This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

On monic abelian trace-one cubic polynomials

Shubhrajit Bhattacharya Department of Mathematics University of British Columbia Vancouver, BC Canada [email protected]  and  Andrew O’Desky Department of Mathematics Princeton University Princeton, NJ USA [email protected]
(Date: October 15, 2023)
Abstract.

We compute the asymptotic number of monic trace-one integral polynomials with Galois group C3C_{3} and bounded height. For such polynomials we compute a height function coming from toric geometry and introduce a parametrization using the quadratic cyclotomic field (3)\mathbb{Q}(\sqrt{-3}). We also give a formula for the number of polynomials of the form t3t2+at+b[t]t^{3}-t^{2}+at+b\in\mathbb{Z}[t] with Galois group C3C_{3} for a fixed integer aa.

1. Introduction

Let FF denote the set of polynomials of the form t3t2+at+b[t]t^{3}-t^{2}+at+b\in\mathbb{Z}[t] which have Galois group C3C_{3}, the cyclic group of order three. The primary aim of this paper is to prove the following asymptotic formula.

Theorem 1.

Let ε>0\varepsilon>0. The number of polynomials t3t2+at+bFt^{3}-t^{2}+at+b\in F with max(|a|1/2,|b|1/3)H\max(|a|^{1/2},|b|^{1/3})\leq H is equal to

CH2logH+(Clog3+Dπ33)H2+Oε(H1+ε)CH^{2}\log H+\left(C\log\sqrt{3}+D-\frac{\pi}{3\sqrt{3}}\right)H^{2}+O_{\varepsilon}(H^{1+\varepsilon})

as HH\to\infty, where

(1) C=4π281q2(mod 3)(11q2)p1(mod 3)(13p2+2p3)C=\frac{4\pi^{2}}{81}\prod_{q\equiv 2\ (\mathrm{mod}\ 3)}\left(1-\frac{1}{q^{2}}\right)\prod_{p\equiv 1\ (\mathrm{mod}\ 3)}\left(1-\frac{3}{p^{2}}+\frac{2}{p^{3}}\right)

and

(2) DC=2γ+log(2π)3log(Γ(1/3)Γ(2/3))+98log3+94q2(mod 3)logqq21+274p1(mod 3)(p+1)logpp33p+2.\frac{D}{C}=2\gamma+\log(2\pi)-3\log\left(\frac{\Gamma(1/3)}{\Gamma(2/3)}\right)+\frac{9}{8}\log 3+\frac{9}{4}\sum_{q\equiv 2\ (\mathrm{mod}\ 3)}\frac{\log q}{q^{2}-1}+\frac{27}{4}\sum_{p\equiv 1\ (\mathrm{mod}\ 3)}\frac{(p+1)\log p}{p^{3}-3p+2}.

This may be qualitatively compared with [14, Theorem 1.1] which asserts that the number N(H)N(H) of monic integral cubic polynomials t3+at2+bt+ct^{3}+at^{2}+bt+c with Galois group C3C_{3} and max(|a|,|b|,|c|)H\max(|a|,|b|,|c|)\leq H satisfies 2HN(H)H(logH)22H\leq N(H)\ll H(\log H)^{2}, however their height function is inequivalent to the height in Theorem 1 and there is no trace-one condition.

We also prove a formula of sorts for the number of fFf\in F with specified nonconstant coefficients.

Theorem 2.

For any H1H\geq 1 let EH2E_{H}\subset\mathbb{R}^{2} be the ellipse defined by

(3) EH:x2+y2+xyxy=13(H21).E_{H}:x^{2}+y^{2}+xy-x-y=\tfrac{1}{3}(H^{2}-1).

If t3t2+at+bFt^{3}-t^{2}+at+b\in F then a0a\leq 0. Fix a0a\in\mathbb{Z}_{\leq 0}. The number of polynomials of the form t3t2+at+bFt^{3}-t^{2}+at+b\in F for any bb\in\mathbb{Z} is equal to

(4) 12d|(13a)3ω(P1(d))(1)Ω(P2(d))16#E13a()\frac{1}{2}\sum_{d|(1-3a)}3^{\omega(P_{1}(d))}(-1)^{\Omega(P_{2}(d))}-\frac{1}{6}\#E_{\sqrt{1-3a}}(\mathbb{Z})

where Pj(d)P_{j}(d) denotes the largest divisor of dd only divisible by primes j(mod 3)\equiv j\ (\mathrm{mod}\ 3), and ω(n)\omega(n) (resp. Ω(n)\Omega(n)) denotes the number of prime factors of a positive integer nn counted without (resp. with) multiplicity.

An integral Diophantine problem

To prove these theorems we relate the polynomial counting problem to an integral Diophantine problem on a certain singular toric surface SS and then solve the Diophantine problem. Let 𝔸3=Spec[X,Y,Z]\mathbb{A}^{3}=\mathrm{Spec}\,\mathbb{Q}[X,Y,Z] and 2=(𝔸3)=Proj[X,Y,Z]\mathbb{P}_{2}=\mathbb{P}(\mathbb{A}^{3})=\mathrm{Proj}\,\mathbb{Q}[X,Y,Z] be equipped with the regular action of C3C_{3}. Consider the quotient surface

(5) S=2/C3.S=\mathbb{P}_{2}/C_{3}.

Let TST\subset S denote the image of the unit group in the group algebra 𝔸3\mathbb{A}^{3} of C3C_{3} under 𝔸3{0}2S\mathbb{A}^{3}-\{0\}\to\mathbb{P}_{2}\to S. One can show that TT is a rank-two torus and SS is a toric compactification of TT. The set of rational points S()S(\mathbb{Q}) is thus equipped with a family of toric height functions H(,s)H(-,s) constructed in [1], where ss is a parameter in the complexified Picard group Pic(S)\mathrm{Pic}(S)\otimes\mathbb{C}. The surface SS has Picard rank one [12, Corollary 3.6], so we may regard ss as a complex number where s=3s=3 corresponds to the ample generator. Let D0D_{0} be the divisor {εX+Y+Z=0}S\{\varepsilon\coloneqq X+Y+Z=0\}\subset S. A rational point PP of SD0S-D_{0} is D0D_{0}-integral if every regular function in 𝒪(SD0)=[X/ε,Y/ε]C3\mathcal{O}(S_{\mathbb{Z}}-D_{0})=\mathbb{\mathbb{Z}}[X/\varepsilon,Y/\varepsilon]^{C_{3}} is \mathbb{Z}-valued on PP.

Our third result is an explicit formula for the height zeta function for D0D_{0}-integral rational points on the torus TST\subset S.

Theorem 3.
(6) PT(),D0-integralH(P,s)1=(113z)2ζ(3)(z)2q2(mod 3)(11q2z)p1(mod 3)(13p2z+2p3z)\sum_{\begin{subarray}{c}P\in T(\mathbb{Q}),\\ \text{$D_{0}$-\emph{integral}}\end{subarray}}H(P,s)^{-1}=\left(1-\frac{1}{3^{z}}\right)^{2}\zeta_{\mathbb{Q}(\sqrt{-3})}(z)^{2}\prod_{q\equiv 2\ (\mathrm{mod}\ 3)}\left(1-\frac{1}{q^{2z}}\right)\prod_{p\equiv 1\ (\mathrm{mod}\ 3)}\left(1-\frac{3}{p^{2z}}+\frac{2}{p^{3z}}\right)

where z=s2z=\tfrac{s}{2} and ζ(3)\zeta_{\mathbb{Q}(\sqrt{-3})} is the Dedekind zeta function of (3)\mathbb{Q}(\sqrt{-3}). This height zeta function can be meromorphically continued to the half-plane Re(s)>1\mathrm{Re}(s)>1 and its only pole in this region is at s=2s=2 with order 22. If n1n\in\mathbb{Z}_{\geq 1} is not divisible by 33, then the number of D0D_{0}-integral rational points on TT with toric height n\sqrt{n} is equal to

(7) d|n3ω(P1(d))(1)Ω(P2(d))\sum_{d|n}3^{\omega(P_{1}(d))}(-1)^{\Omega(P_{2}(d))}

Relation between the problems

In [12] it was shown that the torus TT is the moduli space for C3C_{3}-algebras with a given trace-one normal element. In particular,

(8) T(){(K/ C3-algebra,x trace-one normal)}T(\mathbb{Q})\cong\{(K/\mathbb{Q}\text{ $C_{3}$-algebra},\,\,x\text{ trace-one normal})\}

where a C3C_{3}-algebra K/K/\mathbb{Q} is a \mathbb{Q}-algebra equipped with an action of C3C_{3} for which there is a C3C_{3}-linear \mathbb{Q}-algebra isomorphism from KK to either a cubic abelian number field or the split algebra 3\mathbb{Q}^{3}, and an element xKx\in K is normal if its Galois conjugates are linearly independent over \mathbb{Q}. Using this bijection we consider the function

(9) T(){t3t2+at+b[t]}T(\mathbb{Q})\,\longrightarrow\{t^{3}-t^{2}+at+b\in\mathbb{Q}[t]\}

taking a rational point (K/,x)(K/\mathbb{Q},x) to the characteristic polynomial of xx. We prove that the image of this function is the subset of polynomials which either have Galois group C3C_{3} or split into three linear factors over \mathbb{Q} with at most two being the same, and if ff is such a polynomial, then the number of rational points of TT with characteristic polynomial ff is given by

(10) wf={1if f has a double root,2otherwise.w_{f}=\begin{cases}1&\text{if $f$ has a double root,}\\ 2&\text{otherwise.}\\ \end{cases}

Moreover we show that a rational point PP of TT is D0D_{0}-integral if and only if the associated characteristic polynomial t3t2+at+bt^{3}-t^{2}+at+b is integral, and we also prove that

(11) H(P,1)=13aH(P,1)=\sqrt{1-3a}

for D0D_{0}-integral points. This toric height is equivalent to the height used in Theorem 1.

Further remarks

The restriction to trace-one normal elements was made out of convenience in [12] and should not be essential for the method. In place of SS, there is a three-fold with a similar construction and an open subset which parametrizes all normal elements of C3C_{3}-algebras. In forthcoming work [11] the method presented here will be extended to count monic integral polynomials with bounded height and any given abelian Galois group.

Acknowledgements

A.O. is very grateful to Timothy Browning, Vesselin Dimitrov, Jef Laga, Peter Sarnak, Sameera Vemulapalli, Victor Wang, and Shou-Wu Zhang for helpful discussions and comments on an earlier draft. A.O. would also like to thank Alexandra Pevzner for pointing out the reference [2]. A.O. was supported by NSF grant DMS-2103361.

2. The orbit parametrization

In this section we recall some facts from [12] and describe the orbit parametrization. Let σ\sigma be a generator of C3C_{3}. Let Δ=3XYZX3Y3Z3\Delta=3XYZ-X^{3}-Y^{3}-Z^{3}, the determinant of multiplication by an element Xe+Yσ+Zσ2Xe+Y\sigma+Z\sigma^{2} of the group algebra. We set

𝒢=2[Δ1]andT=𝒢/C3.\mathcal{G}=\mathbb{P}_{2}[\Delta^{-1}]\quad\text{and}\quad T=\mathcal{G}/C_{3}.

Then 𝒢\mathcal{G} is an algebraic torus over \mathbb{Q} which may be identified with the units of the group algebra of C3C_{3} with augmentation one, i.e.

𝒢={(x,y,z)𝔸3:Δ(x,y,z)𝔾m and x+y+z=1}.\mathcal{G}=\{(x,y,z)\in\mathbb{A}^{3}:\Delta(x,y,z)\in\mathbb{G}_{m}\text{ and }x+y+z=1\}.

Since C3C_{3} is abelian, the homogeneous space T=𝒢/C3T=\mathcal{G}/C_{3} is itself an algebraic torus over \mathbb{Q}. The action of 𝒢\mathcal{G} on the regular representation induces an action of TT on SS extending the regular action of TT on itself. Let 𝔸2=Spec[X/ε,Y/ε]\mathbb{A}^{2}=\mathrm{Spec}\,\mathbb{Q}[X/\varepsilon,Y/\varepsilon] denote the open affine plane in 2\mathbb{P}_{2} where the augmentation map ε=X+Y+Z\varepsilon=X+Y+Z is nonvanishing. A rational (or adelic) point PP of 𝔸2/C3\mathbb{A}^{2}/C_{3} is D0D_{0}-integral if every regular function in 𝒪(𝔸2/C3)=[X/ε,Y/ε]C3\mathcal{O}(\mathbb{A}_{\mathbb{Z}}^{2}/C_{3})=\mathbb{\mathbb{Z}}[X/\varepsilon,Y/\varepsilon]^{C_{3}} is \mathbb{Z}-valued (resp. ^×\widehat{\mathbb{Z}}\times\mathbb{R}-valued) on PP.

2.1. TT as a moduli space

Let K/K/\mathbb{Q} be a separable \mathbb{Q}-algebra equipped with the action of a finite group GG of \mathbb{Q}-algebra automorphisms of KK. We say that K/K/\mathbb{Q} regarded with its GG-action is a (Galois) GG-algebra if the subset of KK fixed by GG is equal to \mathbb{Q}. Geometrically, a GG-algebra is the ring of functions on a principal GG-bundle, equipped with its natural GG-action.

Warning 1.

Since we regard the GG-action as part of the data of a GG-algebra, a GG-algebra is not generally determined by the isolated data of the underlying \mathbb{Q}-algebra KK and the abstract finite group GG. The GG-action on a GG-algebra may be twisted by any outer automorphism of GG, and the twisted GG-algebra will not generally be isomorphic to the original GG-algebra.

Two pairs (K/,x)(K/\mathbb{Q},x), (K/,x)(K^{\prime}/\mathbb{Q},x^{\prime}) are regarded as equivalent if there is a GG-equivariant \mathbb{Q}-algebra isomorphism KKK\to K^{\prime} sending xx to xx^{\prime}. We make use of the following modular interpretation for TT.

Theorem 4 ([12, §2]).

The homogeneous variety TT is the moduli space for C3C_{3}-algebras with a given trace-one normal element. In particular, there is a bijection between rational points of TT and equivalence classes of C3C_{3}-algebras K/K/\mathbb{Q} equipped with a trace one normal element xKx\in K.

Example 1.

Let KK be a cubic abelian number field. Then KK, equipped with its canonical Galois action, is a C3C_{3}-algebra. The twist KK^{\prime} of the C3C_{3}-algebra KK by the outer automorphism gg1g\mapsto g^{-1} of C3C_{3} (with twisted action gx=g1xg\ast x=g^{-1}x) is not isomorphic to KK as a C3C_{3}-algebra.111 In terms of Galois cohomology, the non-cohomologous 11-cocycles in H1(,C3)H^{1}(\mathbb{Q},C_{3}) corresponding to the C3C_{3}-algebras KK and KK^{\prime} have the same image under the canonical map H1(,C3)H1(,S3)H^{1}(\mathbb{Q},C_{3})\to H^{1}(\mathbb{Q},S_{3}) because the outer automorphism of C3C_{3} is realized by S3S_{3}-conjugation.

Example 2.

Let Kspl=3K_{\text{spl}}=\mathbb{Q}^{3}, the split cubic algebra. Then C3S3=Aut-alg(Kspl)C_{3}\subset S_{3}=\mathrm{Aut}_{\text{$\mathbb{Q}$-alg}}(K_{\text{spl}}) and KsplK_{\text{spl}}, equipped with its canonical C3C_{3}-action, is a C3C_{3}-algebra. Any transposition gives an isomorphism of C3C_{3}-algebras from KsplK_{\text{spl}} to its twist KsplK_{\text{spl}}^{\prime}.

Example 3.

An element xx of the split C3C_{3}-algebra KsplK_{\text{spl}} is normal if and only if xx either has distinct coordinates or exactly two identical coordinates. The pairs (Kspl,x)(K_{\text{spl}},x) and (Kspl,x)(K_{\text{spl}}^{\prime},x) are equivalent if and only if xx has exactly two identical coordinates (swapping the identical coordinates gives the required isomorphism); in particular, if xx has distinct coordinates then (Kspl,x)(K_{\text{spl}},x) and (Kspl,x)(K_{\text{spl}}^{\prime},x) determine different rational points of 𝒢/C3\mathcal{G}/C_{3}, even though KsplK_{\text{spl}} and KsplK_{\text{spl}}^{\prime} are isomorphic as C3C_{3}-algebras.

2.2. TT as a torus

Here we describe some of the toric data associated with TT which will be needed later. For more details see e.g. [3, p. 202]. Let E=(ζ)E=\mathbb{Q}(\zeta) where ζ\zeta is a primitive cube root of unity, and let γ\gamma denote the generator of the Galois group Γ\Gamma of EE over \mathbb{Q}. Let PlEPl_{E} denote the set of places of EE. The group of units UU in the group algebra is a three-dimensional algebraic torus defined over \mathbb{Q} which canonically factors as U=𝔾m×𝒢U=\mathbb{G}_{m}\times\mathcal{G}. The characters and cocharacters of TT may be described as follows. The larger torus UU is diagonalized over EE by the three elementary idempotents in the group algebra:

v0=13(1+σ+σ2),v1=13(1+ζ2σ+ζσ2),v2=13(1+ζσ+ζ2σ2).\displaystyle v_{0}^{\prime}=\tfrac{1}{3}(1+\sigma+\sigma^{2}),\quad v_{1}^{\prime}=\tfrac{1}{3}(1+\zeta^{2}\sigma+\zeta\sigma^{2}),\quad v_{2}^{\prime}=\tfrac{1}{3}(1+\zeta\sigma+\zeta^{2}\sigma^{2}).

