This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

On isomorphism of the space of α\alpha-Hölder continuous functions with finite pp-th variation.

Purba Das Department of Mathematics, King’s College London, UK (E-mail: [email protected])    Donghan Kim Department of Mathematical Sciences, KAIST, South Korea (E-mail: [email protected])
Abstract

We study the concept of (generalized) pp-th variation of a real-valued continuous function along a general class of refining sequence of partitions. We show that the finiteness of the pp-th variation of a given function is closely related to the finiteness of p\ell^{p}-norm of the coefficients along a Schauder basis, similar to the fact that Hölder coefficient of the function is connected to \ell^{\infty}-norm of the Schauder coefficients. This result provides an isomorphism between the space of α\alpha-Hölder continuous functions with finite (generalized) pp-th variation along a given partition sequence and a subclass of infinite-dimensional matrices equipped with an appropriate norm, in the spirit of Ciesielski.

Keywords— pp-th variation, Hölder regularity, Ciesielski’s isomorphism, Schauder basis, Variation index, Refining partition sequences

1 Introduction

In the seminal paper [14], Föllmer derived the pathwise Itô’s formula for a class of real functions with a finite quadratic variation. In particular, for a twice differentiable function FF and a one-dimensional continuous function xx with finite quadratic variation along a partition sequence π=(πn)n\pi=(\pi^{n})_{n\in\mathbb{N}}, the pathwise Itô formula is given as

F(x(t))=F(x(0))+0tF(x(s))dπx(s)+120tF′′(x(s))d[x]π(s).F\big{(}x(t)\big{)}=F\big{(}x(0)\big{)}+\int_{0}^{t}F^{\prime}\big{(}x(s)\big{)}d^{\pi}x(s)+\frac{1}{2}\int_{0}^{t}F^{\prime\prime}\big{(}x(s)\big{)}d[x]_{\pi}(s). (1.1)

Here, the first integral is defined as a left Riemann sum

0tF(x(s))dπx(s):=limnπntjntF(x(tjn))(x(tj+1n)x(tjn)),\int_{0}^{t}F^{\prime}\big{(}x(s)\big{)}d^{\pi}x(s):=\lim_{n\to\infty}\sum_{\pi^{n}\ni t^{n}_{j}\leq t}F^{\prime}\big{(}x(t^{n}_{j})\big{)}\big{(}x(t^{n}_{j+1})-x(t^{n}_{j})\big{)},

and the integrator [x]π()[x]_{\pi}(\cdot) of the second integral is the quadratic variation of xx along the partition sequence π\pi, defined as the following uniform limit in tt:

[x]πn(t):=πntjnt|x(tj+1n)x(tjn)|2\xlongrightarrown[x]π(t).[x]_{\pi^{n}}(t):=\sum_{\pi^{n}\ni t^{n}_{j}\leq t}\big{|}x(t^{n}_{j+1})-x(t^{n}_{j})\big{|}^{2}\xlongrightarrow{n\rightarrow\infty}[x]_{\pi}(t). (1.2)

This pathwise Itô’s formula has been generalized in several aspects [1, 4, 9, 11, 12, 17, 22]. Among these, Cont and Perkowski [11] defined the notion of pp-th variation of continuous functions along π\pi by raising the exponent in (1.2) to any even integers p2p\in 2\mathbb{N}, and derived high-order pathwise change-of-variable formula; more recently, Cont and Jin [10] developed fractional pathwise Itô formula for functions with pp-th variation for any p1p\geq 1, with a fractional Itô remainder term. These pathwise calculus formulae, including Föllmer’s original one (1.1), require the continuous function xx to have finite pp-th variation along π\pi. In other words, the existence of the limit

[x]πn(p)(t):=πntjnt|x(tj+1n)x(tjn)|p\xlongrightarrown[x]π(p)(t)[x]^{(p)}_{\pi^{n}}(t):=\sum_{\pi^{n}\ni t^{n}_{j}\leq t}\big{|}x(t^{n}_{j+1})-x(t^{n}_{j})\big{|}^{p}\xlongrightarrow{n\rightarrow\infty}[x]^{(p)}_{\pi}(t) (1.3)

is the crucial assumption when applying these formulae. It is then natural to study a class VπpV^{p}_{\pi} of functions xx such that the limit (1.3) exists for a fixed partition sequence π\pi and p1p\geq 1.

In this regard, Schied [21] showed that the space VπpV^{p}_{\pi} is not a vector space by constructing an example of two continuous functions xx and yy on [0,1][0,1] such that [x]𝕋(2)[x]^{(2)}_{\mathbb{T}} and [y]𝕋(2)[y]^{(2)}_{\mathbb{T}} exist, but [x+y]𝕋(2)[x+y]^{(2)}_{\mathbb{T}} does not exist, along the dyadic partition sequence 𝕋=(𝕋n)n\mathbb{T}=(\mathbb{T}^{n})_{n\in\mathbb{N}} with 𝕋n:={k2n:k=0,1,,2n}\mathbb{T}^{n}:=\{k2^{-n}:k=0,1,\cdots,2^{n}\}. These two functions xx and yy belong to a class of so-called generalized Takagi functions, constructed via the Schauder representation of continuous functions. From the Schauder representation of xx and yy along 𝕋\mathbb{T}, one can obtain explicit expressions of both terms in the following strict inequality to show that [x+y]𝕋(2)[x+y]^{(2)}_{\mathbb{T}} does not exist:

lim infn[x+y]𝕋n(2)(t)<lim supn[x+y]𝕋n(2)(t).\liminf_{n\to\infty}\,[x+y]^{(2)}_{\mathbb{T}^{n}}(t)<\limsup_{n\to\infty}\,[x+y]^{(2)}_{\mathbb{T}^{n}}(t).

Since Schied’s example implies that requiring the existence of the limit (1.3) restricts the function space VπpV^{p}_{\pi} too much, in this paper we study a larger space 𝒳πpVπp\mathcal{X}^{p}_{\pi}\supset V^{p}_{\pi} of functions xx that satisfy

lim supn[x]πn(p)(t)=lim supnπntjnt|x(tj+1n)x(tjn)|p<,\limsup_{n\to\infty}\,[x]^{(p)}_{\pi^{n}}(t)=\limsup_{n\to\infty}\sum_{\pi^{n}\ni t^{n}_{j}\leq t}\big{|}x(t^{n}_{j+1})-x(t^{n}_{j})\big{|}^{p}<\infty, (1.4)

but does not require the limit to exist. With an appropriate norm, we prove that the space 𝒳πp\mathcal{X}^{p}_{\pi} is a Banach space (see definition (2.7) and Proposition 2.5 below).

Even though we may not apply the aforementioned pathwise change-of-variable formulae to every function in 𝒳πp\mathcal{X}^{p}_{\pi}, we shall study the Banach space 𝒳πp\mathcal{X}^{p}_{\pi}, instead of VπpV^{p}_{\pi}, because the notion of variation index, i.e., the infimum number p1p\geq 1 such that the condition (1.4) holds (see Definition 2.3 below), can be used for measuring ‘roughness’ of a given function (or a path of a stochastic process) [2, 6]. It is well known that (almost every path of) a fractional Brownian motion (fBM) BHB^{H} with Hurst index H(0,1)H\in(0,1), has Hölder exponent equal to HH-, whereas its variation index along ‘reasonable’ partition sequences (e.g., dyadic partition sequence 𝕋\mathbb{T}) is equal to 1/H1/H. These facts are closely related to the self-similarity property of fBMs, but it is generally not true for general continuous functions that the reciprocal of the variation index is equal to (the supremum of) Hölder exponent. In a recent work [2], a specific example of (1/4)(1/4)-Hölder continuous function with variation index along the dyadic partition sequence equal to 22 is constructed, thus, the variation index should be considered as an alternative way of measuring function’s roughness.

With the help of Schauder representation along a general class of partition sequences, our main result provides a necessary and sufficient condition for elements of the Banach space 𝒳πp\mathcal{X}^{p}_{\pi}, in terms of their Schauder coefficients (see Theorem 4.3). More specifically, the condition (1.4) is equivalent to the \ell^{\infty}-finiteness of the sequence composed of p\ell^{p}-norm of Schauder coefficients of functions along each partition πn\pi^{n}, scaled by a (p/2)(p/2)-power of the mesh size of πn\pi^{n}.

When the Schauder coefficients of functions are arranged in an infinite dimensional matrix, this result gives rise to an isomorphism between the space of α\alpha-Hölder continuous functions with finite (generalized) pp-th variation along a partition sequence π\pi and a subspace of infinite-dimensional matrices with an appropriate matrix norm (see Theorem 5.3). Our isomorphism result reminds that of Ciesielski’s in 1960 [5], between the space of α\alpha-Hölder continuous functions and the space of bounded real sequences, using Schauder representation along the dyadic partition sequence 𝕋\mathbb{T}, which has been generalized recently by [2] along a wider class of partition sequences.

Preview: This paper is organized as follows. Section 2 introduces the notion of variation index and defines the Banach space 𝒳πp\mathcal{X}^{p}_{\pi}. Section 3 provides some notations and reviews preliminary results regarding Schauder representation of continuous functions. Section 4 states and proves our main result, the characterization of generalized pp-th variation in terms of a function’s Schauder coefficients. Section 5 includes the isomorphism, as an important consequence of the result. Finally, Appendix A provides an explicit expression of the pp-th variation in terms of Schauder coefficients, for a limited case of even integers pp along the dyadic partition sequence, which is of independent interest.


2 Variation index and the Banach space 𝒳πp\mathcal{X}^{p}_{\pi}

2.1 pp-th variation and variation index

First, we introduce some relevant notations and definitions for partition sequences. For a fixed T>0T>0, we shall consider a (deterministic) sequence of partitions π=(πn)n0\pi=(\pi^{n})_{n\geq 0} of [0,T][0,T]

πn=(0=t0n<t1n<t2n<<tN(πn)n=T),\pi^{n}=\left(0=t^{n}_{0}<t^{n}_{1}<t^{n}_{2}<\cdots<t^{n}_{N(\pi^{n})}=T\right),

where we denote N(πn)N(\pi^{n}) the number of intervals in the partition πn\pi^{n}. By convention, π0={0,T}\pi^{0}=\{0,T\}. For example, the dyadic partition sequence, denoted by 𝕋π\mathbb{T}\equiv\pi, contains partition points tkn=kT/2nt^{n}_{k}=kT/2^{n} for nn\in\mathbb{N}, k=0,,2nk=0,\cdots,2^{n}.

Definition 2.1 (Refining sequence of partitions).

A sequence of partitions π=(πn)n0\pi=(\pi^{n})_{n\geq 0} is said to be refining (or nested), if tπmt\in\pi^{m} implies tnmπnt\in\cap_{n\geq m}\pi^{n} for every mm\in\mathbb{N}. In particular, we have π1π2\pi^{1}\subseteq\pi^{2}\subseteq\cdots.

For a partition sequence π=(πn)n0\pi=(\pi^{n})_{n\geq 0}, we write

πn¯:=infi=0,,N(πn)1|ti+1ntin|,|πn|:=supi=0,,N(πn)1|ti+1ntin|,\underline{\pi^{n}}:=\inf_{i=0,\cdots,N(\pi^{n})-1}|t^{n}_{i+1}-t^{n}_{i}|,\qquad\qquad|\pi^{n}|:=\sup_{i=0,\cdots,N(\pi^{n})-1}|t^{n}_{i+1}-t^{n}_{i}|, (2.1)

the size of the smallest and the largest interval of πn\pi^{n}, respectively. In the following, we denote Π([0,T])\Pi([0,T]) the collection of all refining partition sequences π\pi of [0,T][0,T] with vanishing mesh, i.e., |πn|0|\pi^{n}|\rightarrow 0 as nn\rightarrow\infty.

Let us denote C0([0,T])C^{0}([0,T]) the space of real-valued continuous functions defined on [0,T][0,T]. In this subsection, we fix a partition sequence π=(πn)n0Π([0,T])\pi=(\pi^{n})_{n\geq 0}\in\Pi([0,T]) and xC0([0,T])x\in C^{0}([0,T]). For p1p\geq 1, we denote

[x]πn(p)(t):=πntjnt|x(tj+1n)x(tjn)|p[x]_{\pi^{n}}^{(p)}(t):=\sum_{\pi^{n}\ni t^{n}_{j}\leq t}\big{|}x(t^{n}_{j+1})-x(t^{n}_{j})\big{|}^{p} (2.2)

the pp-th variation of xx along a partition πn\pi^{n} for each level nn\in\mathbb{N}.

Remark 2.2.

If there exists a continuous, non-decreasing function [x]π(p)[x]^{(p)}_{\pi} such that

limn[x]πn(p)(t)=[x]π(p)(t),t[0,T],\lim_{n\to\infty}[x]_{\pi^{n}}^{(p)}(t)=[x]^{(p)}_{\pi}(t),\qquad\forall\,t\in[0,T], (2.3)

then we say xx admits finite pp-th variation along π\pi, and the above convergence is uniform in tt ([11, Definition 1.1 and Lemma 1.3]). We write VπpV^{p}_{\pi} the space of such functions xx admitting finite pp-th variation along π\pi. In the particular case of p=2p=2 (then Vπ2V^{2}_{\pi} is often denoted as QπQ_{\pi}) and π\pi given as the dyadic partition sequence 𝕋\mathbb{T}, it is shown in [21, Proposition 2.7] that V𝕋2V^{2}_{\mathbb{T}} is not a vector space.

Even though the pp-th variation of xx along a given sequence π\pi defined in Remark 2.2 may not exist, one can always define its variation index along π\pi as the following.

Definition 2.3 (Variation index along a partition sequence, Definition 2.3 of [6]).

The variation index of xC0([0,T])x\in C^{0}([0,T]) along πΠ([0,T])\pi\in\Pi([0,T]) is defined as

pπ(x):=inf{p1:lim supn[x]πn(p)(T)<}.p^{\pi}(x):=\inf\big{\{}p\geq 1:\limsup_{n\to\infty}\,[x]_{\pi^{n}}^{(p)}(T)<\infty\big{\}}. (2.4)

Thanks to the continuity of xx, it is straightforward to show

lim supn[x]πn(q)(T)={ 0,q>pπ(x),,q<pπ(x),\limsup_{n\to\infty}\,[x]_{\pi^{n}}^{(q)}(T)=\begin{cases}\,0,\qquad&q>p^{\pi}(x),\\ \infty,\qquad&q<p^{\pi}(x),\end{cases} (2.5)

Therefore, the definition (2.4) can be formulated as

pπ(x)=inf{p1:lim supn[x]πn(p)(T)=0}.p^{\pi}(x)=\inf\big{\{}p\geq 1\,:\,\limsup_{n\to\infty}\,[x]_{\pi^{n}}^{(p)}(T)=0\big{\}}.

Moreover, since lim supn[x]πn(p)(T)<\limsup_{n\to\infty}\,[x]_{\pi^{n}}^{(p)}(T)<\infty if and only if supn[x]πn(p)(T)<\sup_{n\in\mathbb{N}}\,[x]_{\pi^{n}}^{(p)}(T)<\infty, we also have

pπ(x)=inf{p1:supn[x]πn(p)(T)<}.p^{\pi}(x)=\inf\big{\{}p\geq 1:\sup_{n\in\mathbb{N}}\,[x]_{\pi^{n}}^{(p)}(T)<\infty\big{\}}. (2.6)

Now that the quantity [x]πn(p)(t)[x]_{\pi^{n}}^{(p)}(t) in (2.2) can be recognized as the pp-th power of p\ell^{p}-norm of the real sequence {x(tj+1n)x(tjn)}tjnπn,tjnt\{x(t^{n}_{j+1})-x(t^{n}_{j})\}_{t^{n}_{j}\in\pi^{n},\,t^{n}_{j}\leq t}, we provide the following definition.

Definition 2.4.

For xC0([0,T])x\in C^{0}([0,T]), p1p\geq 1, and πΠ([0,T])\pi\in\Pi([0,T]), we denote

xπ(p):=|x(0)|+supn([x]πn(p)(T))1p\|x\|^{(p)}_{\pi}:=|x(0)|+\sup_{n\in\mathbb{N}}\,\Big{(}[x]_{\pi^{n}}^{(p)}(T)\Big{)}^{\frac{1}{p}}

and consider the subspace of C0([0,T])C^{0}([0,T]):

𝒳πp:={xC0([0,T]):xπ(p)<}.\mathcal{X}^{p}_{\pi}:=\{x\in C^{0}([0,T])\,:\|x\|^{(p)}_{\pi}<\infty\}. (2.7)

We say 𝒳πp\mathcal{X}^{p}_{\pi} is the class of continuous functions with finite (generalized) pp-th variation along π\pi.

The space 𝒳πp\mathcal{X}^{p}_{\pi} turns out to be a Banach space, in contrast to the space VπpV^{p}_{\pi}.

Proposition 2.5.

The mapping 𝒳πpxxπ(p)\mathcal{X}^{p}_{\pi}\ni x\mapsto\|x\|^{(p)}_{\pi} is a norm, and the space (𝒳πp,π(p))(\mathcal{X}^{p}_{\pi},\,\|\cdot\|^{(p)}_{\pi}) is a Banach space.

Proof.

We first prove that the mapping is a norm. For any scalar rr, the identity rxπ(p)=|r|xπ(p)\|rx\|^{(p)}_{\pi}=|r|\|x\|^{(p)}_{\pi} is straightforward. Thanks to Minkowski’s inequality, it is also easy to prove the subadditive property (triangle inequality). These imply, in particular, that 𝒳πp\mathcal{X}^{p}_{\pi} is a vector space. Finally, if xπ(p)=0\|x\|^{(p)}_{\pi}=0, then xx has zero value on every partition point tjnt^{n}_{j} of π\pi for all j,nj,n. Since |πn|0|\pi^{n}|\rightarrow 0 as nn\to\infty, the set P:=nπnP:=\bigcup_{n\in\mathbb{N}}\pi^{n} of all partition points of π\pi is dense in [0,T][0,T], and the continuity of xx with x(0)=0x(0)=0 concludes x0x\equiv 0. This shows that xπ(p)\|x\|^{(p)}_{\pi} is a norm.

To prove the space 𝒳πp\mathcal{X}^{p}_{\pi} is a Banach space, we fix a Cauchy sequence (x)(x_{\ell})_{\ell\in\mathbb{N}} of 𝒳πp\mathcal{X}^{p}_{\pi}, i.e., for any ϵ>0\epsilon>0, there exists NN\in\mathbb{N} such that xkxmπ(p)<ϵ\|x_{k}-x_{m}\|^{(p)}_{\pi}<\epsilon for all k,mNk,m\geq N. In particular, for every k,mNk,m\geq N, we have |xk(0)xm(0)|<ϵ|x_{k}(0)-x_{m}(0)|<\epsilon and

[xkxm]πn(p)(T)=tjnπn|(xk(tj+1n)xm(tj+1n))(xk(tjn)xm(tjn))|p<ϵp[x_{k}-x_{m}]^{(p)}_{\pi^{n}}(T)=\sum_{t^{n}_{j}\in\pi^{n}}\Big{|}\big{(}x_{k}(t^{n}_{j+1})-x_{m}(t^{n}_{j+1})\big{)}-\big{(}x_{k}(t^{n}_{j})-x_{m}(t^{n}_{j})\big{)}\Big{|}^{p}<\epsilon^{p} (2.8)

holds for each nn\in\mathbb{N}. Since {x(0)}\{x_{\ell}(0)\}_{\ell\in\mathbb{N}} is a real Cauchy sequence, its limit limx(0)=x~(0)\lim_{\ell\to\infty}x_{\ell}(0)=\tilde{x}(0) exists. Moreover, we fix an arbitrary nn\in\mathbb{N}, then for all indices jj such that tjnt^{n}_{j} belongs to πn\pi^{n}, we have

|(xk(tj+1n)xk(tjn))(xm(tj+1n)xm(tjn))|p=|(xk(tj+1n)xm(tj+1n))(xk(tjn)xm(tjn))|p<ϵp\Big{|}\big{(}x_{k}(t^{n}_{j+1})-x_{k}(t^{n}_{j})\big{)}-\big{(}x_{m}(t^{n}_{j+1})-x_{m}(t^{n}_{j})\big{)}\Big{|}^{p}=\Big{|}\big{(}x_{k}(t^{n}_{j+1})-x_{m}(t^{n}_{j+1})\big{)}-\big{(}x_{k}(t^{n}_{j})-x_{m}(t^{n}_{j})\big{)}\Big{|}^{p}<\epsilon^{p}

for every k,mNk,m\geq N, in other words, (xk(tj+1n)xk(tjn))k\big{(}x_{k}(t^{n}_{j+1})-x_{k}(t^{n}_{j})\big{)}_{k\in\mathbb{N}} is a Cauchy sequence in \mathbb{R} for each jj. Again by the completeness of \mathbb{R}, the limit d(tjn):=limk(xk(tj+1n)xk(tjn))d(t^{n}_{j}):=\lim_{k\to\infty}\big{(}x_{k}(t^{n}_{j+1})-x_{k}(t^{n}_{j})\big{)}\in\mathbb{R} exists for each index jj and nn\in\mathbb{N}.

