This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

On Local Solutions of Second Order Quasi-linear Elliptic Systems with Arbitrary 1-Jet at a Point

Yifei Pan Department of Mathematical Sciences
Purdue University Fort Wayne
Fort Wayne, Indiana 46805
[email protected]
 and  Yu Yan Department of Mathematics and Computer Science
Biola University
La Mirada, California 90639
[email protected]
Abstract.

We prove a general result on the existence of local solutions of any second order quasi-linear elliptic system with arbitrary 1-jet at a point.

1. Introduction

A fundamental question in the study of PDEs is the existence of solutions. It is well understood for linear PDEs; for nonlinear equations there have been numerous studies of specific equations. In this paper we prove the existence of local solutions of general second order quasi-linear elliptic systems. This result can be applied to many well known geometric equations and be used to define a new Kobayashi metric on Riemannian manifolds.

Let 𝒖(x)=(u1(x),u2(x),,um(x))\displaystyle\bm{u}(x)=\big{(}u^{1}(x),u^{2}(x),...,u^{m}(x)\big{)} be a C2C^{2} vector function from an open set in n(n2)\mathbb{R}^{n}(n\geq 2) to m(m1)\mathbb{R}^{m}(m\geq 1). We use LL to denote an elliptic quasi-linear operator on 𝒖\bm{u}, and write

L𝒖=(Lu1,,Lum),L\bm{u}=\left(Lu^{1},...,Lu^{m}\right),

where

Luk=i,j=1naij(x,𝒖(x),D𝒖(x))Dijuk,1km,Lu^{k}=\sum_{i,j=1}^{n}a^{ij}\big{(}x,\bm{u}(x),D\bm{u}(x)\big{)}D_{ij}u^{k},\hskip 14.45377pt1\leq k\leq m,

aijCloc1,α(n×m×mn)a^{ij}\in C_{loc}^{1,\alpha}\left(\mathbb{R}^{n}\times\mathbb{R}^{m}\times\mathbb{R}^{mn}\right) (0<α<10<\alpha<1), and there is a λ>0\lambda>0 such that

aij(x,p,q)ξiξjλ|ξ|2a^{ij}(x,p,q)\xi_{i}\xi_{j}\geq\lambda|\xi|^{2}

for all ξn\xi\in\mathbb{R}^{n}.

We will prove that any quasi-linear system defined by such an operator LL is always locally solvable, given the value and the first derivatives of the solution at any one point in n\mathbb{R}^{n}. Without loss of generality we can assume the domain of 𝒖\bm{u} is a ball centered at the origin.

Denote a ball centered at the origin with radius RR in n\mathbb{R}^{n} as

BR={xn||x|R}B_{R}=\{x\in\mathbb{R}^{n}\big{|}|x|\leq R\}

and denote a ball centered at the origin in m\mathbb{R}^{m} as

BR={ym||y|R}.B^{\prime}_{R^{\prime}}=\{y\in\mathbb{R}^{m}\big{|}|y|\leq R^{\prime}\}.

The following is our main result.

Theorem 1.1.

Let ϕ(x,p,q)=(ϕ1(x,p,q),,ϕm(x,p,q)):BR×BR×mnm\bm{\phi}(x,p,q)=\big{(}\phi^{1}(x,p,q),...,\phi^{m}(x,p,q)\big{)}:B_{R}\times B^{\prime}_{R^{\prime}}\times\mathbb{R}^{mn}\to\mathbb{R}^{m} be of Cloc1,αC_{loc}^{1,\alpha} (0<α<1)(0<\alpha<1). For any given 𝐜𝟎BR\bm{c_{0}}\in B^{\prime}_{R^{\prime}} and 𝐜𝟏mn\bm{c_{1}}\in\mathbb{R}^{mn}, the elliptic quasi-linear system

(1) {L𝒖(x)=ϕ(x,𝒖(x),D𝒖(x))𝒖(0)=𝒄𝟎D𝒖(0)=𝒄𝟏\left\{\begin{array}[]{r@{}l}L\bm{u}(x)&{}=\bm{\phi}(x,\bm{u}(x),D\bm{u}(x))\\ \bm{u}(0)&{}=\bm{c_{0}}\\ D\bm{u}(0)&{}=\bm{c_{1}}\end{array}\right.

has C2,αC^{2,\alpha} solutions 𝒖(x)\bm{u}(x) from BRB_{R} to BRB^{\prime}_{R^{\prime}} when RR is sufficiently small.

As will be shown in the proof, there are in fact infinitely many such solutions. An interesting feature of our theorem is that the only assumptions about the coefficient functions are ellipticity and sufficient regularity, therefore it is as general as we can hope for. It is intriguing to know if such a general existence theorem holds for fully nonlinear elliptic systems. The equation eΔu=0e^{\Delta u}=0, although being non-elliptic, seems to suggest that general local existence may not be true in the fully nonlinear case.

Theorem 1.1 has a wide range of applications in differential geometry, since many of the well known geometric equations are semilinear or quasilnear.

Example 1. (The Minimal Surface Equation) For a domain Ωn\Omega\subset\mathbb{R}^{n} and a smooth function uu on Ω\Omega, the area of its graph (x,u(x)),(x,u(x)), where xΩx\in\Omega, is Ω1+|Du|2𝑑x.\displaystyle\int_{\Omega}\sqrt{1+|Du|^{2}}\,\,dx. Its Euler-Lagrange equation is the minimal surface equation

i,j=1n(δijDiuDju1+|Du|2)DiDju=0,\sum_{i,j=1}^{n}\left(\delta_{ij}-\frac{D_{i}uD_{j}u}{1+|Du|^{2}}\right)D_{i}D_{j}u=0,

which is an elliptic quasilinear equation. The graph of uu is called a minimal surface, on which the mean curvature is identically 0. Without loss of generality we can assume 0Ω0\in\Omega. By Theorem 1.1, given u(0)u(0) and Du(0)Du(0), this equation always has local solutions near 0. Therefore, given any point P=(0,,0,p)n+1P=(0,...,0,p)\in\mathbb{R}^{n+1} and any normal vector η\eta, there are infinitely many local minimal surfaces through PP with η\eta as the normal vector.

Similar existence also holds for the prescribed mean curvature equation

i,j=1n(δijDiuDju1+|Du|2)DiDju=H(x,u),\sum_{i,j=1}^{n}\left(\delta_{ij}-\frac{D_{i}uD_{j}u}{1+|Du|^{2}}\right)D_{i}D_{j}u=H(x,u),

where H(x,z)H(x,z) is a given function on Ω×\Omega\times\mathbb{R}.

Example 2. (The Harmonic Map System) Let (M1n,g)(M_{1}^{n},g) and (M2m,h)(M_{2}^{m},h) be two Riemannian manifolds of dimensions nn and mm with metrics gg and hh, respectively. A map u:M1nM2mu:M_{1}^{n}\to M_{2}^{m} is called a harmonic map if it is a critical point of the energy functional. Let x=(x1,,xn)x=(x^{1},...,x^{n}) be a local coordinate system on M1M_{1}. In a local coordinate system on M2M_{2}, we may write u(x)=(u1(x),,um(x))u(x)=(u^{1}(x),...,u^{m}(x)), and it satisfies the quasi-linear equations

Δuα+i,j=1nβ,γ=1mgijΓβγα(u)uβxiuγxj=0,α=1,,m,\Delta u^{\alpha}+\sum_{i,j=1}^{n}\sum_{\beta,\gamma=1}^{m}g^{ij}\Gamma_{\beta\gamma}^{\alpha}(u)\frac{\partial u^{\beta}}{\partial x^{i}}\frac{\partial u^{\gamma}}{\partial x^{j}}=0,\hskip 7.22743pt\alpha=1,...,m,

where Γβγα\Gamma_{\beta\gamma}^{\alpha} are the Christoffel symbols on M2M_{2}.

By Theorem 1.1, given any p1M1p_{1}\in M_{1}, p2M2p_{2}\in M_{2}, and a subspace Γ\Gamma of the tangent space Tp2M2T_{p_{2}}M_{2}, there exist infinitely many local harmonic maps u:M1M2u:M_{1}\to M_{2} which map p1p_{1} to p2p_{2} and Tp1M1T_{p_{1}}M_{1} to Γ\Gamma. The theorem also implies the existence of any local objects to be defined by the Laplace-Beltrami operator.

A novel application of this existence of harmonic maps is a definition of Kobayashi metric on Riemmannian manifolds. The Kobayashi metric was first introduced as a pseudometric on complex manifolds by Kobayashi [3]. Let D={ξ𝐂:|ξ|<1}D=\{\xi\in\mathbf{C}:|\xi|<1\} be the unit disc in the complex plane, and let MM be a complex manifold. We denote the set of all holomorphic functions from DD to MM as Hol(D,M)\operatorname{Hol}(D,M). For any pMp\in M and vTpMv\in T_{p}M, the infinitesimal Kobayashi metric KMK_{M} of vv at pp is defined by

KM(p,v)\displaystyle K_{M}(p,v) =\displaystyle= inf{α:α>0andfHol(D,M)withf(0)=p,f(0)=vα}\displaystyle\inf\left\{\alpha:\,\,\alpha>0\,\,\text{and}\,\,\exists\,\,f\in\operatorname{Hol}(D,M)\,\,\text{with}\,\,f(0)=p,f^{\prime}(0)=\frac{v}{\alpha}\right\}
=\displaystyle= inf{|v||f(0)|:fHol(D,M)withf(0)=p}\displaystyle\inf\left\{\frac{|v|}{|f^{\prime}(0)|}\,\,:\,\,\exists\,\,f\in\operatorname{Hol}(D,M)\,\,\text{with}\,\,f(0)=p\right\}

It can be proved that KMK_{M} is upper semicontinuous on TMTM, and therefore it is a Finsler metric on MM. The Kobayashi metric is a well studied, important tool in several complex variables and complex geometry, so a natural question is whether a similar concept can be introduced on Riemannian manifolds. Theorem 1.1 paves the way for answering this question by establishing a well-defined, real version of Kobayashi metric as follows.

Again we use DD to denote the unit disk in 2\mathbb{R}^{2}, and let DRD_{R} be a disk of radius RR in 2\mathbb{R}^{2} centered at the origin with coordinates (x,y(x,y). Let (M,g)(M,g) be a Riemannian manifold with metric gg. We consider harmonic maps u:DRMu:D_{R}\to M that are conformal at 0, so

g(ux(0),ux(0))=g(uy(0),uy(0))andg(ux(0),uy(0))=0.g\left(\frac{\partial u}{\partial x}(0),\frac{\partial u}{\partial x}(0)\right)=g\left(\frac{\partial u}{\partial y}(0),\frac{\partial u}{\partial y}(0)\right)\hskip 7.22743pt\text{and}\hskip 7.22743ptg\left(\frac{\partial u}{\partial x}(0),\frac{\partial u}{\partial y}(0)\right)=0.
Definition 1.2.

Let (M,g)(M,g) ba a Riemannian manifold, and let XTpMX\in T_{p}M be a non-zero tangent vector at a point pMp\in M. The Kobayashi metric of XX is defined by

KM(p,X)\displaystyle K_{M}(p,X)
=\displaystyle= inf{α:α>0, harmonic map u:DM,conformal at 0,u(0)=p,ux(0)=Xα}\displaystyle\inf\left\{\alpha:\alpha>0,\,\,\exists\text{ harmonic map }u:D\to M,\,\,\text{conformal at }0,\,\,u(0)=p,\,\,\frac{\partial u}{\partial x}(0)=\frac{X}{\alpha}\right\}
=\displaystyle= inf{1R: harmonic map u:DRM,conformal at 0,u(0)=p,ux(0)=X}\displaystyle\inf\left\{\frac{1}{R}:\,\,\exists\text{ harmonic map }u:D_{R}\to M,\,\,\text{conformal at }0,\,\,u(0)=p,\,\,\frac{\partial u}{\partial x}(0)=X\right\}

If X=0X=0, we define KM(p,0)=0K_{M}(p,0)=0.

For any non-zero vector XTpMX\in T_{p}M, we can find another vector YY satisfying g(X,X)=g(Y,Y)g(X,X)=g(Y,Y) and g(X,Y)=0g(X,Y)=0. Then by Theorem 1.1, there is a harmonic map uu on a local disk DR,R>0D_{R},R>0, such that u(0)=pu(0)=p, ux(0)=X\displaystyle\frac{\partial u}{\partial x}(0)=X, and uy(0)=Y\displaystyle\frac{\partial u}{\partial y}(0)=Y. This function uu is conformal at 0 by the choice of XX and YY. Therefore in (1.2) the infimum of 1R\displaystyle\frac{1}{R} is always a finite number, and consequently the Kobayashi metric is well defined on Riemannian manifolds:

Theorem 1.3.

Let (M,g)(M,g) be any Riemannian manifold. The Kobayashi metric in (1.2) is well defined. Namely, 0KM(p,X)<0\leq K_{M}(p,X)<\infty for all XTpMX\in T_{p}M.

We would like to point out that the condition of conformality at 0 excludes geodesics from the admissible harmonic maps. For any geodesic γ(t)\gamma(t) on MM such that γ(0)=p\gamma(0)=p and γ(0)=X\gamma^{\prime}(0)=X, the function u(x,y)=γ(x+y)\displaystyle u(x,y)=\gamma(x+y) defines a harmonic map from a neighborhood of the origin to MM, with u(0)=pu(0)=p and ux(0)=X\displaystyle\frac{\partial u}{\partial x}(0)=X. However, since uy(0)=X\displaystyle\frac{\partial u}{\partial y}(0)=X too, uu is not conformal at 0.

There are a lot of questions we can ask about KMK_{M}. The first one is whether it is a Finsler metric, which needs to be upper-semicontinuous and positive definite. We hope to explore this in future work.

The rest of the paper is organized as follows. The main strategy for proving Theorem 1.1 is similar to that in [4]. The solution is found by applying the Fixed Point Theorem to an appropriately defined Banach space, but the quasilinear term introduces additional subtlety that needs to be handled carefully. In Section 2 we define a Banach space of functions with vanishing order from which we will seek possible solutions. Then, we study the Newtonian potential as an operator on this Banach space in Section 3. Next, in Section 4 we show that proving Theorem 1.1 is equivalent to proving Lemma 4.1, which is the local existence of solutions of a Poisson type system, and we define a map for the Poisson system. Finally, in Section 5 and Section 6 we prove this map is a contraction if some parameters are appropriately chosen, then the Fixed Point Theorem can be invoked to find a solution, proving Lemma 4.1. Thus, Theorem 1.1 is also true.

