This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

On many-to-one mappings over finite fields

Yanbin Zheng [email protected] Yanjin Ding Meiying Zhang Pingzhi Yuan [email protected] Qiang Wang [email protected] School of Mathematical Sciences, Qufu Normal University, Qufu 273165, China School of of Mathematical Science, South China Normal University, Guangzhou 510631, China School of Mathematics and Statistics, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
In Memory of Professor Dingyi Pei (1941–2023)
Abstract

The definition of many-to-one mapping, or mm-to-11 mapping for short, between two finite sets is introduced in this paper, which unifies and generalizes the definitions of 22-to-11 mappings and nn-to-11 mappings. A generalized local criterion is given, which is an abstract criterion for a mapping to be mm-to-11. By employing the generalized local criterion, three constructions of mm-to-11 mapping are proposed, which unify and generalize all the previous constructions of 22-to-11 mappings and nn-to-11 mappings. Then the mm-to-11 property of polynomials f(x)=xrh(xs)f(x)=x^{r}h(x^{s}) on 𝔽q\mathbb{F}_{q}^{*} is studied by using these three constructions. A series of explicit conditions for ff to be an mm-to-11 mapping on 𝔽q\mathbb{F}_{q}^{*} are found through the detailed discussion of the parameters mm, ss, qq and the polynomial hh. These results extend many conclusions in the literature.

keywords:
Permutations , Two-to-one mappings , Many-to-one mappings
MSC:
[2010] 11T06 , 11T71
journal: XXXt1t1footnotetext: This work was partially supported by the Natural Science Foundation of Shandong (No. ZR2021MA061), the National Natural Science Foundation of China (No. 62072222), and NSERC of Canada (RGPIN-2023-04673).

1 Introdution

One-to-one mappings from a finite field 𝔽q\mathbb{F}_{q} to itself (i.e., permutations of 𝔽q\mathbb{F}_{q}) have been extensively studied; see for example [28, 34, 18, 41, 42, 48] and the references therein. We now briefly review the progress of many-to-one mapping from 𝔽q\mathbb{F}_{q} to itself.

1.1 The progress of many-to-one mapping

Assume AA and BB are finite sets and ff is a mapping from AA to BB. For any bBb\in B, let #f1(b)\#f^{-1}(b) denote the number of preimages of bb in AA under ff.

Refer to caption

22-to-11 in [30]              nn-to-11 in [15]              nn-to-11 in [35]              our many-to-one

Figure 1: Schematic diagrams of many-to-one mappings

In 2019, Mesnager and Qu [30] introduced the definition of 22-to-11 mappings: ff is called 22-to-11 if #f1(b){0,2}\#f^{-1}(b)\in\{0,2\} for each bBb\in B, except for at most a single bBb^{\prime}\in B for which #f1(b)=1\#f^{-1}(b^{\prime})=1; see the first column of Fig. 1. They provided a systematic study of 22-to-11 mappings over finite fields. They presented several constructions of 22-to-11 mappings from an AGW-like criterion (see Fig. 8), from permutation polynomials, from linear translators, and from APN functions. They also listed several classical types of known 22-to-11 polynomial mappings, including linearized polynomials [7], Dickson polynomials, Muller-Cohen-Matthews polynomials, etc. Moreover, all 22-to-11 polynomials of degree 4\leq 4 over any finite field were determined in [30]. In 2021, all 22-to-11 polynomials of degree 5 over 𝔽2n\mathbb{F}_{2^{n}} were completely determined by using the Hasse-Weil bound, and some 22-to-11 mappings with few terms, mainly trinomials and quadrinomials, over 𝔽2n\mathbb{F}_{2^{n}} were also given in [26]. In the same year, a new AGW-like criterion (see Fig. 8) for 22-to-11 mappings was given in [44]. Using this criterion, some new constructions of 22-to-11 mappings were proposed and eight classes of 22-to-11 mappings of the form (x2k+x+δ)s+cx(x^{2^{k}}+x+\delta)^{s}+cx over 𝔽2n\mathbb{F}_{2^{n}} were obtained. In 2023, some classes of 22-to-11 mappings of the form xr+xs+xt+x3+x2+xx^{r}+x^{s}+x^{t}+x^{3}+x^{2}+x, (x2k+x+δ)s1+(x2k+x+δ)s2+cx(x^{2^{k}}+x+\delta)^{s_{1}}+(x^{2^{k}}+x+\delta)^{s_{2}}+cx, or h(x)(x2e+x)h(x)\circ(x^{2^{e}}+x) over 𝔽2n\mathbb{F}_{2^{n}} were proposed in [33], where (e,n)=1(e,n)=1 and hh is 11-to-11 on the image set of x2e+xx^{2^{e}}+x. Very recently, Kölsch and Kyureghyan [22] observed that on 𝔽2n\mathbb{F}_{2^{n}} the classification of 22-to-11 binomials is equivalent to the classification of o-monomials, which is a well-studied and elusive problem in finite geometry. They also provided some connections between 22-to-11 maps and hyperovals in non-desarguesian planes.

The 22-to-11 mappings over 𝔽q\mathbb{F}_{q} play an important role in cryptography and coding theory. Such mappings are used in [30] to construct bent functions, semi-bent functions, planar functions, and permutation polynomials. Moreover, they are also used to construct linear codes [9, 10, 25, 31, 32], involutions over 𝔽2n\mathbb{F}_{2^{n}} [44, 33], and (almost) perfect cc-nonlinear functions [17, 43].

In 2021, the concept of 22-to-11 mappings was generalized in [15] to nn-to-11 mappings when #A0,1(modn)\#A\equiv 0,1\pmod{n}. Specifically, ff is called a nn-to-11 mapping if #f1(b){0,n}\#f^{-1}(b)\in\{0,n\} for each bBb\in B, except for at most a single bBb^{\prime}\in B for which #f1(b)=1\#f^{-1}(b^{\prime})=1; see the second column of Fig. 1.

Later, a more general definition of nn-to-11 mappings was introduced in [6] (on finite field AA) and independently in [35] (on finite set AA), which allows #Amodn{0,1,,n1}\#A\bmod{n}\in\{0,1,\ldots,n-1\}. Specifically, ff is called a nn-to-11 mapping if #f1(b){0,n}\#f^{-1}(b)\in\{0,n\} for each bBb\in B, except for at most a single bBb^{\prime}\in B for which #f1(b)=r\#f^{-1}(b^{\prime})=r, where r=#Amodnr=\#A\bmod n; see the third column of Fig. 1. In particular, ff maps the remaining rr elements in AA to the same image bb^{\prime} if r0r\neq 0. Under this definition, a new method to obtain nn-to-11 mappings based on Galois groups of rational functions was proposed, and two explicit classes of 22-to-11 and 33-to-11 rational functions over finite fields were given in [6]. The main result of [6] was refined and generalized by Ding and Zieve [13]. Under this definition, all 33-to-11 polynomials of degree 4\leq 4 over finite fields were determined in [35]. Moreover, an AGW-like criterion (see Fig. 8) for characterizing nn-to-11 mappings was presented in [35], and this criterion was applied to polynomials of the forms h(ψ(x))ϕ(x)+g(ψ(x))h(\psi(x))\phi(x)+g(\psi(x)), L1(x)+L2(x)g(L3(x))L_{1}(x)+L_{2}(x)g(L_{3}(x)), xrh(xs)x^{r}h(x^{s}), and g(xqkx+δ)+cxg(x^{q^{k}}-x+\delta)+cx over finite fields. In particular, some explicit nn-to-11 mappings were provided.

The definition of nn-to-11 in [6, 35] requires that ff maps the remaining rr elements in AA to the same image bb^{\prime} if r0r\neq 0. In this paper, we introduce a more general definition which allows the number of images of the remaining rr elements in AA to be any integer in {1,2,,r}\{1,2,\ldots,r\} if r0r\neq 0; see the fourth column of Fig. 1.

Definition 1.1.

Let AA be a finite set and mm\in\mathbb{Z} with 1m#A1\leq m\leq\#A. Write #A=km+r\#A=km+r, where kk, rr\in\mathbb{Z} with 0r<m0\leq r<m. Let ff be a mapping from AA to another finite set BB. Then ff is called many-to-one, or mm-to-11 for short, on AA if there are kk distinct elements in BB such that each element has exactly mm preimages in AA under ff. The remaining rr elements in AA are called the exceptional elements of ff on AA, and the set of these rr exceptional elements is called the exceptional set of ff on AA and denoted by Ef(A)E_{f}(A). In particular, Ef(A)=E_{f}(A)=\varnothing if and only if r=0r=0, i.e., m#Am\mid\#A.

In the case r=0r=0 or r0r\neq 0 and #f(Ef(A))=1\#f(E_{f}(A))=1, Definition 1.1 is the same as the definitions in [30, 15, 6, 35]. In other cases, Definition 1.1 is a generalization of the definitions mentioned above. Throughout this paper, we use Definition 1.1 in all of our results. Moreover, it should be noted that ff is 11-to-11 on AA means that ff is 11-to-11 from AA to f(A)f(A), where f(A)f(A) may not equal AA. If ff is mm-to-11 on AA, then any bf(A)b\in f(A) has at most mm preimages in AA under ff.

Definition 1.2.

A polynomial f(x)𝔽q[x]f(x)\in\mathbb{F}_{q}[x] is called many-to-one, or mm-to-11 for short, on 𝔽q\mathbb{F}_{q} if the mapping f:cf(c)f\colon c\mapsto f(c) from 𝔽q\mathbb{F}_{q} to itself is mm-to-11 on 𝔽q\mathbb{F}_{q}.

Example 1.1.

Let f(x)=x3+xf(x)=x^{3}+x. Then ff maps 0,1,2,3,40,1,2,3,4 to 0,2,0,0,30,2,0,0,3 in 𝔽5\mathbb{F}_{5}, respectively. Thus ff is 33-to-11 on 𝔽5\mathbb{F}_{5} and the exceptional set Ef(𝔽5)={1,4}E_{f}(\mathbb{F}_{5})=\{1,4\}.

Example 1.2.

The monomial xnx^{n} with nn\in\mathbb{N} is (n,q1)(n,q-1)-to-11 on 𝔽q\mathbb{F}_{q}^{*} and Exn(𝔽q)=E_{x^{n}}(\mathbb{F}_{q}^{*})=\varnothing.

The next example is a generalization of Example 1.2.

Example 1.3.

Let ff be an endomorphism of a finite group GG and ker(f)={xG:f(x)=e}\ker(f)=\{x\in G:f(x)=e\}, where ee is the identity of GG. It is easy to verify that {xG:f(x)=f(a)}=aker(f)\{x\in G:f(x)=f(a)\}=a\ker(f) for any aGa\in G. Hence ff is mm-to-11 on GG and Ef(G)=E_{f}(G)=\varnothing, where m=#ker(f)m=\#\ker(f).

1.2 The constructions of many-to-one mappings

In this subsection, we will take an in-depth look at the constructions based on commutative diagrams of many-to-one mappings.

Inspired by the work of Marcos [29] and Zieve [50], the following construction of 11-to-11 mappings was presented by Akbary, Ghioca, and Wang [2] in 2011, which is often referred to as the AGW criterion.

Theorem 1.1 (The AGW criterion).

Let AA, SS, and S¯\bar{S} be finite sets with #S=#S¯\#S=\#\bar{S}, and let f:AAf:A\rightarrow A, f¯:SS¯\bar{f}:S\rightarrow\bar{S}, λ:AS\lambda:A\rightarrow S, and λ¯:AS¯\bar{\lambda}:A\rightarrow\bar{S} be mappings such that λ¯f=f¯λ\bar{\lambda}\circ f=\bar{f}\circ\lambda. If both λ\lambda and λ¯\bar{\lambda} are surjective, then the following statements are equivalent:

  1. \edefitn(1)

    ff is 11-to-11 from AA to AA (permutes AA).

  2. \edefitn(2)

    f¯\bar{f} is 11-to-11 from SS to S¯\bar{S} and ff is 11-to-11 on λ1(s)\lambda^{-1}(s) for each sSs\in S.

The AGW criterion can be illustrated by Fig. 2. It gives us a recipe in which under suitable conditions one can construct permutations of AA from 11-to-11 mappings between two smaller sets SS and S¯\bar{S}.

A\textstyle{A\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f1-to-1\scriptstyle{f~{}~{}\text{$1$-to-$1$}}f|λ1(s)1-to-1\scriptstyle{f|_{\lambda^{-1}(s)}~{}~{}\text{$1$-to-$1$}}λ\scriptstyle{\lambda}A\textstyle{A\ignorespaces\ignorespaces\ignorespaces\ignorespaces}λ¯\scriptstyle{\bar{\lambda}}S\textstyle{S\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f¯1-to-1\scriptstyle{\bar{f}~{}~{}\text{$1$-to-$1$}}S¯\textstyle{\bar{S}}

Figure 2: Commutative diagram of the AGW criterion

In recent years, the AGW criterion had been generalized to construct 22-to-11 and nn-to-11 mappings in [30, 15, 35, 44]. The main ideas can be illustrated by Figs. 8, 8, 8 and 8. All these constructions have the same assumption: AA, A¯\bar{A}, SS, and S¯\bar{S} are finite sets, and f:AAf:A\rightarrow A or A¯\bar{A}, f¯:SS¯\bar{f}:S\rightarrow\bar{S}, λ:AS\lambda:A\rightarrow S, and λ¯:AS¯\bar{\lambda}:A\rightarrow\bar{S} are mappings such that λ¯f=f¯λ\bar{\lambda}\circ f=\bar{f}\circ\lambda. We now review these constructions.

A\textstyle{A\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f2-to-1\scriptstyle{f~{}~{}\text{$2$-to-$1$}}f|λ1(s)2-to-1\scriptstyle{f|_{\lambda^{-1}(s)}~{}~{}\text{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}$2$-to-$1$}}λ\scriptstyle{\lambda}A\textstyle{A\ignorespaces\ignorespaces\ignorespaces\ignorespaces}λ¯\scriptstyle{\bar{\lambda}}S\textstyle{S\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f¯1-to-1\scriptstyle{\bar{f}~{}~{}\text{$1$-to-$1$}}S¯\textstyle{\bar{S}}
Figure 3: 22-to-11 in [30]
A\textstyle{A\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}fn-to-1\scriptstyle{f~{}~{}\text{$n$-to-$1$}}f|λ1(s)n-to-1\scriptstyle{f|_{\lambda^{-1}(s)}~{}~{}\text{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}$n$-to-$1$}}λ\scriptstyle{\lambda}A\textstyle{A\ignorespaces\ignorespaces\ignorespaces\ignorespaces}λ¯\scriptstyle{\bar{\lambda}}S\textstyle{S\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f¯1-to-1\scriptstyle{\bar{f}~{}~{}\text{$1$-to-$1$}}S¯\textstyle{\bar{S}}
Figure 4: nn-to-11 in [15]
A\textstyle{A\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}fm-to-1\scriptstyle{f~{}~{}\text{$m$-to-$1$}}f|λ1(s)m-to-1\scriptstyle{f|_{\lambda^{-1}(s)}~{}~{}\text{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}$m$-to-$1$}}λ\scriptstyle{\lambda}A¯\textstyle{\bar{A}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}λ¯\scriptstyle{\bar{\lambda}}S\textstyle{S\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f¯1-to-1\scriptstyle{\bar{f}~{}~{}\text{$1$-to-$1$}}S¯\textstyle{\bar{S}}
Figure 5: Our Construction 1
A\textstyle{A\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f2-to-1\scriptstyle{f~{}~{}\text{$2$-to-$1$}}f|λ1(s)1-to-1\scriptstyle{f|_{\lambda^{-1}(s)}~{}~{}\text{$1$-to-$1$}}λ\scriptstyle{\lambda}A¯\textstyle{\bar{A}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}λ¯\scriptstyle{\bar{\lambda}}S\textstyle{S\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f¯2-to-1\scriptstyle{\bar{f}~{}~{}{\text{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}$2$-to-$1$}}}S¯\textstyle{\bar{S}}
Figure 6: 22-to-11 in [44]
A\textstyle{A\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}fn-to-1\scriptstyle{f~{}~{}\text{$n$-to-$1$}}f|λ1(s)1-to-1\scriptstyle{f|_{\lambda^{-1}(s)}~{}~{}\text{$1$-to-$1$}}λ\scriptstyle{\lambda}A\textstyle{A\ignorespaces\ignorespaces\ignorespaces\ignorespaces}λ¯\scriptstyle{\bar{\lambda}}S\textstyle{S\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f¯n-to-1\scriptstyle{\bar{f}~{}~{}\text{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}$n$-to-$1$}}S¯\textstyle{\bar{S}}
Figure 7: nn-to-11 in [35]
A\textstyle{A\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}fm-to-1\scriptstyle{f~{}~{}\text{$m$-to-$1$}}f|λ1(s)m1-to-1\scriptstyle{f|_{\lambda^{-1}(s)}~{}~{}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}m_{1}\text{-to-}1}}λ\scriptstyle{\lambda}A¯\textstyle{\bar{A}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}λ¯\scriptstyle{\bar{\lambda}}S\textstyle{S\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f¯m/m1-to-1\scriptstyle{\bar{f}~{}~{}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}m/m_{1}\text{-to-}1}}S¯\textstyle{\bar{S}}
Figure 8: Our Construction 2
  • [30, Proposition 6] states that, if #S=#S¯\#S=\#\bar{S}, f¯\bar{f} is 11-to-11 from SS to S¯\bar{S}, f|λ1(s)f|_{\lambda^{-1}(s)} is 22-to-11 for any sSs\in S, and there is at most one sSs\in S such that #λ1(s)\#\lambda^{-1}(s) is odd, then ff is 22-to-11 on AA.

  • [15, Proposition 1] states that, if #A0,1(modn)\#A\equiv 0,1\pmod{n}, #S=#S¯\#S=\#\bar{S}, f¯\bar{f} is 11-to-11 from SS to S¯\bar{S}, f|λ1(s)f|_{\lambda^{-1}(s)} is nn-to-11 for any sSs\in S, and there is at most one sSs\in S such that #λ1(s)1(modm)\#\lambda^{-1}(s)\equiv 1\pmod{m}, then ff is nn-to-11 on AA.

  • [44, Proposition 4.2] states that, if ff, f¯\bar{f}, λ\lambda, λ¯\bar{\lambda} are surjective, ff is 11-to-11 from λ1(s)\lambda^{-1}(s) to λ¯1(f¯(s))\bar{\lambda}^{-1}(\bar{f}(s)) for any sSs\in S, #S\#S is even, and f¯\bar{f} is 22-to-11 from SS to S¯\bar{S}, then ff is 22-to-11 on AA.

  • [35, Theorem 4.3] assumes that λ\lambda and λ¯\bar{\lambda} are surjective, #S=#S¯\#S=\#\bar{S}, #A#S(modn)\#A\equiv\#S\pmod{n}, ff is 11-to-11 from λ1(s)\lambda^{-1}(s) to λ¯1(f¯(s))\bar{\lambda}^{-1}(\bar{f}(s)) for any sSs\in S. When n#Sn\mid\#S, ff is nn-to-11 on AA if and only if f¯\bar{f} is nn-to-11 on SS. When n#Sn\nmid\#S, [35, Theorem 4.3] does not give a necessary and sufficient condition for ff to be nn-to-11 on AA.

Very recently, the local criterion for a mapping to be a permutation of AA was provided by Yuan [45], which is equivalent to the AGW criterion.

Theorem 1.2 (Local criterion [45]).

Let AA and SS be finite sets and let f:AAf:A\rightarrow A be a map. Then ff is a bijection if and only if for any surjection ψ:AS\psi:A\rightarrow S, φ=ψf\varphi=\psi\circ f is a surjection and ff is injective on φ1(s)\varphi^{-1}(s) for each sSs\in S.

A\textstyle{A\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}φ\scriptstyle{\varphi}f\scriptstyle{f}A\textstyle{A\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ψ\scriptstyle{\psi}S\textstyle{S}

In this paper, we present a generalized local criterion for a mapping to be mm-to-11 on AA; see Lemma 3.1. By employing the generalized local criterion, three constructions of mm-to-11 mapping are proposed. The first two structures an be illustrated by Figs. 8 and 8, and they unify and generalize all the constructions of 22-to-11 and nn-to-11 mappings in [30, 15, 35, 44]. We next give a detailed analysis.

  • The restrictions #S=#S¯\#S=\#\bar{S} and #A0,1(modn)\#A\equiv 0,1\pmod{n} in [30, 15] are redundant. A necessary and sufficient condition for ff to be mm-to-11 on AA is given in our Construction 1 without the restrictions above. Specifically, if f¯\bar{f} is 11-to-11 on SS, then for 1m#A1\leq m\leq\#A, ff is mm-to-11 on AA if and only if f|λ1(s)f|_{\lambda^{-1}(s)} is mm-to-11 for any #λ1(s)m\#\lambda^{-1}(s)\geq m and an identity about exceptional sets holds. Construction 1 generalizes [30, Proposition 6] and [15, Proposition 1]; each of them only gives the sufficient condition.

  • The following conditions in [35, 44] are redundant: ff, f¯\bar{f}, λ¯\bar{\lambda} are surjective, #S=#S¯\#S=\#\bar{S}, and #A#S(modn)\#A\equiv\#S\pmod{n}. The condition ff is 11-to-11 from λ1(s)\lambda^{-1}(s) to λ¯1(f¯(s))\bar{\lambda}^{-1}(\bar{f}(s)) in [35, 44] can be replaced by the weaker assumption #λ1(s)=m1#λ¯1(f¯(s))\#\lambda^{-1}(s)=m_{1}\,\#\bar{\lambda}^{-1}(\bar{f}(s)) and ff is m1m_{1}-to-11 on λ1(s)\lambda^{-1}(s) for some m1m_{1}\in\mathbb{N}. Under the weaker assumption, our Construction 2 gives a necessary and sufficient condition for ff to be mm-to-11 on AA. Specifically, if λ\lambda is surjective and the weaker assumption holds, then for 1mm1#S1\leq m\leq m_{1}\,\#S, ff is mm-to-11 on AA if and only if m1mm_{1}\mid m, f¯\bar{f} is (m/m1)(m/m_{1})-to-11 on SS, and an identity about exceptional sets holds. Construction 2 generalizes [44, Proposition 4.2] and [35, Theorem 4.3].

1.3 The organization of the paper

Section 2 introduces some properties of mm-to-11 mappings on finite sets. Section 3 presents a generalized local criterion, which characterizes an abstract necessary and sufficient condition of mm-to-11 mapping. Then three constructions of mm-to-11 mapping are proposed by employing the generalized local criterion. The first construction reduces the problem whether ff is an mm-to-11 mapping on a finite set AA to a relatively simple problem whether ff is an mm-to-11 mapping on some subsets of AA. The second one converts the problem whether ff is an mm-to-11 mapping on AA into another problem whether an associated mapping f¯\bar{f} is m2m_{2}-to-11 on a finite set SS, where m2mm_{2}\mid m. These two constructions unify and generalize all the previous constructions of 22-to-11 mappings and nn-to-11 mappings in the literature. The third construction reduces the problem whether fuf\ast u is an mm-to-11 mapping on a finite group AA to that whether ff is an mm-to-11 mapping on AA. In Section 4, by using the second construction, the problem whether f(x):-xrh(xs)f(x)\coloneq x^{r}h(x^{s}) is mm-to-11 on the multiplicative group 𝔽q\mathbb{F}_{q}^{*} is converted into another problem whether g(x):-xr1h(x)s1g(x)\coloneq x^{r_{1}}h(x)^{s_{1}} is m2m_{2}-to-11 on the multiplicative subgroup UU_{\ell}, where =(q1)/s\ell=(q-1)/s. Then, the m2m_{2}-to-11 property of gg on UU_{\ell} is discussed from five aspects: (1) m=2,3m=2,3; (2) =2,3\ell=2,3; (3) gg behaves like a monomial on UU_{\ell}; (4) gg behaves like a rational function on UU_{\ell}; (5) gg is m2m_{2}-to-11 on UU_{\ell} is converted into that an associated mapping g¯\bar{g} is m3m_{3}-to-11 on a finite set λ(U)\lambda(U_{\ell}) by using the second construction again.

1.4 Notations

The letter \mathbb{Z} will denote the set of all integers, \mathbb{N} the set of all positive integers, #S\#S the cardinality of a finite set SS, and \varnothing the empty set containing no elements. The greatest common divisor of two integers aa and bb is written as (a,b)(a,b). Denote amodma\bmod m as the smallest non-negative remainder obtained when aa is divided by mm. That is, modm\mathrm{mod}~{}m is a function from the set of integers to the set of {0,1,2,,m1}\{0,1,2,\ldots,m-1\}. For a prime power qq, let 𝔽q\mathbb{F}_{q} denote the finite field with qq elements, 𝔽q=𝔽q{0}\mathbb{F}_{q}^{*}=\mathbb{F}_{q}\setminus\{0\}, and 𝔽q[x]\mathbb{F}_{q}[x] the ring of polynomials over 𝔽q\mathbb{F}_{q}. Denote UU_{\ell} as the cyclic group of all \ell-th roots of unity over 𝔽q\mathbb{F}_{q}, i.e., U={α𝔽q:α=1}U_{\ell}=\{\alpha\in\mathbb{F}_{q}^{*}:\alpha^{\ell}=1\}. The trace function from 𝔽qn\mathbb{F}_{q^{n}} to 𝔽q\mathbb{F}_{q} is defined by Trqn/q(x)=i=0n1xqi\mathrm{Tr}_{q^{n}/q}(x)=\sum_{i=0}^{n-1}x^{q^{i}}.

2 Some properties of mm-to-11 mappings

We first calculate the number of all mm-to-11 mappings on 𝔽q\mathbb{F}_{q}.

Theorem 2.1.

Let q=km+rq=km+r, where 1mq1\leq m\leq q and 0r<m0\leq r<m. Denote by NmN_{m} the number of all mm-to-11 mappings from 𝔽q\mathbb{F}_{q} to itself. Then

Nm=(q!)2(qk)rk!r!(m!)k(qk)!.N_{m}=\frac{(q!)^{2}\,(q-k)^{r}}{k!\,r!\,(m!)^{k}(q-k)!}.
Proof.

For any mm-to-11 mapping ff on 𝔽q\mathbb{F}_{q}, by q=km+rq=km+r, we get #Ef(𝔽q)=r\#E_{f}(\mathbb{F}_{q})=r and #f(𝔽qEf(𝔽q))=k\#f(\mathbb{F}_{q}\setminus E_{f}(\mathbb{F}_{q}))=k. Then f(𝔽qEf(𝔽q))f(\mathbb{F}_{q}\setminus E_{f}(\mathbb{F}_{q})) has (qk)\binom{q}{k} choices. For the first element in f(𝔽qEf(𝔽q))f(\mathbb{F}_{q}\setminus E_{f}(\mathbb{F}_{q})), its preimage has (qm)\binom{q}{m} choices. For the second elements, its preimage has (qmm)\binom{q-m}{m} choices, …, the last element has (m+rm)\binom{m+r}{m} choices. Moreover, the image of each element in Ef(𝔽q)E_{f}(\mathbb{F}_{q}) has qkq-k choices. Hence

Nm\displaystyle N_{m} =(qk)(qm)(qmm)(m+rm)(qk)r\displaystyle=\binom{q}{k}\binom{q}{m}\binom{q-m}{m}\cdots\binom{m+r}{m}(q-k)^{r}
=(qk)q!(qk)rr!(m!)k.\displaystyle=\binom{q}{k}\frac{q!\,(q-k)^{r}}{r!\,(m!)^{k}}.\qed

We next consider some mm-to-11 properties of composition of mappings.

Theorem 2.2.

Let φ\varphi be a mapping from AA to BB and let σ\sigma be a 11-to-11 mapping from BB to CC, where AA, BB, CC are finite sets. Then, for 1m#A1\leq m\leq\#A, the composition σφ\sigma\circ\varphi is mm-to-11 on AA if and only if φ\varphi is mm-to-11 on AA.

A\textstyle{A\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}φ\scriptstyle{\varphi}σφ\scriptstyle{\sigma\circ\varphi}B\textstyle{B\ignorespaces\ignorespaces\ignorespaces\ignorespaces}σ\scriptstyle{\sigma}C\textstyle{C}
Proof.

Let #A=km+r\#A=km+r with 0r<m0\leq r<m. The sufficiency follows from Definition 1.1. Conversely, if σφ\sigma\circ\varphi is mm-to-11 on AA, then there are kk distinct elements c1c_{1}, c2c_{2}, …, ckCc_{k}\in C such that each cic_{i} has exactly mm preimages in AA, say,

σ(φ(ai1))=σ(φ(ai2))==σ(φ(aim))=ciwithaijA.\sigma(\varphi(a_{i1}))=\sigma(\varphi(a_{i2}))=\cdots=\sigma(\varphi(a_{im}))=c_{i}\quad\text{with}\quad a_{ij}\in A.

Since σ\sigma is 11-to-11 from BB to CC, there exists unique biBb_{i}\in B such that σ(bi)=ci\sigma(b_{i})=c_{i} for any cic_{i}, and so

φ(ai1)=φ(ai2)==φ(aim)=bifor any1ik,\varphi(a_{i1})=\varphi(a_{i2})=\cdots=\varphi(a_{im})=b_{i}\quad\text{for any}\quad 1\leq i\leq k,

that is, φ\varphi is mm-to-11 on AA. ∎

Theorem 2.3.

Let λ:AB\lambda\colon A\to B and θ:BC\theta\colon B\to C be mappings such that #A=m1#B\#A=m_{1}\,\#B and λ\lambda is m1m_{1}-to-11 on AA, where AA, BB, CC are finite sets and m1m_{1}\in\mathbb{N}. Then, for 1m#A1\leq m\leq\#A, the composition θλ\theta\circ\lambda is mm-to-11 on AA if and only if m1mm_{1}\mid m and θ\theta is (m/m1)(m/m_{1})-to-11 on BB.