Let us recall the set P=nπnP=\bigcup_{n\in\mathbb{N}}\pi^{n} of all partition points of π\pi, and define a function x~\tilde{x} on PP

x~(tjn)=x~(0)+i=1j1d(tin),for every tjnπn and n.\tilde{x}(t^{n}_{j})=\tilde{x}(0)+\sum_{i=1}^{j-1}d(t^{n}_{i}),\qquad\text{for every }t^{n}_{j}\in\pi^{n}\text{ and }n\in\mathbb{N}.

Since PP is a dense subset of [0,T][0,T] and a function defined on a dense set can be extended to a continuous function, there exists xC0([0,T])x\in C^{0}([0,T]) such that x(tjn)=x~(tjn)x(t^{n}_{j})=\tilde{x}(t^{n}_{j}) holds for all points tjnt^{n}_{j} of PP. Furthermore, we have x(0)=x~(0)=limkxk(0)x(0)=\tilde{x}(0)=\lim_{k\to\infty}x_{k}(0) as well as

x(tj+1n)x(tjn)=x~(tj+1n)x~(tjn)=d(tjn)=limk(xk(tj+1n)xk(tjn)),x(t^{n}_{j+1})-x(t^{n}_{j})=\tilde{x}(t^{n}_{j+1})-\tilde{x}(t^{n}_{j})=d(t^{n}_{j})=\lim_{k\to\infty}\big{(}x_{k}(t^{n}_{j+1})-x_{k}(t^{n}_{j})\big{)},

thus x(tjn)=limkxk(tjn)x(t^{n}_{j})=\lim_{k\to\infty}x_{k}(t^{n}_{j}) for each tjnPt^{n}_{j}\in P.

Sending mm\to\infty in (2.8), we have for each nn\in\mathbb{N}

tjnπn|(xk(tj+1n)x(tj+1n))(xk(tjn)x(tjn))|p<ϵp,for kN.\sum_{t^{n}_{j}\in\pi^{n}}\Big{|}\big{(}x_{k}(t^{n}_{j+1})-x(t^{n}_{j+1})\big{)}-\big{(}x_{k}(t^{n}_{j})-x(t^{n}_{j})\big{)}\Big{|}^{p}<\epsilon^{p},\qquad\text{for }k\geq N. (2.9)

Minkowski’s inequality now yields for each nn\in\mathbb{N}

(tjnπn|x(tj+1n)x(tjn)|p)1p\displaystyle\bigg{(}\sum_{t^{n}_{j}\in\pi^{n}}\Big{|}x(t^{n}_{j+1})-x(t^{n}_{j})\Big{|}^{p}\bigg{)}^{\frac{1}{p}} (tjnπn|(xk(tj+1n)x(tj+1n))(xk(tjn)x(tjn))|p)1p\displaystyle\leq\bigg{(}\sum_{t^{n}_{j}\in\pi^{n}}\Big{|}\big{(}x_{k}(t^{n}_{j+1})-x(t^{n}_{j+1})\big{)}-\big{(}x_{k}(t^{n}_{j})-x(t^{n}_{j})\big{)}\Big{|}^{p}\bigg{)}^{\frac{1}{p}}
+(tjnπn|xk(tj+1n)xk(tjn)|p)1p\displaystyle\qquad+\bigg{(}\sum_{t^{n}_{j}\in\pi^{n}}\Big{|}x_{k}(t^{n}_{j+1})-x_{k}(t^{n}_{j})\Big{|}^{p}\bigg{)}^{\frac{1}{p}}
ϵ+xkπ(p)<,for kN,\displaystyle\leq\epsilon+\|x_{k}\|^{(p)}_{\pi}<\infty,\qquad\text{for }k\geq N,

and this proves x𝒳πpx\in\mathcal{X}^{p}_{\pi}. Furthermore, the inequality (2.9) implies xkxπ(p)<ϵ\|x_{k}-x\|^{(p)}_{\pi}<\epsilon for all large enough numbers kk. This concludes that the Cauchy sequence (x)(x_{\ell})_{\ell\in\mathbb{N}} converges to xx in π(p)\|\cdot\|^{(p)}_{\pi} norm. ∎

In line with Proposition 2.5, it is well-known that the space (C0,α([0,T]),C0,α)(C^{0,\alpha}([0,T]),\,\|\cdot\|_{C^{0,\alpha}}) of α\alpha-Hölder continuous functions, is also a Banach space. We next note the inclusion

𝒳πp𝒳πq,for 1pq<,\mathcal{X}^{p}_{\pi}\subset\mathcal{X}^{q}_{\pi},\qquad\text{for }1\leq p\leq q<\infty, (2.10)

due to the straightforward inequality ([x]πn(q)(T))1q([x]πn(p)(T))1p([x]^{(q)}_{\pi^{n}}(T))^{\frac{1}{q}}\leq([x]^{(p)}_{\pi^{n}}(T))^{\frac{1}{p}} for every n0n\geq 0. We conclude this subsection with the following property that adding a function with vanishing pp-th variation does not affect the variation index.

Lemma 2.6.

For x,yC0([0,T])x,y\in C^{0}([0,T]), p1p\geq 1, t[0,T]t\in[0,T], and πΠ([0,T])\pi\in\Pi([0,T]), suppose that

lim supn[y]πn(p)(t)=0\limsup_{n\to\infty}\,[y]^{(p)}_{\pi^{n}}(t)=0

holds. Then, we have

lim supn[x]πn(p)(t)<if and only iflim supn[x+y]πn(p)(t)<,\limsup_{n\to\infty}\,[x]^{(p)}_{\pi^{n}}(t)<\infty\qquad\text{if and only if}\qquad\limsup_{n\to\infty}\,[x+y]^{(p)}_{\pi^{n}}(t)<\infty,

therefore pπ(x)=pπ(x+y)p^{\pi}(x)=p^{\pi}(x+y). In particular, the identity [x]π(p)(t)=[x+y]π(p)(t)[x]^{(p)}_{\pi}(t)=[x+y]^{(p)}_{\pi}(t) holds, provided that the limit [x]π(p)(t)[x]^{(p)}_{\pi}(t) exists in the sense of Remark 2.2.

Proof.

Applying Minkowski’s inequality twice yields

([x]πn(p)(t))1p([y]πn(p)(t))1p([x+y]πn(p)(t))1p([x]πn(p)(t))1p+([y]πn(p)(t))1p.\big{(}[x]^{(p)}_{\pi^{n}}(t)\big{)}^{\frac{1}{p}}-\big{(}[y]^{(p)}_{\pi^{n}}(t)\big{)}^{\frac{1}{p}}\leq\big{(}[x+y]^{(p)}_{\pi^{n}}(t)\big{)}^{\frac{1}{p}}\leq\big{(}[x]^{(p)}_{\pi^{n}}(t)\big{)}^{\frac{1}{p}}+\big{(}[y]^{(p)}_{\pi^{n}}(t)\big{)}^{\frac{1}{p}}.

Taking lim sup\limsup or lim\lim respectively gives the result. ∎

2.2 Variation index along different partition sequences

A continuous function xx can have different pp-th variations, [x]π(p)[x]^{(p)}_{\pi} and [x]ρ(p)[x]^{(p)}_{\rho}, along two different refining partition sequences π\pi and ρ\rho. In this subsection, we study the variation index of xx along different partition sequences. We first introduce Proposition 2.8, inspired by Freedman [15], whose proof needs a preliminary result.

Lemma 2.7.

For any given numbers q>1q>1, ϵ>0\epsilon>0, and xC0([0,T])x\in C^{0}([0,T]), there exists a finite set π={0=t0,t1,,tm=T}\pi=\{0=t_{0},t_{1},\cdots,t_{m}=T\} in [0,T][0,T] such that the qq-th variation of xx along π\pi is less than ϵ\epsilon, i.e.,

[x]π(q)(T)=j=0m1|x(tj+1)x(tj)|q<ϵ.[x]^{(q)}_{\pi}(T)=\sum_{j=0}^{m-1}\Big{|}x(t_{j+1})-x(t_{j})\Big{|}^{q}<\epsilon.
Proof.

If x(0)=x(T)x(0)=x(T), then we just take π={0,T}\pi=\{0,T\}. Thus, we suppose that x(T)>x(0)x(T)>x(0); the other case x(T)<x(0)x(T)<x(0) can be handled by applying the same argument to y(t)=x(Tt)y(t)=x(T-t).

We assume without loss of generality that x(0)=0x(0)=0, T=1T=1, and x(T)=1x(T)=1. For given q>1q>1 and ϵ>0\epsilon>0, we choose NN\in\mathbb{N} large enough so that N1q<ϵN^{1-q}<\epsilon, and define tjN:=min{t0:x(t)=j/N}t^{N}_{j}:=\min\{t\geq 0:x(t)=j/N\} for j=0,,Nj=0,\cdots,N. Let π={t0N,,tNN}\pi=\{t^{N}_{0},\cdots,t^{N}_{N}\} if tNN=1t^{N}_{N}=1, or π={t0N,,tNN,1}\pi=\{t^{N}_{0},\cdots,t^{N}_{N},1\} otherwise. Now it is simple to check [x]π(q)(1)=N1q<ϵ[x]^{(q)}_{\pi}(1)=N^{1-q}<\epsilon. ∎

Proposition 2.8.

For any xC0([0,T])x\in C^{0}([0,T]), we have

inf{pπ(x):πΠ([0,T])}=1.\inf\big{\{}p^{\pi}(x):\pi\in\Pi([0,T])\big{\}}=1.
Proof.

Let us fix xC0([0,T])x\in C^{0}([0,T]). For any q>1q>1, we shall show that there exists a sequence π=(πn)n0Π([0,T])\pi=(\pi^{n})_{n\geq 0}\in\Pi([0,T]) satisfying

[x]π(q)(T)=lim supn[x]πn(q)(T)=0.[x]^{(q)}_{\pi}(T)=\limsup_{n\to\infty}\,[x]^{(q)}_{\pi^{n}}(T)=0. (2.11)

Then, the identity (2.11), together with (2.5), implies that for any q>1q>1 there exists πΠ([0,T])\pi\in\Pi([0,T]) satisfying pπ(x)qp^{\pi}(x)\leq q, which in turn proves the result.

We choose a decreasing real sequence ϵn0\epsilon_{n}\downarrow 0, and set π0={0,T}\pi^{0}=\{0,T\}. We shall inductively define πn\pi^{n} for each n0n\geq 0. Suppose πn\pi^{n} is defined, and let ρn+1\rho^{n+1} be a partition of [0,T][0,T] satisfying πnρn+1\pi^{n}\subset\rho^{n+1} and |ρn+1|ϵn+1|\rho^{n+1}|\leq\epsilon_{n+1}. Suppose that ρn+1\rho^{n+1} has m+1m+1 points, dividing [0,T][0,T] into mm subintervals. From Lemma 2.7, we construct a partition πn+1\pi^{n+1} of [0,T][0,T] with ρn+1πn+1\rho^{n+1}\subset\pi^{n+1}, such that for each pair tjρn+1,tj+1ρn+1t^{\rho^{n+1}}_{j},t^{\rho^{n+1}}_{j+1} of consecutive points of ρn+1\rho^{n+1} we have

[x]νjn+1(q)ϵn+1m,[x]^{(q)}_{\nu^{n+1}_{j}}\leq\frac{\epsilon_{n+1}}{m},

where νjn+1:=πn+1[tjρn+1,tj+1ρn+1]\nu^{n+1}_{j}:=\pi^{n+1}\cap[t^{\rho^{n+1}}_{j},t^{\rho^{n+1}}_{j+1}] and [x]νjn+1(q)[x]^{(q)}_{\nu^{n+1}_{j}} is the qq-th variation along νjn+1\nu^{n+1}_{j} on the interval [tjρn+1,tj+1ρn+1][t^{\rho^{n+1}}_{j},t^{\rho^{n+1}}_{j+1}]. Then, we obtain [x]πn+1(q)(T)ϵn+1[x]^{(q)}_{\pi^{n+1}}(T)\leq\epsilon_{n+1} and |πn+1||ρn+1|ϵn+1|\pi^{n+1}|\leq|\rho^{n+1}|\leq\epsilon_{n+1}, therefore, π=(πn)\pi=(\pi^{n}) satisfies condition (2.11). ∎

On the other hand, the rough path theory asserts that an α\alpha-Hölder continuous function xC0,α([0,T])x\in C^{0,\alpha}([0,T]) has finite (1α)(\frac{1}{\alpha})-variation, i.e., x1αvar<\|x\|_{\frac{1}{\alpha}-var}<\infty, with

xpvar:=(supρtj,tj+1ρ|x(tj+1)x(tj)|p)1p,\|x\|_{p-var}:=\bigg{(}\sup_{\rho}\sum_{t_{j},t_{j+1}\in\rho}\big{|}x(t_{j+1})-x(t_{j})\big{|}^{p}\bigg{)}^{\frac{1}{p}},

where the supremum is taken over all partitions ρ\rho of [0,T][0,T]. This implies that for a given refining partition sequence πΠ([0,T])\pi\in\Pi([0,T]) with vanishing mesh, the variation index pπ(x)p^{\pi}(x) of xC0,α([0,T])x\in C^{0,\alpha}([0,T]) should be bounded above by the reciprocal of its Hölder exponent α\alpha (see Lemma 4.3 of [2] for the proof), namely

pπ(x)1α.p^{\pi}(x)\leq\frac{1}{\alpha}.

We formalize the above arguments into the following theorem.

Theorem 2.9.

For any xC0([0,T])x\in C^{0}([0,T]), we have

inf{pπ(x):πΠ([0,T])}=1.\inf\big{\{}p^{\pi}(x):\pi\in\Pi([0,T])\big{\}}=1.

Moreover, for any xC0,α([0,T])x\in C^{0,\alpha}([0,T]), we have

sup{pπ(x):πΠ([0,T])}1α.\sup\big{\{}p^{\pi}(x):\pi\in\Pi([0,T])\big{\}}\leq\frac{1}{\alpha}. (2.12)

This result implies that an α\alpha-Hölder continuous function xx can have any variation index pπ(x)p^{\pi}(x) between 11 and 1/α1/\alpha, along a given partition sequence πΠ([0,T])\pi\in\Pi([0,T]). Moreover, the inclusion (2.10) shows that x𝒳πqx\in\mathcal{X}^{q}_{\pi} for any q>pπ(x)q>p^{\pi}(x).

Example 1.

The inequality (2.12) can be strict. Consider the increasing function y(t)=ty(t)=\sqrt{t} defined on [0,1][0,1], which is 12\frac{1}{2}-Hölder continuous. The function yy has finite 11-variation along any partition sequence π\pi, thus pπ(y)=1p^{\pi}(y)=1, as it is an increasing function. ∎

Example 2.

A uniformly continuous function zz defined on [0,12][0,\frac{1}{2}]

z(t)={1logt,t(0,12],0,t=0,z(t)=\begin{cases}\frac{1}{\log t},\qquad&t\in(0,\frac{1}{2}],\\ ~{}0,\qquad&t=0,\end{cases}

is not α\alpha-Hölder continuous for any α>0\alpha>0. However, it is a decreasing function on the compact support, thus of bounded variation. As in the previous example, pπ(z)=1p^{\pi}(z)=1 for every πΠ([0,12])\pi\in\Pi([0,\frac{1}{2}]), which implies the left-hand side of (2.12) for zz is 11. ∎

In what follows, we shall characterize conditions for xx to belong to the Banach space 𝒳πp\mathcal{X}^{p}_{\pi}, in terms of the Schauder coefficients of xx along π\pi.


3 Schauder representation along a general class of partition sequences

In this section, we provide several definitions and preliminary results, mostly taken from [7, 8], regarding Schauder representation of continuous functions along a general class of partition sequences. This type of representation was originally introduced by Schauder [20]. After that, we shall provide our results in the next sections.

3.1 Properties of partition sequence

Let us recall Definition 2.1 and the notations (2.1). We introduce a subclass of refining sequence of partitions with a ‘finite branching’ property at every level nn\in\mathbb{N}.

Definition 3.1 (Finitely refining sequence of partitions).

A sequence of partitions π=(πn)n0\pi=(\pi^{n})_{n\geq 0} in Π([0,T])\Pi([0,T]) is said to be finitely refining, if there exists a positive integer MM such that the number of partition points of πn+1\pi^{n+1} within any two consecutive partition points of πn\pi^{n} is always bounded above by MM, irrespective of n0n\geq 0. In particular, we have supn0N(πn)Mn1\sup_{n\geq 0}\frac{N(\pi^{n})}{M^{n}}\leq 1.

The following definition provides a condition that the ratio of the biggest step size to the smallest step size at each level is bounded.

Definition 3.2 (Balanced sequence of partitions).

A sequence of partitions π=(πn)n0\pi=(\pi^{n})_{n\geq 0} is said to be balanced, if there exists a constant c>1c>1 such that

|πn|πn¯c\frac{|\pi^{n}|}{\underline{\pi^{n}}}\leq c (3.1)

holds for every nn\in\mathbb{N}.

We now give two conditions of refining partition sequences involving the biggest step sizes of two consecutive levels.

Definition 3.3 (Complete refining sequence of partitions).

A finitely refining sequence of partitions π=(πn)n0\pi=(\pi^{n})_{n\geq 0} is said to be complete refining, if there exist positive constants aa and bb such that

1+a|πn||πn+1|b1+a\leq\frac{|\pi^{n}|}{|\pi^{n+1}|}\leq b (3.2)

holds for every nn\in\mathbb{N}.

Definition 3.4 (Convergent refining sequence of partitions).

A complete refining sequence of partitions is said to be convergent refining, if the following limit exists:

limn|πn||πn+1|=r(1,).\lim_{n\to\infty}\frac{|\pi^{n}|}{|\pi^{n+1}|}=r\in(1,\infty). (3.3)
Remark 3.5 (Notation).

Throughout this paper, we shall use the same symbols M,c,a,bM,c,a,b, and rr to refer to the constants that appeared in Definitions 3.1 - 3.4.

3.2 Generalized Haar basis and Schauder representation

This subsection recalls some relevant definitions of generalized Haar and Schauder functions, which were introduced in [7].

Let us fix πΠ([0,T])\pi\in\Pi([0,T]) and denote p(n,k):=inf{j0:tjn+1tkn}p(n,k):=\inf\{j\geq 0:t^{n+1}_{j}\geq t^{n}_{k}\}. Since π\pi is refining, we have the following inequality for every k=0,,N(πn)1k=0,\cdots,N(\pi^{n})-1

0tkn=tp(n,k)n+1<tp(n,k)+1n+1<<tp(n,k+1)n+1=tk+1nT.0\leq t^{n}_{k}=t^{n+1}_{p(n,k)}<t^{n+1}_{p(n,k)+1}<\cdots<t^{n+1}_{p(n,k+1)}=t^{n}_{k+1}\leq T. (3.4)

With the notation Δi,jn:=tjntin\Delta^{n}_{i,j}:=t^{n}_{j}-t^{n}_{i}, we now define the generalized Haar basis associated with π\pi.

Definition 3.6 (Generalized Haar basis).