Each idempotent is associated with a character χi:U(E)E×\chi_{i}\colon U(E)\to E^{\times} for i=0,1,2i=0,1,2 determined by uvi=χi(u)viuv_{i}^{\prime}=\chi_{i}(u)v_{i}^{\prime}, corresponding to the action of UU on the iith irreducible representation of C3C_{3}. The character χ0\chi_{0} is trivial on 𝒢\mathcal{G}, so the lattice of characters of 𝒢E\mathcal{G}_{E} is generated by χ1\chi_{1} and χ2\chi_{2}. We denote this lattice by MEM_{E}^{\prime} and let NEN_{E}^{\prime} denote the dual lattice to MEM_{E}^{\prime}. To describe the fans it is more symmetric to work with the isomorphic image of NEN_{E}^{\prime} in the quotient of C3\mathbb{C}C_{3} by the line spanned by v0+v1+v2v_{0}^{\prime}+v_{1}^{\prime}+v_{2}^{\prime}, and we write viv_{i} for the image of viv_{i}^{\prime} (i=0,1,2i=0,1,2). The Galois group Γ\Gamma of EE acts on MEM_{E}^{\prime} by swapping χ1\chi_{1} and χ2\chi_{2}, and on NEN_{E}^{\prime} via the dual action.

To pass from 𝒢\mathcal{G} to TT, consider the element

(12) ω=13(2v1+v2)NE,\omega=\tfrac{1}{3}(2v_{1}+v_{2})\in N_{E,\mathbb{Q}}^{\prime}

and set

(13) NE=NE+ωandME=NE={mME,:m(n) for all nNE}.N_{E}=N_{E}^{\prime}+\omega\quad\text{and}\quad M_{E}=N_{E}^{\vee}=\{m\in M_{E,\mathbb{Q}}^{\prime}:m(n)\in\mathbb{Z}\text{ for all $n\in N_{E}$}\}.

The character lattice (resp. cocharacter lattice) of TET_{E} is MEM_{E} (resp. NEN_{E}). The cocharacters ω\omega and γω\gamma\omega span NEN_{E} so the dual basis (a,b)=(ω,γω)(a^{\prime},b^{\prime})=(\omega,\gamma\omega)^{\vee} spans MEM_{E}.

bb^{\prime}aa^{\prime}0
ω\omegaγω\gamma\omegav1v_{1}v2v_{2}v0v_{0}0
Figure 1. The dual lattice ME=a,bM_{E}=\mathbb{Z}\langle a^{\prime},b^{\prime}\rangle (left) and the fan Σ\Sigma of SS in NE,N_{E,\mathbb{R}} (right).

The fan Σ\Sigma of SS is the same as the fan for 2\mathbb{P}_{2} and has three generators Σ(1)={v0,v1,v2}\Sigma(1)=\{v_{0},v_{1},v_{2}\}.

We also make use of the following formulas for the characters of 𝒢\mathcal{G}. Let (v1,v2)ME(v_{1}^{\vee},v_{2}^{\vee})\in M_{E}^{\prime} be the dual basis to (v1,v2)NE(v_{1},v_{2})\in N_{E}^{\prime}. The characters of 𝒢\mathcal{G} associated to v1v_{1}^{\vee} and v2v_{2}^{\vee} are given on EE-points of UU by

(14) χv1(uv0+vv1+wv2)=vuandχv2(uv0+vv1+wv2)=wu.\chi^{v_{1}^{\vee}}(uv_{0}^{\prime}+vv_{1}^{\prime}+wv_{2}^{\prime})=\frac{v}{u}\quad\text{and}\quad\chi^{v_{2}^{\vee}}(uv_{0}^{\prime}+vv_{1}^{\prime}+wv_{2}^{\prime})=\frac{w}{u}.

This explicit description of the character lattices leads to an (unexpected) isomorphism between 𝒢\mathcal{G} and its quotient T=𝒢/C3T=\mathcal{G}/C_{3}. On character lattices it is given by the Γ\Gamma-equivariant isomorphism

(15) NE=ω,γωNE=v1,v2N_{E}=\mathbb{Z}\langle\omega,\gamma\omega\rangle\to N_{E}^{\prime}=\mathbb{Z}\langle v_{1},v_{2}\rangle

taking ω\omega to v1v_{1} and γω\gamma\omega to v2v_{2}. This implies that the multiplicative group of the cyclotomic field (3)\mathbb{Q}(\sqrt{-3}) naturally parametrizes cubic trace-one polynomials.

Proposition 1.

The tori TT and 𝒢=RE𝔾m\mathcal{G}=R^{E}_{\mathbb{Q}}\mathcal{\mathbb{G}}_{m} are isomorphic as algebraic groups over \mathbb{Q}. Every rational point (K/,x)(K/\mathbb{Q},x) of TT thereby determines an element of (3)×\mathbb{Q}(\sqrt{-3})^{\times} which is canonically determined up to the action of Aut(𝒢)\mathrm{Aut}(\mathcal{G}). The toric height H(f)13aH(f)\coloneqq\sqrt{1-3a} on T()T(\mathbb{Q}) is identified with the square-root of the norm on (3)×\mathbb{Q}(\sqrt{-3})^{\times}. Let ζ\zeta be a primitive cube root of unity. If u+vζ(3)×u+v\zeta\in\mathbb{Q}(\sqrt{-3})^{\times} has norm NN and trace TT, then the characteristic polynomial of the corresponding rational point (K/,x)(K/\mathbb{Q},x) is

(16) f=t3t2+13(1N)t+127(1+N(T3))[t].f=t^{3}-t^{2}+\tfrac{1}{3}(1-N)t+\tfrac{1}{27}(1+N(T-3))\in\mathbb{Q}[t].

Such a polynomial either has Galois group C3C_{3} or splits into three linear factors over \mathbb{Q}, with at most two linear factors being the same. Conversely, a monic trace-one polynomial f=t3t2+at+b[t]f=t^{3}-t^{2}+at+b\in\mathbb{Q}[t] which either has Galois group C3C_{3} or splits into three linear factors over \mathbb{Q}, with at most two linear factors being the same, can be expressed in this way for precisely two rational points of TT if ff has no repeated roots, or for precisely one rational point of TT if ff has a double root which is not a triple root. The elements u+vζ(3)×u+v\zeta\in\mathbb{Q}(\sqrt{-3})^{\times} corresponding to ff will be the roots of the quadratic polynomial

(17) g=t2(3127b13a)t+13a[t].g=t^{2}-\left(3-\frac{1-27b}{1-3a}\right)t+1-3a\in\mathbb{Q}[t].

The polynomial ff will have integral coefficients if and only if

(18) {u2+v2uv1+3 and (u2+v2uv)(32u+v)1+27.\begin{cases}u^{2}+v^{2}-uv\in 1+3\mathbb{Z}\text{ and }\\ (u^{2}+v^{2}-uv)(3-2u+v)\in 1+27\mathbb{Z}.\end{cases}
Proof.

The character lattice of a torus over \mathbb{Q} as a Galois representation determines the torus as an algebraic group up to isomorphism, cf. e.g. [9, Theorem 12.23]. Equation (30) below identifies the toric height with the square-root of the norm. The formulas for aa and bb follow from expressing aa and bb in terms of characters of TT and then using (15) to reexpress these using characters on 𝒢\mathcal{G}. ∎

Cubic ff Quadratic gg disc(f)\mathrm{disc}(f) disc(g)\mathrm{disc}(g) H(f)2H(f)^{2}
t3t2t^{3}-t^{2} t22t+1t^{2}-2t+1 0 0 11
t3t2t+1t^{3}-t^{2}-t+1 t2+4t+4t^{2}+4t+4 0 0 44
t3t22t+1t^{3}-t^{2}-2t+1 t2+t+7t^{2}+t+7 727^{2} 133-1\cdot 3^{3} 77
t3t22tt^{3}-t^{2}-2t t2207t+7t^{2}-\frac{20}{7}t+7 22322^{2}\cdot 3^{2} 1223572-1\cdot 2^{2}\cdot 3^{5}\cdot 7^{-2} 77
t3t24t+4t^{3}-t^{2}-4t+4 t2+7013t+13t^{2}+\frac{70}{13}t+13 24322^{4}\cdot 3^{2} 12435132-1\cdot 2^{4}\cdot 3^{5}\cdot 13^{-2} 1313
t3t24t1t^{3}-t^{2}-4t-1 t25t+13t^{2}-5t+13 13213^{2} 133-1\cdot 3^{3} 1313
t3t25t3t^{3}-t^{2}-5t-3 t28t+16t^{2}-8t+16 0 0 1616
t3t26t+7t^{3}-t^{2}-6t+7 t2+7t+19t^{2}+7t+19 19219^{2} 133-1\cdot 3^{3} 1919
t3t26tt^{3}-t^{2}-6t t25619t+19t^{2}-\frac{56}{19}t+19 2232522^{2}\cdot 3^{2}\cdot 5^{2} 1223552192-1\cdot 2^{2}\cdot 3^{5}\cdot 5^{2}\cdot 19^{-2} 1919
t3t28t+12t^{3}-t^{2}-8t+12 t2+10t+25t^{2}+10t+25 0 0 2525
\quad\vdots \quad\vdots \quad\vdots \quad\vdots \vdots
t3t2190t+719t^{3}-t^{2}-190t+719 t2+31t+571t^{2}+31t+571 7257127^{2}\cdot 571^{2} 13372-1\cdot 3^{3}\cdot 7^{2} 571571
t3t2190t800t^{3}-t^{2}-190t-800 t223312571t+571t^{2}-\frac{23312}{571}t+571 223252721322^{2}\cdot 3^{2}\cdot 5^{2}\cdot 7^{2}\cdot 13^{2} 1223552721325712-1\cdot 2^{2}\cdot 3^{5}\cdot 5^{2}\cdot 7^{2}\cdot 13^{2}\cdot 571^{-2} 571571
t3t2192t+720t^{3}-t^{2}-192t+720 t2+17710577t+577t^{2}+\frac{17710}{577}t+577 26361922^{6}\cdot 3^{6}\cdot 19^{2} 126391925772-1\cdot 2^{6}\cdot 3^{9}\cdot 19^{2}\cdot 577^{-2} 577577
t3t2192t171t^{3}-t^{2}-192t-171 t211t+577t^{2}-11t+577 3457723^{4}\cdot 577^{2} 137-1\cdot 3^{7} 577577
t3t2196t+1124t^{3}-t^{2}-196t+1124 t2+92219t+589t^{2}+\frac{922}{19}t+589 243122^{4}\cdot 31^{2} 12433192-1\cdot 2^{4}\cdot 3^{3}\cdot 19^{-2} 589589
t3t2196t+1109t^{3}-t^{2}-196t+1109 t2+148331t+589t^{2}+\frac{1483}{31}t+589 741927^{4}\cdot 19^{2} 13374312-1\cdot 3^{3}\cdot 7^{4}\cdot 31^{-2} 589589
t3t2196t+539t^{3}-t^{2}-196t+539 t2+67331t+589t^{2}+\frac{673}{31}t+589 721923727^{2}\cdot 19^{2}\cdot 37^{2} 13372312372-1\cdot 3^{3}\cdot 7^{2}\cdot 31^{-2}\cdot 37^{2} 589589
t3t2196t+349t^{3}-t^{2}-196t+349 t2+13t+589t^{2}+13t+589 341923123^{4}\cdot 19^{2}\cdot 31^{2} 137-1\cdot 3^{7} 589589
t3t2196t+196t^{3}-t^{2}-196t+196 t2+3526589t+589t^{2}+\frac{3526}{589}t+589 243252721322^{4}\cdot 3^{2}\cdot 5^{2}\cdot 7^{2}\cdot 13^{2} 124355272132192312-1\cdot 2^{4}\cdot 3^{5}\cdot 5^{2}\cdot 7^{2}\cdot 13^{2}\cdot 19^{-2}\cdot 31^{-2} 589589
t3t2196t704t^{3}-t^{2}-196t-704 t220774589t+589t^{2}-\frac{20774}{589}t+589 243652722^{4}\cdot 3^{6}\cdot 5^{2}\cdot 7^{2} 124395272192312-1\cdot 2^{4}\cdot 3^{9}\cdot 5^{2}\cdot 7^{2}\cdot 19^{-2}\cdot 31^{-2} 589589
Figure 2. Some f[t]f\in\mathbb{Z}[t] with Galois group C3C_{3} and the characteristic polynomials g[t]g\in\mathbb{Q}[t] of their corresponding elements in (3)\mathbb{Q}(\sqrt{-3}).

3. Toric heights

In this section we show that the toric height H(,1)H(-,1) of a D0D_{0}-integral point (K,x)(K,x) of TT in the sense of [1] is equal to H(f)=13aH(f)=\sqrt{1-3a} where ff is the characteristic polynomial of xx.

Definition 1.

Let ww be a place of EE. For any xT(Ew)x\in T(E_{w}) the function χordw(χ(x))\chi\mapsto\mathrm{ord}_{w}(\chi(x)) on characters χX(TEw)\chi\in X^{\ast}(T_{E_{w}}) determines an element of X(TEw)X_{\ast}(T_{E_{w}})_{\mathbb{R}}. Let

nw(x)X(TE)n_{w}(x)\in X_{\ast}(T_{E})_{\mathbb{R}}

be the cocharacter corresponding to this element under the canonical isomorphism X(TEw)X(TE)X_{\ast}(T_{E_{w}})_{\mathbb{R}}\cong X_{\ast}(T_{E})_{\mathbb{R}} induced by base change of the split torus TET_{E} along EEwE\to E_{w}.

For any place vv of v\mathbb{Q}_{v} let KvK_{v} denote the maximal compact subgroup of T(v)T(\mathbb{Q}_{v}). Evaluating characters of TET_{E} on v\mathbb{Q}_{v}-points gives a canonical bijection

T(v)=HomΓ(w/v)(ME,Ew×)T(\mathbb{Q}_{v})=\mathrm{Hom}_{\Gamma(w/v)}(M_{E},E_{w}^{\times})

where ww is any place of EE over vv. When vv is finite, KvK_{v} may be identified with the subset of Ow×O_{w}^{\times}-valued homomorphisms Kv=HomΓ(w/v)(ME,Ow×)T(v)K_{v}=\mathrm{Hom}_{\Gamma(w/v)}(M_{E},O_{w}^{\times})\subset T(\mathbb{Q}_{v}).

Proposition 2.

Let ww be a place of EE lying over a place vv of \mathbb{Q}. There is an exact sequence

(19) 1KvT(v)\xlongrightarrownwX(TE)Γ(w/v).1\longrightarrow K_{v}\longrightarrow T(\mathbb{Q}_{v})\xlongrightarrow{n_{w}}X_{\ast}(T_{E})_{\mathbb{R}}^{\Gamma(w/v)}.

If ww is infinite then nwn_{w} is surjective, and if ww is finite then the image of nwn_{w} is the lattice X(TE)Γ(w/v)X_{\ast}(T_{E})^{\Gamma(w/v)}.

Proof.

[4, (1.3), p. 449] nearly proves the claim but at the ramified place ww over v=3v=3 only ensures that the image of nwn_{w} is a finite index subgroup of X(TE)Γ(w/v)X_{\ast}(T_{E})^{\Gamma(w/v)}. To see that the image of nwn_{w} is all of X(TE)Γ(w/v)X_{\ast}(T_{E})^{\Gamma(w/v)} recall that the cocharacter lattices of TET_{E} and 𝒢E\mathcal{G}_{E} are isomorphic as Galois representations via (15). Since T(v)T(\mathbb{Q}_{v}) and KvK_{v} are determined by the dual modules MEM_{E} and MEM_{E}^{\prime}, it suffices to show that nwn_{w} is surjective when defined relative to 𝒢\mathcal{G}; in more detail, there is a diagram

(20) 1{1}HomΓ(w/v)(ME,Ow×){\mathrm{Hom}_{\Gamma(w/v)}(M_{E}^{\prime},O_{w}^{\times})}HomΓ(w/v)(ME,Ew×){\mathrm{Hom}_{\Gamma(w/v)}(M_{E}^{\prime},E_{w}^{\times})}HomΓ(w/v)(ME,){\mathrm{Hom}_{\Gamma(w/v)}(M_{E}^{\prime},\mathbb{Z})}1{1}HomΓ(w/v)(ME,Ow×){\mathrm{Hom}_{\Gamma(w/v)}(M_{E},O_{w}^{\times})}HomΓ(w/v)(ME,Ew×){\mathrm{Hom}_{\Gamma(w/v)}(M_{E},E_{w}^{\times})}HomΓ(w/v)(ME,){\mathrm{Hom}_{\Gamma(w/v)}(M_{E},\mathbb{Z})}nw\scriptstyle{n_{w}}nw\scriptstyle{n_{w}}

where the vertical arrows are isomorphisms of abelian groups induced by the transpose of the Γ\Gamma-isomorphism NENEN_{E}\to N_{E}^{\prime}, and the homomorphisms nwn_{w} correspond to post-composing with ordw\mathrm{ord}_{w}. The diagram commutes so surjectivity of the upper nwn_{w} implies surjectivity of the lower nwn_{w}.

