This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

11footnotetext: Zhen Guo is the corresponding author.
    Keywords: Divisor function; Moment; Dirichlet series.
    MR(2020) Subject Classification: 11N37,11N64

On moments of the error term of the multivariable k-th divisor functions

Zhen Guo Department of Mathematics, China University of Mining and Technology, Beijing, 100083, People’s Republic of China [email protected]  and  Xin Li Department of Mathematics, China University of Mining and Technology, Beijing, 100083, People’s Republic of China [email protected]
Abstract.

Suppose k3k\geqslant 3 is an integer. Let τk(n)\tau_{k}(n) be the number of ways nn can be written as a product of kk fixed factors. For any fixed integer r2r\geqslant 2, we have the asymptotic formula

n1,,nrxτk(n1nr)=xr=0r(k1)dr,k,(logx)+O(xr1+αk+ε),\sum_{n_{1},\cdots,n_{r}\leqslant x}\tau_{k}(n_{1}\cdots n_{r})=x^{r}\sum_{\ell=0}^{r(k-1)}d_{r,k,\ell}(\log x)^{\ell}+O(x^{r-1+\alpha_{k}+\varepsilon}),

where dr,k,d_{r,k,\ell} and 0<αk<10<\alpha_{k}<1 are computable constants. In this paper we study the mean square of Δr,k(x)\Delta_{r,k}(x) and give upper bounds for k4k\geqslant 4 and an asymptotic formula for the mean square of Δr,3(x)\Delta_{r,3}(x). We also get an upper bound for the third power moment of Δr,3(x)\Delta_{r,3}(x). Moreover, we study the first power moment of Δr,3(x)\Delta_{r,3}(x) and then give a result for the sign changes of it.

1. Introduction and Results

Let k2k\geqslant 2 be an integer, τk(n)\tau_{k}(n) denote the number of ways nn can be written as a product of kk fixed factors. When k=2k=2, τ2(n)=τ(n)\tau_{2}(n)=\tau(n) is the Dirichlet divisor function. The problems about it are important in analytic number theory and hence have a long history [6, 8, 12].

For k3k\geqslant 3, suppose xx is a large real positive number, we have

nxτk(n)=xPk1(logx)+Δk(x):=Mk(x)+Δk(x),\sum_{n\leqslant x}\tau_{k}(n)=xP_{k-1}(\log x)+\Delta_{k}(x):=M_{k}(x)+\Delta_{k}(x), (1.1)

where Pk1(t)P_{k-1}(t) is a given polynomial in tt of degree k1k-1 and Δk(x)\Delta_{k}(x) is the error term. We denote

αk=inf{a:Δk(x)=O(xa)},βk=inf{b:1xΔk2(t)𝑑t=O(x1+2b)}.\alpha_{k}=\inf\left\{a:\Delta_{k}(x)=O(x^{a})\right\},\qquad\beta_{k}=\inf\left\{b:\int_{1}^{x}{\Delta_{k}}^{2}(t)dt=O(x^{1+2b})\right\}. (1.2)

There are many results about the upper bounds and lower bounds for αk\alpha_{k} and βk\beta_{k}. For unified conclusions on kk, Voronoi [13] proved that αk(k1)/(k+1)\alpha_{k}\leqslant(k-1)/(k+1) for k3k\geqslant 3 in 1903. In 1916 Hardy [3] showed that αkβk(k1)/2k\alpha_{k}\geqslant\beta_{k}\geqslant(k-1)/2k holds for k3k\geqslant 3. Hardy and Littlewood [4] proved that αk(k1)/(k+2)\alpha_{k}\leqslant(k-1)/(k+2) for k4k\geqslant 4 in 1923. Ivić [6] gave a summary, namely

α343/96,αk(3k4)/4k(4k8),\displaystyle\alpha_{3}\leqslant 43/96,\qquad\alpha_{k}\leqslant(3k-4)/4k\qquad(4\leqslant k\leqslant 8),\cdots (1.3)

and

βk=(k1)/2k,(k=2,3,4),β5119/260,β61/2,β739/70,\displaystyle\beta_{k}=(k-1)/2k,\qquad(k=2,3,4),\qquad\beta_{5}\leqslant 119/260,\qquad\beta_{6}\leqslant 1/2,\qquad\beta_{7}\leqslant 39/70,\cdots (1.4)

For the results on k=3k=3, in 1956, Tong [10] developed a new method of deriving an asymptotic formula for the mean square for Δ3(x)\Delta_{3}(x), which can be stated as follows:

Suppose TT is a large real number, ε\varepsilon is a sufficiently small real positive number and Δ3(x)\Delta_{3}(x) is defined in (1.1), then

1TΔ32(x)𝑑x=110π2n=1τ32(n)n4/3T5/3+O(T5/31/14+ε).\int_{1}^{T}{\Delta_{3}}^{2}(x)dx=\frac{1}{10\pi^{2}}\sum_{n=1}^{\infty}\frac{{\tau_{3}}^{2}(n)}{n^{4/3}}T^{5/3}+O(T^{5/3-1/14+\varepsilon}). (1.5)

Let r2r\geqslant 2 be a fixed integer. In this paper we consider the sum

n1,,nrxτk(n1nr)=Mr,k(x)+Δr,k(x),\sum_{n_{1},\cdots,n_{r}\leqslant x}\tau_{k}(n_{1}\cdots n_{r})=M_{r,k}(x)+\Delta_{r,k}(x), (1.6)

where Mr,k(x)M_{r,k}(x) is the main term and Δr,k(x)\Delta_{r,k}(x) is the error term. Tóth and Zhai [11] studied the condition k=2k=2. In this paper we first show that

Theorem 1.1.

Let r2r\geqslant 2, k3k\geqslant 3 be fixed integers. Suppose αk\alpha_{k} are expressed in (1.3), then for any real number x2x\geqslant 2, the asymptotic formula

n1,,nrxτk(n1nr)=Mr,k(x)+O(xr1+αk+ε)\sum_{n_{1},\cdots,n_{r}\leqslant x}\tau_{k}(n_{1}\cdots n_{r})=M_{r,k}(x)+O(x^{r-1+\alpha_{k}+\varepsilon})

holds for any ε>0\varepsilon>0, and Mr,k(x)M_{r,k}(x) is expressed by

Mr,k(x)=xr=0r(k1)dr,k,(logx),M_{r,k}(x)=x^{r}\sum_{\ell=0}^{r(k-1)}d_{r,k,\ell}(\log x)^{\ell},

where dr,k,d_{r,k,\ell} (0r(k1))(0\leqslant\ell\leqslant r(k-1)) are computable constants.

The first author [2] have studied the mean square for Δr,2(x)\Delta_{r,2}(x) and have got an asymptotic formula. In this paper we concentrate on the integral

1TΔr,k2(x)𝑑x\int_{1}^{T}{\Delta_{r,k}}^{2}(x)dx

for k3k\geqslant 3 and large real TT. We give an asymptotic formula for k=3k=3 and the upper bounds for k4k\geqslant 4. The results are stated as follows.

Theorem 1.2.

Let T2T\geqslant 2 be a large real number and r2r\geqslant 2 be a fixed integer. Then the asymptotic formula

1TΔr,32(x)𝑑x=r26π2T2r1/3L4r4(logT)+O(T2r7/18+ε)\int_{1}^{T}{\Delta_{r,3}}^{2}(x)dx=\frac{r^{2}}{6\pi^{2}}T^{2r-1/3}L_{4r-4}(\log T)+O(T^{2r-7/18+\varepsilon})

holds for any ε>0\varepsilon>0, where L4r4(u)L_{4r-4}(u) is a polynomial in uu of degree (4r4)(4r-4) denoted by

L4r4(u)=1,2=02(r1)Dr,3,1,2t=01+2(1)t(1+2)!(2r13)t+1(1+2t)!u1+2t,\displaystyle L_{4r-4}(u)=\sum_{\ell_{1},\ell_{2}=0}^{2(r-1)}D_{r,3,\ell_{1},\ell_{2}}\sum_{t=0}^{\ell_{1}+\ell_{2}}\frac{(-1)^{t}(\ell_{1}+\ell_{2})!}{(2r-\frac{1}{3})^{t+1}(\ell_{1}+\ell_{2}-t)!}u^{\ell_{1}+\ell_{2}-t},

and Dr,3,1,2D_{r,3,\ell_{1},\ell_{2}} (01,22(r1))(0\leqslant\ell_{1},\ell_{2}\leqslant 2(r-1)) are computable constants.

Theorem 1.2 can be viewed as an analogue of Tong’s result.

For higher power moments of Δ3(x)\Delta_{3}(x), in 1992 Heath-Brown [5] proved that for a large real positive TT, the upper bound estimate

1T|Δ3(x)|3𝑑xT2+ε\int_{1}^{T}|{\Delta_{3}}(x)|^{3}dx\ll T^{2+\varepsilon} (1.7)

holds for any ε>0\varepsilon>0. This is the best upper bound since the average order of Δ3(x)\Delta_{3}(x) is 1/31/3, which can be obtained by (1.5). In this paper we give a similar result for Δr,3(x)\Delta_{r,3}(x).

Theorem 1.3.

Let T2T\geqslant 2 be a large real number, we have

1T|Δr,3(x)|3𝑑xT3r1+ε.\int_{1}^{T}|\Delta_{r,3}(x)|^{3}dx\ll T^{3r-1+\varepsilon}.

Using Theorem 1.2 we have the average order of Δr,3(x)\Delta_{r,3}(x) is (r2/3)(r-2/3). Thus this is also the best upper bound.

Moreover, we obtain the following result.

Theorem 1.4.

Let T2T\geqslant 2 be a large real number, we have

1TΔr,3(x)𝑑xTr+1/6+ε.\int_{1}^{T}\Delta_{r,3}(x)dx\ll T^{r+1/6+\varepsilon}.
Corollary 1.5.

For a large real number TT, Δr,3(x)\Delta_{r,3}(x) has at least T5/96εT^{5/96-\varepsilon} sign changes in [T,2T][T,2T].

Theorem 1.6.

Let T2T\geqslant 2 be a large real number, for fixed integer k4k\geqslant 4,

1TΔr,k2(x)𝑑xT2r1+2βk+ε\int_{1}^{T}{\Delta_{r,k}}^{2}(x)dx\ll T^{2r-1+2\beta_{k}+\varepsilon}

holds for any ε>0\varepsilon>0, where βk\beta_{k} are expressed by (1.4).

Notation.

Throughout this paper, ε\varepsilon denotes a sufficiently small real positive number, not necessarily the same at each occurrence. As usual, R\mathbb{R} denotes the set of real numbers, N\mathbb{N} denotes the set of natural number, ζ\zeta denotes the Riemann-zeta function. For a positive integer kk, τk\tau_{k} denotes the kkth Dirichlet divisor function. For a complex number zz, z\Re z denotes the real part of zz. For integers mm and nn, (mn)\binom{m}{n} denotes a binomial coefficient (m>nm>n). For a complex number θ\theta, the function e(θ)e(\theta) denotes e2πiθe^{2\pi i\theta}.

2. Some lemmas

We present some lemmas.

Lemma 2.1.

Let T10T\geqslant 10 be a given large real number and NN be a real number such that TεNT2/3T^{\varepsilon}\ll N\ll T^{2/3}, and Δ3()\Delta_{3}(\cdot) be defined in (1.1). For any Tx2TT\leqslant x\leqslant 2T, define

δ31(x,N)\displaystyle\delta_{31}(x,N) =x1/33πnNτ3(n)n2/3cos(6π(nx)1/3),\displaystyle=\frac{x^{1/3}}{\sqrt{3}\pi}\sum_{n\leqslant N}\frac{\tau_{3}(n)}{n^{2/3}}\cos\left(6\pi(nx)^{1/3}\right),
δ32(x,N)\displaystyle\delta_{32}(x,N) =Δ3(x)δ31(x,N).\displaystyle=\Delta_{3}(x)-\delta_{31}(x,N).

Then we have

T2Tδ322(x,N)𝑑xT5/3+εN1/3+T14/9+ε.\int_{T}^{2T}{\delta_{32}}^{2}(x,N)dx\ll T^{5/3+\varepsilon}N^{-1/3}+T^{14/9+\varepsilon}.
Proof.

See Lemma 2.12 in Cao, Tanigawa and Zhai [1]. ∎

Lemma 2.2.

Let k3k\geqslant 3, r2r\geqslant 2 be integers, and t1,,trt_{1},\cdots,t_{r} be complex numbers such that 0<|t1|,,|tr|<10<|t_{1}|,\cdots,|t_{r}|<1. Then

(r1)(1t1)k(1tr)k+j=1ri=1ijr(1ti)k\displaystyle-(r-1)(1-t_{1})^{k}\cdots(1-t_{r})^{k}+\sum_{j=1}^{r}\prod_{\begin{subarray}{c}i=1\\ i\neq j\end{subarray}}^{r}(1-t_{i})^{k}
=\displaystyle= 1j=2r(j1)1a1<a2<<ajr1b1<b2<<bjk(1)b1++bj(kb1)(kbj)ta1b1tajbj,\displaystyle 1-\sum_{j=2}^{r}(j-1)\sum_{1\leqslant a_{1}<a_{2}<\cdots<a_{j}\leqslant r}\sum_{1\leqslant b_{1}<b_{2}<\cdots<b_{j}\leqslant k}(-1)^{b_{1}+\cdots+b_{j}}\binom{k}{b_{1}}\cdots\binom{k}{b_{j}}{t_{a_{1}}}^{b_{1}}\cdots{t_{a_{j}}}^{b_{j}},

which means this polynomial does not contain terms of the form ctjlc{t_{j}}^{l} (l>0(l>0 and c0)c\neq 0) for every 1jr1\leqslant j\leqslant r.

Proof.

For any given 1jr1\leqslant j\leqslant r, there are (rj)(r-j) terms in the latter series which contains (1ta1)k(1taj)k(1-t_{a_{1}})^{k}\cdots(1-t_{a_{j}})^{k}. By comparing the coefficients of (1ta1)k(1taj)k(1-t_{a_{1}})^{k}\cdots(1-t_{a_{j}})^{k} in the first term and in the latter series, and using the binomial theorem we can finish the proof. ∎

Lemma 2.3.

Let k2k\geqslant 2 be a fixed integer and let s1,,sks_{1},\cdots,s_{k} be complex numbers. Then for sj>1(j=1,2,,k)\Re{s_{j}}>1(j=1,2,\cdots,k), we have

n1,,nr=1τk(n1nr)n1s1nrsr=ζk(s1)ζk(sr)Fr,k(s1,,sr),\sum_{n_{1},\cdots,n_{r}=1}^{\infty}\frac{\tau_{k}(n_{1}\cdots n_{r})}{n_{1}^{s_{1}}\cdots n_{r}^{s_{r}}}=\zeta^{k}(s_{1})\cdots\zeta^{k}(s_{r})F_{r,k}(s_{1},\cdots,s_{r}),

where

Fr,k(s1,,sr)=n1,,nr=1fr,k(n1,,nr)n1s1nrsr.F_{r,k}(s_{1},\cdots,s_{r})=\sum_{n_{1},\cdots,n_{r}=1}^{\infty}\frac{f_{r,k}(n_{1},\cdots,n_{r})}{n_{1}^{s_{1}}\cdots n_{r}^{s_{r}}}.

This series is absolutely convergent provided that sj>0\Re s_{j}>0 and (sj+sl)>1(1j,lr)\Re(s_{j}+s_{l})>1(1\leqslant j,l\leqslant r), and fr,k(n1,,nr)f_{r,k}(n_{1},\cdots,n_{r}) is multiplicative and symmetric in all variables.
Moreover, for any function g(n1,,nr)g(n_{1},\cdots,n_{r}) satisfying g(n1,,nr)(j=1rnj)εg(n_{1},\cdots,n_{r})\ll\left(\prod_{j=1}^{r}n_{j}\right)^{\varepsilon}, the series

n1,,nr=1fr,k(n1,,nr)g(n1,,nr)n1s1nrsr\sum_{n_{1},\cdots,n_{r}=1}^{\infty}\frac{f_{r,k}(n_{1},\cdots,n_{r})g(n_{1},\cdots,n_{r})}{n_{1}^{s_{1}}\cdots n_{r}^{s_{r}}} (2.1)

is absolutely convergent provided that sj>0\Re s_{j}>0 and (sj+sl)>1(1j,lr)\Re(s_{j}+s_{l})>1(1\leqslant j,l\leqslant r).

Proof.