The generalized Haar basis associated with a finitely refining sequence π=(πn)n0\pi=(\pi^{n})_{n\geq 0} of partitions is a collection of piecewise constant functions {ψm,k,iπ:m=0,1,,k=0,,N(πm)1,i=1,,p(m,k+1)p(m,k)}\{\psi^{\pi}_{m,k,i}\,:\,m=0,1,\cdots,~{}k=0,\cdots,N(\pi^{m})-1,~{}i=1,\cdots,p(m,k+1)-p(m,k)\} defined as follows:

ψm,k,iπ(t)={0,if t[tp(m,k)m+1,tp(m,k)+im+1)(Δp(m,k)+i1,p(m,k)+im+1Δp(m,k),p(m,k)+i1m+1×1Δp(m,k),p(m,k)+im+1)12,if t[tp(m,k)m+1,tp(m,k)+i1m+1)(Δp(m,k),p(m,k)+i1m+1Δp(m,k)+i1,p(m,k)+im+1×1Δp(m,k),p(m,k)+im+1)12,if t[tp(m,k)+i1m+1,tp(m,k)+im+1).\psi^{\pi}_{m,k,i}(t)=\begin{cases}\qquad\qquad\qquad\qquad 0,&\quad\text{if }t\notin\left[t^{m+1}_{p(m,k)},t_{p(m,k)+i}^{m+1}\right)\\ \quad\left(\frac{\Delta^{m+1}_{p(m,k)+i-1,p(m,k)+i}}{\Delta^{m+1}_{p(m,k),p(m,k)+i-1}}\times\frac{1}{\Delta^{m+1}_{p(m,k),p(m,k)+i}}\right)^{\frac{1}{2}},&\quad\text{if }t\in\left[t_{p(m,k)}^{m+1},t_{p(m,k)+i-1}^{m+1}\right)\\ -\left(\frac{\Delta^{m+1}_{p(m,k),p(m,k)+i-1}}{\Delta^{m+1}_{p(m,k)+i-1,p(m,k)+i}}\times\frac{1}{\Delta^{m+1}_{p(m,k),p(m,k)+i}}\right)^{\frac{1}{2}},&\quad\text{if }t\in\left[t_{p(m,k)+i-1}^{m+1},t_{p(m,k)+i}^{m+1}\right)\end{cases}. (3.5)

We note that the function values of ψm,k,iπ\psi^{\pi}_{m,k,i} are chosen to satisfy ψm,k,iπ(t)𝑑t=0\int\psi^{\pi}_{m,k,i}(t)dt=0 and (ψm,k,iπ(t))2𝑑t=1\int(\psi^{\pi}_{m,k,i}(t))^{2}dt=1 so that the collection {ψm,k,iπ}\{\psi^{\pi}_{m,k,i}\} is an orthonormal basis in L2([0,T])L^{2}([0,T]). The Schauder functions em,k,iπ:[0,T]e^{\pi}_{m,k,i}:[0,T]\rightarrow\mathbb{R} are obtained by integrating the generalized Haar basis:

em,k,iπ(t):=0tψm,k,iπ(s)𝑑s=(tp(m,k)m+1ttp(m,k)+im+1ψm,k,iπ(s)𝑑s)𝟙[tkm,tp(m,k)+im+1](t).e^{\pi}_{m,k,i}(t):=\int_{0}^{t}\psi^{\pi}_{m,k,i}(s)ds=\left(\int_{t^{m+1}_{p(m,k)}}^{t\wedge t^{m+1}_{p(m,k)+i}}\psi^{\pi}_{m,k,i}(s)ds\right)\mathbbm{1}_{[t^{m}_{k},t^{m+1}_{p(m,k)+i}]}(t).

To further simplify the notations in what follows, we introduce

t1m,k,i:=tp(m,k)m+1,t2m,k,i:=tp(m,k)+i1m+1,t3m,k,i:=tp(m,k)+im+1,\displaystyle t^{m,k,i}_{1}:=t^{m+1}_{p(m,k)},\qquad t^{m,k,i}_{2}:=t^{m+1}_{p(m,k)+i-1},\qquad t^{m,k,i}_{3}:=t^{m+1}_{p(m,k)+i},
Δ1m,k,i\displaystyle\Delta^{m,k,i}_{1} :=Δp(m,k),p(m,k)+i1m+1=t2m,k,it1m,k,i,Δ2m,k,i:=Δp(m,k)+i1,p(m,k)+im+1=t3m,k,it2m,k,i.\displaystyle:=\Delta^{m+1}_{p(m,k),p(m,k)+i-1}=t^{m,k,i}_{2}-t^{m,k,i}_{1},\qquad\Delta^{m,k,i}_{2}:=\Delta^{m+1}_{p(m,k)+i-1,p(m,k)+i}=t^{m,k,i}_{3}-t^{m,k,i}_{2}.
Definition 3.7 (Generalized Schauder function).

For every index m,k,im,k,i of Definition 3.6, the following function em,k,iπe^{\pi}_{m,k,i} is called generalized Schauder function associated with π=(πn)n0\pi=(\pi^{n})_{n\geq 0}:

em,k,iπ(t)={0,if t[t1m,k,i,t3m,k,i)(Δ2m,k,iΔ1m,k,i×1Δ1m,k,i+Δ2m,k,i)12×(tt1m,k,i),if t[t1m,k,i,t2m,k,i)(Δ1m,k,iΔ2m,k,i×1Δ1m,k,i+Δ2m,k,i)12×(t3m,k,it),if t[t2m,k,i,t3m,k,i).\displaystyle e^{\pi}_{m,k,i}(t)=\begin{cases}\qquad\qquad\qquad\qquad 0,&~{}~{}\text{if }t\notin[t_{1}^{m,k,i},t_{3}^{m,k,i})\\ \left(\frac{\Delta^{m,k,i}_{2}}{\Delta^{m,k,i}_{1}}\times\frac{1}{\Delta^{m,k,i}_{1}+\Delta^{m,k,i}_{2}}\right)^{\frac{1}{2}}\times(t-t^{m,k,i}_{1}),&~{}~{}\text{if }t\in[t_{1}^{m,k,i},t_{2}^{m,k,i})\\ \left(\frac{\Delta^{m,k,i}_{1}}{\Delta^{m,k,i}_{2}}\times\frac{1}{\Delta^{m,k,i}_{1}+\Delta^{m,k,i}_{2}}\right)^{\frac{1}{2}}\times(t^{m,k,i}_{3}-t),&~{}~{}\text{if }t\in[t_{2}^{m,k,i},t_{3}^{m,k,i})\end{cases}. (3.6)

Note that generalized Schauder functions are continuous, triangle-shaped (and not differentiable) functions. The following result shows that any continuous function defined on [0,T][0,T] admits a unique Schauder representation along a given partition sequence π\pi.

Proposition 3.8 (Theorem 3.8 of [7]).

Let π\pi be a finitely refining partition sequence of [0,T][0,T]. Then, every continuous function x:[0,T]x:[0,T]\rightarrow\mathbb{R} has a unique Schauder representation along π\pi:

x(t)=x(0)+(x(T)x(0))t+m=0k=0N(πm)1i=1p(m,k+1)p(m,k)θm,k,ix,πem,k,iπ(t),t[0,T],x(t)=x(0)+\big{(}x(T)-x(0)\big{)}t+\sum_{m=0}^{\infty}\sum_{k=0}^{N(\pi^{m})-1}\sum_{i=1}^{p(m,k+1)-p(m,k)}\theta^{x,\pi}_{m,k,i}e^{\pi}_{m,k,i}(t),\qquad\forall\,t\in[0,T], (3.7)

with a closed-form representation of the Schauder coefficient

θm,k,ix,π=(x(t2m,k,i)x(t1m,k,i))(t3m,k,it2m,k,i)(x(t3m,k,i)x(t2m,k,i))(t2m,k,it1m,k,i)(t2m,k,it1m,k,i)(t3m,k,it2m,k,i)(t3m,k,it1m,k,i).\theta^{x,\pi}_{m,k,i}=\frac{\big{(}x(t^{m,k,i}_{2})-x(t^{m,k,i}_{1})\big{)}(t^{m,k,i}_{3}-t^{m,k,i}_{2})-\big{(}x(t^{m,k,i}_{3})-x(t^{m,k,i}_{2})\big{)}(t^{m,k,i}_{2}-t^{m,k,i}_{1})}{\sqrt{(t^{m,k,i}_{2}-t^{m,k,i}_{1})(t^{m,k,i}_{3}-t^{m,k,i}_{2})(t^{m,k,i}_{3}-t^{m,k,i}_{1})}}. (3.8)
Remark 3.9.

A family of Schauder functions {em,k,iπ}m,k,i\{e^{\pi}_{m,k,i}\}_{m,k,i} in Definition 3.7 can be reordered as {em,kπ}m,k\{e^{\pi}_{m,k}\}_{m,k}, such that for each m0m\geq 0 the values of kk run from 0 to N(πm+1)N(πm)1N(\pi^{m+1})-N(\pi^{m})-1 after reordering. We shall frequently use this reordering to simplify the notation and denote the index set

Im:={0,1,,N(πm+1)N(πm)1}I_{m}:=\{0,1,\cdots,N(\pi^{m+1})-N(\pi^{m})-1\} (3.9)

for each mm. The corresponding Schauder coefficients {θm,k,ix,π}m,k,i\{\theta^{x,\pi}_{m,k,i}\}_{m,k,i} in Proposition (3.8) can be reordered as {θm,kx,π}m,k\{\theta^{x,\pi}_{m,k}\}_{m,k} for kImk\in I_{m} and m0m\geq 0 in the same manner.


4 Characterization of variation index

In this section, we characterize the variation index pπ(x)p^{\pi}(x) of xC0([0,T])x\in C^{0}([0,T]) along πΠ([0,T])\pi\in\Pi([0,T]), in terms of the Schauder coefficients {θm,kx,π}m,k\{\theta^{x,\pi}_{m,k}\}_{m,k} introduced in Section 3.2. We recall the definition (2.2) of the pp-th variation, as well as Definitions 3.1-3.4.

Remark 4.1.

Any xC0([0,T])x\in C^{0}([0,T]) can be translated to x¯C0([0,T])\bar{x}\in C^{0}([0,T]) with x¯(0)=x¯(T)=0\bar{x}(0)=\bar{x}(T)=0, by adding a linear function. For any p>1p>1, the pp-th variation of a linear function yy along any element π=(πn)n0\pi=(\pi^{n})_{n\geq 0} of Π([0,T])\Pi([0,T]) is zero, i.e., lim supn[y]πn(p)=0\limsup_{n\to\infty}[y]^{(p)}_{\pi^{n}}=0. Moreover, the subadditive property of the norm π(p)\|\cdot\|^{(p)}_{\pi} in Definition 2.4 implies x¯π(p)<\|\bar{x}\|_{\pi}^{(p)}<\infty if and only if xπ(p)<\|x\|_{\pi}^{(p)}<\infty. Since we are only interested in the conditions regarding the finiteness of xπ(p)\|x\|^{(p)}_{\pi}-norm (or lim supn[x]πn(p)\limsup_{n\to\infty}[x]^{(p)}_{\pi^{n}}), we shall assume without loss of generality x(0)=x(T)=0x(0)=x(T)=0 in what follows. Then, the Schauder representation (3.7) of any xC0([0,T])x\in C^{0}([0,T]) becomes simpler:

x(t)=m=0k=0N(πm)1i=1p(m,k+1)p(m,k)θm,k,ix,πem,k,iπ(t),t[0,T].x(t)=\sum_{m=0}^{\infty}\sum_{k=0}^{N(\pi^{m})-1}\sum_{i=1}^{p(m,k+1)-p(m,k)}\theta^{x,\pi}_{m,k,i}e^{\pi}_{m,k,i}(t),\qquad\forall\,t\in[0,T]. (4.1)

The above triple sum can be expressed as a double sum after re-indexing as in Remark 3.9.

4.1 Results

We provide Proposition 4.2 and Theorem 4.3 below, and their proofs are given in the next subsection.

Proposition 4.2.

For any p>1p>1, xC0([0,T])x\in C^{0}([0,T]), and a balanced, complete refining partition sequence π=(πn)n0\pi=(\pi^{n})_{n\geq 0} of [0,T][0,T], we denote

ηnπ,(p):=|πn|p1(m=0n1|πm|1p12(kIm|θm,kx,π|p)1p)p.\eta^{\pi,(p)}_{n}:=|\pi^{n}|^{p-1}\Bigg{(}\sum_{m=0}^{n-1}|\pi^{m}|^{\frac{1}{p}-\frac{1}{2}}\bigg{(}\sum_{k\in I_{m}}|\theta^{x,\pi}_{m,k}|^{p}\bigg{)}^{\frac{1}{p}}\Bigg{)}^{p}. (4.2)

Then, we have

lim supn[x]πn(p)(T)<if and only iflim supnηnπ,(p)<.\limsup_{n\to\infty}\,[x]_{\pi^{n}}^{(p)}(T)<\infty\quad\text{if and only if}\quad\limsup_{n\to\infty}\,\eta^{\pi,(p)}_{n}<\infty. (4.3)

For any balanced, complete refining partition sequence π\pi, Proposition 4.2 immediately provides the sufficient and necessary condition for xC0([0,T])x\in C^{0}([0,T]) to belong to the Banach space 𝒳πp\mathcal{X}^{p}_{\pi} in (2.7), in terms of its Schauder coefficients through the sequence (ηnπ,(p))n0(\eta^{\pi,(p)}_{n})_{n\geq 0}:

x𝒳πplim supnηnπ,(p)<.x\in\mathcal{X}^{p}_{\pi}\quad\Longleftrightarrow\quad\limsup_{n\to\infty}\,\eta^{\pi,(p)}_{n}<\infty.

Moreover, it also yields the equivalent formulation of the variation index in (2.4):

pπ(x)=inf{p>1:lim supnηnπ,(p)<}.p^{\pi}(x)=\inf\big{\{}p>1:\limsup_{n\to\infty}\,\eta^{\pi,(p)}_{n}<\infty\big{\}}. (4.4)

Thus, the (lim sup)(\limsup)-finiteness of the sequence (ηnπ,(p))n0(\eta^{\pi,(p)}_{n})_{n\geq 0} can provide useful path property of xx along any balanced, complete refining partition sequences, and each term ηnπ,(p)\eta^{\pi,(p)}_{n} contains the Schauder coefficients of xx up to level n1n-1, namely {θm,kx,π}m=0,,n1,kIm\{\theta^{x,\pi}_{m,k}\}_{m=0,\cdots,n-1,\,k\in I_{m}}. However, with nominal additional conditions on the partition sequence, we have a much simpler condition involving Schauder coefficients.

Theorem 4.3.

For any p>1p>1, xC0([0,T])x\in C^{0}([0,T]), and a balanced, convergent refining partition sequence π=(πn)n0\pi=(\pi^{n})_{n\geq 0} of [0,T][0,T], we denote

ξnπ,(p)=|πn|p2(kIn|θn,kx,π|p),n0.\xi_{n}^{\pi,(p)}=|\pi^{n}|^{\frac{p}{2}}\bigg{(}\sum_{k\in I_{n}}|\theta^{x,\pi}_{n,k}|^{p}\bigg{)},\qquad\forall\,n\geq 0. (4.5)

Then, we have

lim supn[x]πn(p)(T)<if and only iflim supnξnπ,(p)<.\limsup_{n\to\infty}\,[x]_{\pi^{n}}^{(p)}(T)<\infty\quad\text{if and only if}\quad\limsup_{n\to\infty}\,\xi^{\pi,(p)}_{n}<\infty. (4.6)

Thus, we also have

x𝒳πpif and only iflim supnξnπ,(p)<.x\in\mathcal{X}^{p}_{\pi}\quad\text{if and only if}\quad\limsup_{n\to\infty}\,\xi^{\pi,(p)}_{n}<\infty.

In the definition (4.5), the quantity ξnπ,(p)\xi^{\pi,(p)}_{n} only contains the Schauder coefficients {θn,kx,π}kIn\{\theta^{x,\pi}_{n,k}\}_{k\in I_{n}} of xx that belong to the nn-th level, for each nn\in\mathbb{N}. Theorem 4.3 also provides a similar equivalent formulation of the variation index in (2.4).

Corollary 4.4.

Let π\pi be a balanced, convergent refining partition sequence. Then, we have

pπ(x)=inf{p>1:lim supnξnπ,(p)<}.p^{\pi}(x)=\inf\big{\{}p>1:\limsup_{n\to\infty}\,\xi^{\pi,(p)}_{n}<\infty\big{\}}. (4.7)
Remark 4.5.

In all of the previous results, we considered the (generalized) pp-th variation up to the terminal time TT. However, we can derive similar results for any partition points tnπnt\in\cup_{n\in\mathbb{N}}\pi^{n}. For xC0([0,T])x\in C^{0}([0,T]), let us recall the definition (1.3) of [x]πn(p)(t)[x]^{(p)}_{\pi^{n}}(t) such that the mapping tlim supn[x]πn(p)(t)t\mapsto\limsup_{n\to\infty}\,[x]^{(p)}_{\pi^{n}}(t) is nondecreasing. We also introduce the notations

ηnπ,(p)(t)\displaystyle\eta^{\pi,(p)}_{n}(t) :=|πn|p1(m=0n1|πm|1p12(kImsupp(em,kπ)[0,t]|θm,kx,π|p)1p)p,\displaystyle:=|\pi^{n}|^{p-1}\Bigg{(}\sum_{m=0}^{n-1}|\pi^{m}|^{\frac{1}{p}-\frac{1}{2}}\bigg{(}\sum_{\begin{subarray}{c}k\in I_{m}\\ supp(e^{\pi}_{m,k})\subset[0,t]\end{subarray}}|\theta^{x,\pi}_{m,k}|^{p}\bigg{)}^{\frac{1}{p}}\Bigg{)}^{p}, (4.8)
ξnπ,(p)(t)\displaystyle\xi_{n}^{\pi,(p)}(t) :=|πn|p2(kInsupp(en,kπ)[0,t]|θn,kx,π|p).\displaystyle:=|\pi^{n}|^{\frac{p}{2}}\bigg{(}\sum_{\begin{subarray}{c}k\in I_{n}\\ supp(e^{\pi}_{n,k})\subset[0,t]\end{subarray}}|\theta^{x,\pi}_{n,k}|^{p}\bigg{)}. (4.9)

Then, the results (4.3) and (4.6) can be replaced by

lim supn[x]πn(p)(t)<\displaystyle\limsup_{n\to\infty}\,[x]_{\pi^{n}}^{(p)}(t)<\infty\quad if and only iflim supnηnπ,(p)(t)<,and\displaystyle\text{if and only if}\quad\limsup_{n\to\infty}\,\eta^{\pi,(p)}_{n}(t)<\infty,\quad\text{and} (4.10)
lim supn[x]πn(p)(t)<\displaystyle\limsup_{n\to\infty}\,[x]_{\pi^{n}}^{(p)}(t)<\infty\quad if and only iflim supnξnπ,(p)(t)<,for every tnπn.\displaystyle\text{if and only if}\quad\limsup_{n\to\infty}\,\xi^{\pi,(p)}_{n}(t)<\infty,\quad\text{for every }t\in\cup_{n\in\mathbb{N}}\pi^{n}. (4.11)

To show (4.10) and (4.11), we first define a ‘stopped function’ xt(s):=x(ts)x_{t}(s):=x(t\wedge s) for s[0,T]s\in[0,T]. Furthermore, we define

θ~m,kx,π:={θm,kx,π, if supp(em,kπ)[0,t],0, otherwise,\widetilde{\theta}^{x,\pi}_{m,k}:=\begin{cases}\theta^{x,\pi}_{m,k},&\text{ if supp}(e^{\pi}_{m,k})\subset[0,t],\\ ~{}0,&\text{ otherwise,}\end{cases}

and

x~(t):=m=0kImθ~m,kx,πem,kπ(t).\widetilde{x}(t):=\sum_{m=0}^{\infty}\sum_{k\in I_{m}}\widetilde{\theta}^{x,\pi}_{m,k}e^{\pi}_{m,k}(t).

For tnπn=:Pt\in\cup_{n\in\mathbb{N}}\pi^{n}=:P, the two functions xtx_{t} and x~\widetilde{x} differ only by a finite sum of piecewise linear functions, say yy, which hence satisfies [y]π(p)0[y]^{(p)}_{\pi}\equiv 0 for every p>1p>1. Lemma 2.6 therefore yields that lim supn[x~]πn(p)(T)=lim supn[xt]πn(p)(T)=lim supn[x]πn(p)(t)\limsup_{n\to\infty}\,[\widetilde{x}]_{\pi^{n}}^{(p)}(T)=\limsup_{n\to\infty}\,[x_{t}]^{(p)}_{\pi^{n}}(T)=\limsup_{n\to\infty}\,[x]_{\pi^{n}}^{(p)}(t). Now applying Proposition 4.2 and Theorem 4.3 to x~\widetilde{x} with the quantities (4.8) and (4.9), proves (4.10) and (4.11).

For tPt\notin P, we can choose a point sPs\in P which is sufficiently close and bigger than tt, and check the finiteness of lim supnηnπ,(p)(s)\limsup_{n\to\infty}\eta^{\pi,(p)}_{n}(s), or lim supnξnπ,(p)(s)\limsup_{n\to\infty}\xi^{\pi,(p)}_{n}(s), to conclude the finiteness lim supn[x]πn(p)(t)lim supn[x]πn(p)(s)<\limsup_{n\to\infty}[x]^{(p)}_{\pi^{n}}(t)\leq\limsup_{n\to\infty}[x]^{(p)}_{\pi^{n}}(s)<\infty.

4.2 Proofs

Before proving Proposition 4.2 and Theorem 4.3, we first introduce some preliminary lemmata.

Lemma 4.6.

