This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

11institutetext: Department of Logic, Faculty of Arts, Charles University
Institute of Computer Science, Pod Vodárenskou veˇzˇ\check{e}\check{z}í 271/2 11email: [email protected]
https://www.cs.cas.cz/staff/lin/en

On Graded Concurrent PDL

CHUN-YU LIN 11
Abstract

Propositional Dynamic Logic, 𝖯𝖣𝖫\mathsf{PDL}, is a modal logic designed to formalize the reasoning about programs. By extending accessibility between states to states and state sets, concurrent propositional dynamic logic 𝖢𝖯𝖣𝖫\mathsf{CPDL}, is introduced to include concurrent programs due to Peleg and Goldblatt. We study a many-valued generalization of 𝖢𝖯𝖣𝖫\mathsf{CPDL} where the satisfiability and the reachability relation between states and state sets are graded over a finite Łukasiewicz chain. Finitely-valued dynamic logic has been shown to be useful in formalizing reasoning about program behaviors under uncertainty. We obtain completeness results for all finitely valued 𝖯𝖣𝖫\mathsf{PDL}.

Keywords:
Propositional dynamic logic Many valued modal logic Modal logic.

1 Introduction

Propositional dynamic logic, 𝖯𝖣𝖫\mathsf{PDL}, has been introduced as a logic of imperative computer programs [5], but it has found many applications in formalizing reasoning about actions in general. Many-valued versions of 𝖯𝖣𝖫\mathsf{PDL} aim at formalizing reasoning about action in contexts where imprecise concepts are involved (e.g., [12]). For example, goals may be specified using vague notions, or weights may be attached to actions depending on the amount of resources their execution consumes. The concurrent propositional dynamic logic 𝖢𝖯𝖣𝖫\mathsf{CPDL} [6, 10] extends 𝖯𝖣𝖫\mathsf{PDL} with an operator representing the parallel execution of two actions: [αβ]φ\scalebox{0.9}{{[}}\alpha\cap\beta\scalebox{0.9}{{]}}\varphi means that a successful parallel execution of action α\alpha and β\beta is guaranteed to make φ\varphi true.

In this paper, we outline a version with many values of 𝖢𝖯𝖣𝖫\mathsf{CPDL}. Our logic is based on propositional dynamic models in which formulas and accessibility relations are evaluated in finite Łukasiewicz chains; therefore, we extend the framework of [12] with the parallel execution operator. Our main technical result is a soundness and completeness theorem for logic.

2 Concurrent PDL over Łn

Let Π\Pi be a countable set of program variables π0,π1.\pi_{0},\pi_{1}.\ldots which are used to denote the atomic programs. The intrinsic meaning of atomic programs is not examined further. Instead, we concentrate on the complex programs generated by operations on the given ones. Let P be a countable set of propositional variables. Let Łn be a finite Łukasiewicz chain. The language n\mathcal{L}_{n} for concurrent propositional dynamic logic can be separated into two categories-the set of programs Πn\Pi_{n} and formulas Φn\Phi_{n} defined mutually recursively in Barckus-Naur form as follows:

  • Πn\Pi_{n} ππ¯|π0π1|π0π1|π0;π1|π|φ?\pi\coloneqq\bar{\pi}\;|\;\pi_{0}\cup\pi_{1}\;|\;\pi_{0}\cap\pi_{1}\;|\;\pi_{0};\pi_{1}\;|\;\pi^{*}\;|\;\varphi?

  • Φn\Phi_{n} φp|c¯|φ0φ1|φ0φ1|φ0φ1|[π]φ|πφ\varphi\coloneqq p\;|\;\bar{c}\;|\;\varphi_{0}\vee\varphi_{1}\;|\;\varphi_{0}\wedge\varphi_{1}\;|\;\varphi_{0}\to\varphi_{1}\;|\;[\pi]\varphi\;|\;\langle\pi\rangle\varphi

where π¯Π\bar{\pi}\in\Pi, pPp\in\textbf{P} and cc\in Łn. From [7], we know that two modal operators [π][\pi] and π\langle\pi\rangle are not interdefinable via ¬\neg in concurrent PDL.

The intended meanings for the operations on the programs are as follows.