The function nτk(n)n\mapsto\tau_{k}(n) is multiplicative and τk(pν)=(ν+k1k1)\tau_{k}(p^{\nu})=\binom{\nu+k-1}{k-1} for every prime power pν(ν0)p^{\nu}(\nu\geqslant 0). The function (n1,,nr)τk(n1nr)(n_{1},\cdots,n_{r})\mapsto\tau_{k}(n_{1}\cdots n_{r}) is multiplicative, viewed as a function of rr variables. Therefore its multiple Dirichlet series can be expanded into an Euler product. We obtain

n1,,nr=1τk(n1nr)n1s1nrsr\displaystyle\sum_{n_{1},\cdots,n_{r}=1}^{\infty}\frac{\tau_{k}(n_{1}\cdots n_{r})}{{n_{1}}^{s_{1}}\cdots{n_{r}}^{s_{r}}} =pν1νr=0τk(pν1++νr)pν1s1++νrsr\displaystyle=\prod_{p}\sum_{\nu_{1}\cdots\nu_{r}=0}^{\infty}\frac{\tau_{k}(p^{\nu_{1}+\cdots+\nu_{r}})}{p^{\nu_{1}s_{1}+\cdots+\nu_{r}s_{r}}}
=ζk(s1)ζk(sr)Fr,k(s1,,sr),\displaystyle=\zeta^{k}(s_{1})\cdots\zeta^{k}(s_{r})F_{r,k}(s_{1},\cdots,s_{r}),

where

Fr,k(s1,,sr)\displaystyle F_{r,k}(s_{1},\cdots,s_{r}) =p(11ps1)k(11psr)kν1νr=0τk(pν1++νr)pν1s1++νrsr\displaystyle=\prod_{p}\left(1-\frac{1}{p^{s_{1}}}\right)^{k}\cdots\left(1-\frac{1}{p^{s_{r}}}\right)^{k}\sum_{\nu_{1}\cdots\nu_{r}=0}^{\infty}\frac{\tau_{k}(p^{\nu_{1}+\cdots+\nu_{r}})}{p^{\nu_{1}s_{1}+\cdots+\nu_{r}s_{r}}}
=p(11ps1)k(11psr)k\displaystyle=\prod_{p}\left(1-\frac{1}{p^{s_{1}}}\right)^{k}\cdots\left(1-\frac{1}{p^{s_{r}}}\right)^{k}
×(1r+ν1=0τk(pν1)pν1s1++ν1=0τk(pνr)pνrsr+ν1νr=0#A(ν1,,νr)2τk(pν1++νr)pv1s1++vrsr)\displaystyle\times\left(1-r+\sum_{\nu_{1}=0}^{\infty}\frac{\tau_{k}(p^{\nu_{1}})}{p^{\nu_{1}s_{1}}}+\cdots+\sum_{\nu_{1}=0}^{\infty}\frac{\tau_{k}(p^{\nu_{r}})}{p^{\nu_{r}s_{r}}}+\sum_{\begin{subarray}{c}\nu_{1}\cdots\nu_{r}=0\\ \#A(\nu_{1},\cdots,\nu_{r})\geqslant 2\end{subarray}}^{\infty}\frac{\tau_{k}(p^{\nu_{1}+\cdots+\nu_{r}})}{p^{v_{1}s_{1}+\cdots+v_{r}s_{r}}}\right)
=p(11ps1)k(11psr)k\displaystyle=\prod_{p}\left(1-\frac{1}{p^{s_{1}}}\right)^{k}\cdots\left(1-\frac{1}{p^{s_{r}}}\right)^{k}
×(1r+(11ps1)k++(11psr)k+ν1νr=0#A(ν1,,νr)2τk(pν1++νr)pv1s1++vrsr),\displaystyle\times\left(1-r+\left(1-\frac{1}{p^{s_{1}}}\right)^{-k}+\cdots+\left(1-\frac{1}{p^{s_{r}}}\right)^{-k}+\sum_{\begin{subarray}{c}\nu_{1}\cdots\nu_{r}=0\\ \#A(\nu_{1},\cdots,\nu_{r})\geqslant 2\end{subarray}}^{\infty}\frac{\tau_{k}(p^{\nu_{1}+\cdots+\nu_{r}})}{p^{v_{1}s_{1}+\cdots+v_{r}s_{r}}}\right),

where #A(ν1,,νr):={j:1jr,νj0}\#A(\nu_{1},\cdots,\nu_{r}):=\{j:1\leqslant j\leqslant r,\nu_{j}\neq 0\}. And the terms 1/psj1/p^{\ell s_{j}} (the case νt=0\nu_{t}=0 for all tjt\neq j and νj=\nu_{j}=\ell) only appear in

(11ps1)k(11psr)k(1r+(11ps1)k++(11psr)k).\left(1-\frac{1}{p^{s_{1}}}\right)^{k}\cdots\left(1-\frac{1}{p^{s_{r}}}\right)^{k}\left(1-r+\left(1-\frac{1}{p^{s_{1}}}\right)^{-k}+\cdots+\left(1-\frac{1}{p^{s_{r}}}\right)^{-k}\right).

Using Lemma 2.2 in the case that tj=1/psj(1jr)t_{j}=1/p^{s_{j}}(1\leqslant j\leqslant r) we obtain that the coefficient of 1/psj1/p^{\ell s_{j}} is zero for every 1jr1\leqslant j\leqslant r and >0\ell>0.

Hence if sj>0\Re s_{j}>0 and (sj+sl)>1(1j,lr)\Re(s_{j}+s_{l})>1(1\leqslant j,l\leqslant r), then Fr,k(s1,,sr)F_{r,k}(s_{1},\cdots,s_{r}) is absolutely convergent. And the convergence of (2.1) is a direct corollary. ∎

Lemma 2.4.

Suppose G0,m0G_{0},m_{0} are fixed real positive numbers, let G(x) be a monotonic function defined on [a,b][a,b] such that |G(x)|G0|G(x)|\leqslant G_{0} and m(x) be a differentiable real function such that |m(x)|m0|m^{{}^{\prime}}(x)|\geqslant m_{0} on [a,b][a,b], F()=cos()F(\cdot)=\cos(\cdot) or sin()\sin(\cdot) or e()e(\cdot), then

abG(x)F(m(x))𝑑xG0m01.\int_{a}^{b}G(x)F\left(m(x)\right)dx\ll G_{0}{m_{0}}^{-1}.
Proof.

See Lemma 2.1 in Ivić [6]. ∎

Lemma 2.5.

Suppose NN is a given large real number, 1N1,N2N1\leqslant N_{1},N_{2}\leqslant N are given real numbers, a,ba,b are integers such that a,bNa,b\ll N. Define

T(a,b)=n1N1,n2N2an1bn21|an1bn2|.T(a,b)=\sum_{\begin{subarray}{c}n_{1}\sim N_{1},n_{2}\sim N_{2}\\ an_{1}\neq bn_{2}\end{subarray}}\frac{1}{|an_{1}-bn_{2}|}.

Then we have

T(a,b)(N1N2)1/2logN.T(a,b)\ll(N_{1}N_{2})^{1/2}\log N.
Proof.

Let an1bn2=ηan_{1}-bn_{2}=\eta, we have ηan1(modb)\eta\equiv an_{1}(mod\hskip 2.84544ptb), so we can find a constant c0c_{0} such that 1c0<b1\leqslant c_{0}<b, r=bt+c0r=bt+c_{0}, where tt is an integer such that 0<t<2N20<t<2N^{2}, thus

T(a,b)\displaystyle T(a,b) =n1N1n2N2an1bn21|an1bn2|\displaystyle=\sum_{n_{1}\sim N_{1}}\sum_{\begin{subarray}{c}n_{2}\sim N_{2}\\ an_{1}\neq bn_{2}\end{subarray}}\frac{1}{|an_{1}-bn_{2}|}
n1N1(1+1t2N21bt+c0)N1logN,\displaystyle\leqslant\sum_{n_{1}\sim N_{1}}\left(1+\sum_{1\leqslant t\leqslant 2N^{2}}\frac{1}{bt+c_{0}}\right)\ll N_{1}\log N,

similarly we have T(a,b)N2logNT(a,b)\ll N_{2}\log N, thus T(a,b)(N1N2)1/2logNT(a,b)\ll(N_{1}N_{2})^{1/2}\log N. ∎

Lemma 2.6.

Suppose x,yx,y are large real numbers, r2r\geqslant 2 is a fixed integer, s,ws,w are given real numbers such that 0<s<1/2<w<10<s<1/2<w<1, fr,3f_{r,3} is defined in Lemma 2.3 in the case k=3. Let 𝐌1\mathbf{M}_{1} and 𝐌2\mathbf{M}_{2} denote the vectors (m1,,mr)(m_{1},\cdots,m_{r}) and (mk+1,,m2r)(m_{k+1},\cdots,m_{2r}), D1D_{1} and D2D_{2} denote (j=1r1mj)\left(\prod_{j=1}^{r-1}m_{j}\right) and (j=r+12r1mj)\left(\prod_{j=r+1}^{2r-1}m_{j}\right), respectively. Let

Tg,r,3(x,y;s,w)=m1,,m2rxn1,n2ymrm2r=n1n2fr,3(𝐌1)fr,3(𝐌2)g(𝐌1,𝐌2)D1D2(mrm2r)sτ3(n1)τ3(n2)(n1n2)w,\displaystyle T_{g,r,3}(x,y;s,w)=\sum_{\begin{subarray}{c}m_{1},\cdots,m_{2r}\leqslant x\\ n_{1},n_{2}\leqslant y\\ \frac{m_{r}}{m_{2r}}=\frac{n_{1}}{n_{2}}\end{subarray}}\frac{f_{r,3}(\mathbf{M}_{1})f_{r,3}(\mathbf{M}_{2})g(\mathbf{M}_{1},\mathbf{M}_{2})}{D_{1}D_{2}(m_{r}m_{2r})^{s}}\cdot\frac{\tau_{3}(n_{1})\tau_{3}(n_{2})}{(n_{1}n_{2})^{w}},
Tg,r,3(s,w)=𝐌1,𝐌2Nrn1,n2Nmrm2r=n1n2fr,3(𝐌1)fr,3(𝐌2)g(𝐌1,𝐌2)D1D2(mrm2r)sτ3(n1)τ3(n2)(n1n2)w,\displaystyle T_{g,r,3}(s,w)=\sum_{\begin{subarray}{c}\mathbf{M}_{1},\mathbf{M}_{2}\in\mathbb{N}^{r}\\ n_{1},n_{2}\in\mathbb{N}\\ \frac{m_{r}}{m_{2r}}=\frac{n_{1}}{n_{2}}\end{subarray}}\frac{f_{r,3}(\mathbf{M}_{1})f_{r,3}(\mathbf{M}_{2})g(\mathbf{M}_{1},\mathbf{M}_{2})}{D_{1}D_{2}(m_{r}m_{2r})^{s}}\cdot\frac{\tau_{3}(n_{1})\tau_{3}(n_{2})}{(n_{1}n_{2})^{w}},

where g(𝐌1,𝐌2)g(\mathbf{M}_{1},\mathbf{M}_{2}) is any function which satisfies g(𝐌1,𝐌2)(j=12kmj)εg(\mathbf{M}_{1},\mathbf{M}_{2})\ll\left(\prod_{j=1}^{2k}m_{j}\right)^{\varepsilon}, then we have

(i) Tg,r,3(s,w)T_{g,r,3}(s,w) is absolutely convergent.

(ii) We have

Tg,r,3(s,w)Tg,r,3(x,y;s,w)x2s+ε+y12w+ε.T_{g,r,3}(s,w)-T_{g,r,3}(x,y;s,w)\ll x^{-2s+\varepsilon}+y^{1-2w+\varepsilon}.
Proof.

Use the same argument of Lemma 2.5 in the first author [2]. ∎

Lemma 2.7.

Suppose s=σ+its=\sigma+it is a complex number, f(n)f(n) is an arithmetic function with Dirichlet series

F(s)=n=1f(n)ns,F(s)=\sum_{n=1}^{\infty}\frac{f(n)}{n^{s}},

which is convergent for σ>1\sigma>1. Then for any real number x2x\geqslant 2 and fixed real number c>1c>1, we have

nxf(n)(1nx)=12πi(c)F(s)xss(s+1)𝑑s.\sum_{n\leqslant x}f(n)\left(1-\frac{n}{x}\right)=\frac{1}{2\pi i}\int_{(c)}F(s)\frac{x^{s}}{s(s+1)}ds.
Proof.

Using Theorem 5.1(the Perron’s formula) in Karatsuba [7] we can finish the proof. ∎

Lemma 2.8.

Let T2T\geqslant 2 be a real number and Δ3()\Delta_{3}(\cdot) be defined in (1.1), then we have

1TΔ3(x)𝑑xT7/6+ε.\int_{1}^{T}\Delta_{3}(x)dx\ll T^{7/6+\varepsilon}.
Proof.

Taking f(n)=τ3(n)f(n)=\tau_{3}(n) and x=Tx=T in Lemma we have

nTτ3(n)(Tn)=12πi(c)ζ3(s)Ts+1s(s+1)𝑑s.\sum_{n\leqslant T}\tau_{3}(n)\left(T-n\right)=\frac{1}{2\pi i}\int_{(c)}\zeta^{3}(s)\frac{T^{s+1}}{s(s+1)}ds.

Then using (1.1) the left side becomes

TM3(T)+TΔ3(T)nTnτ3(n)=TM3(T)1TuM3(u)𝑑u+1TΔ3(u)𝑑u,TM_{3}(T)+T\Delta_{3}(T)-\sum_{n\leqslant T}n\tau_{3}(n)=TM_{3}(T)-\int_{1}^{T}u{M_{3}}^{\prime}(u)du+\int_{1}^{T}\Delta_{3}(u)du,

where we use partial summation to get

nTnτ3(n)=1TuM3(u)𝑑u+TΔ3(T)1TΔ3(u)𝑑u.\sum_{n\leqslant T}n\tau_{3}(n)=\int_{1}^{T}u{M_{3}}^{\prime}(u)du+T\Delta_{3}(T)-\int_{1}^{T}\Delta_{3}(u)du.

Thus

1TΔ3(u)𝑑u=\displaystyle\int_{1}^{T}\Delta_{3}(u)du= 12πi(c)ζ3(s)Ts+1s(s+1)𝑑sTM3(T)+1TuM3(u)𝑑u\displaystyle\frac{1}{2\pi i}\int_{(c)}\zeta^{3}(s)\frac{T^{s+1}}{s(s+1)}ds-TM_{3}(T)+\int_{1}^{T}u{M_{3}}^{\prime}(u)du
=12πi(c)ζ3(s)Ts+1s(s+1)𝑑s1TM3(u)𝑑u\displaystyle=\frac{1}{2\pi i}\int_{(c)}\zeta^{3}(s)\frac{T^{s+1}}{s(s+1)}ds-\int_{1}^{T}{M_{3}}(u)du
=12πi(σ)ζ3(s)Ts+1s(s+1)𝑑s,\displaystyle=\frac{1}{2\pi i}\int_{(\sigma)}\zeta^{3}(s)\frac{T^{s+1}}{s(s+1)}ds,

where σ\sigma is a real number such that 0<σ<10<\sigma<1.

It is well known that ζ(s)\zeta(s) has the functional equation

ζ(s)=χ(s)ζ(1s),\zeta(s)=\chi(s)\zeta(1-s),

where χ(s)\chi(s) satisfies χ(s)t1/2σ\chi(s)\ll t^{1/2-\sigma} for s=σ+its=\sigma+it and 0<σ<1/20<\sigma<1/2. Thus for 0<σ<1/20<\sigma<1/2,

(σ)ζ3(s)Ts+1s(s+1)𝑑s\displaystyle\int_{(\sigma)}\zeta^{3}(s)\frac{T^{s+1}}{s(s+1)}ds =(σ)χ3(s)ζ3(1s)Ts+1s(s+1)𝑑s\displaystyle=\int_{(\sigma)}\chi^{3}(s)\zeta^{3}(1-s)\frac{T^{s+1}}{s(s+1)}ds
Tσ+1iit1/23σζ3(1σ+it)𝑑t\displaystyle\ll T^{\sigma+1}\int_{-i\infty}^{i\infty}t^{-1/2-3\sigma}\zeta^{3}(1-\sigma+it)dt
T7/6+εiit1εζ3(5/6ε+it)𝑑t\displaystyle\ll T^{7/6+\varepsilon}\int_{-i\infty}^{i\infty}t^{-1-\varepsilon}\zeta^{3}(5/6-\varepsilon+it)dt
T7/6+ε\displaystyle\ll T^{7/6+\varepsilon}

holds by taking σ=1/6+ε\sigma=1/6+\varepsilon, where the convergence of the latter integral can be obtained by integration by parts and the fourth power moment result of ζ(s)\zeta(s):

iiζ4(5/6ε+it)𝑑t1,\int_{-i\infty}^{i\infty}\zeta^{4}(5/6-\varepsilon+it)dt\ll 1,

which can be found in Titchmarsh [9]. Hence we complete the proof. ∎

3. Proof of Theorem 1.1 and Expression of Δr,k(x){\Delta_{r,k}}(x)


According to Lemma 2.3,

τk(n1nr)=n1=m1d1,,nr=mrdrfr,k(m1,,mr)τk(d1)τk(dr)\tau_{k}(n_{1}\cdots n_{r})=\sum_{n_{1}=m_{1}d_{1},\cdots,n_{r}=m_{r}d_{r}}f_{r,k}(m_{1},\cdots,m_{r})\tau_{k}(d_{1})\cdots\tau_{k}(d_{r})

holds for n1,,nrNn_{1},\cdots,n_{r}\in\mathbb{N}, where fr,kf_{r,k} is defined in Lemma 2.3.