Let (an)n(a_{n})_{n\in\mathbb{N}} and (bn)n(b_{n})_{n\in\mathbb{N}} be real sequences such that bn>0b_{n}>0, bn+1bn=:βn>1\frac{b_{n+1}}{b_{n}}=:\beta_{n}>1 for every nn\in\mathbb{N}, and the limit limnβn=β>1\lim_{n\to\infty}\beta_{n}=\beta>1 exists. Then, we have the inequality

lim supn(an+1anbn+1bn)ββ1lim supn(an+1bn+1)1β1lim infn(anbn).\limsup_{n\rightarrow\infty}\bigg{(}\frac{a_{n+1}-a_{n}}{b_{n+1}-b_{n}}\bigg{)}\leq\frac{\beta}{\beta-1}\limsup_{n\rightarrow\infty}\bigg{(}\frac{a_{n+1}}{b_{n+1}}\bigg{)}-\frac{1}{\beta-1}\liminf_{n\rightarrow\infty}\bigg{(}\frac{a_{n}}{b_{n}}\bigg{)}. (4.12)
Proof of Lemma 4.6.

Taking lim sup\limsup to the both sides of the following identity

an+1anbn+1bn=1bn+1bn1(an+1bn+1×bn+1bnanbn)=1βn1(βnan+1bn+1anbn)\frac{a_{n+1}-a_{n}}{b_{n+1}-b_{n}}=\frac{1}{\frac{b_{n+1}}{b_{n}}-1}\bigg{(}\frac{a_{n+1}}{b_{n+1}}\times\frac{b_{n+1}}{b_{n}}-\frac{a_{n}}{b_{n}}\bigg{)}=\frac{1}{\beta_{n}-1}\bigg{(}\beta_{n}\frac{a_{n+1}}{b_{n+1}}-\frac{a_{n}}{b_{n}}\bigg{)} (4.13)

with the following properties for any real sequences (xn)n,(yn)n(x_{n})_{n\in\mathbb{N}},(y_{n})_{n\in\mathbb{N}} proves the result:

lim supn(xn+yn)lim supnxn+lim supnyn,lim supn(xn)=lim infnxn,\displaystyle\limsup_{n\to\infty}\,(x_{n}+y_{n})\leq\limsup_{n\to\infty}x_{n}+\limsup_{n\to\infty}y_{n},\qquad\limsup_{n\to\infty}\,(-x_{n})=-\liminf_{n\to\infty}x_{n}, (4.14)
lim supn(xnyn)=(limnxn)(lim supnyn),provided that limnxn exists and is positive.\displaystyle\limsup_{n\to\infty}\,(x_{n}y_{n})=\big{(}\lim_{n\to\infty}x_{n}\big{)}\big{(}\limsup_{n\to\infty}y_{n}\big{)},\quad\text{provided that }\lim_{n\to\infty}x_{n}\text{ exists and is positive.}

Lemma 4.7.

Let (an)n(a_{n})_{n\in\mathbb{N}} and (bn)n(b_{n})_{n\in\mathbb{N}} be real sequences such that (bn)n(b_{n})_{n\in\mathbb{N}} is strictly increasing and limnbn=\lim_{n\to\infty}b_{n}=\infty. Then, we have the following inequalities

lim infn(an+1anbn+1bn)lim infn(anbn)lim supn(anbn)lim supn(an+1anbn+1bn).\liminf_{n\rightarrow\infty}\bigg{(}\frac{a_{n+1}-a_{n}}{b_{n+1}-b_{n}}\bigg{)}\leq\liminf_{n\rightarrow\infty}\bigg{(}\frac{a_{n}}{b_{n}}\bigg{)}\leq\limsup_{n\rightarrow\infty}\bigg{(}\frac{a_{n}}{b_{n}}\bigg{)}\leq\limsup_{n\rightarrow\infty}\bigg{(}\frac{a_{n+1}-a_{n}}{b_{n+1}-b_{n}}\bigg{)}. (4.15)
Proof of Lemma 4.7.

The middle inequality is obvious. We shall show the last inequality; the first inequality then follows from (4.14). If the right-most term of (4.15) diverges to infinity, there is nothing to show. Thus, we assume

lim supn(an+1anbn+1bn)=L<.\limsup_{n\rightarrow\infty}\bigg{(}\frac{a_{n+1}-a_{n}}{b_{n+1}-b_{n}}\bigg{)}=L<\infty.

For any r>Lr>L, there exists NN\in\mathbb{N} such that

an+1anbn+1bn<r,oran+1an<r(bn+1bn),\frac{a_{n+1}-a_{n}}{b_{n+1}-b_{n}}<r,\qquad\text{or}\qquad a_{n+1}-a_{n}<r(b_{n+1}-b_{n}),

holds for every n>Nn>N. Fix an arbitrary integer mm greater than NN, and sum up the last inequalities for n=N,,m1n=N,\cdots,m-1 to obtain

amaN=n=Nm1(an+1an)<rn=Nm1(bn+1bn)=r(bmbN),thusamaNbm<rrbNbm.a_{m}-a_{N}=\sum_{n=N}^{m-1}(a_{n+1}-a_{n})<r\sum_{n=N}^{m-1}(b_{n+1}-b_{n})=r(b_{m}-b_{N}),\quad\text{thus}\quad\frac{a_{m}-a_{N}}{b_{m}}<r-r\frac{b_{N}}{b_{m}}.

Sending mm to infinity and using the fact limmbm=\lim_{m\to\infty}b_{m}=\infty yields the inequality

lim supm(ambm)<r.\limsup_{m\rightarrow\infty}\bigg{(}\frac{a_{m}}{b_{m}}\bigg{)}<r.

Since this should hold for any r>Lr>L, we conclude that the last inequality of (4.15) holds. ∎

Lemma 4.8.

Let A=(an,m)n0,m0A=(a_{n,m})_{n\geq 0,m\geq 0} be an infinite-dimensional matrix satisfying the following properties:

  1. (i)

    limnan,m=0\lim_{n\rightarrow\infty}a_{n,m}=0 for every m0m\geq 0;

  2. (ii)

    limnm=0an,m=1\lim_{n\rightarrow\infty}\sum_{m=0}^{\infty}a_{n,m}=1;

  3. (iii)

    supn0m=0|an,m|<\sup_{n\geq 0}\sum_{m=0}^{\infty}|a_{n,m}|<\infty.

Then, for any real sequence (sn)n0(s_{n})_{n\geq 0} with nonnegative terms, i.e., sn0s_{n}\geq 0 for all n0n\geq 0, we have

lim supnm=0an,msmlim supnsn.\limsup_{n\to\infty}\sum_{m=0}^{\infty}a_{n,m}s_{m}\leq\limsup_{n\to\infty}s_{n}. (4.16)
Remark 4.9.

We note that Lemma 4.8 was inspired by the Silverman-Toeplitz Theorem (see, e.g., [3]), which states that the real sequence (sn)n0(s_{n})_{n\geq 0} converges to ss, if and only if

limn(m=0nan,msm)=s,\lim_{n\to\infty}\Big{(}\sum_{m=0}^{n}a_{n,m}s_{m}\Big{)}=s, (4.17)

for A=(an,m)n0,m0A=(a_{n,m})_{n\geq 0,m\geq 0} satisfying the conditions of Lemma 4.8.

Proof of Lemma 4.8.

If lim supnsn=\limsup_{n\to\infty}s_{n}=\infty, then there is nothing to prove; thus, we assume lim supnsn=:s<\limsup_{n\to\infty}s_{n}=:s<\infty. This implies that there exists K<K<\infty such that snKs_{n}\leq K for all n0n\geq 0. We denote L:=supn0m=0|an,m|<L:=\sup_{n\geq 0}\sum_{m=0}^{\infty}|a_{n,m}|<\infty in condition (iii), and fix an arbitrary ϵ>0\epsilon>0. Then, there exists M1M_{1}\in\mathbb{N} such that

sms+ϵ4L,for every m>M1.s_{m}\leq s+\frac{\epsilon}{4L},\qquad\text{for every }m>M_{1}. (4.18)

Condition (i) implies that there exist constants N0,N1,,NM1N_{0},N_{1},\cdots,N_{M_{1}} such that

|an,m|ϵ4(M1+1)(K+1),for every 0mM1 and n>Nm.|a_{n,m}|\leq\frac{\epsilon}{4(M_{1}+1)(K+1)},\qquad\text{for every }0\leq m\leq M_{1}\text{ and }n>N_{m}.

Set N~:=max{N0,N1,,NM1}\tilde{N}:=\max\{N_{0},N_{1},\cdots,N_{M_{1}}\}, then

m=0M1an,msmm=0M1|an,msm|m=0M1smϵ4(M1+1)(K+1)<ϵ4,for every n>N~.\sum_{m=0}^{M_{1}}a_{n,m}s_{m}\leq\sum_{m=0}^{M_{1}}|a_{n,m}s_{m}|\leq\sum_{m=0}^{M_{1}}\frac{s_{m}\epsilon}{4(M_{1}+1)(K+1)}<\frac{\epsilon}{4},\qquad\text{for every }n>\tilde{N}.

On the other hand, we have from (4.18)

m=M1+1an,msmsm=M1+1|an,m|+ϵ4Lm=M1+1|an,m|sm=M1+1|an,m|+ϵ4.\sum_{m=M_{1}+1}^{\infty}a_{n,m}s_{m}\leq s\sum_{m=M_{1}+1}^{\infty}|a_{n,m}|+\frac{\epsilon}{4L}\sum_{m=M_{1}+1}^{\infty}|a_{n,m}|\leq s\sum_{m=M_{1}+1}^{\infty}|a_{n,m}|+\frac{\epsilon}{4}.

Combining the last two inequalities,

m=0an,msm=m=0M1an,msm+m=M1+1an,msmsm=M1+1|an,m|+ϵ2for every n>N~.\sum_{m=0}^{\infty}a_{n,m}s_{m}=\sum_{m=0}^{M_{1}}a_{n,m}s_{m}+\sum_{m=M_{1}+1}^{\infty}a_{n,m}s_{m}\leq s\sum_{m=M_{1}+1}^{\infty}|a_{n,m}|+\frac{\epsilon}{2}\quad\text{for every }n>\tilde{N}. (4.19)

We now claim that (m=0an,msn)n0(\sum_{m=0}^{\infty}a_{n,m}s_{n})_{n\geq 0} is an absolutely convergence sequence

m=0|an,msm|Km=0|an,m|KL<,\sum_{m=0}^{\infty}|a_{n,m}s_{m}|\leq K\sum_{m=0}^{\infty}|a_{n,m}|\leq KL<\infty,

thanks to condition (iii). Therefore, taking the limit as nn\to\infty in (4.19), together with condition (ii), we conclude

limnm=0an,msms+ϵ2.\lim_{n\to\infty}\sum_{m=0}^{\infty}a_{n,m}s_{m}\leq s+\frac{\epsilon}{2}.

Since ϵ\epsilon is chosen arbitrarily, this proves the result. ∎

We are now ready to prove Proposition 4.2 and Theorem 4.3.

Proof of Proposition 4.2.

Using the Schauder representation (4.1), we expand the pp-th variation of xx along πn\pi^{n} for each nn\in\mathbb{N}

[x]πn(p)(T)\displaystyle[x]_{\pi^{n}}^{(p)}(T) ==0N(πn)1|x(t+1n)x(tn)|p\displaystyle=\sum_{\ell=0}^{N(\pi^{n})-1}\Big{|}x(t^{n}_{\ell+1})-x(t^{n}_{\ell})\Big{|}^{p} (4.20)
==0N(πn)1|m=0n1k=0N(πm)1i=1p(m,k+1)p(m,k)θm,k,ix,π(em,k,i(t+1n)em,k,i(tn))|p.\displaystyle=\sum_{\ell=0}^{N(\pi^{n})-1}\bigg{|}\sum_{m=0}^{n-1}\sum_{k=0}^{N(\pi^{m})-1}\sum_{i=1}^{p(m,k+1)-p(m,k)}\theta^{x,\pi}_{m,k,i}\Big{(}e_{m,k,i}(t^{n}_{\ell+1})-e_{m,k,i}(t^{n}_{\ell})\Big{)}\bigg{|}^{p}.

Since π\pi is finitely refining, for each fixed pair (m,)(m,\ell) with m<nm<n and <N(πn)\ell<N(\pi^{n}), the cardinality of the set I(m,):={(k,i):em,k,i(t+1n)em,k,i(tn)0}I(m,\ell):=\{(k,i):e_{m,k,i}(t^{n}_{\ell+1})-e_{m,k,i}(t^{n}_{\ell})\neq 0\} has an upper bound MM. Also, in Definition 3.7, we note that

πm+1¯Δ1m,k,iM|πm+1|,πm+1¯Δ2m,k,i|πm+1|,\underline{\pi^{m+1}}\leq\Delta^{m,k,i}_{1}\leq M|\pi^{m+1}|,\qquad\underline{\pi^{m+1}}\leq\Delta^{m,k,i}_{2}\leq|\pi^{m+1}|,

as Δ1m,k,i\Delta^{m,k,i}_{1} is a length of an interval containing at most MM many consecutive intervals of πm+1\pi^{m+1}, whereas Δ2m,k,i\Delta^{m,k,i}_{2} is a length of a single interval of πm+1\pi^{m+1}. From the balanced and complete refining property, we have

|em,k,i(t+1n)em,k,i(tn)|\displaystyle\Big{|}e_{m,k,i}(t^{n}_{\ell+1})-e_{m,k,i}(t^{n}_{\ell})\Big{|} 1Δ1m,k,i+Δ2m,k,i(max(Δ2m,k,iΔ1m,k,i,Δ1m,k,iΔ2m,k,i))|πn|\displaystyle\leq\frac{1}{\sqrt{\Delta^{m,k,i}_{1}+\Delta^{m,k,i}_{2}}}\Bigg{(}\max\bigg{(}\sqrt{\frac{\Delta^{m,k,i}_{2}}{\Delta^{m,k,i}_{1}}},\sqrt{\frac{\Delta^{m,k,i}_{1}}{\Delta^{m,k,i}_{2}}}\bigg{)}\Bigg{)}|\pi^{n}|
1πm+1¯M|πm+1|πm+1¯|πn|cMπm+1¯|πn|cM|πm+1||πn|=cbM|πn||πm|.\displaystyle\leq\frac{1}{\sqrt{\underline{\pi^{m+1}}}}\sqrt{\frac{M|\pi^{m+1}|}{\underline{\pi^{m+1}}}}|\pi^{n}|\leq\frac{\sqrt{cM}}{\sqrt{\underline{\pi^{m+1}}}}|\pi^{n}|\leq\frac{c\sqrt{M}}{\sqrt{|\pi^{m+1}|}}|\pi^{n}|=\frac{c\sqrt{bM}|\pi^{n}|}{\sqrt{|\pi^{m}|}}.

Thus, we have from (4.20)

[x]πn(p)(T)\displaystyle[x]_{\pi^{n}}^{(p)}(T) =0N(πn)1|m=0n1M(max(k,i)I(m,)|θm,k,ix,π|)cbM|πn||πm||p\displaystyle\leq\sum_{\ell=0}^{N(\pi^{n})-1}\Bigg{|}\sum_{m=0}^{n-1}M\Big{(}\max_{(k,i)\in I(m,\ell)}|\theta^{x,\pi}_{m,k,i}|\Big{)}\frac{c\sqrt{bM}|\pi^{n}|}{\sqrt{|\pi^{m}|}}\Bigg{|}^{p}
=(McbM|πn|)p=0N(πn)1|m=0n1(max(k,i)I(m,)|θm,k,ix,π|)|πm|12|p=:Qn.\displaystyle=\Big{(}Mc\sqrt{bM}|\pi^{n}|\Big{)}^{p}\sum_{\ell=0}^{N(\pi^{n})-1}\Bigg{|}\sum_{m=0}^{n-1}\Big{(}\max_{(k,i)\in I(m,\ell)}|\theta^{x,\pi}_{m,k,i}|\Big{)}|\pi^{m}|^{-\frac{1}{2}}\Bigg{|}^{p}=:Q_{n}.

We now set ϵ:=pp\epsilon:=p-\lfloor p\rfloor and expand the p\lfloor p\rfloor-th power to obtain

Qn(McbM|πn|)p==0N(πn)1|m=0n1(max(k,i)I(m,)|θm,k,ix,π|)|πm|12|p|m=0n1(max(k,i)I(m,)|θm,k,ix,π|)|πm|12|ϵ\displaystyle\frac{Q_{n}}{\big{(}Mc\sqrt{bM}|\pi^{n}|\big{)}^{p}}=\sum_{\ell=0}^{N(\pi^{n})-1}\left|\sum_{m=0}^{n-1}\Big{(}\max_{(k,i)\in I(m,\ell)}|\theta^{x,\pi}_{m,k,i}|\Big{)}|\pi^{m}|^{-\frac{1}{2}}\right|^{\lfloor p\rfloor}\left|\sum_{m=0}^{n-1}\Big{(}\max_{(k,i)\in I(m,\ell)}|\theta^{x,\pi}_{m,k,i}|\Big{)}|\pi^{m}|^{-\frac{1}{2}}\right|^{\epsilon}
==0N(πn)10m1,,mpn1(j=1p(max(k,i)I(mj,)|θmj,k,ix,π|)|πmj|12)|m=0n1(max(k,i)I(m,)|θm,k,ix,π|)|πm|12|ϵ\displaystyle=\sum_{\ell=0}^{N(\pi^{n})-1}\sum_{0\leq m_{1},\cdots,m_{\lfloor p\rfloor}\leq n-1}\left(\prod_{j=1}^{\lfloor p\rfloor}\Big{(}\max_{(k,i)\in I(m_{j},\ell)}|\theta^{x,\pi}_{m_{j},k,i}|\Big{)}|\pi^{m_{j}}|^{-\frac{1}{2}}\right)\left|\sum_{m=0}^{n-1}\Big{(}\max_{(k,i)\in I(m,\ell)}|\theta^{x,\pi}_{m,k,i}|\Big{)}|\pi^{m}|^{-\frac{1}{2}}\right|^{\epsilon}
=0m1,,mpn1(j=1p|πmj|12)=0N(πn)1(j=1pmax(k,i)I(mj,)|θmj,k,ix,π|)|m=0n1(max(k,i)I(m,)|θm,k,ix,π|)|πm|12|ϵ\displaystyle=\sum_{0\leq m_{1},\cdots,m_{\lfloor p\rfloor}\leq n-1}\bigg{(}\prod_{j=1}^{\lfloor p\rfloor}|\pi^{m_{j}}|^{-\frac{1}{2}}\bigg{)}\sum_{\ell=0}^{N(\pi^{n})-1}\bigg{(}\prod_{j=1}^{\lfloor p\rfloor}\max_{(k,i)\in I(m_{j},\ell)}|\theta^{x,\pi}_{m_{j},k,i}|\bigg{)}\left|\sum_{m=0}^{n-1}\Big{(}\max_{(k,i)\in I(m,\ell)}|\theta^{x,\pi}_{m,k,i}|\Big{)}|\pi^{m}|^{-\frac{1}{2}}\right|^{\epsilon}
0m1,,mpn1(j=1p|πmj|12)\displaystyle\leq\sum_{0\leq m_{1},\cdots,m_{\lfloor p\rfloor}\leq n-1}\bigg{(}\prod_{j=1}^{\lfloor p\rfloor}|\pi^{m_{j}}|^{-\frac{1}{2}}\bigg{)}
×j=1p(=0N(πn)1max(k,i)I(mj,)|θmj,k,ix,π|p)1p(=0N(πn)1|m=0n1(max(k,i)I(m,)|θm,k,ix,π|)|πm|12|ϵpϵ)ϵp\displaystyle\qquad\qquad\qquad\times\prod_{j=1}^{\lfloor p\rfloor}\bigg{(}\sum_{\ell=0}^{N(\pi^{n})-1}\max_{(k,i)\in I(m_{j},\ell)}|\theta^{x,\pi}_{m_{j},k,i}|^{p}\bigg{)}^{\frac{1}{p}}\bigg{(}\sum_{\ell=0}^{N(\pi^{n})-1}\left|\sum_{m=0}^{n-1}\Big{(}\max_{(k,i)\in I(m,\ell)}|\theta^{x,\pi}_{m,k,i}|\Big{)}|\pi^{m}|^{-\frac{1}{2}}\right|^{\epsilon\cdot\frac{p}{\epsilon}}\bigg{)}^{\frac{\epsilon}{p}}
=0m1,,mpn1(j=1p|πmj|12)j=1p(=0N(πn)1max(k,i)I(mj,)|θmj,k,ix,π|p)1p(Qn(McbM|πn|)p)ϵp.\displaystyle=\sum_{0\leq m_{1},\cdots,m_{\lfloor p\rfloor}\leq n-1}\bigg{(}\prod_{j=1}^{\lfloor p\rfloor}|\pi^{m_{j}}|^{-\frac{1}{2}}\bigg{)}\prod_{j=1}^{\lfloor p\rfloor}\bigg{(}\sum_{\ell=0}^{N(\pi^{n})-1}\max_{(k,i)\in I(m_{j},\ell)}|\theta^{x,\pi}_{m_{j},k,i}|^{p}\bigg{)}^{\frac{1}{p}}\bigg{(}\frac{Q_{n}}{\big{(}Mc\sqrt{bM}|\pi^{n}|\big{)}^{p}}\bigg{)}^{\frac{\epsilon}{p}}.