  • π0;π1\pi_{0};\pi_{1} execute π0\pi_{0} then π1\pi_{1},

  • π0π1\pi_{0}\cup\pi_{1} execute π0\pi_{0} or π1\pi_{1} non-deterministically,

  • π0π1\pi_{0}\cap\pi_{1} execute π0\pi_{0} and π1\pi_{1} concurrently,

  • π\pi^{*} execute π\pi for some finite number of times,

  • φ?\varphi? test φ\varphi : if φ\varphi is true, then continue; otherwise fail.

In the context of concurrency, the results of execution of an initial state ss will be a set of states TT rather than a single state. Therefore, the accessibility relation on a set SS in Kripke semantics of propositional dynamic logic should be generalized to a set of pair s,T\langle s,T\rangle, with sSs\in S and TST\subseteq S. We then call the graded accessibility relation as a reachable Łn\textbf{\L}_{n}-relation. \theorem@notefont

Definition 1

A reachable Łn\textbf{\L}_{n}-relation on a set SS is a function from S×𝒫(S)S\times\mathcal{P}(S) to Łn\textbf{\L}_{n}.

The operations on reachable Łn\textbf{\L}_{n}-relation are defined as another reachable Łn\textbf{\L}_{n}-relations in the following paragraph. \theorem@notefont

Definition 2

Let R,QR,Q be two reachable Łn\textbf{\L}_{n}-relations on a set SS, sSs\in S and T,WST,W\subseteq S.

  • ι(s,T)={1if T={s}0otherwise\iota(s,T)=\begin{cases}1&\text{if }T=\{s\}\\ 0&\text{otherwise}\\ \end{cases},

  • (RQ)(s,T)=tT(R(s,T)Q(s,T))(R\cup Q)(s,T)=\bigvee_{t\in T}(R(s,T)\vee Q(s,T)),

  • (RQ)(s,T)=US{R(s,U)uUQ(u,Tu)|T=uUTu}(R\circ Q)(s,T)=\bigvee_{U\subseteq S}\bigvee\{R(s,U)\odot\bigodot_{u\in U}Q(u,T_{u})|T=\bigcup_{u\in U}T_{u}\},

  • R(0)=ιR^{(0)}=\iota, R(n+1)=ι(RR(n))R^{(n+1)}=\iota\cup(R\circ R^{(n)}), and R={R(n)|n0}R^{*}=\bigvee\{R^{(n)}|n\geq 0\},

  • (RQ)(s,TW)=R(s,T)Q(s,W)(R\otimes Q)(s,T\cup W)=R(s,T)\odot Q(s,W).

\theorem@notefont
Lemma 1

For any reachable Łn\textbf{\L}_{n}-relations Q,Q,R,RQ,Q^{\prime},R,R^{\prime} on a set SS, we have the following properties.

  1. 1.

    QQQ\leq Q^{\prime} implies RQRQR\circ Q\leq R\circ Q^{\prime}

  2. 2.

    (RR)Q=RQRQ(R\cup R^{\prime})\circ Q=R\circ Q\cup R^{\prime}\circ Q

  3. 3.

    R(n)R(n+1)R^{(n)}\leq R^{(n+1)}

A Łn\textbf{\L}_{n}-valuation ν\nu is any non-modal homomorphism from n\mathcal{L}_{n} to Łn\textbf{\L}_{n}, i.e. ν:nŁn\nu:\mathcal{L}_{n}\to\textbf{\L}_{n} such that ν(c¯)=c,\nu(\bar{c})=c, and ν(φψ)=ν(φ)ν(ψ)\nu(\varphi\star\psi)=\nu(\varphi)\ast\nu(\psi) where ,{,,}\star,\ast\in\{\wedge,\vee,\to\} denote the Boolean operations and Ln\textbf{L}_{n}-operations respectively. \theorem@notefont

Definition 3

Let Θ\Theta be a set of formulas and φ\varphi be a formula in n\mathcal{L}_{n}. We say that φ\varphi is a Łn\textbf{\L}_{n}-semantics consequence of Θ\Theta if

ν[Θ]={1} implies ν(φ)=1\nu[\Theta]=\{1\}\text{ implies }\nu(\varphi)=1

for any Łn\textbf{\L}_{n}-valuation ν\nu. In this case, we write ΘŁnφ\Theta\Vdash_{\textbf{\L}_{n}}\varphi.

We then introduce the world semantics for concurrent PDL.