2. Defining the Function Spaces and Some Preliminary Estimates

First we define some notations we will be using throughout the proof.

Let f:BRf:B_{R}\to\mathbb{R} be a function defined on BRB_{R}.

  • The Hölder seminorm of ff is

    Hα[f]=supx,xBR{|f(x)f(x)||xx|α|}.\displaystyle H_{\alpha}[f]=\sup_{x,x^{\prime}\in B_{R}}\bigg{\{}\frac{|f(x)-f(x^{\prime})|}{|x-x^{\prime}|^{\alpha}}\bigg{|}\bigg{\}}.
  • C0,α(BR)C^{0,\alpha}(B_{R}) is the set of all functions on BRB_{R} such that Hα[f]H_{\alpha}[f] is finite.

  • The weighted Hölder norm of ff is

    (3) fα=supxBR|f(x)|+(2R)αHα[f].\displaystyle\|f\|_{\alpha}=\sup_{x\in B_{R}}|f(x)|+(2R)^{\alpha}H_{\alpha}[f].

    It is well known (see [2]) that α\|\cdot\|_{\alpha} is a norm on C0,α(BR)C^{0,\alpha}(B_{R}) with which C0,α(BR)C^{0,\alpha}(B_{R}) is a Banach algebra, i.e.

    (4) fgαfαgα\|fg\|_{\alpha}\leq\|f\|_{\alpha}\|g\|_{\alpha}

    for any f,gCα(BR)f,g\in C^{\alpha}(B_{R}).

  • The Hölder space C2,α(BR)C^{2,\alpha}(B_{R}) consists of all functions ff on BRB_{R} whose second order partial derivatives exist and belong to C0,α(BR)C^{0,\alpha}(B_{R}).

  • We use C02,α(BR)C_{0}^{2,\alpha}(B_{R}) to denote the set of all functions in C2,α(BR)C^{2,\alpha}(B_{R}) whose first order derivatives all vanish at the origin:

    C02,α(BR)={fC2,α(BR)|if(0)=0,i=1,,n}.C_{0}^{2,\alpha}(B_{R})=\{f\in C^{2,\alpha}(B_{R})\big{|}\partial_{i}f(0)=0,\,\,i=1,...,n\}.
  • For any integer l0l\geq 0, define

    (5) f(l,α)\displaystyle\|f\|^{(l,\alpha)} =\displaystyle= max|β|=l{βfα}\displaystyle\max_{|\beta|=l}\big{\{}\|\partial^{\beta}f\|_{\alpha}\big{\}}
    =\displaystyle= max|β|=l{supxBR|βf(x)|+(2R)αHα[βf]},\displaystyle\max_{|\beta|=l}\Big{\{}\sup_{x\in B_{R}}|\partial^{\beta}f(x)|+(2R)^{\alpha}H_{\alpha}[\partial^{\beta}f]\Big{\}},

    where we have used the notation β=(β1,,βn)\beta=(\beta_{1},...,\beta_{n}), |β|=β1++βn|\beta|=\beta_{1}+...+\beta_{n}, and

    β=1β1nβn.\partial^{\beta}=\partial_{1}^{\beta_{1}}\cdot\cdot\cdot\partial_{n}^{\beta_{n}}.

    Note that f(0,α)=fα.\|f\|^{(0,\alpha)}=\|f\|_{\alpha}.

    We can also extend the definition (l,α)\|\cdot\|^{(l,\alpha)} to vector functions 𝒇=(f1,,fm):BRm\bm{f}=(f^{1},...,f^{m}):B_{R}\to\mathbb{R}^{m} and define

    (6) 𝒇(l,α)=maxj=1,,mfj(l,α).\|\bm{f}\|^{(l,\alpha)}=\max_{j=1,...,m}\|f^{j}\|^{(l,\alpha)}.

In our proof we will only use (5) and (6) for 0l20\leq l\leq 2. A key fact to be used in our proof is that (2,α)\|\cdot\|^{(2,\alpha)} is a norm on C02,α(BR)C_{0}^{2,\alpha}(B_{R}), and C02,α(BR)C_{0}^{2,\alpha}(B_{R}) becomes a Banach space under this norm. We will establish this fact in Lemma 2.4, which is based on the estimates in the following Lemmas 2.1 to 2.3.

Lemma 2.1.

If fC2,α(BR)f\in C^{2,\alpha}(B_{R}), then for any x,xBRx,x^{\prime}\in B_{R},

|f(x)l=021l!|β|=lβf(x)(xx)β|12(|β|=2Hα[βf])|xx|2+α.\Big{|}f(x^{\prime})-\sum_{l=0}^{2}\frac{1}{l!}\sum_{|\beta|=l}\partial^{\beta}f(x)(x^{\prime}-x)^{\beta}\Big{|}\leq\frac{1}{2}\left(\sum_{|\beta|=2}H_{\alpha}[\partial^{\beta}f]\right)|x^{\prime}-x|^{2+\alpha}.

Proof: Define

φ(t)=f(x+th),whereh=xx.\varphi(t)=f(x+th),\hskip 14.45377pt\text{where}\hskip 14.45377pth=x^{\prime}-x.

Then

010t1φ′′(t)𝑑t𝑑t1\displaystyle\int_{0}^{1}\int_{0}^{t_{1}}\varphi^{{}^{\prime\prime}}(t)dtdt_{1} =\displaystyle= φ(1)φ(0)φ(0)\displaystyle\varphi(1)-\varphi(0)-\varphi^{\prime}(0)
=\displaystyle= f(x)f(x)i=1nif(x)hi,\displaystyle f(x^{\prime})-f(x)-\sum_{i=1}^{n}\partial_{i}f(x)h_{i},

After subtracting the second derivatives term, we have

|f(x)f(x)i=1nif(x)hi12i,j=1nijf(x)hihj|\displaystyle\Big{|}f(x^{\prime})-f(x)-\sum_{i=1}^{n}\partial_{i}f(x)h_{i}-\frac{1}{2}\sum_{i,j=1}^{n}\partial_{i}\partial_{j}f(x)h_{i}h_{j}\Big{|}
=\displaystyle= |010t1φ′′(t)𝑑t𝑑t112i,j=1nijf(x)hihj|\displaystyle\Bigg{|}\int_{0}^{1}\int_{0}^{t_{1}}\varphi^{{}^{\prime\prime}}(t)dtdt_{1}-\frac{1}{2}\sum_{i,j=1}^{n}\partial_{i}\partial_{j}f(x)h_{i}h_{j}\Bigg{|}
=\displaystyle= |010t1φ′′(t)𝑑t𝑑t1010t1i,j=1nijf(x)hihjdtdt1|\displaystyle\Bigg{|}\int_{0}^{1}\int_{0}^{t_{1}}\varphi^{{}^{\prime\prime}}(t)dtdt_{1}-\int_{0}^{1}\int_{0}^{t_{1}}\sum_{i,j=1}^{n}\partial_{i}\partial_{j}f(x)h_{i}h_{j}dtdt_{1}\Bigg{|}
=\displaystyle= |010t1(i,j=1nijf(x+th)hihji,j=1nijf(x)hihj)𝑑t𝑑t1|\displaystyle\Bigg{|}\int_{0}^{1}\int_{0}^{t_{1}}\left(\sum_{i,j=1}^{n}\partial_{i}\partial_{j}f(x+th)h_{i}h_{j}-\sum_{i,j=1}^{n}\partial_{i}\partial_{j}f(x)h_{i}h_{j}\right)dtdt_{1}\Bigg{|}
\displaystyle\leq 010t1i,j=1nHα[ijf]|h|2+αdtdt1\displaystyle\int_{0}^{1}\int_{0}^{t_{1}}\sum_{i,j=1}^{n}H_{\alpha}\big{[}\partial_{i}\partial_{j}f\big{]}|h|^{2+\alpha}dtdt_{1}
=\displaystyle= 12i,j=1nHα[ijf]|h|2+α,\displaystyle\frac{1}{2}\sum_{i,j=1}^{n}H_{\alpha}\big{[}\partial_{i}\partial_{j}f\big{]}|h|^{2+\alpha},

which can be written as

|f(x)l=021l!|β|=lβf(x)(xx)β|12(|β|=2Hα[βf])|xx|2+α.\Big{|}f(x^{\prime})-\sum_{l=0}^{2}\frac{1}{l!}\sum_{|\beta|=l}\partial^{\beta}f(x)(x^{\prime}-x)^{\beta}\Big{|}\leq\frac{1}{2}\left(\sum_{|\beta|=2}H_{\alpha}[\partial^{\beta}f]\right)|x^{\prime}-x|^{2+\alpha}.

\Box

Lemma 2.2.

If fC02,α(BR)f\in C_{0}^{2,\alpha}(B_{R}), then

fα<(3nR)2f(2,α).\|f\|_{\alpha}<(3nR)^{2}\|f\|^{(2,\alpha)}.

Proof: Let fC02,α(BR)f\in C_{0}^{2,\alpha}(B_{R}), by definition f(0)=0f(0)=0 and if(0)=0\displaystyle\partial_{i}f(0)=0 for all i=1,,ni=1,...,n.

For any xBRx\in B_{R}, define

φ(t)=f(tx),\varphi(t)=f(tx),

then φ(0)=0\varphi(0)=0 and φ(0)=0\varphi^{\prime}(0)=0. Therefore,

(7) f(x)\displaystyle f(x) =\displaystyle= 010t1φ′′(t)𝑑t𝑑t1\displaystyle\int_{0}^{1}\int_{0}^{t_{1}}\varphi^{\prime\prime}(t)dtdt_{1}
=\displaystyle= 010t1(|β|=2βf(tx)xβ)𝑑t𝑑t1\displaystyle\int_{0}^{1}\int_{0}^{t_{1}}\left(\sum_{|\beta|=2}\partial^{\beta}f(tx)x^{\beta}\right)dtdt_{1}
=\displaystyle= |β|=2(010t1βf(tx)dtdt1)xβ.\displaystyle\sum_{|\beta|=2}\left(\int_{0}^{1}\int_{0}^{t_{1}}\partial^{\beta}f(tx)\,\,dtdt_{1}\right)x^{\beta}.

It follows easily from (3) that xiα=3R\|x_{i}\|_{\alpha}=3R for all i=1,ni=1,...n. Then for any β=(β1,,βn)\beta=(\beta_{1},...,\beta_{n}) with |β|=2|\beta|=2, by (4) we have

xβα=x1β1xnβnα(3R)2.\|x^{\beta}\|_{\alpha}=\|x_{1}^{\beta_{1}}\cdots x_{n}^{\beta_{n}}\|_{\alpha}\\ \leq(3R)^{2}.

Now applying (4) to (7), we obtain

fα\displaystyle\|f\|_{\alpha} \displaystyle\leq |β|=2βfαxβα\displaystyle\sum_{|\beta|=2}\|\partial^{\beta}f\|_{\alpha}\|x^{\beta}\|_{\alpha}
\displaystyle\leq (3R)2|β|=2βfα\displaystyle(3R)^{2}\sum_{|\beta|=2}\|\partial^{\beta}f\|_{\alpha}
\displaystyle\leq (3nR)2f(2,α).\displaystyle(3nR)^{2}\|f\|^{(2,\alpha)}.

\Box

Lemma 2.3.

If fC02,α(BR)f\in C_{0}^{2,\alpha}(B_{R}), then for any l<2l<2,

f(l,α)(3nR)2lf(2,α).\|f\|^{(l,\alpha)}\leq(3nR)^{2-l}\|f\|^{(2,\alpha)}.

Proof: Let fC02,α(BR)f\in C_{0}^{2,\alpha}(B_{R}). If |β|=l<2|\beta|=l<2, then βfC02l,α(BR)\partial^{\beta}f\in C_{0}^{2-l,\alpha}(B_{R}).

Similar to the proof of Lemma 2.2, we can show that

βfα\displaystyle\|\partial^{\beta}f\|_{\alpha} \displaystyle\leq (3nR)2lβf(2l,α)\displaystyle(3nR)^{2-l}\|\partial^{\beta}f\|^{(2-l,\alpha)}
\displaystyle\leq (3nR)2lf(2,α).\displaystyle(3nR)^{2-l}\|f\|^{(2,\alpha)}.

Therefore

f(l,α)(3nR)2lf(2,α).\|f\|^{(l,\alpha)}\leq(3nR)^{2-l}\|f\|^{(2,\alpha)}.

\Box

Next, we prove the main result of this section.

Lemma 2.4.

The function space C02,α(BR)C_{0}^{2,\alpha}(B_{R}) equipped with the (2,α)\|\cdot\|^{(2,\alpha)} norm is a Banach space.

Proof: By definition (2,α)\|\cdot\|^{(2,\alpha)} is a semi-norm on C2,α(BR)C^{2,\alpha}(B_{R}). If f(2,α)=0\|f\|^{(2,\alpha)}=0 , then βf=0\partial^{\beta}f=0 for all |β|=2|\beta|=2 on BRB_{R}, which implies ff is a constant or a linear function. If in addition fC02,α(BR)f\in C_{0}^{2,\alpha}(B_{R}), then ff and its first derivatives all vanish at 0, so ff must be identically 0. Thus (2,α)\|\cdot\|^{(2,\alpha)} is a norm on C02,α(BR)C_{0}^{2,\alpha}(B_{R}).

Since C02,α(BR)C_{0}^{2,\alpha}(B_{R}) is a closed subspace of C2,α(BR)C^{2,\alpha}(B_{R}) and C2,α(BR)C^{2,\alpha}(B_{R}) is a Banach space with the α\|\cdot\|_{\alpha} norm, we know C02,α(BR)C_{0}^{2,\alpha}(B_{R}) is a Banach space with the α\|\cdot\|_{\alpha} norm. Then by Lemma 2.3, C02,α(BR)C_{0}^{2,\alpha}(B_{R}) is also complete under the (2,α)\|\cdot\|^{(2,\alpha)} norm. Therefore, C02,α(BR)C_{0}^{2,\alpha}(B_{R}) equipped with the (2,α)\|\cdot\|^{(2,\alpha)} norm is a Banach space.