Here, the inequality follows from generalized Hölder inequality with 1p×p+ϵp=1\frac{1}{p}\times\lfloor p\rfloor+\frac{\epsilon}{p}=1. We further derive

(Qn)1ϵp\displaystyle(Q_{n})^{1-\frac{\epsilon}{p}} (McbM|πn|)p0m1mpn1(j=1p|πmj|12)j=1p(=0N(πn)1max(k,i)I(mj,)|θmj,k,ix,π|p)1p\displaystyle\leq\Big{(}Mc\sqrt{bM}|\pi^{n}|\Big{)}^{\lfloor p\rfloor}\sum_{0\leq m_{1}\cdots m_{\lfloor p\rfloor}\leq n-1}\bigg{(}\prod_{j=1}^{\lfloor p\rfloor}|\pi^{m_{j}}|^{-\frac{1}{2}}\bigg{)}\prod_{j=1}^{\lfloor p\rfloor}\bigg{(}\sum_{\ell=0}^{N(\pi^{n})-1}\max_{(k,i)\in I(m_{j},\ell)}|\theta^{x,\pi}_{m_{j},k,i}|^{p}\bigg{)}^{\frac{1}{p}}
(McbM|πn|)p0m1mpn1(j=1p|πmj|12)j=1p(c|πmj||πn|k,i|θmj,k,ix,π|p)1p\displaystyle\leq\Big{(}Mc\sqrt{bM}|\pi^{n}|\Big{)}^{\lfloor p\rfloor}\sum_{0\leq m_{1}\cdots m_{\lfloor p\rfloor}\leq n-1}\bigg{(}\prod_{j=1}^{\lfloor p\rfloor}|\pi^{m_{j}}|^{-\frac{1}{2}}\bigg{)}\prod_{j=1}^{\lfloor p\rfloor}\bigg{(}\frac{c|\pi^{m_{j}}|}{|\pi^{n}|}\sum_{k,i}|\theta^{x,\pi}_{m_{j},k,i}|^{p}\bigg{)}^{\frac{1}{p}}
=(McbM|πn|)p(m=0n1|πm|12(c|πm||πn|)1p(k,i|θm,k,ix,π|p)1p)p.\displaystyle=\Big{(}Mc\sqrt{bM}|\pi^{n}|\Big{)}^{\lfloor p\rfloor}\Bigg{(}\sum_{m=0}^{n-1}|\pi^{m}|^{-\frac{1}{2}}\bigg{(}\frac{c|\pi^{m}|}{|\pi^{n}|}\bigg{)}^{\frac{1}{p}}\bigg{(}\sum_{k,i}|\theta^{x,\pi}_{m,k,i}|^{p}\bigg{)}^{\frac{1}{p}}\Bigg{)}^{\lfloor p\rfloor}.

Here, the second inequality uses the fact that for a fixed mjm_{j} there are at most |πmj|πn¯\frac{|\pi^{m_{j}}|}{\underline{\pi^{n}}} many partition points of πn\pi^{n} sharing the same θmj,k,ix,π\theta^{x,\pi}_{m_{j},k,i}, and this number is bounded by c|πmj||πn|\frac{c|\pi^{m_{j}}|}{|\pi^{n}|} due to the balanced condition Therefore, we obtain

[x]πn(p)(T)\displaystyle[x]_{\pi^{n}}^{(p)}(T) Qn=(Qn1ϵp)pp\displaystyle\leq Q_{n}=\big{(}Q_{n}^{1-\frac{\epsilon}{p}}\big{)}^{\frac{p}{\lfloor p\rfloor}} (4.21)
(McbM|πn|)p(m=0n1|πm|12(c|πm||πn|)1p(k,i|θm,k,ix,π|p)1p)p=c(McbM)pηnπ,(p),\displaystyle\leq\Big{(}Mc\sqrt{bM}|\pi^{n}|\Big{)}^{p}\Bigg{(}\sum_{m=0}^{n-1}|\pi^{m}|^{-\frac{1}{2}}\bigg{(}\frac{c|\pi^{m}|}{|\pi^{n}|}\bigg{)}^{\frac{1}{p}}\bigg{(}\sum_{k,i}|\theta^{x,\pi}_{m,k,i}|^{p}\bigg{)}^{\frac{1}{p}}\Bigg{)}^{p}=c\Big{(}Mc\sqrt{bM}\Big{)}^{p}\eta^{\pi,(p)}_{n},

from the definition (4.2) (after re-indexing k,ik,i into kk as in Remark 3.9).

On the other hand, using the expression (3.8) of the Schauder coefficients, we obtain the following bound on the pp-th power of θm,k,ix,π\theta^{x,\pi}_{m,k,i}, thanks to the balanced condition

|θm,k,ix,π|p(c|πm+1|)3p2|(x(t2m,k,i)x(t1m,k,i))\displaystyle|\theta^{x,\pi}_{m,k,i}|^{p}\leq\bigg{(}\frac{c}{|\pi^{m+1}|}\bigg{)}^{\frac{3p}{2}}\bigg{|}\big{(}x(t^{m,k,i}_{2})-x(t^{m,k,i}_{1})\big{)} (t3m,k,it2m,k,i)\displaystyle(t^{m,k,i}_{3}-t^{m,k,i}_{2}) (4.22)
(x(t3m,k,i)x(t2m,k,i))(t2m,k,it1m,k,i)|p.\displaystyle-\big{(}x(t^{m,k,i}_{3})-x(t^{m,k,i}_{2})\big{)}(t^{m,k,i}_{2}-t^{m,k,i}_{1})\bigg{|}^{p}.

Here, note that t2m,k,it^{m,k,i}_{2} and t3m,k,it^{m,k,i}_{3} are consecutive partition points of πm+1\pi^{m+1}, but t1m,k,it^{m,k,i}_{1} and t2m,k,it^{m,k,i}_{2} may not be. Recalling the notations in (3.4), we use the telescoping sum

x(t2m,k,i)x(t1m,k,i)=j=1i1(x(tp(m,k)+jm+1)x(tp(m,k)+j1m+1))x(t^{m,k,i}_{2})-x(t^{m,k,i}_{1})=\sum_{j=1}^{i-1}\Big{(}x(t^{m+1}_{p(m,k)+j})-x(t^{m+1}_{p(m,k)+j-1})\Big{)}

with the bound max{|t2m,k,it1m,k,i|,|t3m,k,it2m,k,i|}M|πm+1|\max\{|t^{m,k,i}_{2}-t^{m,k,i}_{1}|,|t^{m,k,i}_{3}-t^{m,k,i}_{2}|\}\leq M|\pi^{m+1}|, and apply Jensen’s inequality to the right-hand side of (4.22) to obtain

|θm,k,ix,π|p\displaystyle|\theta^{x,\pi}_{m,k,i}|^{p} (c|πm+1|)3p2(i+1)p1(j=1i1|(x(tp(m,k)+jm+1)x(tp(m,k)+j1m+1))(t3m,k,it2m,k,i)|p\displaystyle\leq\bigg{(}\frac{c}{|\pi^{m+1}|}\bigg{)}^{\frac{3p}{2}}(i+1)^{p-1}\Bigg{(}\sum_{j=1}^{i-1}\Big{|}\big{(}x(t^{m+1}_{p(m,k)+j})-x(t^{m+1}_{p(m,k)+j-1})\big{)}(t^{m,k,i}_{3}-t^{m,k,i}_{2})\Big{|}^{p}
+|(x(t3m,k,i)x(t2m,k,i))(t2m,k,it1m,k,i)|p)\displaystyle\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad+\Big{|}\big{(}x(t^{m,k,i}_{3})-x(t^{m,k,i}_{2})\big{)}(t^{m,k,i}_{2}-t^{m,k,i}_{1})\Big{|}^{p}\Bigg{)}
Mpc3p2(i+1)p1|πm+1|3p2p(j=1i1|x(tp(m,k)+jm+1)x(tp(m,k)+j1m+1)|p+|x(t3m,k,i)x(t2m,k,i)|p).\displaystyle\leq\frac{M^{p}c^{\frac{3p}{2}}(i+1)^{p-1}}{|\pi^{m+1}|^{\frac{3p}{2}-p}}\bigg{(}\sum_{j=1}^{i-1}\big{|}x(t^{m+1}_{p(m,k)+j})-x(t^{m+1}_{p(m,k)+j-1})\big{|}^{p}+\big{|}x(t^{m,k,i}_{3})-x(t^{m,k,i}_{2})\big{|}^{p}\bigg{)}.

We note that the quantities inside the last big parenthesis is the pp-th variation of xx along the partition points of πm+1\pi^{m+1} that belong to the interval [tkn,tk+1n][t^{n}_{k},t^{n}_{k+1}], and these intervals are disjoint for different values of kk. We now derive the following inequality

k=0N(πm)1i=1p(m,k+1)p(m,k)|θm,k,ix,π|pMpc3p2(M+1)p1|πm+1|p2M[x]πm+1(p)(T)<c3p2(M+1)2p|πm+1|p2[x]πm+1(p)(T),\sum_{k=0}^{N(\pi^{m})-1}\sum_{i=1}^{p(m,k+1)-p(m,k)}|\theta^{x,\pi}_{m,k,i}|^{p}\leq\frac{M^{p}c^{\frac{3p}{2}}(M+1)^{p-1}}{|\pi^{m+1}|^{\frac{p}{2}}}M[x]^{(p)}_{\pi^{m+1}}(T)<\frac{c^{\frac{3p}{2}}(M+1)^{2p}}{|\pi^{m+1}|^{\frac{p}{2}}}[x]^{(p)}_{\pi^{m+1}}(T),

since the largest value ii can take is p(m,k+1)p(m,k)Mp(m,k+1)-p(m,k)\leq M and the first pp-th power increment |x(tp(m,k)+1m+1)x(tp(m,k)m+1)|p|x(t^{m+1}_{p(m,k)+1})-x(t^{m+1}_{p(m,k)})|^{p} (which has been most repeatedly added) has been added at most MM many times.

Plugging the last expression into (4.2) with the complete refining property, we obtain

ηnπ,(p)\displaystyle\eta^{\pi,(p)}_{n} (M+1)2pc3p2|πn|p1(m=0n1|πm|1p12|πm+1|12([x]πm+1(p)(T))1p)p\displaystyle\leq(M+1)^{2p}c^{\frac{3p}{2}}|\pi^{n}|^{p-1}\Bigg{(}\sum_{m=0}^{n-1}|\pi^{m}|^{\frac{1}{p}-\frac{1}{2}}|\pi^{m+1}|^{-\frac{1}{2}}\Big{(}[x]^{(p)}_{\pi^{m+1}}(T)\Big{)}^{\frac{1}{p}}\Bigg{)}^{p}
(M+1)2pc3p2|πn|p1(m=0n1b12|πm|1p1([x]πm+1(p)(T))1p)p\displaystyle\leq(M+1)^{2p}c^{\frac{3p}{2}}|\pi^{n}|^{p-1}\Bigg{(}\sum_{m=0}^{n-1}b^{\frac{1}{2}}|\pi^{m}|^{\frac{1}{p}-1}\Big{(}[x]^{(p)}_{\pi^{m+1}}(T)\Big{)}^{\frac{1}{p}}\Bigg{)}^{p}
=(M+1)2pc3p2bp2(m=0n1(|πn||πm|)11p([x]πm+1(p)(T))1p)p\displaystyle=(M+1)^{2p}c^{\frac{3p}{2}}b^{\frac{p}{2}}\Bigg{(}\sum_{m=0}^{n-1}\left(\frac{|\pi^{n}|}{|\pi^{m}|}\right)^{1-\frac{1}{p}}\Big{(}[x]^{(p)}_{\pi^{m+1}}(T)\Big{)}^{\frac{1}{p}}\Bigg{)}^{p}
(M+1)2pc3p2bp2(m=0n1(1+a)(mn)(11p)([x]πm+1(p)(T))1p)p.\displaystyle\leq(M+1)^{2p}c^{\frac{3p}{2}}b^{\frac{p}{2}}\Bigg{(}\sum_{m=0}^{n-1}\left(1+a\right)^{(m-n)(1-\frac{1}{p})}\Big{(}[x]^{(p)}_{\pi^{m+1}}(T)\Big{)}^{\frac{1}{p}}\Bigg{)}^{p}. (4.23)

We now define an infinite-dimensional matrix A=(an,m)n0,m0A=(a_{n,m})_{n\geq 0,m\geq 0} with entries

an,m:={(1(1+a)1p1)×(1+a)(mn)(11p),for mn,0,for m>n,a_{n,m}:=\begin{dcases}\Big{(}1-(1+a)^{\frac{1}{p}-1}\Big{)}\times(1+a)^{(m-n)(1-\frac{1}{p})},\quad&\text{for }m\leq n,\\ \qquad\qquad 0,\qquad&\text{for }m>n,\end{dcases}

and we shall show that the matrix AA satisfies properties (i) - (iii) of Lemma 4.8. First, condition (i) is obvious. In order to show (ii), we use the geometric series to derive

limnm=0an,m\displaystyle\lim_{n\rightarrow\infty}\sum_{m=0}^{\infty}a_{n,m} =limn(1(1+a)1p1)(m=0n(1+a)(mn)(11p))\displaystyle=\lim_{n\rightarrow\infty}\Big{(}1-(1+a)^{\frac{1}{p}-1}\Big{)}\bigg{(}\sum_{m=0}^{n}(1+a)^{(m-n)(1-\frac{1}{p})}\bigg{)}
=limn(1(1+a)1p1)(1(1+a)(1p1)(n+1)1(1+a)1p1)\displaystyle=\lim_{n\rightarrow\infty}\Big{(}1-(1+a)^{\frac{1}{p}-1}\Big{)}\bigg{(}\frac{1-(1+a)^{(\frac{1}{p}-1)(n+1)}}{1-(1+a)^{\frac{1}{p}-1}}\bigg{)}
=limn1(1+a)(1p1)(n+1)=1.\displaystyle=\lim_{n\rightarrow\infty}1-(1+a)^{(\frac{1}{p}-1)(n+1)}=1.

Condition (iii) is also obvious from (ii); supn0m=0|an,m|=1<\sup_{n\geq 0}\sum_{m=0}^{\infty}|a_{n,m}|=1<\infty.

Therefore, we apply Lemma 4.8 to the inequality (4.23) to obtain

lim supnηnπ,(p)\displaystyle\limsup_{n\rightarrow\infty}\,\eta^{\pi,(p)}_{n} (M+1)2pc3p2bp2(1(1+a)1p1)plim supn(m=0an,m([x]πm+1(p)(T))1p)p\displaystyle\leq\frac{(M+1)^{2p}c^{\frac{3p}{2}}b^{\frac{p}{2}}}{\big{(}1-(1+a)^{\frac{1}{p}-1}\big{)}^{p}}\limsup_{n\rightarrow\infty}\Bigg{(}\sum_{m=0}^{\infty}a_{n,m}\Big{(}[x]^{(p)}_{\pi^{m+1}}(T)\Big{)}^{\frac{1}{p}}\Bigg{)}^{p}
(M+1)2pc3p2bp2(1(1+a)1p1)p(lim supn([x]πn(p)(T))1p)p\displaystyle\leq\frac{(M+1)^{2p}c^{\frac{3p}{2}}b^{\frac{p}{2}}}{\big{(}1-(1+a)^{\frac{1}{p}-1}\big{)}^{p}}\bigg{(}\limsup_{n\rightarrow\infty}\Big{(}[x]^{(p)}_{\pi^{n}}(T)\Big{)}^{\frac{1}{p}}\bigg{)}^{p}
=(M+1)2pc3p2bp2(1(1+a)1p1)plim supn[x]πn(p)(T).\displaystyle=\frac{(M+1)^{2p}c^{\frac{3p}{2}}b^{\frac{p}{2}}}{\big{(}1-(1+a)^{\frac{1}{p}-1}\big{)}^{p}}\limsup_{n\rightarrow\infty}\,[x]^{(p)}_{\pi^{n}}(T). (4.24)

Combining (4.2) with the inequality after taking lim sup\limsup to (4.21), yields the result (4.3). ∎

Proof of Theorem 4.3.

For fixed p,xp,x, and π\pi satisfying the conditions of Theorem 4.3, let us define

an:=m=0n1|πm|1p12(kIm|θm,kx,π|p)1p,bn:=|πn|1p1,n\displaystyle a_{n}:=\sum_{m=0}^{n-1}|\pi^{m}|^{\frac{1}{p}-\frac{1}{2}}\bigg{(}\sum_{k\in I_{m}}|\theta^{x,\pi}_{m,k}|^{p}\bigg{)}^{\frac{1}{p}},\qquad\qquad b_{n}:=|\pi^{n}|^{\frac{1}{p}-1},\qquad\qquad\forall\,n\in\mathbb{N}

such that

an+1an=|πn|1p12(kIn|θn,kx,π|p)1p,bn+1bn=|πn+1|1p1|πn|1p1.\displaystyle a_{n+1}-a_{n}=|\pi^{n}|^{\frac{1}{p}-\frac{1}{2}}\bigg{(}\sum_{k\in I_{n}}|\theta^{x,\pi}_{n,k}|^{p}\bigg{)}^{\frac{1}{p}},\qquad b_{n+1}-b_{n}=|\pi^{n+1}|^{\frac{1}{p}-1}-|\pi^{n}|^{\frac{1}{p}-1}.

Moreover, from the notation (4.2), we have

anbn=(ηnπ,(p))1p,an+1anbn+1bn=|πn|1p12(kIn|θn,kx,π|p)1p|πn+1|1p1|πn|1p1=(ξnπ,(p))1p(|πn+1||πn|)1p11,\frac{a_{n}}{b_{n}}=\big{(}\eta_{n}^{\pi,(p)}\big{)}^{\frac{1}{p}},\qquad\qquad\frac{a_{n+1}-a_{n}}{b_{n+1}-b_{n}}=\frac{|\pi^{n}|^{\frac{1}{p}-\frac{1}{2}}\big{(}\sum_{k\in I_{n}}|\theta^{x,\pi}_{n,k}|^{p}\big{)}^{\frac{1}{p}}}{|\pi^{n+1}|^{\frac{1}{p}-1}-|\pi^{n}|^{\frac{1}{p}-1}}=\frac{\big{(}\xi^{\pi,(p)}_{n}\big{)}^{\frac{1}{p}}}{\Big{(}\frac{|\pi^{n+1}|}{|\pi^{n}|}\Big{)}^{\frac{1}{p}-1}-1}, (4.25)

and the complete refining property provides the bounds

(ξnπ,(p))1pb11p1an+1anbn+1bn(ξnπ,(p))1p(1+a)11p1.\frac{\big{(}\xi^{\pi,(p)}_{n}\big{)}^{\frac{1}{p}}}{b^{1-\frac{1}{p}}-1}\leq\frac{a_{n+1}-a_{n}}{b_{n+1}-b_{n}}\leq\frac{\big{(}\xi^{\pi,(p)}_{n}\big{)}^{\frac{1}{p}}}{(1+a)^{1-\frac{1}{p}}-1}. (4.26)

We further define

βn:=bn+1bn=(|πn+1||πn|)1p1>1,n,\beta_{n}:=\frac{b_{n+1}}{b_{n}}=\bigg{(}\frac{|\pi^{n+1}|}{|\pi^{n}|}\bigg{)}^{\frac{1}{p}-1}>1,\qquad\forall\,n\in\mathbb{N}, (4.27)

then, the limit β:=limnβn=r1p1>1\beta:=\lim_{n\to\infty}\beta_{n}=r^{\frac{1}{p}-1}>1 exists, thanks to the convergent refining property of π\pi. Applying (4.12) of Lemma 4.6 with the bounds (4.26), (4.2) yields

lim supn(ξnπ,(p))1pb11p1\displaystyle\limsup_{n\rightarrow\infty}\,\frac{\big{(}\xi^{\pi,(p)}_{n}\big{)}^{\frac{1}{p}}}{b^{1-\frac{1}{p}}-1} ββ1lim supn(ηnπ,(p))1p1β1lim infn(ηnπ,(p))1pββ1lim supn(ηnπ,(p))1p\displaystyle\leq\frac{\beta}{\beta-1}\limsup_{n\to\infty}\,\big{(}\eta^{\pi,(p)}_{n}\big{)}^{\frac{1}{p}}-\frac{1}{\beta-1}\liminf_{n\to\infty}\,\big{(}\eta^{\pi,(p)}_{n}\big{)}^{\frac{1}{p}}\leq\frac{\beta}{\beta-1}\limsup_{n\to\infty}\,(\eta^{\pi,(p)}_{n})^{\frac{1}{p}}
(ββ1)((M+1)2c32b121(1+a)1p1)lim supn([x]πn(p)6(T))1p.\displaystyle\leq\bigg{(}\frac{\beta}{\beta-1}\bigg{)}\bigg{(}\frac{(M+1)^{2}c^{\frac{3}{2}}b^{\frac{1}{2}}}{1-(1+a)^{\frac{1}{p}-1}}\bigg{)}\limsup_{n\to\infty}\,\Big{(}[x]^{(p)}_{\pi^{n}}6(T)\Big{)}^{\frac{1}{p}}.