\theorem@notefont
Definition 4

A Łn\textbf{\L}_{n}-frame is a pair =S,R\mathcal{F}=\langle S,R\rangle, where S is a nonempty set and R:ΠŁnS×𝒫(S)R:\Pi\to\textbf{\L}_{n}^{S\times\mathcal{P}(S)}. A Łn\textbf{\L}_{n}-model is M=S,R,VM=\langle S,R,V\rangle where S,R\langle S,R\rangle is a Łn\textbf{\L}_{n}-frame and V:PŁnSV:\textbf{P}\to{\textbf{\L}_{n}}^{S}. Given a Łn\textbf{\L}_{n}-model MM, the MM-interpretation is a function M:((Πn×S×𝒫(S))(Φn×S))Łn\mathcal{I}_{M}:((\Pi_{n}\times S\times\mathcal{P}(S))\cup(\Phi_{n}\times S))\to\textbf{\L}_{n} such that for any π¯Π,π0,π1Πn,sS,T𝒫(S),pP,cŁn\bar{\pi}\in\Pi,\pi_{0},\pi_{1}\in\Pi_{n},s\in S,T\in\mathcal{P}(S),p\in\textbf{P},c\in\textbf{\L}_{n}, and φ,ψn\varphi,\psi\in\mathcal{L}_{n} :

  • M(π¯,s,T)=R(π¯)(s,T)\mathcal{I}_{M}(\bar{\pi},s,T)=R(\bar{\pi})(s,T),

  • M(p,s)=V(p)(s)\mathcal{I}_{M}(p,s)=V(p)(s),

  • M(c¯,s)=c\mathcal{I}_{M}(\bar{c},s)=c,

  • M(φϕ,s)=M(s)M(s)\mathcal{I}_{M}(\varphi\star\phi,s)=\mathcal{I}_{M}(s)\ast\mathcal{I}_{M}(s) where ,{,,}\star,\ast\in\{\wedge,\vee,\to\} denote the boolean operations and Ln\textbf{L}_{n}-operations respectively,

  • M([π]φ,s)=TS(M(π,s,T)tTM(φ,t))\mathcal{I}_{M}([\pi]\varphi,s)=\bigwedge_{T\subseteq S}(\mathcal{I}_{M}(\pi,s,T)\to\bigwedge_{t\in T}\mathcal{I}_{M}(\varphi,t)),

  • M(πφ,s)=TS(M(π,s,T)tTM(φ,t))\mathcal{I}_{M}(\langle\pi\rangle\varphi,s)=\bigvee_{T\subseteq S}(\mathcal{I}_{M}(\pi,s,T)\odot\bigwedge_{t\in T}\mathcal{I}_{M}(\varphi,t))
    Denote M(π,s,T)\mathcal{I}_{M}(\pi,s,T) as a Ln\textbf{L}_{n}-reachable relation Rπ(s,T)R_{\pi}(s,T)

  • M(π0π1,s,T)=(Rπ0Rπ1)(s,T)\mathcal{I}_{M}(\pi_{0}\cup\pi_{1},s,T)=(R_{\pi_{0}}\cup R_{\pi_{1}})(s,T),

  • M(π0;π1,s,T)=(Rπ0Rπ1)(s,T)\mathcal{I}_{M}(\pi_{0};\pi_{1},s,T)=(R_{\pi_{0}}\circ R_{\pi_{1}})(s,T),

  • M(π0π1,s,T)=(Rπ0Rπ1)(s,T)\mathcal{I}_{M}(\pi_{0}\cap\pi_{1},s,T)=(R_{\pi_{0}}\otimes R_{\pi_{1}})(s,T),

  • M(π,s,T)=(Rπ)(s,T)\mathcal{I}_{M}(\pi^{*},s,T)=(R_{\pi})^{*}(s,T),

  • M(φ?,s,T)={M(φ,s)if T={s}0otherwise.\mathcal{I}_{M}(\varphi?,s,T)=\begin{cases}\mathcal{I}_{M}(\varphi,s)&\text{if }T=\{s\}\\ 0&\text{otherwise.}\\ \end{cases}

Clearly, fixed an sSs\in S, a MM-interpretation is a Łn\textbf{\L}_{n}-valuation. A formula φ\varphi is called valid in a Łn\textbf{\L}_{n}-model MM if M(φ,s)=1\mathcal{I}_{M}(\varphi,s)=1 for all sSs\in S.