Then we deduce by (1.1) that

n1,,nrxτk(n1nr)\displaystyle\sum_{n_{1},\cdots,n_{r}\leqslant x}\tau_{k}(n_{1}\cdots n_{r}) =m1,,mrxfr,k(m1,,mr)j=1r(djx/mjτk(dj))\displaystyle=\sum_{m_{1},\cdots,m_{r}\leqslant x}f_{r,k}(m_{1},\cdots,m_{r})\prod_{j=1}^{r}\left(\sum_{d_{j}\leqslant x/m_{j}}\tau_{k}(d_{j})\right) (3.1)
=m1,,mrxfr,k(m1,,mr)j=1r(Mk(xmj)+Δk(xmj))\displaystyle=\sum_{m_{1},\cdots,m_{r}\leqslant x}f_{r,k}(m_{1},\cdots,m_{r})\prod_{j=1}^{r}\left(M_{k}\left(\frac{x}{m_{j}}\right)+\Delta_{k}\left(\frac{x}{m_{j}}\right)\right)
=m1,,mrxfr,k(m1,,mr)i=0r(ri)j=1riMk(xmj)j=1iΔk(xmj).\displaystyle=\sum_{m_{1},\cdots,m_{r}\leqslant x}f_{r,k}(m_{1},\cdots,m_{r})\sum_{i=0}^{r}\binom{r}{i}\prod_{j=1}^{r-i}{M_{k}}\left(\frac{x}{m_{j}}\right)\prod_{j=1}^{i}{\Delta_{k}}\left(\frac{x}{m_{j}}\right).

We evaluate the main term

Mr,k(x):=m1,,mrxfr,k(m1,,mr)j=1rMk(xmj).\displaystyle M_{r,k}(x):=\sum_{m_{1},\cdots,m_{r}\leqslant x}f_{r,k}(m_{1},\cdots,m_{r})\prod_{j=1}^{r}{M_{k}}\left(\frac{x}{m_{j}}\right).

Since Mk(u)=uPk1(logu)M_{k}(u)=uP_{k-1}(\log u) with Pt(u)P_{t}(u) a polynomial in u of degree tt, we have

j=1rMk(xmj)=xrm1mr=0r(k1)C(logm1,,logmr)(logx),\displaystyle\prod_{j=1}^{r}{M_{k}}\left(\frac{x}{m_{j}}\right)=\frac{x^{r}}{m_{1}\cdots m_{r}}\sum_{\ell=0}^{r(k-1)}C_{\ell}(\log m_{1},\cdots,\log m_{r})(\log x)^{\ell}, (3.2)

where

C(logm1,,logmr)=j1,,jrc(j1,,jr)(logm1)j1(logmr)jr,\displaystyle C_{\ell}(\log m_{1},\cdots,\log m_{r})=\sum_{j_{1},\cdots,j_{r}}c(j_{1},\cdots,j_{r})(\log m_{1})^{j_{1}}\cdots(\log m_{r})^{j_{r}},

the sum being over 0<jtk1(1jr)0<j_{t}\leqslant k-1(1\leqslant j\leqslant r) and c(j1,,jr)c(j_{1},\cdots,j_{r}) are computable constants. Thus we have

Mr,k(x)\displaystyle M_{r,k}(x) =xr=0r(k1)(logx)m1,,mrxfr,k(m1,,mr)C(logm1,,logmr)m1mr\displaystyle=x^{r}\sum_{\ell=0}^{r(k-1)}(\log x)^{\ell}\sum_{m_{1},\cdots,m_{r}\leqslant x}\frac{f_{r,k}(m_{1},\cdots,m_{r})C_{\ell}(\log m_{1},\cdots,\log m_{r})}{m_{1}\cdots m_{r}} (3.3)
=xr=0r(k1)dr,k,(logx)\displaystyle=x^{r}\sum_{\ell=0}^{r(k-1)}d_{r,k,\ell}(\log x)^{\ell}
xr=0r(k1)(logx)m1,,mrfr,k(m1,,mr)C(logm1,,logmr)m1mr,\displaystyle\qquad-x^{r}\sum_{\ell=0}^{r(k-1)}(\log x)^{\ell}{\sum_{m_{1},\cdots,m_{r}}}^{\prime}\frac{f_{r,k}(m_{1},\cdots,m_{r})C_{\ell}(\log m_{1},\cdots,\log m_{r})}{m_{1}\cdots m_{r}},

where

dr,k,:=m1,,mr=1fr,k(m1,,mr)C(logm1,,logmr)m1mr\displaystyle d_{r,k,\ell}:=\sum_{m_{1},\cdots,m_{r}=1}^{\infty}\frac{f_{r,k}(m_{1},\cdots,m_{r})C_{\ell}(\log m_{1},\cdots,\log m_{r})}{m_{1}\cdots m_{r}}

is convergent by choosing g(m1,,mr)=C(logm1,,logmr)g(m_{1},\cdots,m_{r})=C_{\ell}(\log m_{1},\cdots,\log m_{r}) in Lemma 2.3, and where \sum^{\prime} means there is at least one j(1jr)j(1\leqslant j\leqslant r) such that mj>xm_{j}>x. Without loss of generality, we suppose mr>xm_{r}>x.

Since lognnε\log n\ll n^{\varepsilon}, we obtain

xr=0r(k1)(logx)m1,,mrfr,k(m1,,mr)C(logm1,,logmr)m1mr\displaystyle x^{r}\sum_{\ell=0}^{r(k-1)}(\log x)^{\ell}{\sum_{m_{1},\cdots,m_{r}}}^{\prime}\frac{f_{r,k}(m_{1},\cdots,m_{r})C_{\ell}(\log m_{1},\cdots,\log m_{r})}{m_{1}\cdots m_{r}} (3.4)
xr=0r(k1)(logx)m1,,mr1=1mr>x|fr,k(m1,,mr)|(m1mr)εm1mr\displaystyle\ll x^{r}\sum_{\ell=0}^{r(k-1)}(\log x)^{\ell}\sum_{m_{1},\cdots,m_{r-1}=1}^{\infty}\sum_{m_{r}>x}\frac{|f_{r,k}(m_{1},\cdots,m_{r})|(m_{1}\cdots m_{r})^{\varepsilon}}{m_{1}\cdots m_{r}}
xr=0r(k1)(logx)m1,,mr1=1mr>x|fr,k(m1,,mr)|(m1mr)εm1mr1mr3ε×1mr13ε\displaystyle\ll x^{r}\sum_{\ell=0}^{r(k-1)}(\log x)^{\ell}\sum_{m_{1},\cdots,m_{r-1}=1}^{\infty}\sum_{m_{r}>x}\frac{|f_{r,k}(m_{1},\cdots,m_{r})|(m_{1}\cdots m_{r})^{\varepsilon}}{m_{1}\cdots m_{r-1}{m_{r}}^{3\varepsilon}}\times\frac{1}{{m_{r}}^{1-3\varepsilon}}
xr+ε(13ε)m1,,mr=1|fr,k(m1,,mr)|(m1mr1)1εmr2ε\displaystyle\ll x^{r+\varepsilon-(1-3\varepsilon)}\sum_{m_{1},\cdots,m_{r}=1}^{\infty}\frac{|f_{r,k}(m_{1},\cdots,m_{r})|}{(m_{1}\cdots m_{r-1})^{1-\varepsilon}{m_{r}}^{2\varepsilon}}
xr1+ε,\displaystyle\ll x^{r-1+\varepsilon},

the convergence of the latter series is obtained by Lemma 2.3.

From (3.3) and (3.4) we get

Mr,k(x)=xr=0r(k1)dr,k,(logx)+O(xr1+ε).M_{r,k}(x)=x^{r}\sum_{\ell=0}^{r(k-1)}d_{r,k,\ell}(\log x)^{\ell}+O(x^{r-1+\varepsilon}). (3.5)

By (1.1), (1.2) we obtain Mk(x/mj)(x/mj)1+εM_{k}(x/m_{j})\ll(x/m_{j})^{1+\varepsilon} and Δk(x/mj)(x/mj)αk+ε\Delta_{k}(x/m_{j})\ll(x/m_{j})^{\alpha_{k}+\varepsilon} for every 1jr1\leqslant j\leqslant r, thus the terms in (3.1) which contains two or more Δk(x/mj)\Delta_{k}(x/m_{j}) are

m1,,mrx|fr,k(m1,,mr)|(j=1r2Mk(xmj))|Δk(xmr1)||Δk(xmr)|\displaystyle\ll\sum_{m_{1},\cdots,m_{r}\leqslant x}|f_{r,k}(m_{1},\cdots,m_{r})|\left(\prod_{j=1}^{r-2}M_{k}\left(\frac{x}{m_{j}}\right)\right)\left|\Delta_{k}\left(\frac{x}{m_{r-1}}\right)\right|\left|\Delta_{k}\left(\frac{x}{m_{r}}\right)\right| (3.6)
xr2+2αk+εm1,,mrx|fr,k(m1,,mr)|m1mr2(mr1mr)αk\displaystyle\ll x^{r-2+2\alpha_{k}+\varepsilon}\sum_{m_{1},\cdots,m_{r}\leqslant x}\frac{|f_{r,k}(m_{1},\cdots,m_{r})|}{m_{1}\cdots m_{r-2}(m_{r-1}m_{r})^{\alpha_{k}}}
=xr2+2αk+εm1,,mrx|fr,k(m1,,mr)|m1mr2(mr1mr)αk×(mr1mr)12αk+ε(mr1mr)12αk+ε\displaystyle=x^{r-2+2\alpha_{k}+\varepsilon}\sum_{m_{1},\cdots,m_{r}\leqslant x}\frac{|f_{r,k}(m_{1},\cdots,m_{r})|}{m_{1}\cdots m_{r-2}(m_{r-1}m_{r})^{\alpha_{k}}}\times\frac{(m_{r-1}m_{r})^{\frac{1}{2}-\alpha_{k}+\varepsilon}}{(m_{r-1}m_{r})^{\frac{1}{2}-\alpha_{k}+\varepsilon}}
xr2+2αk+2(12αk)+εm1,,mr=1|fr,k(m1,,mr)|m1mr2(mr1mr)12+ε\displaystyle\ll x^{r-2+2\alpha_{k}+2(\frac{1}{2}-\alpha_{k})+\varepsilon}\sum_{m_{1},\cdots,m_{r}=1}^{\infty}\frac{|f_{r,k}(m_{1},\cdots,m_{r})|}{m_{1}\cdots m_{r-2}(m_{r-1}m_{r})^{\frac{1}{2}+\varepsilon}}
xr1+ε\displaystyle\ll x^{r-1+\varepsilon}

by using Lemma 2.3.

Above all,

Δr,k(x)=Δr,k(x)+O(xr1+ε)\Delta_{r,k}(x)={\Delta_{r,k}}^{*}(x)+O(x^{r-1+\varepsilon}) (3.7)

holds from (3.1), (3.3), (3.5) and (3.6), where

Δr,k(x)=rm1,,mrxfr,k(m1,,mr)j=1r1Mk(xmj)Δk(xmr).{\Delta_{r,k}}^{*}(x)=r\sum_{m_{1},\cdots,m_{r}\leqslant x}f_{r,k}(m_{1},\cdots,m_{r})\prod_{j=1}^{r-1}M_{k}\left(\frac{x}{m_{j}}\right)\Delta_{k}\left(\frac{x}{m_{r}}\right).

Similar to (3.6) we obtain

Δr,k(x)\displaystyle{\Delta_{r,k}}^{*}(x) m1,,mrx|fr,k(m1,,mr)|(j=1r1Mk(xmj))|Δk(xmr)|\displaystyle\ll\sum_{m_{1},\cdots,m_{r}\leqslant x}|f_{r,k}(m_{1},\cdots,m_{r})|\left(\prod_{j=1}^{r-1}M_{k}\left(\frac{x}{m_{j}}\right)\right)\left|\Delta_{k}\left(\frac{x}{m_{r}}\right)\right|
xr1+αk+εm1,,mrx|fr,k(m1,,mr)|m1mr1mrαk\displaystyle\ll x^{r-1+\alpha_{k}+\varepsilon}\sum_{m_{1},\cdots,m_{r}\leqslant x}\frac{|f_{r,k}(m_{1},\cdots,m_{r})|}{m_{1}\cdots m_{r-1}{m_{r}}^{\alpha_{k}}}
xr1+αk+εm1,,mr=1|fr,k(m1,,mr)|m1mr1mrαk\displaystyle\ll x^{r-1+\alpha_{k}+\varepsilon}\sum_{m_{1},\cdots,m_{r}=1}^{\infty}\frac{|f_{r,k}(m_{1},\cdots,m_{r})|}{m_{1}\cdots m_{r-1}{m_{r}}^{\alpha_{k}}}
xr1+αk+ε,\displaystyle\ll x^{r-1+\alpha_{k}+\varepsilon},

by using Lemma 2.3. Hence we proof the Theorem 1.1.

4. Proof of Theorem 1.6

4.1. Mean Square of Δr,k(x){\Delta_{r,k}}^{*}(x)


Let T2T\geqslant 2 be a large real number, and 𝐌1\mathbf{M}_{1}, 𝐌2\mathbf{M}_{2}, D1D_{1} and D2D_{2} be defined in Lemma 2.6.

For k4k\geqslant 4,

T2T(Δr,k(x))2𝑑x\displaystyle\int_{T}^{2T}({\Delta_{r,k}}^{*}(x))^{2}dx T2Tm1,,m2r2T|fr,k(𝐌1)fr,k(𝐌2)|j=1r1Mk(xmj)j=r+12r1Mk(xmj)\displaystyle\ll\int_{T}^{2T}\sum_{m_{1},\cdots,m_{2r}\leqslant 2T}|f_{r,k}(\mathbf{M}_{1})f_{r,k}(\mathbf{M}_{2})|\prod_{j=1}^{r-1}M_{k}\left(\frac{x}{m_{j}}\right)\prod_{j=r+1}^{2r-1}M_{k}\left(\frac{x}{m_{j}}\right)
×|Δk(xmr)Δk(xm2r)|dx.\displaystyle\qquad\times\left|\Delta_{k}\left(\frac{x}{m_{r}}\right)\Delta_{k}\left(\frac{x}{m_{2r}}\right)\right|dx.

Change the order of integration and summation, and use (1.1) we obtain

T2T(Δr,k(x))2𝑑x\displaystyle\int_{T}^{2T}({\Delta_{r,k}}^{*}(x))^{2}dx m1,,m2r2T|fr,k(𝐌1)fr,k(𝐌2)|T2Tj=1r1Mk(xmj)j=r+12r1Mk(xmj)\displaystyle\ll\sum_{m_{1},\cdots,m_{2r}\leqslant 2T}|f_{r,k}(\mathbf{M}_{1})f_{r,k}(\mathbf{M}_{2})|\int_{T}^{2T}\prod_{j=1}^{r-1}M_{k}\left(\frac{x}{m_{j}}\right)\prod_{j=r+1}^{2r-1}M_{k}\left(\frac{x}{m_{j}}\right)
×|Δk(xmr)Δk(xm2r)|dx\displaystyle\qquad\times\left|\Delta_{k}\left(\frac{x}{m_{r}}\right)\Delta_{k}\left(\frac{x}{m_{2r}}\right)\right|dx
m1,,m2r2T|fr,k(𝐌1)fr,k(𝐌2)|D1D2T2Tx2r2+ε|Δk(xmr)Δk(xm2r)|𝑑x\displaystyle\ll\sum_{m_{1},\cdots,m_{2r}\leqslant 2T}\frac{|f_{r,k}(\mathbf{M}_{1})f_{r,k}(\mathbf{M}_{2})|}{D_{1}D_{2}}\int_{T}^{2T}x^{2r-2+\varepsilon}\left|\Delta_{k}\left(\frac{x}{m_{r}}\right)\Delta_{k}\left(\frac{x}{m_{2r}}\right)\right|dx
T2r2+εm1,,m2r2T|fr,k(𝐌1)fr,k(𝐌2)|D1D2T2T|Δk(xmr)Δk(xm2r)|𝑑x.\displaystyle\ll T^{2r-2+\varepsilon}\sum_{m_{1},\cdots,m_{2r}\leqslant 2T}\frac{|f_{r,k}(\mathbf{M}_{1})f_{r,k}(\mathbf{M}_{2})|}{D_{1}D_{2}}\int_{T}^{2T}\left|\Delta_{k}\left(\frac{x}{m_{r}}\right)\Delta_{k}\left(\frac{x}{m_{2r}}\right)\right|dx.