To see that the upper nwn_{w} is surjective, observe that the upper row of the diagram is the Γ(w/v)\Gamma(w/v)-invariants of the short exact sequence of Γ(w/v)\Gamma(w/v)-modules

(21) 1{1}Hom(ME,Ow×){\mathrm{Hom}(M_{E}^{\prime},O_{w}^{\times})}Hom(ME,Ew×){\mathrm{Hom}(M_{E}^{\prime},E_{w}^{\times})}Hom(ME,){\mathrm{Hom}(M_{E}^{\prime},\mathbb{Z})}0{0}

(here the exactness on the right follows from Ext1(ME,Ow×)=0\mathrm{Ext}^{1}(M_{E}^{\prime},O_{w}^{\times})=0 since MEM_{E}^{\prime} is free); thus the upper row of the diagram continues to the first cohomology group H1(Γ(w/v),Hom(ME,Ow×))H^{1}(\Gamma(w/v),\mathrm{Hom}(M_{E}^{\prime},O_{w}^{\times})). Now recall that the group of units UU in the group algebra of C3C_{3} is 𝔾m×RE𝔾m\mathbb{G}_{m}\times R^{E}_{\mathbb{Q}}\mathbb{G}_{m} where the first projection is the augmentation character, so the torus 𝒢\mathcal{G} is isomorphic to RE𝔾mR^{E}_{\mathbb{Q}}\mathbb{G}_{m}. This implies that MEM_{E}^{\prime} is a free Γ(w/v)\mathbb{Z}\Gamma(w/v)-module, Hom(ME,Ow×)\mathrm{Hom}(M_{E}^{\prime},O_{w}^{\times}) is coinduced, and therefore H1(Γ(w/v),Hom(ME,Ow×))=0H^{1}(\Gamma(w/v),\mathrm{Hom}(M_{E}^{\prime},O_{w}^{\times}))=0 so nwn_{w} is surjective. ∎

The toric variety SS has at worst cyclic quotient singularities since its fan is simplicial so every Weil divisor on SS is \mathbb{Q}-Cartier. The toric height with respect to a Weil divisor DD for which nDnD is Cartier is defined as H(,𝒪(D))H(-,\mathcal{O}(D)) as H(,𝒪(nD))1/nH(-,\mathcal{O}(nD))^{1/n}. Let D0,D1,D2D_{0},D_{1},D_{2} be the three irreducible TT-stable divisors corresponding respectively to the three generators v0,v1,v2v_{0},v_{1},v_{2} in Σ\Sigma of the fan of SS (cf. [6, §3.1]). We call any formal \mathbb{C}-linear combination s0D0+s1D1+s2D2s_{0}D_{0}+s_{1}D_{1}+s_{2}D_{2} a toric divisor of SS. A support function is a continuous Γ\Gamma-invariant function φ:NE,\varphi\colon N_{E,\mathbb{R}}\to\mathbb{C} whose restriction to any cone of Σ\Sigma is linear. Support functions and Γ\Gamma-invariant toric divisors are in bijection under

φ(s0,s1,s2)=(φ(v0),φ(v1),φ(v2))\varphi\leftrightarrow(s_{0},s_{1},s_{2})=(-\varphi(v_{0}),-\varphi(v_{1}),-\varphi(v_{2}))

where s1=s2s_{1}=s_{2} to ensure Γ\Gamma-invariance. Any Cartier toric divisor eseDe\sum_{e}s_{e}D_{e} corresponds to a TET_{E}-linearized line bundle 𝒪(eseDe)\mathcal{O}(\sum_{e}s_{e}D_{e}) whose corresponding support function φ\varphi satisfies φ(e)=se\varphi(e)=-s_{e} for each eΣ(1)e\in{\Sigma}(1).

Definition 2 ([1]).

For x=(xw)wT(𝔸E)x=(x_{w})_{w}\in T(\mathbb{A}_{E}) and φ\varphi a support function let

(22) H(x,φ)=wPlE(qwφ(nw(xw)))1[E:]H(x,\varphi)=\prod_{w\in Pl_{E}}\left(q_{w}^{-\varphi(n_{w}(x_{w}))}\right)^{\frac{1}{[E:\mathbb{Q}]}}

where φ(nw(xw))\varphi(n_{w}(x_{w})) is evaluated using the canonical isomorphism X(TE)X(TEw)X_{\ast}(T_{E})\cong X_{\ast}(T_{E_{w}}).

The following simplified form is often useful. If x=(xv)vT(𝔸)x=(x_{v})_{v}\in T(\mathbb{A}), embedded diagonally in T(𝔸E)T(\mathbb{A}_{E}), then the quantity φ(nw(xv))\varphi(n_{w}(x_{v})) is independent of the choice of ww over vv, and

(23) H(x,φ)=vMqv1evφ(nw(xv))H(x,\varphi)=\prod_{v\in M_{\mathbb{Q}}}q_{v}^{-\frac{1}{e_{v}}\varphi(n_{w}(x_{v}))}

where eve_{v} is the ramification index of any prime of EE lying over vv (11 by definition if v=v=\infty).

3.1. Computing the local toric height

Let LL be a globally generated line bundle on SS and let {v1,,vN}H0(SE,L)\{v_{1},\ldots,v_{N}\}\subset H^{0}(S_{E},L) be a generating set of global sections. The standard height function on SS associated to LL and the generating set {v1,,vN}\{v_{1},\ldots,v_{N}\} is

(24) H(x,L,(vi)i=1N)=wPlEmax(|v1(x)s(x)|w,,|vN(x)s(x)|w)1[E:](xS(E)).H(x,L,(v_{i})_{i=1}^{N})=\prod_{w\in Pl_{E}}\max\left(\left|\frac{v_{1}(x)}{s(x)}\right|_{w},\ldots,\left|\frac{v_{N}(x)}{s(x)}\right|_{w}\right)^{\frac{1}{[E:\mathbb{Q}]}}\qquad(x\in S(E)).

where ss is any local nonvanishing section at xx, and ||w=qwordw()|\cdot|_{w}=q_{w}^{-\mathrm{ord}_{w}(\cdot)} if ww is nonarchimedean and ||w=||dw|\cdot|_{w}=|\cdot|^{d_{w}} otherwise. The quantity H(x,L,(vi)i=1N)H(x,L,(v_{i})_{i=1}^{N}) does not depend on the local section ss or the choice of splitting field.

If the line bundle LL is linearized by the open torus TT of SS in the sense of [10, §1.3], then the space of sections of LL on any TT-stable open subset of SS carries a linear action of TT and may therefore be diagonalized. The toric height on SS associated to a TT-line bundle LL is the standard height function on SS defined using a basis of weight vectors for H0(S,L)H^{0}(S,L). The advantage of this height is that its local height functions are amenable to harmonic analysis — namely their Fourier transforms have a simple form.

The next lemma computes the weight vectors we need to express the toric height relative to the toric divisor D0D_{0}.

Lemma 1.

Let 𝟏\mathbf{1} denote the canonical nowhere-vanishing global section in H0(SE,𝒪(3D0))H^{0}(S_{E},\mathcal{O}(3D_{0})). The space H0(SE,𝒪(3D0))H^{0}(S_{E},\mathcal{O}(3D_{0})) is spanned over EE by the following four weight vectors:

(25) 𝟏,(13e2e12)𝟏,(e1392e1e2+272e3+272disc)e13𝟏,(e1392e1e2+272e3272disc)e13𝟏\mathbf{1},\quad(1-3e_{2}e_{1}^{-2})\mathbf{1},\quad(e_{1}^{3}-\tfrac{9}{2}e_{1}e_{2}+\tfrac{27}{2}e_{3}+\tfrac{\sqrt{-27}}{2}\sqrt{\mathrm{disc}})e_{1}^{-3}\mathbf{1},\quad(e_{1}^{3}-\tfrac{9}{2}e_{1}e_{2}+\tfrac{27}{2}e_{3}-\tfrac{\sqrt{-27}}{2}\sqrt{\mathrm{disc}})e_{1}^{-3}\mathbf{1}

where disc=(XZ)(YX)(ZY)\sqrt{\mathrm{disc}}=(X-Z)(Y-X)(Z-Y). The associated characters of TET_{E} are, respectively,

(26) 1,χa+b,χ2a+b,χ2b+a1,\quad\chi^{a^{\prime}+b^{\prime}},\quad\chi^{2a^{\prime}+b^{\prime}},\quad\chi^{2b^{\prime}+a^{\prime}}

where a=2v1v2a^{\prime}=2v_{1}^{\vee}-v_{2}^{\vee} and b=2v2v1b^{\prime}=2v_{2}^{\vee}-v_{1}^{\vee} in the character lattice ME=XTEM_{E}=X^{\ast}T_{E} and (v1,v2)(v_{1}^{\vee},v_{2}^{\vee}) is the dual basis to (v1,v2)(v_{1},v_{2}).

Proof.

Let φ0\varphi_{0} be the support function corresponding to D0-D_{0}.

φ0=0\varphi_{0}=0φ0=v1\varphi_{0}=v_{1}^{\vee}φ0=v2\varphi_{0}=v_{2}^{\vee}v1v_{1}v2v_{2}v0v_{0}
Figure 3. The support function φ0\varphi_{0} on NE,N_{E,\mathbb{R}}.

On SE=SES_{E}=S\otimes E we have the weight decomposition [6, p. 66, §3.4]

(27) H0(SE,𝒪(3D0))uPMEEχuH^{0}(S_{E},\mathcal{O}(3D_{0}))\cong\bigoplus_{u\in P\cap M_{E}}E\chi^{u}

where PP is the polyhedron in ME,M_{E,\mathbb{R}} defined by

P={uME,:u3φ0 on NE,}.P=\{u\in M_{E,\mathbb{R}}:u\geq 3\varphi_{0}\text{ on $N_{E,\mathbb{R}}$}\}.

Let (v1,v2)ME,(v_{1}^{\vee},v_{2}^{\vee})\in M_{E,\mathbb{Q}} be the dual basis to (v1,v2)NE(v_{1},v_{2})\in N_{E}. Write u=u1v1+u2v2MEu=u_{1}v_{1}^{\vee}+u_{2}v_{2}^{\vee}\in M_{E}. The polyhedron PP is cut out by the inequalities

(28) {u0on σ12u3v2on σ10u3v1on σ20.\begin{cases}u\geq 0\,\,\text{on $\sigma_{12}$}\\ u\geq 3v_{2}^{\vee}\,\,\text{on $\sigma_{10}$}\\ u\geq 3v_{1}^{\vee}\,\,\text{on $\sigma_{20}$}.\end{cases}

Figure 4 depicts the polyhedron PP when NEN_{E} is identified with the lattice in 2\mathbb{R}^{2} generated by ω=(1,0)\omega=(1,0) and γω=(12,32)\gamma\omega=(\frac{1}{2},\frac{\sqrt{3}}{2}). Then the character lattice MEM_{E} is generated by a=(1,33)a^{\prime}=(1,-\frac{\sqrt{3}}{3}) and b=(0,233)b^{\prime}=(0,\frac{2\sqrt{3}}{3}). We have that u1=32x32yu_{1}=\frac{3}{2}x-\frac{\sqrt{3}}{2}y and u2=3yu_{2}=\sqrt{3}y where x,yx,y are the standard coordinates on 2\mathbb{R}^{2}, and the polyhedron PP is cut out by the inequalities

(29) {32x32y03y0332x+32y.\begin{cases}\frac{3}{2}x-\frac{\sqrt{3}}{2}y\geq 0\\ {\sqrt{3}}y\geq 0\\ 3\geq\frac{3}{2}x+\frac{\sqrt{3}}{2}y.\end{cases}
aa^{\prime}0bb^{\prime}
Figure 4. The polyhedron PME,P\subset M_{E,\mathbb{R}} for the TET_{E}-line bundle 𝒪(3D0)\mathcal{O}(3D_{0}).

We conclude that h0(SE,𝒪(3D0))=4h^{0}(S_{E},\mathcal{O}(3D_{0}))=4.

The global section 𝟏\mathbf{1} is clearly the weight vector in H0(SE,𝒪(3D0))H^{0}(S_{E},\mathcal{O}(3D_{0})) with trivial TET_{E}-action. We may find the other three weight vectors in H0(SE,𝒪(3D0))H^{0}(S_{E},\mathcal{O}(3D_{0})) by twisting 𝟏\mathbf{1} by the three nontrivial characters in PP. Using the formulas from §2.2, one finds that

(30) χa+b(uv0+vv1+wv2)=vwu2=(X+ζY+ζ2Z)(X+ζ2Y+ζZ)(X+Y+Z)2=e123e2e12\chi^{a^{\prime}+b^{\prime}}(uv_{0}^{\prime}+vv_{1}^{\prime}+wv_{2}^{\prime})=\frac{vw}{u^{2}}=\frac{(X+\zeta Y+\zeta^{2}Z)(X+\zeta^{2}Y+\zeta Z)}{(X+Y+Z)^{2}}=\frac{e_{1}^{2}-3e_{2}}{e_{1}^{2}}

with associated weight vector χa+b𝟏\chi^{a^{\prime}+b^{\prime}}\mathbf{1}. Similarly,

(31) χ2b+a(uv0+vv1+wv2)=w3u3=e1392e1e2+272e3272disce13\chi^{2b^{\prime}+a^{\prime}}(uv_{0}^{\prime}+vv_{1}^{\prime}+wv_{2}^{\prime})=\frac{w^{3}}{u^{3}}=\frac{e_{1}^{3}-\tfrac{9}{2}e_{1}e_{2}+\tfrac{27}{2}e_{3}-\tfrac{\sqrt{-27}}{2}\sqrt{\mathrm{disc}}}{e_{1}^{3}}

and χ2a+b=γχ2b+a\chi^{2a^{\prime}+b^{\prime}}=\gamma\chi^{2b^{\prime}+a^{\prime}} is the conjugate character. ∎

3.2. Completing the orbit parametrization

Consider the function

(32) T()\displaystyle T(\mathbb{Q}) 3(E)\displaystyle\to\mathbb{P}_{3}(E)
(33) (K/,x)\displaystyle(K/\mathbb{Q},x) [w1:w2:w3:w4]\displaystyle\mapsto[w_{1}:w_{2}:w_{3}:w_{4}]

where w1,,w4w_{1},\ldots,w_{4} are the weight vectors in H0(SE,𝒪(3D0))H^{0}(S_{E},\mathcal{O}(3D_{0})) given by (25).

Proposition 3.

The characteristic polynomial f=t3t2+at+b[t]f=t^{3}-t^{2}+at+b\in\mathbb{Q}[t] of a rational point (K/,x)T()(K/\mathbb{Q},x)\in T(\mathbb{Q}) has integer coefficients if and only if (K/,x)(K/\mathbb{Q},x) is D0D_{0}-integral. For any D0D_{0}-integral rational point (K/,x)(K/\mathbb{Q},x) on TT,

(34) H((K/,x),𝒪(D0))=H(f)=13a.H((K/\mathbb{Q},x),\mathcal{O}(D_{0}))=H(f)=\sqrt{1-3a}.
Proof.

First we verify that the C3C_{3}-invariant functions e1,e2,e3,disce_{1},e_{2},e_{3},\sqrt{\mathrm{disc}} of X,Y,ZX,Y,Z appearing in the formulas (25) for the weight vectors are polynomial functions of the coefficients of the characteristic polynomial of xx. By [12, Prop. 2.5] the unit

(35) u=gC3g(x)[g1]𝒢(K)u=\sum_{g\in C_{3}}g(x)[g^{-1}]\in\mathcal{G}(K)

maps to (K/,x)(K/\mathbb{Q},x) under 𝒢𝒢/C3\mathcal{G}\to\mathcal{G}/C_{3}. Thus the three rational functions X/ε,Y/ε,Z/εX/\varepsilon,Y/\varepsilon,Z/\varepsilon on \mathbb{P} evaluate on uu to the Galois conjugates of xx, and therefore any C3C_{3}-invariant polynomial in X/ε,Y/ε,Z/εX/\varepsilon,Y/\varepsilon,Z/\varepsilon is a polynomial function in the coefficients of the characteristic polynomial of xx.

This proves the ‘if’ direction of the first assertion, since aa and bb are the values at (K/,x)(K/\mathbb{Q},x) of the C3C_{3}-invariant polynomials e2(X/ε,Y/ε,1X/εY/ε)e_{2}(X/\varepsilon,Y/\varepsilon,1-X/\varepsilon-Y/\varepsilon) and e3(X/ε,Y/ε,1X/εY/ε)-e_{3}(X/\varepsilon,Y/\varepsilon,1-X/\varepsilon-Y/\varepsilon) in [X/ε,Y/ε]C3\mathbb{Z}[X/\varepsilon,Y/\varepsilon]^{C_{3}}. For the ‘only if’ direction, first we use that

(36) [X,Y,Z]C3=[e1,e2,e3,X2Y+Y2Z+Z2X]\mathbb{Z}[X,Y,Z]^{C_{3}}=\mathbb{Z}[e_{1},e_{2},e_{3},X^{2}Y+Y^{2}Z+Z^{2}X]

(see e.g. [2, Example 4.6]). For any integer d1d\geq 1, dehomogenizing with respect to ε\varepsilon induces an isomorphism of C3C_{3}-modules [X,Y,Z]d[X/ε,Y/ε]d\mathbb{Z}[X,Y,Z]_{d}\cong\mathbb{Z}[X/\varepsilon,Y/\varepsilon]_{\leq d} where ()d(-)_{d} (resp. ()d(-)_{\leq d}) denotes the submodule of homogeneous degree dd elements (resp. degree d\leq d elements). In particular,

[X,Y,Z]dC3[X/ε,Y/ε]dC3,\mathbb{Z}[X,Y,Z]_{d}^{C_{3}}\cong\mathbb{Z}[X/\varepsilon,Y/\varepsilon]_{\leq d}^{C_{3}},

and so (K/,x)(K/\mathbb{Q},x) is D0D_{0}-integral if and only if the four generators of [X,Y,Z]C3\mathbb{Z}[X,Y,Z]^{C_{3}} are integral on (K/,x)(K/\mathbb{Q},x). In fact, it already suffices for e2e_{2} and e3e_{3} to be integral: if e2e_{2} and e3e_{3} evaluate to integers on (K/,x)(K/\mathbb{Q},x), then X2YX^{2}Y will evaluate to an integral element of KK and its trace will be an integer, equal to the value of the last generator. This proves the first assertion.