3 Finite MV-chains

We briefly introduce the definitions and basic properties of finite MV-chains in this section. From more detailed introduction, we refer to the handbooks[4]. \theorem@notefont

Definition 5

A finite MV-chain is an algebraic structure

Łn=A,,,,,0¯,1¯\text{\L}_{n}=\langle A,\lor,\land,\to,\odot,\bar{0},\bar{1}\rangle

with |A|=n|A|=n such that :

  • A,,,0¯,1¯\langle A,\lor,\land,\bar{0},\bar{1}\rangle is a finite bounded lattice,

  • A,,1¯\langle A,\odot,\bar{1}\rangle is a finite commutative monoid,

  • Define the total ordering \leq as aba\leq b iff ab=ba\land b=b iff ab=aa\lor b=a,

  • \odot is residuated with \to, i.e. for all a,b,cAa,b,c\in A, abca\odot b\leq c iff bacb\leq a\to c,

  • (ab)(ba)=1¯(a\to b)\vee(b\to a)=\bar{1} for all a,bAa,b\in A.

  • ab=a(ab)a\wedge b=a\odot(a\to b) for all a,bAa,b\in A.

  • Define ¬aa0¯\neg a\coloneqq a\to\bar{0} satisfying ¬¬a=a\neg\neg a=a for all aAa\in A.

The above definition is an abstract formulation. According to Corollary 3.5.4 in [3], any finite MV-chain Łn\text{\L}_{n} is isomorphic to the following more concrete finite MV-chains Łn\textbf{\L}_{n} for any n2n\geq 2.

Łn={0n1,1n1,,n1n1},,,,0¯,1¯\textbf{\L}_{n}=\langle\{\frac{0}{n-1},\frac{1}{n-1},\ldots,\frac{n-1}{n-1}\},\to,\odot,\sim,\bar{0},\bar{1}\rangle

where abmax{0,a+b1}a\odot b\coloneqq max\{0,a+b-1\}, abmin{1,1a+b}a\to b\coloneqq min\{1,1-a+b\}, and a1a\sim a\coloneqq 1-a for any a,b{0n1,1n1,,n1n1}a,b\in\{\frac{0}{n-1},\frac{1}{n-1},\ldots,\frac{n-1}{n-1}\}. Note that ab(ab)b(=max{a,b})a\vee b\coloneqq(a\to b)\to b(=max\{a,b\}) and aba(ab)(=min{a,b})a\wedge b\coloneqq a\odot(a\to b)(=min\{a,b\}). The truncated addition \odot is the Łukasiewicz t-norm. In this article, we will use Łn\textbf{\L}_{n} as our definition of finite MV-chain.

4 Proof System

For each n2n\geq 2, the axiomatic system n\textbf{P\L}_{n} is a Hilbert-style proof system consists the following axiom schemata and rule :

  • φ(ψφ)\varphi\to(\psi\to\varphi),

  • (φψ)((ψχ)(φχ))(\varphi\to\psi)\to((\psi\to\chi)\to(\varphi\to\chi)),

  • ((φψ)ψ)((ψφ)φ)((\varphi\to\psi)\to\psi)\to((\psi\to\varphi)\to\varphi),

  • (¬ψ¬φ)(φψ)(\neg\psi\to\neg\varphi)\to(\varphi\to\psi),

  • cd¯c¯d¯\overline{c\ast d}\leftrightarrow\bar{c}\star\bar{d} where ,{,,}\star,\ast\in\{\wedge,\vee,\to\} denote the boolean operations and Ln\textbf{L}_{n}-operations respectively,

  • (MP): from φ\varphi and φψ\varphi\to\psi infer ψ\psi.

We give the definition of a formula φ\varphi being derivable in n\textbf{P\L}_{n} from a set of formulas Θ\Theta. \theorem@notefont

Definition 6

A formula φ\varphi in n\mathcal{L}_{n} is derivable from a set of formulas Θ\Theta in n\textbf{P\L}_{n} if there exists a finite sequence of formulas φ0,φ1,,φm\varphi_{0},\varphi_{1},\ldots,\varphi_{m} such that φm\varphi_{m} is φ\varphi and each φi\varphi_{i} for i<mi<m is either an instance of an axiom schemata, a member of Θ\Theta, or follows from φj\varphi_{j} and φk\varphi_{k} using MP for j,k<ij,k<i.