By the Cauchy-Schwarz’s inequality and (1.2) we deduce that

T2T|Δk(xmr)Δk(xm2r)|𝑑x\displaystyle\int_{T}^{2T}\left|\Delta_{k}\left(\frac{x}{m_{r}}\right)\Delta_{k}\left(\frac{x}{m_{2r}}\right)\right|dx
\displaystyle\ll (T2TΔk2(xmr)𝑑x)1/2(T2TΔk2(xm2r)𝑑x)1/2\displaystyle\left(\int_{T}^{2T}{\Delta_{k}}^{2}\left(\frac{x}{m_{r}}\right)dx\right)^{1/2}\left(\int_{T}^{2T}{\Delta_{k}}^{2}\left(\frac{x}{m_{2r}}\right)dx\right)^{1/2}
\displaystyle\ll (mrTmr2TmrΔk2(u)𝑑u)1/2(m2rTm2r2Tm2rΔk2(u)𝑑u)1/2\displaystyle\left(m_{r}\int_{\frac{T}{m_{r}}}^{\frac{2T}{m_{r}}}{\Delta_{k}}^{2}\left(u\right)du\right)^{1/2}\left(m_{2r}\int_{\frac{T}{m_{2r}}}^{\frac{2T}{m_{2r}}}{\Delta_{k}}^{2}\left(u\right)du\right)^{1/2}
\displaystyle\ll T1+2βk+εmrβkm2rβk.\displaystyle\frac{T^{1+2\beta_{k}+\varepsilon}}{{m_{r}}^{\beta_{k}}{m_{2r}}^{\beta_{k}}}.

Thus

T2T(Δr,k(x))2𝑑x\displaystyle\int_{T}^{2T}({\Delta_{r,k}}^{*}(x))^{2}dx T2r1+2βk+εm1,,m2r2T|fr,k(𝐌1)fr,k(𝐌2)|D1mrβkD2m2rβk\displaystyle\ll T^{2r-1+2\beta_{k}+\varepsilon}\sum_{m_{1},\cdots,m_{2r}\leqslant 2T}\frac{|f_{r,k}(\mathbf{M}_{1})f_{r,k}(\mathbf{M}_{2})|}{D_{1}{m_{r}}^{\beta_{k}}D_{2}{m_{2r}}^{\beta_{k}}}
T2r1+2βk+ε(m1,,mr=1|fr,k(𝐌1)|D1mrβk)2\displaystyle\ll T^{2r-1+2\beta_{k}+\varepsilon}\left(\sum_{m_{1},\cdots,m_{r}=1}^{\infty}\frac{|f_{r,k}(\mathbf{M}_{1})|}{D_{1}{m_{r}}^{\beta_{k}}}\right)^{2}
T2r1+2βk+ε,\displaystyle\ll T^{2r-1+2\beta_{k}+\varepsilon},

which means we complete the proof of Theorem in the case of k4k\geqslant 4 by replacing TT by T/2T/2, T/22T/2^{2}, and so on, and adding up all the results.

5. Proof of Theorem 1.2

5.1. Mean Square of Δr,3(x){\Delta_{r,3}}^{*}(x)


In order to evaluate

T2T(Δr,3(x))2𝑑x,\int_{T}^{2T}({\Delta_{r,3}}^{*}(x))^{2}dx,

we divide the Δr,3(x){\Delta_{r,3}}^{*}(x) into three parts, namely

Δr,3(x)=M1+O(M2+M3),{\Delta_{r,3}}^{*}(x)=M_{1}+O(M_{2}+M_{3}),

where

M1=M1(x,y):=rm1,,mryfr,3(m1,,mr)j=1r1M3(xmj)Δ3(xmr),\displaystyle M_{1}=M_{1}(x,y):=r\sum_{m_{1},\cdots,m_{r}\leqslant y}f_{r,3}(m_{1},\cdots,m_{r})\prod_{j=1}^{r-1}M_{3}\left(\frac{x}{m_{j}}\right)\Delta_{3}\left(\frac{x}{m_{r}}\right),
M2=M2(x,y):=m1,,mrxm1>y|fr,3(m1,,mr)|j=1r1M3(xmj)|Δ3(xmr)|,\displaystyle M_{2}=M_{2}(x,y):=\sum_{\begin{subarray}{c}m_{1},\cdots,m_{r}\leqslant x\\ m_{1}>y\end{subarray}}|f_{r,3}(m_{1},\cdots,m_{r})|\prod_{j=1}^{r-1}M_{3}\left(\frac{x}{m_{j}}\right)\left|\Delta_{3}\left(\frac{x}{m_{r}}\right)\right|,
M3=M3(x,y):=m1,,mrxmr>y|fr,3(m1,,mr)|j=1r1M3(xmj)|Δ3(xmr)|,\displaystyle M_{3}=M_{3}(x,y):=\sum_{\begin{subarray}{c}m_{1},\cdots,m_{r}\leqslant x\\ m_{r}>y\end{subarray}}|f_{r,3}(m_{1},\cdots,m_{r})|\prod_{j=1}^{r-1}M_{3}\left(\frac{x}{m_{j}}\right)\left|\Delta_{3}\left(\frac{x}{m_{r}}\right)\right|,

and yy is a parameter such that TεyTT^{\varepsilon}\ll y\ll T. Thus

T2T(Δr,3(x))2𝑑x=T2TM12𝑑x+O(T2T(M1M2+M1M3)𝑑x)+O(T2T(M22+M32)𝑑x).\int_{T}^{2T}({\Delta_{r,3}}^{*}(x))^{2}dx=\int_{T}^{2T}{M_{1}}^{2}dx+O\left(\int_{T}^{2T}(M_{1}M_{2}+M_{1}M_{3})dx\right)+O\left(\int_{T}^{2T}({M_{2}}^{2}+{M_{3}}^{2})dx\right). (5.1)

Let 𝐌1,𝐌2,D1,D2\mathbf{M}_{1},\mathbf{M}_{2},D_{1},D_{2} be defined in Lemma 2.6, then change the order of summation and integration, by (1.1) we obtain

T2TM32𝑑x=\displaystyle\int_{T}^{2T}{M_{3}}^{2}dx= T2Tm1,,m2r2Tmr,m2r>y|fr,3(𝐌1)fr,3(𝐌2)|j=1r1M3(xmj)j=r+12r1M3(xmj)\displaystyle\int_{T}^{2T}\sum_{\begin{subarray}{c}m_{1},\cdots,m_{2r}\leqslant 2T\\ m_{r},m_{2r}>y\end{subarray}}|f_{r,3}(\mathbf{M}_{1})f_{r,3}(\mathbf{M}_{2})|\prod_{j=1}^{r-1}M_{3}\left(\frac{x}{m_{j}}\right)\prod_{j=r+1}^{2r-1}M_{3}\left(\frac{x}{m_{j}}\right)
×|Δ3(xmr)Δ3(xm2r)|dx\displaystyle\times\left|\Delta_{3}\left(\frac{x}{m_{r}}\right)\Delta_{3}\left(\frac{x}{m_{2r}}\right)\right|dx
=\displaystyle= m1,,m2r2Tmr,m2r>y|fr,3(𝐌1)fr,3(𝐌2)|T2Tj=1r1M3(xmj)j=r+12r1M3(xmj)\displaystyle\sum_{\begin{subarray}{c}m_{1},\cdots,m_{2r}\leqslant 2T\\ m_{r},m_{2r}>y\end{subarray}}|f_{r,3}(\mathbf{M}_{1})f_{r,3}(\mathbf{M}_{2})|\int_{T}^{2T}\prod_{j=1}^{r-1}M_{3}\left(\frac{x}{m_{j}}\right)\prod_{j=r+1}^{2r-1}M_{3}\left(\frac{x}{m_{j}}\right)
×|Δ3(xmr)Δ3(xm2r)|dx\displaystyle\times\left|\Delta_{3}\left(\frac{x}{m_{r}}\right)\Delta_{3}\left(\frac{x}{m_{2r}}\right)\right|dx
\displaystyle\ll m1,,m2r2Tmr,m2r>y|fr,3(𝐌1)fr,3(𝐌2)|D1D2T2Tx2r2+ε|Δ3(xmr)Δ3(xm2r)|𝑑x\displaystyle\sum_{\begin{subarray}{c}m_{1},\cdots,m_{2r}\leqslant 2T\\ m_{r},m_{2r}>y\end{subarray}}\frac{|f_{r,3}(\mathbf{M}_{1})f_{r,3}(\mathbf{M}_{2})|}{D_{1}D_{2}}\int_{T}^{2T}x^{2r-2+\varepsilon}\left|\Delta_{3}\left(\frac{x}{m_{r}}\right)\Delta_{3}\left(\frac{x}{m_{2r}}\right)\right|dx
\displaystyle\ll T2r2+εm1,,m2r2Tmr,m2r>y|fr,3(𝐌1)fr,3(𝐌2)|D1D2T2T|Δ3(xmr)Δ3(xm2r)|𝑑x,\displaystyle T^{2r-2+\varepsilon}\sum_{\begin{subarray}{c}m_{1},\cdots,m_{2r}\leqslant 2T\\ m_{r},m_{2r}>y\end{subarray}}\frac{|f_{r,3}(\mathbf{M}_{1})f_{r,3}(\mathbf{M}_{2})|}{D_{1}D_{2}}\int_{T}^{2T}\left|\Delta_{3}\left(\frac{x}{m_{r}}\right)\Delta_{3}\left(\frac{x}{m_{2r}}\right)\right|dx,

using Cauchy-Schwarz’s inequality and (1.2) we deduce that

T2T|Δ3(xmr)Δ3(xm2r)|𝑑x\displaystyle\int_{T}^{2T}\left|\Delta_{3}\left(\frac{x}{m_{r}}\right)\Delta_{3}\left(\frac{x}{m_{2r}}\right)\right|dx (T2TΔ32(xmr)𝑑x)1/2(T2TΔ32(xm2r)𝑑x)1/2\displaystyle\ll\left(\int_{T}^{2T}{\Delta_{3}}^{2}\left(\frac{x}{m_{r}}\right)dx\right)^{1/2}\left(\int_{T}^{2T}{\Delta_{3}}^{2}\left(\frac{x}{m_{2r}}\right)dx\right)^{1/2}
(mrTmr2TmrΔ32(u)𝑑u)1/2(m2rTm2r2Tm2rΔ32(u)𝑑u)1/2\displaystyle\ll\left(m_{r}\int_{\frac{T}{m_{r}}}^{\frac{2T}{m_{r}}}{\Delta_{3}}^{2}\left(u\right)du\right)^{1/2}\left(m_{2r}\int_{\frac{T}{m_{2r}}}^{\frac{2T}{m_{2r}}}{\Delta_{3}}^{2}\left(u\right)du\right)^{1/2}
T5/3+εmr1/3m2r1/3,\displaystyle\ll\frac{T^{5/3+\varepsilon}}{{m_{r}}^{1/3}{m_{2r}}^{1/3}},

then by Lemma 2.3 we have

T2TM32𝑑x\displaystyle\int_{T}^{2T}{M_{3}}^{2}dx T2r1/3+ε(m1,,mr2Tmr>y|fr,3(𝐌1)|D1mr1/3)2\displaystyle\ll T^{2r-1/3+\varepsilon}\left(\sum_{\begin{subarray}{c}m_{1},\cdots,m_{r}\leqslant 2T\\ m_{r}>y\end{subarray}}\frac{|f_{r,3}(\mathbf{M}_{1})|}{D_{1}{m_{r}}^{1/3}}\right)^{2} (5.2)
T2r1/3+ε(m1,,mr2Tmr>y|fr,3(𝐌1)|D1mrε×1mr1/3ε)2\displaystyle\ll T^{2r-1/3+\varepsilon}\left(\sum_{\begin{subarray}{c}m_{1},\cdots,m_{r}\leqslant 2T\\ m_{r}>y\end{subarray}}\frac{|f_{r,3}(\mathbf{M}_{1})|}{D_{1}{m_{r}}^{\varepsilon}}\times\frac{1}{{m_{r}}^{1/3-\varepsilon}}\right)^{2}
T2r1/3+εy2/3+ε(m1,,mr2Tmr>y|fr,3(𝐌1)|D1mrε)2\displaystyle\ll T^{2r-1/3+\varepsilon}y^{-2/3+\varepsilon}\left(\sum_{\begin{subarray}{c}m_{1},\cdots,m_{r}\leqslant 2T\\ m_{r}>y\end{subarray}}\frac{|f_{r,3}(\mathbf{M}_{1})|}{D_{1}{m_{r}}^{\varepsilon}}\right)^{2}
T2r1/3+εy2/3.\displaystyle\ll T^{2r-1/3+\varepsilon}y^{-2/3}.

Let D1=D1/m1{D_{1}}^{\prime}=D_{1}/m_{1}, similarly we get

T2TM22𝑑x\displaystyle\int_{T}^{2T}{M_{2}}^{2}dx T2r1/3+ε(m1,,mr2Tm1>y|fr,3(𝐌1)|D1mr1/3)2\displaystyle\ll T^{2r-1/3+\varepsilon}\left(\sum_{\begin{subarray}{c}m_{1},\cdots,m_{r}\leqslant 2T\\ m_{1}>y\end{subarray}}\frac{|f_{r,3}(\mathbf{M}_{1})|}{D_{1}{m_{r}}^{1/3}}\right)^{2} (5.3)
T2r1/3+ε(m1,,mr2Tm1>y|fr,3(𝐌1)|m12/3+εD1mr1/3×1m11/3ε)2\displaystyle\ll T^{2r-1/3+\varepsilon}\left(\sum_{\begin{subarray}{c}m_{1},\cdots,m_{r}\leqslant 2T\\ m_{1}>y\end{subarray}}\frac{|f_{r,3}(\mathbf{M}_{1})|}{{m_{1}}^{2/3+\varepsilon}{D_{1}}^{\prime}{m_{r}}^{1/3}}\times\frac{1}{{m_{1}}^{1/3-\varepsilon}}\right)^{2}
T2r1/3+εy2/3+ε(m1,,mr2Tm1>y|fr,3(𝐌1)|m12/3+εD1mr1/3)2\displaystyle\ll T^{2r-1/3+\varepsilon}y^{-2/3+\varepsilon}\left(\sum_{\begin{subarray}{c}m_{1},\cdots,m_{r}\leqslant 2T\\ m_{1}>y\end{subarray}}\frac{|f_{r,3}(\mathbf{M}_{1})|}{{m_{1}}^{2/3+\varepsilon}{D_{1}}^{\prime}{m_{r}}^{1/3}}\right)^{2}
T2r1/3+εy2/3.\displaystyle\ll T^{2r-1/3+\varepsilon}y^{-2/3}.

By (5.1), (5.2), (5.3) we conclude that

T2T(Δr,k(x))2𝑑x=T2TM12𝑑x+O(T2T(M1M2+M1M3)𝑑x)+O(T2r1/3+εy2/3).\int_{T}^{2T}({\Delta_{r,k}}^{*}(x))^{2}dx=\int_{T}^{2T}{M_{1}}^{2}dx+O\left(\int_{T}^{2T}(M_{1}M_{2}+M_{1}M_{3})dx\right)+O(T^{2r-1/3+\varepsilon}y^{-2/3}).

It remains to evaluate T2TM12𝑑x\int_{T}^{2T}{M_{1}}^{2}dx, and then it will follows that T2TM1M2𝑑x\int_{T}^{2T}M_{1}M_{2}dx and T2TM1M3𝑑x\int_{T}^{2T}M_{1}M_{3}dx can be estimated by the Cauchy-Schwarz’s inequality.