To compute the toric height, we use [6, p. 68] to express the support function φ0\varphi_{0} associated to D0D_{0} using the weight vectors in H0(SE,𝒪(3D0))H^{0}(S_{E},\mathcal{O}(3D_{0})) found in Lemma 1. The local toric height HvH_{v} with respect to 𝒪(3D0)\mathcal{O}(3D_{0}) of any point (K,x)T()(K,x)\in T(\mathbb{Q}) is

(37) max(|w1(x)𝟏(x)|w,,|w4(x)𝟏(x)|w)1[E:]\displaystyle\max\left(\left|\frac{w_{1}(x)}{\mathbf{1}(x)}\right|_{w},\ldots,\left|\frac{w_{4}(x)}{\mathbf{1}(x)}\right|_{w}\right)^{\frac{1}{[E:\mathbb{Q}]}}
=max(1,|13e2|w,|192e2+272e3272disc|w,|192e2+272e3+272disc|w)1[E:]\displaystyle=\max\left(1,|1-3e_{2}|_{w},\left|1-\tfrac{9}{2}e_{2}+\tfrac{27}{2}e_{3}-\tfrac{\sqrt{-27}}{2}\sqrt{\mathrm{disc}}\right|_{w},\left|1-\tfrac{9}{2}e_{2}+\tfrac{27}{2}e_{3}+\tfrac{\sqrt{-27}}{2}\sqrt{\mathrm{disc}}\right|_{w}\right)^{\frac{1}{[E:\mathbb{Q}]}}

where ||w=qwordw()|\cdot|_{w}=q_{w}^{-\mathrm{ord}_{w}(\cdot)} if ww is nonarchimedean and ||w=||dw|\cdot|_{w}=|\cdot|^{d_{w}} otherwise. When (K,x)(K,x) is D0D_{0}-integral, the only contribution to the height is the local contribution from the complex place ww of EE at infinity, which is

(38) max(1,|13e2|2,|192e2+272e3+272disc|2)1/2.\displaystyle\max\left(1,|1-3e_{2}|^{2},\left|1-\tfrac{9}{2}e_{2}+\tfrac{27}{2}e_{3}+\tfrac{\sqrt{-27}}{2}\sqrt{\mathrm{disc}}\right|^{2}\right)^{1/2}.

A short computation shows that

(39) |192e2+272e3+272disc|2=(13e2)3.\left|1-\tfrac{9}{2}e_{2}+\tfrac{27}{2}e_{3}+\tfrac{\sqrt{-27}}{2}\sqrt{\mathrm{disc}}\right|^{2}=(1-3e_{2})^{3}.

Thus 13e2>01-3e_{2}>0 and (13e2)3(13e2)2(1-3e_{2})^{3}\geq(1-3e_{2})^{2} which shows that

(40) H((K,x),𝒪(D0))=H((K,x),𝒪(3D0))1/3=13e2=H(f).H((K,x),\mathcal{O}(D_{0}))=H((K,x),\mathcal{O}(3D_{0}))^{1/3}=\sqrt{1-3e_{2}}=H(f).\qed
Remark 1.

As a function of characteristic polynomials t3t2+at+bt^{3}-t^{2}+at+b of rational points on TT, the quotient

(41) 3max(|a|1/2,|b|1/3)13a\frac{\sqrt{3}\max(|a|^{1/2},|b|^{1/3})}{\sqrt{1-3a}}

is bounded and tends to 11 as a,ba,b\to\infty. This shows that the toric height is equivalent to the “root height” in Theorem 1.

4. The Poisson summation formula

In this section we prove the following formula for the height zeta function for D0D_{0}-integral rational points on the open torus of SS.

Theorem 5.

Fix any s(Σ(1))Γs\in(\mathbb{C}^{\Sigma(1)})^{\Gamma} with Re(se)0\mathrm{Re}(s_{e})\gg 0 for every eΣw(1)e\in\Sigma_{w}(1). Then the multivariate Dirichlet series

(42) Z(s)=PT()D0-integralH(P,s)1Z(s)=\sum_{\begin{subarray}{c}P\in T(\mathbb{Q})\\ \text{$D_{0}$-\emph{integral}}\end{subarray}}H(P,s)^{-1}

is absolutely convergent and equals

(43) (13z)ζ(z)q2(mod 3)(1+1qz)1p1(mod 3)(1+3pz(11pz)1)\displaystyle\left({1-3^{-z}}\right)\zeta(z)\prod_{q\equiv 2\ (\mathrm{mod}\ 3)}\left(1+\frac{1}{q^{z}}\right)^{-1}\prod_{p\equiv 1\ (\mathrm{mod}\ 3)}\left(1+\frac{3}{p^{z}}\left(1-\frac{1}{p^{z}}\right)^{-1}\right)

where z=12(s0+s1+s2)z=\frac{1}{2}(s_{0}+s_{1}+s_{2}). This multivariate Dirichlet series admits a meromorphic continuation to {s(Σ(1))Γ:Re(s0+s1+s2)>1}\{s\in(\mathbb{C}^{\Sigma(1)})^{\Gamma}:\mathrm{Re}(s_{0}+s_{1}+s_{2})>1\}.

For the proof, we recall some well-known facts from harmonic analysis. For any finite place vv of \mathbb{Q} let d×xvd^{\times}x_{v} be the Haar measure on T(v)T(\mathbb{Q}_{v}) for which the maximal compact subgroup has measure one, and at the infinite place choose the Haar measure d×xd^{\times}x_{\infty} on T()T(\mathbb{R}) for which v0N\mathbb{Z}v_{0}\subset N_{\mathbb{R}} is a unimodular lattice with respect to the pushforward to NN_{\mathbb{R}} under nwn_{w} of d×xd^{\times}x_{\infty}. For any finite set SS of places of \mathbb{Q} containing v=v=\infty let 𝔸S\mathbb{A}_{S} denote the subring of adeles which are integral at places not in SS. There is a unique Haar measure on T(𝔸)T(\mathbb{A}), denoted d×xd^{\times}x, whose restriction to T(𝔸S)=vST(v)×vSKvT(\mathbb{A}_{S})=\prod_{v\in S}T(\mathbb{Q}_{v})\times\prod_{v\not\in S}K_{v} is the product measure vSd×xv\prod_{v\not\in S}d^{\times}x_{v} for all SS. The Fourier transform of any factorizable integrable function f=vfvL1(T(𝔸))f=\otimes_{v}f_{v}\in L^{1}(T(\mathbb{A})) is defined by

(44) f^(χ)=T(𝔸)f(x)χ(x)1d×x=vT(v)fv(x)χv(x)1d×xv.\widehat{f}(\chi)=\int_{T(\mathbb{A})}f(x)\chi(x)^{-1}\,d^{\times}x=\prod_{v}\int_{T(\mathbb{Q}_{v})}f_{v}(x)\chi_{v}(x)^{-1}\,d^{\times}x_{v}.

The subgroup E×=T()E^{\times}=T(\mathbb{Q}) is discrete in 𝔸E×=T(𝔸)\mathbb{A}_{E}^{\times}=T(\mathbb{A}). We equip T()T(\mathbb{Q}) with its counting measure and the quotient group T()\T(𝔸)T(\mathbb{Q})\backslash T(\mathbb{A}) with the quotient measure (also denoted d×xd^{\times}x) of d×xd^{\times}x by the counting measure. The dual measure dχd\chi of this quotient measure is by definition the unique Haar measure on (T()\T(𝔸))(T(\mathbb{Q})\backslash T(\mathbb{A}))^{\vee} with the property that for all FL1(T()\T(𝔸))F\in L^{1}(T(\mathbb{Q})\backslash T(\mathbb{A})) satisfying F^L1((T()\T(𝔸)))\widehat{F}\in L^{1}((T(\mathbb{Q})\backslash T(\mathbb{A}))^{\vee}), the Fourier inversion formula holds:

(45) F(x)=(T()\T(𝔸))F^(χ)χ(x)𝑑χ.F(x)=\int_{(T(\mathbb{Q})\backslash T(\mathbb{A}))^{\vee}}\widehat{F}(\chi)\chi(x)\,d\chi.

Let T()T(\mathbb{Q})^{\perp} denote the the subgroup of characters on T(𝔸)T(\mathbb{A}) that are trivial on T()T(\mathbb{Q}); this subgroup is canonically isomorphic to (T()\T(𝔸))(T(\mathbb{Q})\backslash T(\mathbb{A}))^{\vee}. Let fL1(T(𝔸))f\in L^{1}(T(\mathbb{A})). The general Poisson summation formula — following from the classical proof for \mathbb{Z}\subset\mathbb{R} — says that if f^|T()L1(T())\widehat{f}\,|_{T(\mathbb{Q})^{\perp}}\in L^{1}(T(\mathbb{Q})^{\perp}) then

(46) T()f(xy)𝑑x=T()f^(χ)χ(y)𝑑χ\int_{T(\mathbb{Q})}f(xy)\,dx=\int_{T(\mathbb{Q})^{\perp}}\widehat{f}(\chi)\chi(y)\,d\chi

for a.e. yT()y\in T(\mathbb{Q}) and suitably normalized Haar measure dχd\chi on T()T(\mathbb{Q})^{\perp} [5, Theorem 4.4.2, p. 105].

To apply the Poisson summation formula we will compute the Fourier transform of

(47) xH(x,s,D0)=H(x,s)1D0(x)(xT(𝔸))x\mapsto H(x,-s,D_{0})=H(x,-s)1_{D_{0}}(x)\qquad(x\in T(\mathbb{A}))

where 1D0:T(𝔸){0,1}1_{D_{0}}\colon T(\mathbb{A})\to\{0,1\} is the characteristic function on D0D_{0}-integral points. The function H(x,s,D0)H(x,-s,D_{0}) is factorizable so its Fourier transform is equal to the product of the transforms of its local factors:

(48) H^(χ,s,D0)=vMHv^(χv,s,D0).\widehat{H}(\chi,-s,D_{0})=\prod_{v\in M_{\mathbb{Q}}}\widehat{H_{v}}(\chi_{v},-s,D_{0}).

As usual, we say that a character χ\chi on T(v)T(\mathbb{Q}_{v}) is ramified if its restriction to the maximal compact subgroup is nontrivial, and otherwise it is unramified.

Proposition 4.

Let s(Σ(1))Γs\in(\mathbb{C}^{\Sigma(1)})^{\Gamma} and assume Re(se)>0\mathrm{Re}(s_{e})>0 for each e{0,1,2}e\in\{0,1,2\}. Let ww be the infinite place of EE. Let χT()\chi\in T(\mathbb{R})^{\vee} be a unitary character. If χ\chi is ramified then H^(χ,s)\widehat{H_{\infty}}(\chi,-s) is identically zero. If χ\chi is unramified, then χ(x)=e(nw(x),m)\chi(x)=e(\langle n_{w}(x),m\rangle) for all xT()x\in T(\mathbb{R}) for a unique mMm\in M_{\mathbb{R}}, and

(49) H^(m,s)=(12πi)s0+s1+s22πi1(m(v0)+s02πi)(m(v0)s1+s22πi).\widehat{H_{\infty}}(m,-s)=\left(\frac{-1}{2\pi i}\right)\frac{s_{0}+s_{1}+s_{2}}{2\pi i}\frac{1}{(m(v_{0})+\frac{s_{0}}{2\pi i})(m(v_{0})-\frac{s_{1}+s_{2}}{2\pi i})}.

Next let vv be a finite place of \mathbb{Q}. For any unitary character χT(v)\chi\in T(\mathbb{Q}_{v})^{\vee}, the integral defining Hv^(χ,s,D0)\widehat{H_{v}}(\chi,-s,D_{0}) converges absolutely to a holomorphic function of ss in the region

{s(Σ(1))Γ:Re(s1),Re(s2)>0}.\{s\in(\mathbb{C}^{\Sigma(1)})^{\Gamma}:\mathrm{Re}(s_{1}),\mathrm{Re}(s_{2})>0\}.

Assume v3v\neq 3. Let ww be any place of EE lying over vv. The local characteristic function 1D0,v1_{D_{0},v} is KvK_{v}-invariant. If χ\chi is ramified, then Hv^(χ,s,D0)\widehat{H_{v}}(\chi,-s,D_{0}) is identically zero. If χ\chi is unramified then we may regard χ\chi as a character on X(TE)Γ(w/v)X_{\ast}(T_{E})^{\Gamma(w/v)} (Proposition 2) and

(50) Hv^(χ,s,D0)=nX(TE)Γ(w/v)n0v1+0v2χ(n)1qvφ(n).\widehat{H_{v}}(\chi,-s,D_{0})=\sum_{\begin{subarray}{c}n\in X_{\ast}(T_{E})^{\Gamma(w/v)}\\ n\in\mathbb{R}_{\geq 0}v_{1}+\mathbb{R}_{\geq 0}v_{2}\end{subarray}}\chi(n)^{-1}q_{v}^{\varphi(n)}.

If v=3v=3 then the support of xH3(x,s,D0)x\mapsto H_{3}(x,-s,D_{0}) is the unique subgroup K3,2K_{3,2} of K3K_{3} of index six. Under the isomorphism T(3)E3×T(\mathbb{Q}_{3})\to E_{3}^{\times} the support corresponds to the subgroup 1+3OE,w1+3O_{E,w} of OE,w×O_{E,w}^{\times} where ww is the unique place of EE lying over 33.

Remark 2.

The local Fourier transforms — and therefore the entire Poisson summation argument — must be computed before restricting to the line in PicT(S)\mathrm{Pic}^{T}(S)\otimes\mathbb{C} spanned by the TET_{E}-line bundle 𝒪(D0)\mathcal{O}(D_{0}) of interest since xHv(x,s,𝒪(D0))x\mapsto H_{v}(x,-s,\mathcal{O}(D_{0})) will not be integrable for any place v3,v\neq 3,\infty once either of s1s_{1} or s2s_{2} vanishes, no matter how large and positive Re(s0)\mathrm{Re}(s_{0}) is.

Proof.

Note that 1D0,1_{D_{0},\infty} is identically one since integrality conditions are only imposed at finite places, and also observe that the integrand is KK_{\infty}-invariant. If χ\chi is ramified then H^(χ,s,D0)\widehat{H_{\infty}}(\chi,-s,D_{0}) vanishes by Schur’s lemma, so suppose χ\chi is unramified. Then

(51) H^(χ,s,D0)=T()H(x,s)1D0,(x)χ(x)1d×x\displaystyle\widehat{H_{\infty}}(\chi,-s,D_{0})=\int_{T(\mathbb{R})}H_{\infty}(x,-s)1_{D_{0},\infty}(x)\chi(x)^{-1}\,d^{\times}x_{\infty} =Nw,H(y,s)e(y,m)𝑑μ(y)\displaystyle=\int_{N_{w,\mathbb{R}}}H_{\infty}(y,-s)e(-\langle y,m\rangle)\,d\mu(y)
(52) =Nw,eφ(y)e(y,m)𝑑μ(y).\displaystyle=\int_{N_{w,\mathbb{R}}}e^{\varphi(y)}e(-\langle y,m\rangle)\,d\mu(y).

Next we compute that

(53) Nw,eφ(y)e(y,m)𝑑μ(y)\displaystyle\int_{N_{w,\mathbb{R}}}e^{\varphi(y)}e(-\langle y,m\rangle)\,d\mu(y) =0eφ(yv0)e(yv0,m)𝑑μ(y)+0eφ(yv0)e(yv0,m)𝑑μ(y)\displaystyle=\int_{\mathbb{R}_{\geq 0}}e^{\varphi(yv_{0})}e(-\langle yv_{0},m\rangle)\,d\mu(y)+\int_{\mathbb{R}_{\geq 0}}e^{\varphi(-yv_{0})}e(\langle yv_{0},m\rangle)\,d\mu(y)
(54) =0ey(s0+2πim(v0))𝑑μ(y)+0ey(s1+s22πim(v0))𝑑μ(y)\displaystyle=\int_{\mathbb{R}_{\geq 0}}e^{-y(s_{0}+2\pi im(v_{0}))}\,d\mu(y)+\int_{\mathbb{R}_{\geq 0}}e^{-y(s_{1}+s_{2}-2\pi im(v_{0}))}\,d\mu(y)
(55) =(s0+2πim(v0))1+(s1+s22πim(v0))1\displaystyle=(s_{0}+2\pi im(v_{0}))^{-1}+(s_{1}+s_{2}-2\pi im(v_{0}))^{-1}
(56) =(12πi)((m(v0)s02πi)1+(m(v0)s1+s22πi)1)\displaystyle=\left(\frac{-1}{2\pi i}\right)\left(\left(-m(v_{0})-\frac{s_{0}}{2\pi i}\right)^{-1}+\left(m(v_{0})-\frac{s_{1}+s_{2}}{2\pi i}\right)^{-1}\right)
(57) =(12πi)(s0+s1+s2)2πi1(m(v0)s02πi)(m(v0)s1+s22πi)\displaystyle=\left(\frac{-1}{2\pi i}\right)\frac{-(s_{0}+s_{1}+s_{2})}{2\pi i}\frac{1}{(-m(v_{0})-\frac{s_{0}}{2\pi i})(m(v_{0})-\frac{s_{1}+s_{2}}{2\pi i})}

which proves the claimed formula.

Next let vv be a finite place of \mathbb{Q} and let ww be any place of EE lying over vv. Let Nw=X(TE)Γ(w/v)N_{w}=X_{\ast}(T_{E})^{\Gamma(w/v)}. The weight vectors in H0(SE,𝒪(3D0))H^{0}(S_{E},\mathcal{O}(3D_{0})) correspond to the characters 0,v1,v2,3v1,3v20,v_{1}^{\vee},v_{2}^{\vee},3v_{1}^{\vee},3v_{2}^{\vee} in MEM_{E}, so from (37) we see that the local height Hv(x,D0)H_{v}(x,D_{0}) is 1\leq 1 if and only if nw(x)0v1+0v2n_{w}(x)\in\mathbb{R}_{\geq 0}v_{1}+\mathbb{R}_{\geq 0}v_{2}.