This implies lim supn[x]πn(p)(T)<lim supnξnπ,(p)<\limsup_{n\to\infty}\,[x]_{\pi^{n}}^{(p)}(T)<\infty\Longrightarrow\limsup_{n\to\infty}\,\xi^{\pi,(p)}_{n}<\infty.

For the opposite direction, we take lim sup\limsup to (4.21), and use Lemma 4.7 with (4.26) to obtain

1c(McbM)plim supn[x]πn(p)(T)\displaystyle\frac{1}{c\big{(}Mc\sqrt{bM}\big{)}^{p}}\limsup_{n\to\infty}\,[x]^{(p)}_{\pi^{n}}(T) lim supnηnπ,(p)=lim supn(anbn)p\displaystyle\leq\limsup_{n\rightarrow\infty}\,\eta^{\pi,(p)}_{n}=\limsup_{n\rightarrow\infty}\,\bigg{(}\frac{a_{n}}{b_{n}}\bigg{)}^{p}
lim supn(an+1anbn+1bn)p=1((1+a)11p1)plim supnξnπ,(p).\displaystyle\leq\limsup_{n\rightarrow\infty}\,\bigg{(}\frac{a_{n+1}-a_{n}}{b_{n+1}-b_{n}}\bigg{)}^{p}=\frac{1}{\big{(}(1+a)^{1-\frac{1}{p}}-1\big{)}^{p}}\limsup_{n\rightarrow\infty}\,\xi^{\pi,(p)}_{n}.

This proves the result (4.6). ∎


5 Isomorphism on 𝒳πp\mathcal{X}^{p}_{\pi}

In this section, we shall use several function norms and matrix norms, thus we note that Table 1 at the end of this section lists all the norms with their definitions for the convenience of readers.

Recall the space C0,α([0,T])C^{0,\alpha}([0,T]) of α\alpha-Hölder continuous functions with the norm

xC0,α:=x+|x|C0,αwithx=supt[0,T]|x(t)|and|x|C0,α:=sups,t[0,T]st|x(s)x(t)||st|α.\|x\|_{C^{0,\alpha}}:=\|x\|_{\infty}+|x|_{C^{0,\alpha}}\quad\text{with}\quad\|x\|_{\infty}=\sup_{t\in[0,T]}|x(t)|\quad\text{and}\quad|x|_{C^{0,\alpha}}:=\sup_{\begin{subarray}{c}s,t\in[0,T]\\ s\neq t\end{subarray}}\frac{|x(s)-x(t)|}{|s-t|^{\alpha}}. (5.1)

Ciesielski [5] proved that the following mapping Tα𝕋T^{\mathbb{T}}_{\alpha} is an isomorphism between C0,α([0,T])C^{0,\alpha}([0,T]) and the space ()\ell^{\infty}(\mathbb{R}) of all bounded real sequences, equipped with the supremum norm \|\cdot\|_{\infty}:

Tα𝕋:C0,α([0,T])\displaystyle T^{\mathbb{T}}_{\alpha}:C^{0,\alpha}([0,T]) ()\displaystyle\xrightarrow{\hskip 28.45274pt}~{}~{}~{}\ell^{\infty}(\mathbb{R})
x\displaystyle x~{}~{}~{} {2(m+1)(α12)|θm,kx,𝕋|}m,k.\displaystyle\xmapsto{\hskip 14.22636pt}\big{\{}2^{(m+1)(\alpha-\frac{1}{2})}|\theta^{x,\mathbb{T}}_{m,k}|\big{\}}_{m,k}.

Here, θm,kx,𝕋\theta^{x,\mathbb{T}}_{m,k}’s are the Schauder coefficients of xx along the dyadic partition sequence 𝕋\mathbb{T}, and the double-indexed set {2(m+1)(α12)|θm,kx,𝕋|}m,k\{2^{(m+1)(\alpha-\frac{1}{2})}|\theta^{x,\mathbb{T}}_{m,k}|\}_{m,k} can be identified as a real sequence by flattening it. A recent work [2] extends this isomorphism to any balanced, complete refining partition sequence π\pi:

Tαπ:C0,α([0,T])\displaystyle T^{\pi}_{\alpha}:C^{0,\alpha}([0,T]) ()\displaystyle\xrightarrow{\hskip 28.45274pt}~{}~{}~{}\ell^{\infty}(\mathbb{R})
x\displaystyle x~{}~{}~{} {|πm+1|12α|θm,kx,π|}m,k.\displaystyle\xmapsto{\hskip 14.22636pt}\left\{|\pi^{m+1}|^{\frac{1}{2}-\alpha}|\theta^{x,\pi}_{m,k}|\right\}_{m,k}. (5.2)

We may arrange each element of the sequence {|πm+1|12α|θm,kx,π|}m,k\big{\{}|\pi^{m+1}|^{\frac{1}{2}-\alpha}|\theta^{x,\pi}_{m,k}|\big{\}}_{m,k} in a matrix without flattening it. Let us denote \mathcal{M} the space of infinite-dimensional matrices and fix a partition sequence π=(πn)n0\pi=(\pi^{n})_{n\geq 0} of [0,T][0,T]. For each m0m\geq 0, recall the index set ImI_{m} of (3.9) corresponding to π\pi, and consider the subspace

π:={A:Am,k=0if k>|Im|},\mathcal{M}_{\pi}:=\{A\in\mathcal{M}:A_{m,k}=0\quad\text{if }k>|I_{m}|\}\subset\mathcal{M}, (5.3)

composed of infinite-dimensional matrices whose mm-th row vector can take nonzero values only for the first |Im||I_{m}| components. We now construct a ‘Schauder coefficient matrix’ Θx,π\Theta^{x,\pi} in π\mathcal{M}_{\pi} to arrange the Schauder coefficients:

(Θx,π)m,k={θm,kx,π,if kIm,0,otherwise,m0,k0.(\Theta^{x,\pi})_{m,k}=\begin{cases}\theta^{x,\pi}_{m,k},\qquad&\text{if }k\in I_{m},\\ ~{}0,\qquad&\text{otherwise},\end{cases}\qquad m\geq 0,\quad k\geq 0.

We also define a diagonal matrix DαπD^{\pi}_{\alpha}\in\mathcal{M} with each (m,m)(m,m)-th entry equal to |πm+1|12α|\pi^{m+1}|^{\frac{1}{2}-\alpha}:

(Dαπ)m,k={|πm+1|12α,if m=k,0,otherwise.(D^{\pi}_{\alpha})_{m,k}=\begin{cases}|\pi^{m+1}|^{\frac{1}{2}-\alpha},\qquad&\text{if }m=k,\\ ~{}~{}~{}0,\qquad&\text{otherwise}.\end{cases} (5.4)

From this construction, we have the identity

supm,k(|πm+1|12α|θm,kx,π|)=DαπΘx,πsup,\sup_{m,k}\Big{(}|\pi^{m+1}|^{\frac{1}{2}-\alpha}|\theta^{x,\pi}_{m,k}|\Big{)}=\|D^{\pi}_{\alpha}\Theta^{x,\pi}\|_{sup}, (5.5)

where Asup:=supm,k0|Am,k|\|A\|_{sup}:=\sup_{m,k\geq 0}|A_{m,k}| is the supremum norm for matrices; in the mapping TαπT^{\pi}_{\alpha} of (5.2), the condition {|πm+1|12α|θm,kx,π|}m,k()\big{\{}|\pi^{m+1}|^{\frac{1}{2}-\alpha}|\theta^{x,\pi}_{m,k}|\big{\}}_{m,k}\in\ell^{\infty}(\mathbb{R}) is then equivalent to DαπΘx,πsup<\|D^{\pi}_{\alpha}\Theta^{x,\pi}\|_{sup}<\infty.

We now restate the isomorphism in (5.2) along any balanced and complete refining partition sequence.

Proposition 5.1.

For any balanced, complete refining partition sequence π\pi and α(0,1)\alpha\in(0,1), the mapping

Tαπ:(C0,α([0,T]),C0,α)\displaystyle T^{\pi}_{\alpha}:\Big{(}C^{0,\alpha}([0,T]),\,\|\cdot\|_{C^{0,\alpha}}\Big{)} (πα,supα)\displaystyle\xrightarrow{\hskip 28.45274pt}\Big{(}\mathcal{M}^{\alpha}_{\pi},\,\|\cdot\|^{\alpha}_{sup}\Big{)}
x\displaystyle x~{}~{}~{}~{}~{}~{}~{}~{}~{}~{} Θx,π\displaystyle\xmapsto{\hskip 28.45274pt}~{}~{}~{}~{}~{}\Theta^{x,\pi} (5.6)

is an isomorphism, where

πα:={Aπ:Asupα<},Asupα:=DαπAsup.\displaystyle\mathcal{M}^{\alpha}_{\pi}:=\{A\in\mathcal{M}_{\pi}:\|A\|^{\alpha}_{sup}<\infty\},\qquad\|A\|^{\alpha}_{sup}:=\|D^{\pi}_{\alpha}A\|_{sup}.

Moreover, we have the following bounds for the operator norms:

Tαπop2(c)3,(Tαπ)1opmax(2McK1α+2MK2α,MK2α|π1|α),\|T^{\pi}_{\alpha}\|_{op}\leq 2(\sqrt{c})^{3},\qquad\|(T^{\pi}_{\alpha})^{-1}\|_{op}\leq\max\Big{(}2M\sqrt{c}K^{\alpha}_{1}+2MK^{\alpha}_{2},\,MK^{\alpha}_{2}|\pi^{1}|^{\alpha}\Big{)}, (5.7)

where K1α:=11(1+a)α1K^{\alpha}_{1}:=\frac{1}{1-(1+a)^{\alpha-1}} and K2α:=11(1+a)αK^{\alpha}_{2}:=\frac{1}{1-(1+a)^{-\alpha}} with the constants a,c,Ma,c,M in Remark 3.5.

Proof of Proposition 5.1.

From [2, Theorem 3.4] and the identity (5.5), it is easy to show that the mapping TαπT^{\pi}_{\alpha} is bijective. We note that the notation Cα([0,T])\|\cdot\|_{C^{\alpha}([0,T])} in the bounds [2, Equation (3.2)] represents the Hölder semi-norm (||C0,α|\cdot|_{C^{0,\alpha}} in (5.1) of this paper).

The bound for operator norm Tαπop\|T^{\pi}_{\alpha}\|_{op} is also straightforward from [2, Theorem 3.4] and (5.5):

Θx,πsupα=supm,k(|πm+1|12α|θm,kx,π|)2(c)3|x|C0,α2(c)3xC0,α.\|\Theta^{x,\pi}\|^{\alpha}_{sup}=\sup_{m,k}\Big{(}|\pi^{m+1}|^{\frac{1}{2}-\alpha}|\theta^{x,\pi}_{m,k}|\Big{)}\leq 2(\sqrt{c})^{3}|x|_{C^{0,\alpha}}\leq 2(\sqrt{c})^{3}\|x\|_{C^{0,\alpha}}.

The same theorem also yields the inequality

|x|C0,α(2McK1α+2MK2α)Θx,πsupα.|x|_{C^{0,\alpha}}\leq(2M\sqrt{c}K^{\alpha}_{1}+2MK^{\alpha}_{2})\|\Theta^{x,\pi}\|^{\alpha}_{sup}. (5.8)

Furthermore, we can derive that

x\displaystyle\|x\|_{\infty} supt[0,T](m=0kIm|θm,kx,π||em,kπ(t)|)Mm=0(supkIm|θm,kx,π|)|πm+1|12\displaystyle\leq\sup_{t\in[0,T]}\bigg{(}\sum_{m=0}^{\infty}\sum_{k\in I_{m}}|\theta^{x,\pi}_{m,k}||e^{\pi}_{m,k}(t)|\bigg{)}\leq M\sum_{m=0}^{\infty}\Big{(}\sup_{k\in I_{m}}|\theta^{x,\pi}_{m,k}|\Big{)}|\pi^{m+1}|^{\frac{1}{2}}
M(m=0|πm+1|α)(supm,k(|θm,kx,π||πm+1|12α))MK2α|π1|αΘx,πsupα.\displaystyle\leq M\Big{(}\sum_{m=0}^{\infty}|\pi^{m+1}|^{\alpha}\Big{)}\bigg{(}\sup_{m,k}\Big{(}|\theta^{x,\pi}_{m,k}||\pi^{m+1}|^{\frac{1}{2}-\alpha}\Big{)}\bigg{)}\leq MK^{\alpha}_{2}|\pi^{1}|^{\alpha}\|\Theta^{x,\pi}\|^{\alpha}_{sup}.

Here, the second inequality and the last inequality follow from [2, bound (2.4) and Lemma 3.2], respectively. Combining this with (5.8) yields the bound for (Tαπ)1op\|(T^{\pi}_{\alpha})^{-1}\|_{op}. ∎

Let us fix xC0,α([0,T])x\in C^{0,\alpha}([0,T]) and πΠ([0,T])\pi\in\Pi([0,T]), and recall from Theorem 2.9 that xx belongs to 𝒳πq\mathcal{X}^{q}_{\pi} for some q[1,1α]q\in[1,\frac{1}{\alpha}]. In what follows, we shall characterize such functions xC0,α([0,T])𝒳πqx\in C^{0,\alpha}([0,T])\cap\mathcal{X}^{q}_{\pi} in terms of its Schauder coefficients.

We now fix p>1p>1 and define a diagonal matrix EπE^{\pi} in \mathcal{M} such that every (m,m)(m,m)-th entry is equal to |πm|12|\pi^{m}|^{\frac{1}{2}}:

(Eπ)m,k:={|πm|12,if m=k,0,otherwise.(E^{\pi})_{m,k}:=\begin{cases}|\pi^{m}|^{\frac{1}{2}},\qquad&\text{if }m=k,\\ ~{}~{}~{}0,\qquad&\text{otherwise}.\end{cases} (5.9)

With the matrix norm

Ap,:=supk0(m0|Am,k|p)1p,for any p>1,\|A\|_{p,\infty}:=\sup_{k\geq 0}\Big{(}\sum_{m\geq 0}|A_{m,k}|^{p}\Big{)}^{\frac{1}{p}},\qquad\text{for any }p>1, (5.10)

we define

π(p):={Aπ:A(p)<},whereA(p):=(EπA)p,.\mathcal{M}^{(p)}_{\pi}:=\{A\in\mathcal{M}_{\pi}:\|A\|_{(p)}<\infty\},\qquad\text{where}\qquad\|A\|_{(p)}:=\|(E^{\pi}A)^{\top}\|_{p,\infty}. (5.11)

Recalling the definition (4.5), we obtain the identity from (5.11)

Θx,π(p)=(EπΘx,π)p,=supn0(ξnπ,(p))1p.\|\Theta^{x,\pi}\|_{(p)}=\|(E^{\pi}\Theta^{x,\pi})^{\top}\|_{p,\infty}=\sup_{n\geq 0}\big{(}\xi^{\pi,(p)}_{n}\big{)}^{\frac{1}{p}}. (5.12)

Therefore, the condition (4.6) of Theorem 4.3 is also equivalent to Θx,π(p)<\|\Theta^{x,\pi}\|_{(p)}<\infty. We are now ready to provide the following results regarding the intersection space C0,α([0,T])𝒳πpC^{0,\alpha}([0,T])\cap\mathcal{X}^{p}_{\pi}.

Proposition 5.2.

For any α(0,1)\alpha\in(0,1), p(1,1α]p\in(1,\frac{1}{\alpha}], and πΠ([0,T])\pi\in\Pi([0,T]), the space (C0,α([0,T])𝒳πp,C0,α+π(p))\big{(}C^{0,\alpha}([0,T])\cap\mathcal{X}^{p}_{\pi},\,\|\cdot\|_{C^{0,\alpha}}+\|\cdot\|^{(p)}_{\pi}\big{)} is a Banach space.

Proof of Proposition 5.2.

Since (C0,α([0,T]),C0,α)\big{(}C^{0,\alpha}([0,T]),\,\|\cdot\|_{C^{0,\alpha}}\big{)} and (𝒳πp,π(p))\big{(}\mathcal{X}^{p}_{\pi},\,\|\cdot\|^{(p)}_{\pi}\big{)} are Banach spaces (Proposition 2.5), it is obvious that C0,α+π(p)\|\cdot\|_{C^{0,\alpha}}+\|\cdot\|^{(p)}_{\pi} is a norm in the intersection space, and it is enough to show the completeness of C0,α([0,T])𝒳πpC^{0,\alpha}([0,T])\cap\mathcal{X}^{p}_{\pi}. Fix any Cauchy sequence (x)C0,α([0,T])𝒳πp(x_{\ell})_{\ell\in\mathbb{N}}\in C^{0,\alpha}([0,T])\cap\mathcal{X}^{p}_{\pi} in C0,α+π(p)\|\cdot\|_{C^{0,\alpha}}+\|\cdot\|^{(p)}_{\pi}-norm. Then, (x)(x_{\ell})_{\ell\in\mathbb{N}} is also Cauchy in C0,α\|\cdot\|_{C^{0,\alpha}}-norm, thus it has a limit xC0,α([0,T])x\in C^{0,\alpha}([0,T]) such that xxC0,α0\|x_{\ell}-x\|_{C^{0,\alpha}}\to 0 as \ell\to\infty; in particular, {x(t)}\{x_{\ell}(t)\}_{\ell\in\mathbb{N}} is a Cauchy sequence in \mathbb{R}, and x(t)x(t)x_{\ell}(t)\to x(t) as \ell\to\infty for each t[0,T]t\in[0,T]. Moreover, since {x}\{x_{\ell}\}_{\ell\in\mathbb{N}} is also a Cauchy sequence in π(p)\|\cdot\|^{(p)}_{\pi}-norm, there exists a limit x~𝒳πp\tilde{x}\in\mathcal{X}^{p}_{\pi} such that xx~π(p)0\|x_{\ell}-\tilde{x}\|^{(p)}_{\pi}\to 0 as \ell\to\infty. As in the proof of Proposition 2.5, we have limx(tjn)=x~(tjn)=x(tjn)\lim_{\ell\to\infty}x_{\ell}(t^{n}_{j})=\tilde{x}(t^{n}_{j})=x(t^{n}_{j}) for every partition point tjnt^{n}_{j} of P:=n0πnP:=\bigcup_{n\geq 0}\pi^{n}. In other words, xx and x~\tilde{x} coincide on the dense set PP, thus the unique continuous extension of x~\tilde{x} must be xx, thus (x)(x_{\ell})_{\ell\in\mathbb{N}} converges to xC0,α([0,T])𝒳πpx\in C^{0,\alpha}([0,T])\cap\mathcal{X}^{p}_{\pi} in C0,α+π(p)\|\cdot\|_{C^{0,\alpha}}+\|\cdot\|^{(p)}_{\pi}-norm. ∎

In addition to Ciesielski’s isomorphism, we have the following isomorphism from the intersection space.

Theorem 5.3 (Isomorphism on the Banach space 𝒳πp\mathcal{X}^{p}_{\pi}).