We use Θnφ\Theta\vdash_{\textbf{P\L}_{n}}\varphi to denote that φ\varphi is derivable in n\textbf{P\L}_{n} from a set of formulas Θ\Theta.

A slight modification of the proof of Proposition 6.4.5 in [4] gives the following theorem. \theorem@notefont

Theorem 4.1

Let Θ\Theta be a set of formulas and φ\varphi be a formula in n\mathcal{L}_{n}. We have

ΘŁnφ iff Θnφ\Theta\Vdash_{\textbf{\L}_{n}}\varphi\text{ iff }\Theta\vdash_{\textbf{P\L}_{n}}\varphi

Extend n\textbf{P\L}_{n} with axiom schemata and rules for modal formulas, we get another Hilbert-style proof system called n\textbf{D\L}_{n}. \theorem@notefont

Definition 7

For each n2n\geq 2, define n\textbf{D\L}_{n} to be the Hilbert-style proof system that extends n\textbf{P\L}_{n} with the following axiomatic schemata and rules :

  • [π]1¯[\pi]\bar{1},

  • [π]φ[π]ψ[π](φψ)[\pi]\varphi\wedge[\pi]\psi\to[\pi](\varphi\wedge\psi),

  • [π](c¯φ)(c¯[π]φ)[\pi](\bar{c}\to\varphi)\leftrightarrow(\bar{c}\to[\pi]\varphi),

  • [π](φc¯)(πφc¯)[\pi](\varphi\to\bar{c})\leftrightarrow(\langle\pi\rangle\varphi\to\bar{c}),

  • [π0;π1]φ[π0][π1]φ[\pi_{0};\pi_{1}]\varphi\leftrightarrow[\pi_{0}][\pi_{1}]\varphi,

  • [π0π1]φ[π0]φ[π1]φ[\pi_{0}\cup\pi_{1}]\varphi\leftrightarrow[\pi_{0}]\varphi\wedge[\pi_{1}]\varphi,

  • [π0π1]φ(π01¯[π1]φ)(π11¯[π1]φ)[\pi_{0}\cap\pi_{1}]\varphi\leftrightarrow(\langle\pi_{0}\rangle\bar{1}\to[\pi_{1}]\varphi)\wedge(\langle\pi_{1}\rangle\bar{1}\to[\pi_{1}]\varphi),

  • [π]φφ[π][π]φ[\pi^{*}]\varphi\rightarrow\varphi\wedge[\pi][\pi^{*}]\varphi,

  • [π](φ[π]φ)(φ[π]φ)[\pi^{*}](\varphi\to[\pi]\varphi)\to(\varphi\to[\pi^{*}]\varphi)

  • [φ?]ψ(φψ)[\varphi?]\psi\leftrightarrow(\varphi\to\psi),

  • π0;π1φπ0π1φ\langle\pi_{0};\pi_{1}\rangle\varphi\leftrightarrow\langle\pi_{0}\rangle\langle\pi_{1}\rangle\varphi,

  • π0π1φπ0φπ1φ\langle\pi_{0}\cup\pi_{1}\rangle\varphi\leftrightarrow\langle\pi_{0}\rangle\varphi\vee\langle\pi_{1}\rangle\varphi,

  • π0π1φπ0φπ1φ\langle\pi_{0}\cap\pi_{1}\rangle\varphi\leftrightarrow\langle\pi_{0}\rangle\varphi\wedge\langle\pi_{1}\rangle\varphi,

  • φππφπφ\varphi\vee\langle\pi\rangle\langle\pi^{*}\rangle\varphi\rightarrow\langle\pi^{*}\rangle\varphi,

  • [π](πφφ)(πφφ)[\pi^{*}](\langle\pi\rangle\varphi\to\varphi)\to(\langle\pi^{*}\rangle\varphi\to\varphi),

  • φ?ψ(φψ)\langle\varphi?\rangle\psi\leftrightarrow(\varphi\wedge\psi),

  • [π]0¯π1¯[\pi]\bar{0}\vee\langle\pi\rangle\bar{1}.

The first four axioms and monotonicity rule are adopted from [13] which characterizes the minimum many-valued bimodal logics over finite residuated lattices. The rest is the standard axiomatization of concurrent PDL [7]. We let ThmnThm_{n} to be the set of theorems of n\textbf{D\L}_{n}, i.e.