\Box

3. A Hölder Estimate for the Newtonian Potential

Recall that the fundamental solution of the Laplace’s equation is given by

Γ(xy)={1n(n2)ωn|xy|2nifn3,12πln|xy|ifn=2.\Gamma(x-y)=\begin{cases}\displaystyle\frac{1}{n(n-2)\omega_{n}}|x-y|^{2-n}&\text{if}\,\,n\geq 3,\\ \displaystyle-\frac{1}{2\pi}\ln|x-y|&\text{if}\,\,n=2.\end{cases}

For an integrable function ff on BRB_{R}, the Newtonian potential of ff is defined on n\mathbb{R}^{n} by

𝒩(f)(x)=BRΓ(xy)f(y)𝑑y;\mathcal{N}(f)(x)=\int_{B_{R}}\Gamma(x-y)f(y)dy;

it solves the Poisson’s Equation Δu=f\Delta u=-f. In our proof we will consider 𝒩\mathcal{N} as an operator acting on a function space. The following result is well-known and a proof is given in [1].

Lemma 3.1.

Let fC0,α(BR)f\in C^{0,\alpha}(B_{R}). For any xInt(BR)x\in\mathrm{Int}(B_{R}),

ij𝒩(f)(x)=BRijΓ(xy)(f(y)f(x))dyδijnf(x),\partial_{ij}\mathcal{N}(f)(x)=\int_{B_{R}}\partial_{ij}\Gamma(x-y)\big{(}f(y)-f(x)\big{)}dy-\frac{\delta_{ij}}{n}f(x),

where Int(BR)\mathrm{Int}(B_{R}) is the interior of BRB_{R}.

Now we discuss a technical result in order to study the Hölder estimate for functions under the operator 𝒩\mathcal{N}. Let xx be any interior point of BRB_{R}, and let Bρ(x)B_{\rho}(x) be the open ball centered at xx with radius ρ\rho. It was proved in [1] that

Lemma 3.2.

There is a constant C(n)C(n) depending only on nn, such that for any xInt(BR)x\in\mathrm{Int}(B_{R}) and 1i,jn1\leq i,j\leq n,

|BRBρ(x)ijΓ(xy)dy|C(n).\bigg{|}\int_{B_{R}\setminus B_{\rho}(x)}\partial_{ij}\Gamma(x-y)dy\bigg{|}\leq C(n).

Although in [1] Lemma 3.2 was proved in the case ρR4\rho\leq\frac{R}{4}, the proof actually holds for all ρ\rho without restrictions.

It is well known (see [2]) that 𝒩\mathcal{N} maps C0,α(BR2)\displaystyle C^{0,\alpha}\left(B_{\frac{R}{2}}\right) to C0,α(BR)C^{0,\alpha}(B_{R}) continuously. Next we will prove a stronger estimate which is essential to our construction of the contraction map.

Theorem 3.3.

If fC0,α(BR)f\in C^{0,\alpha}(B_{R}), then 𝒩(f)C2,α(BR)\mathcal{N}(f)\in C^{2,\alpha}(B_{R}) and there is a constant C(n,α)C(n,\alpha), independent of RR, such that

𝒩(f)(2,α)C(n,α)fα.\|\mathcal{N}(f)\|^{(2,\alpha)}\leq C(n,\alpha)\|f\|_{\alpha}.

We would like to point out that although the constant C(n,α)C(n,\alpha) is independent of RR, there is an RαR^{\alpha} term in the definition of the weighted norm fα\|f\|_{\alpha}, so the 𝒩(f)(2,α)\|\mathcal{N}(f)\|^{(2,\alpha)} norm actually does depend on RR. This shows the advantage of choosing the weighted norm over unweighted norm.

Proof: Recall that by (5),

𝒩(f)(2,α)=max|β|=2{β𝒩(f)α}=max1i,jn{ij𝒩(f)α}\|\mathcal{N}(f)\|^{(2,\alpha)}=\max_{|\beta|=2}\big{\{}\|\partial^{\beta}\mathcal{N}(f)\|_{\alpha}\big{\}}=\max_{1\leq i,j\leq n}\big{\{}\|\partial_{ij}\mathcal{N}(f)\|_{\alpha}\big{\}}

Let

ζ(x)=BRijΓ(xy)(f(y)f(x))dy.\zeta(x)=\int_{B_{R}}\partial_{ij}\Gamma(x-y)\big{(}f(y)-f(x)\big{)}dy.

By Lemma 3.1,    ij𝒩(f)=ζ(x)δijnf(x)\displaystyle\partial_{ij}\mathcal{N}(f)=\zeta(x)-\frac{\delta_{ij}}{n}f(x), and therefore

(8) ij𝒩(f)αζα+fα.\|\partial_{ij}\mathcal{N}(f)\|_{\alpha}\leq\|\zeta\|_{\alpha}+\|f\|_{\alpha}.

So we only need to bound ζα\|\zeta\|_{\alpha} in terms of fα\|f\|_{\alpha}.

First, for xInt(BR)x\in\mathrm{Int}(B_{R}),

(9) |ζ(x)|\displaystyle|\zeta(x)| \displaystyle\leq BR|ijΓ(xy)||f(y)f(x)|𝑑y\displaystyle\int_{B_{R}}|\partial_{ij}\Gamma(x-y)||f(y)-f(x)|dy
\displaystyle\leq CHα[f]BR|yx|α|xy|n𝑑y\displaystyle CH_{\alpha}[f]\int_{B_{R}}\frac{|y-x|^{\alpha}}{|x-y|^{n}}dy
\displaystyle\leq CHα[f]B2R(x)|yx|α|xy|n𝑑y\displaystyle CH_{\alpha}[f]\int_{B_{2R}(x)}\frac{|y-x|^{\alpha}}{|x-y|^{n}}dy
=\displaystyle= CHα[f]Sn102Rrαrn1rn𝑑r𝑑σ\displaystyle CH_{\alpha}[f]\int_{S^{n-1}}\int_{0}^{2R}\frac{r^{\alpha}r^{n-1}}{r^{n}}drd\sigma
=\displaystyle= C(n,α)Hα[f]Rα\displaystyle C(n,\alpha)H_{\alpha}[f]R^{\alpha}
\displaystyle\leq C(n,α)fα,\displaystyle C(n,\alpha)\|f\|_{\alpha},

where the polar coordinates are centered at xx.

To compute the Hölder constant of ζ\zeta, let x,xx,x^{\prime} be two (distinct) points in BRB_{R}. Let Bρ(x)B_{\rho}(x) be the open ball of radius ρ=2|xx|\rho=2|x-x^{\prime}| and centered at xx.

ζ(x)ζ(x)\displaystyle\zeta(x)-\zeta(x^{\prime}) =\displaystyle= BRijΓ(xy)(f(y)f(x))dyBRijΓ(xy)(f(y)f(x))dy\displaystyle\int_{B_{R}}\partial_{ij}\Gamma(x-y)\Big{(}f(y)-f(x)\Big{)}dy-\int_{B_{R}}\partial_{ij}\Gamma(x^{\prime}-y)\Big{(}f(y)-f(x^{\prime})\Big{)}dy
=\displaystyle= BRBρ(x)ijΓ(xy)(f(y)f(x))dy\displaystyle\int_{B_{R}\setminus B_{\rho}(x)}\partial_{ij}\Gamma(x-y)\Big{(}f(y)-f(x)\Big{)}dy
+BRBρ(x)ijΓ(xy)(f(y)f(x))dy\displaystyle+\int_{B_{R}\cap B_{\rho}(x)}\partial_{ij}\Gamma(x-y)\Big{(}f(y)-f(x)\Big{)}dy
\displaystyle- BRBρ(x)ijΓ(xy)(f(y)f(x))dy\displaystyle\int_{B_{R}\setminus B_{\rho}(x)}\partial_{ij}\Gamma(x^{\prime}-y)\Big{(}f(y)-f(x^{\prime})\Big{)}dy
\displaystyle- BRBρ(x)ijΓ(xy)(f(y)f(x))dy\displaystyle\int_{B_{R}\cap B_{\rho}(x)}\partial_{ij}\Gamma(x^{\prime}-y)\Big{(}f(y)-f(x^{\prime})\Big{)}dy
=\displaystyle= BRBρ(x)(ijΓ(xy)ijΓ(xy))(f(y)f(x))𝑑yI1\displaystyle\underbrace{\int_{B_{R}\setminus B_{\rho}(x)}\Big{(}\partial_{ij}\Gamma(x-y)-\partial_{ij}\Gamma(x^{\prime}-y)\Big{)}\Big{(}f(y)-f(x)\Big{)}dy}_{I_{1}}
+\displaystyle+ (f(x)f(x))BRBρ(x)ijΓ(xy)dyI2\displaystyle\underbrace{\Big{(}f(x^{\prime})-f(x)\Big{)}\int_{B_{R}\setminus B_{\rho}(x)}\partial_{ij}\Gamma(x^{\prime}-y)dy}_{I_{2}}
+\displaystyle+ BRBρ(x)ijΓ(xy)(f(y)f(x))dyI3\displaystyle\underbrace{\int_{B_{R}\cap B_{\rho}(x)}\partial_{ij}\Gamma(x-y)\Big{(}f(y)-f(x)\Big{)}dy}_{I_{3}}
\displaystyle- BRBρ(x)ijΓ(xy)(f(y)f(x))dyI4.\displaystyle\underbrace{\int_{B_{R}\cap B_{\rho}(x)}\partial_{ij}\Gamma(x^{\prime}-y)\Big{(}f(y)-f(x^{\prime})\Big{)}dy}_{I_{4}}.

Next we will estimate each of I1I_{1}, I2I_{2}, I3I_{3}, and I4I_{4}.

|I1|\displaystyle|I_{1}| =\displaystyle= |BRBρ(x)(ijΓ(xy)ijΓ(xy))(f(y)f(x))𝑑y|\displaystyle\bigg{|}\int_{B_{R}\setminus B_{\rho}(x)}\Big{(}\partial_{ij}\Gamma(x-y)-\partial_{ij}\Gamma(x^{\prime}-y)\Big{)}\Big{(}f(y)-f(x)\Big{)}dy\bigg{|}
\displaystyle\leq Hα[f]|xx|BRBρ(x)|ijΓ(x^y)||yx|α𝑑y,\displaystyle H_{\alpha}[f]|x-x^{\prime}|\int_{B_{R}\setminus B_{\rho}(x)}\big{|}\nabla\partial_{ij}\Gamma(\hat{x}-y)\big{|}|y-x|^{\alpha}dy,

where x^\hat{x} is a point on the line segment between x,xx,x^{\prime}.

Since yBRBρ(x)y\in B_{R}\setminus B_{\rho}(x),

|xy|>ρ=2|xx|2|xx^|,|x-y|>\rho=2|x-x^{\prime}|\geq 2|x-\hat{x}|,

then

|x^y||xy||xx^|12|xy||\hat{x}-y|\geq|x-y|-|x-\hat{x}|\geq\frac{1}{2}|x-y|

and

(11) |ijΓ(x^y)|C(n)|x^y|n1C(n)|xy|n1.\big{|}\nabla\partial_{ij}\Gamma(\hat{x}-y)\big{|}\leq C(n)|\hat{x}-y|^{-n-1}\leq C(n)|x-y|^{-n-1}.

Therefore,

(12) |I1|\displaystyle|I_{1}| \displaystyle\leq C(n)Hα[f]|xx|BRBρ(x)|xy|n1+α𝑑y\displaystyle C(n)H_{\alpha}[f]|x-x^{\prime}|\int_{B_{R}\setminus B_{\rho}(x)}|x-y|^{-n-1+\alpha}dy
\displaystyle\leq C(n)Hα[f]|xx|B2R(x)Bρ(x)|xy|n1+α𝑑y\displaystyle C(n)H_{\alpha}[f]|x-x^{\prime}|\int_{B_{2R}(x)\setminus B_{\rho}(x)}|x-y|^{-n-1+\alpha}dy
=\displaystyle= C(n)Hα[f]|xx|Sn1ρ2Rrn1+αrn1𝑑r𝑑σ\displaystyle C(n)H_{\alpha}[f]|x-x^{\prime}|\int_{S^{n-1}}\int_{\rho}^{2R}r^{-n-1+\alpha}r^{n-1}drd\sigma
=\displaystyle= C(n,α)Hα[f]|xx|(ρα1(2R)α1)\displaystyle C(n,\alpha)H_{\alpha}[f]|x-x^{\prime}|\big{(}\rho^{\alpha-1}-(2R)^{\alpha-1}\big{)}
<\displaystyle< C(n,α)Hα[f]|xx|α,\displaystyle C(n,\alpha)H_{\alpha}[f]|x-x^{\prime}|^{\alpha},

where the polar coordinates are centered at xx and we have used ρ=2|xx|\rho=2|x-x^{\prime}|.

By Lemma 3.2, we have

(13) |I2|\displaystyle|I_{2}| =\displaystyle= |(f(x)f(x))BRBρ(x)ijΓ(xy)dy|\displaystyle\bigg{|}\Big{(}f(x^{\prime})-f(x)\Big{)}\int_{B_{R}\setminus B_{\rho}(x)}\partial_{ij}\Gamma(x^{\prime}-y)dy\bigg{|}
\displaystyle\leq C(n,α)Hα[f]|xx|α.\displaystyle C(n,\alpha)H_{\alpha}[f]|x-x^{\prime}|^{\alpha}.

The next term

(14) |I3|\displaystyle|I_{3}| =\displaystyle= |BRBρ(x)ijΓ(xy)(f(y)f(x))dy|\displaystyle\bigg{|}\int_{B_{R}\cap B_{\rho}(x)}\partial_{ij}\Gamma(x-y)\Big{(}f(y)-f(x)\Big{)}dy\bigg{|}
\displaystyle\leq Hα[f]BRBρ(x)|ijΓ(xy)||xy|α𝑑y\displaystyle H_{\alpha}[f]\int_{B_{R}\cap B_{\rho}(x)}|\partial_{ij}\Gamma(x-y)||x-y|^{\alpha}dy
\displaystyle\leq C(n)Hα[f]BRBρ(x)|xy|n||xy|αdy\displaystyle C(n)H_{\alpha}[f]\int_{B_{R}\cap B_{\rho}(x)}|x-y|^{-n}||x-y|^{\alpha}dy
\displaystyle\leq C(n)Hα[f]Sn10ρrn+αrn1𝑑r𝑑σ\displaystyle C(n)H_{\alpha}[f]\int_{S^{n-1}}\int_{0}^{\rho}r^{-n+\alpha}r^{n-1}drd\sigma
\displaystyle\leq C(n,α)Hα[f]|xx|α,\displaystyle C(n,\alpha)H_{\alpha}[f]|x-x^{\prime}|^{\alpha},

where the polar coordinates are also centered at xx.