A\textstyle{A\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}λ\scriptstyle{\lambda}θλ\scriptstyle{\theta\circ\lambda}B\textstyle{B\ignorespaces\ignorespaces\ignorespaces\ignorespaces}θ\scriptstyle{\theta}C\textstyle{C}
Proof.

Let #A=km+r\#A=km+r with 0r<m0\leq r<m and let #B=#A/m1=k(m/m1)+(r/m1)\#B=\#A/m_{1}=k(m/m_{1})+(r/m_{1}) if m1mm_{1}\mid m. Since #A=m1#B\#A=m_{1}\,\#B and λ\lambda is m1m_{1}-to-11 on AA, each element in BB has m1m_{1} preimages in AA under λ\lambda. Hence the following statements are equivalent:

  1. (a)

    θλ\theta\circ\lambda is mm-to-11 on AA;

  2. (b)

    There are kk distinct elements in CC such that each element has exactly mm preimages in AA under θλ\theta\circ\lambda;

  3. (c)

    m1mm_{1}\mid m and there are kk distinct elements in CC such that each element has exactly m/m1m/m_{1} preimages in BB under θ\theta;

  4. (d)

    m1mm_{1}\mid m and θ\theta is (m/m1)(m/m_{1})-to-11 on BB. ∎

When m1=1m_{1}=1, Theorem 2.3 reduces to the following form.

Corollary 2.4.

Let λ\lambda be a 11-to-11 mapping from AA to BB and θ\theta be a mapping from BB to CC, where AA, BB, CC are finite sets and #A=#B\#A=\#B. Then, for 1m#A1\leq m\leq\#A, the composition θλ\theta\circ\lambda is mm-to-11 on AA if and only if θ\theta is mm-to-11 on BB.

Combining Theorem 2.2 and Corollary 2.4 yields the next result.

Corollary 2.5.

Let ff be a mapping from a finite set AA to its subset BB. Suppose σ1\sigma_{1} and σ2\sigma_{2} permute AA. Then the composition σ2fσ1\sigma_{2}\circ f\circ\sigma_{1} is mm-to-11 on AA if and only if ff is mm-to-11 on AA.

That is, a composition of permutations and ff preserves the mm-to-11 property of ff, which is an intuitive result. Combining Corollary 2.5 and Example 1.2 yields the following example.

Example 2.1.

Let σ𝔽q[x]\sigma\in\mathbb{F}_{q}[x] permute 𝔽q\mathbb{F}_{q}^{*} and nn\in\mathbb{N}. Then σ(xn)\sigma(x^{n}) is (n,q1)(n,q-1)-to-11 on 𝔽q\mathbb{F}_{q}^{*}.

This result builds a link between permutations and mm-to-11 mappings.

3 Three constructions for mm-to-11 mappings

Lemma 2.1 in [45] gives the local criterion for a mapping to be a permutation of AA. We now present a generalization of it for a mapping to be mm-to-11 on AA.

Lemma 3.1 (Generalized local criterion).

Let AA, BB, and CC be finite sets. Let f:ABf:A\to B, ψ:BC\psi:B\to C, and φ:AC\varphi:A\to C be mappings such that φ=ψf\varphi=\psi\circ f, i.e., the following diagram is commutative:

A\textstyle{A\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}φ\scriptstyle{\varphi}f\scriptstyle{f}B\textstyle{B\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ψ\scriptstyle{\psi}C\textstyle{C}

For any cφ(A)c\in\varphi(A), let φ1(c)={aA:φ(a)=c}\varphi^{-1}(c)=\{a\in A:\varphi(a)=c\}. Then, for 1m#A1\leq m\leq\#A, ff is mm-to-11 on AA if and only if ff is mm-to-11 on φ1(c)\varphi^{-1}(c) for any #φ1(c)m\#\varphi^{-1}(c)\geq m and

#φ1(c)m#Ef(φ1(c))+#φ1(c)<m#φ1(c)=#Amodm,\sum_{\#\varphi^{-1}(c)\geq m}\#E_{f}(\varphi^{-1}(c))+\sum_{\#\varphi^{-1}(c)<m}\#\varphi^{-1}(c)=\#A\bmod{m}, (3.1)

where cc runs through φ(A)\varphi(A) and Ef(φ1(c))E_{f}(\varphi^{-1}(c)) is the exceptional set of ff being mm-to-11 on φ1(c)\varphi^{-1}(c).

Proof.

Assume that φ(A)={c1,c2,,cn}\varphi(A)=\{c_{1},c_{2},\ldots,c_{n}\}. Then

A=φ1(c1)φ1(c2)φ1(cn),A=\varphi^{-1}(c_{1})\uplus\varphi^{-1}(c_{2})\uplus\cdots\uplus\varphi^{-1}(c_{n}),

where \uplus denote the union of disjoint sets. Thus

f(A)=f(φ1(c1))f(φ1(c2))f(φ1(cn)).f(A)=f(\varphi^{-1}(c_{1}))\cup f(\varphi^{-1}(c_{2}))\cup\cdots\cup f(\varphi^{-1}(c_{n})).

By φ=ψf\varphi=\psi\circ f, we have ψ(f(φ1(ci)))=φ(φ1(ci))=ci\psi(f(\varphi^{-1}(c_{i})))=\varphi(\varphi^{-1}(c_{i}))=c_{i}, and so

f(φ1(ci))ψ1(ci).f(\varphi^{-1}(c_{i}))\subseteq\psi^{-1}(c_{i}).

If cicjc_{i}\neq c_{j}, then ψ1(ci)ψ1(cj)=\psi^{-1}(c_{i})\cap\psi^{-1}(c_{j})=\varnothing, and so f(φ1(ci))f(φ1(cj))=f(\varphi^{-1}(c_{i}))\cap f(\varphi^{-1}(c_{j}))=\varnothing. Hence

f(A)=f(φ1(c1))f(φ1(c2))f(φ1(cn)).f(A)=f(\varphi^{-1}(c_{1}))\uplus f(\varphi^{-1}(c_{2}))\uplus\cdots\uplus f(\varphi^{-1}(c_{n})). (3.2)

Let #A=km+r\#A=km+r, where 0r<m0\leq r<m. (\Leftarrow) Assume ff is mm-to-11 on φ1(ci)\varphi^{-1}(c_{i}) for any #φ1(ci)m\#\varphi^{-1}(c_{i})\geq m and Eq. 3.1 holds. Then there are (#Ar)/m=k(\#A-r)/m=k distinct elements in f(A)f(A) such that each element has exactly mm preimages in AA under ff. Hence ff is mm-to-11 on AA. (\Rightarrow) Assume ff is mm-to-11 on AA. Then there are at most mm preimages in φ1(ci)\varphi^{-1}(c_{i}) for any element in f(φ1(ci))f(\varphi^{-1}(c_{i})) and #Ef(A)=r<m\#E_{f}(A)=r<m, where Ef(A)E_{f}(A) is the exceptional set of ff being mm-to-11 on AA. If #φ1(ci)m\#\varphi^{-1}(c_{i})\geq m, let #φ1(ci)=kim+ri\#\varphi^{-1}(c_{i})=k_{i}m+r_{i} with ki1k_{i}\geq 1 and 0ri<m0\leq r_{i}<m, and let kik^{\prime}_{i} be the number of bf(φ1(ci))b\in f(\varphi^{-1}(c_{i})) which has exactly mm preimages in φ1(ci)\varphi^{-1}(c_{i}). If ki<kik^{\prime}_{i}<k_{i}, then #Ef(φ1(ci))=#φ1(ci)kim=(kiki)m+rim\#E_{f}(\varphi^{-1}(c_{i}))=\#\varphi^{-1}(c_{i})-k^{\prime}_{i}m=(k_{i}-k^{\prime}_{i})m+r_{i}\geq m, contrary to #Ef(A)<m\#E_{f}(A)<m. Thus ki=kik^{\prime}_{i}=k_{i}, i.e., ff is mm-to-11 on φ1(ci)\varphi^{-1}(c_{i}) if #φ1(ci)m\#\varphi^{-1}(c_{i})\geq m. If #φ1(ci)<m\#\varphi^{-1}(c_{i})<m, then φ1(ci)Ef(A)\varphi^{-1}(c_{i})\subseteq E_{f}(A) by Eq. 3.2. Thus

(#φ1(c)mEf(φ1(c)))(#φ1(c)<mφ1(c))=Ef(A)\big{(}\underset{\#\varphi^{-1}(c)\geq m}{\uplus}E_{f}(\varphi^{-1}(c))\big{)}\uplus\big{(}\underset{\#\varphi^{-1}(c)<m}{\uplus}\varphi^{-1}(c)\big{)}=E_{f}(A) (3.3)

and so Eq. 3.1 holds. ∎

The generalized local criterion converts the problem whether ff is an mm-to-11 mapping on AA to another problem whether ff is an mm-to-11 mapping on some subsets φ1(c)\varphi^{-1}(c) of AA. The identities Eqs. 3.1 and 3.3 describe the relationship between the exceptional sets Ef(A)E_{f}(A) and Ef(φ1(c))E_{f}(\varphi^{-1}(c)). We next use this criterion to deduce three constructions of mm-to-11 mappings.

3.1 The first construction

Construction 1.

Let AA, A¯\bar{A}, SS, S¯\bar{S} be finite sets and f:AA¯f\colon A\rightarrow\bar{A}, f¯:SS¯\bar{f}\colon S\rightarrow\bar{S}, λ:AS\lambda\colon A\rightarrow S, λ¯:A¯S¯\bar{\lambda}\colon\bar{A}\rightarrow\bar{S} be mappings such that λ¯f=f¯λ\bar{\lambda}\circ f=\bar{f}\circ\lambda, i.e., the following diagram is commutative:

A\textstyle{A\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f\scriptstyle{f}λ\scriptstyle{\lambda}A¯\textstyle{\bar{A}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}λ¯\scriptstyle{\bar{\lambda}}S\textstyle{S\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f¯\scriptstyle{\bar{f}}S¯.\textstyle{\bar{S}.}

For any sλ(A)s\in\lambda(A), let λ1(s)={aA:λ(a)=s}\lambda^{-1}(s)=\{a\in A:\lambda(a)=s\}. Suppose f¯\bar{f} is 11-to-11 on SS. Then, for 1m#A1\leq m\leq\#A, ff is mm-to-11 on AA if and only if ff is mm-to-11 on λ1(s)\lambda^{-1}(s) for any #λ1(s)m\#\lambda^{-1}(s)\geq m and

#λ1(s)m#Ef(λ1(s))+#λ1(s)<m#λ1(s)=#Amodm,\sum_{\#\lambda^{-1}(s)\geq m}\#E_{f}(\lambda^{-1}(s))+\sum_{\#\lambda^{-1}(s)<m}\#\lambda^{-1}(s)=\#A\bmod{m},

where ss runs through λ(A)\lambda(A) and Ef(λ1(s))E_{f}(\lambda^{-1}(s)) is the exceptional set of ff being mm-to-11 on λ1(s)\lambda^{-1}(s).

Proof.

Let φ=f¯λ\varphi=\bar{f}\circ\lambda, i.e., the following diagram is commutative:

A\textstyle{A\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f\scriptstyle{f}λ\scriptstyle{\lambda}φ\scriptstyle{\varphi}A¯\textstyle{\bar{A}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}λ¯\scriptstyle{\bar{\lambda}}S\textstyle{S\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f¯\scriptstyle{\bar{f}}S¯.\textstyle{\bar{S}.}

Since f¯\bar{f} is 11-to-11 on SS, there is a unique sλ(A)s\in\lambda(A) such that f¯(s)=s¯\bar{f}(s)=\bar{s} for any s¯φ(A)=f¯(λ(A))\bar{s}\in\varphi(A)=\bar{f}(\lambda(A)). Thus φ1(s¯)=λ1(s)\varphi^{-1}(\bar{s})=\lambda^{-1}(s). Then the result follows from Lemma 3.1. ∎

This result is equivalent to Lemma 3.1 under the condition f¯\bar{f} is 11-to-11 on SS. It generalizes [30, Proposition 6] and [15, Proposition 1]; each of them only gives the sufficient conditions.

3.2 The second construction

Construction 2.

Let AA, A¯\bar{A}, SS, S¯\bar{S} be finite sets and f:AA¯f\colon A\rightarrow\bar{A}, f¯:SS¯\bar{f}\colon S\rightarrow\bar{S}, λ:AS\lambda\colon A\rightarrow S, λ¯:A¯S¯\bar{\lambda}\colon\bar{A}\rightarrow\bar{S} be mappings such that λ¯f=f¯λ\bar{\lambda}\circ f=\bar{f}\circ\lambda, i.e., the following diagram is commutative:

A\textstyle{A\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f\scriptstyle{f}λ\scriptstyle{\lambda}A¯\textstyle{\bar{A}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}λ¯\scriptstyle{\bar{\lambda}}S\textstyle{S\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f¯\scriptstyle{\bar{f}}S¯.\textstyle{\bar{S}.}

Suppose λ\lambda is surjective, #λ1(s)=m1#λ¯1(f¯(s))\#\lambda^{-1}(s)=m_{1}\,\#\bar{\lambda}^{-1}(\bar{f}(s)), and ff is m1m_{1}-to-11 on λ1(s)\lambda^{-1}(s) for any sSs\in S and a fixed m1m_{1}\in\mathbb{N}, where

λ1(s):-{aA:λ(a)=s}andλ¯1(f¯(s)):-{bA¯:λ¯(b)=f¯(s)}.\lambda^{-1}(s)\coloneq\{a\in A:\lambda(a)=s\}\quad\text{and}\quad\bar{\lambda}^{-1}(\bar{f}(s))\coloneq\{b\in\bar{A}:\bar{\lambda}(b)=\bar{f}(s)\}.

Then, for 1mm1#S1\leq m\leq m_{1}\,\#S, ff is mm-to-11 on AA if and only if m1mm_{1}\mid m, f¯\bar{f} is (m/m1)(m/m_{1})-to-11 on SS, and

sEf¯(S)#λ1(s)=#Amodm,\sum_{s\in E_{\bar{f}}(S)}\#\lambda^{-1}(s)=\#A\bmod{m}, (3.4)

where Ef¯(S)E_{\bar{f}}(S) is the exceptional set of f¯\bar{f} being (m/m1)(m/m_{1})-to-11 on SS.

Proof.

Since λ:AS\lambda\colon A\rightarrow S is surjective, we get A=sSλ1(s)A=\uplus_{s\in S}\lambda^{-1}(s), and so

#A=sS#λ1(s)=sSm1#λ¯1(f¯(s))sSm1=m1#S.\#A=\sum_{s\in S}\#\lambda^{-1}(s)=\sum_{s\in S}m_{1}\,\#\bar{\lambda}^{-1}(\bar{f}(s))\geq\sum_{s\in S}m_{1}=m_{1}\#S.

Thus the definitions that ff is mm-to-11 on AA and f¯\bar{f} is (m/m1)(m/m_{1})-to-11 on SS are meaningful when 1mm1#S1\leq m\leq m_{1}\,\#S. For any sSs\in S, it follows from λ¯f=f¯λ\bar{\lambda}\circ f=\bar{f}\circ\lambda that

(λ¯f)(λ1(s))=(f¯λ)(λ1(s))=f¯(s),(\bar{\lambda}\circ f)(\lambda^{-1}(s))=(\bar{f}\circ\lambda)(\lambda^{-1}(s))=\bar{f}(s),

and so f(λ1(s))λ¯1(f¯(s))f(\lambda^{-1}(s))\subseteq\bar{\lambda}^{-1}(\bar{f}(s)). Because m1#λ1(s)m_{1}\mid\#\lambda^{-1}(s) and ff is m1m_{1}-to-11 on λ1(s)\lambda^{-1}(s), we have

#f(λ1(s))=#λ1(s)/m1=#λ¯1(f¯(s)).\#f(\lambda^{-1}(s))=\#\lambda^{-1}(s)/m_{1}=\#\bar{\lambda}^{-1}(\bar{f}(s)).

Therefore,

f(λ1(s))=λ¯1(f¯(s))for each sS.f(\lambda^{-1}(s))=\bar{\lambda}^{-1}(\bar{f}(s))\quad\text{for each $s\in S$.} (3.5)

Let φ=λ¯f=f¯λ\varphi=\bar{\lambda}\circ f=\bar{f}\circ\lambda, i.e., the following diagram is commutative:

A\textstyle{A\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f\scriptstyle{f}λ\scriptstyle{\lambda}φ\scriptstyle{\varphi}A¯\textstyle{\bar{A}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}λ¯\scriptstyle{\bar{\lambda}}S\textstyle{S\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f¯\scriptstyle{\bar{f}}S¯.\textstyle{\bar{S}.}

By Lemma 3.1, ff is mm-to-11 on AA if and only if ff is mm-to-11 on φ1(s¯)\varphi^{-1}(\bar{s}) for any #φ1(s¯)m\#\varphi^{-1}(\bar{s})\geq m and

#φ1(s¯)m#Ef(φ1(s¯))+#φ1(s¯)<m#φ1(s¯)=#Amodm,\sum_{\#\varphi^{-1}(\bar{s})\geq m}\#E_{f}(\varphi^{-1}(\bar{s}))+\sum_{\#\varphi^{-1}(\bar{s})<m}\#\varphi^{-1}(\bar{s})=\#A\bmod{m}, (3.6)

where s¯\bar{s} runs through φ(A)\varphi(A).

For any s¯φ(A)\bar{s}\in\varphi(A), assume there are exactly ms¯m_{\bar{s}} distinct elements s1,s2,,sms¯Ss_{1},s_{2},\ldots,s_{m_{\bar{s}}}\in S such that

f¯(s1)=f¯(s2)==f¯(sms¯)=s¯,\bar{f}(s_{1})=\bar{f}(s_{2})=\cdots=\bar{f}(s_{m_{\bar{s}}})=\bar{s}, (3.7)

i.e., the set of preimages of s¯\bar{s} under f¯\bar{f} is f¯1(s¯)={s1,s2,,sms¯}\bar{f}^{-1}(\bar{s})=\{s_{1},s_{2},\ldots,s_{m_{\bar{s}}}\}. Then by Eq. 3.5,

f(λ1(si))=λ¯1(f¯(si))=λ¯1(s¯)f(\lambda^{-1}(s_{i}))=\bar{\lambda}^{-1}(\bar{f}(s_{i}))=\bar{\lambda}^{-1}(\bar{s}) (3.8)

for any 1ims¯1\leq i\leq m_{\bar{s}}. For any sSf¯1(s¯)s^{\prime}\in S\setminus\bar{f}^{-1}(\bar{s}), we have f¯(s)f¯(s1)\bar{f}(s^{\prime})\neq\bar{f}(s_{1}) and so

\displaystyle\varnothing =λ¯1(f¯(s))λ¯1(f¯(s1))\displaystyle=\bar{\lambda}^{-1}(\bar{f}(s^{\prime}))\cap\bar{\lambda}^{-1}(\bar{f}(s_{1})) (3.9)
=f(λ1(s))f(λ1(s1))\displaystyle=f(\lambda^{-1}(s^{\prime}))\cap f(\lambda^{-1}(s_{1}))
=f(λ1(s))λ¯1(s¯).\displaystyle=f(\lambda^{-1}(s^{\prime}))\cap\bar{\lambda}^{-1}(\bar{s}).

It follows from φ=f¯λ\varphi=\bar{f}\circ\lambda and Eq. 3.7 that

φ1(s¯)=λ1(s1)λ1(s2)λ1(sms¯).\varphi^{-1}(\bar{s})=\lambda^{-1}(s_{1})\uplus\lambda^{-1}(s_{2})\uplus\cdots\uplus\lambda^{-1}(s_{m_{\bar{s}}}). (3.10)

Then by Eq. 3.8,

f(φ1(s¯))=f(λ1(s1))f(λ1(sms¯))=λ¯1(s¯).f(\varphi^{-1}(\bar{s}))=f(\lambda^{-1}(s_{1}))\cup\cdots\cup f(\lambda^{-1}(s_{m_{\bar{s}}}))=\bar{\lambda}^{-1}(\bar{s}).

Since A=sSλ1(s)A=\uplus_{s\in S}\lambda^{-1}(s), S=f¯1(s¯)(Sf¯1(s¯))S=\bar{f}^{-1}(\bar{s})\cup(S\setminus\bar{f}^{-1}(\bar{s})), and Eq. 3.9 holds, it follows that the preimage set of λ¯1(s¯)\bar{\lambda}^{-1}(\bar{s}) under ff is φ1(s¯)\varphi^{-1}(\bar{s}). Because

#λ1(si)=m1#λ¯1(f¯(si))=m1#λ¯1(s¯)\#\lambda^{-1}(s_{i})=m_{1}\#\bar{\lambda}^{-1}(\bar{f}(s_{i}))=m_{1}\#\bar{\lambda}^{-1}(\bar{s}) (3.11)

and ff is m1m_{1}-to-11 from λ1(si)\lambda^{-1}(s_{i}) to f(λ1(si))=λ¯1(f¯(si))=λ¯1(s¯)f(\lambda^{-1}(s_{i}))=\bar{\lambda}^{-1}(\bar{f}(s_{i}))=\bar{\lambda}^{-1}(\bar{s}) for 1ims¯1\leq i\leq m_{\bar{s}}, we get

#φ1(s¯)=m1ms¯#λ¯1(s¯) and f is m1ms¯-to-1 from φ1(s¯) onto λ¯1(s¯)\#\varphi^{-1}(\bar{s})=m_{1}m_{\bar{s}}\#\bar{\lambda}^{-1}(\bar{s})\text{~{}~{}and $f$ is $m_{1}m_{\bar{s}}$-to-$1$ from $\varphi^{-1}(\bar{s})$ onto $\bar{\lambda}^{-1}(\bar{s})$. } (3.12)

We first prove the sufficiency. Suppose that m1mm_{1}\mid m, f¯\bar{f} is m2m_{2}-to-11 on SS, and Eq. 3.4 holds, where m2=m/m1m_{2}=m/m_{1}. Define

B1={f¯(s):sSEf¯(S)}andB2={f¯(s):sEf¯(S)}.B_{1}=\{\bar{f}(s):s\in S\setminus E_{\bar{f}}(S)\}\quad\text{and}\quad B_{2}=\{\bar{f}(s):s\in E_{\bar{f}}(S)\}.

Then φ(A)=B1B2\varphi(A)=B_{1}\uplus B_{2}. When s¯B1\bar{s}\in B_{1}, since f¯\bar{f} is m2m_{2}-to-11 on SS, we have #f¯1(s¯)=m2\#\bar{f}^{-1}(\bar{s})=m_{2}. By Eq. 3.12,

#φ1(s¯)=m1m2#λ¯1(s¯)=m#λ¯1(s¯)m\#\varphi^{-1}(\bar{s})=m_{1}m_{2}\#\bar{\lambda}^{-1}(\bar{s})=m\#\bar{\lambda}^{-1}(\bar{s})\geq m (3.13)

and ff is mm-to-11 from φ1(s¯)\varphi^{-1}(\bar{s}) onto λ¯1(s¯)\bar{\lambda}^{-1}(\bar{s}). Thus

s¯B1#Ef(φ1(s¯))=0.\sum_{\bar{s}\in B_{1}}\#E_{f}(\varphi^{-1}(\bar{s}))=0. (3.14)

When s¯B2\bar{s}\in B_{2}, we get Ef¯(S)=s¯B2f¯1(s¯)E_{\bar{f}}(S)=\uplus_{\bar{s}\in B_{2}}\bar{f}^{-1}(\bar{s}). Then by Eq. 3.10 and Eq. 3.4,

s¯B2#φ1(s¯)=s¯B2sif¯1(s¯)#λ1(si)=siEf¯(S)#λ1(si)=#Amodm<m.\sum_{\bar{s}\in B_{2}}\#\varphi^{-1}(\bar{s})=\sum_{\bar{s}\in B_{2}}\sum_{s_{i}\in\bar{f}^{-1}(\bar{s})}\#\lambda^{-1}(s_{i})=\sum_{s_{i}\in E_{\bar{f}}(S)}\#\lambda^{-1}(s_{i})=\#A\bmod{m}<m. (3.15)

The equations Eq. 3.13, Eq. 3.14, and Eq. 3.15 imply Eq. 3.6. Then the sufficiency follows from Lemma 3.1.

We next prove the necessity. Suppose ff is mm-to-11 on AA and define

C1={s¯φ(A):#φ1(s¯)m}andC2={s¯φ(A):#φ1(s¯)<m}.C_{1}=\{\bar{s}\in\varphi(A):\#\varphi^{-1}(\bar{s})\geq m\}\quad\text{and}\quad C_{2}=\{\bar{s}\in\varphi(A):\#\varphi^{-1}(\bar{s})<m\}.

Then φ(A)=C1C2\varphi(A)=C_{1}\uplus C_{2} and S=s¯φ(A)f¯1(s¯)S=\uplus_{\bar{s}\in\varphi(A)}\bar{f}^{-1}(\bar{s}). When s¯C1\bar{s}\in C_{1}, by Lemma 3.1 and Eq. 3.12, we obtain some equivalent statements: (a) ff is mm-to-11 on φ1(s¯)\varphi^{-1}(\bar{s}); (b) m=m1ms¯m=m_{1}m_{\bar{s}}; (c) m1mm_{1}\mid m and ms¯=m/m1m_{\bar{s}}=m/m_{1}; (d) m1mm_{1}\mid m and f¯\bar{f} is (m/m1)(m/m_{1})-to-11 on f¯1(s¯)\bar{f}^{-1}(\bar{s}). Also note that #φ1(s¯)=m#λ¯1(s¯)\#\varphi^{-1}(\bar{s})=m\#\bar{\lambda}^{-1}(\bar{s}). Thus

s¯C1#Ef(φ1(s¯))=0.\sum_{\bar{s}\in C_{1}}\#E_{f}(\varphi^{-1}(\bar{s}))=0. (3.16)

Then Eq. 3.6 minus Eq. 3.16 gives

s¯C2#φ1(s¯)=ri.e.,s¯C2m1#f¯1(s¯)#λ¯1(s¯)=r\sum_{\bar{s}\in C_{2}}\#\varphi^{-1}(\bar{s})=r\quad\text{i.e.,}\quad\sum_{\bar{s}\in C_{2}}m_{1}\#\bar{f}^{-1}(\bar{s})\#\bar{\lambda}^{-1}(\bar{s})=r (3.17)

by Eq. 3.12, where r=#Amodm<mr=\#A\bmod m<m. Hence

s¯C2#f¯1(s¯)r/m1<m/m1.\sum_{\bar{s}\in C_{2}}\#\bar{f}^{-1}(\bar{s})\leq r/m_{1}<m/m_{1}. (3.18)

Combining (d) and Eq. 3.18 yields that m1mm_{1}\mid m, f¯\bar{f} is (m/m1)(m/m_{1})-to-11 on s¯φ(A)f¯1(s¯)=S\uplus_{\bar{s}\in\varphi(A)}\bar{f}^{-1}(\bar{s})=S, and Ef¯(S)=s¯C2f¯1(s¯)E_{\bar{f}}(S)=\uplus_{\bar{s}\in C_{2}}\bar{f}^{-1}(\bar{s}). By Eq. 3.11 and Eq. 3.17, we have

r=s¯C2#f¯1(s¯)#λ1(si)=s¯C2sif¯1(s¯)#λ1(si)=siEf¯(S)#λ1(si).\displaystyle r=\sum_{\bar{s}\in C_{2}}\#\bar{f}^{-1}(\bar{s})\#\lambda^{-1}(s_{i})=\sum_{\bar{s}\in C_{2}}\sum_{s_{i}\in\bar{f}^{-1}(\bar{s})}\#\lambda^{-1}(s_{i})=\sum_{s_{i}\in E_{\bar{f}}(S)}\#\lambda^{-1}(s_{i}).

That is, Eq. 3.4 holds. ∎

The identity Eq. 3.5 plays an important role in the proof above. Using this identity, the fact that ff is mm-to-11 on AA is divided into two parts: ff is m1m_{1}-to-11 on λ1(s)\lambda^{-1}(s) and f¯\bar{f} is (m/m1)(m/m_{1})-to-11 on SS. When the first part holds, the problem whether ff is mm-to-11 on AA is converted into that whether f¯\bar{f} is (m/m1)(m/m_{1})-to-11 on SS. In particular, if λ¯(x)=x\bar{\lambda}(x)=x, then Construction 2 reduces to Theorem 2.3.

The significance of Construction 2 resides in the fact that it not only unifies and generalizes the constructions in [44, 35] but also facilitates numerous new discoveries in this paper.

Applying Construction 2 to m1=1m_{1}=1 or mm1#Sm\mid m_{1}\,\#S yields the following results.

Corollary 3.2.

Let AA, A¯\bar{A}, SS, S¯\bar{S} be finite sets and f:AA¯f\colon A\rightarrow\bar{A}, f¯:SS¯\bar{f}\colon S\rightarrow\bar{S}, λ:AS\lambda\colon A\rightarrow S, λ¯:A¯S¯\bar{\lambda}\colon\bar{A}\rightarrow\bar{S} be mappings such that λ¯f=f¯λ\bar{\lambda}\circ f=\bar{f}\circ\lambda. Suppose λ\lambda is surjective, #λ1(s)=#λ¯1(f¯(s))\#\lambda^{-1}(s)=\#\bar{\lambda}^{-1}(\bar{f}(s)), and ff is 11-to-11 on λ1(s)\lambda^{-1}(s) for any sSs\in S. Then, for 1m#S1\leq m\leq\#S, ff is mm-to-11 on AA if and only if f¯\bar{f} is mm-to-11 on SS and sEf¯(S)#λ1(s)=#Amodm\sum_{s\in E_{\bar{f}}(S)}\#\lambda^{-1}(s)=\#A\bmod{m}.

Corollary 3.2 is a generalization of [35, Theorem 4.3] which uses the nn-to-11 definition, requires #A#S(modn)\#A\equiv\#S\pmod{n}, and does not give a necessary and sufficient condition when n#Sn\nmid\#S.

Corollary 3.3.