Now consider the sub-OEO_{E}-module

(58) OEw1,w2,w3,w4OE[X,Y,Z]3C3=OEe13,e1e2,e3,δO_{E}\langle w_{1},w_{2},w_{3},w_{4}\rangle\subset O_{E}[X,Y,Z]^{C_{3}}_{3}=O_{E}\langle e_{1}^{3},e_{1}e_{2},e_{3},\delta\rangle

where δ=X2Y+Y2Z+Z2X\delta=X^{2}Y+Y^{2}Z+Z^{2}X (cf. (36)). From the formulas for the weight vectors, one computes that the homomorphism taking the basis vectors e13,e1e2,e3,δe_{1}^{3},e_{1}e_{2},e_{3},\delta to the weight vectors w1,w2,w3,w4w_{1},w_{2},w_{3},w_{4}, respectively, has the matrix

(59) (1111033(2+ζ)3(2+ζ2)009(2+ζ)9(2+ζ2)003(1+2ζ)3(1+2ζ2))\begin{pmatrix}1&1&1&1\\ 0&-3&-3(2+\zeta)&-3(2+\zeta^{2})\\ 0&0&9(2+\zeta)&9(2+\zeta^{2})\\ 0&0&3(1+2\zeta)&3(1+2\zeta^{2})\\ \end{pmatrix}

which has determinant 2433243\sqrt{-3}.

Assume v3v\neq 3. The cokernel of (58) is a 33-group, so this inclusion becomes an isomorphism after tensoring with v\mathbb{Z}_{v}. Thus xT(v)x\in T(\mathbb{Q}_{v}) is D0D_{0}-integral e2(x),e3(x),δ(x)vw1(x),,w4(x)OEvHv(x,D0)1nw(x)0v1+0v2\iff e_{2}(x),e_{3}(x),\delta(x)\in\mathbb{Z}_{v}\iff w_{1}(x),\ldots,w_{4}(x)\in O_{E}\otimes\mathbb{Z}_{v}\iff H_{v}(x,D_{0})\leq 1\iff n_{w}(x)\in\mathbb{R}_{\geq 0}v_{1}+\mathbb{R}_{\geq 0}v_{2}. This also shows that 1D0,v1_{D_{0},v} is KvK_{v}-invariant since the ww-adic size of each weight vector is unchanged under the action of KvK_{v}. If χ\chi is ramified then the Fourier transform of Hv(x,s)11D0,v(x)H_{v}(x,s)^{-1}1_{D_{0},v}(x) vanishes by Schur’s lemma, so suppose χ\chi is unramified at vv. The integrand is KvK_{v}-invariant and d×xv(Kv)=1d^{\times}x_{v}(K_{v})=1 so

(60) T(v)Hv(x,s)11D0,v(x)χ(x)1d×xv=nNwqv1evφ(n)1D0,v(n)χ(n)1=nX(TE)Γ(w/v)n0v1+0v2χ(n)1qvφ(n).\int_{T(\mathbb{Q}_{v})}H_{v}(x,s)^{-1}1_{D_{0},v}(x)\chi(x)^{-1}\,d^{\times}x_{v}=\sum_{n\in N_{w}}q_{v}^{\frac{1}{e_{v}}\varphi(n)}1_{D_{0},v}(n)\chi(n)^{-1}=\sum_{\begin{subarray}{c}n\in X_{\ast}(T_{E})^{\Gamma(w/v)}\\ n\in\mathbb{R}_{\geq 0}v_{1}+\mathbb{R}_{\geq 0}v_{2}\end{subarray}}\chi(n)^{-1}q_{v}^{\varphi(n)}.

For v=3v=3 we use the integrality conditions (18) rephrased in terms of cyclotomic numbers from Proposition 1, which in this local context take the form

(61) e2(x),e3(x),δ(x)3{u2+v2uv1+33 and (u2+v2uv)(32u+v)1+273e_{2}(x),e_{3}(x),\delta(x)\in\mathbb{Z}_{3}\iff\begin{cases}u^{2}+v^{2}-uv\in 1+3\mathbb{Z}_{3}\text{ and }\\ (u^{2}+v^{2}-uv)(3-2u+v)\in 1+27\mathbb{Z}_{3}\end{cases}

where xu+vζ(ζ)3x\leftrightarrow u+v\zeta\in\mathbb{Q}(\zeta)\otimes\mathbb{Q}_{3}. These conditions imply that u+vζu+v\zeta is a 33-adic unit, so the support of xH3(x,s,D0)x\mapsto H_{3}(x,-s,D_{0}) is contained in K3K_{3}. Suppose that z=u+vζK3z=u+v\zeta\in K_{3} is in the support. Let N=u2+v2uvN=u^{2}+v^{2}-uv and T=2uvT=2u-v. Define n,τ3n,\tau\in\mathbb{Z}_{3} by N=(1+3n)1N=(1+3n)^{-1}, N(3T)=1+27τN(3-T)=1+27\tau. One easily sees from these equations that

(62) T2=3n+O(32)and1T+N=32n2+O(33)T-2=3n+O(3^{2})\quad\text{and}\quad 1-T+N=3^{2}n^{2}+O(3^{3})

and therefore from the Newton polygon of the characteristic polynomial of zz,

(63) t2Tt+N=(t1)2(T2)(t1)+1T+N,t^{2}-Tt+N=(t-1)^{2}-(T-2)(t-1)+1-T+N,

one concludes that z1+3Owz\in 1+3O_{w}. Conversely if z=1+3xz=1+3x with xOwx\in O_{w} then clearly N(z)1+33N(z)\in 1+3\mathbb{Z}_{3} while N(3T)=1+9(NT2)27NT=1+9(3+9n)+O(33)1+273N(3-T)=1+9(N-T^{2})-27NT=1+9(-3+9n)+O(3^{3})\in 1+27\mathbb{Z}_{3}. ∎

To compute the quantities arising in the Poisson summation formula, we need to parameterize the continuous part of the automorphic spectrum of the torus TT. For any x=(xw)wT(𝔸E)x=(x_{w})_{w}\in T(\mathbb{A}_{E}) let

L(x)=12wPlEnw(xw)logqwNE,.L(x)=\tfrac{1}{2}\sum_{w\in Pl_{E}}n_{w}(x_{w})\log q_{w}\in N_{E,\mathbb{R}}.

We can give a simpler expression for LL using the isomorphism TRE𝔾mT\cong R^{E}_{\mathbb{Q}}\mathbb{G}_{m}. It is easy to check that

(64) L(x)(N)=log|N(x)|𝔸L(x)(\mathrm{N})=\log|\mathrm{N}(x)|_{\mathbb{A}}

where N:𝔸E×𝔸×\mathrm{N}\colon\mathbb{A}_{E}^{\times}\to\mathbb{A}^{\times} is the norm character. The norm character generates the rational character lattice MEΓM_{E}^{\Gamma} so NEΓN_{E}^{\Gamma} is generated by the unique Γ\Gamma-invariant cocharacter in NEN_{E} which takes the norm character to 11. Thus for any x𝔸E×=T()x\in\mathbb{A}_{E}^{\times}=T(\mathbb{Q}), L(x)=12log|N(x)|𝔸(v1+v2)N.L(x)=\tfrac{1}{2}\log|\mathrm{N}(x)|_{\mathbb{A}}(v_{1}+v_{2})\in N_{\mathbb{R}}.

Proposition 5.

There is an exact sequence

(65) 1K/μT()\T(𝔸)\xlongrightarrowLN01\longrightarrow K/\mu\longrightarrow T(\mathbb{Q})\backslash T(\mathbb{A})\xlongrightarrow{L}N_{\mathbb{R}}\longrightarrow 0

where KK is the maximal compact subgroup of T(𝔸)T(\mathbb{A}) and μ=T()K\mu=T(\mathbb{Q})\cap K.

Proof.

From (64) we see the kernel of LL is the norm-one subgroup of the idèle class group T()\T(𝔸)T(\mathbb{Q})\backslash T(\mathbb{A}) of EE. The rank of the group of units is zero and the class group is trivial so the norm-one subgroup of the idèle class group is generated by K/μK/\mu. Finally LL is surjective since nwn_{w} is already surjective for the complex place ww of EE (Proposition 2). ∎

Lemma 2.

Let KKK^{\prime}\subset K denote the subgroup which fixes the characteristic function 1D0=v1D0,v1_{D_{0}}=\otimes_{v}1_{D_{0},v} for D0D_{0}-integral points in T(𝔸)T(\mathbb{A}). Then

K=K3,2×v3KvK^{\prime}=K_{3,2}\times\prod_{v\neq 3}K_{v}

where K3,2K3K_{3,2}\subset K_{3} is the unique subgroup with index 66. There is an exact sequence

(66) 1K/(Kμ)T()\T(𝔸)/K\xlongrightarrowLN0.1\longrightarrow K/(K^{\prime}\cdot\mu)\longrightarrow T(\mathbb{Q})\backslash T(\mathbb{A})/K^{\prime}\xlongrightarrow{L}N_{\mathbb{R}}\longrightarrow 0.

Restriction to the connected component of the identity in T()\T(𝔸)/KT(\mathbb{Q})\backslash T(\mathbb{A})/K^{\prime} gives a canonical splitting s:NT()\T(𝔸)/Ks\colon N_{\mathbb{R}}\to T(\mathbb{Q})\backslash T(\mathbb{A})/K^{\prime} of LL, inducing the isomorphisms

(67) T()\T(𝔸)/K\displaystyle T(\mathbb{Q})\backslash T(\mathbb{A})/K^{\prime} \xlongrightarrowT()\T()K/K×N\xlongrightarrowK/(Kμ)×N\displaystyle\xlongrightarrow{\sim}T(\mathbb{Q})\backslash T(\mathbb{Q})K/K^{\prime}\times N_{\mathbb{R}}\xlongrightarrow{\sim}K/(K^{\prime}\cdot\mu)\times N_{\mathbb{R}}
(68) T()xK\displaystyle T(\mathbb{Q})xK^{\prime} (T()xs(L(x))1K,L(x))\displaystyle\mapsto(T(\mathbb{Q})xs(L(x))^{-1}K^{\prime},L(x))

where the second map is defined using the natural isomorphism T()\T()K/KK/(Kμ)T(\mathbb{Q})\backslash T(\mathbb{Q})K/K^{\prime}\cong K/(K^{\prime}\cdot\mu).

Proof.

The equality K=K3,2×v3KvK^{\prime}=K_{3,2}\times\prod_{v\neq 3}K_{v} follows from KvK_{v}-invariance of the local characteristic functions 1D0,v1_{D_{0},v} when v3v\neq 3 and the computation of the support when v=3v=3 from Proposition 4. The short exact sequence is obtained by taking the quotient by KK^{\prime} of the first two groups in the short exact sequence of Proposition 5. The group K/(Kμ)K/(K^{\prime}\cdot\mu) is finite so the natural quotient map T()\T(𝔸)/KT()\T(𝔸)/KT(\mathbb{Q})\backslash T(\mathbb{A})/K^{\prime}\to T(\mathbb{Q})\backslash T(\mathbb{A})/K identifies the connected component of the identity of T()\T(𝔸)/KT(\mathbb{Q})\backslash T(\mathbb{A})/K^{\prime} with T()\T(𝔸)/KT(\mathbb{Q})\backslash T(\mathbb{A})/K. Thus the restriction of LL to the connected component of the identity of T()\T(𝔸)/KT(\mathbb{Q})\backslash T(\mathbb{A})/K^{\prime} is an isomorphism onto NN_{\mathbb{R}}, so its inverse gives the canonical splitting map ss. ∎

Now we may prove Theorem 5.

Proof of Theorem 5.

Let 1D0:T(𝔸){0,1}1_{D_{0}}\colon T(\mathbb{A})\to\{0,1\} be the characteristic function on D0D_{0}-integral points. By the definition of D0D_{0}-integrality, 1D0=v1D0,v1_{D_{0}}=\otimes_{v}1_{D_{0},v} is a factorizable function. Take f=H(,s)1D0f=H(\cdot,-s)1_{D_{0}}. To apply the Poisson formula we verify that ff is in L1(T(𝔸))L^{1}(T(\mathbb{A})) and the restriction of f^\widehat{f} is in L1(T())L^{1}(T(\mathbb{Q})^{\perp}). From (23) we have

(69) H(x,s)1D0=vM1D0,v(xv)qv1evφ(nw(xv)),x=(xv)vT(𝔸)T(𝔸E).H(x,-s)1_{D_{0}}=\prod_{v\in M_{\mathbb{Q}}}1_{D_{0},v}(x_{v})q_{v}^{\frac{1}{e_{v}}\varphi(n_{w}(x_{v}))},\quad x=(x_{v})_{v}\in T(\mathbb{A})\subset T(\mathbb{A}_{E}).

For any finite set SS of places of \mathbb{Q} containing v=v=\infty let 𝔸S\mathbb{A}_{S} denote the subring of adeles which are integral at places not in SS. The chain of inequalities

T(𝔸)f(x)d×x=limC compactCf(x)d×xlimS finiteT(𝔸S)f(x)d×xT(𝔸)f(x)d×x\int_{T(\mathbb{A})}f(x)\,d^{\times}x=\lim_{C\text{ compact}}\int_{C}f(x)\,d^{\times}x\leq\lim_{S\text{ finite}}\int_{T(\mathbb{A}_{S})}f(x)\,d^{\times}x\leq\int_{T(\mathbb{A})}f(x)\,d^{\times}x

in the limits of larger CC and SS shows that

T(𝔸)f(x)d×x=limST(𝔸S)f(x)d×xlimSvSv3T(v)1D0,v(xw)qvφ(nw(xw))d×xv\int_{T(\mathbb{A})}f(x)\,d^{\times}x=\lim_{S}\int_{T(\mathbb{A}_{S})}f(x)\,d^{\times}x\leq\lim_{S}\prod_{\begin{subarray}{c}v\in S\\ v\neq 3\end{subarray}}\int_{T(\mathbb{Q}_{v})}1_{D_{0},v}(x_{w})q_{v}^{\varphi(n_{w}(x_{w}))}\,d^{\times}x_{v}

(recall that H3(x,s,D0)H_{3}(x,-s,D_{0}) is supported in K3K_{3} by Proposition 4). Let |||{\cdot}| be any norm on NN_{\mathbb{R}}. There is a constant ρ>0\rho>0 such that for any finite place v3v\neq 3, any place ww of EE lying over vv, and nNEΓ(w/v)n\in N_{E}^{\Gamma(w/v)},

|1D0,v(n)qvφ(n)|{0if n is not in 0v1+0v2,qvρ|n|min{Re(s1),Re(s2)}otherwise.\left|1_{D_{0},v}(n)q_{v}^{\varphi(n)}\right|\leq\begin{cases}0&\text{if $n$ is not in $\mathbb{R}_{\geq 0}v_{1}+\mathbb{R}_{\geq 0}v_{2}$,}\\ q_{v}^{-\rho|n|\min\{\mathrm{Re}(s_{1}),\mathrm{Re}(s_{2})\}}&\text{otherwise.}\end{cases}

Set t=min{Re(s1),Re(s2)}t=\min\{\mathrm{Re}(s_{1}),\mathrm{Re}(s_{2})\}. Then for v3v\neq 3 we have

(70) |T(v)1D0,v(xw)qvφ(nw(xw))d×xv|nNEΓ(w/v)(0v1+0v2)qvρt|n|(1qvρt)rkNEΓ(w/v)|\int_{T(\mathbb{Q}_{v})}1_{D_{0},v}(x_{w})q_{v}^{\varphi(n_{w}(x_{w}))}\,d^{\times}x_{v}|\leq\sum_{n\in N_{E}^{\Gamma(w/v)}\cap(\mathbb{R}_{\geq 0}v_{1}+\mathbb{R}_{\geq 0}v_{2})}q_{v}^{-\rho t|{n}|}\ll\left(1-q_{v}^{-\rho t}\right)^{-\mathrm{rk}N_{E}^{\Gamma(w/v)}}

where the implied constant is independent of vv. For v=v=\infty we have already seen that xH(x,s,D)x\mapsto H_{\infty}(x,-s,D) is integrable once Re(se)>0\mathrm{Re}(s_{e})>0 for all eΣΓ(1)e\in\Sigma_{\Gamma}(1) (Proposition 4). Thus for any finite set of places SS,

(71) |T(𝔸S)f(x)d×x|vSv(1qvρt)1ζ(ρt)|\int_{T(\mathbb{A}_{S})}f(x)\,d^{\times}x|\ll\prod_{\begin{subarray}{c}v\in S\\ v\neq\infty\end{subarray}}\left(1-q_{v}^{-\rho t}\right)^{-1}\leq\zeta(\rho t)

which is finite for t>1/ρt>1/\rho. Taking the limit over SS shows ff is integrable.