5.2. Mean Square of M1(x,y)M_{1}(x,y)

Let NN be a parameter such that 1Nx/mrx/y1\ll N\ll x/m_{r}\ll x/y, then

M1(x,y)\displaystyle M_{1}(x,y) =rm1,,mryfr,3(𝐌𝟏)j=1r1M3(xmj)Δ3(xmr)\displaystyle=r\sum_{m_{1},\cdots,m_{r}\leqslant y}f_{r,3}(\mathbf{M_{1}})\prod_{j=1}^{r-1}M_{3}\left(\frac{x}{m_{j}}\right)\Delta_{3}\left(\frac{x}{m_{r}}\right) (5.4)
:=M11(x,y,N)+O(M12(x,y,N)),\displaystyle:=M_{11}(x,y,N)+O(M_{12}(x,y,N)),

where

M11(x,y,N)\displaystyle\qquad M_{11}(x,y,N)
=rm1,,mryfr,3(𝐌𝟏)j=1r1M3(xmj)x1/33πmr1/3nNτ3(n)n2/3cos(6π(nxmr)13),\displaystyle=r\sum_{m_{1},\cdots,m_{r}\leqslant y}f_{r,3}(\mathbf{M_{1}})\prod_{j=1}^{r-1}M_{3}\left(\frac{x}{m_{j}}\right)\frac{x^{1/3}}{\sqrt{3}\pi m_{r}^{1/3}}\sum_{n\leqslant N}\frac{\tau_{3}(n)}{n^{2/3}}\cos\left(6\pi\left(\frac{nx}{m_{r}}\right)^{\frac{1}{3}}\right),

and

M12(x,y,N)=m1,,mry|fr,3(𝐌1)|j=1r1M3(xmj)|δ32(xmr,N)|,\displaystyle M_{12}(x,y,N)=\sum_{m_{1},\cdots,m_{r}\leqslant y}|f_{r,3}(\mathbf{M}_{1})|\prod_{j=1}^{r-1}M_{3}\left(\frac{x}{m_{j}}\right)\left|\delta_{32}\left(\frac{x}{m_{r}},N\right)\right|,

where δ32(,)\delta_{32}(\cdot,\cdot) is defined in Lemma 2.1. Thus

T2TM12(x,y)𝑑x\displaystyle\qquad\int_{T}^{2T}{M_{1}}^{2}(x,y)dx (5.5)
=T2TM112(x,y,N)𝑑x+O(T2T(M11(x,y,N)M12(x,y,N)+M122(x,y,N))𝑑x).\displaystyle=\int_{T}^{2T}{M_{11}}^{2}(x,y,N)dx+O\left(\int_{T}^{2T}(M_{11}(x,y,N)M_{12}(x,y,N)+{M_{12}}^{2}(x,y,N))dx\right).

We are going to evaluate the mean square of M11M_{11}. Using (3.2) we obtain

M112(x,y,N)\displaystyle\qquad M_{11}^{2}(x,y,N)
=r2x2/33π2m1,,m2ryfr,3(𝐌1)fr,3(𝐌2)(mrm2r)1/3j=1r1M3(xmj)j=r+12r1M3(xmj)n1,n2Nτ3(n1)τ3(n2)(n1n2)2/3\displaystyle=\frac{r^{2}x^{2/3}}{3\pi^{2}}\sum_{m_{1},\cdots,m_{2r}\leqslant y}\frac{f_{r,3}(\mathbf{M}_{1})f_{r,3}(\mathbf{M}_{2})}{(m_{r}m_{2r})^{1/3}}\prod_{j=1}^{r-1}M_{3}\left(\frac{x}{m_{j}}\right)\prod_{j=r+1}^{2r-1}M_{3}\left(\frac{x}{m_{j}}\right)\sum_{n_{1},n_{2}\leqslant N}\frac{\tau_{3}(n_{1})\tau_{3}(n_{2})}{(n_{1}n_{2})^{2/3}}
×cos(6π(n1xmr)1/3)cos(6π(n2xm2r)1/3)\displaystyle\qquad\times\cos\left(6\pi\left(\frac{n_{1}x}{m_{r}}\right)^{1/3}\right)\cos\left(6\pi\left(\frac{n_{2}x}{m_{2r}}\right)^{1/3}\right)
=r2x2r4/33π21,2=02(r1)(logx)1+2\displaystyle=\frac{r^{2}x^{2r-4/3}}{3\pi^{2}}\sum_{\ell_{1},\ell_{2}=0}^{2(r-1)}(\log x)^{\ell_{1}+\ell_{2}}
×m1,,m2ryfr,3(𝐌1)fr,3(𝐌2)C1(logm1,,logmr1)C2(logmmr+1,,logm2r1)D1D2(mrm2r)1/3\displaystyle\qquad\times\sum_{m_{1},\cdots,m_{2r}\leqslant y}\frac{f_{r,3}(\mathbf{M}_{1})f_{r,3}(\mathbf{M}_{2})C_{\ell_{1}}(\log m_{1},\cdots,\log m_{r-1})C_{\ell_{2}}(\log m_{m_{r+1}},\cdots,\log m_{2r-1})}{D_{1}D_{2}(m_{r}m_{2r})^{1/3}}
×n1,n2Nτ3(n1)τ3(n2)(n1n2)2/3cos(6π(n1xmr)1/3)cos(6π(n2xm2r)1/3).\displaystyle\qquad\times\sum_{n_{1},n_{2}\leqslant N}\frac{\tau_{3}(n_{1})\tau_{3}(n_{2})}{(n_{1}n_{2})^{2/3}}\cos\left(6\pi\left(\frac{n_{1}x}{m_{r}}\right)^{1/3}\right)\cos\left(6\pi\left(\frac{n_{2}x}{m_{2r}}\right)^{1/3}\right).

We denote C1(logm1,,logmr1)C2(logmmr+1,,logm2r1)C_{\ell_{1}}(\log m_{1},\cdots,\log m_{r-1})C_{\ell_{2}}(\log m_{m_{r+1}},\cdots,\log m_{2r-1}) by C1,2(𝐌1,𝐌2)C_{\ell_{1},\ell_{2}}(\mathbf{M}_{1},\mathbf{M}_{2}), then using cosαcosβ=12(cos(αβ)+cos(α+β))\cos\alpha\cos\beta=\frac{1}{2}(\cos(\alpha-\beta)+\cos(\alpha+\beta)) we get

M112(x,y,N)=S0(x,y,N)+S1(x,y,N)+S2(x,y,N),M_{11}^{2}(x,y,N)=S_{0}(x,y,N)+S_{1}(x,y,N)+S_{2}(x,y,N), (5.6)

where

S0(x,y,N)\displaystyle S_{0}(x,y,N) =r2x2r4/36π21,2=02(r1)(logx)1+2\displaystyle=\frac{r^{2}x^{2r-4/3}}{6\pi^{2}}\sum_{\ell_{1},\ell_{2}=0}^{2(r-1)}(\log x)^{\ell_{1}+\ell_{2}}
×m1,,m2ryn1,n2Nn1mr=n2m2rfr,3(𝐌1)fr,3(𝐌2)C1,2(𝐌1,𝐌2)D1D2(mrm2r)1/3τ3(n1)τ3(n2)(n1n2)2/3,\displaystyle\qquad\times\sum_{\begin{subarray}{c}m_{1},\cdots,m_{2r}\leqslant y\\ n_{1},n_{2}\leqslant N\\ \frac{n_{1}}{m_{r}}=\frac{n_{2}}{m_{2r}}\end{subarray}}\frac{f_{r,3}(\mathbf{M}_{1})f_{r,3}(\mathbf{M}_{2})C_{\ell_{1},\ell_{2}}(\mathbf{M}_{1},\mathbf{M}_{2})}{D_{1}D_{2}(m_{r}m_{2r})^{1/3}}\cdot\frac{\tau_{3}(n_{1})\tau_{3}(n_{2})}{(n_{1}n_{2})^{2/3}},
S1(x,y,N)\displaystyle S_{1}(x,y,N) =r2x2r4/36π21,2=02(r1)(logx)1+2\displaystyle=\frac{r^{2}x^{2r-4/3}}{6\pi^{2}}\sum_{\ell_{1},\ell_{2}=0}^{2(r-1)}(\log x)^{\ell_{1}+\ell_{2}}
×m1,,m2ryn1,n2Nn1m2rn2mrfr,3(𝐌1)fr,3(𝐌2)C1,2(𝐌1,𝐌2)D1D2(mrm2r)1/3τ3(n1)τ3(n2)(n1n2)2/3\displaystyle\qquad\times\sum_{\begin{subarray}{c}m_{1},\cdots,m_{2r}\leqslant y\\ n_{1},n_{2}\leqslant N\\ n_{1}m_{2r}\neq n_{2}m_{r}\end{subarray}}\frac{f_{r,3}(\mathbf{M}_{1})f_{r,3}(\mathbf{M}_{2})C_{\ell_{1},\ell_{2}}(\mathbf{M}_{1},\mathbf{M}_{2})}{D_{1}D_{2}(m_{r}m_{2r})^{1/3}}\cdot\frac{\tau_{3}(n_{1})\tau_{3}(n_{2})}{(n_{1}n_{2})^{2/3}}
×cos(6π((n1xmr)1/3(n2xm2r)1/3)),\displaystyle\qquad\times\cos\left(6\pi\left(\left(\frac{n_{1}x}{m_{r}}\right)^{1/3}-\left(\frac{n_{2}x}{m_{2r}}\right)^{1/3}\right)\right),

and

S2(x,y,N)\displaystyle S_{2}(x,y,N) =r2x2r4/36π21,2=02(r1)(logx)1+2\displaystyle=\frac{r^{2}x^{2r-4/3}}{6\pi^{2}}\sum_{\ell_{1},\ell_{2}=0}^{2(r-1)}(\log x)^{\ell_{1}+\ell_{2}}
×m1,,m2ryn1,n2Nfr,3(𝐌1)fr,3(𝐌2)C1,2(𝐌1,𝐌2)D1D2(mrm2r)1/3τ3(n1)τ3(n2)(n1n2)2/3\displaystyle\qquad\times\sum_{\begin{subarray}{c}m_{1},\cdots,m_{2r}\leqslant y\\ n_{1},n_{2}\leqslant N\end{subarray}}\frac{f_{r,3}(\mathbf{M}_{1})f_{r,3}(\mathbf{M}_{2})C_{\ell_{1},\ell_{2}}(\mathbf{M}_{1},\mathbf{M}_{2})}{D_{1}D_{2}(m_{r}m_{2r})^{1/3}}\cdot\frac{\tau_{3}(n_{1})\tau_{3}(n_{2})}{(n_{1}n_{2})^{2/3}}
×cos(6π((n1xmr)1/3+(n2xm2r)1/3)).\displaystyle\qquad\times\cos\left(6\pi\left(\left(\frac{n_{1}x}{m_{r}}\right)^{1/3}+\left(\frac{n_{2}x}{m_{2r}}\right)^{1/3}\right)\right).

Then it turns to deal with

0=T2TS0(x,y,N)𝑑x,1=T2TS1(x,y,N)𝑑x,2=T2TS2(x,y,N)𝑑x.\displaystyle\int_{0}=\int_{T}^{2T}S_{0}(x,y,N)dx,\qquad\int_{1}=\int_{T}^{2T}S_{1}(x,y,N)dx,\qquad\int_{2}=\int_{T}^{2T}S_{2}(x,y,N)dx.

5.2.1. Evaluation of 0\int_{0}


Since C1,2(𝐌1,𝐌2)C_{\ell_{1},\ell_{2}}(\mathbf{M}_{1},\mathbf{M}_{2}) satisfies

C1,2(𝐌1,𝐌2)(j=12rmj)ε,C_{\ell_{1},\ell_{2}}(\mathbf{M}_{1},\mathbf{M}_{2})\ll\left(\prod_{j=1}^{2r}m_{j}\right)^{\varepsilon},

we choose g(𝐌1,𝐌2))=g1,2(𝐌1,𝐌2)=C1,2(𝐌1,𝐌2)g(\mathbf{M}_{1},\mathbf{M}_{2}))=g_{\ell_{1},\ell_{2}}(\mathbf{M}_{1},\mathbf{M}_{2})=C_{\ell_{1},\ell_{2}}(\mathbf{M}_{1},\mathbf{M}_{2}), s=1/3s=1/3, w=2/3w=2/3 in Lemma 2.6, then

S0(x,y,N)\displaystyle S_{0}(x,y,N) =r2x2r4/36π21,2=02(r1)(logx)1+2Tg,r,3(y,N;13,23)\displaystyle=\frac{r^{2}x^{2r-4/3}}{6\pi^{2}}\sum_{\ell_{1},\ell_{2}=0}^{2(r-1)}(\log x)^{\ell_{1}+\ell_{2}}T_{g,r,3}\left(y,N;\frac{1}{3},\frac{2}{3}\right)
=r2x2r4/36π21,2=02(r1)(logx)1+2(Tg,r,3(13,23)+O(y2/3+ε+N1/3+ε)).\displaystyle=\frac{r^{2}x^{2r-4/3}}{6\pi^{2}}\sum_{\ell_{1},\ell_{2}=0}^{2(r-1)}(\log x)^{\ell_{1}+\ell_{2}}\left(T_{g,r,3}\left(\frac{1}{3},\frac{2}{3}\right)+O(y^{-2/3+\varepsilon}+N^{-1/3+\varepsilon})\right).

Since g(𝐌1,𝐌2)g(\mathbf{M}_{1},\mathbf{M}_{2}) is related to 1,2\ell_{1},\ell_{2}, we denote Tg,r,3(13,23)T_{g,r,3}\left(\frac{1}{3},\frac{2}{3}\right) by Dr,3,1,2D_{r,3,\ell_{1},\ell_{2}}, therefore

S0(x,y,N)=r2x2r4/36π2Q4r4(logx)+O(x2r4/3+ε(y2/3+N1/3)),S_{0}(x,y,N)=\frac{r^{2}x^{2r-4/3}}{6\pi^{2}}Q_{4r-4}(\log x)+O(x^{2r-4/3+\varepsilon}(y^{-2/3}+N^{-1/3})),

where

Q4r4(t)=1,2=02(r1)Dr,3,1,2t1+2Q_{4r-4}(t)=\sum_{\ell_{1},\ell_{2}=0}^{2(r-1)}D_{r,3,\ell_{1},\ell_{2}}t^{\ell_{1}+\ell_{2}}

is a polynomial of degree 4r44r-4. Then it follows that

0=r26π21,2=02(r1)Dr,3,1,2T2Tx2r4/3(logx)1+2𝑑x+O(T2r1/3+ε(y2/3+N1/3)).\int_{0}=\frac{r^{2}}{6\pi^{2}}\sum_{\ell_{1},\ell_{2}=0}^{2(r-1)}D_{r,3,\ell_{1},\ell_{2}}\int_{T}^{2T}x^{2r-4/3}(\log x)^{\ell_{1}+\ell_{2}}dx+O(T^{2r-1/3+\varepsilon}(y^{-2/3}+N^{-1/3})). (5.7)

5.2.2. Estimates of 1\int_{1} and 2\int_{2}


For 2\int_{2}, change the order of integration and summation we have

2\displaystyle\int_{2} =r26π21,2=02(r1)m1,,m2ryn1,n2Nfr,3(𝐌1)fr,3(𝐌2)C1,2(𝐌1,𝐌2)D1D2(mrm2r)1/3τ3(n1)τ3(n2)(n1n2)2/3\displaystyle=\frac{r^{2}}{6\pi^{2}}\sum_{\ell_{1},\ell_{2}=0}^{2(r-1)}\sum_{\begin{subarray}{c}m_{1},\cdots,m_{2r}\leqslant y\\ n_{1},n_{2}\leqslant N\end{subarray}}\frac{f_{r,3}(\mathbf{M}_{1})f_{r,3}(\mathbf{M}_{2})C_{\ell_{1},\ell_{2}}(\mathbf{M}_{1},\mathbf{M}_{2})}{D_{1}D_{2}(m_{r}m_{2r})^{1/3}}\cdot\frac{\tau_{3}(n_{1})\tau_{3}(n_{2})}{(n_{1}n_{2})^{2/3}}
×T2Tx2r4/3(logx)1+2cos(6π((n1xmr)1/3+(n2xm2r)1/3))dx.\displaystyle\qquad\times\int_{T}^{2T}x^{2r-4/3}(\log x)^{\ell_{1}+\ell_{2}}\cos\left(6\pi\left(\left(\frac{n_{1}x}{m_{r}}\right)^{1/3}+\left(\frac{n_{2}x}{m_{2r}}\right)^{1/3}\right)\right)dx.