With the notation and the hypotheses of Construction 2, suppose mm1#Sm\mid m_{1}\,\#S. Then ff is mm-to-11 on AA if and only if m1mm_{1}\mid m and f¯\bar{f} is (m/m1)(m/m_{1})-to-11 on SS.

Proof.

We need only show that Eq. 3.4 holds when m1mm_{1}\mid m and f¯\bar{f} is (m/m1)(m/m_{1})-to-11 on SS. In this case, (m/m1)#S(m/m_{1})\mid\#S and so Ef¯(S)=E_{\bar{f}}(S)=\varnothing, which is equivalent to sEf¯(S)#λ1(s)=0\sum_{s\in E_{\bar{f}}(S)}\#\lambda^{-1}(s)=0. Then #φ1(s¯)=m#λ¯1(s¯)\#\varphi^{-1}(\bar{s})=m\#\bar{\lambda}^{-1}(\bar{s}) for any s¯φ(A)\bar{s}\in\varphi(A) by Eq. 3.13. Note that A=s¯φ(A)φ1(s¯)A=\uplus_{\bar{s}\in\varphi(A)}\varphi^{-1}(\bar{s}). Thus m#Am\mid\#A, and so Eq. 3.4 holds. ∎

Corollary 3.3 generalizes [44, Proposition 4.2] in which m=2m=2, m1=1m_{1}=1, #S\#S is even, and only the sufficient condition is given. Corollary 3.3 reduces to the following form when m=m1m=m_{1}.

Corollary 3.4.

Let AA, A¯\bar{A}, SS, S¯\bar{S} be finite sets and f:AA¯f\colon A\rightarrow\bar{A}, f¯:SS¯\bar{f}\colon S\rightarrow\bar{S}, λ:AS\lambda\colon A\rightarrow S, λ¯:A¯S¯\bar{\lambda}\colon\bar{A}\rightarrow\bar{S} be mappings such that λ¯f=f¯λ\bar{\lambda}\circ f=\bar{f}\circ\lambda. Suppose λ\lambda is surjective, #λ1(s)=m1#λ¯1(f¯(s))\#\lambda^{-1}(s)=m_{1}\,\#\bar{\lambda}^{-1}(\bar{f}(s)), and ff is m1m_{1}-to-11 on λ1(s)\lambda^{-1}(s) for any sSs\in S and a fixed m1m_{1}\in\mathbb{N}. Then ff is m1m_{1}-to-11 on AA if and only if f¯\bar{f} is 11-to-11 on SS.

Construction 1 reduces to the sufficiency part of Corollary 3.4 under the conditions that λ\lambda is surjective, #λ1(s)=m#λ¯1(f¯(s))\#\lambda^{-1}(s)=m\,\#\bar{\lambda}^{-1}(\bar{f}(s)), and ff is mm-to-11 on λ1(s)\lambda^{-1}(s) for any sSs\in S and a fixed mm\in\mathbb{N}.

3.3 The third construction

Construction 3.

Let (A,)(A,\ast) be a finite group and SS, S¯\bar{S} be subsets of AA. Let f:AAf\colon A\rightarrow A, f¯:SS¯\bar{f}\colon S\rightarrow\bar{S}, λ:AS\lambda\colon A\rightarrow S, λ¯:AS¯\bar{\lambda}\colon A\rightarrow\bar{S} be mappings such that λ¯f=f¯λ\bar{\lambda}\circ f=\bar{f}\circ\lambda, i.e., the following diagram is commutative:

A\textstyle{A\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f\scriptstyle{f}λ\scriptstyle{\lambda}A\textstyle{A\ignorespaces\ignorespaces\ignorespaces\ignorespaces}λ¯\scriptstyle{\bar{\lambda}}S\textstyle{S\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f¯\scriptstyle{\bar{f}}S¯.\textstyle{\bar{S}.}

Assume λ¯\bar{\lambda} is a homomorphism from AA onto S¯\bar{S} and uu is a mapping from AA to AA such that λ¯(u(a))=c\bar{\lambda}(u(a))=c for any aAa\in A and a fixed cS¯c\in\bar{S}. Let fuf\ast u be the mapping defined by f(a)u(a)f(a)\ast u(a) for aAa\in A.

  1. \edefitn(1)

    Suppose f¯\bar{f} is 11-to-11 on SS and u=vλu=v\circ\lambda, where vv is a mapping from AA to AA. Then fuf\ast u is mm-to-11 on AA if and only if ff is mm-to-11 on AA, where 1m#A1\leq m\leq\#A.

  2. \edefitn(2)

    Suppose λ\lambda is surjective, #λ1(s)=m1#λ¯1(f¯(s))\#\lambda^{-1}(s)=m_{1}\,\#\bar{\lambda}^{-1}(\bar{f}(s)), and both ff and fuf\ast u are m1m_{1}-to-11 on λ1(s)\lambda^{-1}(s) for any sSs\in S and a fixed m1m_{1}\in\mathbb{N}. Then fuf\ast u is mm-to-11 on AA if and only if ff is mm-to-11 on AA, where 1mm1#S1\leq m\leq m_{1}\#S.

Proof.

Since λ¯\bar{\lambda} is an endomorphism of AA, λ¯(u(a))=c\bar{\lambda}(u(a))=c, and λ¯f=f¯λ\bar{\lambda}\circ f=\bar{f}\circ\lambda, we have

λ¯(fu)=(λ¯f)(λ¯u)=(f¯λ)c=(f¯c)λ,\displaystyle\bar{\lambda}\circ(f\ast u)=(\bar{\lambda}\circ f)\ast(\bar{\lambda}\circ u)=(\bar{f}\circ\lambda)\ast c=(\bar{f}\ast c)\circ\lambda,

i.e., the following diagram is commutative:

A\textstyle{A\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}fu\scriptstyle{f\ast u}λ\scriptstyle{\lambda}A\textstyle{A\ignorespaces\ignorespaces\ignorespaces\ignorespaces}λ¯\scriptstyle{\bar{\lambda}}S\textstyle{S\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f¯c\scriptstyle{\bar{f}\ast c}S¯.\textstyle{\bar{S}.}

We first prove Item 1. Since λ¯\bar{\lambda} is a homomorphism from the group AA onto S¯\bar{S}, it follows that S¯\bar{S} is a subgroup of AA, and so IcI\ast c permutes S¯\bar{S}, where II is the identity mapping on S¯\bar{S}. Also note that f¯\bar{f} maps SS to S¯\bar{S} and f¯c=(Ic)f¯\bar{f}\ast c=(I\ast c)\circ\bar{f}. Hence, by Theorem 2.2, f¯c\bar{f}\ast c is 11-to-11 on SS if and only if f¯\bar{f} is 11-to-11 on SS. By Construction 1, fuf\ast u is mm-to-11 on AA if and only if fuf\ast u is mm-to-11 on λ1(s)\lambda^{-1}(s) for any #λ1(s)m\#\lambda^{-1}(s)\geq m and

#λ1(s)m#Efu(λ1(s))+#λ1(s)<m#λ1(s)=#Amodm.\sum_{\#\lambda^{-1}(s)\geq m}\#E_{f\ast u}(\lambda^{-1}(s))+\sum_{\#\lambda^{-1}(s)<m}\#\lambda^{-1}(s)=\#A\bmod{m}.

By Construction 1, ff is mm-to-11 on AA if and only if ff is mm-to-11 on λ1(s)\lambda^{-1}(s) for any #λ1(s)m\#\lambda^{-1}(s)\geq m and

#λ1(s)m#Ef(λ1(s))+#λ1(s)<m#λ1(s)=#Amodm.\sum_{\#\lambda^{-1}(s)\geq m}\#E_{f}(\lambda^{-1}(s))+\sum_{\#\lambda^{-1}(s)<m}\#\lambda^{-1}(s)=\#A\bmod{m}.

For any aλ1(s)a\in\lambda^{-1}(s), i.e., λ(a)=s\lambda(a)=s, we get u(a)=v(λ(a))=v(s)u(a)=v(\lambda(a))=v(s) and so

(fu)(a)=f(a)u(a)=f(a)v(s).(f\ast u)(a)=f(a)\ast u(a)=f(a)\ast v(s). (3.19)

Hence fuf\ast u is mm-to-11 on λ1(s)\lambda^{-1}(s) if and only if ff is mm-to-11 on λ1(s)\lambda^{-1}(s), and Efu(λ1(s))=Ef(λ1(s))E_{f\ast u}(\lambda^{-1}(s))=E_{f}(\lambda^{-1}(s)). Thus fuf\ast u is mm-to-11 on AA if and only if ff is mm-to-11 on AA.

We now prove Item 2. Since λ¯\bar{\lambda} is an endomorphism of AA, we get #λ¯1(f¯(s)c)=#ker(λ¯)=#λ¯1(f¯(s))\#\bar{\lambda}^{-1}(\bar{f}(s)\ast c)=\#\ker(\bar{\lambda})=\#\bar{\lambda}^{-1}(\bar{f}(s)) by Example 1.3, and so #λ1(s)=m1#λ¯1(f¯(s)c)\#\lambda^{-1}(s)=m_{1}\,\#\bar{\lambda}^{-1}(\bar{f}(s)\ast c). Also note that λ\lambda is surjective and fuf\ast u is m1m_{1}-to-11 on λ1(s)\lambda^{-1}(s). Thus, by Construction 2, fuf\ast u is mm-to-11 on AA if and only if m1mm_{1}\mid m, f¯c\bar{f}\ast c is m2m_{2}-to-11 on SS, and

sEf¯c(S)#λ1(s)=#Amodm,\sum_{s\in E_{\bar{f}\ast c}(S)}\#\lambda^{-1}(s)=\#A\bmod{m}, (3.20)

where m2=m/m1#Sm_{2}=m/m_{1}\leq\#S. By Construction 2 again, ff is mm-to-11 on AA if and only if m1mm_{1}\mid m, f¯\bar{f} is m2m_{2}-to-11 on SS, and

sEf¯(S)#λ1(s)=#Amodm,\sum_{s\in E_{\bar{f}}(S)}\#\lambda^{-1}(s)=\#A\bmod{m}, (3.21)

where m2=m/m1#Sm_{2}=m/m_{1}\leq\#S. Note that f¯\bar{f} maps SS to S¯\bar{S}, IcI\ast c permutes S¯\bar{S}, and f¯c=(Ic)f¯\bar{f}\ast c=(I\ast c)\circ\bar{f}. Hence f¯c\bar{f}\ast c is m2m_{2}-to-11 on SS if and only if f¯\bar{f} is m2m_{2}-to-11 on SS by Theorem 2.2, and Ef¯c(S)=Ef¯(S)E_{\bar{f}\ast c}(S)=E_{\bar{f}}(S), i.e., Eq. 3.20 is equivalent to Eq. 3.21. Thus fuf\ast u is mm-to-11 on AA if and only if ff is mm-to-11 on AA. ∎

This result reduces the problem whether fuf\ast u is an mm-to-11 mapping on AA to that whether ff is an mm-to-11 mapping on AA. Thus it provides a method for constructing new mm-to-11 mapping fuf\ast u from known mm-to-11 mapping ff under certain conditions.

Remark 1.

When u=vλu=v\circ\lambda, Eq. 3.19 implies that ff is m1m_{1}-to-11 on λ1(s)\lambda^{-1}(s) if and only if fuf\ast u is m1m_{1}-to-11 on λ1(s)\lambda^{-1}(s). Thus Item 2 also holds without the restriction that fuf\ast u is m1m_{1}-to-11 on λ1(s)\lambda^{-1}(s) if u=vλu=v\circ\lambda. However Theorems 4.7, 8.11 and 8.15 are in the case uvλu\neq v\circ\lambda of Construction 3.

Remark 2.

When (A,)=(𝔽q,+)(A,\ast)=(\mathbb{F}_{q},+), c=0c=0 and m1=m=1m_{1}=m=1, Item 2 of Construction 3 is reduced to [46, Theorem 3.2].

4 Many-to-one mappings of the form xrh(xs)x^{r}h(x^{s})

In the rest of the paper, we consider only the mm-to-11 mappings of the form xrh(xs)x^{r}h(x^{s}) over finite fields. We first recall the well-known 11-to-11 property of such polynomials.

Theorem 4.1.

Let q1=sq-1=\ell s for some ,s\ell,s\in\mathbb{N} and h𝔽q[x]h\in\mathbb{F}_{q}[x]. Then xrh(xs)x^{r}h(x^{s}) permutes 𝔽q\mathbb{F}_{q} if and only if (r,s)=1(r,s)=1 and xrh(x)sx^{r}h(x)^{s} permutes UU_{\ell}.

This result appeared in different forms in many references such as [39, 38, 1, 40, 49]. Many classes of permutation polynomials are constructed via an application of this result.

For simplicity we consider only the case that xrh(xs)x^{r}h(x^{s}) has only the root 0 in 𝔽q\mathbb{F}_{q}. The following mm-to-11 relationship between 𝔽q\mathbb{F}_{q} and 𝔽q\mathbb{F}_{q}^{*} is a consequence of Definition 1.1.

Lemma 4.2.

Assume f𝔽q[x]f\in\mathbb{F}_{q}[x] has only the root 0 in 𝔽q\mathbb{F}_{q}. Then ff is 11-to-11 on 𝔽q\mathbb{F}_{q} if and only if ff is 11-to-11 on 𝔽q\mathbb{F}_{q}^{*}. If m2m\geq 2, then ff is mm-to-11 on 𝔽q\mathbb{F}_{q} if and only if mqm\nmid q and ff is mm-to-11 on 𝔽q\mathbb{F}_{q}^{*}.

Proof.

The first part is obvious. Assume m2m\geq 2 and q=km+rq=km+r, where 0rm10\leq r\leq m-1. If ff is mm-to-11 on 𝔽q\mathbb{F}_{q}, then 0Ef(𝔽q)0\in E_{f}(\mathbb{F}_{q}) and so r1r\geq 1. Hence mqm\nmid q and ff is mm-to-11 on 𝔽q\mathbb{F}_{q}^{*} with Ef(𝔽q)=Ef(𝔽q){0}E_{f}(\mathbb{F}_{q}^{*})=E_{f}(\mathbb{F}_{q})\setminus\{0\}. If mqm\nmid q and ff is mm-to-11 on 𝔽q\mathbb{F}_{q}^{*}, then r0r\neq 0 and so #Ef(𝔽q)=(q1)modmm2\#E_{f}(\mathbb{F}_{q}^{*})=(q-1)\bmod{m}\leq m-2. Hence ff is mm-to-11 on 𝔽q\mathbb{F}_{q} with Ef(𝔽q)=Ef(𝔽q){0}E_{f}(\mathbb{F}_{q})=E_{f}(\mathbb{F}_{q}^{*})\cup\{0\}. ∎

By this result, to determine the mm-to-11 property of ff on 𝔽q\mathbb{F}_{q}, we need only find the conditions that ff is mm-to-11 on 𝔽q\mathbb{F}_{q}^{*}. We now give the main theorem of this paper.

Theorem 4.3.

Let q1=sq-1=\ell s and m1=(r,s)m_{1}=(r,s), where ,r,s\ell,r,s\in\mathbb{N}. Let f(x)=xrh(xs)f(x)=x^{r}h(x^{s}) and g(x)=xr1h(x)s1g(x)=x^{r_{1}}h(x)^{s_{1}}, where r1=r/m1r_{1}=r/m_{1}, s1=s/m1s_{1}=s/m_{1}, and h𝔽q[x]h\in\mathbb{F}_{q}[x] has no roots in U:-{α𝔽q:α=1}U_{\ell}\coloneq\{\alpha\in\mathbb{F}_{q}^{*}:\alpha^{\ell}=1\}. Then ff is mm-to-11 on 𝔽q\mathbb{F}_{q}^{*} if and only if m1mm_{1}\mid m, gg is m2m_{2}-to-11 on UU_{\ell}, and s(modm2)<ms(\ell\bmod{m_{2}})<m, where 1mm11\leq m\leq\ell m_{1} and m2=m/m1m_{2}=m/m_{1}.

Proof.

Evidently, xs1f=xrs1h(xs)s1=xr1sh(xs)s1=gxsx^{s_{1}}\circ f=x^{rs_{1}}h(x^{s})^{s_{1}}=x^{r_{1}s}h(x^{s})^{s_{1}}=g\circ x^{s}. Since 𝔽q\mathbb{F}_{q}^{*} is a cyclic group and sq1s\mid q-1, xsx^{s} is ss-to-11 from 𝔽q\mathbb{F}_{q}^{*} onto UU_{\ell}. Because hh has no roots in UU_{\ell}, h(xs)0h(x^{s})\neq 0 for any x𝔽qx\in\mathbb{F}_{q}^{*}, and so f(𝔽q)𝔽qf(\mathbb{F}_{q}^{*})\subseteq\mathbb{F}_{q}^{*}. Since s1q1s_{1}\mid q-1, xs1x^{s_{1}} is s1s_{1}-to-11 from 𝔽q\mathbb{F}_{q}^{*} onto Um1U_{\ell m_{1}}. For any αU\alpha\in U_{\ell}, g(α)m1=αr1m1h(α)s1m1=(α)r1m1h(α)s=1g(\alpha)^{\ell m_{1}}=\alpha^{r_{1}\ell m_{1}}h(\alpha)^{s_{1}\ell m_{1}}=(\alpha^{\ell})^{r_{1}m_{1}}h(\alpha)^{\ell s}=1 and so g(U)Um1g(U_{\ell})\subseteq U_{\ell m_{1}}. Hence the following diagram is commutative:

𝔽q\textstyle{\mathbb{F}_{q}^{*}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f\scriptstyle{f}xs\scriptstyle{x^{s}}𝔽q\textstyle{\mathbb{F}_{q}^{*}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}xs1\scriptstyle{x^{s_{1}}}U\textstyle{U_{\ell}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}g\scriptstyle{g}Um1.\textstyle{U_{\ell m_{1}}.}

Put λ=xs\lambda=x^{s} and λ¯=xs1\bar{\lambda}=x^{s_{1}}. It follows from s=m1s1s=m_{1}s_{1} that #λ1(α)=m1#λ¯1(g(α))\#\lambda^{-1}(\alpha)=m_{1}\#\bar{\lambda}^{-1}(g(\alpha)) for any αU\alpha\in U_{\ell}. Write α=ξis\alpha=\xi^{is} for αU\alpha\in U_{\ell}, where 1i1\leq i\leq\ell and ξ\xi is a primitive element of 𝔽q\mathbb{F}_{q}. Then λ1(α)=ξiξ\lambda^{-1}(\alpha)=\xi^{i}\langle\xi^{\ell}\rangle, where ξ\langle\xi^{\ell}\rangle is a cyclic group of order ss. Thus ff is m1m_{1}-to-11 on λ1(α)\lambda^{-1}(\alpha) by (r,s)=m1(r,s)=m_{1}. According to Construction 2, for 1mm1#U1\leq m\leq m_{1}\#U_{\ell}, ff is mm-to-11 on 𝔽q\mathbb{F}_{q}^{*} if and only if m1mm_{1}\mid m, gg is m2m_{2}-to-11 on UU_{\ell}, and

αEg(U)#λ1(α)=#𝔽qmodm.\sum_{\alpha\in E_{g}(U_{\ell})}\#\lambda^{-1}(\alpha)=\#\mathbb{F}_{q}^{*}\bmod m. (4.1)

Let =2m2+t\ell=\ell_{2}m_{2}+t with 0t<m20\leq t<m_{2}. Then #Eg(U)=t\#E_{g}(U_{\ell})=t and q1=s=2sm2+st=2(s/m1)m+stq-1=\ell s=\ell_{2}sm_{2}+st=\ell_{2}(s/m_{1})m+st. Hence the right-hand side of Eq. 4.1 is stmodmst\bmod m. Since λ\lambda is ss-to-11 from 𝔽q\mathbb{F}_{q}^{*} onto UU_{\ell}, the left-hand side of Eq. 4.1 is stst. Now Eq. 4.1 becomes st=stmodmst=st\bmod m, i.e., st<mst<m. ∎

From the proof above, we see that Theorem 4.3 is a special case of Construction 2, and the explicit condition s(modm2)<ms(\ell\bmod{m_{2}})<m is a simplified version of the restriction Eq. 4.1 about exceptional sets. The main theorem gives us a recipe in which under suitable conditions one can construct mm-to-11 mappings on 𝔽q\mathbb{F}_{q}^{*} from m2m_{2}-to-11 mappings on its subgroup UU_{\ell}.

Example 4.1.

Let f(x)=x2h(x4)f(x)=x^{2}h(x^{4}) and g(x)=xh(x)2g(x)=xh(x)^{2}, where h(x)=x5+x4+15x3+1𝔽29[x]h(x)=x^{5}+x^{4}+15x^{3}+1\in\mathbb{F}_{29}[x]. Note that hh has no roots in U7U_{7} and gg is 66-to-11 on U7U_{7}, where U7={1,7,16,20,23,24,25}U_{7}=\{1,7,16,20,23,24,25\}. Thus ff is 1212-to-11 on 𝔽29\mathbb{F}_{29}^{*} and the exceptional set of ff on 𝔽29\mathbb{F}_{29}^{*} is {±1,±12}\{\pm 1,\pm 12\}.

When m=1m=1, Theorem 4.3 is equivalent to Theorem 4.1. Moreover, applying Theorem 4.3 to m1=1m_{1}=1 or m2=1m_{2}=1 yields the following results.

Corollary 4.4.

Let q1=sq-1=\ell s and (r,s)=1(r,s)=1, where ,r,s\ell,r,s\in\mathbb{N}. Let f(x)=xrh(xs)f(x)=x^{r}h(x^{s}) and g(x)=xrh(x)sg(x)=x^{r}h(x)^{s}, where h𝔽q[x]h\in\mathbb{F}_{q}[x] has no roots in UU_{\ell}. Then ff is mm-to-11 on 𝔽q\mathbb{F}_{q}^{*} if and only if gg is mm-to-11 on UU_{\ell} and s(modm)<ms(\ell\bmod{m})<m, where 1m1\leq m\leq\ell.

Corollary 4.4 generalizes [35, Propsition 4.9] in which mm\mid\ell.

Corollary 4.5.

Let q1=sq-1=\ell s and m1=(r,s)m_{1}=(r,s), where ,r,s\ell,r,s\in\mathbb{N}. Let f(x)=xrh(xs)f(x)=x^{r}h(x^{s}) and g(x)=xr1h(x)s1g(x)=x^{r_{1}}h(x)^{s_{1}}, where r1=r/m1r_{1}=r/m_{1}, s1=s/m1s_{1}=s/m_{1}, and h𝔽q[x]h\in\mathbb{F}_{q}[x] has no roots in UU_{\ell}. Then ff is m1m_{1}-to-11 on 𝔽q\mathbb{F}_{q}^{*} if and only if gg is 11-to-11 on UU_{\ell}.

When f=xrh(xs)f=x^{r}h(x^{s}), λ=xs\lambda=x^{s}, and λ¯=xs1\bar{\lambda}=x^{s_{1}}, Construction 1 reduces to the sufficiency part of Corollary 4.5, and so Construction 2 contains Construction 1. Thus we will not consider Construction 1 in the sequel.

We next give two methods for constructing mm-to-11 mappings from known results.

Theorem 4.6.

Let q1=sq-1=\ell s and let M𝔽q[x]M\in\mathbb{F}_{q}[x] satisfy εxtM(x)s=1\varepsilon x^{t}M(x)^{s}=1 for any xUx\in U_{\ell}, where ,s,t\ell,s,t\in\mathbb{N} and εU\varepsilon\in U_{\ell}. Let

f(x)=xrh(xs)andF(x)=xktM(xs)kf(x),f(x)=x^{r}h(x^{s})\quad\text{and}\quad F(x)=x^{kt}M(x^{s})^{k}f(x),

where r,kr,k\in\mathbb{N} and h𝔽q[x]h\in\mathbb{F}_{q}[x]. If ff permutes 𝔽q\mathbb{F}_{q}, then FF is (r+kt,s)(r+kt,s)-to-11 on 𝔽q\mathbb{F}_{q}^{*}.

Proof.

Clearly, F(x)=xr+ktM(xs)kh(xs)F(x)=x^{r+kt}M(x^{s})^{k}h(x^{s}). Put m1=(r+kt,s)m_{1}=(r+kt,s) and g(x)=x(r+kt)/m1(M(x)kh(x))s/m1g(x)=x^{(r+kt)/m_{1}}(M(x)^{k}h(x))^{s/m_{1}}. Since ff permutes 𝔽q\mathbb{F}_{q} and εxtM(x)s=1\varepsilon x^{t}M(x)^{s}=1, it follows that hh and MM have no roots in UU_{\ell}. By Corollary 4.5, FF is m1m_{1}-to-11 on 𝔽q\mathbb{F}_{q}^{*} if and only if gg is 11-to-11 on UU_{\ell}. For any xUx\in U_{\ell},

xm1g(x)=xr+ktM(x)ksh(x)s=(xtM(x)s)kxrh(x)s=εkxrh(x)s.x^{m_{1}}\circ g(x)=x^{r+kt}M(x)^{ks}h(x)^{s}=(x^{t}M(x)^{s})^{k}x^{r}h(x)^{s}=\varepsilon^{-k}x^{r}h(x)^{s}.

Since ff permutes 𝔽q\mathbb{F}_{q}, we get xrh(x)sx^{r}h(x)^{s} permutes UU_{\ell} by Theorem 4.1. Hence εkxrh(x)s\varepsilon^{-k}x^{r}h(x)^{s} (i.e., xm1g(x)x^{m_{1}}\circ g(x)) permutes UU_{\ell}, and so gg is 11-to-11 on UU_{\ell}. Thus FF is m1m_{1}-to-11 on 𝔽q\mathbb{F}_{q}^{*}. ∎

By this result, we can use known permutations of 𝔽q\mathbb{F}_{q} to construct mm-to-11 mappings on 𝔽q\mathbb{F}_{q}^{*}. Thus it establishes an important and interesting link between permutations and mm-to-11 mappings.

Combining Constructions 3 and 4.3 yields the next result.

Theorem 4.7.

Let k,,r,s,tk,\ell,r,s,t\in\mathbb{N} satisfy q1=sq-1=\ell s, (r,s)t(r,s)\mid t, and (r,s)=(r+kt,s)(r,s)=(r+kt,s). Suppose M𝔽q[x]M\in\mathbb{F}_{q}[x] satisfies εxt/m1M(x)s/m1=1\varepsilon x^{t/m_{1}}M(x)^{s/m_{1}}=1 for any xUx\in U_{\ell}, where m1=(r,s)m_{1}=(r,s) and εUm1\varepsilon\in U_{\ell m_{1}}. Let

f(x)=xrh(xs)andF(x)=xktM(xs)kf(x),f(x)=x^{r}h(x^{s})\quad\text{and}\quad F(x)=x^{kt}M(x^{s})^{k}f(x),

where h𝔽q[x]h\in\mathbb{F}_{q}[x] has no roots in UU_{\ell}. Then FF is mm-to-11 on 𝔽q\mathbb{F}_{q}^{*} if and only if ff is mm-to-11 on 𝔽q\mathbb{F}_{q}^{*}, where 1mm11\leq m\leq\ell m_{1}.

Proof.

Put λ=xs\lambda=x^{s}, λ¯=xs1\bar{\lambda}=x^{s_{1}}, and g(x):-xr1h(x)s1g(x)\coloneq x^{r_{1}}h(x)^{s_{1}}, where r1=r/m1r_{1}=r/m_{1} and s1=s/m1s_{1}=s/m_{1}. In the proof of Theorem 4.3, we have already shown that λ¯f=gλ\bar{\lambda}\circ f=g\circ\lambda, λ\lambda is surjective from 𝔽q\mathbb{F}_{q}^{*} to UU_{\ell}, #λ1(α)=m1#λ¯1(g(α))\#\lambda^{-1}(\alpha)=m_{1}\,\#\bar{\lambda}^{-1}(g(\alpha)), and ff is m1m_{1}-to-11 on λ1(α)\lambda^{-1}(\alpha) for any αU\alpha\in U_{\ell}. For xλ1(α)x\in\lambda^{-1}(\alpha), i.e., λ(x)=α\lambda(x)=\alpha, we get F(x)=xr+ktM(α)kh(α)F(x)=x^{r+kt}M(\alpha)^{k}h(\alpha), and so FF is m1m_{1}-to-11 on λ1(α)\lambda^{-1}(\alpha) by (r+kt,s)=m1(r+kt,s)=m_{1}. Clearly, λ¯\bar{\lambda} is a homomorphism from 𝔽q\mathbb{F}_{q}^{*} onto Um1U_{\ell m_{1}} and

(xktM(xs)k)s1=(xs1tM(xs)s1)k=(xst1M(xs)s1)k=εkUm1\displaystyle(x^{kt}M(x^{s})^{k})^{s_{1}}=(x^{s_{1}t}M(x^{s})^{s_{1}})^{k}=(x^{st_{1}}M(x^{s})^{s_{1}})^{k}=\varepsilon^{-k}\in U_{\ell m_{1}}

for any x𝔽qx\in\mathbb{F}_{q}^{*}, where t1=t/m1t_{1}=t/m_{1}. Then the result follows from Construction 3. ∎

In this result, the polynomials ff and FF have the same mm-to-11 property. Thus we can use know mm-to-11 mapping ff to construct new mm-to-11 mapping FF by Theorem 4.7; see for example Theorems 8.11 and 8.15.

The main theorem converts the problem whether ff is mm-to-11 on 𝔽q\mathbb{F}_{q}^{*} to the second problem whether gg is m2m_{2}-to-11 on UU_{\ell}. In the following sections, we will make an in-depth study of the second problem in the special cases:

  1. \edefnn(1)

    m=2,3m=2,3;

  2. \edefnn(2)

    =2,3\ell=2,3;

  3. \edefnn(3)

    gg behaves like a monomial on UU_{\ell};

  4. \edefnn(4)

    gg behaves like a rational function on UU_{\ell};

  5. \edefnn(5)

    the second problem is converted to another problem by using Construction 2 again.

5 The case m=2,3m=2,3

Applying Theorem 4.3 to m=2m=2, 33 yields the following results.