Next we prove that the restriction of f^\widehat{f} to T()(T(𝔸)/T())T(\mathbb{Q})^{\perp}\cong(T(\mathbb{A})/T(\mathbb{Q}))^{\vee} is integrable by evaluating the integral. By Schur’s lemma, this function is supported on (T()\T(𝔸)/K)(T(\mathbb{Q})\backslash T(\mathbb{A})/K^{\prime})^{\vee} where KKK^{\prime}\subset K is the subgroup which fixes the characteristic function 1D01_{D_{0}}. We will use the isomorphism in Lemma 2 to perform the integral over the automorphic spectrum of TT. Let CC denote the finite group K/(Kμ)K/(K^{\prime}\cdot\mu). For any χ(T()\T(𝔸)/K)\chi\in(T(\mathbb{Q})\backslash T(\mathbb{A})/K)^{\vee} there is a unique mMm\in M_{\mathbb{R}} such that χ(x)=e(m,L(x))\chi(x)=e(\langle m,L(x)\rangle) for all xT(𝔸)x\in T(\mathbb{A}). Set t=m(v0)t=m(v_{0}) for mMm\in M_{\mathbb{R}} and let χt\chi_{t} be the corresponding character. Any KK^{\prime}-unramified automorphic character of TT is of the form ψχt\psi\chi_{t} for a unique ψC\psi\in C^{\vee} and tt\in\mathbb{R}. The Haar measure on T()T(\mathbb{R}) was chosen so that v0N\mathbb{Z}v_{0}\subset N_{\mathbb{R}} was unimodular for the pushforward measure to NN_{\mathbb{R}}, and so

(72) (T(𝔸)/T())f^(χ)𝑑χ=κψCf^(ψχt)𝑑t\int_{(T(\mathbb{A})/T(\mathbb{Q}))^{\vee}}\widehat{f}(\chi)\,d\chi=\kappa\sum_{\psi\in C^{\vee}}\int_{\mathbb{R}}\widehat{f}(\psi\chi_{t})\,dt

where κ\kappa is a positive constant yet to be determined. The local vv-adic component ψvT(v)\psi_{v}\in T(\mathbb{Q}_{v})^{\vee} of ψ\psi is T(v)T()\T(𝔸)/KC𝜓×T(\mathbb{Q}_{v})\to T(\mathbb{Q})\backslash T(\mathbb{A})/K^{\prime}\twoheadrightarrow C\xrightarrow{\psi}\mathbb{C}^{\times}. Because the group N=T()/KN_{\mathbb{R}}=T(\mathbb{R})/K_{\infty} has no nontrivial finite quotients, the local component ψ\psi_{\infty} is trivial, and the infinite factor of f^\widehat{f} is (49). With the help of (50) we find the product over the finite factors besides v=3v=3 is

(73) v3,fv^(ψvχt,v)=v3,mX(TE)Γ(w/v)m0v1+0v2ξv(m)1qvφ(m)=ηξ(η)1ηs\prod_{{v\neq 3,\infty}}\widehat{f_{v}}(\psi_{v}\chi_{t,v})=\prod_{{v\neq 3,\infty}}\sum_{\begin{subarray}{c}m\in X_{\ast}(T_{E})^{\Gamma(w/v)}\\ m\in\mathbb{R}_{\geq 0}v_{1}+\mathbb{R}_{\geq 0}v_{2}\end{subarray}}\xi_{v}(m)^{-1}q_{v}^{\varphi(m)}=\sum_{\eta}\xi(\eta)^{-1}\eta^{-s}

where ξ=ψχt\xi=\psi\chi_{t}, η=(mw)vv3,X(TE)Γ(w/v)\eta=(m_{w})_{v}\in\prod_{v\neq 3,\infty}X_{\ast}(T_{E})^{\Gamma(w/v)} satisfies certain conditions, ξ(η)v3,ξv(mw)\xi(\eta)\coloneqq\prod_{v\neq 3,\infty}\xi_{v}(m_{w}), and ηsv3,qvφ(mw)\eta^{-s}\coloneqq\prod_{v\neq 3,\infty}q_{v}^{\varphi(m_{w})}. This is a multivariate Dirichlet series in s1s_{1} and s2s_{2} with summands indexed by η\eta which is absolutely convergent when s1s_{1} and s2s_{2} have sufficiently large and positive real parts, so the integral in (72) may be distributed into the sum over η\eta. With the help of (49), we see that (72) equals

(74) κ(12πi)s0+s1+s22πiηηs1(t+s02πi)(ts1+s22πi)ψCf3^(ξ3)ξ(η)1dt.\kappa\left(\frac{-1}{2\pi i}\right)\frac{s_{0}+s_{1}+s_{2}}{2\pi i}\sum_{\eta}\eta^{-s}\int_{\mathbb{R}}\frac{1}{(t+\frac{s_{0}}{2\pi i})(t-\frac{s_{1}+s_{2}}{2\pi i})}\sum_{\psi\in C^{\vee}}\widehat{f_{3}}(\xi_{3})\xi(\eta)^{-1}\,dt.

Let K3,2K_{3,2} denote the support of the local characteristic function 1D0,31_{D_{0},3} (cf. Proposition 4). Since χt,3\chi_{t,3} is trivial on K3K_{3}, we have f3^(ξ3)=f3^(ψ3)\widehat{f_{3}}(\xi_{3})=\widehat{f_{3}}(\psi_{3}). Recall that nw:T(v)X(TE)Γ(w/v)n_{w}\colon T(\mathbb{Q}_{v})\to X_{\ast}(T_{E})^{\Gamma(w/v)} is surjective for any finite ww (Proposition 2). Since T()T(v)T(\mathbb{Q})\subset T(\mathbb{Q}_{v}) is dense for any vv (E×E^{\times} is obviously dense in Ev×=(Ev)×E^{\times}_{v}=(E\otimes\mathbb{Q}_{v})^{\times}), there is a yvT()T(v)y_{v}\in T(\mathbb{Q})\subset T(\mathbb{Q}_{v}) which is a nwn_{w}-preimage of mwm_{w} where η=(mw)v\eta=(m_{w})_{v}. Then

(75) ψCf3^(ξ3)ξ(η)1\displaystyle\sum_{\psi\in C^{\vee}}\widehat{f_{3}}(\xi_{3})\xi(\eta)^{-1} =ψCK3,2ψ3(x3)1d×x3ξ(η)1\displaystyle=\sum_{\psi\in C^{\vee}}\int_{K_{3,2}}\psi_{3}(x_{3})^{-1}\,d^{\times}x_{3}\,\xi(\eta)^{-1}
=χt(η)1ψCK3,2ψ3(x3)1v3,ψv(yv)1d×x3.\displaystyle=\chi_{t}(\eta)^{-1}\sum_{\psi\in C^{\vee}}\int_{K_{3,2}}\psi_{3}(x_{3})^{-1}\prod_{v\neq 3,\infty}\psi_{v}(y_{v})^{-1}\,d^{\times}x_{3}.

Since Kv=KvK_{v}=K_{v}^{\prime} for all v3,v\neq 3,\infty (Lemma 2), the 33-adic projection map pr3\mathrm{pr}_{3} induces an isomorphism CK3/(K3,2pr3(μ))C\xrightarrow{\sim}K_{3}/(K_{3,2}\cdot\mathrm{pr}_{3}(\mu)). Let kηK3/(K3,2pr3(μ))k_{\eta}\in K_{3}/(K_{3,2}\cdot\mathrm{pr}_{3}(\mu)) be the image of v3,yv\prod_{v\neq 3,\infty}y_{v} under T()\T(𝔸)/KCK3/(K3,2pr3(μ))T(\mathbb{Q})\backslash T(\mathbb{A})/K^{\prime}\to C\to K_{3}/(K_{3,2}\cdot\mathrm{pr}_{3}(\mu)) so that v3,ψv(yv)=ψ3(kη)\prod_{v\neq 3,\infty}\psi_{v}(y_{v})=\psi_{3}(k_{\eta}). Explicitly, kηk_{\eta} is v3,kv\prod_{v\neq 3,\infty}k_{v} where kv=(kv,v)vKk_{v}=(k_{v,v^{\prime}})_{v^{\prime}}\in K is the idèle with components

(76) kv,v={1if v=v,yv1|yv|v1/2if v=,yv1otherwise.k_{v,v^{\prime}}=\begin{cases}1&\text{if $v^{\prime}=v$,}\\ y_{v}^{-1}|y_{v}|_{v}^{-1/2}&\text{if $v^{\prime}=\infty$,}\\ y_{v}^{-1}&\text{otherwise.}\end{cases}

In particular, ψv(yv)=ψ3(pr3(yv)1)\psi_{v}(y_{v})=\psi_{3}(\mathrm{pr}_{3}(y_{v})^{-1}).

We claim that pr3(yv)K3,2\mathrm{pr}_{3}(y_{v})\in K_{3,2} for all v3,v\neq 3,\infty (a priori it is only in K3K_{3}). This amounts to the assertion that every prime ideal in OEO_{E} not dividing 33 admits a generator that is congruent to 1(mod 3OE)1\ (\mathrm{mod}\ 3O_{E}). In other words, we claim that the ray class group C𝔪C_{\mathfrak{m}} of OEO_{E} with modulus 𝔪=3OE\mathfrak{m}=3O_{E} is trivial. This follows from the short exact sequence [8, Ch. V, Theorem 1.7, p. 146] (with notation defined there)

(77) 0OE×/OE,1×E𝔪×/E𝔪,1×C𝔪C00\longrightarrow O_{E}^{\times}/O_{E,1}^{\times}\longrightarrow E_{\mathfrak{m}}^{\times}/E_{\mathfrak{m},1}^{\times}\longrightarrow C_{\mathfrak{m}}\longrightarrow C\longrightarrow 0

which implies that

(78) h𝔪=h#(OE×/OE,1×)12r0N(𝔪0)𝔭|𝔪0(1N(𝔭)1)=1112032(131)=1.h_{\mathfrak{m}}=h\cdot\#(O_{E}^{\times}/O_{E,1}^{\times})^{-1}\cdot 2^{r_{0}}\cdot N(\mathfrak{m}_{0})\cdot\prod_{\mathfrak{p}|\mathfrak{m}_{0}}\left(1-N(\mathfrak{p})^{-1}\right)=1\cdot 1^{-1}\cdot 2^{0}\cdot 3^{2}\cdot(1-3^{-1})=1.

Thus the integral in (75) simplifies down to

(79) ψCK3,2ψ3(x3)1v3,ψv(yv)1d×x3.=ψCK3,2ψ3(x3kη)1d×x3=ψCK3,2ψ3(x3)1d×x3\sum_{\psi\in C^{\vee}}\int_{K_{3,2}}\psi_{3}(x_{3})^{-1}\prod_{v\neq 3,\infty}\psi_{v}(y_{v})^{-1}\,d^{\times}x_{3}.=\sum_{\psi\in C^{\vee}}\int_{K_{3,2}}\psi_{3}(x_{3}k_{\eta})^{-1}\,d^{\times}x_{3}=\sum_{\psi\in C^{\vee}}\int_{K_{3,2}}\psi_{3}(x_{3})^{-1}\,d^{\times}x_{3}

by absorbing kηk_{\eta} into the Haar measure. Since K3,2kerψ3K_{3,2}\subset\ker\psi_{3} for any ψC\psi\in C^{\vee}, and recalling that d×x3(K3)=1d^{\times}x_{3}(K_{3})=1, this is equal to

(80) ψCK3,2ψ3(x3)1d×x3=|C|d×x3(K3,2)=|C|[K3:K3,2]1=[K3,2pr3(μ):K3,2]=6.\sum_{\psi\in C^{\vee}}\int_{K_{3,2}}\psi_{3}(x_{3})^{-1}\,d^{\times}x_{3}=|C|\cdot d^{\times}x_{3}(K_{3,2})=|C|\cdot[K_{3}:K_{3,2}]^{-1}=[K_{3,2}\mathrm{pr}_{3}(\mu):K_{3,2}]=6.

Returning to (74), we see that Z(s)Z(s) is equal to

(81) (T(𝔸)/T())f^(χ)𝑑χ=6κ(12πi)s0+s1+s22πiηηsχt(η)1dt(t+s02πi)(ts1+s22πi).\int_{(T(\mathbb{A})/T(\mathbb{Q}))^{\vee}}\widehat{f}(\chi)\,d\chi=6\kappa\left(\frac{-1}{2\pi i}\right)\frac{s_{0}+s_{1}+s_{2}}{2\pi i}\sum_{\eta}\eta^{-s}\int_{\mathbb{R}}\frac{\chi_{t}(\eta)^{-1}\,dt}{(t+\frac{s_{0}}{2\pi i})(t-\frac{s_{1}+s_{2}}{2\pi i})}.

This can be evaluated using Cauchy’s residue formula. The numerator of the integrand in (74) is bounded in the upper half-plane and the denominator is t2\ll t^{-2} so we may deform the path of integration along \mathbb{R} to the upper half-plane and obtain

(82) (12πi)(s0+s1+s2)\displaystyle\left(\frac{-1}{2\pi i}\right)({s_{0}+s_{1}+s_{2}}) ηηsRes[χt(η)1(ts1+s22πi);t=s02πi]\displaystyle\sum_{\eta}\eta^{-s}\mathrm{Res}\left[\frac{\chi_{t}(\eta)^{-1}}{(t-\frac{s_{1}+s_{2}}{2\pi i})}\,;\,t=\frac{-s_{0}}{2\pi i}\right]
(83) =\displaystyle= ηηsχs02πi(η).\displaystyle\sum_{\eta}\eta^{-s}\chi_{{\frac{s_{0}}{2\pi i}}}(\eta).

We now describe the conditions determining η=(mw)v\eta=(m_{w})_{v}. A tuple (mw)vvNw(m_{w})_{v}\in\prod_{v}N_{w} corresponds to a summand of (73) if and only if mwimnw(0v1+0v2)m_{w}\in\mathrm{im}\,n_{w}\cap(\mathbb{R}_{\geq 0}v_{1}+\mathbb{R}_{\geq 0}v_{2}) for all ww. By Proposition 2,

(84) imnw={v1,ωif w split,NEΓ=v0otherwise.\mathrm{im}\,n_{w}=\begin{cases}\mathbb{Z}\langle v_{1},\omega\rangle&\text{if $w$ split,}\\ N_{E}^{\Gamma}=\mathbb{Z}\langle v_{0}\rangle&\text{otherwise.}\end{cases}

Any element of NEN_{E} may be expressed as av1+bω=av1+b(13(2v1+v2))=(a+23b)v1+13bv2av_{1}+b\omega=av_{1}+b(\tfrac{1}{3}(2v_{1}+v_{2}))=(a+\tfrac{2}{3}b)v_{1}+\tfrac{1}{3}bv_{2} for integers a,ba,b. Then

(85) n1=q2(mod 3)qcqp1(mod 3)pap+23bpn_{1}=\prod_{q\equiv 2\ (\mathrm{mod}\ 3)}q^{c_{q}}\prod_{p\equiv 1\ (\mathrm{mod}\ 3)}p^{a_{p}+\frac{2}{3}b_{p}}

and

(86) n2=q2(mod 3)qcqp1(mod 3)p13bpn_{2}=\prod_{q\equiv 2\ (\mathrm{mod}\ 3)}q^{c_{q}}\prod_{p\equiv 1\ (\mathrm{mod}\ 3)}p^{\frac{1}{3}b_{p}}

for integer exponents ap,bp,cqa_{p},b_{p},c_{q} almost all zero and satisfying

(87) {ap+23bp and 13bp0if p1(mod 3),cq0if q2(mod 3).\begin{cases}a_{p}+\tfrac{2}{3}b_{p}\text{ and }\tfrac{1}{3}b_{p}\geq 0&\text{if $p\equiv 1\ (\mathrm{mod}\ 3)$,}\\ c_{q}\geq 0&\text{if $q\equiv 2\ (\mathrm{mod}\ 3)$.}\end{cases}

For a given η=(mw)v\eta=(m_{w})_{v}, let n1,n21n_{1},n_{2}\in\mathbb{R}_{\geq 1} be determined by the equality

v1logn1+v2logn2=v3,mwlogqv.v_{1}\log n_{1}+v_{2}\log n_{2}=\sum_{v\neq 3,\infty}m_{w}\log q_{v}.

The vv-adic component of χtM\chi_{t}\in M_{\mathbb{R}} (tt\in\mathbb{R}) is given by

(88) χt,v(mw)=χt,v(mw,1v1+mw,2v2)=qvπi(mw,1+mw,2)t\chi_{t,v}(m_{w})=\chi_{t,v}(m_{w,1}v_{1}+m_{w,2}v_{2})=q_{v}^{-\pi i(m_{w,1}+m_{w,2})t}

and so

χt(η)=v3,χt,v(mw)=v3,qvπi(mw,1+mw,2)t=(n1n2)πit.\chi_{t}(\eta)=\prod_{v\neq 3,\infty}\chi_{t,v}(m_{w})=\prod_{v\neq 3,\infty}q_{v}^{-\pi i(m_{w,1}+m_{w,2})t}=(n_{1}n_{2})^{-\pi it}.

We have that

(89) ηs=v3,qvφ(mw)=(n1n2)s1\eta^{-s}=\prod_{v\neq 3,\infty}q_{v}^{\varphi(m_{w})}=(n_{1}n_{2})^{-s_{1}}

and finally

(90) ηsχs02πi(η)=(n1n2)(s02+s1).\eta^{-s}\chi_{{\frac{s_{0}}{2\pi i}}}(\eta)=(n_{1}n_{2})^{-\left(\frac{s_{0}}{2}+s_{1}\right)}.

Set z=s02+s1z=\frac{s_{0}}{2}+s_{1} (the unique MM_{\mathbb{R}}-invariant linear form on (Σ(1))Γ(\mathbb{C}^{\Sigma(1)})^{\Gamma} up to scaling). Then

(91) (T(𝔸)/T())f^(χ)𝑑χ=6κ(q2(mod 3)cqq2cqz)(p1(mod 3)ap,bpp(ap+bp)z).\int_{(T(\mathbb{A})/T(\mathbb{Q}))^{\vee}}\widehat{f}(\chi)\,d\chi=6\kappa\left(\prod_{q\equiv 2\ (\mathrm{mod}\ 3)}\sum_{c_{q}}q^{-2c_{q}z}\right)\left(\prod_{p\equiv 1\ (\mathrm{mod}\ 3)}\sum_{a_{p},b_{p}}p^{-(a_{p}+b_{p})z}\right).

Fix bp0b_{p}\geq 0 and sum over all compatible apa_{p} in the right-most sum:

(92) ap23bpp(ap+bp)z=pbpzap23bppapz=p(bp23bp)z(11pz)1.\sum_{a_{p}\geq-\frac{2}{3}b_{p}}p^{-(a_{p}+b_{p})z}=p^{-b_{p}z}{\sum_{a_{p}\geq-\lfloor\frac{2}{3}b_{p}\rfloor}p^{-a_{p}z}}={p^{-(b_{p}-\lfloor\frac{2}{3}b_{p}\rfloor)z}}{\left(1-\frac{1}{p^{z}}\right)^{-1}}.