The last term

|I4|\displaystyle|I_{4}| =\displaystyle= |BRBρ(x)ijΓ(xy)(f(y)f(x))dy|\displaystyle\bigg{|}\int_{B_{R}\cap B_{\rho}(x)}\partial_{ij}\Gamma(x^{\prime}-y)\Big{(}f(y)-f(x^{\prime})\Big{)}dy\bigg{|}
\displaystyle\leq Hα[f]BRBρ(x)|ijΓ(xy)||xy|α𝑑y\displaystyle H_{\alpha}[f]\int_{B_{R}\cap B_{\rho}(x)}|\partial_{ij}\Gamma(x^{\prime}-y)||x^{\prime}-y|^{\alpha}dy
\displaystyle\leq C(n)Hα[f]BRBρ(x)|xy|n||xy|αdy.\displaystyle C(n)H_{\alpha}[f]\int_{B_{R}\cap B_{\rho}(x)}|x^{\prime}-y|^{-n}||x^{\prime}-y|^{\alpha}dy.

For any yBRBρ(x)y\in B_{R}\cap B_{\rho}(x),

|yx||yx|+|xx|ρ+12ρ=32ρ.|y-x^{\prime}|\leq|y-x|+|x-x^{\prime}|\leq\rho+\frac{1}{2}\rho=\frac{3}{2}\rho.

Then

BRBρ(x)|xy|n+α𝑑y\displaystyle\int_{B_{R}\cap B_{\rho}(x)}|x^{\prime}-y|^{-n+\alpha}dy \displaystyle\leq B32ρ(x)|xy|n+α𝑑y\displaystyle\int_{B_{\frac{3}{2}\rho}(x^{\prime})}|x^{\prime}-y|^{-n+\alpha}dy
=\displaystyle= C(n)032ρrn+αrn1𝑑r\displaystyle C(n)\int_{0}^{\frac{3}{2}\rho}r^{-n+\alpha}r^{n-1}dr
=\displaystyle= C(n,α)|xx|α,\displaystyle C(n,\alpha)|x-x^{\prime}|^{\alpha},

where the polar coordinates are centered at xx^{\prime}.

Therefore,

(15) |I4|C(n,α)Hα[f]|xx|α.|I_{4}|\leq C(n,\alpha)H_{\alpha}[f]|x-x^{\prime}|^{\alpha}.

Combining (3) to (15), we have

Hα[ζ]C(n,α)Hα[f].H_{\alpha}[\zeta]\leq C(n,\alpha)H_{\alpha}[f].

This and (9) now imply

ζα=supxBR|ζ(x)|+(2R)αHα[ζ]C(n,α)fα,\|\zeta\|_{\alpha}=\sup_{x\in B_{R}}|\zeta(x)|+(2R)^{\alpha}H_{\alpha}[\zeta]\leq C(n,\alpha)\|f\|_{\alpha},

and thus by (8) the proof is completed.

\Box

4. The Integral System and the Map

A crucial observation in the proof of Theorem 1.1 is that we only need to prove it in the case

𝒄𝟎=𝟎and𝒄𝟏=𝟎.\bm{c_{0}}=\bm{0}\hskip 14.45377pt\text{and}\hskip 14.45377pt\bm{c_{1}}=\bm{0}.

For arbitrary 𝒄𝟎BR\bm{c_{0}}\in B^{\prime}_{R^{\prime}} and 𝒄𝟏mn\bm{c_{1}}\in\mathbb{R}^{mn}, we may choose RR small enough so that 𝒄𝟎+𝒄𝟏xBR\bm{c_{0}}+\bm{c_{1}}x\in B^{\prime}_{R^{\prime}} for all xBRx\in B_{R}. We first solve the elliptic quasilinear system

{i,j=1naij(x,𝒗(x)+𝒄𝟎+𝒄𝟏x,D𝒗(x)+𝒄𝟏)Dijvk=ϕk(x,𝒗(x)+𝒄𝟎+𝒄𝟏x,D𝒗(x)+𝒄𝟏)𝒗(0)=𝟎D𝒗(0)=𝟎\left\{\begin{array}[]{r@{}l}\displaystyle\sum_{i,j=1}^{n}a^{ij}\big{(}x,\bm{v}(x)+\bm{c_{0}}+\bm{c_{1}}x,D\bm{v}(x)+\bm{c_{1}}\big{)}D_{ij}v^{k}&{}=\phi^{k}\big{(}x,\bm{v}(x)+\bm{c_{0}}+\bm{c_{1}}x,D\bm{v}(x)+\bm{c_{1}}\big{)}\\ \bm{v}(0)&{}=\bm{0}\\ D\bm{v}(0)&{}=\bm{0}\end{array}\right.

for k=1,,mk=1,...,m. Then,

𝒖(x)=𝒗(x)+𝒄𝟎+𝒄𝟏x\bm{u}(x)=\bm{v}(x)+\bm{c_{0}}+\bm{c_{1}}x

will be a solution to (1).

Thus in the rest of the proof we will assume

𝒄𝟎=𝟎and𝒄𝟏=𝟎.\bm{c_{0}}=\bm{0}\,\,\,\,\text{and}\,\,\,\,\bm{c_{1}}=\bm{0}.

Consider the elliptic system (1), for any 1km1\leq k\leq m, we can write

Luk=i,j=1naij(0,𝟎,𝟎)Dijuki,j=1n[aij(0,𝟎,𝟎)aij(x,𝒖(x),D𝒖(x))]Dijuk.Lu^{k}=\sum_{i,j=1}^{n}a^{ij}\left(0,\bm{0},\bm{0}\right)D_{ij}u^{k}-\sum_{i,j=1}^{n}\Big{[}a^{ij}\left(0,\bm{0},\bm{0}\right)-a^{ij}\left(x,\bm{u}(x),D\bm{u}(x)\right)\Big{]}D_{ij}u^{k}.

Therefore, (1) can be written in vector form as

(16) i,j=1naij(0,𝟎,𝟎)Dij𝒖\displaystyle\sum_{i,j=1}^{n}a^{ij}\left(0,\bm{0},\bm{0}\right)D_{ij}\bm{u} =\displaystyle= ϕ(x,𝒖(x),D𝒖(x))\displaystyle\bm{\phi}\big{(}x,\bm{u}(x),D\bm{u}(x)\big{)}
+\displaystyle+ i,j=1n[aij(0,𝟎,𝟎)aij(x,𝒖(x),D𝒖(x))]Dij𝒖.\displaystyle\displaystyle\sum_{i,j=1}^{n}\Big{[}a^{ij}\left(0,\bm{0},\bm{0}\right)-a^{ij}\left(x,\bm{u}(x),D\bm{u}(x)\right)\Big{]}D_{ij}\bm{u}.

Since the constant matrix (aij(0,𝟎,𝟎))n×n\displaystyle\Big{(}a_{ij}\left(0,\bm{0},\bm{0}\right)\Big{)}_{n\times n} is positive definite, after a change of the coordinates x~=Px\tilde{x}=Px, where P=(pij)n×nP=(p_{ij})_{n\times n} is an invertible n×nn\times n matrix, we can write

i,j=1naij(0,𝟎,𝟎)Dij𝒖(x)=i=1n2𝒖x~i2(x~).\sum_{i,j=1}^{n}a^{ij}\left(0,\bm{0},\bm{0}\right)D_{ij}\bm{u}(x)=\displaystyle\sum_{i=1}^{n}\frac{\partial^{2}\bm{u}}{\partial\tilde{x}_{i}^{2}}(\tilde{x}).

The right-hand side of (16) becomes

ϕ(P1x~,𝒖(P1x~),D~𝒖(x~)P)\displaystyle\bm{\phi}\big{(}P^{-1}\tilde{x},\bm{u}(P^{-1}\tilde{x}),\tilde{D}\bm{u}(\tilde{x})P\big{)}
+\displaystyle+ i,j=1n[aij(0,𝟎,𝟎)aij(P1x~,𝒖(P1x~),D~𝒖(x~)P)]k,l=1npli2𝒖x~kx~l(x~)pkj,\displaystyle\displaystyle\sum_{i,j=1}^{n}\Big{[}a^{ij}\left(0,\bm{0},\bm{0}\right)-a^{ij}\left(P^{-1}\tilde{x},\bm{u}(P^{-1}\tilde{x}),\tilde{D}\bm{u}(\tilde{x})P\right)\Big{]}\displaystyle\sum_{k,l=1}^{n}p_{li}\frac{\partial^{2}\bm{u}}{\partial\tilde{x}_{k}\partial\tilde{x}_{l}}(\tilde{x})p_{kj},

where D~\tilde{D} denotes differentiation with respect to the x~\tilde{x} variable.

After swapping the indices (i,j)(i,j) with (k,l)(k,l), it can be expressed as

ϕ(P1x~,𝒖(P1x~),D~𝒖(x~)P)\displaystyle\bm{\phi}\left(P^{-1}\tilde{x},\bm{u}(P^{-1}\tilde{x}),\tilde{D}\bm{u}(\tilde{x})P\right)
+\displaystyle+ i,j=1nk,l=1n[akl(0,𝟎,𝟎)akl(P1x~,𝒖(P1x~),D~𝒖(x~)P)]pjkpil2𝒖x~ix~j(x~).\displaystyle\displaystyle\sum_{i,j=1}^{n}\sum_{k,l=1}^{n}\Big{[}a^{kl}\left(0,\bm{0},\bm{0}\right)-a^{kl}\left(P^{-1}\tilde{x},\bm{u}(P^{-1}\tilde{x}),\tilde{D}\bm{u}(\tilde{x})P\right)\Big{]}p_{jk}p_{il}\frac{\partial^{2}\bm{u}}{\partial\tilde{x}_{i}\partial\tilde{x}_{j}}(\tilde{x}).

Let

𝝍(x~,𝒖(x~),D~𝒖(x~))=ϕ(P1x~,𝒖(P1x~),D~𝒖(x~)P)\displaystyle\bm{\psi}\left(\tilde{x},\bm{u}(\tilde{x}),\tilde{D}\bm{u}(\tilde{x})\right)=\bm{\phi}\left(P^{-1}\tilde{x},\bm{u}(P^{-1}\tilde{x}),\tilde{D}\bm{u}(\tilde{x})P\right)

and let

bij(x~,𝒖(x~),D~𝒖(x~))=k,l=1n[akl(0,𝟎,𝟎)akl(P1x~,𝒖(P1x~),D~𝒖(x~)P)]pjkpil.\displaystyle b^{ij}\left(\tilde{x},\bm{u}(\tilde{x}),\tilde{D}\bm{u}(\tilde{x})\right)=\displaystyle\sum_{k,l=1}^{n}\Big{[}a^{kl}\left(0,\bm{0},\bm{0}\right)-a^{kl}\left(P^{-1}\tilde{x},\bm{u}(P^{-1}\tilde{x}),\tilde{D}\bm{u}(\tilde{x})P\right)\Big{]}p_{jk}p_{il}.

Then we can denote the right-hand side of (16) as

𝝍(x~,𝒖(x~),D~𝒖(x~))+i,j=1nbij(x~,𝒖(x~),D~𝒖(x~))D~ij(𝒖),\displaystyle\bm{\psi}\left(\tilde{x},\bm{u}(\tilde{x}),\tilde{D}\bm{u}(\tilde{x})\right)+\displaystyle\sum_{i,j=1}^{n}b^{ij}\left(\tilde{x},\bm{u}(\tilde{x}),\tilde{D}\bm{u}(\tilde{x})\right)\tilde{D}_{ij}(\bm{u}),

where D~ij(𝒖)=2𝒖x~ix~j(x~).\displaystyle\tilde{D}_{ij}(\bm{u})=\frac{\partial^{2}\bm{u}}{\partial\tilde{x}_{i}\partial\tilde{x}_{j}}(\tilde{x}).

Thus in the x~\tilde{x} coordinates (16) becomes

i=1n2𝒖x~i2(x~)=𝝍(x~,𝒖(x~),D~𝒖(x~))+i,j=1nbij(x~,𝒖(x~),D~𝒖(x~))D~ij(𝒖).\displaystyle\sum_{i=1}^{n}\frac{\partial^{2}\bm{u}}{\partial\tilde{x}_{i}^{2}}(\tilde{x})=\displaystyle\bm{\psi}\left(\tilde{x},\bm{u}(\tilde{x}),\tilde{D}\bm{u}(\tilde{x})\right)+\displaystyle\sum_{i,j=1}^{n}b^{ij}\left(\tilde{x},\bm{u}(\tilde{x}),\tilde{D}\bm{u}(\tilde{x})\right)\tilde{D}_{ij}(\bm{u}).

Since the two coordinate systems have the same origin, in the x~\tilde{x} coordinates we still have

𝒖(0)=𝟎 and D~𝒖(0)=𝟎P1=𝟎,\bm{u}(0)=\bm{0}\hskip 14.45377pt\text{ and }\hskip 14.45377pt\tilde{D}\bm{u}(0)=\bm{0}\cdot P^{-1}=\bm{0},

and thus

bij(0,𝟎,𝟎)=0.b^{ij}(0,\bm{0},\bm{0})=0.

Therefore, we only need to prove Theorem 1.1 under the coordinate system x~\tilde{x}, but to simplify notations we will drop the \sim in all the subsequent notations.

Our goal now is to prove the following result about a Poisson type system.

Lemma 4.1.