Theorem 5.1.

Let q1=sq-1=\ell s and m1=(r,s)m_{1}=(r,s), where r1r\geq 1, s2s\geq 2, and 2\ell\geq 2. Let f(x)=xrh(xs)f(x)=x^{r}h(x^{s}) and g(x)=xr1h(x)s1g(x)=x^{r_{1}}h(x)^{s_{1}}, where r1=r/m1r_{1}=r/m_{1}, s1=s/m1s_{1}=s/m_{1}, and h𝔽q[x]h\in\mathbb{F}_{q}[x] has no roots in UU_{\ell}. Then ff is 22-to-11 on 𝔽q\mathbb{F}_{q}^{*} if and only if one of the following holds:

  1. \edefitn(1)

    m1=1m_{1}=1, \ell is even, and gg is 22-to-11 on UU_{\ell};

  2. \edefitn(2)

    m1=2m_{1}=2 and gg is 11-to-11 on UU_{\ell}.

Proof.

By Theorem 4.3, ff is 22-to-11 on 𝔽q\mathbb{F}_{q}^{*} if and only if m12m_{1}\mid 2, s(modm2)<2s(\ell\bmod{m_{2}})<2, and gg is m2m_{2}-to-11 on UU_{\ell}, where m2=2/m1m_{2}=2/m_{1}. If m1=1m_{1}=1, then m2=2m_{2}=2. Since s2s\geq 2, s(mod2)<2s(\ell\bmod{2})<2 is equivalent to 22\mid\ell. If m1=2m_{1}=2, then m2=1m_{2}=1 and s(mod1)=0<2s(\ell\bmod{1})=0<2. ∎

Item 2 of Theorem 5.1 generalizes [30, Proposition 16] which only gives the sufficiency. We next give an example of Theorem 5.1.

Corollary 5.2.

Let f(x)=xr(x2q23+xq13+a)f(x)=x^{r}(x^{\frac{2q-2}{3}}+x^{\frac{q-1}{3}}+a), where r1r\geq 1, q7q\geq 7, 3q13\mid q-1, and a𝔽q{1,2}a\in\mathbb{F}_{q}\setminus\{1,-2\}. Then ff is 22-to-11 on 𝔽q\mathbb{F}_{q}^{*} if and only if (r,q13)=2(r,\frac{q-1}{3})=2, r2,4(mod6)r\equiv 2,4\pmod{6}, and ((a1)5(a+2))q16{ω,ω2}((a-1)^{5}(a+2))^{\frac{q-1}{6}}\notin\{\omega,\omega^{2}\}, where ω\omega is a primitive 33-th root of unity over 𝔽q\mathbb{F}_{q}.

Proof.

Clearly, =3\ell=3 and U3={1,ω,ω2}U_{3}=\{1,\omega,\omega^{2}\}. Let h(x)=x2+x+ah(x)=x^{2}+x+a. Then h(1)=a+2h(1)=a+2 and h(ω)=h(ω2)=a1h(\omega)=h(\omega^{2})=a-1, and so hh has no roots in U3U_{3}. By Theorem 5.1, ff is 22-to-11 on 𝔽q\mathbb{F}_{q}^{*} if and only if (r,q13)=2(r,\frac{q-1}{3})=2 and g(x):-xr2h(x)q16g(x)\coloneq x^{\frac{r}{2}}h(x)^{\frac{q-1}{6}} is 11-to-11 on U3U_{3}, i.e., g(1)g(1), g(ω)g(\omega), and g(ω2)g(\omega^{2}) are distinct. The latter is equivalent to ((a1)5(a+2))q16{ωr2,ωr}((a-1)^{5}(a+2))^{\frac{q-1}{6}}\notin\{\omega^{\frac{r}{2}},\omega^{r}\} and ωr21\omega^{\frac{r}{2}}\neq 1. Then the result follows from 2r2\mid r and ord(ω)=3\mathrm{ord}(\omega)=3. ∎

Theorem 5.3.

Let q1=sq-1=\ell s and m1=(r,s)m_{1}=(r,s), where r1r\geq 1, s2s\geq 2, and 3\ell\geq 3. Let f(x)=xrh(xs)f(x)=x^{r}h(x^{s}) and g(x)=xr1h(x)s1g(x)=x^{r_{1}}h(x)^{s_{1}}, where r1=r/m1r_{1}=r/m_{1}, s1=s/m1s_{1}=s/m_{1}, and h𝔽q[x]h\in\mathbb{F}_{q}[x] has no roots in UU_{\ell}. Then ff is 33-to-11 on 𝔽q\mathbb{F}_{q}^{*} if and only if one of the following holds:

  1. \edefitn(1)

    m1=1m_{1}=1, 0(mod3)\ell\equiv 0\pmod{3}, and gg is 33-to-11 on UU_{\ell};

  2. \edefitn(2)

    m1=1m_{1}=1, 1(mod3)\ell\equiv 1\pmod{3}, s=2s=2, and gg is 33-to-11 on UU_{\ell};

  3. \edefitn(3)

    m1=3m_{1}=3 and gg is 11-to-11 on UU_{\ell}.

Proof.

By Theorem 4.3, ff is 33-to-11 on 𝔽q\mathbb{F}_{q}^{*} if and only if m13m_{1}\mid 3, s(modm2)<3s(\ell\bmod{m_{2}})<3, and gg is m2m_{2}-to-11 on UU_{\ell}, where m2=3/m1m_{2}=3/m_{1}. If m1=1m_{1}=1, then m2=3m_{2}=3. Since s2s\geq 2, s(mod3)<3s(\ell\bmod{3})<3 is equivalent to 0(mod3)\ell\equiv 0\pmod{3} or 1(mod3)\ell\equiv 1\pmod{3} and s=2s=2. If m1=3m_{1}=3, then m2=1m_{2}=1 and s(mod1)=0<3s(\ell\bmod{1})=0<3. ∎

6 The case =2,3\ell=2,3

When UU_{\ell} has few elements, i.e., \ell is small, it is easy to determine the mm-to-11 property of gg on UU_{\ell}. As an example, we consider the case =2\ell=2, 33 in this section.

Theorem 6.1.

Let qq be odd, s=(q1)/2s=(q-1)/2, and m1=(r,s)m_{1}=(r,s), where r,sr,s\in\mathbb{N}. Let f(x)=xrh(xs)f(x)=x^{r}h(x^{s}) and g(x)=xr1h(x)s1g(x)=x^{r_{1}}h(x)^{s_{1}}, where r1=r/m1r_{1}=r/m_{1}, s1=s/m1s_{1}=s/m_{1}, and h𝔽q[x]h\in\mathbb{F}_{q}[x] with h(1)h(1)0h(1)h(-1)\neq 0. Then, for 1m2m11\leq m\leq 2m_{1}, ff is mm-to-11 on 𝔽q\mathbb{F}_{q}^{*} if and only if (1) m=m1m=m_{1} and g(1)g(1)g(1)\neq g(-1), or (2) m=2m1m=2m_{1} and g(1)=g(1)g(1)=g(-1).

Applying Theorem 6.1 to h(x)=x+ah(x)=x+a yields the following result.

Corollary 6.2.

Let f(x)=xr(xq12+a)f(x)=x^{r}(x^{\frac{q-1}{2}}+a), where rr\in\mathbb{N}, qq is odd, and a𝔽q{±1}a\in\mathbb{F}_{q}\setminus\{\pm 1\}. Then ff is 22-to-11 on 𝔽q\mathbb{F}_{q}^{*} if and only if (1) (r,q12)=1(r,\frac{q-1}{2})=1 and (a21)q12=(1)r(a^{2}-1)^{\frac{q-1}{2}}=(-1)^{r}, or (2) (r,q12)=2(r,\frac{q-1}{2})=2 and ((a+1)/(a1))q14(1)r2((a+1)/(a-1))^{\frac{q-1}{4}}\neq(-1)^{\frac{r}{2}}.

This result generalizes [35, Theorem 4.14] in which q3(mod4)q\equiv 3\pmod{4} and (r,q12)=1(r,\frac{q-1}{2})=1.

Theorem 6.3.

Let s=(q1)/3s=(q-1)/3 and m1=(r,s)m_{1}=(r,s), where r,sr,s\in\mathbb{N} and 3q13\mid q-1. Let f(x)=xrh(xs)f(x)=x^{r}h(x^{s}) and g(x)=xr1h(x)s1g(x)=x^{r_{1}}h(x)^{s_{1}}, where r1=r/m1r_{1}=r/m_{1}, s1=s/m1s_{1}=s/m_{1}, and h𝔽q[x]h\in\mathbb{F}_{q}[x] has no roots in U3U_{3}. Then, for 1m3m11\leq m\leq 3m_{1}, ff is mm-to-11 on 𝔽q\mathbb{F}_{q}^{*} if and only if one of the following holds:

  1. \edefitn(1)

    m=m1m=m_{1} and gg is 11-to-11 on U3U_{3};

  2. \edefitn(2)

    m=2m1m=2m_{1}, gg is 22-to-11 on U3U_{3}, and srs\mid r;

  3. \edefitn(3)

    m=3m1m=3m_{1} and gg is 33-to-11 on U3U_{3}.

Applying Theorem 6.3 to h(x)=xah(x)=x-a yields the following result.

Corollary 6.4.

Let f(x)=xr(xq13a)f(x)=x^{r}(x^{\frac{q-1}{3}}-a) and g(x)=xr1(xa)s1g(x)=x^{r_{1}}(x-a)^{s_{1}}, where rr\in\mathbb{N}, 3q13\mid q-1, a𝔽qU3a\in\mathbb{F}_{q}\setminus U_{3}, r1=r/(r,q13)r_{1}=r/(r,\frac{q-1}{3}), and s1=(q1)/(3r,q1)s_{1}=(q-1)/(3r,q-1). Then ff is 33-to-11 on 𝔽q\mathbb{F}_{q}^{*} if and only if (1) (r,q13)=1(r,\frac{q-1}{3})=1 and gg is 33-to-11 on U3U_{3}, or (2) (r,q13)=3(r,\frac{q-1}{3})=3 and gg is 11-to-11 on U3U_{3}.

Example 6.1.

Let f(x)=x2(x21+ξ9)f(x)=x^{2}(x^{21}+\xi^{9}) and g(x)=x2(x+ξ9)21g(x)=x^{2}(x+\xi^{9})^{21}, where ξ\xi is a primitive element of 𝔽64\mathbb{F}_{64} such that ξ6+ξ4+ξ3+ξ+1=0\xi^{6}+\xi^{4}+\xi^{3}+\xi+1=0. Then g(1)=g(ω)=g(ω2)=1g(1)=g(\omega)=g(\omega^{2})=1, where ω=ξ21\omega=\xi^{21}. Hence ff is 33-to-11 on 𝔽64\mathbb{F}_{64}^{*}.

7 Monomials

The difficulty in applying Theorem 4.3 is verifying that gg is m2m_{2}-to-11 on UU_{\ell}. While it is easy when gg behaves like a monomial on UU_{\ell}. The results in this section are conjunctions of Theorem 4.3 and [1, 49, 51].

Theorem 7.1.

Let q1=sq-1=\ell s, m1=(r,s)m_{1}=(r,s), r1=r/m1r_{1}=r/m_{1}, and s1=s/m1s_{1}=s/m_{1}, where ,r,s\ell,r,s\in\mathbb{N}. Let h𝔽q[x]h\in\mathbb{F}_{q}[x] and h(α)s1=βαth(\alpha)^{s_{1}}=\beta\alpha^{t} for any αU\alpha\in U_{\ell}, a fixed βU\beta\in U_{\ell}, and a fixed integer tt. Then f(x):-xrh(xs)f(x)\coloneq x^{r}h(x^{s}) is mm-to-11 on 𝔽q\mathbb{F}_{q}^{*} if and only if m1mm_{1}\mid m and (r1+t,)=m/m1(r_{1}+t,\ell)=m/m_{1}, where 1mm11\leq m\leq\ell m_{1}.

Proof.

For any xUx\in U_{\ell}, by h(x)s1=βxth(x)^{s_{1}}=\beta x^{t}, we get xr1h(x)s1=βxr1+tx^{r_{1}}h(x)^{s_{1}}=\beta x^{r_{1}+t}, which is m2m_{2}-to-11 on UU_{\ell} if and only if (r1+t,)=m2(r_{1}+t,\ell)=m_{2}. The result follows now from Theorem 4.3. ∎

In Theorem 7.1, g(x):-xr1h(x)s1g(x)\coloneq x^{r_{1}}h(x)^{s_{1}} behaves like the monomial βxr1+t\beta x^{r_{1}+t} on UU_{\ell}. The following results give choices for the parameters satisfying the hypotheses of Theorem 7.1.

Corollary 7.2.

Let q1=sq-1=\ell s and m1=(r,s)m_{1}=(r,s), where ,r,s\ell,r,s\in\mathbb{N}. Let f(x)=xrh(xs)m1f(x)=x^{r}h(x^{s})^{\ell m_{1}}, where h𝔽q[x]h\in\mathbb{F}_{q}[x] has no roots in UU_{\ell}. Then ff is mm-to-11 on 𝔽q\mathbb{F}_{q}^{*} if and only if m1mm_{1}\mid m and (r,m1)=m(r,\ell m_{1})=m, where 1mm11\leq m\leq\ell m_{1}.

Proof.

For αU\alpha\in U_{\ell}, h(α)m1s1=h(α)q1=1h(\alpha)^{\ell m_{1}s_{1}}=h(\alpha)^{q-1}=1. Now the result is in the special case β=1\beta=1 and t=0t=0 of Theorem 7.1. ∎

7.1 mm-to-11 mappings on 𝔽q2\mathbb{F}_{q^{2}}^{*}

Now we extend a class of permutations of 𝔽q2\mathbb{F}_{q^{2}}^{*} in [51, Theorem 5.1] to mm-to-11 mappings on 𝔽q2\mathbb{F}_{q^{2}}^{*}.

Theorem 7.3.

Suppose M𝔽q2[x]M\in\mathbb{F}_{q^{2}}[x] has no roots in Uq+1U_{q+1} and εxtM(x)q=M(x)\varepsilon x^{t}M(x)^{q}=M(x) for any xUq+1x\in U_{q+1}, where εUq+1\varepsilon\in U_{q+1} and deg(M)t2deg(M)\deg(M)\leq t\leq 2\deg(M). Let f(x)=xrM(xq1)km1f(x)=x^{r}M(x^{q-1})^{km_{1}}, where r,kr,k\in\mathbb{N} and m1=(r,q1)m_{1}=(r,q-1). Then ff is mm-to-11 on 𝔽q2\mathbb{F}_{q^{2}}^{*} if and only if m1mm_{1}\mid m and (r1kt,q+1)=m/m1(r_{1}-kt,q+1)=m/m_{1}, where r1=r/m1r_{1}=r/m_{1} and 1mm1(q+1)1\leq m\leq m_{1}(q+1).

Proof.

Since 0εxtM(x)q=M(x)0\neq\varepsilon x^{t}M(x)^{q}=M(x) for xUq+1x\in U_{q+1}, we get M(x)q1=ε1xtM(x)^{q-1}=\varepsilon^{-1}x^{-t}, and so M(x)k(q1)=εkxktM(x)^{k(q-1)}=\varepsilon^{-k}x^{-kt}. Then the result follows from Theorem 7.1. ∎

When t=deg(M)t=\deg(M) and k=m1=m=1k=m_{1}=m=1, Theorem 7.3 is equivalent to [51, Theorem 5.1].

Remark 3.

The polynomial MM satisfying εxtM(x)q=M(x)\varepsilon x^{t}M(x)^{q}=M(x) for any xUq+1x\in U_{q+1} can be described explicitly. Indeed, let M(x)=i=0daixi𝔽q2[x]M(x)=\sum_{i=0}^{d}a_{i}x^{i}\in\mathbb{F}_{q^{2}}[x], where d=deg(M)d=\deg(M). Then a direct computation gives that

εxtMq=Mif and only ifM(x)=i=tdt/2(aixi+εaiqxti),\varepsilon x^{t}M^{q}=M\quad\text{if and only if}\quad M(x)=\sum_{i=t-d}^{\lfloor t/2\rfloor}(a_{i}x^{i}+\varepsilon a_{i}^{q}x^{t-i}),

where t/2\lfloor t/2\rfloor denotes the largest integer t/2\leq t/2.

For simple, take t=dt=d, a0=aUq+1a_{0}=-a\in U_{q+1}, ε=a\varepsilon=-a, and other ai=0a_{i}=0. Then M(x)=xdaM(x)=x^{d}-a, and it has no roots in Uq+1U_{q+1} if and only if a(Uq+1)da\notin(U_{q+1})^{d}. Hence we obtain the following result.

Corollary 7.4.

Let a𝔽q2a\in\mathbb{F}_{q^{2}} satisfy aq+1=1a^{q+1}=1 and at1a^{t}\neq 1, where t=(q+1)/(d,q+1)t=(q+1)/(d,q+1) with dd\in\mathbb{N}. Let f(x)=xr(xd(q1)a)km1f(x)=x^{r}(x^{d(q-1)}-a)^{km_{1}}, where r,kr,k\in\mathbb{N} and m1=(r,q1)m_{1}=(r,q-1). Then ff is mm-to-11 on 𝔽q2\mathbb{F}_{q^{2}}^{*} if and only if m1mm_{1}\mid m and (r1kd,q+1)=m/m1(r_{1}-kd,q+1)=m/m_{1}, where r1=r/m1r_{1}=r/m_{1} and 1mm1(q+1)1\leq m\leq m_{1}(q+1).

Example 7.1.

Let qq be odd such that 3q+13\mid q+1 and 8q+18\nmid q+1. Then x4q3+xx^{4q-3}+x is 33-to-11 on 𝔽q2\mathbb{F}_{q^{2}}^{*}.

Example 7.2.

Let q=2nq=2^{n} and nn be odd. Let a𝔽q2a\in\mathbb{F}_{q^{2}} satisfy aq+1=1a^{q+1}=1 and a(q+1)/31a^{(q+1)/3}\neq 1. Then x3q+3+ax6x^{3q+3}+ax^{6} is 33-to-11 on 𝔽q2\mathbb{F}_{q^{2}}^{*}.

Example 7.3.

Let qq be odd and 3q+13\mid q+1. Let a𝔽q2a\in\mathbb{F}_{q^{2}} satisfy aq+1=1a^{q+1}=1 and a(q+1)/31a^{(q+1)/3}\neq 1. Then x3q2axx^{3q-2}-ax is 22-to-11 on 𝔽q2\mathbb{F}_{q^{2}}^{*}.

7.2 mm-to-11 mappings on 𝔽qn\mathbb{F}_{q^{n}}^{*}

Next we extend two classes of permutations of 𝔽qn\mathbb{F}_{q^{n}}^{*} in [49] to mm-to-11 mappings on 𝔽qn\mathbb{F}_{q^{n}}^{*}.

Theorem 7.5.

Let qn1=sq^{n}-1=\ell s, m1=(r,s)m_{1}=(r,s), and m1(q1,n)\ell m_{1}\mid(q-1,n), where nn, \ell, ss, rr\in\mathbb{N}. Let f(x)=xrh(xs)f(x)=x^{r}h(x^{s}), where h𝔽q[x]h\in\mathbb{F}_{q}[x] has no roots in UU_{\ell}. Then ff is m1m_{1}-to-11 on 𝔽qn\mathbb{F}_{q^{n}}^{*}.

Proof.

Let r1=r/m1r_{1}=r/m_{1} and s1=s/m1s_{1}=s/m_{1}. Since q1(modm1)q\equiv 1\pmod{\ell m_{1}},

qm11q1=i=0m11qi0(modm1),\frac{q^{\ell m_{1}}-1}{q-1}=\sum^{\ell m_{1}-1}_{i=0}q^{i}\equiv 0\pmod{\ell m_{1}},

and so q1q-1 divides (qm11)/(m1)(q^{\ell m_{1}}-1)/(\ell m_{1}), which divides (qn1)/(m1)(q^{n}-1)/(\ell m_{1}), i.e., s1s_{1}. Thus q1s1q-1\mid s_{1}. For αU\alpha\in U_{\ell}, we have α𝔽q\alpha\in\mathbb{F}_{q}^{*} by q1\ell\mid q-1, and so h(α)𝔽qh(\alpha)\in\mathbb{F}_{q}^{*}. Then h(α)s1=1h(\alpha)^{s_{1}}=1 by q1s1q-1\mid s_{1}. Since q1\ell\mid q-1 and q1s1q-1\mid s_{1}, we get s1\ell\mid s_{1}. Then (r1,)=1(r_{1},\ell)=1 by (r1,s1)=1(r_{1},s_{1})=1. Now the result is in the special case t=0t=0 and m=m1m=m_{1} of Theorem 7.1. ∎

In the following results we use the notation

hd(x)=xd1+xd2++x+1.h_{d}(x)=x^{d-1}+x^{d-2}+\cdots+x+1. (7.1)
Theorem 7.6.

Let qn1=sq^{n}-1=\ell s, m1=(r,s)m_{1}=(r,s), and m1q+1\ell m_{1}\mid q+1, where nn is even, ,s,r\ell,s,r\in\mathbb{N}. Assume h(x):-hd(xe)tH(hk(xe)0)h(x)\coloneq h_{d}(x^{e})^{t}H(h_{k}(x^{e})^{\ell_{0}}) has no roots in UU_{\ell}, where H𝔽q[x]H\in\mathbb{F}_{q}[x], d,e,t,kd,e,t,k\in\mathbb{N}, and 0=/(,k1)\ell_{0}=\ell/(\ell,k-1). Then, for 1mm11\leq m\leq\ell m_{1}, f(x):-xrh(xs)f(x)\coloneq x^{r}h(x^{s}) is mm-to-11 on 𝔽qn\mathbb{F}_{q^{n}}^{*} if and only if m1mm_{1}\mid m and

(m1,r+(1d)estq1)=m.\Big{(}\ell m_{1},r+\frac{(1-d)est}{q-1}\Big{)}=m. (7.2)
Proof.

Since nn is even and m1q+1\ell m_{1}\mid q+1, we have the divisibility relations

q1=q21q+1qn1q+1qn1m1=s1,q-1=\frac{q^{2}-1}{q+1}\mid\frac{q^{n}-1}{q+1}\mid\frac{q^{n}-1}{\ell m_{1}}=s_{1},

where s1=s/m1s_{1}=s/m_{1}. For αU{1}\alpha\in U_{\ell}\setminus\{1\}, we get αq=α1\alpha^{q}=\alpha^{-1} by q+1\ell\mid q+1, and so

hk(α)q=(αk1α1)q=αk1α11=hk(α)αk1.h_{k}(\alpha)^{q}=\Big{(}\frac{\alpha^{k}-1}{\alpha-1}\Big{)}^{q}=\frac{\alpha^{-k}-1}{\alpha^{-1}-1}=\frac{h_{k}(\alpha)}{\alpha^{k-1}}.

Then hk(α)0q=hk(α)0h_{k}(\alpha)^{\ell_{0}q}=h_{k}(\alpha)^{\ell_{0}}, i.e., hk(α)0𝔽qh_{k}(\alpha)^{\ell_{0}}\in\mathbb{F}_{q}. Clearly, hk(1)=k𝔽qh_{k}(1)=k\in\mathbb{F}_{q}. Since H𝔽q[x]H\in\mathbb{F}_{q}[x] and H(hk(xe)0)H(h_{k}(x^{e})^{\ell_{0}}) has no roots in UU_{\ell}, we have H(hk(αe)0)𝔽qH(h_{k}(\alpha^{e})^{\ell_{0}})\in\mathbb{F}_{q}^{*} for any αU\alpha\in U_{\ell}. Thus H(hk(αe)0)s1=1H(h_{k}(\alpha^{e})^{\ell_{0}})^{s_{1}}=1.

For αU\alpha\in U_{\ell}, if αe1\alpha^{e}\neq 1, then αq=α1\alpha^{q}=\alpha^{-1} by q+1\ell\mid q+1, and so

hd(αe)q=(αed1αe1)q=αed1αe1=hd(αe)αe(d1).h_{d}(\alpha^{e})^{q}=\Big{(}\frac{\alpha^{ed}-1}{\alpha^{e}-1}\Big{)}^{q}=\frac{\alpha^{-ed}-1}{\alpha^{-e}-1}=\frac{h_{d}(\alpha^{e})}{\alpha^{e(d-1)}}.

By hypothesis, hd(xe)h_{d}(x^{e}) has no roots in UU_{\ell}, and so hd(αe)q1=αe(1d)h_{d}(\alpha^{e})^{q-1}=\alpha^{e(1-d)}. Thus

hd(αe)s1=hd(αe)(q1)s1/(q1)=αe(1d)s1/(q1).h_{d}(\alpha^{e})^{s_{1}}=h_{d}(\alpha^{e})^{(q-1)s_{1}/(q-1)}=\alpha^{e(1-d)s_{1}/(q-1)}.

If αe=1\alpha^{e}=1, then hd(αe)s1=hd(1)s1=ds1=1h_{d}(\alpha^{e})^{s_{1}}=h_{d}(1)^{s_{1}}=d^{s_{1}}=1 by d𝔽qd\in\mathbb{F}_{q}^{*} and q1s1q-1\mid s_{1}. Thus hd(αe)s1=αe(1d)s1/(q1)h_{d}(\alpha^{e})^{s_{1}}=\alpha^{e(1-d)s_{1}/(q-1)} for any αU\alpha\in U_{\ell}. Then the result follows from Theorem 7.1. ∎

The following lemma characterizes the condition that hd(xe)h_{d}(x^{e}) has no roots in UU_{\ell}.

Lemma 7.7.

Let UU_{\ell} be the cyclic group of all \ell-th roots of unity over 𝔽qn\mathbb{F}_{q^{n}}, where ,n\ell,n\in\mathbb{N} and qn1\ell\mid q^{n}-1. Then hd(xe)h_{d}(x^{e}) has no roots in UU_{\ell} if and only if (d,q/(e,))=1(d,q\ell/(e,\ell))=1, where d,ed,e\in\mathbb{N}.

Proof.

Evidently, hd(1)0h_{d}(1)\neq 0 if and only if (d,q)=1(d,q)=1. For αU{1}\alpha\in U_{\ell}\setminus\{1\}, hd(α)=(αd1)/(α1)h_{d}(\alpha)=(\alpha^{d}-1)/(\alpha-1). Then hd(α)0h_{d}(\alpha)\neq 0 if and only if αd1\alpha^{d}\neq 1, which is equivalent to (d,)=1(d,\ell)=1. Hence hd(x)h_{d}(x) has no roots in UU_{\ell} if and only if (d,q)=1(d,q\ell)=1. Note that xex^{e} is (e,)(e,\ell)-to-11 from UU_{\ell} onto U/(e,)U_{\ell/(e,\ell)}. Thus hd(xe)h_{d}(x^{e}) has no roots in UU_{\ell} if and only if hd(x)h_{d}(x) has no roots in U/(e,)U_{\ell/(e,\ell)}, which is equivalent to (d,q/(e,))=1(d,q\ell/(e,\ell))=1. ∎

Applying Theorem 7.5 to h(x)=hd(xe)th(x)=h_{d}(x^{e})^{t} and Theorem 7.6 to H(x)=1H(x)=1 yields the following results.

Corollary 7.8.

Let qn1=sq^{n}-1=\ell s, m1=(r,s)m_{1}=(r,s), and m1(q1,n)\ell m_{1}\mid(q-1,n), where n,,s,rn,\ell,s,r\in\mathbb{N}. Let f(x)=xrhd(xes)tf(x)=x^{r}h_{d}(x^{es})^{t}, where d,e,td,e,t\in\mathbb{N} with (d,q/(e,))=1(d,q\ell/(e,\ell))=1. Then ff is m1m_{1}-to-11 on 𝔽qn\mathbb{F}_{q^{n}}^{*}.

Corollary 7.9.

Let qn1=sq^{n}-1=\ell s, m1=(r,s)m_{1}=(r,s), and m1q+1\ell m_{1}\mid q+1, where nn is even, ,s,r\ell,s,r\in\mathbb{N}. Let f(x)=xrhd(xes)tf(x)=x^{r}h_{d}(x^{es})^{t}, where d,e,td,e,t\in\mathbb{N} with (d,q/(e,))=1(d,q\ell/(e,\ell))=1. Then ff is mm-to-11 on 𝔽qn\mathbb{F}_{q^{n}}^{*} if and only if m1mm_{1}\mid m and Eq. 7.2 holds, where 1mm11\leq m\leq\ell m_{1}.

The results in this subsection generalize Theorems 1.2 and 1.3, Corollaries 2.3 and 2.4 in [49] where m1=1m_{1}=1 and (e,)=1(e,\ell)=1.

8 Rational functions

In this section, we consider the case that gg behaves like a rational function on UU_{\ell}. Part 1 presents two classes of mm-to-11 mappings on 𝔽q2\mathbb{F}_{q^{2}}^{*} by using known 11-to-11 rational functions. Parts 2 and 3 give two classes of rational functions that are 33-to-11 and 55-to-11 on Uq+1U_{q+1} respectively, by finding the decompositions of two algebraic curves.

Applying Theorems 4.3 and 4.7 to =q+1\ell=q+1 and s=q1s=q-1 yields the next results.

Theorem 8.1.

Let f(x)=xrh(xq1)f(x)=x^{r}h(x^{q-1}) and g(x)=xr1h(x)s1g(x)=x^{r_{1}}h(x)^{s_{1}}, where h𝔽q2[x]h\in\mathbb{F}_{q^{2}}[x] has no roots in Uq+1U_{q+1}, r1r\geq 1, r1=r/m1r_{1}=r/m_{1}, s1=(q1)/m1s_{1}=(q-1)/m_{1}, and m1=(r,q1)m_{1}=(r,q-1). Then ff is mm-to-11 on 𝔽q2\mathbb{F}_{q^{2}}^{*} if and only if m1mm_{1}\mid m, gg is m2m_{2}-to-11 on Uq+1U_{q+1}, and (q1)(q+1modm2)<m(q-1)(q+1\bmod{m_{2}})<m, where 1mm1(q+1)1\leq m\leq m_{1}(q+1) and m2=m/m1m_{2}=m/m_{1}.