Choosing F()=cos()F(\cdot)=\cos(\cdot), G(x)=x2r4/3(logx)1+2G(x)=x^{2r-4/3}(\log x)^{\ell_{1}+\ell_{2}} and m(x)=(n1x/mr)1/3+(n2x/m2r)1/3m(x)=(n_{1}x/m_{r})^{1/3}+(n_{2}x/m_{2r})^{1/3} in Lemma 2.4, then

2\displaystyle\int_{2} 1,2=02(r1)m1,,m2ryn1,n2N|fr,3(𝐌1)fr,3(𝐌2)C1,2(𝐌1,𝐌2)|D1D2(mrm2r)1/3τ3(n1)τ3(n2)(n1n2)2/3\displaystyle\ll\sum_{\ell_{1},\ell_{2}=0}^{2(r-1)}\sum_{\begin{subarray}{c}m_{1},\cdots,m_{2r}\leqslant y\\ n_{1},n_{2}\leqslant N\end{subarray}}\frac{|f_{r,3}(\mathbf{M}_{1})f_{r,3}(\mathbf{M}_{2})C_{\ell_{1},\ell_{2}}(\mathbf{M}_{1},\mathbf{M}_{2})|}{D_{1}D_{2}(m_{r}m_{2r})^{1/3}}\cdot\frac{\tau_{3}(n_{1})\tau_{3}(n_{2})}{(n_{1}n_{2})^{2/3}}
×T2r4/3+εT2/3(n1/mr)1/3+(n2/m2r)1/3.\displaystyle\qquad\times T^{2r-4/3+\varepsilon}\cdot\frac{T^{2/3}}{(n_{1}/m_{r})^{1/3}+(n_{2}/m_{2r})^{1/3}}.

We use C1,2(𝐌1,𝐌2)(j=12rmj)εyεTεC_{\ell_{1},\ell_{2}}(\mathbf{M}_{1},\mathbf{M}_{2})\ll\left(\prod_{j=1}^{2r}m_{j}\right)^{\varepsilon}\ll y^{\varepsilon}\ll T^{\varepsilon} and a2+b22aba^{2}+b^{2}\geqslant 2ab to get

2\displaystyle\int_{2} T2r2/3+εm1,,m2ryn1,n2N|fr,3(𝐌1)fr,3(𝐌2)|D1D2(mrm2r)1/3τ3(n1)τ3(n2)(n1n2)2/3(mrm2rn1n2)1/6\displaystyle\ll T^{2r-2/3+\varepsilon}\sum_{\begin{subarray}{c}m_{1},\cdots,m_{2r}\leqslant y\\ n_{1},n_{2}\leqslant N\end{subarray}}\frac{|f_{r,3}(\mathbf{M}_{1})f_{r,3}(\mathbf{M}_{2})|}{D_{1}D_{2}(m_{r}m_{2r})^{1/3}}\cdot\frac{\tau_{3}(n_{1})\tau_{3}(n_{2})}{(n_{1}n_{2})^{2/3}}\left(\frac{m_{r}m_{2r}}{n_{1}n_{2}}\right)^{1/6} (5.8)
T2r2/3+εn1,n2Nτ3(n1)τ3(n2)(n1n2)5/6m1,,m2ry|fr,3(𝐌1)fr,3(𝐌2)|D1D2(mrm2r)1/6\displaystyle\ll T^{2r-2/3+\varepsilon}\sum_{n_{1},n_{2}\leqslant N}\frac{\tau_{3}(n_{1})\tau_{3}(n_{2})}{(n_{1}n_{2})^{5/6}}\sum_{m_{1},\cdots,m_{2r}\leqslant y}\frac{|f_{r,3}(\mathbf{M}_{1})f_{r,3}(\mathbf{M}_{2})|}{D_{1}D_{2}(m_{r}m_{2r})^{1/6}}
T2r2/3+εN1/3(m1,,mr=1|fr,3(𝐌1)|D1mr1/6)2\displaystyle\ll T^{2r-2/3+\varepsilon}N^{1/3}\left(\sum_{m_{1},\cdots,m_{r}=1}^{\infty}\frac{|f_{r,3}(\mathbf{M}_{1})|}{D_{1}{m_{r}}^{1/6}}\right)^{2}
T2r2/3+εN1/3,\displaystyle\ll T^{2r-2/3+\varepsilon}N^{1/3},

where we use partial summation on n1,n2n_{1},n_{2} and the convergence of the latter series is obtained by Lemma 2.3.

Then we turn to estimate 1\int_{1}, similar to 2\int_{2}, we have

1\displaystyle\int_{1} 1,2=02(r1)m1,,m2ryn1,n2Nn1m2rn2mr|fr,3(𝐌1)fr,3(𝐌2)C1,2(𝐌1,𝐌2)|D1D2(mrm2r)1/3τ3(n1)τ3(n2)(n1n2)2/3\displaystyle\ll\sum_{\ell_{1},\ell_{2}=0}^{2(r-1)}\sum_{\begin{subarray}{c}m_{1},\cdots,m_{2r}\leqslant y\\ n_{1},n_{2}\leqslant N\\ n_{1}m_{2r}\neq n_{2}m_{r}\end{subarray}}\frac{|f_{r,3}(\mathbf{M}_{1})f_{r,3}(\mathbf{M}_{2})C_{\ell_{1},\ell_{2}}(\mathbf{M}_{1},\mathbf{M}_{2})|}{D_{1}D_{2}(m_{r}m_{2r})^{1/3}}\cdot\frac{\tau_{3}(n_{1})\tau_{3}(n_{2})}{(n_{1}n_{2})^{2/3}} (5.9)
×T2r4/3+εT2/3|(n1/mr)1/3(n2/m2r)1/3|\displaystyle\qquad\times T^{2r-4/3+\varepsilon}\cdot\frac{T^{2/3}}{\left|(n_{1}/m_{r})^{1/3}-(n_{2}/m_{2r})^{1/3}\right|}
T2r2/3+εm1,,m2ry|fr,3(𝐌1)fr,3(𝐌2)|D1D2(mrm2r)1/3n1,n2Nn1m2rn2mrτ3(n1)τ3(n2)(n1n2)2/3|(n1/mr)1/3(n2/m2r)1/3|\displaystyle\ll T^{2r-2/3+\varepsilon}\sum_{m_{1},\cdots,m_{2r}\leqslant y}\frac{|f_{r,3}(\mathbf{M}_{1})f_{r,3}(\mathbf{M}_{2})|}{D_{1}D_{2}(m_{r}m_{2r})^{1/3}}\sum_{\begin{subarray}{c}n_{1},n_{2}\leqslant N\\ n_{1}m_{2r}\neq n_{2}m_{r}\end{subarray}}\frac{\tau_{3}(n_{1})\tau_{3}(n_{2})}{(n_{1}n_{2})^{2/3}\left|(n_{1}/m_{r})^{1/3}-(n_{2}/m_{2r})^{1/3}\right|}
:=T2r2/3+εm1,,m2ry|fr,3(𝐌1)fr,3(𝐌2)|D1D2(mrm2r)1/3(R1+R2),\displaystyle:=T^{2r-2/3+\varepsilon}\sum_{m_{1},\cdots,m_{2r}\leqslant y}\frac{|f_{r,3}(\mathbf{M}_{1})f_{r,3}(\mathbf{M}_{2})|}{D_{1}D_{2}(m_{r}m_{2r})^{1/3}}(R_{1}+R_{2}),

where

R1\displaystyle R_{1} =n1,n2Nn1m2rn2mr|(n1mr)1/3(n2m2r)1/3|<110(n1n2mrm2r)1/6τ3(n1)τ3(n2)(n1n2)2/3|(n1/mr)1/3(n2/m2r)1/3|\displaystyle=\sum_{\begin{subarray}{c}n_{1},n_{2}\leqslant N\\ n_{1}m_{2r}\neq n_{2}m_{r}\\ \left|\left(\frac{n_{1}}{m_{r}}\right)^{1/3}-\left(\frac{n_{2}}{m_{2r}}\right)^{1/3}\right|<\frac{1}{10}\left(\frac{n_{1}n_{2}}{m_{r}m_{2r}}\right)^{1/6}\end{subarray}}\frac{\tau_{3}(n_{1})\tau_{3}(n_{2})}{(n_{1}n_{2})^{2/3}\left|(n_{1}/m_{r})^{1/3}-(n_{2}/m_{2r})^{1/3}\right|}
R2\displaystyle R_{2} =n1,n2Nn1m2rn2mr|(n1mr)1/3(n2m2r)1/3|110(n1n2mrm2r)1/6τ3(n1)τ3(n2)(n1n2)2/3|(n1/mr)1/3(n2/m2r)1/3|.\displaystyle=\sum_{\begin{subarray}{c}n_{1},n_{2}\leqslant N\\ n_{1}m_{2r}\neq n_{2}m_{r}\\ \left|\left(\frac{n_{1}}{m_{r}}\right)^{1/3}-\left(\frac{n_{2}}{m_{2r}}\right)^{1/3}\right|\geqslant\frac{1}{10}\left(\frac{n_{1}n_{2}}{m_{r}m_{2r}}\right)^{1/6}\end{subarray}}\frac{\tau_{3}(n_{1})\tau_{3}(n_{2})}{(n_{1}n_{2})^{2/3}\left|(n_{1}/m_{r})^{1/3}-(n_{2}/m_{2r})^{1/3}\right|}.

Then we have

R2n1,n2Nτ3(n1)τ3(n2)(n1n2)2/3(mrm2rn1n2)1/6(mrm2r)1/6N1/3+εR_{2}\ll\sum_{n_{1},n_{2}\leqslant N}\frac{\tau_{3}(n_{1})\tau_{3}(n_{2})}{(n_{1}n_{2})^{2/3}}\cdot\left(\frac{m_{r}m_{2r}}{n_{1}n_{2}}\right)^{1/6}\ll(m_{r}m_{2r})^{1/6}N^{1/3+\varepsilon} (5.10)

by using partial summation.

For R1R_{1}, using the Lagrange’s Mean Value Theorem, for r1,r2Rr_{1},r_{2}\in\mathbb{R},

|r11/3r21/3|(r1r2)1/3|r1r2||{r_{1}}^{1/3}-{r_{2}}^{1/3}|\asymp(r_{1}r_{2})^{-1/3}|r_{1}-r_{2}|

holds when r1r2r_{1}\asymp r_{2}. Thus choosing r1=n1/mrr_{1}=n_{1}/m_{r}, r2=n2/m2rr_{2}=n_{2}/m_{2r} we get

R1\displaystyle R_{1} n1,n2Nn1m2rn2mrτ3(n1)τ3(n2)(n1n2)2/3|n1/mrn2/m2r|(mrm2rn1n2)1/3\displaystyle\ll\sum_{\begin{subarray}{c}n_{1},n_{2}\leqslant N\\ n_{1}m_{2r}\neq n_{2}m_{r}\end{subarray}}\frac{\tau_{3}(n_{1})\tau_{3}(n_{2})}{(n_{1}n_{2})^{2/3}\left|n_{1}/m_{r}-n_{2}/m_{2r}\right|}\cdot\left(\frac{m_{r}m_{2r}}{n_{1}n_{2}}\right)^{-1/3}
=(mrm2r)2/3n1,n2Nn1m2rn2mrτ3(n1)τ3(n2)(n1n2)1/3|n1m2rn2mr|.\displaystyle=(m_{r}m_{2r})^{2/3}\sum_{\begin{subarray}{c}n_{1},n_{2}\leqslant N\\ n_{1}m_{2r}\neq n_{2}m_{r}\end{subarray}}\frac{\tau_{3}(n_{1})\tau_{3}(n_{2})}{(n_{1}n_{2})^{1/3}\left|n_{1}m_{2r}-n_{2}m_{r}\right|}.

Let N1,N2N_{1},N_{2} satisfy 1N1,N2N1\leqslant N_{1},N_{2}\leqslant N. Then using τ3(n)nε\tau_{3}(n)\ll n^{\varepsilon} we deduce that

R1\displaystyle R_{1} (mrm2r)2/3log2Nn1N1,n2N2n1m2rn2mrτ3(n1)τ3(n2)(n1n2)1/3|n1m2rn2mr|\displaystyle\ll(m_{r}m_{2r})^{2/3}\log^{2}N\sum_{\begin{subarray}{c}n_{1}\sim N_{1},n_{2}\sim N_{2}\\ n_{1}m_{2r}\neq n_{2}m_{r}\end{subarray}}\frac{\tau_{3}(n_{1})\tau_{3}(n_{2})}{(n_{1}n_{2})^{1/3}\left|n_{1}m_{2r}-n_{2}m_{r}\right|} (5.11)
(mrm2r)2/3(N1N2)1/3Nεn1N1,n2N2n1m2rn2mr1|n1m2rn2mr|\displaystyle\ll\frac{(m_{r}m_{2r})^{2/3}}{(N_{1}N_{2})^{1/3}}N^{\varepsilon}\sum_{\begin{subarray}{c}n_{1}\sim N_{1},n_{2}\sim N_{2}\\ n_{1}m_{2r}\neq n_{2}m_{r}\end{subarray}}\frac{1}{\left|n_{1}m_{2r}-n_{2}m_{r}\right|}
(mrm2r)2/3(N1N2)1/3Nε(N1N2)1/2logN\displaystyle\ll\frac{(m_{r}m_{2r})^{2/3}}{(N_{1}N_{2})^{1/3}}N^{\varepsilon}\cdot(N_{1}N_{2})^{1/2}\log N
(mrm2r)2/3N1/3+ε,\displaystyle\ll(m_{r}m_{2r})^{2/3}N^{1/3+\varepsilon},

where we use Lemma 2.5 in the case that a=m2r,b=mra=m_{2r},b=m_{r}.

Therefore we conclude that

R1+R2(mrm2r)2/3N1/3+εR_{1}+R_{2}\ll(m_{r}m_{2r})^{2/3}N^{1/3+\varepsilon}

by (5.10) and (5.11). Thus we obtain by (5.9) and Lemma 2.3 that

1\displaystyle\int_{1} T2r2/3+εN1/3m1,,m2ry|fr,3(𝐌1)fr,3(𝐌2)|D1D2(mrm2r)1/3(mrm2r)2/3\displaystyle\ll T^{2r-2/3+\varepsilon}N^{1/3}\sum_{m_{1},\cdots,m_{2r}\leqslant y}\frac{|f_{r,3}(\mathbf{M}_{1})f_{r,3}(\mathbf{M}_{2})|}{D_{1}D_{2}(m_{r}m_{2r})^{1/3}}\cdot(m_{r}m_{2r})^{2/3} (5.12)
T2r2/3+εN1/3m1,,m2ry|fr,3(𝐌1)fr,3(𝐌2)|(mrm2r)1/3+εD1D2(mrm2r)ε\displaystyle\ll T^{2r-2/3+\varepsilon}N^{1/3}\sum_{m_{1},\cdots,m_{2r}\leqslant y}\frac{|f_{r,3}(\mathbf{M}_{1})f_{r,3}(\mathbf{M}_{2})|(m_{r}m_{2r})^{1/3+\varepsilon}}{D_{1}D_{2}(m_{r}m_{2r})^{\varepsilon}}
T2r2/3+εN1/3y2/3m1,,m2ry|fr,3(𝐌1)fr,3(𝐌2)|D1D2(mrm2r)ε\displaystyle\ll T^{2r-2/3+\varepsilon}N^{1/3}y^{2/3}\sum_{m_{1},\cdots,m_{2r}\leqslant y}\frac{|f_{r,3}(\mathbf{M}_{1})f_{r,3}(\mathbf{M}_{2})|}{D_{1}D_{2}(m_{r}m_{2r})^{\varepsilon}}
T2r2/3+εN1/3y2/3(m1,,mr=1|fr,3(𝐌1)|D1mrε)2\displaystyle\ll T^{2r-2/3+\varepsilon}N^{1/3}y^{2/3}\left(\sum_{m_{1},\cdots,m_{r}=1}^{\infty}\frac{|f_{r,3}(\mathbf{M}_{1})|}{D_{1}{m_{r}}^{\varepsilon}}\right)^{2}
T2r2/3+εN1/3y2/3.\displaystyle\ll T^{2r-2/3+\varepsilon}N^{1/3}y^{2/3}.

Above all, combining (5.6), (5.7), (5.8), (5.12) and taking y=N1/2y=N^{1/2} we obtain

T2TM112(x,y,N)𝑑x=\displaystyle\int_{T}^{2T}{M_{11}}^{2}(x,y,N)dx= r26π21,2=02(r1)Dr,3,1,2T2Tx2r4/3(logx)1+2𝑑x\displaystyle\frac{r^{2}}{6\pi^{2}}\sum_{\ell_{1},\ell_{2}=0}^{2(r-1)}D_{r,3,\ell_{1},\ell_{2}}\int_{T}^{2T}x^{2r-4/3}(\log x)^{\ell_{1}+\ell_{2}}dx (5.13)
+O(T2r1/3+εN1/3)+O(T2r2/3+εN2/3).\displaystyle\qquad+O(T^{2r-1/3+\varepsilon}N^{-1/3})+O(T^{2r-2/3+\varepsilon}N^{2/3}).