Let b=3k+jb=3k+j for j{0,1,2}j\in\{0,1,2\} and k0k\in\mathbb{Z}_{\geq 0}. Observe that

(93) 23b={2kif b=3k or 3k+1,2k+1if b=3k+2.\displaystyle\lfloor\tfrac{2}{3}b\rfloor=\begin{cases}2k&\text{if $b=3k$ or $3k+1$,}\\ 2k+1&\text{if $b=3k+2$.}\end{cases}

Now summing (92) over bp0b_{p}\geq 0 obtains

bp0ap23bpp(ap+bp)z\displaystyle\sum_{\begin{subarray}{c}b_{p}\geq 0\\ a_{p}\geq-\frac{2}{3}b_{p}\end{subarray}}p^{-(a_{p}+b_{p})z} =(11pz)1(b=3kpkz+b=3k+1p(k+1)z+b=3k+2p(k+1)z)\displaystyle=\left(1-\frac{1}{p^{z}}\right)^{-1}\left(\sum_{b=3k}p^{-kz}+\sum_{b=3k+1}p^{-(k+1)z}+\sum_{b=3k+2}p^{-(k+1)z}\right)
=(11pz)1((1pz)1+2pz(1pz)1)\displaystyle=\left(1-\frac{1}{p^{z}}\right)^{-1}\left((1-p^{-z})^{-1}+2p^{-z}(1-p^{-z})^{-1}\right)
(94) =(11pz)1(1+3pz(11pz)1).\displaystyle=\left(1-\frac{1}{p^{z}}\right)^{-1}\left(1+\frac{3}{p^{z}}\left(1-\frac{1}{p^{z}}\right)^{-1}\right).

Finally we return to finish computing the zeta function. Combining (4) and (91) obtains

(95) Z(s)=6κ(13z)ζ(z)q2(mod 3)(1+1qz)1p1(mod 3)(1+3pz(11pz)1).\displaystyle Z(s)=6\kappa\left({1-3^{-z}}\right)\zeta(z)\prod_{q\equiv 2\ (\mathrm{mod}\ 3)}\left(1+\frac{1}{q^{z}}\right)^{-1}\prod_{p\equiv 1\ (\mathrm{mod}\ 3)}\left(1+\frac{3}{p^{z}}\left(1-\frac{1}{p^{z}}\right)^{-1}\right).

This shows that the restriction of f^\widehat{f} to T()(T(𝔸)/T())T(\mathbb{Q})^{\perp}\cong(T(\mathbb{A})/T(\mathbb{Q}))^{\vee} is integrable and given by this multivariate Dirichlet series for Re(z)=12Re(s0+s1+s2)0\mathrm{Re}(z)=\frac{1}{2}\mathrm{Re}(s_{0}+s_{1}+s_{2})\gg 0. The precise region of convergence claimed in the theorem statement will be computed in the lemma below.

To compute the constant κ\kappa, note there is only one monic trace-one cubic polynomial of toric height equal to 11 which either has Galois group C3C_{3} or splits into linear factors over \mathbb{Q}, with at most two being the same, and it is f=t3t2f=t^{3}-t^{2}. This polynomial corresponds to a unique rational point of TT since it has repeated factors (Proposition 1). This means the coefficient of 11 in this Dirichlet series is 11 and κ=16\kappa=\frac{1}{6}. ∎

In the next lemma we reexpress Z(s)Z(s) in a form better suited for determining the poles and leading constants.

Lemma 3.

The height zeta function is also given by

(96) Z(s)=(113z)2ζ(3)(z)2q2(mod 3)(11q2z)p1(mod 3)(13p2z+2p3z)\displaystyle Z(s)=\left(1-\frac{1}{3^{z}}\right)^{2}\zeta_{\mathbb{Q}(\sqrt{-3})}(z)^{2}\prod_{q\equiv 2\ (\mathrm{mod}\ 3)}\left(1-\frac{1}{q^{2z}}\right)\prod_{p\equiv 1\ (\mathrm{mod}\ 3)}\left(1-\frac{3}{p^{2z}}+\frac{2}{p^{3z}}\right)

where ζ(3)\zeta_{\mathbb{Q}(\sqrt{-3})} is the Dedekind zeta function of the cyclotomic field (3)\mathbb{Q}(\sqrt{-3}). The height zeta function has meromorphic continuation to the region {s(Σ(1))Γ:Re(s0+s1+s2)>1}\{s\in(\mathbb{C}^{\Sigma(1)})^{\Gamma}:\mathrm{Re}(s_{0}+s_{1}+s_{2})>1\}.

Proof.

Since (1+3x(1x)1)(1x)3=13x2+2x3(1+3x(1-x)^{-1})(1-x)^{3}=1-3x^{2}+2x^{3} we have

(97) p1(mod 3)(1+3pz(11pz)1)p1(mod 3)(11pz)3=p1(mod 3)(13p2z+2p3z).\displaystyle\prod_{p\equiv 1\ (\mathrm{mod}\ 3)}\left(1+\frac{3}{p^{z}}\left(1-\frac{1}{p^{z}}\right)^{-1}\right)\prod_{p\equiv 1\ (\mathrm{mod}\ 3)}\left(1-\frac{1}{p^{z}}\right)^{3}=\prod_{p\equiv 1\ (\mathrm{mod}\ 3)}\left(1-\frac{3}{p^{2z}}+\frac{2}{p^{3z}}\right).

Let χ=(3)=(3)\chi=\left(\frac{-3}{\cdot}\right)=\left(\frac{\cdot}{3}\right) be the nontrivial quadratic character of modulus 33. Multiplying both sides of (97) by L(z,χ)L(z,\chi) obtains

(98) q2(mod 3)(1+1qz)1p1(mod 3)(1+3pz(11pz)1)p1(mod 3)(11pz)2=L(z,χ)p1(mod 3)(13p2z+2p3z).\prod_{q\equiv 2\ (\mathrm{mod}\ 3)}\left(1+\frac{1}{q^{z}}\right)^{-1}\prod_{p\equiv 1\ (\mathrm{mod}\ 3)}\left(1+\frac{3}{p^{z}}\left(1-\frac{1}{p^{z}}\right)^{-1}\right)\prod_{p\equiv 1\ (\mathrm{mod}\ 3)}\left(1-\frac{1}{p^{z}}\right)^{2}\\ =L(z,\chi)\prod_{p\equiv 1\ (\mathrm{mod}\ 3)}\left(1-\frac{3}{p^{2z}}+\frac{2}{p^{3z}}\right).

Now

p1(mod 3)(11pz)2\displaystyle\prod_{p\equiv 1\ (\mathrm{mod}\ 3)}\left(1-\frac{1}{p^{z}}\right)^{2}
=\displaystyle= p1(mod 3)(11pz)q2(mod 3)(11qz)p1(mod 3)(11pz)q2(mod 3)(1+1qz)q2(mod 3)(11q2z)\displaystyle\frac{\displaystyle\prod_{p\equiv 1\ (\mathrm{mod}\ 3)}\left(1-\frac{1}{p^{z}}\right)\prod_{q\equiv 2\ (\mathrm{mod}\ 3)}\left(1-\frac{1}{q^{z}}\right)\prod_{p\equiv 1\ (\mathrm{mod}\ 3)}\left(1-\frac{1}{p^{z}}\right)\prod_{q\equiv 2\ (\mathrm{mod}\ 3)}\left(1+\frac{1}{q^{z}}\right)}{\displaystyle\prod_{q\equiv 2\ (\mathrm{mod}\ 3)}\left(1-\frac{1}{q^{2z}}\right)}
=\displaystyle= ((113z)ζ(z)L(z,χ))1q2(mod 3)(11q2z)1.\displaystyle\left({\left(1-\frac{1}{3^{z}}\right)\zeta(z)L(z,\chi)}\right)^{-1}{\prod_{q\equiv 2\ (\mathrm{mod}\ 3)}\left(1-\frac{1}{q^{2z}}\right)^{-1}}.

Putting this into the previous equation obtains

(99) L(z,χ)p1(mod 3)(13p2z+2p3z)=\displaystyle L(z,\chi)\prod_{p\equiv 1\ (\mathrm{mod}\ 3)}\left(1-\frac{3}{p^{2z}}+\frac{2}{p^{3z}}\right)= q2(mod 3)(1+1qz)1p1(mod 3)(1+3pz(11pz)1)\displaystyle\prod_{q\equiv 2\ (\mathrm{mod}\ 3)}\left(1+\frac{1}{q^{z}}\right)^{-1}\prod_{p\equiv 1\ (\mathrm{mod}\ 3)}\left(1+\frac{3}{p^{z}}\left(1-\frac{1}{p^{z}}\right)^{-1}\right)
(100) ×((113z)ζ(z)L(z,χ))1q2(mod 3)(11q2z)1\displaystyle\times\left({\left(1-\frac{1}{3^{z}}\right)\zeta(z)L(z,\chi)}\right)^{-1}{\prod_{q\equiv 2\ (\mathrm{mod}\ 3)}\left(1-\frac{1}{q^{2z}}\right)^{-1}}

which shows that Z(s)Z(s) is equal to

(101) (13z)ζ(z)q2(mod 3)(1+1qz)1p1(mod 3)(1+3pz(11pz)1)\displaystyle(1-3^{-z})\zeta(z)\prod_{q\equiv 2\ (\mathrm{mod}\ 3)}\left(1+\frac{1}{q^{z}}\right)^{-1}\prod_{p\equiv 1\ (\mathrm{mod}\ 3)}\left(1+\frac{3}{p^{z}}\left(1-\frac{1}{p^{z}}\right)^{-1}\right)
(102) =((113z)ζ(z)L(z,χ))2q2(mod 3)(11q2z)p1(mod 3)(13p2z+2p3z)\displaystyle=\left(\left(1-\frac{1}{3^{z}}\right)\zeta(z)L(z,\chi)\right)^{2}\prod_{q\equiv 2\ (\mathrm{mod}\ 3)}\left(1-\frac{1}{q^{2z}}\right)\prod_{p\equiv 1\ (\mathrm{mod}\ 3)}\left(1-\frac{3}{p^{2z}}+\frac{2}{p^{3z}}\right)
(103) =((113z)ζ(3)(z))2q2(mod 3)(11q2z)p1(mod 3)(13p2z+2p3z).\displaystyle=\left(\left(1-\frac{1}{3^{z}}\right)\zeta_{\mathbb{Q}(\sqrt{-3})}(z)\right)^{2}\prod_{q\equiv 2\ (\mathrm{mod}\ 3)}\left(1-\frac{1}{q^{2z}}\right)\prod_{p\equiv 1\ (\mathrm{mod}\ 3)}\left(1-\frac{3}{p^{2z}}+\frac{2}{p^{3z}}\right).

The Dedekind zeta function has meromorphic continuation to the entire complex plane, so the meromorphic continuation of the height zeta function is determined by the remaining Euler product:

(104) q2(mod 3)(11q2z)p1(mod 3)(13p2z+2p3z)\displaystyle\prod_{q\equiv 2\ (\mathrm{mod}\ 3)}\left(1-\frac{1}{q^{2z}}\right)\prod_{p\equiv 1\ (\mathrm{mod}\ 3)}\left(1-\frac{3}{p^{2z}}+\frac{2}{p^{3z}}\right)

We have

(105) 1x2=(1+x2)1(1x4)1-x^{2}=(1+x^{2})^{-1}(1-x^{4})

and

(106) 13x2+2x3=(1x2)3(1+2x33x4+O(x5)).1-3x^{2}+2x^{3}=(1-x^{2})^{3}(1+2x^{3}-3x^{4}+O(x^{5})).

This shows that the Euler product in question is

(107) L(2z,χ)q2(mod 3)(11q4z)p1(mod 3)(11p2z)4(1+2p3z3p4z+).L(2z,\chi)\prod_{q\equiv 2\ (\mathrm{mod}\ 3)}\left(1-\frac{1}{q^{4z}}\right)\prod_{p\equiv 1\ (\mathrm{mod}\ 3)}\left(1-\frac{1}{p^{2z}}\right)^{4}\left(1+\frac{2}{p^{3z}}-\frac{3}{p^{4z}}+\cdots\right).

The Dirichlet LL-function is entire. The Euler product over q2(mod 3){q\equiv 2\ (\mathrm{mod}\ 3)} is absolutely convergent in the region Re(z)>1/4\mathrm{Re}(z)>1/4. The Euler product p1(mod 3)(11p2z)4\prod_{p\equiv 1\ (\mathrm{mod}\ 3)}\left(1-\frac{1}{p^{2z}}\right)^{-4} has meromorphic continuation to the region Re(z)1/2\mathrm{Re}(z)\geq 1/2 with a pole of order 22 when z=1/2z=1/2 and is nonvanishing on the line Re(z)=1/2\mathrm{Re}(z)=1/2, so p1(mod 3)(11p2z)4\prod_{p\equiv 1\ (\mathrm{mod}\ 3)}\left(1-\frac{1}{p^{2z}}\right)^{4} is holomorphic in the region Re(z)>1/2\mathrm{Re}(z)>1/2. The remaining Euler product p1(mod 3)(1+2p3z3p4z+)\prod_{p\equiv 1\ (\mathrm{mod}\ 3)}\left(1+\frac{2}{p^{3z}}-\frac{3}{p^{4z}}+\cdots\right) is absolutely convergent in the region Re(z)>1/3\mathrm{Re}(z)>1/3. ∎

We specialize to the line spanned by D0D_{0} in the vector space of toric divisors, and write

Z0(s)=Z(sD0)Z_{0}(s)=Z(sD_{0})

where ss now denotes a single complex variable.

Proposition 6.

The height zeta function Z0(s)=Z(sD0)Z_{0}(s)=Z(sD_{0}) can be meromorphically continued to the half-plane Re(s)>1\mathrm{Re}(s)>1 and its only pole in this region is at s=2s=2 with order 22. Let

E(s)=(113z)2q2(mod 3)(11q2z)p1(mod 3)(13p2z+2p3z).E(s)=\left(1-\frac{1}{3^{z}}\right)^{2}\prod_{q\equiv 2\ (\mathrm{mod}\ 3)}\left(1-\frac{1}{q^{2z}}\right)\prod_{p\equiv 1\ (\mathrm{mod}\ 3)}\left(1-\frac{3}{p^{2z}}+\frac{2}{p^{3z}}\right).

Then the Laurent expansion of Z0(s)Z_{0}(s) at s=2s=2 has the form

(108) c2(s2)2+c1(s2)1+=4L(1,χ)2E(2)(s2)2+(4L(1,χ)(γL(1,χ)+L(1,χ))E(2)+4L(1,χ)2E(2))(s2)1+.c_{2}(s-2)^{-2}+c_{1}(s-2)^{-1}+\cdots\\ =4L(1,\chi)^{2}E(2)(s-2)^{-2}+\bigg{(}4L(1,\chi)\big{(}\gamma L(1,\chi)+L^{\prime}(1,\chi)\big{)}E(2)+4L(1,\chi)^{2}E^{\prime}(2)\bigg{)}(s-2)^{-1}+\cdots.

Explicitly,

(109) c2=16π2243q2(mod 3)(11q2)p1(mod 3)(13p2+2p3)c_{2}=\frac{16\pi^{2}}{243}\prod_{q\equiv 2\ (\mathrm{mod}\ 3)}\left(1-\frac{1}{q^{2}}\right)\prod_{p\equiv 1\ (\mathrm{mod}\ 3)}\left(1-\frac{3}{p^{2}}+\frac{2}{p^{3}}\right)

and

(110) c1c2=2γ+log(2π)3log(Γ(1/3)Γ(2/3))+98log3+94q2(mod 3)logqq21+274p1(mod 3)(p+1)logpp33p+2.\frac{c_{1}}{c_{2}}=2\gamma+\log(2\pi)-3\log\left(\frac{\Gamma(1/3)}{\Gamma(2/3)}\right)+\frac{9}{8}\log 3+\frac{9}{4}\sum_{q\equiv 2\ (\mathrm{mod}\ 3)}\frac{\log q}{q^{2}-1}+\frac{27}{4}\sum_{p\equiv 1\ (\mathrm{mod}\ 3)}\frac{(p+1)\log p}{p^{3}-3p+2}.
Proof.

The infinite product for E(s)E(s) converges to an analytic function on the half-plane Re(s)2\mathrm{Re}(s)\geq 2 so E(2)E(2) and E(2)E^{\prime}(2) are well-defined. The class number formula gives

(111) lims2(s2)ζ(3)(s/2)=22r1(2π)r2Rhw|D|=220(2π)11163=2π33.\lim_{s\to 2}(s-2)\zeta_{\mathbb{Q}(\sqrt{-3})}(s/2)=2\cdot\frac{2^{r_{1}}\cdot(2\pi)^{r_{2}}\cdot R\cdot h}{w\cdot\sqrt{|D|}}=2\cdot\frac{2^{0}\cdot(2\pi)^{1}\cdot 1\cdot 1}{6\cdot\sqrt{3}}=\frac{2\pi}{3\sqrt{3}}.

Thus the coefficient of the leading term is

(112) c2=(113)2(2π33)2q2(mod 3)(11q2)p1(mod 3)(13p2+2p3).c_{2}=\left(1-\frac{1}{3}\right)^{2}\left(\frac{2\pi}{3\sqrt{3}}\right)^{2}\prod_{q\equiv 2\ (\mathrm{mod}\ 3)}\left(1-\frac{1}{q^{2}}\right)\prod_{p\equiv 1\ (\mathrm{mod}\ 3)}\left(1-\frac{3}{p^{2}}+\frac{2}{p^{3}}\right).