Theorem 8.2.

Suppose M𝔽q2[x]M\in\mathbb{F}_{q^{2}}[x] has no roots in Uq+1U_{q+1} and εxtM(x)q=M(x)\varepsilon x^{t}M(x)^{q}=M(x) for any xUq+1x\in U_{q+1}, where εUq+1\varepsilon\in U_{q+1} and deg(M)t2deg(M)\deg(M)\leq t\leq 2\deg(M). Let f(x)=xrh(xq1)f(x)=x^{r}h(x^{q-1}) and F(x)=xktM(xq1)kf(x)F(x)=x^{kt}M(x^{q-1})^{k}f(x), where r,kr,k\in\mathbb{N} satisfy (r,q1)=(r+kt,q1)=1(r,q-1)=(r+kt,q-1)=1 and h𝔽q2[x]h\in\mathbb{F}_{q^{2}}[x] has no roots in Uq+1U_{q+1}. Then FF is mm-to-11 on 𝔽q2\mathbb{F}_{q^{2}}^{*} if and only if ff is mm-to-11 on 𝔽q2\mathbb{F}_{q^{2}}^{*}, where 1mq+11\leq m\leq q+1.

8.1 Known 1-to-1 rational functions

Lemma 8.3 ([16, Lemma 2.2]).

For nn\in\mathbb{N}, x4+x+1x^{4}+x+1 and x4+x3+1x^{4}+x^{3}+1 have no roots in U2n+1U_{2^{n}+1}.

Lemma 8.4 ([47, Lemma 3.2]).

Let q=2nq=2^{n} with n1n\geq 1. Then

G(x):-x5+x2+xx4+x3+1G(x)\coloneq\frac{x^{5}+x^{2}+x}{x^{4}+x^{3}+1}

permutes Uq+1U_{q+1} if and only if nn is even.

Theorem 8.5.

Let q=2nq=2^{n} with nn even. Let f1(x)=x4q+1+x3q+2+x5f_{1}(x)=x^{4q+1}+x^{3q+2}+x^{5} and f2(x)=x5q+x2q+3+xq+4f_{2}(x)=x^{5q}+x^{2q+3}+x^{q+4}. Then f1f_{1} and f2f_{2} are (5,q1)(5,q-1)-to-11 on 𝔽q2\mathbb{F}_{q^{2}}^{*}.

Proof.

Put h1(x)=x4+x3+1h_{1}(x)=x^{4}+x^{3}+1 and g1(x)=x5m1h1(x)q1m1g_{1}(x)=x^{\frac{5}{m_{1}}}h_{1}(x)^{\frac{q-1}{m_{1}}}, where m1=(5,q1)m_{1}=(5,q-1). Then

xm1g1(x)=x5h1(x)q1=x5(x4+x3+1)qx4+x3+1=x5(x4+x3+1)x4+x3+1=G(x)\displaystyle x^{m_{1}}\circ g_{1}(x)=x^{5}h_{1}(x)^{q-1}=\frac{x^{5}(x^{4}+x^{3}+1)^{q}}{x^{4}+x^{3}+1}=\frac{x^{5}(x^{-4}+x^{-3}+1)}{x^{4}+x^{3}+1}=G(x)

for xUq+1x\in U_{q+1}. By Lemma 8.4, GG is 11-to-11 on Uq+1U_{q+1}, and so g1g_{1} is 11-to-11 on Uq+1U_{q+1}. Thus f1f_{1} is m1m_{1}-to-11 on 𝔽q2\mathbb{F}_{q^{2}}^{*} by Lemmas 8.3 and 8.1.

Put h2(x)=x5+x2+xh_{2}(x)=x^{5}+x^{2}+x and g2(x)=x5m1h2(x)q1m1g_{2}(x)=x^{\frac{5}{m_{1}}}h_{2}(x)^{\frac{q-1}{m_{1}}}, where m1=(5,q1)m_{1}=(5,q-1). Then xm1g2(x)=1/G(x)x^{m_{1}}\circ g_{2}(x)=1/G(x) for xUq+1x\in U_{q+1}. By Lemma 8.4, 1/G1/G is 11-to-11 on Uq+1U_{q+1}, and so g2g_{2} is 11-to-11 on Uq+1U_{q+1}. Thus f2f_{2} is m1m_{1}-to-11 on 𝔽q2\mathbb{F}_{q^{2}}^{*}. ∎

Theorem 8.5 extends [47, Theorems 3.1 and 3.2] in which n2(mod4)n\equiv 2\pmod{4}.

8.2 New 3-to-1 rational function

We begin with a different proof of a result in [23, 8, 21].

Lemma 8.6 ([23, 8, 21]).

Let Ai={c𝔽2nTr2n/2(1/c)=i}A_{i}=\{c\in\mathbb{F}_{2^{n}}^{*}\mid\mathrm{Tr}_{2^{n}/2}(1/c)=i\} with i=0i=0 or 11. Then the mapping aa+1/aa\mapsto a+1/a is 22-to-11 from 𝔽2n{0,1}\mathbb{F}_{2^{n}}\setminus\{0,1\} onto A0A_{0} and is 22-to-11 from U2n+1{1}U_{2^{n}+1}\setminus\{1\} onto A1A_{1}, where U2n+1={a𝔽22na2n+1=1}U_{2^{n}+1}=\{a\in\mathbb{F}_{2^{2n}}\mid a^{2^{n}+1}=1\}.

Proof.

For aU2n+1{1}a\in U_{2^{n}+1}\setminus\{1\}, we have a+1/a𝔽2na+1/a\in\mathbb{F}_{2^{n}}^{*} and

Tr2n/2((a+1/a)1)\displaystyle\mathrm{Tr}_{2^{n}/2}((a+1/a)^{-1}) =Tr2n/2(1/(a+1)+1/(a2+1))\displaystyle=\mathrm{Tr}_{2^{n}/2}(1/(a+1)+1/(a^{2}+1))
=1/(a+1)+1/(a2n+1)\displaystyle=1/(a+1)+1/(a^{2^{n}}+1)
=1,\displaystyle=1,

i.e., a+1/aA1a+1/a\in A_{1}. For any aa, a+bU2n+1{1}a+b\in U_{2^{n}+1}\setminus\{1\}, if a+1/a=(a+b)+1/(a+b)a+1/a=(a+b)+1/(a+b), then b=0b=0 or b=(a2+1)/a0b=(a^{2}+1)/a\neq 0. Thus aa+1/aa\mapsto a+1/a is 22-to-11 from U2n+1{1}U_{2^{n}+1}\setminus\{1\} onto A1A_{1} with cardinality 2n12^{n-1}. Similarly, aa+1/aa\mapsto a+1/a is 22-to-11 from 𝔽2n{0,1}\mathbb{F}_{2^{n}}\setminus\{0,1\} onto A0A_{0} with cardinality 2n112^{n-1}-1. ∎

Corollary 8.7.

For any c𝔽2nc\in\mathbb{F}_{2^{n}}^{*}, Tr2n/2(1/c)=0\mathrm{Tr}_{2^{n}/2}(1/c)=0 if and only if c=a+a1c=a+a^{-1} for some a𝔽2n{0,1}a\in\mathbb{F}_{2^{n}}\setminus\{0,1\}, and Tr2n/2(1/c)=1\mathrm{Tr}_{2^{n}/2}(1/c)=1 if and only if c=a+a1c=a+a^{-1} for some aU2n+1{1}a\in U_{2^{n}+1}\setminus\{1\}.

We next give a new class of 33-to-11 rational functions.

Lemma 8.8.

Let c𝔽2nc\in\mathbb{F}_{2^{n}}^{*} with n1n\geq 1 and

g(x)=cx3+x2+1x3+x+c.g(x)=\frac{cx^{3}+x^{2}+1}{x^{3}+x+c}.

If Tr2n/2(1+c1)=0\mathrm{Tr}_{2^{n}/2}(1+c^{-1})=0, then gg is 11-to-11 on U2n+1U_{2^{n}+1}. If Tr2n/2(1+c1)=1\mathrm{Tr}_{2^{n}/2}(1+c^{-1})=1, then gg is 33-to-11 on U2n+1U_{2^{n}+1}.

Proof.

Put q=2nq=2^{n}. Proposition 3.1 (i) in [4] implies that x3+x+cx^{3}+x+c has no roots in Uq+1U_{q+1}. Then for any xx, yUq+1y\in U_{q+1}, g(x)=g(y)g(x)=g(y) is equivalent to

(cx3+x2+1)(y3+y+c)=(cy3+y2+1)(x3+x+c).(cx^{3}+x^{2}+1)(y^{3}+y+c)=(cy^{3}+y^{2}+1)(x^{3}+x+c). (8.1)

Proposition 3.2 (ii) in [4] states that Eq. 8.1 factors as

(x+y)H1(x,y)H2(x,y)=0,(x+y)H_{1}(x,y)H_{2}(x,y)=0, (8.2)

where H1(x,y)=xy+αx+βy+1H_{1}(x,y)=xy+\alpha x+\beta y+1, H2(x,y)=xy+βx+αy+1H_{2}(x,y)=xy+\beta x+\alpha y+1, and α,β𝔽q2\alpha,\beta\in\mathbb{F}_{q^{2}} are the roots of Q(x):-x2+cx+c2+1Q(x)\coloneq x^{2}+cx+c^{2}+1. Thus α+β=c\alpha+\beta=c and αβ=c2+1\alpha\beta=c^{2}+1.

(i) When Tr2n/2(1+c1)=0\mathrm{Tr}_{2^{n}/2}(1+c^{-1})=0, we get Trq/2((c2+1)/c2)=0\mathrm{Tr}_{q/2}((c^{2}+1)/c^{2})=0 and so α,β𝔽q\alpha,\beta\in\mathbb{F}_{q}. For any xx, yUq+1y\in U_{q+1},

xyH1(x,y)q\displaystyle xyH_{1}(x,y)^{q} =xy(xy+αx+βy+1)q\displaystyle=xy(xy+\alpha x+\beta y+1)^{q}
=xy(x1y1+αx1+βy1+1)\displaystyle=xy(x^{-1}y^{-1}+\alpha x^{-1}+\beta y^{-1}+1)
=xy+βx+αy+1\displaystyle=xy+\beta x+\alpha y+1
=H2(x,y)\displaystyle=H_{2}(x,y)

and so the roots of H1H_{1} and H2H_{2} are the same. For xx, yUq+1y\in U_{q+1}, if H1(x,y)0H_{1}(x,y)\neq 0, then H2(x,y)0H_{2}(x,y)\neq 0 and so x=yx=y by Eq. 8.2, which implies that gg is 11-to-11 on U2n+1U_{2^{n}+1}. Thus we need only show that if H1(x,y)=0H_{1}(x,y)=0, then x=yx=y.

If βUq+1\beta\in U_{q+1}, then β𝔽qUq+1={1}\beta\in\mathbb{F}_{q}\cap U_{q+1}=\{1\}, i.e., β=1\beta=1. Since α+β=c\alpha+\beta=c and αβ=c2+1\alpha\beta=c^{2}+1, we get α=c+1=c2+1\alpha=c+1=c^{2}+1. Hence c=1c=1 and so α=0\alpha=0. Then H1(x,y)=xy+y+1H_{1}(x,y)=xy+y+1. If H1(x,y)=0H_{1}(x,y)=0, then x1x\neq 1 and y=(x+1)1y=(x+1)^{-1}. By yq=y1y^{q}=y^{-1}, we get x2+x=1x^{2}+x=1 and so y=(x+1)1=xy=(x+1)^{-1}=x.

If βUq+1\beta\notin U_{q+1}, then x+β0x+\beta\neq 0 for any xUq+1x\in U_{q+1}. If H1(x,y)=0H_{1}(x,y)=0, then y=(αx+1)/(x+β)y=(\alpha x+1)/(x+\beta) and so

yq=(αx+1x+β)q=αx1+1x1+β=α+x1+βx.y^{q}=\Big{(}\frac{\alpha x+1}{x+\beta}\Big{)}^{q}=\frac{\alpha x^{-1}+1}{x^{-1}+\beta}=\frac{\alpha+x}{1+\beta x}.

By yUq+1y\in U_{q+1} and α+β=c0\alpha+\beta=c\neq 0, we get the following equivalent statements:

yq=y1\displaystyle y^{q}=y^{-1}~{}\Longleftrightarrow α+x1+βx=x+βαx+1\displaystyle~{}~{}\frac{\alpha+x}{1+\beta x}=\frac{x+\beta}{\alpha x+1}
\displaystyle\Longleftrightarrow (α+β)x2+(α+β)2x+(α+β)=0\displaystyle~{}~{}(\alpha+\beta)x^{2}+(\alpha+\beta)^{2}x+(\alpha+\beta)=0
\displaystyle\Longleftrightarrow x2+(α+β)x+1=0\displaystyle~{}~{}x^{2}+(\alpha+\beta)x+1=0
\displaystyle\Longleftrightarrow x=(αx+1)/(x+β)=y.\displaystyle~{}~{}x=(\alpha x+1)/(x+\beta)=y.

(ii) When Tr2n/2(1+c1)=1\mathrm{Tr}_{2^{n}/2}(1+c^{-1})=1, we have Trq/2((c2+1)/c2)=1\mathrm{Tr}_{q/2}((c^{2}+1)/c^{2})=1. Thus QQ is irreducible over 𝔽q\mathbb{F}_{q} and so α,β𝔽q2𝔽q\alpha,\beta\in\mathbb{F}_{q^{2}}\setminus\mathbb{F}_{q} with β=αq\beta=\alpha^{q}. Since αq+1=c2+1\alpha^{q+1}=c^{2}+1 and c0c\neq 0, we get α,αqUq+1\alpha,\alpha^{q}\notin U_{q+1}. Denote

y0=x,y1=(αx+1)/(x+αq),y2=(αqx+1)/(x+α).y_{0}=x,\quad y_{1}=(\alpha x+1)/(x+\alpha^{q}),\quad y_{2}=(\alpha^{q}x+1)/(x+\alpha). (8.3)

Then for any xUq+1x\in U_{q+1},

y1q=(αx+1x+αq)q=x+αqαx+1=1y1y_{1}^{q}=\Big{(}\frac{\alpha x+1}{x+\alpha^{q}}\Big{)}^{q}=\frac{x+\alpha^{q}}{\alpha x+1}=\frac{1}{y_{1}}

and y2q=y21y_{2}^{q}=y_{2}^{-1} similarly. Thus (x,yi)Uq+1×Uq+1(x,y_{i})\in U_{q+1}\times U_{q+1}, 0i20\leq i\leq 2, are solutions of Eq. 8.2. Hence, gg is 33-to-11 on Uq+1U_{q+1} if and only if y0y_{0}, y1y_{1}, y2y_{2} are distinct for any xUq+1x\in U_{q+1} except for (q+1)mod3(q+1)\bmod{3} elements. By Eq. 8.3 and α+αq=c\alpha+\alpha^{q}=c, it is easy to verify that yi=yjy_{i}=y_{j} for any ij{0,1,2}i\neq j\in\{0,1,2\} if and only if x2+cx+1=0x^{2}+cx+1=0.

If nn is odd, then 3q+13\mid q+1 and Trq/2(1)=1\mathrm{Tr}_{q/2}(1)=1. Since Trq/2(1+c1)=1\mathrm{Tr}_{q/2}(1+c^{-1})=1, we get Trq/2(1/c)=0\mathrm{Tr}_{q/2}(1/c)=0. By Lemma 8.6, x2+cx+1x^{2}+cx+1 has two distinct roots x0,x01x_{0},x_{0}^{-1} in 𝔽q{0,1}\mathbb{F}_{q}\setminus\{0,1\}. Hence for any xUq+1x\in U_{q+1}, x2+cx+10x^{2}+cx+1\neq 0, and so y0y_{0}, y1y_{1}, y2y_{2} are distinct. Thus gg is 33-to-11 on Uq+1U_{q+1}.

If nn is even, then q+12(mod3)q+1\equiv 2\pmod{3} and Trq/2(1)=0\mathrm{Tr}_{q/2}(1)=0. Since Trq/2(1+c1)=1\mathrm{Tr}_{q/2}(1+c^{-1})=1, we get Trq/2(1/c)=1\mathrm{Tr}_{q/2}(1/c)=1. By Lemma 8.6, x2+cx+1x^{2}+cx+1 has two distinct roots x0,x01x_{0},x_{0}^{-1} in Uq+1{1}U_{q+1}\setminus\{1\}. Hence for any xUq+1{x0,x01}x\in U_{q+1}\setminus\{x_{0},x_{0}^{-1}\}, x2+cx+10x^{2}+cx+1\neq 0, and so y0y_{0}, y1y_{1}, y2y_{2} are distinct. Thus gg is 33-to-11 on Uq+1U_{q+1}. ∎

This result generalizes [47, Lemma 4.1] where c=1c=1 and [4, Proposition 3.2 (ii)] where nn is even and Tr2n/2(1/c)=0\mathrm{Tr}_{2^{n}/2}(1/c)=0. Moreover, it also implies the following result.

Corollary 8.9.

Let g1(x)=x(x3+x+c)2n13g_{1}(x)=x(x^{3}+x+c)^{\frac{2^{n}-1}{3}}, where c𝔽2nc\in\mathbb{F}_{2^{n}}^{*} and nn is even. If Tr2n/2(1/c)=0\mathrm{Tr}_{2^{n}/2}(1/c)=0, then g1g_{1} is 11-to-11 on U2n+1U_{2^{n}+1}. If Tr2n/2(1/c)=1\mathrm{Tr}_{2^{n}/2}(1/c)=1, then g1g_{1} is 33-to-11 on U2n+1U_{2^{n}+1}.

Proof.

Let q=2nq=2^{n}. For any xUq+1x\in U_{q+1}, xq=x1x^{q}=x^{-1} and so

x3g1=x3(x3+x+c)qx3+x+c=x3(x3+x1+c)x3+x+c=cx3+x2+1x3+x+c.\displaystyle x^{3}\circ g_{1}=\frac{x^{3}(x^{3}+x+c)^{q}}{x^{3}+x+c}=\frac{x^{3}(x^{-3}+x^{-1}+c)}{x^{3}+x+c}=\frac{cx^{3}+x^{2}+1}{x^{3}+x+c}. (8.4)

If Trq/2(1/c)=0\mathrm{Tr}_{q/2}(1/c)=0, then x3g1x^{3}\circ g_{1} is 11-to-11 on Uq+1U_{q+1} by Lemma 8.8, and so g1g_{1} is 11-to-11 on Uq+1U_{q+1}.

If Trq/2(1/c)=1\mathrm{Tr}_{q/2}(1/c)=1, then x2+cx+c2+1x^{2}+cx+c^{2}+1 has two roots α,αq𝔽q2𝔽q\alpha,\alpha^{q}\in\mathbb{F}_{q^{2}}\setminus\mathbb{F}_{q}, where α+αq=c\alpha+\alpha^{q}=c and αq+1=c2+1\alpha^{q+1}=c^{2}+1. Thus α,αqUq+1\alpha,\alpha^{q}\notin U_{q+1}, αq=α+c\alpha^{q}=\alpha+c, α2=cα+c2+1\alpha^{2}=c\alpha+c^{2}+1, and α3=αα2=α+c3+c\alpha^{3}=\alpha\alpha^{2}=\alpha+c^{3}+c. Denote

y0=x,y1=(αx+1)/(x+αq),y2=(αqx+1)/(x+α).y_{0}=x,\quad y_{1}=(\alpha x+1)/(x+\alpha^{q}),\quad y_{2}=(\alpha^{q}x+1)/(x+\alpha).

In the proof of Lemma 8.8, we have already shown that y0,y1,y2Uq+1y_{0},y_{1},y_{2}\in U_{q+1} and they are distinct for any xUq+1{x0,x01}x\in U_{q+1}\setminus\{x_{0},x_{0}^{-1}\}, where x0,x01Uq+1x_{0},x_{0}^{-1}\in U_{q+1} are the roots of x2+cx+1x^{2}+cx+1. To prove that g1g_{1} is 33-to-11 on Uq+1U_{q+1}, we need only show g1(y0)=g1(y1)=g1(y2)g_{1}(y_{0})=g_{1}(y_{1})=g_{1}(y_{2}) for any xUq+1{x0,x01}x\in U_{q+1}\setminus\{x_{0},x_{0}^{-1}\}. Indeed, for any xUq+1x\in U_{q+1},

g1(y1)\displaystyle g_{1}(y_{1}) =αx+1x+αq((αx+1x+αq)3+αx+1x+αq+c)q13\displaystyle=\frac{\alpha x+1}{x+\alpha^{q}}\Big{(}\Big{(}\frac{\alpha x+1}{x+\alpha^{q}}\Big{)}^{3}+\frac{\alpha x+1}{x+\alpha^{q}}+c\Big{)}^{\frac{q-1}{3}}
=αx+1(x+αq)q((αx+1)3+(αx+1)(x+αq)2+c(x+αq)3)q13\displaystyle=\frac{\alpha x+1}{(x+\alpha^{q})^{q}}\big{(}(\alpha x+1)^{3}+(\alpha x+1)(x+\alpha^{q})^{2}+c(x+\alpha^{q})^{3}\big{)}^{\frac{q-1}{3}}
=αx+1xq+(α+c)q((αx+1)3+(αx+1)(x+α+c)2+c(x+α+c)3)q13\displaystyle=\frac{\alpha x+1}{x^{q}+(\alpha+c)^{q}}\big{(}(\alpha x+1)^{3}+(\alpha x+1)(x+\alpha+c)^{2}+c(x+\alpha+c)^{3}\big{)}^{\frac{q-1}{3}}
=αx+1x1+α((α3+α+c)x3+(α3+cα2+(c2+1)α+c3)x+c(α+c)3+(α+c)2+1)q13\displaystyle=\frac{\alpha x+1}{x^{-1}+\alpha}\big{(}(\alpha^{3}+\alpha+c)x^{3}+(\alpha^{3}+c\alpha^{2}+(c^{2}+1)\alpha+c^{3})x+c(\alpha+c)^{3}+(\alpha+c)^{2}+1\big{)}^{\frac{q-1}{3}}
=x(c3x3+c3x+c4)q13\displaystyle=x(c^{3}x^{3}+c^{3}x+c^{4})^{\frac{q-1}{3}}
=x(x3+x+c)q13\displaystyle=x(x^{3}+x+c)^{\frac{q-1}{3}}
=g1(y0)\displaystyle=g_{1}(y_{0})

and g1(y2)=g1(y0)g_{1}(y_{2})=g_{1}(y_{0}) by a similar argument. ∎

Theorem 8.10.

Let f(x)=x3q+xq+2+cx3f(x)=x^{3q}+x^{q+2}+cx^{3} or f(x)=cx3q+x2q+1+x3f(x)=cx^{3q}+x^{2q+1}+x^{3}, where q=2nq=2^{n} with n2n\geq 2 and c𝔽qc\in\mathbb{F}_{q}^{*}. Then ff is 11-to-11 on 𝔽q2\mathbb{F}_{q^{2}}^{*} if and only if nn is odd and Trq/2(1/c)=1\mathrm{Tr}_{q/2}(1/c)=1, and ff is 33-to-11 on 𝔽q2\mathbb{F}_{q^{2}}^{*} if and only if Trq/2(1/c)=0\mathrm{Tr}_{q/2}(1/c)=0.

Proof.

Since the rational functions corresponding to these two polynomials are reciprocal to each other, we need only consider the first polynomial. Fix h(x)=x3+x+ch(x)=x^{3}+x+c. Then f(x)=x3h(xq1)f(x)=x^{3}h(x^{q-1}). Let m1=(3,q1)m_{1}=(3,q-1) and g(x)=x3/m1h(x)(q1)/m1g(x)=x^{3/m_{1}}h(x)^{(q-1)/m_{1}}. By Theorem 8.1, ff is 11-to-11 on 𝔽q2\mathbb{F}_{q^{2}}^{*} if and only if m1=1m_{1}=1 and x3h(x)q1x^{3}h(x)^{q-1} is 11-to-11 on Uq+1U_{q+1}, i.e., nn is odd and Trq/2(1/c)=1\mathrm{Tr}_{q/2}(1/c)=1 by Eq. 8.4 and Lemma 8.8.

By Theorem 5.3, ff is 33-to-11 on 𝔽q2\mathbb{F}_{q^{2}}^{*} if and only if (1) m1=1m_{1}=1, 3q+13\mid q+1, and x3h(x)q1x^{3}h(x)^{q-1} is 33-to-11 on Uq+1U_{q+1}, or (2) m1=3m_{1}=3 and xh(x)(q1)/3xh(x)^{(q-1)/3} is 11-to-11 on Uq+1U_{q+1}. If nn is odd, then m1=1m_{1}=1 and 3q+13\mid q+1. By Lemma 8.8, x3h(x)q1x^{3}h(x)^{q-1} is 33-to-11 on Uq+1U_{q+1} if and only if Trq/2(1/c)=0\mathrm{Tr}_{q/2}(1/c)=0. Thus ff is 33-to-11 on 𝔽q2\mathbb{F}_{q^{2}}^{*} if and only if Trq/2(1/c)=0\mathrm{Tr}_{q/2}(1/c)=0. If nn is even, then m1=3m_{1}=3. By Corollary 8.9, xh(x)(q1)/3xh(x)^{(q-1)/3} is 11-to-11 on Uq+1U_{q+1} if and only if Trq/2(1/c)=0\mathrm{Tr}_{q/2}(1/c)=0. Thus ff is 33-to-11 on 𝔽q2\mathbb{F}_{q^{2}}^{*} if and only if Trq/2(1/c)=0\mathrm{Tr}_{q/2}(1/c)=0. ∎

Remark 4.

All permutation polynomials of the form x3q+bxq+2+cx3x^{3q}+bx^{q+2}+cx^{3} and cx3q+bx2q+1+x3cx^{3q}+bx^{2q+1}+x^{3} of 𝔽q2\mathbb{F}_{q^{2}} are classified in [36, 37], where qq is arbitrary and b,c𝔽qb,c\in\mathbb{F}_{q}^{*}. The 11-to-11 part of Theorem 8.10 is the special case b=1b=1 of [36, 37]. However, the 33-to-11 part of Theorem 8.10 is new and interesting.

We next use Theorems 8.2 and 8.10 to construct new 33-to-11 mappings.

Theorem 8.11.

Let F(x)=xk(d1)hd(xq1)kf(x)F(x)=x^{k(d-1)}h_{d}(x^{q-1})^{k}f(x), where kk\in\mathbb{N}, dd is odd and hdh_{d} is as in Eq. 7.1, q=2nq=2^{n} with odd n3n\geq 3, and ff is as in Theorem 8.10. Assume (d,q+1)=1(d,q+1)=1 and (3+k(d1),q1)=1(3+k(d-1),q-1)=1. Then FF is 33-to-11 on 𝔽q2\mathbb{F}_{q^{2}}^{*} if and only if Trq/2(1/c)=0\mathrm{Tr}_{q/2}(1/c)=0.

Proof.

Since (d,q+1)=1(d,q+1)=1 and dd is odd, we get (d,q(q+1))=1(d,q(q+1))=1 and so hdh_{d} has no roots in Uq+1U_{q+1} by Lemma 7.7. Assume t=d1t=d-1. Then hd(x)=xthd(x)qh_{d}(x)=x^{t}h_{d}(x)^{q} for any xUq+1x\in U_{q+1}. Because nn is odd, we have (3,q1)=1(3,q-1)=1. Then the result follows from Theorems 8.2 and 8.10

8.3 New 5-to-1 rational function

Lemma 8.12.

Let q=2nq=2^{n} with n1n\geq 1 and

g(x)=x4+x+1x5+x4+x.g(x)=\frac{x^{4}+x+1}{x^{5}+x^{4}+x}.

If n2(mod4)n\equiv 2\pmod{4}, then gg is 55-to-11 on Uq+1U_{q+1}. If n2(mod4)n\not\equiv 2\pmod{4}, then gg is 11-to-11 on Uq+1U_{q+1}.

Proof.

By Lemma 8.3, x(x4+x3+1)x(x^{4}+x^{3}+1) has no roots in Uq+1U_{q+1}. Hence for any xx, yUq+1y\in U_{q+1}, g(x)=g(y)g(x)=g(y) is equivalent to

(x4+x+1)(y5+y4+y)=(x5+x4+x)(y4+y+1).(x^{4}+x+1)(y^{5}+y^{4}+y)=(x^{5}+x^{4}+x)(y^{4}+y+1). (8.5)

[3, Page 8] states that Eq. 8.5 factors as

(x+y)i=14(xy+ω2i1x+ω2i+1y+1)=0,(x+y)\prod_{i=1}^{4}(xy+\omega^{2^{i-1}}x+\omega^{2^{i+1}}y+1)=0, (8.6)

where ω\omega is a primitive element of 𝔽16\mathbb{F}_{16} such that ω4+ω+1=0\omega^{4}+\omega+1=0. This factorization can be verified manually or by a computer program. Since ord(ω2i+1)=15\mathrm{ord}(\omega^{2^{i+1}})=15 and q+10(mod15)q+1\not\equiv 0\pmod{15}, we get ω2i+1Uq+1\omega^{2^{i+1}}\notin U_{q+1}, and so x+ω2i+10x+\omega^{2^{i+1}}\neq 0 for any xUq+1x\in U_{q+1}, where 1i41\leq i\leq 4. Let

y0=xandyi=(ω2i1x+1)/(x+ω2i+1),1i4.y_{0}=x\quad\text{and}\quad y_{i}=(\omega^{2^{i-1}}x+1)/(x+\omega^{2^{i+1}}),\quad 1\leq i\leq 4. (8.7)

Then (x,yi)Uq+1×K(x,y_{i})\in U_{q+1}\times K, 0i40\leq i\leq 4, are solutions of Eq. 8.6, where KK is an extension field of 𝔽q2\mathbb{F}_{q^{2}}. Thus gg is 11-to-11 on Uq+1U_{q+1} if and only if Eq. 8.6 has no roots (x,y)Uq+12(x,y)\in U_{q+1}^{2} with xyx\neq y. When 5q+15\mid q+1, gg is 55-to-11 on Uq+1U_{q+1} if and only if y0y_{0}, y1y_{1}, …, y4y_{4} in Uq+1U_{q+1} and they are distinct for any xUq+1x\in U_{q+1}.