5.2.3. Other terms in (5.5)


From (1.1) and (5.4) we get

T2TM122(x,y,N)𝑑x\displaystyle\qquad\int_{T}^{2T}{M_{12}}^{2}(x,y,N)dx
m1,,m2ry|fr,3(𝐌1)fr,3(𝐌2)|D1D2T2Tx2r2+ε|δ32(xmr,N)δ32(xm2r,N)|𝑑x\displaystyle\ll\sum_{m_{1},\cdots,m_{2r}\leqslant y}\frac{|f_{r,3}(\mathbf{M}_{1})f_{r,3}(\mathbf{M}_{2})|}{D_{1}D_{2}}\int_{T}^{2T}x^{2r-2+\varepsilon}\left|\delta_{32}\left(\frac{x}{m_{r}},N\right)\delta_{32}\left(\frac{x}{m_{2r}},N\right)\right|dx
T2r2+εm1,,m2ry|fr,3(𝐌1)fr,3(𝐌2)|D1D2T2T|δ32(xmr,N)δ32(xm2r,N)|𝑑x.\displaystyle\ll T^{2r-2+\varepsilon}\sum_{m_{1},\cdots,m_{2r}\leqslant y}\frac{|f_{r,3}(\mathbf{M}_{1})f_{r,3}(\mathbf{M}_{2})|}{D_{1}D_{2}}\int_{T}^{2T}\left|\delta_{32}\left(\frac{x}{m_{r}},N\right)\delta_{32}\left(\frac{x}{m_{2r}},N\right)\right|dx.

Suppose that N(T/y)2/3N\ll(T/y)^{2/3}, using the Cauchy-Schwarz’s inequality and Lemma 2.1 we have

T2T|δ32(xmr,N)δ32(xm2r,N)|𝑑x\displaystyle\qquad\int_{T}^{2T}\left|\delta_{32}\left(\frac{x}{m_{r}},N\right)\delta_{32}\left(\frac{x}{m_{2r}},N\right)\right|dx
(T2Tδ322(xmr,N)𝑑x)1/2(T2Tδ322(xm2r,N)𝑑x)1/2\displaystyle\ll\left(\int_{T}^{2T}{\delta_{32}}^{2}\left(\frac{x}{m_{r}},N\right)dx\right)^{1/2}\left(\int_{T}^{2T}{\delta_{32}}^{2}\left(\frac{x}{m_{2r}},N\right)dx\right)^{1/2}
(mrTmr2Tmrδ322(u,N)𝑑u)1/2(m2rTm2r2Tm2rδ322(u,N)𝑑u)1/2\displaystyle\ll\left(m_{r}\int_{\frac{T}{m_{r}}}^{\frac{2T}{m_{r}}}{\delta_{32}}^{2}\left(u,N\right)du\right)^{1/2}\left(m_{2r}\int_{\frac{T}{m_{2r}}}^{\frac{2T}{m_{2r}}}{\delta_{32}}^{2}\left(u,N\right)du\right)^{1/2}
(T5/3+εN1/3mr2/3+T14/9+εmr5/9)1/2(T5/3+εN1/3m2r2/3+T14/9+εm2r5/9)1/2\displaystyle\ll\left(\frac{T^{5/3+\varepsilon}N^{-1/3}}{{m_{r}}^{2/3}}+\frac{T^{14/9+\varepsilon}}{m_{r}^{5/9}}\right)^{1/2}\left(\frac{T^{5/3+\varepsilon}N^{-1/3}}{{m_{2r}}^{2/3}}+\frac{T^{14/9+\varepsilon}}{m_{2r}^{5/9}}\right)^{1/2}
T5/3+εN1/3(mrm2r)1/3+T29/18+εN1/6mr5/18m2r1/3+T29/18+εN1/6mr1/3m2r5/18+T14/9+ε(mrm2r)5/18.\displaystyle\ll\frac{T^{5/3+\varepsilon}N^{-1/3}}{(m_{r}m_{2r})^{1/3}}+\frac{T^{29/18+\varepsilon}N^{-1/6}}{{m_{r}}^{5/18}{m_{2r}}^{1/3}}+\frac{T^{29/18+\varepsilon}N^{-1/6}}{{m_{r}}^{1/3}{m_{2r}}^{5/18}}+\frac{T^{14/9+\varepsilon}}{(m_{r}m_{2r})^{5/18}}.

Thus

T2TM122(x,y,N)𝑑x\displaystyle\qquad\int_{T}^{2T}{M_{12}}^{2}(x,y,N)dx (5.14)
T2r2+εm1,,m2ry|fr,3(𝐌1)fr,3(𝐌2)|D1D2\displaystyle\ll T^{2r-2+\varepsilon}\sum_{m_{1},\cdots,m_{2r}\leqslant y}\frac{|f_{r,3}(\mathbf{M}_{1})f_{r,3}(\mathbf{M}_{2})|}{D_{1}D_{2}}
×(T5/3+εN1/3(mrm2r)1/3+T29/18+εN1/6mr5/18m2r1/3+T29/18+εN1/6mr1/3m2r5/18+T14/9+ε(mrm2r)5/18)\displaystyle\qquad\times\left(\frac{T^{5/3+\varepsilon}N^{-1/3}}{(m_{r}m_{2r})^{1/3}}+\frac{T^{29/18+\varepsilon}N^{-1/6}}{{m_{r}}^{5/18}{m_{2r}}^{1/3}}+\frac{T^{29/18+\varepsilon}N^{-1/6}}{{m_{r}}^{1/3}{m_{2r}}^{5/18}}+\frac{T^{14/9+\varepsilon}}{(m_{r}m_{2r})^{5/18}}\right)
T2r1/3+εN1/3+T2r7/18+εN1/6+T2r4/9+ε,\displaystyle\ll T^{2r-1/3+\varepsilon}N^{-1/3}+T^{2r-7/18+\varepsilon}N^{-1/6}+T^{2r-4/9+\varepsilon},

where the convergence of all the series can be obtained by Lemma 2.3.

Since T2r7/18+εN1/6=(T2r1/3+εN1/3)1/2(T2r4/9+ε)1/2T^{2r-7/18+\varepsilon}N^{-1/6}=(T^{2r-1/3+\varepsilon}N^{-1/3})^{1/2}(T^{2r-4/9+\varepsilon})^{1/2}, the term T2r7/18+εN1/6T^{2r-7/18+\varepsilon}N^{-1/6} is superfluous.

It remains to estimate

T2TM11(x,y,N)M12(x,y,N)𝑑x.\int_{T}^{2T}M_{11}(x,y,N)M_{12}(x,y,N)dx.

Using (5.13), (5.14) and the Cauchy-Schwarz’s inequality, we deduce that

T2TM11(x,y,N)M12(x,y,N)𝑑x\displaystyle\qquad\int_{T}^{2T}M_{11}(x,y,N)M_{12}(x,y,N)dx (5.15)
(T2TM112(x,y,N)𝑑x)1/2(T2TM122(x,y,N)𝑑x)1/2\displaystyle\ll\left(\int_{T}^{2T}{M_{11}}^{2}(x,y,N)dx\right)^{1/2}\left(\int_{T}^{2T}{M_{12}}^{2}(x,y,N)dx\right)^{1/2}
Tr1/6+ε(Tr1/6+εN1/6+Tr2/9+ε)\displaystyle\ll T^{r-1/6+\varepsilon}(T^{r-1/6+\varepsilon}N^{-1/6}+T^{r-2/9+\varepsilon})
=T2r1/3+εN1/6+T2r7/18+ε.\displaystyle=T^{2r-1/3+\varepsilon}N^{-1/6}+T^{2r-7/18+\varepsilon}.

Combining (5.5), (5.13), (5.14) and (5.15) we conclude that

T2TM12(x,y)𝑑x=\displaystyle\int_{T}^{2T}{M_{1}}^{2}(x,y)dx= r26π21,2=02(r1)Dr,3,1,2T2Tx2r4/3(logx)1+2𝑑x\displaystyle\frac{r^{2}}{6\pi^{2}}\sum_{\ell_{1},\ell_{2}=0}^{2(r-1)}D_{r,3,\ell_{1},\ell_{2}}\int_{T}^{2T}x^{2r-4/3}(\log x)^{\ell_{1}+\ell_{2}}dx (5.16)
+O(T2r1/3+εN1/6+T2r2/3+εN2/3+T2r7/18+ε).\displaystyle\qquad+O(T^{2r-1/3+\varepsilon}N^{-1/6}+T^{2r-2/3+\varepsilon}N^{2/3}+T^{2r-7/18+\varepsilon}).

5.3. Conclusion

Taking y=N1/2y=N^{1/2}, using (5.3), (5.16) and the Cauchy-Schwarz’s inequality we easily have

T2TM1(x,y)M2(x,y)𝑑x\displaystyle\int_{T}^{2T}M_{1}(x,y)M_{2}(x,y)dx (T2TM12(x,y)𝑑x)1/2(T2TM22(x,y)𝑑x)1/2\displaystyle\ll\left(\int_{T}^{2T}{M_{1}}^{2}(x,y)dx\right)^{1/2}\left(\int_{T}^{2T}{M_{2}}^{2}(x,y)dx\right)^{1/2} (5.17)
Tr1/6+ε×Tr1/6+εN1/6\displaystyle\ll T^{r-1/6+\varepsilon}\times T^{r-1/6+\varepsilon}N^{-1/6}
=T2r1/3+εN1/6.\displaystyle=T^{2r-1/3+\varepsilon}N^{-1/6}.

And similarly we obtain

T2TM1(x,y)M3(x,y)𝑑x\displaystyle\int_{T}^{2T}M_{1}(x,y)M_{3}(x,y)dx T2r1/3+εN1/6.\displaystyle\ll T^{2r-1/3+\varepsilon}N^{-1/6}. (5.18)

Above all, choosing N=T1/3N=T^{1/3} which indeed satisfies N(T/y)2/3=T1/2N\ll(T/y)^{2/3}=T^{1/2},

T2TΔr,32(x)𝑑x=r26π21,2=02(r1)Dr,3,1,2T2Tx2r4/3(logx)1+2𝑑x+O(T2r7/18+ε)\int_{T}^{2T}{\Delta_{r,3}}^{2}(x)dx=\frac{r^{2}}{6\pi^{2}}\sum_{\ell_{1},\ell_{2}=0}^{2(r-1)}D_{r,3,\ell_{1},\ell_{2}}\int_{T}^{2T}x^{2r-4/3}(\log x)^{\ell_{1}+\ell_{2}}dx+O(T^{2r-7/18+\varepsilon})

holds from (3.7), (5.1), (5.2), (5.3), (5.16), (5.17) and (5.18). Then replacing TT by T/2T/2, T/22T/2^{2} and so on, and adding up all the results, we obtain

1TΔr,32(x)𝑑x\displaystyle\int_{1}^{T}{\Delta_{r,3}}^{2}(x)dx =r26π21,2=02(r1)Dr,3,1,21Tx2r4/3(logx)1+2𝑑x+O(T2r7/18+ε)\displaystyle=\frac{r^{2}}{6\pi^{2}}\sum_{\ell_{1},\ell_{2}=0}^{2(r-1)}D_{r,3,\ell_{1},\ell_{2}}\int_{1}^{T}x^{2r-4/3}(\log x)^{\ell_{1}+\ell_{2}}dx+O(T^{2r-7/18+\varepsilon})
=r26π2T2r1/3L4r4(logT)+O(T2r7/18+ε),\displaystyle=\frac{r^{2}}{6\pi^{2}}T^{2r-1/3}L_{4r-4}(\log T)+O(T^{2r-7/18+\varepsilon}),

where we use integration by part several times to get L4r4(u)L_{4r-4}(u) is a polynomial in uu of degree 4r44r-4 denoted by

L4r4(u)=1,2=02(r1)Dr,3,1,2t=01+2(1)t(1+2)!(2r13)t+1(1+2t)!u1+2t.\displaystyle L_{4r-4}(u)=\sum_{\ell_{1},\ell_{2}=0}^{2(r-1)}D_{r,3,\ell_{1},\ell_{2}}\sum_{t=0}^{\ell_{1}+\ell_{2}}\frac{(-1)^{t}(\ell_{1}+\ell_{2})!}{(2r-\frac{1}{3})^{t+1}(\ell_{1}+\ell_{2}-t)!}u^{\ell_{1}+\ell_{2}-t}.

Hence we have completed the proof of the Theorem.

6. Proof of Theorem 1.3

By (3.7) we obtain

T2T|Δr,3(x)|3𝑑x\displaystyle\int_{T}^{2T}|\Delta_{r,3}(x)|^{3}dx T2T|Δr,3(x)|3𝑑x\displaystyle\ll\int_{T}^{2T}|{\Delta_{r,3}}^{*}(x)|^{3}dx
T2T(m1,,mr2T|fr,3(m1,,mr)|j=1r1M3(xmj)|Δ3(xmr)|)3𝑑x\displaystyle\ll\int_{T}^{2T}\left(\sum_{m_{1},\cdots,m_{r}\leqslant 2T}|f_{r,3}(m_{1},\cdots,m_{r})|\prod_{j=1}^{r-1}M_{3}\left(\frac{x}{m_{j}}\right)\left|\Delta_{3}\left(\frac{x}{m_{r}}\right)\right|\right)^{3}dx
T3r3+εT2T(m1,,mr2T|fr,3(m1,,mr)|m1mr1|Δ3(xmr)|)3𝑑x.\displaystyle\ll T^{3r-3+\varepsilon}\int_{T}^{2T}\left(\sum_{m_{1},\cdots,m_{r}\leqslant 2T}\frac{|f_{r,3}(m_{1},\cdots,m_{r})|}{m_{1}\cdots m_{r-1}}\left|\Delta_{3}\left(\frac{x}{m_{r}}\right)\right|\right)^{3}dx.

Using the Hölder’s inequality we have

(m1,,mr2T|fr,3(m1,,mr)|m1mr1|Δ3(xmr)|)3\displaystyle\left(\sum_{m_{1},\cdots,m_{r}\leqslant 2T}\frac{|f_{r,3}(m_{1},\cdots,m_{r})|}{m_{1}\cdots m_{r-1}}\left|\Delta_{3}\left(\frac{x}{m_{r}}\right)\right|\right)^{3}
\displaystyle\ll (m1,,mr2T(|fr,3(m1,,mr)|m1mr1)3/2)2(m1,,mr2T|Δ3(xmr)|3),\displaystyle\left(\sum_{m_{1},\cdots,m_{r}\leqslant 2T}\left(\frac{|f_{r,3}(m_{1},\cdots,m_{r})|}{m_{1}\cdots m_{r-1}}\right)^{3/2}\right)^{2}\left(\sum_{m_{1},\cdots,m_{r}\leqslant 2T}\left|\Delta_{3}\left(\frac{x}{m_{r}}\right)\right|^{3}\right),

so we obtain

T2T|Δr,3(x)|3𝑑x\displaystyle\int_{T}^{2T}|\Delta_{r,3}(x)|^{3}dx
\displaystyle\ll T3r3+εT2T(m1,,mr2T(|fr,3(m1,,mr)|m1mr1)3/2)2(m1,,mr2T|Δ3(xmr)|3)𝑑x.\displaystyle T^{3r-3+\varepsilon}\int_{T}^{2T}\left(\sum_{m_{1},\cdots,m_{r}\leqslant 2T}\left(\frac{|f_{r,3}(m_{1},\cdots,m_{r})|}{m_{1}\cdots m_{r-1}}\right)^{3/2}\right)^{2}\left(\sum_{m_{1},\cdots,m_{r}\leqslant 2T}\left|\Delta_{3}\left(\frac{x}{m_{r}}\right)\right|^{3}\right)dx.

Changing the order of integration and summation we have

T2T|Δr,3(x)|3𝑑x\displaystyle\int_{T}^{2T}|\Delta_{r,3}(x)|^{3}dx T3r3+ε(m1,,mr2T|fr,3(m1,,mr)|m1mr1)3T2T|Δ3(xmr)|3𝑑x\displaystyle\ll T^{3r-3+\varepsilon}\left(\sum_{m_{1},\cdots,m_{r}\leqslant 2T}\frac{|f_{r,3}(m_{1},\cdots,m_{r})|}{m_{1}\cdots m_{r-1}}\right)^{3}\int_{T}^{2T}\left|\Delta_{3}\left(\frac{x}{m_{r}}\right)\right|^{3}dx
T3r3+ε(m1,,mr2T|fr,3(m1,,mr)|m1mr1)3(mrTmr2Tmr|Δ3(u)|3𝑑u)\displaystyle\ll T^{3r-3+\varepsilon}\left(\sum_{m_{1},\cdots,m_{r}\leqslant 2T}\frac{|f_{r,3}(m_{1},\cdots,m_{r})|}{m_{1}\cdots m_{r-1}}\right)^{3}\left(m_{r}\int_{\frac{T}{m_{r}}}^{\frac{2T}{m_{r}}}\left|\Delta_{3}\left(u\right)\right|^{3}du\right)
T3r1+ε(m1,,mr2T|fr,3(m1,,mr)|m1mr1mr1/3)3\displaystyle\ll T^{3r-1+\varepsilon}\left(\sum_{m_{1},\cdots,m_{r}\leqslant 2T}\frac{|f_{r,3}(m_{1},\cdots,m_{r})|}{m_{1}\cdots m_{r-1}{m_{r}}^{1/3}}\right)^{3}
T3r1+ε,\displaystyle\ll T^{3r-1+\varepsilon},

where we use (1.7) and Lemma 2.3. And Theorem 1.3 holds by replacing TT by T/2T/2, T/22T/2^{2} and so on, and adding up all the results.