Assume the functions 𝛙(x,p,q)=(ψ1(x,p,q),,ψm(x,p,q))\bm{\psi}(x,p,q)=\big{(}\psi^{1}(x,p,q),...,\psi^{m}(x,p,q)\big{)} and bij(x,p,q)b^{ij}(x,p,q) are in Cloc1,α(BR×BR×mn)C_{loc}^{1,\alpha}\left(B_{R}\times B^{\prime}_{R^{\prime}}\times\mathbb{R}^{mn}\right). If bij(0,𝟎,𝟎)=0,b^{ij}(0,\bm{0},\bm{0})=0, then the quasi-linear system

(17) {Δ𝒖=𝝍(x,𝒖(x),D𝒖(x))+i,j=1nbij(x,𝒖(x),D𝒖(x))Dij𝒖𝒖(0)=𝟎D𝒖(0)=𝟎\left\{\begin{array}[]{r@{}l}\Delta\bm{u}&{}=\bm{\psi}\big{(}x,\bm{u}(x),D\bm{u}(x)\big{)}+\displaystyle\sum_{i,j=1}^{n}b^{ij}\big{(}x,\bm{u}(x),D\bm{u}(x)\big{)}D_{ij}\bm{u}\\ \bm{u}(0)&{}=\bm{0}\\ D\bm{u}(0)&{}=\bm{0}\end{array}\right.

has C2,αC^{2,\alpha} solutions from BRB_{R} to BRB^{\prime}_{R^{\prime}} when RR is sufficiently small.

Denote

(18) 𝚿(x,𝒖(x),D𝒖(x),D2𝒖(x))=𝝍(x,𝒖(x),D𝒖(x))i,j=1nbij(x,𝒖(x),D𝒖(x))Dij𝒖,\bm{\Psi}\big{(}x,\bm{u}(x),D\bm{u}(x),D^{2}\bm{u}(x)\big{)}=-\bm{\psi}\big{(}x,\bm{u}(x),D\bm{u}(x)\big{)}-\displaystyle\sum_{i,j=1}^{n}b^{ij}\big{(}x,\bm{u}(x),D\bm{u}(x)\big{)}D_{ij}\bm{u},

so the equation in (17) can be written as

(19) Δ𝒖=𝚿(x,𝒖(x),D𝒖(x),D2𝒖(x)).\Delta\bm{u}=-\bm{\Psi}\big{(}x,\bm{u}(x),D\bm{u}(x),D^{2}\bm{u}(x)\big{)}.

A key observation is that if we can find a function 𝒖=(u1,,um)\bm{u}=(u^{1},...,u^{m}) satisfying

(20) 𝒖=𝒉+BRΓ(xy)𝚿(y,𝒖(y),D𝒖(y),D2𝒖(y))𝑑y,\bm{u}=\bm{h}+\int_{B_{R}}\Gamma(x-y)\bm{\Psi}\big{(}y,\bm{u}(y),D\bm{u}(y),D^{2}\bm{u}(y)\big{)}dy,

where 𝒉=(h1,,hm)\bm{h}=(h^{1},...,h^{m}) and each hi(x)h^{i}(x) is a harmonic function, then 𝒖\bm{u} will be a solution of (19). Furthermore, because 𝒉\bm{h} is arbitrary, it allows us to construct infinitely many such solutions.

Written as a system of equations, (20) is

{u1=h1+BRΓ(xy)Ψ1(y,𝒖(y),D𝒖(y),D2𝒖(y))𝑑y,um=hm+BRΓ(xy)Ψm(y,𝒖(y),D𝒖(y),D2𝒖(y))𝑑y.\left\{\begin{array}[]{r@{}l}u^{1}&{}=h^{1}+\displaystyle\int_{B_{R}}\Gamma(x-y)\Psi^{1}\big{(}y,\bm{u}(y),D\bm{u}(y),D^{2}\bm{u}(y)\big{)}dy,\\ &{}\vdots\\ u^{m}&{}=h^{m}+\displaystyle\int_{B_{R}}\Gamma(x-y)\Psi^{m}\big{(}y,\bm{u}(y),D\bm{u}(y),D^{2}\bm{u}(y)\big{)}dy.\end{array}\right.

Since our strategy is to construct a contraction map on functions in C02,αC_{0}^{2,\alpha} and apply the Banach Fixed Point Theorem, it seems natural to define the map as the integral on the right hand side of (20). However, the function may not remain in C02,αC_{0}^{2,\alpha} under such a map, so we need to modify it slightly.

For any function 𝒇=(f1,,fm)C02,α(BR)××C02,α(BR)\bm{f}=(f^{1},...,f^{m})\in C_{0}^{2,\alpha}(B_{R})\times\cdots\times C_{0}^{2,\alpha}(B_{R}), define

ωi(𝒇)(x)\displaystyle\omega^{i}(\bm{f})(x) =\displaystyle= 𝒩(Ψi(y,𝒇(y),D𝒇(y),D2𝒇(y)))(x)\displaystyle\mathcal{N}\Big{(}\Psi^{i}\big{(}y,\bm{f}(y),D\bm{f}(y),D^{2}\bm{f}(y)\big{)}\Big{)}(x)
=\displaystyle= BRΓ(xy)Ψi(y,𝒇(y),D𝒇(y),D2𝒇(y))𝑑y\displaystyle\int_{B_{R}}\Gamma(x-y)\Psi^{i}\big{(}y,\bm{f}(y),D\bm{f}(y),D^{2}\bm{f}(y)\big{)}dy

and

(22) Θi(𝒇)(x)=ωi(𝒇)(x)ωi(𝒇)(0)j=1nj(ωi(𝒇))(0)xj12k,l=1klnkl(ωi(𝒇))(0)xkxl.\Theta^{i}(\bm{f})(x)=\omega^{i}(\bm{f})(x)-\omega^{i}(\bm{f})(0)-\sum_{j=1}^{n}\partial_{j}\big{(}\omega^{i}(\bm{f})\big{)}(0)x_{j}-\frac{1}{2}\sum_{\begin{subarray}{c}k,l=1\\ k\not=l\end{subarray}}^{n}\partial_{k}\partial_{l}\big{(}\omega^{i}(\bm{f})\big{)}(0)x_{k}x_{l}.

Since Ψi\Psi^{i} is C0,αC^{0,\alpha}, by Theorem 3.3 we know ωi(𝒇)\omega^{i}(\bm{f}) is C2,α,C^{2,\alpha}, and hence Θi(𝒇)\Theta^{i}(\bm{f}) is C2,α.C^{2,\alpha}.

Direct calculations of the first and second derivatives show that

Θi(𝒇)C02,α(BR)\displaystyle\Theta^{i}(\bm{f})\in C_{0}^{2,\alpha}(B_{R})

and

ΔΘi(𝒇)=Δωi(𝒇)=Ψi(x,𝒇(x),D𝒇(x),D2𝒇(x)).\Delta\Theta^{i}(\bm{f})=\Delta\omega^{i}(\bm{f})=-\Psi^{i}\big{(}x,\bm{f}(x),D\bm{f}(x),D^{2}\bm{f}(x)\big{)}.

Thus, if a function 𝒖\bm{u} satisfies

Θi(𝒖)=𝒖\Theta^{i}(\bm{u})=\bm{u}

for all i=1,,m,i=1,...,m, then it will be a solution to (19). Therefore, we define the main operator

𝚯:C02,α(BR)××C02,α(BR)C02,α(BR)××C02,α(BR)\bm{\Theta}:C_{0}^{2,\alpha}(B_{R})\times\cdots\times C_{0}^{2,\alpha}(B_{R})\to C_{0}^{2,\alpha}(B_{R})\times\cdots\times C_{0}^{2,\alpha}(B_{R})

by

𝚯(𝒇)=(Θ1(𝒇),,Θm(𝒇)).\bm{\Theta}(\bm{f})=\big{(}\Theta^{1}(\bm{f}),...,\Theta^{m}(\bm{f})\big{)}.

We will find a solution to the system (19) by applying the Banach Fixed Point Theorem to the map 𝚯\bm{\Theta} on a closed subset of C02,α(BR)××C02,α(BR)C_{0}^{2,\alpha}(B_{R})\times\cdots\times C_{0}^{2,\alpha}(B_{R}), defined by

𝓔(R,γ)={𝒇C02,α(BR)××C02,α(BR)|𝒇(2,α)γ},\bm{\mathcal{E}}(R,\gamma)=\left\{\bm{f}\in C_{0}^{2,\alpha}(B_{R})\times\cdots\times C_{0}^{2,\alpha}(B_{R})\Big{|}\|\bm{f}\|^{(2,\alpha)}\leq\gamma\right\},

where γ>0\gamma>0 is a parameter to be determined.

In order to show that 𝚯\bm{\Theta} maps 𝓔(R,γ)\bm{\mathcal{E}}(R,\gamma) into itself, we need to estimate 𝚯(𝒇)(2,α)\|\bm{\Theta}(\bm{f})\|^{(2,\alpha)}. To show 𝚯\bm{\Theta} is a contraction, we need to estimate 𝚯(𝒇𝒈)(2,α)\|\bm{\Theta}(\bm{f}-\bm{g})\|^{(2,\alpha)}. The essential step in the estimates is to choose an appropriate value for γ\gamma and then adjust RR accordingly.

In the rest of the paper, we will use CC to denote all constants that depend only on m,n,m,n, and α\alpha.

5. The Estimate for 𝚯(𝒇)(2,α)\|\bm{\Theta}(\bm{f})\|^{(2,\alpha)}

First, we show that 𝚯\bm{\Theta} maps 𝓔(R,γ)\bm{\mathcal{E}}(R,\gamma) into itself when γ\gamma is appropriately chosen. Specifically, we will show there is a γ>0\gamma>0 such that for all 𝒇\bm{f} in C02,α(BR)××C02,α(BR)C_{0}^{2,\alpha}(B_{R})\times\cdots\times C_{0}^{2,\alpha}(B_{R}) with 𝒇(2,α)γ\|\bm{f}\|^{(2,\alpha)}\leq\gamma, we have Θi(𝒇)(2,α)γ2\displaystyle\|\Theta^{i}(\bm{f})\|^{(2,\alpha)}\leq\frac{\gamma}{2}. Then, by the definition of the norm of vector functions in (6) we will have 𝚯(𝒇)(2,α)γ2.\displaystyle\|\bm{\Theta}(\bm{f})\|^{(2,\alpha)}\leq\frac{\gamma}{2}.

From (22) we have

(23) Θi(𝒇)(2,α)ωi(𝒇)(2,α)+12|k,l=1klnkl(ωi(𝒇))(0)|.\|\Theta^{i}(\bm{f})\|^{(2,\alpha)}\leq\|\omega^{i}(\bm{f})\|^{(2,\alpha)}+\frac{1}{2}\Bigg{|}\sum_{\begin{subarray}{c}k,l=1\\ k\not=l\end{subarray}}^{n}\partial_{k}\partial_{l}\big{(}\omega^{i}(\bm{f})\big{)}(0)\Bigg{|}.

It follows from (4) and Theorem 3.3 that

(24) ωi(𝒇)(2,α)CΨi(x,𝒇(x),D𝒇(x),D2𝒇(x))α.\|\omega^{i}(\bm{f})\|^{(2,\alpha)}\leq C\|\Psi^{i}\big{(}x,\bm{f}(x),D\bm{f}(x),D^{2}\bm{f}(x)\big{)}\|_{\alpha}.

Also by Theorem 3.3, we know

(25) |kl(ωi(𝒇))(0)|\displaystyle\Big{|}\partial_{k}\partial_{l}\big{(}\omega^{i}(\bm{f})\big{)}(0)\Big{|} \displaystyle\leq supBR|kl(ωi(𝒇))|\displaystyle\sup_{B_{R}}\Big{|}\partial_{k}\partial_{l}\big{(}\omega^{i}(\bm{f})\big{)}\Big{|}
\displaystyle\leq ωi(𝒇)(2,α)\displaystyle\|\omega^{i}(\bm{f})\|^{(2,\alpha)}
\displaystyle\leq CΨi(x,𝒇(x),D𝒇(x),D2𝒇(x))α.\displaystyle C\|\Psi^{i}\big{(}x,\bm{f}(x),D\bm{f}(x),D^{2}\bm{f}(x)\big{)}\|_{\alpha}.

Therefore we only need to estimate Ψi(x,𝒇(x),D𝒇(x),D2𝒇(x))α.\displaystyle\|\Psi^{i}\big{(}x,\bm{f}(x),D\bm{f}(x),D^{2}\bm{f}(x)\big{)}\|_{\alpha}.

We use the coordinates x=(x1,,xn),x=(x_{1},...,x_{n}), p=(p1,,pm),p=(p_{1},...,p_{m}), q=(qkj)j=1,,mk=1,,n,\displaystyle q=\left(q_{k}^{j}\right)_{\begin{subarray}{c}j=1,...,m\\ k=1,...,n\end{subarray}}, and r=(rklj)j=1,,mk,l=1,,n\displaystyle r=\left(r_{kl}^{j}\right)_{\begin{subarray}{c}j=1,...,m\\ k,l=1,...,n\end{subarray}} to denote the components in Ψi(x,p,q,r)\Psi^{i}(x,p,q,r). Then

(26) Ψi(x,𝒇(x),D𝒇(x),D2𝒇(x))Ψi(0,𝟎,,𝟎)\displaystyle\Psi^{i}\Big{(}x,\bm{f}(x),D\bm{f}(x),D^{2}\bm{f}(x)\Big{)}-\Psi^{i}(0,\bm{0},...,\bm{0})
=\displaystyle= 01ddtΨi(tx,t𝒇(x),tD𝒇(x),tD2𝒇(x))𝑑t\displaystyle\int_{0}^{1}\frac{d}{dt}\Psi^{i}\Big{(}tx,t\bm{f}(x),tD\bm{f}(x),tD^{2}\bm{f}(x)\Big{)}dt
=\displaystyle= j=1nEjxj+j=1mAjfj+k=1nj=1mBkjkfj+j=1mk,l=1nCkljklfj,\displaystyle\sum_{j=1}^{n}E_{j}x_{j}+\sum_{j=1}^{m}A_{j}f^{j}+\sum_{k=1}^{n}\sum_{j=1}^{m}B_{k}^{j}\partial_{k}f^{j}+\sum_{j=1}^{m}\sum_{k,l=1}^{n}C_{kl}^{j}\partial_{k}\partial_{l}f^{j},

where

(27) Ej\displaystyle E_{j} =\displaystyle= 01xjΨi(tx,t𝒇,tD𝒇,tD2𝒇)𝑑t,\displaystyle\int_{0}^{1}\frac{\partial}{\partial x_{j}}\Psi^{i}(tx,t\bm{f},tD\bm{f},tD^{2}\bm{f})dt,
Aj\displaystyle A_{j} =\displaystyle= 01pjΨi(tx,t𝒇,tD𝒇,tD2𝒇)𝑑t,\displaystyle\int_{0}^{1}\frac{\partial}{\partial p_{j}}\Psi^{i}(tx,t\bm{f},tD\bm{f},tD^{2}\bm{f})dt,
Bkj\displaystyle\vskip 3.0pt plus 1.0pt minus 1.0ptB_{k}^{j} =\displaystyle= 01qkjΨi(tx,t𝒇,tD𝒇,tD2𝒇)𝑑t,\displaystyle\int_{0}^{1}\frac{\partial}{\partial q_{k}^{j}}\Psi^{i}(tx,t\bm{f},tD\bm{f},tD^{2}\bm{f})dt,
Cklj\displaystyle C_{kl}^{j} =\displaystyle= 01rkljΨi(tx,t𝒇,tD𝒇,tD2𝒇)𝑑t.\displaystyle\int_{0}^{1}\frac{\partial}{\partial r_{kl}^{j}}\Psi^{i}(tx,t\bm{f},tD\bm{f},tD^{2}\bm{f})dt.