For 1i41\leq i\leq 4, a direct computation yields that yiq=1/yiy_{i}^{q}=1/y_{i} if and only if αx2+βx+γ=0\alpha x^{2}+\beta x+\gamma=0, where

α=ω2i1+ω2i+1q,β=ω2i1ω2i1q+ω2i+1ω2i+1q,γ=ω2i1q+ω2i+1.\alpha=\omega^{2^{i-1}}+\omega^{2^{i+1}q},\quad\beta=\omega^{2^{i-1}}\omega^{2^{i-1}q}+\omega^{2^{i+1}}\omega^{2^{i+1}q},\quad\gamma=\omega^{2^{i-1}q}+\omega^{2^{i+1}}.

Because

ω2i1+ω2i+1=(ω+ω4)2i1=1,\omega^{2^{i-1}}+\omega^{2^{i+1}}=(\omega+\omega^{4})^{2^{i-1}}=1, (8.8)

we have

β\displaystyle\beta =ω2i1(ω2i+1+1)q+(ω2i1+1)ω2i+1q=α,\displaystyle=\omega^{2^{i-1}}(\omega^{2^{i+1}}+1)^{q}+(\omega^{2^{i-1}}+1)\omega^{2^{i+1}q}=\alpha,
γ\displaystyle\gamma =(ω2i+1+1)q+(ω2i1+1)=α.\displaystyle=(\omega^{2^{i+1}}+1)^{q}+(\omega^{2^{i-1}}+1)=\alpha.

Thus yiUq+1y_{i}\in U_{q+1} if and only if α(x2+x+1)=0\alpha(x^{2}+x+1)=0. Since ω16=ω\omega^{16}=\omega, α=0\alpha=0 if and only if n2(mod4)n\equiv 2\pmod{4}.

If n2(mod4)n\equiv 2\pmod{4}, then α=0\alpha=0 and so yiUq+1y_{i}\in U_{q+1} for 1i41\leq i\leq 4. HenceEq. 8.6 has five solutions y0y_{0}, y1y_{1}, …, y4y_{4} in Uq+1U_{q+1} for any xUq+1x\in U_{q+1}. (i) Assume yi=y0y_{i}=y_{0} for some i{1,2,3,4}i\in\{1,2,3,4\}. By Eqs. 8.7 and 8.8, yi=y0y_{i}=y_{0} is equivalent to x2+x+1=0x^{2}+x+1=0. Thus x3=1x^{3}=1 and x1x\neq 1, a contradiction to that Uq+1U_{q+1} has no elements of order 33 by (3,q+1)=1(3,q+1)=1. (ii) Assume yi=yjy_{i}=y_{j} for some ij{1,2,3,4}i\neq j\in\{1,2,3,4\}. By Eq. 8.7, yi=yjy_{i}=y_{j} is equivalent to

(ω2i1+ω2j1)x2+(ω2i1ω2j+1+ω2i+1ω2j1)x+ω2i+1+ω2j+1=0,(\omega^{2^{i-1}}+\omega^{2^{j-1}})x^{2}+(\omega^{2^{i-1}}\omega^{2^{j+1}}+\omega^{2^{i+1}}\omega^{2^{j-1}})x+\omega^{2^{i+1}}+\omega^{2^{j+1}}=0, (8.9)

Since ord(ω)=15\mathrm{ord}(\omega)=15, ω2i1ω2j1\omega^{2^{i-1}}\neq\omega^{2^{j-1}} for any ij{1,2,3,4}i\neq j\in\{1,2,3,4\}. By Eq. 8.8, ω2i+1=ω2i1+1\omega^{2^{i+1}}=\omega^{2^{i-1}}+1. Hence Eq. 8.9 is equivalent to x2+x+1=0x^{2}+x+1=0, a contradiction to that Uq+1U_{q+1} has no elements of order 33. Combining (i) and (ii), we see that y0y_{0}, y1y_{1}, …, y4y_{4} are distinct. Note that 5q+15\mid q+1. Therefore, gg is 55-to-11 on Uq+1U_{q+1}.

If n2(mod4)n\not\equiv 2\pmod{4}, then α0\alpha\neq 0. Hence yiUq+1y_{i}\in U_{q+1} for i{1,2,3,4}i\in\{1,2,3,4\} if and only if x2+x+1=0x^{2}+x+1=0. When n0(mod4)n\equiv 0\pmod{4}, we have (3,q+1)=1(3,q+1)=1, and so Uq+1U_{q+1} has no elements of order 33. Thus yiUq+1y_{i}\notin U_{q+1} for any i{1,2,3,4}i\in\{1,2,3,4\}, i.e., Eq. 8.6 has no roots (x,y)Uq+12(x,y)\in U_{q+1}^{2} with xyx\neq y. When n1,3(mod4)n\equiv 1,3\pmod{4}, we get 3q+13\mid q+1, and so Uq+1U_{q+1} has two elements of order 33. Then yiUq+1y_{i}\in U_{q+1}, i.e., x2+x+1=0x^{2}+x+1=0, implies that

ω2i1x+1=ω2i1x+x+x2=x(ω2i+1+x),\omega^{2^{i-1}}x+1=\omega^{2^{i-1}}x+x+x^{2}=x(\omega^{2^{i+1}}+x),

i.e., yi=xy_{i}=x for any i{1,2,3,4}i\in\{1,2,3,4\} by Eq. 8.7. Hence Eq. 8.6 also has no roots (x,y)Uq+12(x,y)\in U_{q+1}^{2} with xyx\neq y. Therefore, gg is 11-to-11 on Uq+1U_{q+1} if n2(mod4)n\not\equiv 2\pmod{4}. ∎

Lemma 8.12 unifies some results in [16, 27, 24] which only consider the 11-to-11 property of gg under different conditions.

Theorem 8.13.

Let f(x)=x4q1+x3q+x3f(x)=x^{4q-1}+x^{3q}+x^{3}, where q=2nq=2^{n} with n2n\geq 2. Then ff is 11-to-11 on 𝔽q2\mathbb{F}_{q^{2}}^{*} if and only if nn is odd, and ff is 33-to-11 on 𝔽q2\mathbb{F}_{q^{2}}^{*} if and only if n0(mod4)n\equiv 0\pmod{4}.

Proof.

Fix h(x)=x4+x3+1h(x)=x^{4}+x^{3}+1. Then hh has no roots in Uq+1U_{q+1} by Lemma 8.3 and f(x)=x3h(xq1)f(x)=x^{3}h(x^{q-1}). For any xUq+1x\in U_{q+1}, xq=x1x^{q}=x^{-1} and so

x3h(x)q1=x3(x4+x3+1)qx4+x3+1=x3(x4+x3+1)x4+x3+1=x4+x+1x5+x4+x.\displaystyle x^{3}h(x)^{q-1}=\frac{x^{3}(x^{4}+x^{3}+1)^{q}}{x^{4}+x^{3}+1}=\frac{x^{3}(x^{-4}+x^{-3}+1)}{x^{4}+x^{3}+1}=\frac{x^{4}+x+1}{x^{5}+x^{4}+x}.

Let m1=(3,q1)m_{1}=(3,q-1) and g(x)=x3/m1h(x)(q1)/m1g(x)=x^{3/m_{1}}h(x)^{(q-1)/m_{1}}. By Theorem 8.1, ff is 11-to-11 on 𝔽q2\mathbb{F}_{q^{2}}^{*} if and only if m1=1m_{1}=1 and x3h(x)q1x^{3}h(x)^{q-1} is 11-to-11 on Uq+1U_{q+1}, i.e., nn is odd by Lemma 8.12.

Lemma 8.12 implies x3h(x)q1x^{3}h(x)^{q-1} is not 33-to-11 on Uq+1U_{q+1}. Thus, by Theorem 5.3, ff is 33-to-11 on 𝔽q2\mathbb{F}_{q^{2}}^{*} if and only if m1=3m_{1}=3 and g1(x):-xh(x)(q1)/3g_{1}(x)\coloneq xh(x)^{(q-1)/3} is 11-to-11 on Uq+1U_{q+1}. The condition m1=3m_{1}=3 is equivalent to nn is even. If n0(mod4)n\equiv 0\pmod{4}, then x3g1x^{3}\circ g_{1} is 11-to-11 on Uq+1U_{q+1} by Lemma 8.12, and so g1g_{1} is 11-to-11 on Uq+1U_{q+1}. If n2(mod4)n\equiv 2\pmod{4}, then x3g1x^{3}\circ g_{1} is 55-to-11 on Uq+1U_{q+1} by Lemma 8.12. Since g1g_{1} induces a map from Uq+1U_{q+1} to U3(q+1)U_{3(q+1)} and x3x^{3} is a 33-to-11 map from U3(q+1)U_{3(q+1)} to Uq+1U_{q+1}, we have g1g_{1} is not 11-to-11 on Uq+1U_{q+1}. Hence ff is 33-to-11 on 𝔽q2\mathbb{F}_{q^{2}}^{*} if and only if n0(mod4)n\equiv 0\pmod{4}. ∎

Theorem 8.14.

Let f(x)=x4q+1+xq+4+x5f(x)=x^{4q+1}+x^{q+4}+x^{5} or f(x)=x5q+x4q+1+xq+4f(x)=x^{5q}+x^{4q+1}+x^{q+4}, where q=2nq=2^{n} with n1n\geq 1. If nn is odd, then ff is 11-to-11 on 𝔽q2\mathbb{F}_{q^{2}}^{*}. If nn is even, then ff is 55-to-11 on 𝔽q2\mathbb{F}_{q^{2}}^{*}.

Proof.

Since the rational functions corresponding to these two polynomials are reciprocal to each other, we need only consider the first polynomial. Fix h(x)=x4+x+1h(x)=x^{4}+x+1. Then hh has no roots in Uq+1U_{q+1} by Lemma 8.3 and f(x)=x5h(xq1)f(x)=x^{5}h(x^{q-1}). For any xUq+1x\in U_{q+1}, xq=x1x^{q}=x^{-1} and so

g(x):-x5h(x)q1=x5(x4+x+1)qx4+x+1=x5(x4+x1+1)x4+x+1=x5+x4+xx4+x+1.g(x)\coloneq x^{5}h(x)^{q-1}=\frac{x^{5}(x^{4}+x+1)^{q}}{x^{4}+x+1}=\frac{x^{5}(x^{-4}+x^{-1}+1)}{x^{4}+x+1}=\frac{x^{5}+x^{4}+x}{x^{4}+x+1}.

For any yUq+1y\in U_{q+1}, we get y1Uq+1y^{-1}\in U_{q+1}. Thus, by Lemma 8.12, gg is 55-to-11 on Uq+1U_{q+1} if n2(mod4)n\equiv 2\pmod{4}, and gg is 11-to-11 on Uq+1U_{q+1} if n2(mod4)n\not\equiv 2\pmod{4}.

If nn is odd, then (5,q1)=1(5,q-1)=1 and gg is 11-to-11 on Uq+1U_{q+1}. Thus ff is 11-to-11 on 𝔽q2\mathbb{F}_{q^{2}}^{*} by Theorem 8.1. If n2(mod4)n\equiv 2\pmod{4}, then (5,q1)=1(5,q-1)=1, 5q+15\mid q+1, and gg is 55-to-11 on Uq+1U_{q+1}. Hence ff is 55-to-11 on 𝔽q2\mathbb{F}_{q^{2}}^{*} by Theorem 8.1. If n0(mod4)n\equiv 0\pmod{4}, then (5,q1)=5(5,q-1)=5. Let g1(x):-xh(x)(q1)/5g_{1}(x)\coloneq xh(x)^{(q-1)/5}. Then x5g1=gx^{5}\circ g_{1}=g. Since gg is 11-to-11 on Uq+1U_{q+1}, we get g1g_{1} is 11-to-11 on Uq+1U_{q+1}, and so ff is 55-to-11 on 𝔽q2\mathbb{F}_{q^{2}}^{*} by Theorem 8.1. ∎

We next use Theorems 8.2 and 8.14 to construct new 55-to-11 mappings.

Theorem 8.15.

Let F(x)=xk(d1)hd(xq1)kf(x)F(x)=x^{k(d-1)}h_{d}(x^{q-1})^{k}f(x), where kk\in\mathbb{N}, dd is odd and hdh_{d} is as in Eq. 7.1, q=2nq=2^{n} with n2(mod4)n\equiv 2\pmod{4}, and ff is as in Theorem 8.14. If (d,q+1)=1(d,q+1)=1 and (5+k(d1),q1)=1(5+k(d-1),q-1)=1, then FF is 55-to-11 on 𝔽q2\mathbb{F}_{q^{2}}^{*}.

The proof of this result is the same as that used in Theorem 8.11 and so is omitted. Applying Theorem 8.15 to k=1k=1 and d=3d=3 yields the following example.

Example 8.1.

Let q=2nq=2^{n} with n2,10(mod12)n\equiv 2,10\pmod{12} and ff as in Theorem 8.14. Then (x2q+xq+1+x2)f(x)(x^{2q}+x^{q+1}+x^{2})f(x) is 55-to-11 on 𝔽q2\mathbb{F}_{q^{2}}^{*}.

9 The third problem

By employing Construction 2 again, the following result converts the second problem whether gg is m2m_{2}-to-11 on UU_{\ell} to the third problem whether g¯\bar{g} is (m2/m3)(m_{2}/m_{3})-to-11 on SS.

Theorem 9.1.

Let q1=sq-1=\ell s and m1=(r,s)m_{1}=(r,s), where ,r,s\ell,r,s\in\mathbb{N}. Let f(x)=xrh(xs)f(x)=x^{r}h(x^{s}) and g(x)=xr1h(x)s1g(x)=x^{r_{1}}h(x)^{s_{1}}, where r1=r/m1r_{1}=r/m_{1}, s1=s/m1s_{1}=s/m_{1}, and h𝔽q[x]h\in\mathbb{F}_{q}[x] has no roots in UU_{\ell}. Let SS, S¯\bar{S} be finite sets and λ:US\lambda\colon U_{\ell}\rightarrow S, λ¯:Um1S¯\bar{\lambda}\colon U_{\ell m_{1}}\rightarrow\bar{S}, g¯:SS¯\bar{g}\colon S\rightarrow\bar{S} be mappings such that λ\lambda is surjective and λ¯g=g¯λ\bar{\lambda}\circ g=\bar{g}\circ\lambda. That is, the following diagrams are commutative:

𝔽q\textstyle{\mathbb{F}_{q}^{*}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f\scriptstyle{f}xs\scriptstyle{x^{s}}𝔽q\textstyle{\mathbb{F}_{q}^{*}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}xs1\scriptstyle{x^{s_{1}}}U\textstyle{U_{\ell}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}g\scriptstyle{g}λ\scriptstyle{\lambda}Um1\textstyle{U_{\ell m_{1}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}λ¯\scriptstyle{\bar{\lambda}}S\textstyle{S\ignorespaces\ignorespaces\ignorespaces\ignorespaces}g¯\scriptstyle{\bar{g}}S¯.\textstyle{\bar{S}.}

Suppose #λ1(α)=m3#λ¯1(g¯(α))\#\lambda^{-1}(\alpha)=m_{3}\,\#\bar{\lambda}^{-1}(\bar{g}(\alpha)) and gg is m3m_{3}-to-11 on λ1(α)\lambda^{-1}(\alpha) for any αS\alpha\in S and a fixed m3m_{3}\in\mathbb{N}. Then ff is mm-to-11 on 𝔽q\mathbb{F}_{q}^{*} if and only if m1m3mm_{1}m_{3}\mid m, s(modm2)<ms(\ell\bmod{m_{2}})<m, g¯\bar{g} is m/(m1m3)m/(m_{1}m_{3})-to-11 on SS, and

αEg¯(S)#λ1(α)=modm2,\sum_{\alpha\in E_{\bar{g}}(S)}\#\lambda^{-1}(\alpha)=\ell\bmod{m_{2}}, (9.1)

where 1mm1m3#S1\leq m\leq m_{1}m_{3}\,\#S, m2=m/m1m_{2}=m/m_{1}, and Eg¯(S)E_{\bar{g}}(S) is the exceptional set of g¯\bar{g} being m/(m1m3)m/(m_{1}m_{3})-to-11 on SS.

Proof.

By Theorem 4.3, ff is mm-to-11 on 𝔽q\mathbb{F}_{q}^{*} if and only if m1mm_{1}\mid m, gg is m2m_{2}-to-11 on UU_{\ell}, and s(modm2)<ms(\ell\bmod{m_{2}})<m, where 1mm11\leq m\leq\ell m_{1}. Thus ff is not mm-to-11 on 𝔽q\mathbb{F}_{q}^{*} if 1m<m11\leq m<m_{1}, i.e., the result holds when 1m<m11\leq m<m_{1}. Applying Construction 2 to the lower commutative diagram yields that gg is m2m_{2}-to-11 on UU_{\ell} if and only if m3m2m_{3}\mid m_{2}, g¯\bar{g} is (m2/m3)(m_{2}/m_{3})-to-11 on SS, and Eq. 9.1 holds, where 1m2m3#S1\leq m_{2}\leq m_{3}\,\#S. Note that m1m3mm_{1}m_{3}\mid m is equivalent to m1mm_{1}\mid m and m3m2m_{3}\mid m_{2}. Since λ\lambda is surjective, we have

=#U=αS#λ1(α)=αSm3#λ¯1(g¯(α))m3#S.\ell=\#U_{\ell}=\sum_{\alpha\in S}\#\lambda^{-1}(\alpha)=\sum_{\alpha\in S}m_{3}\,\#\bar{\lambda}^{-1}(\bar{g}(\alpha))\geq m_{3}\,\#S.

The conditions 1mm11\leq m\leq\ell m_{1} and 1m2m3#S1\leq m_{2}\leq m_{3}\,\#S imply that m1mm1m3#Sm_{1}\leq m\leq m_{1}m_{3}\,\#S. Thus the result holds when m1mm1m3#Sm_{1}\leq m\leq m_{1}m_{3}\,\#S. This completes the proof. ∎

To simplify the construction of commutative diagrams, assume f(x)=xrH(xq1)m1𝔽q2[x]f(x)=x^{r}H(x^{q-1})^{m_{1}}\in\mathbb{F}_{q^{2}}[x], where m1=(r,q1)m_{1}=(r,q-1). Then g(x)=xr/m1H(x)q1g(x)=x^{r/m_{1}}H(x)^{q-1} and it maps Uq+1U_{q+1} to Uq+1U_{q+1}. To simplify the third question, we mainly consider the following cases:

  1. \edefnn(1)

    λ\lambda and λ¯\bar{\lambda} are 11-to-11 from Uq+1U_{q+1} to Uq+1U_{q+1} and g¯=xn\bar{g}=x^{n};

  2. \edefnn(2)

    λ\lambda and λ¯\bar{\lambda} are 11-to-11 from Uq+1U_{q+1} to 𝔽q{}\mathbb{F}_{q}\cup\{\infty\} and g¯=xn\bar{g}=x^{n}.

9.1 λ\lambda is 11-to-11 from Uq+1U_{q+1} to itself

Theorem 9.2.

Let L1,L2,M1,M2𝔽q2[x]L_{1},L_{2},M_{1},M_{2}\in\mathbb{F}_{q^{2}}[x] satisfy that MiM_{i} has no roots in Uq+1U_{q+1}, Li=εixtiMiqL_{i}=\varepsilon_{i}x^{t_{i}}M_{i}^{q} for any xUq+1x\in U_{q+1}, and Li/MiL_{i}/M_{i} permutes Uq+1U_{q+1}, where εiUq+1\varepsilon_{i}\in U_{q+1} and tideg(Mi)t_{i}\geq\deg(M_{i}). Let

H=M1nt2(M2xnL1/M1)andf=xrH(xq1)m1,H=M_{1}^{nt_{2}}\big{(}M_{2}\circ x^{n}\circ L_{1}/M_{1}\big{)}\quad\text{and}\quad f=x^{r}H(x^{q-1})^{m_{1}},

where n,rn,r\in\mathbb{N}, m1=(r,q1)m_{1}=(r,q-1) and r/m1nt1t2(modq+1)r/m_{1}\equiv nt_{1}t_{2}\pmod{q+1}. Then ff is mm-to-11 on 𝔽q2\mathbb{F}_{q^{2}}^{*} if and only if m1mm_{1}\mid m and (n,q+1)=m/m1(n,q+1)=m/m_{1}, where 1mm1(q+1)1\leq m\leq m_{1}(q+1).

Proof.

Since M1M_{1} and M2M_{2} have no roots in Uq+1U_{q+1} and L1/M1L_{1}/M_{1} permutes Uq+1U_{q+1}, it follows that HH has no roots in Uq+1U_{q+1}. Let M2=ajxj𝔽q2[x]M_{2}=\textstyle{\sum}\,a_{j}x^{j}\in\mathbb{F}_{q^{2}}[x]. Then

H=M1nt2(ajxjxnL1/M1)=M1nt2aj(L1/M1)nj=ajL1njM1n(t2j).H=M_{1}^{nt_{2}}\big{(}\textstyle{\sum}\,a_{j}x^{j}\circ x^{n}\circ L_{1}/M_{1}\big{)}=M_{1}^{nt_{2}}\textstyle{\sum}\,a_{j}(L_{1}/M_{1})^{nj}=\textstyle{\sum}\,a_{j}L_{1}^{nj}M_{1}^{n(t_{2}-j)}.

For xUq+1x\in U_{q+1}, Li=εixtiMiqL_{i}=\varepsilon_{i}x^{t_{i}}M_{i}^{q} implies that L1q=ε11xt1M1L_{1}^{q}=\varepsilon_{1}^{-1}x^{-t_{1}}M_{1} and ε21L2=xt2M2q=ajqxt2j\varepsilon_{2}^{-1}L_{2}=x^{t_{2}}M_{2}^{q}=\textstyle{\sum}\,a_{j}^{q}x^{t_{2}-j}. Thus

Hq\displaystyle H^{q} =ajq(L1q)nj(M1q)n(t2j)\displaystyle=\textstyle{\sum}\,a_{j}^{q}(L_{1}^{q})^{nj}(M_{1}^{q})^{n(t_{2}-j)}
=ajq(ε11xt1M1)nj(ε11xt1L1)n(t2j)\displaystyle=\textstyle{\sum}\,a_{j}^{q}(\varepsilon_{1}^{-1}x^{-t_{1}}M_{1})^{nj}(\varepsilon_{1}^{-1}x^{-t_{1}}L_{1})^{n(t_{2}-j)}
=(ε11xt1)nt2ajqM1njL1n(t2j)\displaystyle=(\varepsilon_{1}^{-1}x^{-t_{1}})^{nt_{2}}\textstyle{\sum}\,a_{j}^{q}M_{1}^{nj}L_{1}^{n(t_{2}-j)}
=(ε11xt1)nt2M1nt2ajq(L1/M1)n(t2j)\displaystyle=(\varepsilon_{1}^{-1}x^{-t_{1}})^{nt_{2}}M_{1}^{nt_{2}}\textstyle{\sum}\,a_{j}^{q}(L_{1}/M_{1})^{n(t_{2}-j)}
=ε1nt2xnt1t2M1nt2(ajqxt2j(L1/M1)n)\displaystyle=\varepsilon_{1}^{-nt_{2}}x^{-nt_{1}t_{2}}M_{1}^{nt_{2}}\big{(}\textstyle{\sum}\,a_{j}^{q}x^{t_{2}-j}\circ(L_{1}/M_{1})^{n}\big{)}
=ε1nt2xnt1t2M1nt2(ε21L2L1n/M1n)\displaystyle=\varepsilon_{1}^{-nt_{2}}x^{-nt_{1}t_{2}}M_{1}^{nt_{2}}\big{(}\varepsilon_{2}^{-1}L_{2}\circ L_{1}^{n}/M_{1}^{n}\big{)}
=xnt1t2M1nt2(βL2L1n/M1n),\displaystyle=x^{-nt_{1}t_{2}}M_{1}^{nt_{2}}\big{(}\beta L_{2}\circ L_{1}^{n}/M_{1}^{n}\big{)},

where β=ε1nt2ε21\beta=\varepsilon_{1}^{-nt_{2}}\varepsilon_{2}^{-1}. For xUq+1x\in U_{q+1}, xr/m1=xnt1t2x^{r/m_{1}}=x^{nt_{1}t_{2}} by r/m1nt1t2(modq+1)r/m_{1}\equiv nt_{1}t_{2}\pmod{q+1}, and so

g(x):-xr/m1Hq/H=βL2L1n/M1nM2L1n/M1n=βL2/M2xnL1/M1.\displaystyle g(x)\coloneq x^{r/m_{1}}H^{q}/H=\frac{\beta L_{2}\circ L_{1}^{n}/M_{1}^{n}}{M_{2}\circ L_{1}^{n}/M_{1}^{n}}=\beta L_{2}/M_{2}\circ x^{n}\circ L_{1}/M_{1}.

Since βL2/M2\beta L_{2}/M_{2} permutes Uq+1U_{q+1}, we get

(βL2/M2)1g=xnL1/M1.(\beta L_{2}/M_{2})^{-1}\circ g=x^{n}\circ L_{1}/M_{1}.

Note that f(x)Uq21m1f(x)\in U_{\frac{q^{2}-1}{m_{1}}} for x𝔽q2x\in\mathbb{F}_{q^{2}}^{*} and g(x)Uq+1g(x)\in U_{q+1} for xUq+1x\in U_{q+1}. Thus the following diagrams are commutative:

𝔽q2\textstyle{\mathbb{F}_{q^{2}}^{*}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f\scriptstyle{f}xq1\scriptstyle{x^{q-1}}Uq21m1\textstyle{U_{\frac{q^{2}-1}{m_{1}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}xq1m1\scriptstyle{x^{\frac{q-1}{m_{1}}}}Uq+1\textstyle{U_{q+1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}g\scriptstyle{g}L1/M1\scriptstyle{L_{1}/M_{1}}Uq+1\textstyle{U_{q+1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}(βL2/M2)1\scriptstyle{(\beta L_{2}/M_{2})^{-1}}Uq+1\textstyle{U_{q+1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}xn\scriptstyle{x^{n}}Uq+1.\textstyle{U_{q+1}.}

Let λ=L1/M1\lambda=L_{1}/M_{1} and λ¯=(βL2/M2)1\bar{\lambda}=(\beta L_{2}/M_{2})^{-1}. Since both λ\lambda and λ¯\bar{\lambda} permute Uq+1U_{q+1}, #λ1(α)=#λ¯1(αn)\#\lambda^{-1}(\alpha)=\#\bar{\lambda}^{-1}(\alpha^{n}) and gg is 11-to-11 on λ1(α)\lambda^{-1}(\alpha) for any αUq+1\alpha\in U_{q+1}. By Theorem 9.1, ff is mm-to-11 on 𝔽q2\mathbb{F}_{q^{2}}^{*} if and only if m1mm_{1}\mid m, (q1)((q+1)modm2)<m(q-1)((q+1)\bmod{m_{2}})<m, and xnx^{n} is m2m_{2}-to-11 on Uq+1U_{q+1}, or equivalently m1mm_{1}\mid m and (n,q+1)=m2(n,q+1)=m_{2}, where 1mm1(q+1)1\leq m\leq m_{1}(q+1) and m2=m/m1m_{2}=m/m_{1}. ∎

The conditions in Theorem 9.2 can be satisfied. Indeed, all the desired polynomials LiL_{i} and MiM_{i} are completely determined in [51, Lemma 2.1] and [5, Proposition 3.5] when deg(Li)=deg(Mi)=ti{1,2}\deg(L_{i})=\deg(M_{i})=t_{i}\in\{1,2\}. The next result is a reformulation of [51, Lemma 2.1].

Lemma 9.3.

Let (x)𝔽¯q(x)\ell(x)\in\overline{\mathbb{F}}_{q}(x) be a degree-one rational function, where 𝔽¯q\overline{\mathbb{F}}_{q} is the algebraic closure of 𝔽q\mathbb{F}_{q}. Then (x)\ell(x) permutes Uq+1U_{q+1} if and only if (x)=(βqx+αq)/(αx+β)\ell(x)=(\beta^{q}x+\alpha^{q})/(\alpha x+\beta), where α\alpha, β𝔽q2\beta\in\mathbb{F}_{q^{2}} and αq+1βq+1\alpha^{q+1}\neq\beta^{q+1}.

Theorem 9.2 reduces to the following form when L2=βqx+αqL_{2}=\beta^{q}x+\alpha^{q} and M2=αx+βM_{2}=\alpha x+\beta.

Corollary 9.4.

Let LL, M𝔽q2[x]M\in\mathbb{F}_{q^{2}}[x] satisfy that MM has no roots in Uq+1U_{q+1}, L=εxtMqL=\varepsilon x^{t}M^{q} for any xUq+1x\in U_{q+1}, and L/ML/M permutes Uq+1U_{q+1}, where εUq+1\varepsilon\in U_{q+1} and tdeg(M)t\geq\deg(M). Let

H=αLn+βMnandf(x)=xrH(xq1)m1,H=\alpha L^{n}+\beta M^{n}\quad\text{and}\quad f(x)=x^{r}H(x^{q-1})^{m_{1}},

where n1n\geq 1, α\alpha, β𝔽q2\beta\in\mathbb{F}_{q^{2}} with αq+1βq+1\alpha^{q+1}\neq\beta^{q+1}, m1=(r,q1)m_{1}=(r,q-1), and r/m1nt(modq+1)r/m_{1}\equiv nt\pmod{q+1}. Then ff is mm-to-11 on 𝔽q2\mathbb{F}_{q^{2}}^{*} if and only if m1mm_{1}\mid m and (n,q+1)=m/m1(n,q+1)=m/m_{1}, where 1mm1(q+1)1\leq m\leq m_{1}(q+1).