Thmn={φn|nφ}Thm_{n}=\{\varphi\in\mathcal{L}_{n}\;|\;\vdash_{\textbf{D\L}_{n}}\varphi\}

5 Canonical Model

In this section, we introduce the canonical models and filtration technique for connecting finite models and typical models. For nn\in\mathbb{N}, n=Sn,n\mathcal{F}_{n}=\langle S^{n},\mathcal{I}^{n}\rangle consists of the set

Sn={s:nŁn|s[Thmn]={1¯}}S^{n}=\{s:\mathcal{L}_{n}\to\textbf{\L}_{n}\;|\;s[Thm_{n}]=\{\bar{1}\}\}

and

n:Πn×Sn×P(Sn)Φn×SnŁn\mathcal{I}_{n}:\Pi_{n}\times S^{n}\times P(S^{n})\cup\Phi_{n}\times S^{n}\to\textbf{\L}_{n}

such that n(φ,s)=s(φ)\mathcal{I}^{n}(\varphi,s)=s(\varphi) for all sSns\in S^{n},

n(π,s,T)=φΦn{(s([π]φ)tTt(φ))(tTt(φ)s(πφ))}.\mathcal{I}^{n}(\pi,s,T)=\bigwedge_{\varphi\in\Phi_{n}}\{(s([\pi]\varphi)\to\wedge_{t\in T}t(\varphi))\wedge(\wedge_{t\in T}t(\varphi)\to s(\langle\pi\rangle\varphi))\}.

The canonical model in is cn=Sn,En,Vn\mathcal{M}^{n}_{c}=\langle S^{n},E^{n},V^{n}\rangle where En(π)(s,T)=n(π,s,T)E^{n}(\pi)(s,T)=\mathcal{I}^{n}(\pi,s,T) and Vn(p)(s)=s(p)V^{n}(p)(s)=s(p) \theorem@notefont

Definition 8

A set of formulas Γ\Gamma of n\mathcal{L}_{n} is called Fisher-Ladner clsoed if

  • Γ\Gamma is closed under subformulas,

  • [π0π1]φΓ[\pi_{0}\cup\pi_{1}]\varphi\in\Gamma implies [π0]φ,[π1]φΓ[\pi_{0}]\varphi,[\pi_{1}]\varphi\in\Gamma,

  • [π0π1]φΓ[\pi_{0}\cap\pi_{1}]\varphi\in\Gamma implies [π0]φ,[π1]φ,[π0]1¯,[π1]1¯Γ[\pi_{0}]\varphi,[\pi_{1}]\varphi,[\pi_{0}]\bar{1},[\pi_{1}]\bar{1}\in\Gamma,

  • [π0;π1]φΓ[\pi_{0};\pi_{1}]\varphi\in\Gamma implies [π0][π1]φΓ[\pi_{0}][\pi_{1}]\varphi\in\Gamma,

  • [π]φΓ[\pi^{*}]\varphi\in\Gamma implies [π][π]φΓ[\pi][\pi^{*}]\varphi\in\Gamma,

  • [ψ?]φΓ[\psi?]\varphi\in\Gamma implies ψφΓ\psi\to\varphi\in\Gamma,

  • π0π1φΓ\langle\pi_{0}\cup\pi_{1}\rangle\varphi\in\Gamma implies π0φ,π1φΓ\langle\pi_{0}\rangle\varphi,\langle\pi_{1}\rangle\varphi\in\Gamma,

  • π0π1φΓ\langle\pi_{0}\cap\pi_{1}\rangle\varphi\in\Gamma implies π0φ,π1φΓ\langle\pi_{0}\rangle\varphi,\langle\pi_{1}\rangle\varphi\in\Gamma,

  • π0;π1φΓ\langle\pi_{0};\pi_{1}\rangle\varphi\in\Gamma implies π0π1φΓ\langle\pi_{0}\rangle\langle\pi_{1}\rangle\varphi\in\Gamma,

  • πφΓ\langle\pi^{*}\rangle\varphi\in\Gamma implies ππφΓ\langle\pi\rangle\langle\pi^{*}\rangle\varphi\in\Gamma,

  • ψ?φΓ\langle\psi?\rangle\varphi\in\Gamma implies ψφΓ\psi\wedge\varphi\in\Gamma

The closure of a set Γ\Gamma of formulas is the smallest closed set containing Γ\Gamma as a subset. Also, we write FL(φ)FL(\varphi) as the closure of the set {φ}\{\varphi\}. Given any SnS^{n} and s,tSns,t\in S^{n}, we define a relation Γ\sim_{\Gamma} with respect to a Γ\Gamma as follows :

sΓtφΓ(s(φ)=t(φ)).s\sim_{\Gamma}t\iff\forall\varphi\in\Gamma(s(\varphi)=t(\varphi)).