By Lemma 2.2, Lemma 2.3, and the fact that 𝒇2,αγ\|\bm{f}\|^{2,\alpha}\leq\gamma,

(28) fjα\displaystyle\|f^{j}\|_{\alpha}\leq{} CR2fj(2,α)CR2γ,\displaystyle CR^{2}\|f^{j}\|^{(2,\alpha)}\leq CR^{2}\gamma,
kfjα\displaystyle\|\partial_{k}f^{j}\|_{\alpha}\leq{} fj(1,α)CRfj(2,α)CRγ,\displaystyle\|f^{j}\|^{(1,\alpha)}\leq CR\|f^{j}\|^{(2,\alpha)}\leq CR\gamma,
klfjα\displaystyle\|\partial_{k}\partial_{l}f^{j}\|_{\alpha}\leq{} fj(2,α)γ.\displaystyle\|f^{j}\|^{(2,\alpha)}\leq\gamma.

Therefore, by (26), (4), and the fact xjα=3R\displaystyle\|x_{j}\|_{\alpha}=3R, we have

(29) Ψi(x,𝒇(x),D𝒇(x),D2𝒇(x))α\displaystyle\Big{\|}\Psi^{i}\Big{(}x,\bm{f}(x),D\bm{f}(x),D^{2}\bm{f}(x)\Big{)}\Big{\|}_{\alpha} \displaystyle\leq |Ψi(0,𝟎,𝟎,𝟎)|+3Rj=1nEjα+CR2γj=1mAjα\displaystyle\big{|}\Psi^{i}(0,\bm{0},\bm{0},\bm{0})\big{|}+3R\sum_{j=1}^{n}\|E_{j}\|_{\alpha}+CR^{2}\gamma\sum_{j=1}^{m}\|A_{j}\|_{\alpha}
+\displaystyle+ CRγk=1nj=1mBkjα+γj=1mk,l=1nCkljα.\displaystyle CR\gamma\sum_{k=1}^{n}\sum_{j=1}^{m}\|B_{k}^{j}\|_{\alpha}+\gamma\sum_{j=1}^{m}\sum_{k,l=1}^{n}\|C^{j}_{kl}\|_{\alpha}.

Next, we will estimate Ajα\|A_{j}\|_{\alpha}, Bkjα\|B_{k}^{j}\|_{\alpha}, Ckljα\|C^{j}_{kl}\|_{\alpha}, and Ejα\|E_{j}\|_{\alpha}.  By (28) we only need to estimate on the domain

(30) (R,γ)={(x,p,q,r)|xBR,|p|CR2γ,|q|CRγ,|r|γ}.\mathcal{B}(R,\gamma)=\Big{\{}(x,p,q,r)\big{|}x\in B_{R},|p|\leq CR^{2}\gamma,|q|\leq CR\gamma,|r|\leq\gamma\Big{\}}.

Denote

(31) A[R,γ]=\displaystyle A[R,\gamma]={} max{|Ψipj|(R,γ),i=1,,m;j=1,,m},\displaystyle\max\left\{\bigg{|}\frac{\partial\Psi^{i}}{\partial p_{j}}\bigg{|}_{\mathcal{B}(R,\gamma)},\,\,i=1,...,m;\,\,j=1,...,m\right\},
HαA[R,γ]=\displaystyle H_{\alpha}^{A}[R,\gamma]={} max{Hα[Ψipj](R,γ),i=1,,m;j=1,,m},\displaystyle\max\left\{H_{\alpha}\bigg{[}\frac{\partial\Psi^{i}}{\partial p_{j}}\bigg{]}_{\mathcal{B}(R,\gamma)},\,\,i=1,...,m;\,\,j=1,...,m\right\},
(32) B[R,γ]=\displaystyle B[R,\gamma]={} max{|Ψiqkj|(R,γ),i,j=1,,m;k=1,,n},\displaystyle\max\left\{\bigg{|}\frac{\partial\Psi^{i}}{\partial q_{k}^{j}}\bigg{|}_{\mathcal{B}(R,\gamma)},\,\,i,j=1,...,m;\,\,k=1,...,n\right\},
HαB[R,γ]=\displaystyle H_{\alpha}^{B}[R,\gamma]={} max{Hα[Ψiqkj](R,γ),i,j=1,,m;k=1,,n},\displaystyle\max\left\{H_{\alpha}\bigg{[}\frac{\partial\Psi^{i}}{\partial q_{k}^{j}}\bigg{]}_{\mathcal{B}(R,\gamma)},\,\,i,j=1,...,m;\,\,k=1,...,n\right\},
(33) C[R,γ]=\displaystyle C[R,\gamma]={} max{|Ψirklj|(R,γ),i,j=1,,m;k,l=1,,n},\displaystyle\max\left\{\bigg{|}\frac{\partial\Psi^{i}}{\partial r_{kl}^{j}}\bigg{|}_{\mathcal{B}(R,\gamma)},\,\,i,j=1,...,m;\,\,k,l=1,...,n\right\},
HαC[R,γ]=\displaystyle H_{\alpha}^{C}[R,\gamma]={} max{Hα[Ψirklj](R,γ),i,j=1,,m;k,l=1,,n},\displaystyle\max\left\{H_{\alpha}\bigg{[}\frac{\partial\Psi^{i}}{\partial r_{kl}^{j}}\bigg{]}_{\mathcal{B}(R,\gamma)},\,\,i,j=1,...,m;\,\,k,l=1,...,n\right\},
(34) E[R,γ]=\displaystyle E[R,\gamma]={} max{|Ψixj|(R,γ),i=1,,m;j=1,,n},\displaystyle\max\left\{\bigg{|}\frac{\partial\Psi^{i}}{\partial x_{j}}\bigg{|}_{\mathcal{B}(R,\gamma)},\,\,i=1,...,m;\,\,j=1,...,n\right\},
HαE[R,γ]=\displaystyle H_{\alpha}^{E}[R,\gamma]={} max{Hα[Ψixj](R,γ),i=1,,m;j=1,,n}.\displaystyle\max\left\{H_{\alpha}\bigg{[}\frac{\partial\Psi^{i}}{\partial x_{j}}\bigg{]}_{\mathcal{B}(R,\gamma)},\,\,i=1,...,m;\,\,j=1,...,n\right\}.

We use H1H_{1} to denote the Lipschitz constant in the rr variable and define

(35) H1A[R,γ]=\displaystyle H_{1}^{A}[R,\gamma]={} max{H1[Ψipj](R,γ),i=1,,m;,j=1,,m},\displaystyle\max\left\{H_{1}\left[\frac{\partial\Psi^{i}}{\partial p_{j}}\right]_{\mathcal{B}(R,\gamma)},\,\,i=1,...,m;\,,j=1,...,m\right\},
H1B[R,γ]=\displaystyle H_{1}^{B}[R,\gamma]={} max{H1[Ψiqkj]R,γ),i,j=1,,m;k=1,,n},\displaystyle\max\left\{H_{1}\left[\frac{\partial\Psi^{i}}{\partial q_{k}^{j}}\right]_{\mathcal{B}R,\gamma)},\,\,i,j=1,...,m;\,\,k=1,...,n\right\},
H1C[R,γ]=\displaystyle H_{1}^{C}[R,\gamma]={} max{H1[Ψirklj](R,γ),i,j=1,,m;k,l=1,,n},\displaystyle\max\left\{H_{1}\left[\frac{\partial\Psi^{i}}{\partial r_{kl}^{j}}\right]_{\mathcal{B}(R,\gamma)},\,\,i,j=1,...,m;\,\,k,l=1,...,n\right\},
H1E[R,γ]=\displaystyle H_{1}^{E}[R,\gamma]={} max{H1[Ψixj](R,γ),i=1,,m;j=1,,n}.\displaystyle\max\left\{H_{1}\left[\frac{\partial\Psi^{i}}{\partial x_{j}}\right]_{\mathcal{B}(R,\gamma)},\,\,i=1,...,m;\,\,j=1,...,n\right\}.

Note that by the definition of 𝚿\bm{\Psi} in (18), there is no rr variable in Ψirklj\displaystyle\frac{\partial\Psi^{i}}{\partial r_{kl}^{j}}, and therefore

(36) H1C[R,γ]=0.H_{1}^{C}[R,\gamma]=0.

5.1. Estimates for Ajα\|A_{j}\|_{\alpha}, Bkjα\|B_{k}^{j}\|_{\alpha}, Ckljα\|C^{j}_{kl}\|_{\alpha}, and Ejα\|E_{j}\|_{\alpha}

By (27) and (31),

supBR|Aj|A[R,γ].\sup_{B_{R}}|A_{j}|\leq A[R,\gamma].

Now we will estimate Hα[Aj]H_{\alpha}[A_{j}]. Let x,xBRx,x^{\prime}\in B_{R},

Aj(x)Aj(x)\displaystyle A_{j}(x)-A_{j}(x^{\prime})
=\displaystyle= 01pjΨi(tx,t𝒇(x),tD𝒇(x),tD2𝒇(x))𝑑t01pjΨi(tx,t𝒇(x),tD𝒇(x),tD2𝒇(x))𝑑t\displaystyle\displaystyle\int_{0}^{1}\frac{\partial}{\partial p_{j}}\Psi^{i}(tx,t\bm{f}(x),tD\bm{f}(x),tD^{2}\bm{f}(x))dt-\displaystyle\int_{0}^{1}\frac{\partial}{\partial p_{j}}\Psi^{i}(tx^{\prime},t\bm{f}(x^{\prime}),tD\bm{f}(x^{\prime}),tD^{2}\bm{f}(x^{\prime}))dt
=\displaystyle= 01pjΨi(tx,t𝒇(x),tD𝒇(x),tD2𝒇(x))𝑑t01pjΨi(tx,t𝒇(x),tD𝒇(x),tD2𝒇(x))𝑑t\displaystyle\displaystyle\int_{0}^{1}\frac{\partial}{\partial p_{j}}\Psi^{i}(tx,t\bm{f}(x),tD\bm{f}(x),tD^{2}\bm{f}(x))dt-\displaystyle\int_{0}^{1}\frac{\partial}{\partial p_{j}}\Psi^{i}(tx^{\prime},t\bm{f}(x),tD\bm{f}(x),tD^{2}\bm{f}(x))dt
+\displaystyle+ 01pjΨi(tx,t𝒇(x),tD𝒇(x),tD2𝒇(x))𝑑t01pjΨi(tx,t𝒇(x),tD𝒇(x),tD2𝒇(x))𝑑t\displaystyle\displaystyle\int_{0}^{1}\frac{\partial}{\partial p_{j}}\Psi^{i}(tx^{\prime},t\bm{f}(x),tD\bm{f}(x),tD^{2}\bm{f}(x))dt-\displaystyle\int_{0}^{1}\frac{\partial}{\partial p_{j}}\Psi^{i}(tx^{\prime},t\bm{f}(x^{\prime}),tD\bm{f}(x),tD^{2}\bm{f}(x))dt
+\displaystyle+ 01pjΨi(tx,t𝒇(x),tD𝒇(x),tD2𝒇(x))𝑑t01pjΨi(tx,t𝒇(x),tD𝒇(x),tD2𝒇(x))𝑑t\displaystyle\displaystyle\int_{0}^{1}\frac{\partial}{\partial p_{j}}\Psi^{i}(tx^{\prime},t\bm{f}(x^{\prime}),tD\bm{f}(x),tD^{2}\bm{f}(x))dt-\displaystyle\int_{0}^{1}\frac{\partial}{\partial p_{j}}\Psi^{i}(tx^{\prime},t\bm{f}(x^{\prime}),tD\bm{f}(x^{\prime}),tD^{2}\bm{f}(x))dt
+\displaystyle+ 01pjΨi(tx,t𝒇(x),tD𝒇(x),tD2𝒇(x))𝑑t01pjΨi(tx,t𝒇(x),tD𝒇(x),tD2𝒇(x))𝑑t.\displaystyle\displaystyle\int_{0}^{1}\frac{\partial}{\partial p_{j}}\Psi^{i}(tx^{\prime},t\bm{f}(x^{\prime}),tD\bm{f}(x^{\prime}),tD^{2}\bm{f}(x))dt-\displaystyle\int_{0}^{1}\frac{\partial}{\partial p_{j}}\Psi^{i}(tx^{\prime},t\bm{f}(x^{\prime}),tD\bm{f}(x^{\prime}),tD^{2}\bm{f}(x^{\prime}))dt.

It then follows that

|Aj(x)Aj(x)|\displaystyle|A_{j}(x)-A_{j}(x^{\prime})|
\displaystyle\leq HαA[R,γ]|xx|α+HαA[R,γ]j=1m|fj(x)fj(x)|α\displaystyle H_{\alpha}^{A}\left[R,\gamma\right]|x-x^{\prime}|^{\alpha}+H_{\alpha}^{A}\left[R,\gamma\right]\sum_{j=1}^{m}|f^{j}(x)-f^{j}(x^{\prime})|^{\alpha}
+\displaystyle+ HαA[R,γ]j=1m|Dfj(x)Dfj(x)|α+H1A[R,γ]j=1m|D2fj(x)D2fj(x)|.\displaystyle H_{\alpha}^{A}\left[R,\gamma\right]\sum_{j=1}^{m}|Df^{j}(x)-Df^{j}(x^{\prime})|^{\alpha}+H_{1}^{A}\left[R,\gamma\right]\sum_{j=1}^{m}|D^{2}f^{j}(x)-D^{2}f^{j}(x^{\prime})|.