For any α(0,1)\alpha\in(0,1), p(1,1α]p\in(1,\frac{1}{\alpha}], and a balanced, convergent refining partition sequence π\pi, the mapping

Tα,(p)π:(C0,α([0,T])𝒳πp,C0,α+π(p))\displaystyle T^{\pi}_{\alpha,(p)}:\Big{(}C^{0,\alpha}([0,T])\cap\mathcal{X}^{p}_{\pi},\,\|\cdot\|_{C^{0,\alpha}}+\|\cdot\|^{(p)}_{\pi}\Big{)} (παπ(p),supα+(p))\displaystyle\xrightarrow{\hskip 28.45274pt}\Big{(}\mathcal{M}^{\alpha}_{\pi}\cap\mathcal{M}^{(p)}_{\pi},\,\|\cdot\|^{\alpha}_{sup}+\|\cdot\|_{(p)}\Big{)}
x\displaystyle x~{}~{}~{}~{}~{}~{}~{}~{}~{}~{} Θx,π\displaystyle\xmapsto{\hskip 28.45274pt}~{}~{}~{}~{}~{}\Theta^{x,\pi} (5.13)

is an isomorphism. Furthermore, we have the following bounds for the operator norms:

Tα,(p)πop\displaystyle\|T^{\pi}_{\alpha,(p)}\|_{op} max(2(c)3,(M+1)2c32b32p((1+a)11p1)1p),\displaystyle\leq\max\bigg{(}2(\sqrt{c})^{3},\,\frac{(M+1)^{2}c^{\frac{3}{2}}b^{\frac{3}{2}-p}}{\Big{(}(1+a)^{1-\frac{1}{p}}-1\Big{)}^{\frac{1}{p}}}\bigg{)}, (5.14)
(Tα,(p)π)1op\displaystyle\|(T^{\pi}_{\alpha,(p)})^{-1}\|_{op} 1+max(2McK1α+2MK2α,MK2α|π1|α)+c1p(McbM)(1+a)11p1.\displaystyle\leq 1+\max\Big{(}2M\sqrt{c}K^{\alpha}_{1}+2MK^{\alpha}_{2},\,MK^{\alpha}_{2}|\pi^{1}|^{\alpha}\Big{)}+\frac{c^{\frac{1}{p}}(Mc\sqrt{bM})}{(1+a)^{1-\frac{1}{p}}-1}. (5.15)
Proof of Theorem 5.3.

We shall prove the result in the following parts.

Part 1: For any xC0,α([0,T])𝒳πpx\in C^{0,\alpha}([0,T])\cap\mathcal{X}^{p}_{\pi}, we shall prove Tα,(p)π(x)παπ(p)T^{\pi}_{\alpha,(p)}(x)\in\mathcal{M}^{\alpha}_{\pi}\cap\mathcal{M}^{(p)}_{\pi}.
We fix xC0,α([0,T])𝒳πpx\in C^{0,\alpha}([0,T])\cap\mathcal{X}^{p}_{\pi}. Proposition 5.1 proves Θx,ππα\Theta^{x,\pi}\in\mathcal{M}^{\alpha}_{\pi}, thus we need to show Θx,ππ(p)\Theta^{x,\pi}\in\mathcal{M}^{(p)}_{\pi}, which is equivalent to supn0(ξn(p))<\sup_{n\geq 0}\big{(}\xi^{(p)}_{n}\big{)}<\infty from (5.12).

Recalling the inequality (4.23) and computing the geometric series, we have for each n0n\geq 0

ηπnπ,(p)\displaystyle\eta^{\pi,(p)}_{\pi^{n}} (M+1)2pc3p2bp2(xπ(p))p(m=0n1(1+a)(mn)(11p))p\displaystyle\leq(M+1)^{2p}c^{\frac{3p}{2}}b^{\frac{p}{2}}\Big{(}\|x\|^{(p)}_{\pi}\Big{)}^{p}\bigg{(}\sum_{m=0}^{n-1}\left(1+a\right)^{(m-n)(1-\frac{1}{p})}\bigg{)}^{p}
=(M+1)2pc3p2bp2(xπ(p))p(1(1+a)n(11p)(1+a)11p1)(M+1)2pc3p2bp2(1+a)11p1(xπ(p))p.\displaystyle=(M+1)^{2p}c^{\frac{3p}{2}}b^{\frac{p}{2}}\Big{(}\|x\|^{(p)}_{\pi}\Big{)}^{p}\bigg{(}\frac{1-(1+a)^{-n(1-\frac{1}{p})}}{(1+a)^{1-\frac{1}{p}}-1}\bigg{)}\leq\frac{(M+1)^{2p}c^{\frac{3p}{2}}b^{\frac{p}{2}}}{(1+a)^{1-\frac{1}{p}}-1}\Big{(}\|x\|^{(p)}_{\pi}\Big{)}^{p}.

Furthermore, recalling the notations (4.25) and (4.27) with the identity (4.13), we derive

(ξnπ,(p))1p=(βn1)an+1anbn+1bn=βnan+1bn+1anbnβnan+1bn+1b11p(ηn+1π,(p))1p.\displaystyle\big{(}\xi^{\pi,(p)}_{n}\big{)}^{\frac{1}{p}}=(\beta_{n}-1)\frac{a_{n+1}-a_{n}}{b_{n+1}-b_{n}}=\beta_{n}\frac{a_{n+1}}{b_{n+1}}-\frac{a_{n}}{b_{n}}\leq\beta_{n}\frac{a_{n+1}}{b_{n+1}}\leq b^{1-\frac{1}{p}}\Big{(}\eta^{\pi,(p)}_{n+1}\Big{)}^{\frac{1}{p}}.

Here, the last inequality uses the fact that βn\beta_{n} has an upper bound b11pb^{1-\frac{1}{p}} from the complete refining property.

Combining the last two inequalities, we obtain for each n0n\geq 0

(ξnπ,(p))1p(M+1)2c32b32p((1+a)11p1)1pxπ(p).\big{(}\xi^{\pi,(p)}_{n}\big{)}^{\frac{1}{p}}\leq\frac{(M+1)^{2}c^{\frac{3}{2}}b^{\frac{3}{2}-p}}{\Big{(}(1+a)^{1-\frac{1}{p}}-1\Big{)}^{\frac{1}{p}}}\|x\|^{(p)}_{\pi}. (5.16)

Since x𝒳πpx\in\mathcal{X}^{p}_{\pi}, we have supn0(ξn(p))<\sup_{n\geq 0}\big{(}\xi^{(p)}_{n}\big{)}<\infty, which shows Θx,ππ(p)\Theta^{x,\pi}\in\mathcal{M}^{(p)}_{\pi}.

Part 2: For any Θπαπ(p)\Theta\in\mathcal{M}^{\alpha}_{\pi}\cap\mathcal{M}^{(p)}_{\pi}, we shall prove (Tα,(p)π)1ΘC0,α([0,T])𝒳πp(T^{\pi}_{\alpha,(p)})^{-1}\Theta\in C^{0,\alpha}([0,T])\cap\mathcal{X}^{p}_{\pi}.
We fix Θπαπ(p)\Theta\in\mathcal{M}^{\alpha}_{\pi}\cap\mathcal{M}^{(p)}_{\pi}. Using the entries Θm,k\Theta_{m,k} of Θ\Theta as Schauder coefficients along π\pi, we can construct an α\alpha-Hölder continuous function xx from Proposition 5.1. The identity (5.12) with Corollary 4.4 and (2.6) imply x𝒳πpx\in\mathcal{X}^{p}_{\pi}.

Part 3: We shall prove that the mapping Tα,(p)πT^{\pi}_{\alpha,(p)} is bounded.

For any xC0,α([0,T])𝒳πpx\in C^{0,\alpha}([0,T])\cap\mathcal{X}^{p}_{\pi}, consider Θx,π=Tα,(p)πx\Theta^{x,\pi}=T^{\pi}_{\alpha,(p)}x. From (5.12) and (5.16), we have

Θx,π(p)(M+1)2c32b32p((1+a)11p1)1pxπ(p).\|\Theta^{x,\pi}\|_{(p)}\leq\frac{(M+1)^{2}c^{\frac{3}{2}}b^{\frac{3}{2}-p}}{\Big{(}(1+a)^{1-\frac{1}{p}}-1\Big{)}^{\frac{1}{p}}}\|x\|^{(p)}_{\pi}.

Moreover, from Proposition 5.1, we have Θx,πsupα2(c)3xC0,α\|\Theta^{x,\pi}\|^{\alpha}_{sup}\leq 2(\sqrt{c})^{3}\|x\|_{C^{0,\alpha}}. Combining the two bounds concludes (5.14).

Part 4: We shall prove that the inverse mapping (Tα,(p)π)1(T^{\pi}_{\alpha,(p)})^{-1} is bounded.

For any Θπαπ(p)\Theta\in\mathcal{M}^{\alpha}_{\pi}\cap\mathcal{M}^{(p)}_{\pi}, we write x=(Tα,(p)π)1Θx=(T^{\pi}_{\alpha,(p)})^{-1}\Theta and consider its Schauder coefficients {θm,kx,π=Θm,k}m,k\{\theta^{x,\pi}_{m,k}=\Theta_{m,k}\}_{m,k}. Recalling the inequality (4.21) and the notation (4.5), we obtain for any n0n\geq 0

[x]πn(p)(T)\displaystyle[x]_{\pi^{n}}^{(p)}(T) (McbM|πn|)p(m=0n1|πm|12(c|πm||πn|)1p(k,i|θm,k,ix,π|p)1p)p\displaystyle\leq\Big{(}Mc\sqrt{bM}|\pi^{n}|\Big{)}^{p}\Bigg{(}\sum_{m=0}^{n-1}|\pi^{m}|^{-\frac{1}{2}}\bigg{(}\frac{c|\pi^{m}|}{|\pi^{n}|}\bigg{)}^{\frac{1}{p}}\bigg{(}\sum_{k,i}|\theta^{x,\pi}_{m,k,i}|^{p}\bigg{)}^{\frac{1}{p}}\Bigg{)}^{p}
(McbM|πn|)p(m=0n1|πm|12(c|πm||πn|)1p|πm|12(ξmπ,(p))1p)p\displaystyle\leq\Big{(}Mc\sqrt{bM}|\pi^{n}|\Big{)}^{p}\Bigg{(}\sum_{m=0}^{n-1}|\pi^{m}|^{-\frac{1}{2}}\bigg{(}\frac{c|\pi^{m}|}{|\pi^{n}|}\bigg{)}^{\frac{1}{p}}|\pi^{m}|^{-\frac{1}{2}}(\xi^{\pi,(p)}_{m})^{\frac{1}{p}}\Bigg{)}^{p}
=c(McbM)p|πn|p1(m=0n1|πm|1p1)p(supm0ξmπ,(p)).\displaystyle=c\Big{(}Mc\sqrt{bM}\Big{)}^{p}|\pi^{n}|^{p-1}\Bigg{(}\sum_{m=0}^{n-1}|\pi^{m}|^{\frac{1}{p}-1}\bigg{)}^{p}\Big{(}\sup_{m\geq 0}\,\xi^{\pi,(p)}_{m}\Big{)}.

From the complete refining property and computing the geometric series, we have for each n0n\geq 0

m=0n1|πm|1p1\displaystyle\sum_{m=0}^{n-1}|\pi^{m}|^{\frac{1}{p}-1} |πn|1p1m=0n1(1+a)(1p1)(nm)\displaystyle\leq|\pi^{n}|^{\frac{1}{p}-1}\sum_{m=0}^{n-1}(1+a)^{(\frac{1}{p}-1)(n-m)}
=|πn|1p1(1+a)1p11(1+a)(1p1)n1(1+a)1p1|πn|1p1(1+a)1p11(1+a)1p1=|πn|1p1(1+a)11p1.\displaystyle=|\pi^{n}|^{\frac{1}{p}-1}(1+a)^{\frac{1}{p}-1}\frac{1-(1+a)^{(\frac{1}{p}-1)n}}{1-(1+a)^{\frac{1}{p}-1}}\leq|\pi^{n}|^{\frac{1}{p}-1}\frac{(1+a)^{\frac{1}{p}-1}}{1-(1+a)^{\frac{1}{p}-1}}=\frac{|\pi^{n}|^{\frac{1}{p}-1}}{(1+a)^{1-\frac{1}{p}}-1}.

Combining the last two inequalities,

[x]πn(p)(T)c(McbM)p|πn|p1(|πn|1p1(1+a)11p1)p(supm0ξmπ,(p))=c(McbM)p((1+a)11p1)p(supm0ξmπ,(p)).\displaystyle[x]_{\pi^{n}}^{(p)}(T)\leq c\Big{(}Mc\sqrt{bM}\Big{)}^{p}|\pi^{n}|^{p-1}\Bigg{(}\frac{|\pi^{n}|^{\frac{1}{p}-1}}{(1+a)^{1-\frac{1}{p}}-1}\Bigg{)}^{p}\Big{(}\sup_{m\geq 0}\,\xi^{\pi,(p)}_{m}\Big{)}=\frac{c\Big{(}Mc\sqrt{bM}\Big{)}^{p}}{\Big{(}(1+a)^{1-\frac{1}{p}}-1\Big{)}^{p}}\Big{(}\sup_{m\geq 0}\,\xi^{\pi,(p)}_{m}\Big{)}.

Moreover, thanks to (5.12), we have

xπ(p)|x(0)|+c1p(McbM)(1+a)11p1(supm0ξmπ,(p))1p=|x(0)|+c1p(McbM)(1+a)11p1Θx,π(p).\|x\|^{(p)}_{\pi}\leq|x(0)|+\frac{c^{\frac{1}{p}}(Mc\sqrt{bM})}{(1+a)^{1-\frac{1}{p}}-1}\Big{(}\sup_{m\geq 0}\,\xi^{\pi,(p)}_{m}\Big{)}^{\frac{1}{p}}=|x(0)|+\frac{c^{\frac{1}{p}}(Mc\sqrt{bM})}{(1+a)^{1-\frac{1}{p}}-1}\|\Theta^{x,\pi}\|_{(p)}.

Also, Proposition 5.1 yields a bound xC0,αmax(2McK1α+2MK2α,MK2α|π1|α)Θsupα\|x\|_{C^{0,\alpha}}\leq\max\Big{(}2M\sqrt{c}K^{\alpha}_{1}+2MK^{\alpha}_{2},\,MK^{\alpha}_{2}|\pi^{1}|^{\alpha}\Big{)}\|\Theta\|^{\alpha}_{sup}. Combining these bounds proves (5.15). ∎

Remark 5.4.

From Proposition 5.1 and Theorem 5.3, one may expect that the following mapping would also be an isomorphism:

T(p)π:(𝒳πp,π(p))\displaystyle T^{\pi}_{(p)}:\Big{(}\mathcal{X}^{p}_{\pi},\,\|\cdot\|^{(p)}_{\pi}\Big{)} (π(p),(p))\displaystyle\xrightarrow{\hskip 28.45274pt}\Big{(}\mathcal{M}^{(p)}_{\pi},\,\|\cdot\|_{(p)}\Big{)}
x\displaystyle x~{}~{}~{}~{}~{}~{}~{}~{}~{}~{} Θx,π.\displaystyle\xmapsto{\hskip 28.45274pt}~{}~{}~{}~{}~{}\Theta^{x,\pi}.

However, this is not an isomorphism, since x𝒳π(p)x\in\mathcal{X}^{(p)}_{\pi} is a subclass of continuous functions, and the continuity is not guaranteed without additional conditions if one constructs a function from Schauder coefficients. In the following, we provide an example of function xx constructed from a given Schauder matrix Θπ(2)\Theta\in\mathcal{M}^{(2)}_{\pi}, satisfying the condition xπ(2)<\|x\|^{(2)}_{\pi}<\infty, but xC0([0,T],)x\notin C^{0}([0,T],\mathbb{R}).

Let us consider the dyadic partition sequence 𝕋\mathbb{T} on a unit interval [0,1][0,1] and a matrix Θ\Theta\in\mathcal{M} such that for each m0m\geq 0 the components of mm-th row are given by Θm,0=2m2\Theta_{m,0}=2^{\frac{m}{2}} and Θm,k=0\Theta_{m,k}=0 for all k1k\geq 1. Then, it is easy to verify that Θ(2)=(E𝕋Θ)2,<\|\Theta\|_{(2)}=\|(E^{\mathbb{T}}\Theta)^{\top}\|_{2,\infty}<\infty. We now construct a function x():=m=0kImΘm,kem,k𝕋()x(\cdot):=\sum_{m=0}^{\infty}\sum_{k\in I_{m}}\Theta_{m,k}e^{\mathbb{T}}_{m,k}(\cdot) on [0,1][0,1]. It turns out that xx is not continuous at 0; we take tn=2nt_{n}=2^{-n} for each nn\in\mathbb{N}, then we have

x(tn)=m=0n1Θm,0em,0𝕋(tn)=m=0n12m22m2tn=2nm=0n12m=12n,x(t_{n})=\sum_{m=0}^{n-1}\Theta_{m,0}e^{\mathbb{T}}_{m,0}(t_{n})=\sum_{m=0}^{n-1}2^{\frac{m}{2}}2^{\frac{m}{2}}t_{n}=2^{-n}\sum_{m=0}^{n-1}2^{m}=1-2^{-n},

thus 0=x(0)=x(limntn)limnx(tn)=10=x(0)=x(\lim_{n\to\infty}t_{n})\neq\lim_{n\to\infty}x(t_{n})=1, so xC0([0,1],)x\notin C^{0}([0,1],\mathbb{R}).

Function norm Definition
xπ(p)\|x\|^{(p)}_{\pi} |x(0)|+supn([x]πn(p)(T))1p|x(0)|+\sup_{n\in\mathbb{N}}\,\Big{(}[x]_{\pi^{n}}^{(p)}(T)\Big{)}^{\frac{1}{p}} in Definition (2.4)
x\|x\|_{\infty} supt[0,T]|x(t)|\sup_{t\in[0,T]}|x(t)|
|x|C0,α|x|_{C^{0,\alpha}} sups,t[0,T],st|x(s)x(t)||st|α\sup_{s,t\in[0,T],~{}s\neq t}\frac{|x(s)-x(t)|}{|s-t|^{\alpha}}
xC0,α\|x\|_{C^{0,\alpha}} x+|x|C0,α\|x\|_{\infty}+|x|_{C^{0,\alpha}} in (5.1)
Matrix norm Definition
Asup\|A\|_{sup} supm,k0|Am,k|\sup_{m,k\geq 0}|A_{m,k}|
Asupα\|A\|^{\alpha}_{sup} DαπAsup\|D^{\pi}_{\alpha}A\|_{sup} where DαπD^{\pi}_{\alpha} is the matrix defined in (5.4)
Ap,\|A\|_{p,\infty} supk0(m0|Am,k|p)1p\sup_{k\geq 0}\big{(}\sum_{m\geq 0}|A_{m,k}|^{p}\big{)}^{\frac{1}{p}} in (5.10)
A(p)\|A\|_{(p)} (EπA)p,\|(E^{\pi}A)^{\top}\|_{p,\infty} where EπE^{\pi} is the matrix defined in (5.9)
Table 1: List of norms used in this section

In the following table, xx represents a (continuous) function defined on [0,T][0,T], and AA represents an infinite dimensional matrix.


Appendix A The case of even integers, p2p\in 2\mathbb{N}, along the dyadic sequence

The concept of pathwise quadratic variation, that is, the limit [x]π(2)[x]^{(2)}_{\pi} in (1.3), was introduced in [14], and was extended in [11] to even integers pp. However, as mentioned earlier, the existence of the limit [x]π(p)[x]^{(p)}_{\pi} is a strong assumption, indicated by the fact that the class VπpV^{p}_{\pi} is not a vector space in general. Moreover, a closed-form formula of the pp-th variation [x]π(p)[x]^{(p)}_{\pi} is known only for the quadratic case p=2p=2 (along the dyadic partition sequence [18] and along general finitely refining partition sequences [7]). In this appendix, we provide a generalized closed-form expression of the pp-th variation for even integers pp along the dyadic partition sequence, which can be of independent interest.

We first write the dyadic partition sequence 𝕋=(𝕋n)n0\mathbb{T}=(\mathbb{T}^{n})_{n\geq 0} as in the beginning of Section 2.1. From Propositions 4.1 and 4.4 of [7], the quadratic variation [x]𝕋(2)[x]^{(2)}_{\mathbb{T}} of xC0([0,T])x\in C^{0}([0,T]) along the nn-th dyadic partition 𝕋n\mathbb{T}^{n} has a simple expression in terms of its Faber-Schauder coefficients:

[x]𝕋n(2)(T)=2nm=0n1k=02m1(θm,kx,𝕋)2,n.[x]^{(2)}_{\mathbb{T}^{n}}(T)=2^{-n}\sum_{m=0}^{n-1}\sum_{k=0}^{2^{m}-1}(\theta^{x,\mathbb{T}}_{m,k})^{2},\qquad\forall\,n\in\mathbb{N}. (A.1)

Here, the Schauder coefficients θx,𝕋\theta^{x,\mathbb{T}} along the dyadic sequence 𝕋\mathbb{T} are often called ‘Faber-Schauder’ coefficients, as Faber [13] earlier constructed a basis by integrating the orthonormal basis along the dyadic partitions introduced by Haar [16] in 1910.

