\text{Li}^{\vec{t}}_{k_{1},\dots,k_{r}}(1-e^{-z})}{e^{z}-1}dz,

were Lik1,,krt(z)\text{Li}^{\vec{t}}_{k_{1},\dots,k_{r}}(z) denotes a multi-interpolated multi-polylogarithm defined by

Lik1,,krt(z)=1r1z1tσ()1k1rkr.\text{Li}^{\vec{t}}_{k_{1},\dots,k_{r}}(z)=\sum_{\ell_{1}\geq\cdots\geq\ell_{r}\geq 1}\frac{z^{\ell_{1}}\cdot\vec{t}^{\vec{\sigma}(\vec{\ell})}}{\ell_{1}^{k_{1}}\dots\ell_{r}^{k_{r}}}.

By setting t=t\vec{t}=t we reobtain the tt-Arakawa–Kaneko multiple zeta functions of [23].

It remains to be seen if multi-interpolated objects, like multi-interpolated Schur multiple zeta values or multi-interpolated Arakawa-Kaneko multiple zeta functions, still have interesting structural properties.

5.4. Summary

In this note we introduced a multi-interpolated multiple zeta value ζt(i)\zeta^{\vec{t}}(\vec{i}) with variables t=(t1,t2,)\vec{t}=(t_{1},t_{2},\dots), generalized the ordinary interpolated multiple zeta value ζt(i)\zeta^{t}(\vec{i}), case t=tt_{\ell}=t, 11\leq\ell. A few properties of ζt(i)\zeta^{\vec{t}}(\vec{i}) where established in this note, in particular, formulas for ζt({s}k)\zeta^{\vec{t}}(\{s\}_{k}), as well as a harmonic product t\stackrel{{\scriptstyle\vec{t}}}{{\ast}} such that ζt((i1,,im)t(j1,,jk))=ζt(i1,,im)ζt(j1,,jk)\zeta^{\vec{t}}((i_{1},\dots,i_{m})\stackrel{{\scriptstyle\vec{t}}}{{\ast}}(j_{1},\dots,j_{k}))=\zeta^{\vec{t}}(i_{1},\dots,i_{m})\cdot\zeta^{\vec{t}}(j_{1},\dots,j_{k}). We proposed several open problems and pointed out different variants of multi-interpolated MZVs.

References

  • [1] T. Arakawa and M. Kaneko, Multiple zeta values, poly-Bernoulli numbers, and related zeta functions. Nagoya Math. J. 153, 189–209, 1999.
  • [2] H. Bachmann, Interpolated Schur multiple zeta values. J. Aust. Math. Soc. 104, 289–307, 2018.
  • [3] J. Borwein, D. Bradley and D. Broadhoarst, Evaluations of kk-fold Euler/Zagier sums: a compendium of results for arbitrary kk, Electronic journal of combinatorics. vol. 4 (2), R5, 21 pp., 1997.
  • [4] C. B. Collins, The role of Bell polynomials in integration. Journal of Computational and Applied Mathematics 131, 195–222, 2001.
  • [5] L. Comtet, Advanced Combinatorics. D. Reidel, Dordrecht, 1974 (Translation of Analyse Combinatoire, Tomes I et II, Presses Universitaires de France, Paris, 1970).
  • [6] P. Flajolet and R. Sedgewick, Analytic Combinatorics. Cambridge Univ. Press, Cambridge, UK, 2009.
  • [7] M. E. Hoffman, Multiple harmonic series. Pacific J. Math. 152, 275-290, 1992.
  • [8] M. E. Hoffman, Quasi-shuffle products. Journal of Algebraic Combinatorics 11, 49–68, 2000.
  • [9] M. E. Hoffman, Harmonic-number summation identities, symmetric functions, and multiple zeta values. Ramanujan J. 42, 501–526, 2017.
  • [10] M. E. Hoffman, An odd variant of multiple zeta values. Communications in Number Theory and Physics 13, 529–567, 2019.
  • [11] M. E. Hoffman, Quasi-shuffle algebras and applications, Algebraic Combinatorics, Resurgence, Moulds and Applications, Vol. 2 (IRMA Lectures in Mathematics and Theoretical Physics vol. 32), F. Chapoton et. al. (eds.), European Math. Soc. Publ. House, Berlin, 327–348, 2020.
  • [12] M. E. Hoffman and K. Ihara, Quasi-shuffle products revisited. Journal of Algebra 481, 293–326, 2017.
  • [13] M. E. Hoffman and I. Mező, Zeros of the digamma function and its Barnes G-function analogue. Integral Transforms and Special Functions 28, 846–858, 2017.
  • [14] K. Ihara, J. Kajikawa, Y. Ohno and J. Okuda, Multiple zeta values vs. multiple zeta-star values. J. Alg. 332, 187–208, 2011.
  • [15] V.F. Ivanov, Problem. Amer. Math. Monthly, 65, 212, 1958.
  • [16] M. Kuba, On multisets, interpolated multiple zeta values and limit laws. Submitted.
  • [17] M. Kuba and A. Panholzer, A Note on Harmonic number identities, Stirling series and multiple zeta values. International journal of number theory, Vol. 15, No. 07, 1323–1348, 2019.
  • [18] Z. Li, Algebraic relations of interpolated multiple zeta values. Submitted.
  • [19] Z. Li and C. Qin, Some relations of interpolated multiple zeta values. Internat. J. Math. 28 (5), 25 pp., 2017.
  • [20] I. G. MacDonald, Symmetric Functions and Hall Polynomials. 2nd ed., Clarendon Press, Oxford, 1995.
  • [21] M. Nakasuji, O. Phuksuwan and Y. Yamasaki, On Schur multiple zeta functions: A combinatoric generalization of multiple zeta functions. Advances in Mathematics 333, 570–619, 2018,
  • [22] N. Nielsen, Handbuch der Theorie der Gammafunktion, B. G. Teubner, Leipzig, 1906; reprinted in Die Gammafunktion, Chelsea, New York, 1965.
  • [23] Y. Ohno and H. Wayama, Interpolation between Arakawa–Kaneko and Kaneko–Tsumura Multiple Zeta Functions. Advanced Studies in Pure Mathematics 84, 361–366, 2020.
  • [24] T. Tanaka and N. Wakabayashi, Kawashima’s relations for interpolated multiple zeta values. J. Algebra 447, 424–431, 2016.
  • [25] C. Vignat and T. Wakhare, Multiple zeta values for classical special functions. Submitted.
  • [26] N. Wakabayashi, Double shuffle and Hoffman’s relations for interpolated multiple zeta values. Int. J. Number Theory 13 (9), 2245–2251, 2017.
  • [27] S. Yamamoto, Interpolation of multiple zeta and zeta-star values. J. Algebra 385, 102–114, 2013.
  • [28] D. Zagier, Values of zeta functions and their applications. First European Congress of Mathematics (Paris, 1992), vol. II (A. Joseph et al., eds.), (Progr. Math., vol. 120) Birkhäuser, Boston 1994, pp. 497–512.
  • [29] W. Zudilin, Algebraic relations for multiple zeta values. Russian Math. Surveys 58:1 1–29, 2003.