Note that

|fj(x)fj(x)|\displaystyle|f^{j}(x)-f^{j}(x^{\prime})| \displaystyle\leq supBR|Dfj||xx|\displaystyle\sup_{B_{R}}|Df^{j}||x-x^{\prime}|
\displaystyle\leq fj(1,α)|xx|\displaystyle\|f^{j}\|^{(1,\alpha)}|x-x^{\prime}|
\displaystyle\leq CRfj(2,α)|xx| (by Lemma 2.3)\displaystyle CR\|f^{j}\|^{(2,\alpha)}|x-x^{\prime}|\hskip 14.45377pt\text{ (by Lemma \ref{lem: compare_norms})}
\displaystyle\leq CR𝒇(2,α)|xx|\displaystyle CR\|\bm{f}\|^{(2,\alpha)}|x-x^{\prime}|
\displaystyle\leq CRγ|xx|.\displaystyle CR\gamma|x-x^{\prime}|.

Similarly,

|Dfj(x)Dfj(x)|\displaystyle|Df^{j}(x)-Df^{j}(x^{\prime})| \displaystyle\leq supBR|D2fj||xx|\displaystyle\sup_{B_{R}}|D^{2}f^{j}||x-x^{\prime}|
\displaystyle\leq C𝒇(2,α)|xx|\displaystyle C\|\bm{f}\|^{(2,\alpha)}|x-x^{\prime}|
\displaystyle\leq Cγ|xx|.\displaystyle C\gamma|x-x^{\prime}|.

In addition,

|D2fj(x)D2fj(x)|\displaystyle|D^{2}f^{j}(x)-D^{2}f^{j}(x^{\prime})| \displaystyle\leq Hα[D2fj]|xx|α\displaystyle H_{\alpha}\left[D^{2}f^{j}\right]|x-x^{\prime}|^{\alpha}
\displaystyle\leq (2R)αfj(2,α)|xx|α(by (5) )\displaystyle(2R)^{-\alpha}\|f^{j}\|^{(2,\alpha)}|x-x^{\prime}|^{\alpha}\hskip 14.45377pt\text{(by (\ref{eqn:(k)-norm}) )}
\displaystyle\leq (2R)α𝒇(2,α)|xx|α\displaystyle(2R)^{-\alpha}\|\bm{f}\|^{(2,\alpha)}|x-x^{\prime}|^{\alpha}
\displaystyle\leq (2R)αγ|xx|α.\displaystyle(2R)^{-\alpha}\gamma|x-x^{\prime}|^{\alpha}.

Therefore

|Aj(x)Aj(x)|\displaystyle|A_{j}(x)-A_{j}(x^{\prime})|
\displaystyle\leq HαA[R,γ]|xx|α+CHαA[R,γ]Rαγα|xx|α\displaystyle H_{\alpha}^{A}\left[R,\gamma\right]|x-x^{\prime}|^{\alpha}+CH_{\alpha}^{A}\left[R,\gamma\right]\cdot R^{\alpha}\gamma^{\alpha}|x-x^{\prime}|^{\alpha}
+\displaystyle+ CHαA[R,γ]γα|xx|α+CH1A[R,γ](2R)αγ|xx|α,\displaystyle CH_{\alpha}^{A}\left[R,\gamma\right]\cdot\gamma^{\alpha}|x-x^{\prime}|^{\alpha}+CH_{1}^{A}\left[R,\gamma\right]\cdot(2R)^{-\alpha}\gamma|x-x^{\prime}|^{\alpha},

which implies

Hα[Aj]\displaystyle H_{\alpha}[A_{j}] \displaystyle\leq HαA[R,γ]+CHαA[R,γ]Rαγα+CHαA[R,γ]γα+CH1A[R,γ](2R)αγ.\displaystyle H_{\alpha}^{A}[R,\gamma]+CH_{\alpha}^{A}[R,\gamma]\cdot R^{\alpha}\gamma^{\alpha}+CH_{\alpha}^{A}[R,\gamma]\cdot\gamma^{\alpha}+CH_{1}^{A}[R,\gamma]\cdot(2R)^{-\alpha}\gamma.

Thus,

Ajα\displaystyle\|A_{j}\|_{\alpha} =\displaystyle= supBR|Aj|+(2R)αHα[Aj]\displaystyle\sup_{B_{R}}|A_{j}|+(2R)^{\alpha}H_{\alpha}[A_{j}]
\displaystyle\leq A[R,γ]+(2R)α(HαA[R,γ]+CHαA[R,γ]Rαγα+CHαA[R,γ]γα)+CγH1A[R,γ].\displaystyle A[R,\gamma]+(2R)^{\alpha}\Big{(}H_{\alpha}^{A}[R,\gamma]+CH_{\alpha}^{A}[R,\gamma]\cdot R^{\alpha}\gamma^{\alpha}+CH_{\alpha}^{A}[R,\gamma]\cdot\gamma^{\alpha}\Big{)}+C\gamma H_{1}^{A}[R,\gamma].

Denote

δA(R,γ)\displaystyle\delta_{A}(R,\gamma)
=\displaystyle= A[R,γ]+(2R)α(HαA[R,γ]+CHαA[R,γ]Rαγα+CHαA[R,γ]γα)+CγH1A[R,γ],\displaystyle A[R,\gamma]+(2R)^{\alpha}\Big{(}H_{\alpha}^{A}[R,\gamma]+CH_{\alpha}^{A}[R,\gamma]\cdot R^{\alpha}\gamma^{\alpha}+CH_{\alpha}^{A}[R,\gamma]\cdot\gamma^{\alpha}\Big{)}+C\gamma H_{1}^{A}[R,\gamma],

then we can write

(38) AjαδA(R,γ).\|A_{j}\|_{\alpha}\leq\delta_{A}(R,\gamma).

By similar calculations,

(39) BkjαδB(R,γ),\|B^{j}_{k}\|_{\alpha}\leq\delta_{B}(R,\gamma),

where

δB(R,γ)\displaystyle\delta_{B}(R,\gamma)
=\displaystyle= B[R,γ]+(2R)α(HαB[R,γ]+CHαB[R,γ]Rαγα+CHαB[R,γ]γα)+CγH1B[R,γ];\displaystyle B[R,\gamma]+(2R)^{\alpha}\Big{(}H_{\alpha}^{B}[R,\gamma]+CH_{\alpha}^{B}[R,\gamma]\cdot R^{\alpha}\gamma^{\alpha}+CH_{\alpha}^{B}[R,\gamma]\cdot\gamma^{\alpha}\Big{)}+C\gamma H_{1}^{B}[R,\gamma];

and

(41) CkljαδC(R,γ),\|C^{j}_{kl}\|_{\alpha}\leq\delta_{C}(R,\gamma),

where

δC(R,γ)\displaystyle\delta_{C}(R,\gamma)
=\displaystyle= C[R,γ]+(2R)α(HαC[R,γ]+CHαC[R,γ]Rαγα+CHαC[R,γ]γα)+CγH1C[R,γ]\displaystyle C[R,\gamma]+(2R)^{\alpha}\Big{(}H_{\alpha}^{C}[R,\gamma]+CH_{\alpha}^{C}[R,\gamma]\cdot R^{\alpha}\gamma^{\alpha}+CH_{\alpha}^{C}[R,\gamma]\cdot\gamma^{\alpha}\Big{)}+C\gamma H_{1}^{C}[R,\gamma]
=\displaystyle= C[R,γ]+(2R)α(HαC[R,γ]+CHαC[R,γ]Rαγα+CHαC[R,γ]γα)(by 36);\displaystyle C[R,\gamma]+(2R)^{\alpha}\Big{(}H_{\alpha}^{C}[R,\gamma]+CH_{\alpha}^{C}[R,\gamma]\cdot R^{\alpha}\gamma^{\alpha}+CH_{\alpha}^{C}[R,\gamma]\cdot\gamma^{\alpha}\Big{)}\hskip 21.68121pt(\text{by \ref{eqn:H_1_C=0}});

and we also have

(43) EjαδE(R,γ),\|E_{j}\|_{\alpha}\leq\delta_{E}(R,\gamma),

where

δE(R,γ)\displaystyle\delta_{E}(R,\gamma)
=\displaystyle= E[R,γ]+(2R)α(HαE[R,γ]+CHαE[R,γ]Rαγα+CHαE[R,γ]γα)+CγH1E[R,γ].\displaystyle E[R,\gamma]+(2R)^{\alpha}\Big{(}H_{\alpha}^{E}[R,\gamma]+CH_{\alpha}^{E}[R,\gamma]\cdot R^{\alpha}\gamma^{\alpha}+CH_{\alpha}^{E}[R,\gamma]\cdot\gamma^{\alpha}\Big{)}+C\gamma H_{1}^{E}[R,\gamma].

5.2. The Estimates for 𝚯(𝒇)(2,α)\|\bm{\Theta}(\bm{f})\|^{(2,\alpha)}

Therefore, by (29),

Ψi(x,𝒇(x),𝑫𝒇(x),𝑫𝟐𝒇(x))α\displaystyle\Big{\|}\Psi^{i}\Big{(}x,\bm{f}(x),\bm{Df}(x),\bm{D^{2}f}(x)\Big{)}\Big{\|}_{\alpha}
\displaystyle\leq |Ψi(0,𝟎,𝟎,𝟎)|+CRδE(R,γ)+CR2γδA(R,γ)+CRγδB(R,γ)+CγδC(R,γ).\displaystyle\big{|}\Psi^{i}(0,\bm{0},\bm{0},\bm{0})\big{|}+CR\delta_{E}(R,\gamma)+CR^{2}\gamma\delta_{A}(R,\gamma)+CR\gamma\delta_{B}(R,\gamma)+C\gamma\delta_{C}(R,\gamma).

Then by (23), (24), (25), and (5.2),

Θi(𝒇)(2,α)\displaystyle\|\Theta^{i}(\bm{f})\|^{(2,\alpha)} \displaystyle\leq C|Ψi(0,𝟎,𝟎,𝟎)|+C(RδE(R,γ)+R2γδA(R,γ)+RγδB(R,γ))+CγδC(R,γ).\displaystyle C\big{|}\Psi^{i}(0,\bm{0},\bm{0},\bm{0})\big{|}+C\Big{(}R\delta_{E}(R,\gamma)+R^{2}\gamma\delta_{A}(R,\gamma)+R\gamma\delta_{B}(R,\gamma)\Big{)}+C\gamma\delta_{C}(R,\gamma).

By the expression of δC(R,γ)\delta_{C}(R,\gamma) in (5.1), it can be written as

Θi(𝒇)(2,α)\displaystyle\|\Theta^{i}(\bm{f})\|^{(2,\alpha)} \displaystyle\leq C|Ψi(0,𝟎,𝟎,𝟎)|+C(RδE(R,γ)+R2γδA(R,γ)+RγδB(R,γ))+CγC[R,γ]\displaystyle C\big{|}\Psi^{i}(0,\bm{0},\bm{0},\bm{0})\big{|}+C\Big{(}R\delta_{E}(R,\gamma)+R^{2}\gamma\delta_{A}(R,\gamma)+R\gamma\delta_{B}(R,\gamma)\Big{)}+C\gamma C[R,\gamma]
+\displaystyle+ Cγ(2R)α(HαC[R,γ]+CHαC[R,γ]Rαγα+CHαC[R,γ]γα).\displaystyle C\gamma(2R)^{\alpha}\Big{(}H_{\alpha}^{C}[R,\gamma]+CH_{\alpha}^{C}[R,\gamma]\cdot R^{\alpha}\gamma^{\alpha}+CH_{\alpha}^{C}[R,\gamma]\cdot\gamma^{\alpha}\Big{)}.

Denote

ϵ(R,γ)\displaystyle\epsilon(R,\gamma) =\displaystyle= C(RδE(R,γ)+R2γδA(R,γ)+RγδB(R,γ))\displaystyle C\Big{(}R\delta_{E}(R,\gamma)+R^{2}\gamma\delta_{A}(R,\gamma)+R\gamma\delta_{B}(R,\gamma)\Big{)}
+\displaystyle+ Cγ(2R)α(HαC[R,γ]+CHαC[R,γ]Rαγα+CHαC[R,γ]γα).\displaystyle C\gamma(2R)^{\alpha}\Big{(}H_{\alpha}^{C}[R,\gamma]+CH_{\alpha}^{C}[R,\gamma]\cdot R^{\alpha}\gamma^{\alpha}+CH_{\alpha}^{C}[R,\gamma]\cdot\gamma^{\alpha}\Big{)}.

Then

(46) Θi(𝒇)(2,α)C|Ψi(0,𝟎,𝟎,𝟎)|+CγC[R,γ]+ϵ(R,γ),\|\Theta^{i}(\bm{f})\|^{(2,\alpha)}\leq C\big{|}\Psi^{i}(0,\bm{0},\bm{0},\bm{0})\big{|}+C\gamma C[R,\gamma]+\epsilon(R,\gamma),

and

(47) ϵ(R,γ)0asR0.\epsilon(R,\gamma)\to 0\,\,\text{as}\,\,R\to 0.

Next, we will derive an upper bound for C[R,γ]C[R,\gamma].

By (18)

Ψirklj={bkl(x,p,q)ifi=j0ifij.\frac{\partial\Psi^{i}}{\partial r_{kl}^{j}}=\begin{cases}b^{kl}\big{(}x,p,q\big{)}&\text{if}\,\,i=j\\ 0&\text{if}\,\,i\neq j.\end{cases}

So as defined in (33),

C[R,γ])=max{|bkl(x,p,q)|(R,γ)}.C[R,\gamma])=\max\left\{\big{|}b^{kl}(x,p,q)\big{|}_{\mathcal{B}(R,\gamma)}\right\}.