Proof.

Take M2=αx+βM_{2}=\alpha x+\beta, ε2=t2=1\varepsilon_{2}=t_{2}=1, and L2=βqx+αqL_{2}=\beta^{q}x+\alpha^{q}. Then M2M_{2} has no roots in Uq+1U_{q+1} by αq+1βq+1\alpha^{q+1}\neq\beta^{q+1}, L2/M2L_{2}/M_{2} permutes Uq+1U_{q+1} by Lemma 9.3, and H=M1n(M2L1n/M1n)=αL1n+βM1nH=M_{1}^{n}(M_{2}\circ L_{1}^{n}/M_{1}^{n})=\alpha L_{1}^{n}+\beta M_{1}^{n}. Then the result follows from Theorem 9.2. ∎

Remark 5.

In the case deg(L)=deg(M)=t\deg(L)=\deg(M)=t and m1=m=1m_{1}=m=1, Corollary 9.4 is equivalent to [5, Theorem 3.3]. In other cases, Corollary 9.4 generalizes [5, Theorem 3.3]. Moreover, the proof of [5, Theorem 3.3] mainly takes advantage of some properties of “β\beta-associated polynomials”, while Corollary 9.4 is based on the commutative diagrams in the proof of Theorem 9.2.

In Corollary 9.4, take M=γx+δM=\gamma x+\delta, ε=t=1\varepsilon=t=1, and L=δqx+γqL=\delta^{q}x+\gamma^{q}, where γq+1δq+1\gamma^{q+1}\neq\delta^{q+1}. Then L/ML/M permutes Uq+1U_{q+1} by Lemma 9.3, and so we obtain the next result.

Example 9.1.

Let α\alpha, β\beta, γ\gamma, δ𝔽q2\delta\in\mathbb{F}_{q^{2}} satisfy αq+1βq+1\alpha^{q+1}\neq\beta^{q+1} and γq+1δq+1\gamma^{q+1}\neq\delta^{q+1}. Let

H(x)=α(δqx+γq)n+β(γx+δ)nandf(x)=xrH(xq1)m1,H(x)=\alpha(\delta^{q}x+\gamma^{q})^{n}+\beta(\gamma x+\delta)^{n}\quad\text{and}\quad f(x)=x^{r}H(x^{q-1})^{m_{1}},

where n,r1n,r\geq 1, m1=(r,q1)m_{1}=(r,q-1), and r/m1n(modq+1)r/m_{1}\equiv n\pmod{q+1}. Then ff is mm-to-11 on 𝔽q2\mathbb{F}_{q^{2}}^{*} if and only if m1mm_{1}\mid m and (n,q+1)=m/m1(n,q+1)=m/m_{1}, where 1mm1(q+1)1\leq m\leq m_{1}(q+1).

Remark 6.

In the case αβγδ0\alpha\beta\gamma\delta\neq 0 and m1=m=1m_{1}=m=1, Example 9.1 is equivalent to [12, Theorem 1.2], which generalizes some recent results in the literature.

In Corollary 9.4, take M=x4+x+1M=x^{4}+x+1, ε=1\varepsilon=1, t=5t=5, and L=x5+x4+xL=x^{5}+x^{4}+x. If q=2sq=2^{s} with s2(mod4)s\not\equiv 2\pmod{4}, then L/ML/M permutes Uq+1U_{q+1} by Lemma 8.12, and so we have the following result.

Example 9.2.

Let q=2sq=2^{s} with s2(mod4)s\not\equiv 2\pmod{4} and α\alpha, β𝔽q2\beta\in\mathbb{F}_{q^{2}} with αq+1βq+1\alpha^{q+1}\neq\beta^{q+1}. Let

H(x)=α(x5+x4+x)n+β(x4+x+1)nandf(x)=xrH(xq1)m1,H(x)=\alpha(x^{5}+x^{4}+x)^{n}+\beta(x^{4}+x+1)^{n}\quad\text{and}\quad f(x)=x^{r}H(x^{q-1})^{m_{1}},

where n1n\geq 1, m1=(r,q1)m_{1}=(r,q-1), and r/m15n(modq+1)r/m_{1}\equiv 5n\pmod{q+1}. Then ff is mm-to-11 on 𝔽q2\mathbb{F}_{q^{2}}^{*} if and only if m1mm_{1}\mid m and (n,q+1)=m/m1(n,q+1)=m/m_{1}, where 1mm1(q+1)1\leq m\leq m_{1}(q+1).

Theorem 9.2 reduces to the next result when L2=cx3+x2+1L_{2}=cx^{3}+x^{2}+1 and M2=x3+x+cM_{2}=x^{3}+x+c.

Corollary 9.5.

Let qq be even and LL, M𝔽q2[x]M\in\mathbb{F}_{q^{2}}[x] satisfy that MM has no roots in Uq+1U_{q+1}, L=εxtMqL=\varepsilon x^{t}M^{q} for any xUq+1x\in U_{q+1}, and L/ML/M permutes Uq+1U_{q+1}, where εUq+1\varepsilon\in U_{q+1} and tdeg(M)t\geq\deg(M). Let

H=L3n+LnM2n+cM3nandf(x)=xrH(xq1)m1,H=L^{3n}+L^{n}M^{2n}+cM^{3n}\quad\text{and}\quad f(x)=x^{r}H(x^{q-1})^{m_{1}},

where n1n\geq 1, c𝔽qc\in\mathbb{F}_{q}^{*} with Trq/2(1+c1)=0\mathrm{Tr}_{q/2}(1+c^{-1})=0, m1=(r,q1)m_{1}=(r,q-1), and r/m13nt(modq+1)r/m_{1}\equiv 3nt\pmod{q+1}. Then ff is mm-to-11 on 𝔽q2\mathbb{F}_{q^{2}}^{*} if and only if m1mm_{1}\mid m and (n,q+1)=m/m1(n,q+1)=m/m_{1}, where 1mm1(q+1)1\leq m\leq m_{1}(q+1).

Proof.

Take M2=x3+x+cM_{2}=x^{3}+x+c, ε2=1\varepsilon_{2}=1, t2=3t_{2}=3, and L2=cx3+x2+1L_{2}=cx^{3}+x^{2}+1. Then L2/M2L_{2}/M_{2} permutes Uq+1U_{q+1} by Lemma 8.8 and H=M13n(M2L1n/M1n)=L13n+L1nM12n+cM13nH=M_{1}^{3n}(M_{2}\circ L_{1}^{n}/M_{1}^{n})=L_{1}^{3n}+L_{1}^{n}M_{1}^{2n}+cM_{1}^{3n}. Now the result follows from Theorem 9.2. ∎

In Corollary 9.5, taking L=βqx+αqL=\beta^{q}x+\alpha^{q} and M=αx+βM=\alpha x+\beta yields the next result.

Example 9.3.

Let qq be even and α\alpha, β𝔽q2\beta\in\mathbb{F}_{q^{2}} with αq+1βq+1\alpha^{q+1}\neq\beta^{q+1}. Let

H(x)=(βqx+αq)3n+(βqx+αq)n(αx+β)2n+c(αx+β)3nH(x)=(\beta^{q}x+\alpha^{q})^{3n}+(\beta^{q}x+\alpha^{q})^{n}(\alpha x+\beta)^{2n}+c(\alpha x+\beta)^{3n}

and f(x)=xrH(xq1)m1f(x)=x^{r}H(x^{q-1})^{m_{1}}, where n1n\geq 1, c𝔽qc\in\mathbb{F}_{q}^{*} with Trq/2(1+c1)=0\mathrm{Tr}_{q/2}(1+c^{-1})=0, m1=(r,q1)m_{1}=(r,q-1), and r/m13n(modq+1)r/m_{1}\equiv 3n\pmod{q+1}. Then ff is mm-to-11 on 𝔽q2\mathbb{F}_{q^{2}}^{*} if and only if m1mm_{1}\mid m and (n,q+1)=m/m1(n,q+1)=m/m_{1}, where 1mm1(q+1)1\leq m\leq m_{1}(q+1).

9.2 λ\lambda is 11-to-11 from Uq+1U_{q+1} to 𝔽q{}\mathbb{F}_{q}\cup\{\infty\}

For arbitrary LL, M𝔽q2[x]M\in\mathbb{F}_{q^{2}}[x], define L(c)/M(c)=L(c)/M(c)=\infty if L(c)0L(c)\neq 0 and M(c)=0M(c)=0 for some c𝔽q2c\in\mathbb{F}_{q^{2}}. When L0L\neq 0 and M0M\neq 0, we define

L()M()={if deg(L)>deg(M),a/bif deg(L)=deg(M),0if deg(L)<deg(M),\frac{L(\infty)}{M(\infty)}=\begin{cases}\infty&\text{if $\deg(L)>\deg(M)$,}\\ a/b&\text{if $\deg(L)=\deg(M)$,}\\ 0&\text{if $\deg(L)<\deg(M)$,}\end{cases}

where aa and bb are the leading coefficients of LL and MM, respectively. In particular, n=\infty^{n}=\infty for any nn\in\mathbb{N}. For arbitrary N(x):-i=0uaixi𝔽q2[x]N(x)\coloneq\sum_{i=0}^{u}a_{i}x^{i}\in\mathbb{F}_{q^{2}}[x], define N(q)(x)=i=0uaiqxiN^{(q)}(x)=\sum_{i=0}^{u}a_{i}^{q}x^{i}.

Theorem 9.6.

Let LL, M𝔽q2[x]M\in\mathbb{F}_{q^{2}}[x] satisfy that L=εxtLqL=\varepsilon x^{t}L^{q} and M=εxtMqM=\varepsilon x^{t}M^{q} for any xUq+1x\in U_{q+1} and that L/ML/M induces a bijection from Uq+1U_{q+1} to 𝔽q{}\mathbb{F}_{q}\cup\{\infty\}, where εUq+1\varepsilon\in U_{q+1} and tmax{deg(L),deg(M)}t\geq\max\{\deg(L),\deg(M)\}. Let N𝔽q2[x]N\in\mathbb{F}_{q^{2}}[x] satisfy that N(q)/NN^{(q)}/N induces a bijection from 𝔽q{}\mathbb{F}_{q}\cup\{\infty\} to Uq+1U_{q+1}. Let

H=Mnu(NxnL/M)andf=xrH(xq1)m1,H=M^{nu}\big{(}N\circ x^{n}\circ L/M\big{)}\quad\text{and}\quad f=x^{r}H(x^{q-1})^{m_{1}},

where n,rn,r\in\mathbb{N}, u=deg(N)u=\deg(N), HH has no roots in Uq+1U_{q+1}, m1=(r,q1)m_{1}=(r,q-1), and r/m1ntu(modq+1)r/m_{1}\equiv ntu\pmod{q+1}. Then, for 1mm1(q+1)1\leq m\leq m_{1}(q+1), ff is mm-to-11 on 𝔽q2\mathbb{F}_{q^{2}}^{*} if and only if one of the following holds:

  1. \edefitn(1)

    m=m1m=m_{1} and (n,q1)=1(n,q-1)=1;

  2. \edefitn(2)

    m1mm_{1}\mid m, (n,q1)=m/m13(n,q-1)=m/m_{1}\geq 3, and 2(q1)<m2(q-1)<m.

Proof.

Put N=i=0uaixi𝔽q2[x]N=\sum_{i=0}^{u}a_{i}x^{i}\in\mathbb{F}_{q^{2}}[x]. Then

H=Mnu(aixixnL/M)=aiLniMn(ui)H=M^{nu}(\sum a_{i}x^{i}\circ x^{n}\circ L/M)=\sum a_{i}L^{ni}M^{n(u-i)}

and for any xUq+1x\in U_{q+1},

Hq\displaystyle H^{q} =aiqLqniMqn(ui)\displaystyle=\sum a_{i}^{q}L^{qni}M^{qn(u-i)}
=aiq(ε1xtL)ni(ε1xtM)n(ui)\displaystyle=\sum a_{i}^{q}(\varepsilon^{-1}x^{-t}L)^{ni}(\varepsilon^{-1}x^{-t}M)^{n(u-i)}
=(ε1xt)nuaiqLniMn(ui).\displaystyle=(\varepsilon^{-1}x^{-t})^{nu}\sum a_{i}^{q}L^{ni}M^{n(u-i)}.

Define g(x)=xr/m1Hq1g(x)=x^{r/m_{1}}H^{q-1}. The condition r/m1ntu(modq+1)r/m_{1}\equiv ntu\pmod{q+1} implies xr/m1=xntux^{r/m_{1}}=x^{ntu} for any xUq+1x\in U_{q+1}. Recall that HH has no roots in Uq+1U_{q+1}. Thus, for any xUq+1x\in U_{q+1},

g(x)=xr/m1Hq/H=βi=0uaiqLniMn(ui)i=0uaiLniMn(ui),g(x)=x^{r/m_{1}}H^{q}/H=\frac{\beta\sum_{i=0}^{u}a_{i}^{q}L^{ni}M^{n(u-i)}}{~{}\sum_{i=0}^{u}a_{i}L^{ni}M^{n(u-i)}}, (9.2)

where β=εnu\beta=\varepsilon^{-nu}. If M(x)0M(x)\neq 0 for some xUq+1x\in U_{q+1}, then

g(x)=βaiq(L/M)niai(L/M)ni=βN(q)(L/M)nN(L/M)n=βN(q)/NxnL/M.\displaystyle g(x)=\frac{\beta\sum a_{i}^{q}(L/M)^{ni}}{~{}\sum a_{i}(L/M)^{ni}}=\frac{\beta N^{(q)}\circ(L/M)^{n}}{N\circ(L/M)^{n}}=\beta N^{(q)}/N\circ x^{n}\circ L/M. (9.3)

If M(x0)=0M(x_{0})=0 for some x0Uq+1x_{0}\in U_{q+1}, then x0x_{0} is unique and L(x0)0L(x_{0})\neq 0, since L/ML/M induces a bijection from Uq+1U_{q+1} to 𝔽q{}\mathbb{F}_{q}\cup\{\infty\}. Hence, by Eq. 9.2,

g(x0)=βauqL(x0)nu/auL(x0)nu=βauq/au.g(x_{0})=\beta a_{u}^{q}L(x_{0})^{nu}/a_{u}L(x_{0})^{nu}=\beta a_{u}^{q}/a_{u}.

Because L(x0)0L(x_{0})\neq 0 and M(x0)=0M(x_{0})=0, we get L(x0)/M(x0)=L(x_{0})/M(x_{0})=\infty and n=\infty^{n}=\infty. Thus

βN(q)/NxnL(x0)/M(x0)=βN(q)()/N()=βauq/au.\beta N^{(q)}/N\circ x^{n}\circ L(x_{0})/M(x_{0})=\beta N^{(q)}(\infty)/N(\infty)=\beta a_{u}^{q}/a_{u}.

In summary, Eq. 9.3 holds for any xUq+1x\in U_{q+1}. Since βN(q)/N\beta N^{(q)}/N induces a bijection from 𝔽q{}\mathbb{F}_{q}\cup\{\infty\} to Uq+1U_{q+1},

(βN(q)/N)1g=xnL/M.(\beta N^{(q)}/N)^{-1}\circ g=x^{n}\circ L/M.

Note that f(x)Uq21m1f(x)\in U_{\frac{q^{2}-1}{m_{1}}} for x𝔽q2x\in\mathbb{F}_{q^{2}}^{*} and g(x)Uq+1g(x)\in U_{q+1} for xUq+1x\in U_{q+1}. Thus the following diagrams are commutative:

𝔽q2\textstyle{\mathbb{F}_{q^{2}}^{*}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f\scriptstyle{f}xq1\scriptstyle{x^{q-1}}Uq21m1\textstyle{U_{\frac{q^{2}-1}{m_{1}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}xq1m1\scriptstyle{x^{\frac{q-1}{m_{1}}}}Uq+1\textstyle{U_{q+1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}g\scriptstyle{g}L/M\scriptstyle{L/M}Uq+1\textstyle{U_{q+1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}(βN(q)/N)1\scriptstyle{(\beta N^{(q)}/N)^{-1}}𝔽q{}\textstyle{\mathbb{F}_{q}\cup\{\infty\}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}xn\scriptstyle{x^{n}}𝔽q{},\textstyle{\mathbb{F}_{q}\cup\{\infty\},}

Let λ=L/M\lambda=L/M and λ¯=(βN(q)/N)1\bar{\lambda}=(\beta N^{(q)}/N)^{-1}. Since both λ\lambda and λ¯\bar{\lambda} are bijective, #λ1(α)=#λ¯1(αn)=1\#\lambda^{-1}(\alpha)=\#\bar{\lambda}^{-1}(\alpha^{n})=1 and gg is 11-to-11 on λ1(α)\lambda^{-1}(\alpha) for any α𝔽q{}\alpha\in\mathbb{F}_{q}\cup\{\infty\}. By Theorem 9.1, for 1mm1(q+1)1\leq m\leq m_{1}(q+1), ff is mm-to-11 on 𝔽q2\mathbb{F}_{q^{2}}^{*} if and only if m1mm_{1}\mid m, (q1)((q+1)modm2)<m(q-1)((q+1)\bmod{m_{2}})<m, xnx^{n} is m2m_{2}-to-11 on 𝔽q{}\mathbb{F}_{q}\cup\{\infty\}, and

#Exn(𝔽q{})=(q+1)modm2,\#E_{x^{n}}(\mathbb{F}_{q}\cup\{\infty\})=(q+1)\bmod{m_{2}},

where m2=m/m1m_{2}=m/m_{1}.

Under the condition m1mm_{1}\mid m, if m2=1m_{2}=1, then ff is mm-to-11 on 𝔽q2\mathbb{F}_{q^{2}}^{*} if and only if (n,q1)=1(n,q-1)=1. If m2=2m_{2}=2, then xnx^{n} only maps 0 to 0 and \infty to \infty. Hence xnx^{n} is not 22-to-11 on 𝔽q{}\mathbb{F}_{q}\cup\{\infty\}, and so ff is not mm-to-11 on 𝔽q2\mathbb{F}_{q^{2}}^{*}. If m23m_{2}\geq 3, then ff is mm-to-11 on 𝔽q2\mathbb{F}_{q^{2}}^{*} if and only if (q1)((q+1)modm2)<m(q-1)((q+1)\bmod{m_{2}})<m and (n,q1)=m2(n,q-1)=m_{2}, i.e., (n,q1)=m2(n,q-1)=m_{2} and 2(q1)<m2(q-1)<m. ∎

Remark 7.

The idea of Theorem 9.6 comes from [5]. In the case t=deg(L)=deg(M)t=\deg(L)=\deg(M) and m1=m=1m_{1}=m=1, Theorem 9.6 is similar to [5, Theorem 5.1]. In other cases, Theorem 9.6 generalizes [5, Theorem 5.1].

All degree-one rational functions over 𝔽q2\mathbb{F}_{q^{2}} that are bijections from Uq+1U_{q+1} to 𝔽q{}\mathbb{F}_{q}\cup\{\infty\} are completely determined in [51, Lemma 3.1], which can be reformulated as follows.

Lemma 9.7.

Let (x)𝔽¯q(x)\ell(x)\in\overline{\mathbb{F}}_{q}(x) be a degree-one rational function, where 𝔽¯q\overline{\mathbb{F}}_{q} is the algebraic closure of 𝔽q\mathbb{F}_{q}. Then (x)\ell(x) induces a bijection from Uq+1U_{q+1} to 𝔽q{}\mathbb{F}_{q}\cup\{\infty\} if and only if (x)=(βx+βq)/(αx+αq)\ell(x)=(\beta x+\beta^{q})/(\alpha x+\alpha^{q}), where α\alpha, β𝔽q2\beta\in\mathbb{F}_{q^{2}}^{*} and αq1βq1\alpha^{q-1}\neq\beta^{q-1}.

Theorem 9.6 reduces to the following form when N=αx+βN=\alpha x+\beta.

Corollary 9.8.

Let LL, M𝔽q2[x]M\in\mathbb{F}_{q^{2}}[x] satisfy that L=εxtLqL=\varepsilon x^{t}L^{q} and M=εxtMqM=\varepsilon x^{t}M^{q} for any xUq+1x\in U_{q+1}, L/ML/M induces a bijection from Uq+1U_{q+1} to 𝔽q{}\mathbb{F}_{q}\cup\{\infty\}, where εUq+1\varepsilon\in U_{q+1} and tmax{deg(L),deg(M)}t\geq\max\{\deg(L),\deg(M)\}. Let

H=αLn+βMnandf=xrH(xq1)m1,H=\alpha L^{n}+\beta M^{n}\quad\text{and}\quad f=x^{r}H(x^{q-1})^{m_{1}},

where n1n\geq 1, α\alpha, β𝔽q2\beta\in\mathbb{F}_{q^{2}}^{*} with αq1βq1\alpha^{q-1}\neq\beta^{q-1}, HH has no roots in Uq+1U_{q+1}, m1=(r,q1)m_{1}=(r,q-1), and r/m1nt(modq+1)r/m_{1}\equiv nt\pmod{q+1}. Then ff is mm-to-11 on 𝔽q2\mathbb{F}_{q^{2}}^{*} if and only if m=m1m=m_{1} and (n,q1)=1(n,q-1)=1, where 1mmin{2(q1),m1(q+1)}1\leq m\leq\min\{2(q-1),m_{1}(q+1)\}.

Proof.

Let (x)=(βx+βq)/(αxαq)\ell(x)=(\beta x+\beta^{q})/(-\alpha x-\alpha^{q}). Then it induces a bijection from Uq+1U_{q+1} to 𝔽q{}\mathbb{F}_{q}\cup\{\infty\} by Lemma 9.7, and its compositional inverse is 1(x)=(αqx+βq)/(αx+β)\ell^{-1}(x)=-(\alpha^{q}x+\beta^{q})/(\alpha x+\beta), which induces a bijection from 𝔽q{}\mathbb{F}_{q}\cup\{\infty\} to Uq+1U_{q+1}. In Theorem 9.6, take N=αx+βN=\alpha x+\beta. Then N(q)=αqx+βqN^{(q)}=\alpha^{q}x+\beta^{q} and H=Mn(NLn/Mn)=αLn+βMnH=M^{n}(N\circ L^{n}/M^{n})=\alpha L^{n}+\beta M^{n}. Now the result follows from Theorem 9.6. ∎

Substituting the rational function in Lemma 9.7 to Corollary 9.8 yields the next result.

Example 9.4.

Let α\alpha, β\beta, γ\gamma, δ𝔽q2\delta\in\mathbb{F}_{q^{2}}^{*} satisfy αq1βq1\alpha^{q-1}\neq\beta^{q-1} and γq1δq1\gamma^{q-1}\neq\delta^{q-1}. Let

H(x)=α(γx+γq)n+β(δx+δq)nandf=xrH(xq1)m1,H(x)=\alpha(\gamma x+\gamma^{q})^{n}+\beta(\delta x+\delta^{q})^{n}\quad\text{and}\quad f=x^{r}H(x^{q-1})^{m_{1}},

where nn, r1r\geq 1, m1=(r,q1)m_{1}=(r,q-1), and r/m1n(modq+1)r/m_{1}\equiv n\pmod{q+1}. Then ff is mm-to-11 on 𝔽q2\mathbb{F}_{q^{2}}^{*} if and only if m=m1m=m_{1} and (n,q1)=1(n,q-1)=1, where 1mmin{2(q1),m1(q+1)}1\leq m\leq\min\{2(q-1),m_{1}(q+1)\}.

Proof.

Take L=γx+γqL=\gamma x+\gamma^{q} and M=δx+δqM=\delta x+\delta^{q}. Then L/ML/M induces a bijection from Uq+1U_{q+1} to 𝔽q{}\mathbb{F}_{q}\cup\{\infty\} by Lemma 9.7, and αL(x)n+βM(x)n\alpha L(x)^{n}+\beta M(x)^{n} has no roots in Uq+1U_{q+1}. Indeed, if αL(x0)n=βM(x0)n\alpha L(x_{0})^{n}=-\beta M(x_{0})^{n} for some x0Uq+1x_{0}\in U_{q+1}, then L(x0)0L(x_{0})\neq 0 and M(x0)0M(x_{0})\neq 0 by αβ0\alpha\beta\neq 0 and γq1δq1\gamma^{q-1}\neq\delta^{q-1}. Thus β/α=(L(x0)/M(x0))n𝔽q-\beta/\alpha=(L(x_{0})/M(x_{0}))^{n}\in\mathbb{F}_{q}^{*}, contrary to αq1βq1\alpha^{q-1}\neq\beta^{q-1}. Then the result follows from Corollary 9.8. ∎

Remark 8.

In the case m1=m=1m_{1}=m=1, Example 9.4 is equivalent to [12, Theorem 1.1] which generalizes some results in the literature. In other cases, Example 9.4 is a generalization of [12, Theorem 1.1].

Remark 9.

Theorems 8.10 and 8.14 are special cases of Examples 9.1 and 9.4 when (r,q1)=1(r,q-1)=1. We first give another proof of Lemma 8.8 by a compositional decomposition of gg. Let q=2kq=2^{k} and gg as in Lemma 8.8. Let a𝔽q2a\in\mathbb{F}_{q^{2}} be a solution of x2+cx+1=0x^{2}+cx+1=0 and λ(x)=(x+a)/(ax+1)\lambda(x)=(x+a)/(ax+1). Then the compositional inverse of λ\lambda is itself. By a2=ac+1a^{2}=ac+1 and a3=a2c+aa^{3}=a^{2}c+a, it is easy to verify that λg=x3λ\lambda\circ g=x^{3}\circ\lambda, i.e., g=λx3λg=\lambda\circ x^{3}\circ\lambda. For any xUq+1x\in U_{q+1}, g(x)q=g(x)1g(x)^{q}=g(x)^{-1} and so gg maps Uq+1U_{q+1} to itself. Hence the following diagram is commutative:

Uq+1\textstyle{U_{q+1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}g\scriptstyle{g}λ\scriptstyle{\lambda}Uq+1\textstyle{U_{q+1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}λ\scriptstyle{\lambda}λ(Uq+1)\textstyle{\lambda(U_{q+1})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}x3\scriptstyle{x^{3}}λ(Uq+1).\textstyle{\lambda(U_{q+1}).}

If Trq/2(1/c)=0\mathrm{Tr}_{q/2}(1/c)=0, then a𝔽q{0,1}a\in\mathbb{F}_{q}\setminus\{0,1\} by Corollary 8.7, and so aq+1=a21a^{q+1}=a^{2}\neq 1. By Lemma 9.3, λ\lambda permutes Uq+1U_{q+1} and so λ(Uq+1)=Uq+1\lambda(U_{q+1})=U_{q+1}. When kk is odd, (3,q+1)=3(3,q+1)=3 and so x3x^{3} is 33-to-11 on Uq+1U_{q+1}. Thus gg is 33-to-11 on Uq+1U_{q+1}. When kk is even, (3,q+1)=1(3,q+1)=1 and so x3x^{3} is 11-to-11 on Uq+1U_{q+1}. Thus gg is 11-to-11 on Uq+1U_{q+1}. If Trq/2(1/c)=1\mathrm{Tr}_{q/2}(1/c)=1, then aUq+1{1}a\in U_{q+1}\setminus\{1\} by Corollary 8.7, and so a=eq1a=e^{q-1} for some e𝔽q2e\in\mathbb{F}_{q^{2}}^{*}. Then

λ(x)=ex+eaeax+e=ex+eqeqx+e\lambda(x)=\frac{ex+ea}{eax+e}=\frac{ex+e^{q}}{e^{q}x+e}

and eq(q1)eq1e^{q(q-1)}\neq e^{q-1}. Then by Lemma 9.7, λ\lambda induces a bijection from Uq+1U_{q+1} onto 𝔽q{}\mathbb{F}_{q}\cup\{\infty\}, and so λ(Uq+1)=𝔽q{}\lambda(U_{q+1})=\mathbb{F}_{q}\cup\{\infty\}. When kk is odd, (3,q1)=1(3,q-1)=1 and so x3x^{3} permutes 𝔽q{}\mathbb{F}_{q}\cup\{\infty\}. Thus gg is 11-to-11 on Uq+1U_{q+1}. When kk is even, (3,q1)=3(3,q-1)=3 and so x3x^{3} is 33-to-11 form 𝔽q{}\mathbb{F}_{q}\cup\{\infty\} from to itself. Thus gg is 33-to-11 on Uq+1U_{q+1}. This completes the proof of Lemma 8.8.

In Example 9.1, take q=2kq=2^{k} with kk odd, r=n=3r=n=3, α=γ=a\alpha=\gamma=a, and β=δ=1\beta=\delta=1. Then (r,q1)=1(r,q-1)=1 and H(x)=a2c(x3+x+c)H(x)=a^{2}c(x^{3}+x+c). Thus f(x)=xrH(xq1)f(x)=x^{r}H(x^{q-1}) is 33-to-11 on 𝔽q2\mathbb{F}_{q^{2}}^{*} by (n,q+1)=3(n,q+1)=3. That is, Theorem 8.10 is a special case of Example 9.1 if (r,q1)=1(r,q-1)=1 and Trq/2(1/c)=0\mathrm{Tr}_{q/2}(1/c)=0.

In Example 9.4, take q=2kq=2^{k} with kk odd, r=n=3r=n=3, α=δ=ea\alpha=\delta=ea, and β=γ=e\beta=\gamma=e. Then (r,q1)=1(r,q-1)=1 and H(x)=e4a2c(x3+x+c)H(x)=e^{4}a^{2}c(x^{3}+x+c). Thus f(x)=xrH(xq1)f(x)=x^{r}H(x^{q-1}) is 11-to-11 on 𝔽q2\mathbb{F}_{q^{2}}^{*} by (n,q1)=1(n,q-1)=1. That is, Theorem 8.10 is a special case of Example 9.4 if (r,q1)=1(r,q-1)=1 and Trq/2(1/c)=1\mathrm{Tr}_{q/2}(1/c)=1.