This expression (A.1) can be generalized to any even integers p2p\in 2\mathbb{N} along the dyadic partitions 𝕋n\mathbb{T}^{n} in the following.

Proposition A.1.

For a fixed p2p\in 2\mathbb{N}, the pp-th variation [x]𝕋n(p)[x]^{(p)}_{\mathbb{T}^{n}} of xC0([0,T])x\in C^{0}([0,T]) along the nn-th dyadic partition 𝕋n\mathbb{T}^{n} can be expressed as:

[x]𝕋n(p)(T)=m=0n1k=02m12nm×(2m2×2n)p(θm,kx,𝕋)p,[x]^{(p)}_{\mathbb{T}^{n}}(T)=\sum_{m=0}^{n-1}\sum_{k=0}^{2^{m}-1}2^{n-m}\times\big{(}2^{\frac{m}{2}}\times 2^{-n}\big{)}^{p}(\theta^{x,\mathbb{T}}_{m,k})^{p}, (A.2)
Proof of Proposition A.1.

We recall the identity (4.20) with the fact that for any dyadic partition 𝕋n\mathbb{T}^{n} there is a unique k=k(m,,n)k=k(m,\ell,n) such that em,k𝕋(/2n)0e^{\mathbb{T}}_{m,k}(\ell/2^{n})\neq 0, to derive

[x]𝕋n(p)(T)\displaystyle[x]_{\mathbb{T}^{n}}^{(p)}(T) ==02n1|m=0n1k=02m1θm,kx,𝕋(em,k𝕋(+12n)em,k𝕋(2n))|p\displaystyle=\sum_{\ell=0}^{2^{n}-1}\Bigg{|}\sum_{m=0}^{n-1}\sum_{k=0}^{2^{m}-1}\theta^{x,\mathbb{T}}_{m,k}\bigg{(}e^{\mathbb{T}}_{m,k}(\frac{\ell+1}{2^{n}})-e^{\mathbb{T}}_{m,k}(\frac{\ell}{2^{n}})\bigg{)}\Bigg{|}^{p}
==02n1(m=0n1{k:ψm,k𝕋(/2n)0}θm,kx,𝕋ψm,k𝕋(2n)2n)p,\displaystyle=\sum_{\ell=0}^{2^{n}-1}\bigg{(}\sum_{m=0}^{n-1}\sum_{\{k:\psi^{\mathbb{T}}_{m,k}(\ell/2^{n})\neq 0\}}\theta^{x,\mathbb{T}}_{m,k}\psi^{\mathbb{T}}_{m,k}(\frac{\ell}{2^{n}})2^{-n}\bigg{)}^{p}, (A.3)

where ψm,k𝕋\psi^{\mathbb{T}}_{m,k} is the Haar basis associated with the Faber-Schauder function em,k𝕋e^{\mathbb{T}}_{m,k} (Definition 3.6).

The coefficient of the pp-th power term (θm,kx,𝕋)p(\theta^{x,\mathbb{T}}_{m,k})^{p} for each pair (m,k)(m,k) is

{:ψm,k𝕋(/2n)0}(ψm,k𝕋(2n)2n)p=2nm×(2m2×2n)p\displaystyle\sum_{\{\ell:\psi^{\mathbb{T}}_{m,k}(\ell/2^{n})\neq 0\}}\bigg{(}\psi^{\mathbb{T}}_{m,k}(\frac{\ell}{2^{n}})2^{-n}\bigg{)}^{p}=2^{n-m}\times\big{(}2^{\frac{m}{2}}\times 2^{-n}\big{)}^{p}

Here, the number of indices \ell of the set |{:ψm,k𝕋(/2n)0}||\{\ell:\psi^{\mathbb{T}}_{m,k}(\ell/2^{n})\neq 0\}| is equal to 2nm2^{n-m}, and the absolute values |ψm,k𝕋(/2n)||\psi^{\mathbb{T}}_{m,k}(\ell/2^{n})| for such \ell’s are all equal to 2m22^{\frac{m}{2}}.

In order to handle the coefficients of the cross-terms like i=1pθmi,kix,𝕋\prod_{i=1}^{p}\theta^{x,\mathbb{T}}_{m_{i},k_{i}} in (A.3), we fix pp pairs (m1,k1)(m_{1},k_{1}), \cdots, (mp,kp)(m_{p},k_{p}) such that at least one pair among the pp pairs is different, and consider the following two cases.
Case 1. Suppose that there exist two pairs with disjoint support, i.e., \exists 1i<jn1\leq i<j\leq n such that supp(ψmi,ki𝕋)supp(ψmj,kj𝕋)=\text{supp}(\psi^{\mathbb{T}}_{m_{i},k_{i}})\cap\text{supp}(\psi^{\mathbb{T}}_{m_{j},k_{j}})=\emptyset. Then, ψmi,ki𝕋(t)ψmj,kj𝕋(t)=0\psi^{\mathbb{T}}_{m_{i},k_{i}}(t)\psi^{\mathbb{T}}_{m_{j},k_{j}}(t)=0 for any tt, thus the coefficient of the cross-term in this case is zero.
Case 2. The only remaining case is supp(ψm1,k1𝕋)supp(ψm2,k2𝕋)supp(ψmp,kp𝕋)\text{supp}(\psi^{\mathbb{T}}_{m_{1},k_{1}})\subset\text{supp}(\psi^{\mathbb{T}}_{m_{2},k_{2}})\subset\cdots\subset\text{supp}(\psi^{\mathbb{T}}_{m_{p},k_{p}}), after some re-numbering of the indices. This is because if we have two pairs (mi,ki),(mj,kj)(m_{i},k_{i}),(m_{j},k_{j}) such that mi=mjm_{i}=m_{j} but kikjk_{i}\neq k_{j}, then the supports of ψmi,ki𝕋\psi^{\mathbb{T}}_{m_{i},k_{i}} and ψmj,kj𝕋\psi^{\mathbb{T}}_{m_{j},k_{j}} should be disjoint, which is of Case 1. Thus, the values of mim_{i} should be all different. The coefficient of the cross-term i=1pθmi,kix,𝕋\prod_{i=1}^{p}\theta^{x,\mathbb{T}}_{m_{i},k_{i}} in (A.3) is given by

(m1,k1),,(mp,kp)m1<<mp{:ψm1,k1𝕋(/2n)0}(i=1pψmi,ki𝕋(2n))2np\displaystyle\sum_{\begin{subarray}{c}(m_{1},k_{1}),\cdots,(m_{p},k_{p})\\ m_{1}<\cdots<m_{p}\end{subarray}}\sum_{\{\ell:\psi^{\mathbb{T}}_{m_{1},k_{1}}(\ell/2^{n})\neq 0\}}\bigg{(}\prod_{i=1}^{p}\psi^{\mathbb{T}}_{m_{i},k_{i}}(\frac{\ell}{2^{n}})\bigg{)}2^{-np}
=\displaystyle= (m1,k1),,(mp,kp)m1<<mp{:ψm1,k1𝕋(/2n)0}(ψm1,k1𝕋(2n)×i=2pψmi,ki𝕋(t1m1,k1))2np\displaystyle\sum_{\begin{subarray}{c}(m_{1},k_{1}),\cdots,(m_{p},k_{p})\\ m_{1}<\cdots<m_{p}\end{subarray}}\sum_{\{\ell:\psi^{\mathbb{T}}_{m_{1},k_{1}}(\ell/2^{n})\neq 0\}}\bigg{(}\psi^{\mathbb{T}}_{m_{1},k_{1}}(\frac{\ell}{2^{n}})\times\prod_{i=2}^{p}\psi^{\mathbb{T}}_{m_{i},k_{i}}(t^{m_{1},k_{1}}_{1})\bigg{)}2^{-np}
=\displaystyle= 2np(m1,k1),,(mp,kp)m1<<mpi=2pψmi,ki𝕋(t1m1,k1)({:ψm1,k1𝕋(/2n)0}ψm1,k1𝕋(2n))\displaystyle 2^{-np}\sum_{\begin{subarray}{c}(m_{1},k_{1}),\cdots,(m_{p},k_{p})\\ m_{1}<\cdots<m_{p}\end{subarray}}\prod_{i=2}^{p}\psi^{\mathbb{T}}_{m_{i},k_{i}}(t^{m_{1},k_{1}}_{1})\bigg{(}\sum_{\{\ell:\psi^{\mathbb{T}}_{m_{1},k_{1}}(\ell/2^{n})\neq 0\}}\psi^{\mathbb{T}}_{m_{1},k_{1}}(\frac{\ell}{2^{n}})\bigg{)}

where t1m1,k1t^{m_{1},k_{1}}_{1} is the left-end point of the support of ψm1,k1𝕋\psi^{\mathbb{T}}_{m_{1},k_{1}}. Now, the values of ψm1,k1𝕋(2n)\psi^{\mathbb{T}}_{m_{1},k_{1}}(\frac{\ell}{2^{n}}) take positive values for exactly half of the indices \ell in the set {:ψm1,k1𝕋(/2n)0}\{\ell:\psi^{\mathbb{T}}_{m_{1},k_{1}}(\ell/2^{n})\neq 0\}; for the remaining half of the indices \ell of the set, ψm1,k1𝕋(2n)\psi^{\mathbb{T}}_{m_{1},k_{1}}(\frac{\ell}{2^{n}}) take the same absolute, but negative values. Therefore, the last summation is zero.

This concludes that there are no cross-terms in (A.3) and the result (A.2) follows. ∎

Remark A.2.

For an odd integer pp, the argument in the proof of Proposition A.1 does not work in general, so we don’t expect such a simple expression of the pp-th variation in terms of Faber-Schauder coefficients. For an odd integer pp, the identity (A.3) becomes

[x]𝕋n(p)(T)==02n1|(m=0n1{k:ψm,k𝕋(/2n)0}θm,kx,𝕋ψm,k𝕋(2n)2n)p|.[x]_{\mathbb{T}^{n}}^{(p)}(T)=\sum_{\ell=0}^{2^{n}-1}\Bigg{|}\bigg{(}\sum_{m=0}^{n-1}\sum_{\{k:\psi^{\mathbb{T}}_{m,k}(\ell/2^{n})\neq 0\}}\theta^{x,\mathbb{T}}_{m,k}\psi^{\mathbb{T}}_{m,k}(\frac{\ell}{2^{n}})2^{-n}\bigg{)}^{p}\Bigg{|}.

After expanding the pp-th power inside the parenthesis, we can argue as before to conclude that the coefficients of the cross-terms of Case 1 still vanish. However, the pp-th power terms and Case 2 cross-terms don’t vanish, because the outermost summation and the absolute value symbol cannot be exchanged in the following equation.

[x]𝕋n(p)(T)=2np=02n1|m=0n1k=02m1(θm,kx,𝕋)p(ψm,k𝕋(2n))p+(m1,k1),,(mp,kp)m1<<mpi=1p[θmi,kix,𝕋ψmi,ki𝕋(2n)]|.\displaystyle[x]_{\mathbb{T}^{n}}^{(p)}(T)=2^{-np}\sum_{\ell=0}^{2^{n}-1}\Bigg{|}\sum_{m=0}^{n-1}\sum_{k=0}^{2^{m}-1}(\theta^{x,\mathbb{T}}_{m,k})^{p}\big{(}\psi^{\mathbb{T}}_{m,k}(\frac{\ell}{2^{n}})\big{)}^{p}+\sum_{\begin{subarray}{c}(m_{1},k_{1}),\cdots,(m_{p},k_{p})\\ m_{1}<\cdots<m_{p}\end{subarray}}\prod_{i=1}^{p}\Big{[}\theta^{x,\mathbb{T}}_{m_{i},k_{i}}\psi^{\mathbb{T}}_{m_{i},k_{i}}(\frac{\ell}{2^{n}})\Big{]}\Bigg{|}.

Thanks to Proposition A.1, in the case of p2p\in 2\mathbb{N}, we have the following strengthening of Theorem 4.3.

Theorem A.3.

For p2p\in 2\mathbb{N} in Theorem 4.3, xx has finite pp-th variation along 𝕋\mathbb{T}, i.e., the limit [x]𝕋n(p)(T)[x]^{(p)}_{\mathbb{T}^{n}}(T) exists, if and only if the limit ξn𝕋,(p)\xi^{\mathbb{T},(p)}_{n} exists as nn\to\infty. In particular, we have the identity

limn[x]𝕋n(p)(T)=12p11limnξn𝕋,(p).\lim_{n\to\infty}[x]^{(p)}_{\mathbb{T}^{n}}(T)=\frac{1}{2^{p-1}-1}\lim_{n\to\infty}\xi^{\mathbb{T},(p)}_{n}. (A.4)
Proof.

We recall from (4.5) and (A.2)

2np2×ξn𝕋,(p)\displaystyle 2^{\frac{np}{2}}\times\xi^{\mathbb{T},(p)}_{n} =k=02n1(θn,kx,𝕋)p,\displaystyle=\sum_{k=0}^{2^{n}-1}(\theta^{x,\mathbb{T}}_{n,k})^{p},
[x]𝕋n(p)(T)\displaystyle[x]^{(p)}_{\mathbb{T}^{n}}(T) =2n(p1)m=0n1k=02m12m(p21)(θm,kx,𝕋)p=2n(p1)m=0n12m(p1)ξm𝕋,(p).\displaystyle=2^{-n(p-1)}\sum_{m=0}^{n-1}\sum_{k=0}^{2^{m}-1}2^{m(\frac{p}{2}-1)}(\theta^{x,\mathbb{T}}_{m,k})^{p}=2^{-n(p-1)}\sum_{m=0}^{n-1}2^{m(p-1)}\xi^{\mathbb{T},(p)}_{m}.

Let us define

cn:=m=0n12m(p1)ξm𝕋,(p), and dn:=2n(p1),c_{n}:=\sum_{m=0}^{n-1}2^{m(p-1)}\xi^{\mathbb{T},(p)}_{m},\qquad\text{ and }\qquad d_{n}:=2^{n(p-1)},

then we have cn+1cn=2n(p1)ξn𝕋,(p)c_{n+1}-c_{n}=2^{n(p-1)}\xi^{\mathbb{T},(p)}_{n},  dn+1dn=2n(p1)(2p11)d_{n+1}-d_{n}=2^{n(p-1)}(2^{p-1}-1), and

cn+1cndn+1dn=ξn𝕋,(p)2p11,cndn=[x]𝕋n(p)(T).\displaystyle\frac{c_{n+1}-c_{n}}{d_{n+1}-d_{n}}=\frac{\xi^{\mathbb{T},(p)}_{n}}{2^{p-1}-1},\qquad\frac{c_{n}}{d_{n}}=[x]^{(p)}_{\mathbb{T}^{n}}(T).

From Lemma A.4 below, the limit of ξn𝕋,(p)\xi^{\mathbb{T},(p)}_{n} exists if and only if the limit of [x]𝕋n(p)(T)[x]^{(p)}_{\mathbb{T}^{n}}(T) exists, and the result (A.4) follows. ∎

Lemma A.4 (Theorems 1.22, 1.23 of [19]).

Let (an)(a_{n}) and (bn)(b_{n}) be real sequences such that (bn)(b_{n}) is strictly monotone, divergent, and satisfies limnbn+1bn=β1\lim_{n\to\infty}\frac{b_{n+1}}{b_{n}}=\beta\neq 1. Then, we have the following equivalence

limn(an+1anbn+1bn)=[,]limn(anbn)=[,].\lim_{n\rightarrow\infty}\bigg{(}\frac{a_{n+1}-a_{n}}{b_{n+1}-b_{n}}\bigg{)}=\ell\in[-\infty,\infty]\quad\Longleftrightarrow\quad\lim_{n\rightarrow\infty}\bigg{(}\frac{a_{n}}{b_{n}}\bigg{)}=\ell\in[-\infty,\infty]. (A.5)

The proof of Lemma A.4 can be found in [19]. We note that the implication ``\Longrightarrow^{\prime} of Lemma A.4 is known as the Stolz-Cesaro theorem.

By applying Lemma A.4 again to (4.25), we can further enhance the identity (A.4):

limn[x]𝕋n(p)=12p11limnξn(p)=(211p1)p2p11limnηn(p),\lim_{n\to\infty}[x]^{(p)}_{\mathbb{T}^{n}}=\frac{1}{2^{p-1}-1}\lim_{n\to\infty}\xi^{(p)}_{n}=\frac{\big{(}2^{1-\frac{1}{p}}-1\big{)}^{p}}{2^{p-1}-1}\lim_{n\to\infty}\eta^{(p)}_{n}, (A.6)

and the three limits exist if any one of them exists. This is a higher-order generalization to Proposition 2.1 of [18].

References

  • Ananova and Cont, [2017] Ananova, A. and Cont, R. (2017). Pathwise integration with respect to paths of finite quadratic variation. Journal de Mathématiques Pures et Appliquées, 107(6):737–757.
  • Bayraktar et al., [2023] Bayraktar, E., Das, P., and Kim, D. (2023). Hölder regularity and roughness: construction and examples. Accepted for publication in Bernoulli.
  • Boos, [2000] Boos, J. (2000). Classical and modern methods in summability. Clarendon Press.
  • Chiu and Cont, [2018] Chiu, H. and Cont, R. (2018). On pathwise quadratic variation for càdlàg functions. Electronic Communications in Probability, 23.
  • Ciesielski, [1960] Ciesielski, Z. (1960). On the isomorphisms of the spaces HαH_{\alpha} and mm. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 8:217–222.
  • [6] Cont, R. and Das, P. (2022a). Measuring the roughness of a signal. Working Paper.
  • [7] Cont, R. and Das, P. (2022b). Quadratic variation along refining partitions: Constructions and examples. Journal of Mathematical Analysis and Applications, 512(2):126 – 173.
  • Cont and Das, [2023] Cont, R. and Das, P. (2023). Quadratic variation and quadratic roughness. Bernoulli, 29(1):496 – 522.
  • Cont and Fournié, [2010] Cont, R. and Fournié, D.-A. (2010). Change of variable formulas for non-anticipative functionals on path space. J. Funct. Anal., 259(4):1043–1072.
  • Cont and Jin, [2024] Cont, R. and Jin, R. (2024). Fractional Ito calculus. Transactions of the American Mathematical Society, Series B, pages 727 – 761.
  • Cont and Perkowski, [2019] Cont, R. and Perkowski, N. (2019). Pathwise integration and change of variable formulas for continuous paths with arbitrary regularity. Transactions of the American Mathematical Society, 6:134–138.
  • Davis et al., [2018] Davis, M., Obłój, J., and Siorpaes, P. (2018). Pathwise stochastic calculus with local times. Ann. Inst. H. Poincaré Probab. Statist., 54(1):1–21.
  • Faber, [1910] Faber, G. (1910). Über die orthogonalfunktionen des herrn haar. Jahresbericht der Deutschen Mathematiker-Vereinigung, 19:104–112.
  • Föllmer, [1981] Föllmer, H. (1981). Calcul d’Itô sans probabilités. In Seminar on Probability, XV (Univ. Strasbourg, Strasbourg, 1979/1980) (French), volume 850 of Lecture Notes in Math., pages 143–150. Springer, Berlin.
  • Freedman, [1971] Freedman, D. (1971). Brownian Motion and Diffusion. Holden-Day series in probability and statistics. Holden-Day.
  • Haar, [1910] Haar, A. (1910). Zur Theorie der orthogonalen Funktionen systeme. Mathematische Annalen, 69:331–371.
  • Kim, [2022] Kim, D. (2022). Local time for continuous paths with arbitrary regularity. Journal of Theoretical Probability, 35(4):2540 – 2568.
  • Mishura and Schied, [2016] Mishura, Y. and Schied, A. (2016). Constructing functions with prescribed pathwise quadratic variation. Journal of Mathematical Analysis and Applications, 482(1):117–1337.
  • Muresan, [2009] Muresan, M. (2009). A concrete approach to classical analysis. CMS Books in Mathematics. Springer New York, NY, first edition.
  • Schauder, [1927] Schauder, J. (1927). Zur theorie stetiger abbildungen in funktionalräumen. Mathematische Zeitschrift, 26(1):47–65.
  • Schied, [2016] Schied, A. (2016). On a class of generalized Takagi functions with linear pathwise quadratic variation. Journal of Mathematical Analysis and Applications, 433(2):974–990.
  • Łochowski et al., [2021] Łochowski, R. M., Obłój, J., Prömel, D. J., and Siorpaes, P. (2021). Local times and Tanaka–Meyer formulae for càdlàg paths. Electronic Journal of Probability, 26:1 – 29.