Since bkl(0,𝟎,𝟎)=0,b^{kl}(0,\bm{0},\bm{0})=0, for any (x,p,q,r)(R,γ)(x,p,q,r)\in\mathcal{B}(R,\gamma) as defined in (30),

|bkl(x,p,q)|\displaystyle\big{|}b^{kl}(x,p,q)\big{|} \displaystyle\leq |bkl(x,p,q)bkl(0,p,q)|+|bkl(0,p,q)bkl(0,𝟎,q)|+|bkl(0,𝟎,q)bkl(0,𝟎,𝟎)|\displaystyle\big{|}b^{kl}(x,p,q)-b^{kl}(0,p,q)\big{|}+\big{|}b^{kl}(0,p,q)-b^{kl}(0,\bm{0},q)\big{|}+\big{|}b^{kl}(0,\bm{0},q)-b^{kl}(0,\bm{0},\bm{0})\big{|}
\displaystyle\leq sup(R,γ)|bklx|R+sup(R,γ)|bklp|CR2γ+sup(R,γ)|bklq|CRγ.\displaystyle\sup_{\mathcal{B}(R,\gamma)}\bigg{|}\frac{\partial b^{kl}}{\partial x}\bigg{|}\cdot R+\sup_{\mathcal{B}(R,\gamma)}\bigg{|}\frac{\partial b^{kl}}{\partial p}\bigg{|}\cdot CR^{2}\gamma+\sup_{\mathcal{B}(R,\gamma)}\bigg{|}\frac{\partial b^{kl}}{\partial q}\bigg{|}\cdot CR\gamma.

Therefore

C[R,γ]sup(R,γ)|bklx|R+sup(R,γ)|bklp|CR2γ+sup(R,γ)|bklq|CRγ.C[R,\gamma]\leq\sup_{\mathcal{B}(R,\gamma)}\bigg{|}\frac{\partial b^{kl}}{\partial x}\bigg{|}\cdot R+\sup_{\mathcal{B}(R,\gamma)}\bigg{|}\frac{\partial b^{kl}}{\partial p}\bigg{|}\cdot CR^{2}\gamma+\sup_{\mathcal{B}(R,\gamma)}\bigg{|}\frac{\partial b^{kl}}{\partial q}\bigg{|}\cdot CR\gamma.

Thus we know

(48) C[R,γ]0asR0.C[R,\gamma]\to 0\,\,\text{as}\,\,R\to 0.

Now, we choose the parameter γ=γ0\gamma=\gamma_{0} such that the C|Ψi(0,𝟎,𝟎,𝟎)|C\big{|}\Psi^{i}(0,\bm{0},\bm{0},\bm{0})\big{|} term in (46) satisfies

(49) C|Ψi(0,𝟎,𝟎,𝟎)|<γ04.C\big{|}\Psi^{i}(0,\bm{0},\bm{0},\bm{0})\big{|}<\frac{\gamma_{0}}{4}.

Then, by (47) and (48) we can choose RR sufficiently small such that the sum of the remaining terms in (46) is also less than γ04\displaystyle\frac{\gamma_{0}}{4}. Therefore, we have proved that if 𝒇(2,α)γ0,\displaystyle\|\bm{f}\|^{(2,\alpha)}\leq\gamma_{0}, then for sufficiently small RR,

Θi(𝒇)(2,α)γ02,\|\Theta^{i}(\bm{f})\|^{(2,\alpha)}\leq\frac{\gamma_{0}}{2},

and this proves 𝚯\bm{\Theta} maps 𝓔(R,γ0)\bm{\mathcal{E}}(R,\gamma_{0}) into itself.

6. The Estimates for 𝚯(𝒇)𝚯(𝒈)(2,α)\|\bm{\Theta}(\bm{f})-\bm{\Theta}(\bm{g})\|^{(2,\alpha)}

Now it remains to show that 𝚯\bm{\Theta} is a contraction on 𝓔(R,γ0)\bm{\mathcal{E}}(R,\gamma_{0}). The estimates are similar to those for 𝚯(𝒇)(2,α)\displaystyle\|\bm{\Theta}(\bm{f})\|^{(2,\alpha)}, so we will only point out the main steps without repeating all the calculations.

For any 𝒇,𝒈𝓔(R,γ0)\bm{f},\bm{g}\in\bm{\mathcal{E}}(R,\gamma_{0}), from (22) we have

(50) Θi(𝒇)Θi(𝒈)(2,α)ωi(𝒇)ωi(𝒈)(2,α)+12|k,l=1klnkl(ωi(𝒇)ωi(𝒈))(0)|.\|\Theta^{i}(\bm{f})-\Theta^{i}(\bm{g})\|^{(2,\alpha)}\leq\|\omega^{i}(\bm{f})-\omega^{i}(\bm{g})\|^{(2,\alpha)}+\frac{1}{2}\Bigg{|}\sum_{\begin{subarray}{c}k,l=1\\ k\not=l\end{subarray}}^{n}\partial_{k}\partial_{l}\left(\omega^{i}(\bm{f})-\omega^{i}(\bm{g})\right)(0)\Bigg{|}.

By (4) and Theorem 3.3,

(51) ωi(𝒇)ωi(𝒈)(2,α)\displaystyle\|\omega^{i}(\bm{f})-\omega^{i}(\bm{g})\|^{(2,\alpha)}
\displaystyle\leq CΨi(x,𝒇(x),D𝒇(x),D2𝒇(x))Ψi(x,𝒈(x),D𝒈(x),D2𝒈(x))α,\displaystyle C\|\Psi^{i}\big{(}x,\bm{f}(x),D\bm{f}(x),D^{2}\bm{f}(x)\big{)}-\Psi^{i}\big{(}x,\bm{g}(x),D\bm{g}(x),D^{2}\bm{g}(x)\big{)}\|_{\alpha},

and

(52) |kl(ωi(𝒇)ωi(𝒈))(0)|\displaystyle\Big{|}\partial_{k}\partial_{l}\big{(}\omega^{i}(\bm{f})-\omega^{i}(\bm{g})\big{)}(0)\Big{|}
\displaystyle\leq supBR|kl(ωi(𝒇)ωi(𝒈))|\displaystyle\sup_{B_{R}}\Big{|}\partial_{k}\partial_{l}\big{(}\omega^{i}(\bm{f})-\omega^{i}(\bm{g})\big{)}\Big{|}
\displaystyle\leq ωi(𝒇)ωi(𝒈)(2,α)\displaystyle\|\omega^{i}(\bm{f})-\omega^{i}(\bm{g})\|^{(2,\alpha)}
\displaystyle\leq CΨi(x,𝒇(x),D𝒇(x),D2𝒇(x))Ψi(x,𝒈(x),D𝒈(x),D2𝒈(x))α.\displaystyle C\|\Psi^{i}\big{(}x,\bm{f}(x),D\bm{f}(x),D^{2}\bm{f}(x)\big{)}-\Psi^{i}\big{(}x,\bm{g}(x),D\bm{g}(x),D^{2}\bm{g}(x)\big{)}\|_{\alpha}.

Therefore we only need to estimate

Ψi(x,𝒇(x),D𝒇(x),D2𝒇(x))Ψi(x,𝒈(x),D𝒈(x),D2𝒈(x))α.\displaystyle\|\Psi^{i}\big{(}x,\bm{f}(x),D\bm{f}(x),D^{2}\bm{f}(x)\big{)}-\Psi^{i}\big{(}x,\bm{g}(x),D\bm{g}(x),D^{2}\bm{g}(x)\big{)}\|_{\alpha}.

Note that

(53) Ψi(x,𝒇(x),D𝒇(x),D2𝒇(x))Ψi(x,𝒈(x),D𝒈(x),D2𝒈(x))\displaystyle\Psi^{i}\Big{(}x,\bm{f}(x),D\bm{f}(x),D^{2}\bm{f}(x)\Big{)}-\Psi^{i}\Big{(}x,\bm{g}(x),D\bm{g}(x),D^{2}\bm{g}(x)\Big{)}
=\displaystyle= 01ddtΨi(x,t𝒇+(1t)𝒈,tD𝒇+(1t)D𝒈,tD2𝒇+(1t)D2𝒈)𝑑t\displaystyle\int_{0}^{1}\frac{d}{dt}\Psi^{i}\Big{(}x,t\bm{f}+(1-t)\bm{g},tD\bm{f}+(1-t)D\bm{g},tD^{2}\bm{f}+(1-t)D^{2}\bm{g}\Big{)}dt
=\displaystyle= j=1mAj(fjgj)+k=1nj=1mBkjk(fjgj)+j=1mk,l=1nCkljkl(fjgj),\displaystyle\sum_{j=1}^{m}A_{j}\left(f^{j}-g^{j}\right)+\sum_{k=1}^{n}\sum_{j=1}^{m}B_{k}^{j}\partial_{k}\left(f^{j}-g^{j}\right)+\sum_{j=1}^{m}\sum_{k,l=1}^{n}C_{kl}^{j}\partial_{k}\partial_{l}\left(f^{j}-g^{j}\right),

where AjA_{j}, BkjB_{k}^{j}, and CkljC_{kl}^{j} are as defined in (27).

By Lemma 2.2 and Lemma 2.3,

fjgjα\displaystyle\|f^{j}-g^{j}\|_{\alpha} \displaystyle\leq CR2fjgj(2,α)CR2𝒇𝒈(2,α),\displaystyle CR^{2}\|f^{j}-g^{j}\|^{(2,\alpha)}\,\,\leq\,\,CR^{2}\|\bm{f}-\bm{g}\|^{(2,\alpha)},
(54) k(fjgj)α\displaystyle\|\partial_{k}(f^{j}-g^{j})\|_{\alpha} \displaystyle\leq fjgj(1,α)CRfjgj(2,α)CR𝒇𝒈(2,α),\displaystyle\|f^{j}-g^{j}\|^{(1,\alpha)}\,\,\leq\,\,CR\|f^{j}-g^{j}\|^{(2,\alpha)}\,\,\leq\,\,CR\|\bm{f}-\bm{g}\|^{(2,\alpha)},
kl(fjgj)α\displaystyle\|\partial_{k}\partial_{l}(f^{j}-g^{j})\|_{\alpha} \displaystyle\leq fjgj(2,α)𝒇𝒈(2,α).\displaystyle\|f^{j}-g^{j}\|^{(2,\alpha)}\,\,\leq\,\,\|\bm{f}-\bm{g}\|^{(2,\alpha)}.

Then by (53), (4), (6), (38), (39), and (41) we have

Ψi(x,𝒇(x),D𝒇(x),D2𝒇(x))Ψi(x,𝒈(x),D𝒈(x),D2𝒈(x)α\displaystyle\Big{\|}\Psi^{i}\Big{(}x,\bm{f}(x),D\bm{f}(x),D^{2}\bm{f}(x)\Big{)}-\Psi^{i}\Big{(}x,\bm{g}(x),D\bm{g}(x),D^{2}\bm{g}(x)\Big{\|}_{\alpha}
\displaystyle\leq C(R2j=1mAjα+Rk=1nj=1mBkjα+j=1mk,l=1nCkljα)𝒇𝒈(2,α)\displaystyle C\left(R^{2}\sum_{j=1}^{m}\|A_{j}\|_{\alpha}+R\sum_{k=1}^{n}\sum_{j=1}^{m}\|B_{k}^{j}\|_{\alpha}+\sum_{j=1}^{m}\sum_{k,l=1}^{n}\|C^{j}_{kl}\|_{\alpha}\right)\|\bm{f}-\bm{g}\|^{(2,\alpha)}
\displaystyle\leq C(R2j=1mδA(R,γ0)+Rk=1nj=1mδB(R,γ0)+j=1mk,l=1nδC(R,γ0))𝒇𝒈(2,α).\displaystyle C\left(R^{2}\sum_{j=1}^{m}\delta_{A}(R,\gamma_{0})+R\sum_{k=1}^{n}\sum_{j=1}^{m}\delta_{B}(R,\gamma_{0})+\sum_{j=1}^{m}\sum_{k,l=1}^{n}\delta_{C}(R,\gamma_{0})\right)\|\bm{f}-\bm{g}\|^{(2,\alpha)}.

Note that by (5.1) and (48),

δC(R,γ0)0asR0.\delta_{C}(R,\gamma_{0})\to 0\hskip 14.45377pt\text{as}\,\,R\to 0.

Therefore

C(R2j=1mδA(R,γ0)+Rk=1nj=1mδB(R,γ0)+j=1mk,l=1nδC(R,γ0))0asR0.C\left(R^{2}\sum_{j=1}^{m}\delta_{A}(R,\gamma_{0})+R\sum_{k=1}^{n}\sum_{j=1}^{m}\delta_{B}(R,\gamma_{0})+\sum_{j=1}^{m}\sum_{k,l=1}^{n}\delta_{C}(R,\gamma_{0})\right)\to 0\hskip 14.45377pt\text{as}\,\,R\to 0.

Then by (50)-(52), when RR is sufficiently small, we have

Θi(𝒇)Θi(𝒈)(2,α)12𝒇𝒈(2,α),\|\Theta^{i}(\bm{f})-\Theta^{i}(\bm{g})\|^{(2,\alpha)}\leq\frac{1}{2}\|\bm{f}-\bm{g}\|^{(2,\alpha)},

which implies 𝚯\bm{\Theta} is a contraction.

Finally, by the Fixed Point Theorem there is a function 𝒖(x)𝓔(R,γ0)\bm{u}(x)\in\bm{\mathcal{E}}(R,\gamma_{0}) such that

𝚯(𝒖)=𝒖.\bm{\Theta}(\bm{u})=\bm{u}.

Then

Δ𝒖=𝚿(x,𝒖(x),D𝒖(x),D2𝒖(x)),\Delta\bm{u}=-\bm{\Psi}\big{(}x,\bm{u}(x),D\bm{u}(x),D^{2}\bm{u}(x)\big{)},

with 𝒖(0)=𝟎\bm{u}(0)=\bm{0} and D𝒖(0)=𝟎D\bm{u}(0)=\bm{0}.

Thus Lemma 4.1 is proved, and this completes the proof of Theorem 1.1.

References

  • [1] L. E. Fraenkel. An introduction to maximum principles and symmetry in elliptic problems, volume 128 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 2000.
  • [2] David Gilbarg and Neil S. Trudinger. Elliptic partial differential equations of second order. Classics in Mathematics. Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition.
  • [3] Shoshichi Kobayashi. Invariant distances on complex manifolds and holomorphic mappings. J. Math. Soc. Japan, 19:460–480, 1967.
  • [4] Yifei Pan and Yuan Zhang. A residue-type phenomenon and its applications to higher order nonlinear systems of Poisson type. J. Math. Anal. Appl., 495(2):124749, 2021.