In the above analysis, taking c=1c=1 and replacing 33 by 55 yields another proof of Lemma 8.12. Hence Theorem 8.14 is also a special case of Examples 9.1 and 9.4 if (5,q1)=1(5,q-1)=1.

We next construct a class of rational functions from 𝔽q{}\mathbb{F}_{q}\cup\{\infty\} to Uq+1U_{q+1} by the composition of monomials and degree-one rational functions. Take α\alpha, β𝔽q2\beta\in\mathbb{F}_{q^{2}}^{*} with αq1βq1\alpha^{q-1}\neq\beta^{q-1} and

2(x)=xβx+βqαx+αqx=βxβqαx+αq.\ell_{2}(x)=-x\circ\frac{\beta x+\beta^{q}}{\alpha x+\alpha^{q}}\circ-x=\frac{\beta x-\beta^{q}}{-\alpha x+\alpha^{q}}.

By Lemma 9.7, 2\ell_{2} induces a bijection from Uq+1U_{q+1} to 𝔽q{}\mathbb{F}_{q}\cup\{\infty\}. Then its compositional inverse is 21(x)=(αqx+βq)/(αx+β)\ell_{2}^{-1}(x)=(\alpha^{q}x+\beta^{q})/(\alpha x+\beta), which induces a bijection from 𝔽q{}\mathbb{F}_{q}\cup\{\infty\} to Uq+1U_{q+1}. Let kk\in\mathbb{N} and (k,q+1)=1(k,q+1)=1. Then xkx^{k} permutes Uq+1U_{q+1}. Pick 1(x)=(γqx+δq)/(δx+γ)\ell_{1}(x)=(\gamma^{q}x+\delta^{q})/(\delta x+\gamma), where γ,δ𝔽q2\gamma,\delta\in\mathbb{F}_{q^{2}} with γq+1δq+1\gamma^{q+1}\neq\delta^{q+1}. Then 1\ell_{1} permutes Uq+1U_{q+1} by Lemma 9.3. Let

λk(x)\displaystyle\lambda_{k}(x) =1xk21=γq(αqx+βq)k+δq(αx+β)kγ(αx+β)k+δ(αqx+βq)k,\displaystyle=\ell_{1}\circ x^{k}\circ\ell_{2}^{-1}=\frac{\gamma^{q}(\alpha^{q}x+\beta^{q})^{k}+\delta^{q}(\alpha x+\beta)^{k}}{\gamma(\alpha x+\beta)^{k}+\delta(\alpha^{q}x+\beta^{q})^{k}},

i.e., the following diagram is commutative:

𝔽q{}\textstyle{\mathbb{F}_{q}\cup\{\infty\}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}λk\scriptstyle{\lambda_{k}}21\scriptstyle{\ell_{2}^{-1}}Uq+1\textstyle{U_{q+1}}Uq+1\textstyle{U_{q+1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}xk\scriptstyle{x^{k}}Uq+1.\textstyle{U_{q+1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces.}1\scriptstyle{\,\ell_{1}}

Then λk\lambda_{k} induces a bijection from 𝔽q{}\mathbb{F}_{q}\cup\{\infty\} to Uq+1U_{q+1}. Applying Theorem 9.6 to N=γ(αx+β)k+δ(αqx+βq)kN=\gamma(\alpha x+\beta)^{k}+\delta(\alpha^{q}x+\beta^{q})^{k} yields the following result.

Corollary 9.9.

Let LL, M𝔽q2[x]M\in\mathbb{F}_{q^{2}}[x] satisfy that L=εxtLqL=\varepsilon x^{t}L^{q} and M=εxtMqM=\varepsilon x^{t}M^{q} for any xUq+1x\in U_{q+1}, L/ML/M induces a bijection from Uq+1U_{q+1} to 𝔽q{}\mathbb{F}_{q}\cup\{\infty\}, where εUq+1\varepsilon\in U_{q+1} and tmax{deg(L),deg(M)}t\geq\max\{\deg(L),\deg(M)\}. Assume α\alpha, β𝔽q2\beta\in\mathbb{F}_{q^{2}}^{*}, γ\gamma, δ𝔽q2\delta\in\mathbb{F}_{q^{2}}, αq1βq1\alpha^{q-1}\neq\beta^{q-1}, and γq+1δq+1\gamma^{q+1}\neq\delta^{q+1}. Let

H=γ(αLn+βMn)k+δ(αqLn+βqMn)kandf=xrH(xq1)m1,H=\gamma(\alpha L^{n}+\beta M^{n})^{k}+\delta(\alpha^{q}L^{n}+\beta^{q}M^{n})^{k}\quad\text{and}\quad f=x^{r}H(x^{q-1})^{m_{1}},

where n,k,r1n,k,r\geq 1, (k,q+1)=1(k,q+1)=1, HH has no roots in Uq+1U_{q+1}, m1=(r,q1)m_{1}=(r,q-1), and r/m1ntk(modq+1)r/m_{1}\equiv ntk\pmod{q+1}. Then ff is mm-to-11 on 𝔽q2\mathbb{F}_{q^{2}}^{*} if and only if m=m1m=m_{1} and (n,q1)=1(n,q-1)=1, where 1mmin{2(q1),m1(q+1)}1\leq m\leq\min\{2(q-1),m_{1}(q+1)\}.

Substituting the rational function in Lemma 9.7 to Corollary 9.9 yields the next result.

Example 9.5.

Let β\beta, θ𝔽q2\theta\in\mathbb{F}_{q^{2}}^{*} and δ𝔽q2\delta\in\mathbb{F}_{q^{2}} satisfy βq11\beta^{q-1}\neq 1, θq11\theta^{q-1}\neq 1, and δq+11\delta^{q+1}\neq 1. Let

H(x)=((x+1)n+β(θx+θq)n)k+δ((x+1)n+βq(θx+θq)n)kH(x)=((x+1)^{n}+\beta(\theta x+\theta^{q})^{n})^{k}+\delta((x+1)^{n}+\beta^{q}(\theta x+\theta^{q})^{n})^{k}

and f=xrH(xq1)m1f=x^{r}H(x^{q-1})^{m_{1}}, where n,k,r1n,k,r\geq 1, (k,q+1)=1(k,q+1)=1, m1=(r,q1)m_{1}=(r,q-1), and r/m1kn(modq+1)r/m_{1}\equiv kn\pmod{q+1}. Then ff is mm-to-11 on 𝔽q2\mathbb{F}_{q^{2}}^{*} if and only if m=m1m=m_{1} and (n,q1)=1(n,q-1)=1, where 1mmin{2(q1),m1(q+1)}1\leq m\leq\min\{2(q-1),m_{1}(q+1)\}.

Proof.

Let L(x)=x+1L(x)=x+1 and M(x)=θx+θqM(x)=\theta x+\theta^{q}. By Lemma 9.7, L/ML/M induces a bijection from Uq+1U_{q+1} to 𝔽q{}\mathbb{F}_{q}\cup\{\infty\}. By the proof of Example 9.4, Ln+βqMnL^{n}+\beta^{q}M^{n} has no roots in Uq+1U_{q+1}. If H(x¯)=0H(\bar{x})=0 for some x¯Uq+1\bar{x}\in U_{q+1}, then

δ\displaystyle-\delta =(L(x¯)n+βM(x¯)n)k/(L(x¯)n+βqM(x¯)n)k\displaystyle=(L(\bar{x})^{n}+\beta M(\bar{x})^{n})^{k}/(L(\bar{x})^{n}+\beta^{q}M(\bar{x})^{n})^{k}
=xk(x+β)/(x+βq)xnL/Mx¯Uq+1,\displaystyle=x^{k}\circ(x+\beta)/(x+\beta^{q})\circ x^{n}\circ L/M\circ\bar{x}\in U_{q+1},

contrary to δq+11\delta^{q+1}\neq 1. Thus H(x)H(x) has no roots in Uq+1U_{q+1}. Then the result follows from Corollary 9.9. ∎

Recently, low-degree rational functions that permute 𝔽q{}\mathbb{F}_{q}\cup\{\infty\} are given in [14, 19, 20, 11] by different methods. By substituting these functions for xnx^{n} in Theorem 9.6, one can obtain more classes of mm-to-11 mappings over 𝔽q2\mathbb{F}_{q^{2}}^{*}. For instance, we deduce the following result by substituting the rational function in [19, Theorem 3.2] for xnx^{n} in Theorem 9.6.

Lemma 9.10 ([19, Theorem 3.2]).

Let qq be even and α𝔽q2𝔽q\alpha\in\mathbb{F}_{q^{2}}\setminus\mathbb{F}_{q}. Then

f(x):-x+1x+α+1x+αqf(x)\coloneq x+\frac{1}{x+\alpha}+\frac{1}{x+\alpha^{q}}

permutes 𝔽q{}\mathbb{F}_{q}\cup\{\infty\} if and only if α+αq=1\alpha+\alpha^{q}=1.

Theorem 9.11.

Let LL, M𝔽q2[x]M\in\mathbb{F}_{q^{2}}[x] satisfy that L=εxtLqL=\varepsilon x^{t}L^{q} and M=εxtMqM=\varepsilon x^{t}M^{q} for any xUq+1x\in U_{q+1} and that L/ML/M induces a bijection from Uq+1U_{q+1} to 𝔽q{}\mathbb{F}_{q}\cup\{\infty\}, where εUq+1\varepsilon\in U_{q+1} and tmax{deg(L),deg(M)}t\geq\max\{\deg(L),\deg(M)\}. Let N𝔽q2[x]N\in\mathbb{F}_{q^{2}}[x] satisfy that N(q)/NN^{(q)}/N induces a bijection from 𝔽q{}\mathbb{F}_{q}\cup\{\infty\} to Uq+1U_{q+1}. Let qq be even, α𝔽q2𝔽q\alpha\in\mathbb{F}_{q^{2}}\setminus\mathbb{F}_{q},

g¯=x+1x+α+1x+αq,\displaystyle\bar{g}=x+\frac{1}{x+\alpha}+\frac{1}{x+\alpha^{q}},
h2=L2M+(α+αq)LM2+αq+1M3,\displaystyle h_{2}=L^{2}M+(\alpha+\alpha^{q})LM^{2}+\alpha^{q+1}M^{3},
H=h2u(Ng¯L/M),\displaystyle H=h_{2}^{u}(N\circ\bar{g}\circ L/M),

and HH has no roots in Uq+1U_{q+1}, where u=deg(N)u=\deg(N). Let f=xrH(xq1)m1f=x^{r}H(x^{q-1})^{m_{1}}, where rr\in\mathbb{N}, m1=(r,q1)m_{1}=(r,q-1), and r/m13tu(modq+1)r/m_{1}\equiv 3tu\pmod{q+1}. Then ff is m1m_{1}-to-11 on 𝔽q2\mathbb{F}_{q^{2}}^{*} if and only if α+αq=1\alpha+\alpha^{q}=1.

Proof.

Since

g¯(x)=x3+(α+αq)x2+αq+1x+(α+αq)x2+(α+αq)x+αq+1,\bar{g}(x)=\frac{x^{3}+(\alpha+\alpha^{q})x^{2}+\alpha^{q+1}x+(\alpha+\alpha^{q})}{x^{2}+(\alpha+\alpha^{q})x+\alpha^{q+1}},

we have

g¯L/M\displaystyle\bar{g}\circ L/M =L3/M3+(α+αq)(L2/M2)+αq+1(L/M)+(α+αq)(L2/M2)+(α+αq)(L/M)+αq+1\displaystyle=\frac{L^{3}/M^{3}+(\alpha+\alpha^{q})(L^{2}/M^{2})+\alpha^{q+1}(L/M)+(\alpha+\alpha^{q})}{(L^{2}/M^{2})+(\alpha+\alpha^{q})(L/M)+\alpha^{q+1}}
=L3+(α+αq)L2M+αq+1LM2+(α+αq)M3L2M+(α+αq)LM2+αq+1M3:-h1/h2.\displaystyle=\frac{L^{3}+(\alpha+\alpha^{q})L^{2}M+\alpha^{q+1}LM^{2}+(\alpha+\alpha^{q})M^{3}}{L^{2}M+(\alpha+\alpha^{q})LM^{2}+\alpha^{q+1}M^{3}}\coloneq h_{1}/h_{2}.

Put N=i=0uaixi𝔽q2[x]N=\sum_{i=0}^{u}a_{i}x^{i}\in\mathbb{F}_{q^{2}}[x]. Then

H=h2ui=0uai(h1/h2)i=i=0uaih1ih2ui.H=h_{2}^{u}\cdot\sum_{i=0}^{u}a_{i}(h_{1}/h_{2})^{i}=\sum_{i=0}^{u}a_{i}h_{1}^{i}h_{2}^{u-i}.

Since L=εxtLqL=\varepsilon x^{t}L^{q} and M=εxtMqM=\varepsilon x^{t}M^{q}, we get hiq=(ε1xt)3hih_{i}^{q}=(\varepsilon^{-1}x^{-t})^{3}h_{i} for any xUq+1x\in U_{q+1}, and so

Hq=i=0uaiqh1qih2q(ui)=(ε1xt)3ui=0uaiqh1ih2ui.H^{q}=\sum_{i=0}^{u}a_{i}^{q}h_{1}^{qi}h_{2}^{q(u-i)}=(\varepsilon^{-1}x^{-t})^{3u}\sum_{i=0}^{u}a_{i}^{q}h_{1}^{i}h_{2}^{u-i}.

Define g(x)=xr/m1Hq1g(x)=x^{r/m_{1}}H^{q-1}. The condition r/m13tu(modq+1)r/m_{1}\equiv 3tu\pmod{q+1} implies xr/m1=x3tux^{r/m_{1}}=x^{3tu} for any xUq+1x\in U_{q+1}. Recall that HH has no roots in Uq+1U_{q+1}. Thus, for any xUq+1x\in U_{q+1},

g(x)=xr/m1Hq/H=βi=0uaiqh1ih2uii=0uaih1ih2ui,\displaystyle g(x)=x^{r/m_{1}}H^{q}/H=\frac{\beta\sum_{i=0}^{u}a_{i}^{q}h_{1}^{i}h_{2}^{u-i}}{~{}\sum_{i=0}^{u}a_{i}h_{1}^{i}h_{2}^{u-i}}, (9.4)

where β=ε3u\beta=\varepsilon^{-3u}. If M(x)0M(x)\neq 0 for some xUq+1x\in U_{q+1}, then

g(x)=βN(q)/Nh1/h2=βN(q)/Ng¯L/M.\displaystyle g(x)=\beta N^{(q)}/N\circ h_{1}/h_{2}=\beta N^{(q)}/N\circ\bar{g}\circ L/M. (9.5)

If M(x0)=0M(x_{0})=0 for some x0Uq+1x_{0}\in U_{q+1}, then x0x_{0} is unique and L(x0)0L(x_{0})\neq 0, since L/ML/M induces a bijection from Uq+1U_{q+1} to 𝔽q{}\mathbb{F}_{q}\cup\{\infty\}. Hence, by Eq. 9.4,

g(x0)=βauqL3u(x0)/auL3u(x0)=βauq/au.g(x_{0})=\beta a_{u}^{q}L^{3u}(x_{0})/a_{u}L^{3u}(x_{0})=\beta a_{u}^{q}/a_{u}.

Because L(x0)0L(x_{0})\neq 0 and M(x0)=0M(x_{0})=0, we get L(x0)/M(x0)=L(x_{0})/M(x_{0})=\infty and g¯()=\bar{g}(\infty)=\infty. Thus

βN(q)/Ng¯L(x0)/M(x0)=βauq/au.\beta N^{(q)}/N\circ\bar{g}\circ L(x_{0})/M(x_{0})=\beta a_{u}^{q}/a_{u}.

In summary, Eq. 9.5 holds for any xUq+1x\in U_{q+1}. Since βN(q)/N\beta N^{(q)}/N induces a bijection from 𝔽q{}\mathbb{F}_{q}\cup\{\infty\} to Uq+1U_{q+1},

(βN(q)/N)1g=g¯L/M.(\beta N^{(q)}/N)^{-1}\circ g=\bar{g}\circ L/M.

Note that f(x)Uq21m1f(x)\in U_{\frac{q^{2}-1}{m_{1}}} for x𝔽q2x\in\mathbb{F}_{q^{2}}^{*} and g(x)Uq+1g(x)\in U_{q+1} for xUq+1x\in U_{q+1}. Thus the following diagrams are commutative:

𝔽q2\textstyle{\mathbb{F}_{q^{2}}^{*}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f\scriptstyle{f}xq1\scriptstyle{x^{q-1}}Uq21m1\textstyle{U_{\frac{q^{2}-1}{m_{1}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}xq1m1\scriptstyle{x^{\frac{q-1}{m_{1}}}}Uq+1\textstyle{U_{q+1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}g\scriptstyle{g}L/M\scriptstyle{L/M}Uq+1\textstyle{U_{q+1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}(βN(q)/N)1\scriptstyle{(\beta N^{(q)}/N)^{-1}}𝔽q{}\textstyle{\mathbb{F}_{q}\cup\{\infty\}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}g¯\scriptstyle{\bar{g}}𝔽q{},\textstyle{\mathbb{F}_{q}\cup\{\infty\},}

Let λ=L/M\lambda=L/M and λ¯=(βN(q)/N)1\bar{\lambda}=(\beta N^{(q)}/N)^{-1}. Since both λ\lambda and λ¯\bar{\lambda} are bijective, #λ1(e)=#λ¯1(g¯(e))=1\#\lambda^{-1}(e)=\#\bar{\lambda}^{-1}(\bar{g}(e))=1 and gg is 11-to-11 on λ1(e)\lambda^{-1}(e) for any e𝔽q{}e\in\mathbb{F}_{q}\cup\{\infty\}. By Theorem 9.1 and [19, Theorem 3.2], ff is m1m_{1}-to-11 on 𝔽q2\mathbb{F}_{q^{2}}^{*} if and only if g¯\bar{g} is 11-to-11 on 𝔽q{}\mathbb{F}_{q}\cup\{\infty\} if and only if α+αq=1\alpha+\alpha^{q}=1. ∎

References

  • Akbary and Wang [2007] A. Akbary and Q. Wang. On polynomials of the form xrf(x(q1)/l)x^{r}f(x^{(q-1)/l}). Int. J. Math. Math. Sci., 2007:article ID 23408, 7 pages, 2007. doi:10.1155/2007/23408.
  • Akbary et al. [2011] A. Akbary, D. Ghioca, and Q. Wang. On constructing permutations of finite fields. Finite Fields Appl., 17:51–67, 2011.
  • Bartoli and Giulietti [2018] D. Bartoli and M. Giulietti. Permutation polynomials, fractional polynomials, and algebraic curves. Finite Fields Appl., 51:1–16, 2018. doi:10.1016/j.ffa.2018.01.001.
  • Bartoli and Quoos [2018] D. Bartoli and L. Quoos. Permutation polynomials of the type xrg(x)sx^{r}g(x)^{s} over 𝔽q2n\mathbb{F}_{q^{2n}}. Des. Codes Cryptogr., 86:1589–1599, 2018. doi:10.1007/S10623-017-0415-8.
  • Bartoli et al. [2018] D. Bartoli, A. M. Masuda, and L. Quoos. Permutation polynomials over 𝔽q2\mathbb{F}_{q^{2}} from rational functions. https://arxiv.org/abs/1802.05260v1, 2018.
  • Bartoli et al. [2022] D. Bartoli, M. Giulietti, and M. Timpanella. Two-to-one functions from Galois extensions. Discrete Appl. Math., 309:194–201, 2022. doi:10.1016/j.dam.2021.12.008.
  • Charpin and Kyureghyan [2009] P. Charpin and G. Kyureghyan. When does G(x)+γTr(H(x)){G}(x)+\gamma\mathrm{Tr}({H}(x)) permute 𝔽2n\mathbb{F}_{2^{n}}? Finite Fields Appl., 15:615–632, 2009.
  • Dillon and Dobbertin [2004] J. F. Dillon and H. Dobbertin. New cyclic difference sets with Singer parameters. Finite Fields Appl., 10(3):342–389, 2004. doi:10.1016/j.ffa.2003.09.003.
  • Ding [2015] C. Ding. Linear codes from some 2-designs. IEEE Trans. Inf. Theory, 61(6):3265–3275, 2015. doi:10.1109/TIT.2015.2420118.
  • Ding [2016] C. Ding. A construction of binary linear codes from Boolean functions. Discrete Math., 339(9):2288–2303, 2016. doi:10.1016/j.disc.2016.03.029.
  • Ding and Zieve [2022] Z. Ding and M. E. Zieve. Low-degree permutation rational functions over finite fields. Acta Arith., 202:253–280, 2022. doi:10.4064/aa210521-12-11.
  • Ding and Zieve [2023] Z. Ding and M. E. Zieve. Constructing permutation polynomials using generalized Rédei functions. https://arxiv.org/abs/2305.06322, 2023.
  • Ding and Zieve [2024] Z. Ding and M. E. Zieve. On a class of mm-to-1 functions. Discrete Appl. Math., 353:208–210, 2024. doi:10.1016/j.dam.2024.04.028.
  • Ferraguti and Micheli [2020] A. Ferraguti and G. Micheli. Full classification of permutation rational functions and complete rational functions of degree three over finite fields. Des. Codes Cryptogr., 88:867–886, 2020.
  • Gao et al. [2021] Y. Gao, Y.-F. Yao, and L.-Z. Shen. mm-to-11 mappings over finite fields 𝔽q\mathbb{F}_{q}. IEICE Trans. Fundam. Electron. Commun. Comput. Sci., E104.A(11):1612–1618, 2021. doi:10.1587/transfun.2021EAP1003.
  • Gupta and Sharma [2016] R. Gupta and R. K. Sharma. Some new classes of permutation trinomials over finite fields with even characteristic. Finite Fields Appl., 41:89–96, 2016.
  • Hasan et al. [2021] S. U. Hasan, M. Pal, C. Riera, and P. Stǎnicǎ. On the cc-differential uniformity of certain maps over finite fields. Des. Codes Cryptogr., 89:221–239, 2021. doi:10.1007/s10623-020-00812-0.
  • Hou [2015] X.-D. Hou. Permutation polynomials over finite fields—A survey of recent advances. Finite Fields Appl., 32:82–119, 2015.
  • Hou [2021a] X.-D. Hou. A power sum formula by Carlitz and its applications to permutation rational functions of finite fields. Cryptogr. Commun., 13:681–694, 2021a. doi:10.1007/s12095-021-00495-x.
  • Hou [2021b] X.-D. Hou. Rational functions of degree four that permute the projective line over a finite field. Commun. Algebra, 49(9):3798–3809, 2021b. doi:10.1080/00927872.2021.1906887.
  • Kim and Mesnager [2020] K. H. Kim and S. Mesnager. Solving x2k+1+x+a=0x^{2^{k}+1}+x+a=0 in 𝔽2n\mathbb{F}_{2^{n}} with gcd(n,k)=1\gcd(n,k)=1. Finite Fields Appl., 63:101630, 2020. doi:10.1016/j.ffa.2019.101630.
  • Kölsch and Kyureghyan [2024] L. Kölsch and G. Kyureghyan. The classifications of o-monomials and of 2-to-1 binomials are equivalent. Des. Codes Cryptogr., 2024. doi:10.1007/s10623-024-01463-1.
  • Lachaud and Wolfmann [1990] G. Lachaud and J. Wolfmann. The weights of the orthogonals of the extended quadratic binary Goppa codes. IEEE Trans. Inf. Theory, 36(3):686–692, 1990.
  • Li et al. [2018] K. Li, L. Qu, C. Li, and S. Fu. New permutation trinomials constructed from fractional polynomials. Acta Arith., 183:101–116, 2018. doi:10.4064/aa8461-11-2017.
  • Li et al. [2021a] K. Li, C. Li, T. Helleseth, and L. Qu. Binary linear codes with few weights from two-to-one functions. IEEE Trans. Inf. Theory, 67(7):4263–4275, 2021a. doi:10.1109/TIT.2021.3068743.
  • Li et al. [2021b] K. Li, S. Mesnager, and L. Qu. Further study of 22-to-11 mappings over 𝔽2n\mathbb{F}_{2^{n}}. IEEE Trans. Inf. Theory, 67(6):3486–3496, June 2021b.
  • Li and Helleseth [2017] N. Li and T. Helleseth. Several classes of permutation trinomials from Niho exponents. Cryptogr. Commun., 9:693–705, 2017. doi:10.1007/s12095-016-0210-9.
  • Lidl and Niederreiter [1997] R. Lidl and H. Niederreiter. Finite Fields. Cambridge Univ. Press, Cambridge, 1997.
  • Marcos [2011] J. E. Marcos. Specific permutation polynomials over finite fields. Finite Fields Appl., 17(2):105–112, 2011.
  • Mesnager and Qu [2019] S. Mesnager and L. Qu. On two-to-one mappings over finite fields. IEEE Trans. Inf. Theory, 65(12):7884–7895, Dec. 2019. doi:10.1109/TIT.2019.2933832.
  • Mesnager et al. [2023a] S. Mesnager, L. Qian, and X. Cao. Further projective binary linear codes derived from two-to-one functions and their duals. Des. Codes Cryptogr., 91:719–746, 2023a. doi:10.1007/s10623-022-01122-3.
  • Mesnager et al. [2023b] S. Mesnager, L. Qian, X. Cao, and M. Yuan. Several families of binary minimal linear codes from two-to-one functions. IEEE Trans. Inf. Theory, 69(5):3285–3301, 2023b. doi:10.1109/TIT.2023.3236955.
  • Mesnager et al. [2023c] S. Mesnager, M. Yuan, and D. Zheng. More about the corpus of involutions from two-to-one mappings and related cryptographic S-boxes. IEEE Trans. Inf. Theory, 69(2):1315–1327, 2023c.
  • Mullen and Panario [2013] G. L. Mullen and D. Panario. Handbook of Finite Fields. CRC Press, Boca Raton, 2013.
  • Niu et al. [2023] T. Niu, K. Li, L. Qu, and C. Li. Characterizations and constructions of nn-to-11 mappings over finite fields. Finite Fields Appl., 85:102126, 2023. doi:10.1016/j.ffa.2022.102126.
  • Özbudak and Temür [2022] F. Özbudak and B. G. Temür. Classification of permutation polynomials of the form x3g(xq1)x^{3}g(x^{q-1}) of 𝔽q2\mathbb{F}_{q^{2}} where g(x)=x3+bx+cg(x)=x^{3}+bx+c and b,c𝔽qb,c\in\mathbb{F}_{q}^{*}. Des. Codes Cryptogr., 90:1537–1556, 2022.
  • Özbudak and Temür [2023] F. Özbudak and B. G. Temür. Complete characterization of some permutation polynomials of the form xr(1+axs1(q1)+bxs2(q1))x^{r}(1+ax^{s_{1}(q-1)}+bx^{s_{2}(q-1)}) over 𝔽q2\mathbb{F}_{q^{2}}. Cryptogr. Commun., 15:775–793, 2023.
  • Park and Lee [2001] Y. H. Park and J. B. Lee. Permutation polynomials and group permutation polynomials. Bull. Austral. Math. Soc., 63:67–74, 2001.
  • Wan and Lidl [1991] D. Wan and R. Lidl. Permutation polynomials of the form xrf(x(q1)/d)x^{r}f(x^{(q-1)/d}) and their group structure. Monatsh. Math., 112:149–163, 1991.
  • Wang [2007] Q. Wang. Cyclotomic mapping permutation polynomials over finite fields. In Sequences, Subsequences, and Consequences, volume 4893 of Lecture Notes in Comput. Sci., pages 119–128. Springer, 2007.
  • Wang [2019] Q. Wang. Polynomials over finite fields: an index approach. In K.-U. Schmidt and A. Winterhof, editors, Combinatorics and Finite Fields: Difference Sets, Polynomials, Pseudorandomness and Applications, pages 319–346, 2019. doi:10.1515/9783110642094-015.
  • Wang [2024] Q. Wang. A survey of compositional inverses of permutation polynomials over finite fields. Des. Codes Cryptogr., 2024. doi:10.1007/s10623-024-01436-4.
  • Wu et al. [2021] Y. Wu, N. Li, and X. Zeng. New PcN and APcN functions over finite fields. Des. Codes Cryptogr., 89:2637–2651, 2021. doi:10.1007/s10623-021-00946-9.
  • Yuan et al. [2021] M. Yuan, D. Zheng, and Y. Wang. Two-to-one mappings and involutions without fixed points over 𝔽2n\mathbb{F}_{2^{n}}. Finite Fields Appl., 76:101913, 2021.
  • Yuan [2024] P. Yuan. Local method for compositional inverses of permutation polynomials. Commun. Algebra, 52(7):3070–3080, 2024. doi:10.1080/00927872.2024.2314113.
  • Yuan and Ding [2014] P. Yuan and C. Ding. Further results on permutation polynomials over finite fields. Finite Fields Appl., 27:88–103, 2014.
  • Zha et al. [2017] Z. Zha, L. Hu, and S. Fan. Further results on permutation trinomials over finite fields with even characteristic. Finite Fields Appl., 45:43–52, 2017.
  • Zheng et al. [2020] Y. Zheng, Q. Wang, and W. Wei. On inverses of permutation polynomials of small degree over finite fields. IEEE Trans. Inf. Theory, 66(2):914–922, Feb. 2020. doi:10.1109/TIT.2019.2939113.
  • Zieve [2009] M. E. Zieve. On some permutation polynomials over 𝔽q\mathbb{F}_{q} of the form xrh(x(q1)/d)x^{r}h(x^{(q-1)/d}). Proc. Am. Math. Soc., 137(7):2209–2216, 2009.
  • Zieve [2010] M. E. Zieve. Classes of permutaton polynomials based on cyclotomy and an additive analogue. In Additive Number Theory, pages 355–361. Springer, New York, 2010. doi:10.1007/978-0-387-68361-4_25.
  • Zieve [2013] M. E. Zieve. Permutation polynomials on 𝔽q\mathbb{F}_{q} induced from Rédei function bijections on subgroups of 𝔽q\mathbb{F}_{q}^{*}. https://arxiv.org/abs/1310.0776v2, 2013.