The coefficient c1c_{1} can be computed using the factorization ζ(3)(z)=ζ(z)L(z,χ)\zeta_{\mathbb{Q}(\sqrt{-3})}(z)=\zeta(z)L(z,\chi) and [13, (3.8)]

(113) L(1,χ)=n=2χ(n)lognn=π3(log(Γ(1/3)Γ(2/3))13(γ+log(2π))).-L^{\prime}(1,\chi)=\sum_{n=2}^{\infty}\frac{\chi(n)\log n}{n}=\frac{\pi}{\sqrt{3}}\left(\log\left(\frac{\Gamma(1/3)}{\Gamma(2/3)}\right)-\frac{1}{3}(\gamma+\log(2\pi))\right).\qed
Proof of Theorem 3.

The expression for Z0(s)Z_{0}(s) follows from combining Lemma 3 and Proposition 6. Fix the isomorphism Pic(S)\mathrm{Pic}(S)\otimes\mathbb{Q}\to\mathbb{Q} taking the ample generator to 33. It remains to be seen that the image of the line spanned by D0D_{0} in the vector space of toric divisors is identified with Pic(S)\mathrm{Pic}(S)\otimes\mathbb{C} such that D0D_{0} corresponds to s=1s=1. The canonical divisor KK is D0+D1+D2D_{0}+D_{1}+D_{2}. The surface SS has Picard rank one [12, Corollary 3.6] and the unique ample generator is equivalent up to torsion in the divisor class group to K-K by [12, Theorem 3.5] and [12, Theorem 3.7]. One computes that 3D03D_{0} is linearly equivalent to KK so 𝒪(D0)=13𝒪(K)s=1\mathcal{O}(D_{0})=\frac{1}{3}\mathcal{O}(K)\leftrightarrow s=1. ∎

5. Proofs of Theorem 1 and Theorem 2

Lemma 4.

Let xx\in\mathbb{C} be a root of an irreducible polynomial with rational coefficients with Galois group C3C_{3} and t2t^{2}-coefficient 1-1. Then xx is a normal element in the Galois extension (x)/\mathbb{Q}(x)/\mathbb{Q}.

Proof.

Let σ\sigma be a generator for C3C_{3} and set y=σxy=\sigma x, z=σ2xz=\sigma^{2}x. Suppose for the sake of contradiction that the points x,yx,y and zz lie on a plane PP in (x)\mathbb{Q}(x)\otimes\mathbb{R} containing 0. Then x,yx,y and zz lie on a line LL, namely the intersection of PP with the trace-one affine hyperplane {tr(x)=1}\{\mathrm{tr}^{\mathbb{Q}(x)}_{\mathbb{Q}}=1\}. This implies that zy=σ(yx)z-y=\sigma(y-x) is proportional to yxy-x, and thus yxy-x is an eigenvector of σ\sigma. The only real eigenvalue of σ\sigma is one, so yx=zy=xzy-x=z-y=x-z, all equal to some nonzero element λ\lambda of \mathbb{Q}. Adding these up shows that y+z+xxyz=0=3λy+z+x-x-y-z=0=3\lambda, a contradiction. ∎

Lemma 5.

Let (α,β,γ)3(\alpha,\beta,\gamma)\in\mathbb{Z}^{3} satisfy α+β+γ=1\alpha+\beta+\gamma=1. Then (α,β,γ)(\alpha,\beta,\gamma) is a normal element in the split \mathbb{Q}-algebra 3\mathbb{Q}^{3}.

Proof.

If (α,β,γ)(\alpha,\beta,\gamma) is not normal, then

(114) det[αβγβγαγαβ]=3αβγα3β3γ3=0.\det\begin{bmatrix}\alpha&\beta&\gamma\\ \beta&\gamma&\alpha\\ \gamma&\alpha&\beta\end{bmatrix}=3\alpha\beta\gamma-\alpha^{3}-\beta^{3}-\gamma^{3}=0.

Set a=αβ+βγ+γαa=\alpha\beta+\beta\gamma+\gamma\alpha. First observe that 1=(α+β+γ)2=α2+β2+γ2+2a1=(\alpha+\beta+\gamma)^{2}=\alpha^{2}+\beta^{2}+\gamma^{2}+2a and so α2+β2+γ2=12a\alpha^{2}+\beta^{2}+\gamma^{2}=1-2a. Next,

a=(αβ+βγ+γα)(α+β+γ)\displaystyle a=(\alpha\beta+\beta\gamma+\gamma\alpha)(\alpha+\beta+\gamma) =3αβγ+α2(β+γ)+β2(α+γ)+γ2(α+β)\displaystyle=3\alpha\beta\gamma+\alpha^{2}(\beta+\gamma)+\beta^{2}(\alpha+\gamma)+\gamma^{2}(\alpha+\beta)
=3αβγ+α2(1α)+β2(1β)+γ2(1γ)\displaystyle=3\alpha\beta\gamma+\alpha^{2}(1-\alpha)+\beta^{2}(1-\beta)+\gamma^{2}(1-\gamma)
=3αβγ+α2+β2+γ2(α3+β3+γ3).\displaystyle=3\alpha\beta\gamma+\alpha^{2}+\beta^{2}+\gamma^{2}-(\alpha^{3}+\beta^{3}+\gamma^{3}).

Putting these together with (114) shows that

(115) a=3αβγα3β3γ3+(12a)=12aa=3\alpha\beta\gamma-\alpha^{3}-\beta^{3}-\gamma^{3}+(1-2a)=1-2a

which is impossible since aa\in\mathbb{Z}. ∎

A polynomial f=t3t2+at+b=(tα)(tβ)(tγ)[t]f=t^{3}-t^{2}+at+b=(t-\alpha)(t-\beta)(t-\gamma)\in\mathbb{Z}[t] which splits into three linear factors over \mathbb{Q} will be called normal if x=(α,β,γ)x=(\alpha,\beta,\gamma) is a normal element of the split C3C_{3}-algebra Kspl=3K_{\mathrm{spl}}=\mathbb{Q}^{3}. Since xx is normal if and only if it has at most two identical coordinates, the split polynomial ff is normal if and only if it has at most two identical roots. From the above lemmas we see that the polynomials under consideration are all normal, which means they are all realized by rational points of TT.

Corollary 1.

Let FF denote the set of polynomials of the form t3t2+at+b[t]t^{3}-t^{2}+at+b\in\mathbb{Z}[t] which either have Galois group C3C_{3} or split into three linear factors over \mathbb{Q}. Then any fFf\in F is normal.

Lemma 6.

We have

(116) #{fF:reducible, disc(f)0,H(f)H}=π93H216H+O(Ht)\#\{f\in F:\text{reducible, $\mathrm{disc}(f)\neq 0$},H(f)\leq H\}=\frac{\pi}{9\sqrt{3}}H^{2}-\tfrac{1}{6}H+O(H^{t})

for some 12<t<1\frac{1}{2}<t<1 and

(117) #{fF:reducible, disc(f)=0,H(f)H}=13H+O(1).\#\{f\in F:\text{reducible, $\mathrm{disc}(f)=0$},H(f)\leq H\}=\tfrac{1}{3}H+O(1).

In the error term one may take t=131208t=\frac{131}{208} [7].

Refer to caption
Figure 5. The ellipse E5E_{5} and the three lines of points with nontrivial stabilizer in S3S_{3}.
Proof.

Consider the ellipse in 2\mathbb{R}^{2} defined by

(118) EH:a=x2+y2+xyxy=13(H21).E_{H}:-a=x^{2}+y^{2}+xy-x-y=\tfrac{1}{3}(H^{2}-1).

The permutation action of the symmetric group S3S_{3} stabilizes the affine hyperplane x+y+z=1x+y+z=1. If we identify 2\mathbb{R}^{2} with this affine hyperplane via (x,y)(x,y,1xy)(x,y)\mapsto(x,y,1-x-y) then the induced action of S3S_{3} on 2\mathbb{R}^{2} stabilizes the level sets of x2+y2+xyxyx^{2}+y^{2}+xy-x-y, and therefore acts on the interior of EHE_{H}. Let EH=EHint(EH)E_{H}^{\circ}=E_{H}\cup\mathrm{int}(E_{H}). Then we have a canonical bijection

(119) (EH2)/S3{fF:reducible,H(f)H}.(E_{H}^{\circ}\cap\mathbb{Z}^{2})/S_{3}\xrightarrow{\sim}\{f\in F:\text{reducible},\,\,\,H(f)\leq H\}.

A lattice point (α,β)(\alpha,\beta) has a nontrivial stabilizer in S3S_{3} if and only if either α=β\alpha=\beta or 1αβ{α,β}1-\alpha-\beta\in\{\alpha,\beta\}, so the number of lattice points in EHE_{H}^{\circ} with a nontrivial stabilizer is H+O(1)H+O(1). The area of EHE_{H}^{\circ} is AH=2π33(H21)A_{H}=\frac{2\pi}{3\sqrt{3}}(H^{2}-1), so the number of lattice points in EHE_{H}^{\circ} is AH+O(Ht)A_{H}+O(H^{t}) for some t<1t<1 (conjecturally t=12+εt=\tfrac{1}{2}+\varepsilon). Thus

(120) #{fF:reducible, disc(f)0,H(f)H}=16(AHH+O(Ht))\#\{f\in F:\text{reducible, $\mathrm{disc}(f)\neq 0$},H(f)\leq H\}=\tfrac{1}{6}(A_{H}-H+O(H^{t}))

and

(121) #{fF:reducible, disc(f)=0,H(f)H}=13H+O(1).\#\{f\in F:\text{reducible, $\mathrm{disc}(f)=0$},H(f)\leq H\}=\tfrac{1}{3}H+O(1).\qed

Theorem 2 is now easily proven by subtracting off the count for reducible polynomials in Lemma 6 from the Dirichlet coefficients of Z(s)Z(s) as expressed in Theorem 5. We may now prove Theorem 1.

Proof of Theorem 1.

Let dnd_{n} denote the nnth Dirichlet coefficient of Z0(2s)Z_{0}(2s). By the modular interpretation for 𝒢/C3\mathcal{G}/C_{3} (Theorem 4), dnd_{n} is equal to the number of equivalence classes (K,x)(K,x) of Galois C3C_{3}-algebras K/K/\mathbb{Q} equipped with a trace one normal element xKx\in K and toric height n\sqrt{n}. Let KK^{\prime} denote the twist of the C3C_{3}-algebra KK by the outer automorphism of C3C_{3}. Each rational point (K,x)(K,x) falls into one of the following cases (cf. examples from §2):

  1. (1)

    KK is an abelian cubic field,

  2. (2)

    KK is the split C3C_{3}-algebra Kspl=3K_{\text{spl}}=\mathbb{Q}^{3} and xx has exactly two identical coordinates, or

  3. (3)

    KK is the split C3C_{3}-algebra Kspl=3K_{\text{spl}}=\mathbb{Q}^{3} and xx has distinct coordinates.

(It cannot happen that K=KsplK=K_{\text{spl}} and xx has three identical coordinates since xx would not be normal.) In these cases, respectively, we have

  1. (1)

    K≇KK\not\cong K^{\prime} and (K,x)(K,x)(K,x)\neq(K^{\prime},x),

  2. (2)

    KKK\cong K^{\prime} and (K,x)=(K,x)(K,x)=(K^{\prime},x), or

  3. (3)

    KKK\cong K^{\prime} and (K,x)(K,x)(K,x)\neq(K^{\prime},x).

The characteristic polynomial ff of xx nearly determines the rational point (K/,x)(K/\mathbb{Q},x) — in these cases, respectively, ff arises as the characteristic polynomial for

  1. (1)

    precisely the two rational points (K,x)(K,x) and (K,x)(K^{\prime},x),

  2. (2)

    only the rational point (Kspl,x)(K_{\text{spl}},x), or

  3. (3)

    precisely the two rational points (Kspl,x)(K_{\text{spl}},x) and (Kspl,x)(K_{\text{spl}}^{\prime},x).222Let σ\sigma be a transposition in S3S_{3}. Then (Kspl,σx)(K_{\text{spl}},\sigma x) has the same characteristic polynomial as (Kspl,x)(K_{\text{spl}},x) but it does not give us another rational point since (Kspl,x)=(Kspl,σx)(K_{\text{spl}}^{\prime},x)=(K_{\text{spl}},\sigma x). Thus these two rational points account for (Kspl,σx)(K_{\text{spl}},\sigma x) for any σS3\sigma\in S_{3}.

Let FF denote the set of polynomials t3t2+at+b[t]t^{3}-t^{2}+at+b\in\mathbb{Z}[t] which either have Galois group C3C_{3} or split into three linear factors over \mathbb{Q}. Then any fFf\in F is automatically normal (Corollary 1) so arises as the characteristic polynomial for some rational point in TT. The preceding analysis shows that the number wfw_{f} of rational points of TT with characteristic polynomial equal to a given fFf\in F is given by (10). Thus among fFf\in F with H(f)=nH(f)=\sqrt{n} we have that

2#{irreducible}=dn#{reducible, disc(f)=0}2#{reducible, disc(f)0}.\displaystyle 2\#\{\text{irreducible}\}=d_{n}-\#\{\text{reducible, }\mathrm{disc}(f)=0\}-2\#\{\text{reducible, }\mathrm{disc}(f)\neq 0\}.

Now we sum over ff with H(f)HH(f)\leq H. Then

(122) 2Firr,H(f)H1=nH2dnFred,H(f)Hdisc(f)=012Fred,H(f)Hdisc(f)01.2\sum_{F_{\mathrm{irr}},H(f)\leq H}1=\sum_{n\leq H^{2}}d_{n}-\sum_{\begin{subarray}{c}F_{\mathrm{red}},H(f)\leq H\\ \mathrm{disc}(f)=0\end{subarray}}1-2\sum_{\begin{subarray}{c}F_{\mathrm{red}},H(f)\leq H\\ \mathrm{disc}(f)\neq 0\end{subarray}}1.

By Lemma 6 this is

(123) nH2dn13H2(π93H216H+O(Ht))=nH2dn2π93H2+O(Ht).\sum_{n\leq H^{2}}d_{n}-\tfrac{1}{3}H-2\left(\frac{\pi}{9\sqrt{3}}H^{2}-\tfrac{1}{6}H+O(H^{t})\right)=\sum_{n\leq H^{2}}d_{n}-\frac{2\pi}{9\sqrt{3}}H^{2}+O(H^{t}).

Applying standard Tauberian theorems to Z0(s)Z_{0}(s) and using the information about the poles and meromorphic continuation in Lemma 3 and Proposition 6 shows that

(124) nH2dn=12c2H2logH+12c1H2+Oε(H1+ε)\sum_{n\leq H^{2}}d_{n}=\tfrac{1}{2}c_{2}H^{2}\log H+\tfrac{1}{2}c_{1}H^{2}+O_{\varepsilon}(H^{1+\varepsilon})

for any ε>0\varepsilon>0. Putting this all together shows that

(125) Firr,H(f)H1=14c2H2logH+14c1H2π93H2+Oε(H1+ε).\sum_{F_{\mathrm{irr}},H(f)\leq H}1=\tfrac{1}{4}c_{2}H^{2}\log H+\tfrac{1}{4}c_{1}H^{2}-\frac{\pi}{9\sqrt{3}}H^{2}+O_{\varepsilon}(H^{1+\varepsilon}).\qed

This is the asymptotic count for polynomials of bounded toric height. By the comparison between toric height and root height (Remark 1), the asymptotic count for polynomials of bounded root height is obtained by replacing HH with 3H\sqrt{3}H.

Remark 3.

By the Riemann hypothesis one expects p1(mod 3)(11p2z)4\prod_{p\equiv 1\ (\mathrm{mod}\ 3)}\left(1-\frac{1}{p^{2z}}\right)^{4} to have analytic continuation to the region Re(z)>14\mathrm{Re}(z)>\frac{1}{4}, and also for ζ(3)(z)\zeta_{\mathbb{Q}(\sqrt{-3})}(z) to be nonvanishing at z=1/3z=1/3, in which case the Oε(H1+ε)O_{\varepsilon}(H^{1+\varepsilon}) in (125) should in fact be aH2/3logH+bH2/3+O(Ht)aH^{2/3}\log H+bH^{2/3}+O(H^{t}) for some computable nonzero constants a,ba,b where t=131208t=\frac{131}{208} [7] is the best known exponent for the error term in the Gauss circle problem.

References

  • [1] V. V. Batyrev and Y. Tschinkel. Rational points of bounded height on compactifications of anisotropic tori. Internat. Math. Res. Notices, (12):591–635, 1995.
  • [2] H. E. A. Campbell and D. L. Wehlau. When are permutation invariants Cohen–Macaulay?, 2023.
  • [3] D. I. Dais, M. Henk, and G. M. Ziegler. All abelian quotient C.I.-singularities admit projective crepant resolutions in all dimensions. Adv. Math., 139(2):194–239, 1998.
  • [4] P. K. J. Draxl. LL-Funktionen algebraischer Tori. J. Number Theory, 3:444–467, 1971.
  • [5] G. B. Folland. A course in abstract harmonic analysis. CRC Press, 1995.
  • [6] W. Fulton. Introduction to toric varieties. Princeton University Press, 1993.
  • [7] M. N. Huxley. Integer points, exponential sums and the Riemann zeta function. In Number theory for the millennium, II (Urbana, IL, 2000), pages 275–290. A K Peters, Natick, MA, 2002.
  • [8] J. Milne. Class field theory (v4.02), 2013. Available at www.jmilne.org/math/.
  • [9] J. S. Milne. Algebraic groups, volume 170 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2017. The theory of group schemes of finite type over a field.
  • [10] D. Mumford, J. Fogarty, and F. Kirwan. Geometric invariant theory. Springer-Verlag, Berlin, third edition, 1994.
  • [11] A. O’Desky. On monic polynomials with abelian Galois group. In preparation.
  • [12] A. O’Desky and J. Rosen. The moduli space of G{G}-algebras. Advances in Mathematics, 431:109240, 2023.
  • [13] R. Shail. A class of infinite sums and integrals. Math. Comp., 70(234):789–799, 2001.
  • [14] S. Y. Xiao. On monic abelian cubics. Compositio Mathematica, 158(3):550–567, 2022.