7. Proof of Theorem 1.4

By (3.7) we have

1TΔr,3(x)𝑑x\displaystyle\int_{1}^{T}\Delta_{r,3}(x)dx =1TΔr,3(x)𝑑x+O(Tr+ε)\displaystyle=\int_{1}^{T}{\Delta_{r,3}}^{*}(x)dx+O(T^{r+\varepsilon})
=r1Tm1,,mrxfr,3(m1,,mr)j=1r1M3(xmj)Δ3(xmr)dx+O(Tr+ε)\displaystyle=r\int_{1}^{T}\sum_{m_{1},\cdots,m_{r}\leqslant x}f_{r,3}(m_{1},\cdots,m_{r})\prod_{j=1}^{r-1}M_{3}\left(\frac{x}{m_{j}}\right)\Delta_{3}\left(\frac{x}{m_{r}}\right)dx+O(T^{r+\varepsilon})
:=I1+I2+O(Tr+ε),\displaystyle:=I_{1}+I_{2}+O(T^{r+\varepsilon}),

where

I1\displaystyle I_{1} =r1Tm1,,mr2Tfr,3(m1,,mr)j=1r1M3(xmj)Δ3(xmr)dx,\displaystyle=r\int_{1}^{T}\sum_{m_{1},\cdots,m_{r}\leqslant 2T}f_{r,3}(m_{1},\cdots,m_{r})\prod_{j=1}^{r-1}M_{3}\left(\frac{x}{m_{j}}\right)\Delta_{3}\left(\frac{x}{m_{r}}\right)dx,
I2\displaystyle I_{2} =r1T(m1,,mr2Tm1,,mrx)fr,3(m1,,mr)j=1r1M3(xmj)Δ3(xmr)dx.\displaystyle=r\int_{1}^{T}\left(\sum_{m_{1},\cdots,m_{r}\leqslant 2T}-\sum_{m_{1},\cdots,m_{r}\leqslant x}\right)f_{r,3}(m_{1},\cdots,m_{r})\prod_{j=1}^{r-1}M_{3}\left(\frac{x}{m_{j}}\right)\Delta_{3}\left(\frac{x}{m_{r}}\right)dx.

We are going to estimate I2I_{2}. Since m1,,mr1m_{1},\cdots,m_{r-1} are symmetric in I2I_{2}, we have

I2I21+I22,I_{2}\ll I_{21}+I_{22},

where

I21\displaystyle I_{21} =1Tm1,,mr2Tm1>x|fr,3(m1,,mr)|j=1r1M3(xmj)|Δ3(xmr)|dx,\displaystyle=\int_{1}^{T}\sum_{\begin{subarray}{c}m_{1},\cdots,m_{r}\leqslant 2T\\ m_{1}>x\end{subarray}}|f_{r,3}(m_{1},\cdots,m_{r})|\prod_{j=1}^{r-1}M_{3}\left(\frac{x}{m_{j}}\right)\left|\Delta_{3}\left(\frac{x}{m_{r}}\right)\right|dx,
I22\displaystyle I_{22} =1Tm1,,mr2Tmr>x|fr,3(m1,,mr)|j=1r1M3(xmj)|Δ3(xmr)|dx.\displaystyle=\int_{1}^{T}\sum_{\begin{subarray}{c}m_{1},\cdots,m_{r}\leqslant 2T\\ m_{r}>x\end{subarray}}|f_{r,3}(m_{1},\cdots,m_{r})|\prod_{j=1}^{r-1}M_{3}\left(\frac{x}{m_{j}}\right)\left|\Delta_{3}\left(\frac{x}{m_{r}}\right)\right|dx.

Changing the order of integration and summation, using (3.2) and Δ3(x/mr)(x/mr)α3+ε\Delta_{3}(x/m_{r})\ll(x/m_{r})^{\alpha_{3}+\varepsilon} we have

I22\displaystyle I_{22} m1,,mr2Tmr>x|fr,3(m1,,mr)|m1mr1mrα31Txr1+α3+ε𝑑x\displaystyle\ll\sum_{\begin{subarray}{c}m_{1},\cdots,m_{r}\leqslant 2T\\ m_{r}>x\end{subarray}}\frac{|f_{r,3}(m_{1},\cdots,m_{r})|}{m_{1}\cdots m_{r-1}{m_{r}}^{\alpha_{3}}}\int_{1}^{T}x^{r-1+\alpha_{3}+\varepsilon}dx
Tr+α3+εm1,,mr2Tmr>x|fr,3(m1,,mr)|m1mr1mrε1mrα3ε\displaystyle\ll T^{r+\alpha_{3}+\varepsilon}\sum_{\begin{subarray}{c}m_{1},\cdots,m_{r}\leqslant 2T\\ m_{r}>x\end{subarray}}\frac{|f_{r,3}(m_{1},\cdots,m_{r})|}{m_{1}\cdots m_{r-1}{m_{r}}^{\varepsilon}}\cdot\frac{1}{{m_{r}}^{\alpha_{3}-\varepsilon}}
Tr+εm1,,mr=1|fr,3(m1,,mr)|m1mr1mrε\displaystyle\ll T^{r+\varepsilon}\sum_{m_{1},\cdots,m_{r}=1}^{\infty}\frac{|f_{r,3}(m_{1},\cdots,m_{r})|}{m_{1}\cdots m_{r-1}{m_{r}}^{\varepsilon}}
Tr+ε,\displaystyle\ll T^{r+\varepsilon},

and the convergence of the latter series is obtained by Lemma 2.3.

For I21I_{21}, similar to I22I_{22} and using Lemma 2.3 we have

I21\displaystyle I_{21} m1,,mr2Tm1>x|fr,3(m1,,mr)|m1mr1mrα31Txr1+α3+ε𝑑x\displaystyle\ll\sum_{\begin{subarray}{c}m_{1},\cdots,m_{r}\leqslant 2T\\ m_{1}>x\end{subarray}}\frac{|f_{r,3}(m_{1},\cdots,m_{r})|}{m_{1}\cdots m_{r-1}{m_{r}}^{\alpha_{3}}}\int_{1}^{T}x^{r-1+\alpha_{3}+\varepsilon}dx
Tr+α3+εm1,,mr2Tm1>x|fr,3(m1,,mr)|m11α3m2mr1mrα31m1α3ε\displaystyle\ll T^{r+\alpha_{3}+\varepsilon}\sum_{\begin{subarray}{c}m_{1},\cdots,m_{r}\leqslant 2T\\ m_{1}>x\end{subarray}}\frac{|f_{r,3}(m_{1},\cdots,m_{r})|}{{m_{1}}^{1-\alpha_{3}}m_{2}\cdots m_{r-1}{m_{r}}^{\alpha_{3}}}\cdot\frac{1}{{m_{1}}^{\alpha_{3}-\varepsilon}}
Tr+εm1,,mr=1|fr,3(m1,,mr)|m11α3m2mr1mrα3\displaystyle\ll T^{r+\varepsilon}\sum_{m_{1},\cdots,m_{r}=1}^{\infty}\frac{|f_{r,3}(m_{1},\cdots,m_{r})|}{{m_{1}}^{1-\alpha_{3}}m_{2}\cdots m_{r-1}{m_{r}}^{\alpha_{3}}}
Tr+ε.\displaystyle\ll T^{r+\varepsilon}.

Then we turns to estimate I1I_{1}. By (3.7) we have

j=1r1M3(xmj)xr1+εm1mr1,\prod_{j=1}^{r-1}M_{3}\left(\frac{x}{m_{j}}\right)\ll\frac{x^{r-1+\varepsilon}}{m_{1}\cdots m_{r-1}},

and its derivative satisfies

(j=1r1M3(xmj))xr2+εm1mr1.\left(\prod_{j=1}^{r-1}M_{3}\left(\frac{x}{m_{j}}\right)\right)^{\prime}\ll\frac{x^{r-2+\varepsilon}}{m_{1}\cdots m_{r-1}}.

For a real number u2u\geqslant 2, define

S(u)=1uΔ3(x)𝑑x,S(u)=\int_{1}^{u}\Delta_{3}(x)dx,

and we denote j=1r1M3(x/mj)\prod_{j=1}^{r-1}M_{3}\left(x/m_{j}\right) by (x;m1,,mr1)\mathcal{M}(x;m_{1},\cdots,m_{r-1}), then changing the order of integration and summation we have

I1=\displaystyle I_{1}= rm1,,mr2Tfr,3(m1,,mr)1T(x;m1,,mr1)Δ3(xmr)𝑑x\displaystyle r\sum_{m_{1},\cdots,m_{r}\leqslant 2T}f_{r,3}(m_{1},\cdots,m_{r})\int_{1}^{T}\mathcal{M}(x;m_{1},\cdots,m_{r-1})\Delta_{3}\left(\frac{x}{m_{r}}\right)dx
=\displaystyle= rm1,,mr2Tfr,3(m1,,mr)\displaystyle r\sum_{m_{1},\cdots,m_{r}\leqslant 2T}f_{r,3}(m_{1},\cdots,m_{r})
×(S(T)(T;m1,,mr1)1TS(u)(u;m1,,mr1)𝑑u)\displaystyle\times\left(S(T)\mathcal{M}(T;m_{1},\cdots,m_{r-1})-\int_{1}^{T}S(u)\mathcal{M}^{\prime}(u;m_{1},\cdots,m_{r-1})du\right)
\displaystyle\ll m1,,mr2T|fr,3(m1,,mr)|(Tr+1/6+εm1mr1+1T|S(u)||(u;m1,,mr1)|𝑑u)\displaystyle\sum_{m_{1},\cdots,m_{r}\leqslant 2T}|f_{r,3}(m_{1},\cdots,m_{r})|\left(\frac{T^{r+1/6+\varepsilon}}{m_{1}\cdots m_{r-1}}+\int_{1}^{T}|S(u)||\mathcal{M}^{\prime}(u;m_{1},\cdots,m_{r-1})|du\right)
\displaystyle\ll m1,,mr2T|fr,3(m1,,mr)|(Tr+1/6+εm1mr1+T7/6+εm1mr11Tur2+ε𝑑u)\displaystyle\sum_{m_{1},\cdots,m_{r}\leqslant 2T}|f_{r,3}(m_{1},\cdots,m_{r})|\left(\frac{T^{r+1/6+\varepsilon}}{m_{1}\cdots m_{r-1}}+\frac{T^{7/6+\varepsilon}}{m_{1}\cdots m_{r-1}}\int_{1}^{T}u^{r-2+\varepsilon}du\right)
\displaystyle\ll Tr+1/6+εm1,,mr2T|fr,3(m1,,mr)|m1mr1mrεmrε\displaystyle T^{r+1/6+\varepsilon}\sum_{m_{1},\cdots,m_{r}\leqslant 2T}\frac{|f_{r,3}(m_{1},\cdots,m_{r})|}{m_{1}\cdots m_{r-1}}\cdot\frac{{m_{r}}^{\varepsilon}}{{m_{r}}^{\varepsilon}}
\displaystyle\ll Tr+1/6+εm1,,mr=1|fr,3(m1,,mr)|m1mr1mrε\displaystyle T^{r+1/6+\varepsilon}\sum_{m_{1},\cdots,m_{r}=1}^{\infty}\frac{|f_{r,3}(m_{1},\cdots,m_{r})|}{m_{1}\cdots m_{r-1}{m_{r}}^{\varepsilon}}
\displaystyle\ll Tr+1/6+ε,\displaystyle T^{r+1/6+\varepsilon},

where we use integration by parts, Lemma 2.3 and Lemma 2.8. Hence we complete the proof.

7.1. Proof of the Corollary

Suppose TεHTT^{\varepsilon}\ll H\ll T is a parameter, by Theorem 1.2 we get

TT+HΔr,32(x)𝑑x\displaystyle\int_{T}^{T+H}{\Delta_{r,3}}^{2}(x)dx (7.1)
=\displaystyle= r26π2((T+H)2r1/3L4r4(log(T+H))T2r1/3L4r4(logT))+O(T2r7/18+ε)\displaystyle\frac{r^{2}}{6\pi^{2}}\left((T+H)^{2r-1/3}L_{4r-4}(\log(T+H))-T^{2r-1/3}L_{4r-4}(\log T)\right)+O(T^{2r-7/18+\varepsilon})
\displaystyle\asymp HT2r4/3\displaystyle HT^{2r-4/3}

for HT17/18+εH\gg T^{17/18+\varepsilon}. Trivally we have

TT+HΔr,32(x)𝑑x|Δr,3(T)|TT+H|Δr,3(x)|𝑑x.\int_{T}^{T+H}{\Delta_{r,3}}^{2}(x)dx\ll|\Delta_{r,3}(T)|\int_{T}^{T+H}|\Delta_{r,3}(x)|dx.

By (1.3) and theorem 1.1 we have Δr,3(T)Tr1+43/96+ε\Delta_{r,3}(T)\ll T^{r-1+43/96+\varepsilon}. Thus for HT17/18+εH\gg T^{17/18+\varepsilon},

TT+H|Δr,3(x)|𝑑xHTr25/32.\int_{T}^{T+H}|\Delta_{r,3}(x)|dx\gg HT^{r-25/32}. (7.2)

Taking HT91/96+εH\gg T^{91/96+\varepsilon}, combining Theorem 1.4 we obtain

TT+H|Δr,3(x)|𝑑xTT+HΔr,3(x)𝑑x.\int_{T}^{T+H}|\Delta_{r,3}(x)|dx\gg\int_{T}^{T+H}\Delta_{r,3}(x)dx.

Hence Δr,3(x)\Delta_{r,3}(x) has at least one sign change in the interval [T,T+H][T,T+H] for T91/96+εHTT^{91/96+\varepsilon}\ll H\ll T, and has at least T5/96εT^{5/96-\varepsilon} sign changes in [T,2T][T,2T].

Acknowledgement

The authors would like to appreciate the referee for his/her patience in refereeing this paper. This work is supported by Beijing Natural Science Foundation (Grant No.1242003), and the National Natural Science Foundation of China (Grant No.11971476).

References

  • [1] Xiaodong Cao, Yoshio Tanigawa, and Wenguang Zhai. On hybrid moments of Δ2(x)\Delta_{2}(x) and Δ3(x)\Delta_{3}(x). Ramanujan J., 58(2):597–631, 2022.
  • [2] Zhen Guo. On mean square of the error term of a multivariable divisor function. AIMS Mathematics, 9(10):29197–29219, 2024.
  • [3] G. H. Hardy. On Dirichlet’s Divisor Problem. Proc. London Math. Soc. (2), 15:1–25, 1916.
  • [4] G. H. Hardy and J. E. Littlewood. The Approximate Functional Equation in the Theory of the Zeta-Function, with Applications to the Divisor-Problems of Dirichlet and Piltz. Proc. London Math. Soc. (2), 21:39–74, 1923.
  • [5] D. R. Heath-Brown. The distribution and moments of the error term in the Dirichlet divisor problem. Acta Arith., 60(4):389–415, 1992.
  • [6] Aleksandar Ivić. The Riemann zeta-function. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1985. The theory of the Riemann zeta-function with applications.
  • [7] Anatolij A. Karatsuba. Basic analytic number theory. Springer-Verlag, Berlin, russian edition, 1993.
  • [8] Ekkehard Krätzel. Lattice points, volume 33 of Mathematics and its Applications (East European Series). Kluwer Academic Publishers Group, Dordrecht, 1988.
  • [9] E. C. Titchmarsh. The Theory of the Riemann Zeta-Function. Oxford, at the Clarendon Press,, 1951.
  • [10] Kwang-Chang Tong. On divisor problems. II, III. Acta Math. Sinica, 6:139–152, 515–541, 1956.
  • [11] László Tóth and Wenguang Zhai. On multivariable averages of divisor functions. J. Number Theory, 192:251–269, 2018.
  • [12] Kai-Man Tsang. Recent progress on the Dirichlet divisor problem and the mean square of the Riemann zeta-function. Sci. China Math., 53(9):2561–2572, 2010.
  • [13] Georges Voronoi. Sur un problème du calcul des fonctions asymptotiques. J. Reine Angew. Math., 126:241–282, 1903.