The equivalence class of ss under Γ\sim_{\Gamma} is defined as |s|Γ={tSn|sΓt}|s|_{\Gamma}=\{t\in S^{n}\;|\;s\sim_{\Gamma}t\}. \theorem@notefont

Definition 9

Let Γ\Gamma be a finite closed subset of n\mathcal{L}_{n}. The filtration of cn\mathcal{M}_{c}^{n} through Γ\Gamma is c,Γn=SΓn,EΓn,VΓn\mathcal{M}_{c,\Gamma}^{n}=\langle S^{n}_{\Gamma},E^{n}_{\Gamma},V^{n}_{\Gamma}\rangle where SΓn={|s|Γ|sSn}S^{n}_{\Gamma}=\{|s|_{\Gamma}\;|\;s\in S^{n}\},|T|Γ={|t|Γ|tT}|T|_{\Gamma}=\{|t|_{\Gamma}\;|\;t\in T\} for TSnT\subseteq S^{n}, EΓn(π)(|s|Γ,|T|Γ)E^{n}_{\Gamma}(\pi)(|s|_{\Gamma},|T|_{\Gamma}) is

φΦn{(s([π]φ)tTt(φ))(tTt(φ)s(πφ))|[π]φ,πφΓ}\bigwedge_{\varphi\in\Phi_{n}}\{(s([\pi]\varphi)\to\wedge_{t\in T}t(\varphi))\wedge(\wedge_{t\in T}t(\varphi)\to s(\langle\pi\rangle\varphi))\;|\;[\pi]\varphi,\langle\pi\rangle\varphi\in\Gamma\}

VΓn(p)(|sΓ|)={Vn(p)(s)if pΓ0otherwise.V^{n}_{\Gamma}(p)(|s_{\Gamma}|)=\begin{cases}V^{n}(p)(s)&\text{if }p\in\Gamma\\ 0&\text{otherwise.}\\ \end{cases}

6 Soundness and Completeness

In this section, we demonstrate that for each n>1n>1, the proof system n\textbf{D\L}_{n} is sound and complete with respect to the filtraion models. To prove completeness, we need to show that for all φ\varphi and all sSns\in S^{n}, n(φ,s)=Γn(φ,|s|Γ)\mathcal{I}^{n}(\varphi,s)=\mathcal{I}^{n}_{\Gamma}(\varphi,|s|_{\Gamma}). To achieve this goal, we define ΠΓ,n\Pi_{\Gamma,n} as the smallest set of program commands that includes all atomic programs, test occurring in members of Γ\Gamma, and is closed under program operations ;,,,;,\cup,\cap, and *. Then we define Γn:ΠΓ,n×SΓn×P(Sn)Γ×SΓnŁn\mathcal{I}^{n}_{\Gamma}:\Pi_{\Gamma,n}\times S^{n}_{\Gamma}\times P(S^{n})\cup\Gamma\times S^{n}_{\Gamma}\to\text{\L}_{n} as for Łn\textbf{\L}_{n}-models. \theorem@notefont

Lemma 2

For all nωn\in\omega, πΠn\pi\in\Pi_{n}, and all sSns\in S_{n}, we have the following identities:

  1. 1.

    For all φΦn\varphi\in\Phi_{n}, s([π]φ)=TSn{n(π,s,T)tTt(φ)}s([\pi]\varphi)=\bigwedge_{T\subseteq S^{n}}\{\mathcal{I}^{n}(\pi,s,T)\to\wedge_{t\in T}t(\varphi)\}, s(πφ)=TSn{n(π,s,T)tTt(φ)}s(\langle\pi\rangle\varphi)=\bigvee_{T\subseteq S^{n}}\{\mathcal{I}^{n}(\pi,s,T)\odot\ \wedge_{t\in T}t(\varphi)\},

  2. 2.

    For all TSnT\subseteq S^{n}, n(π,s,T)=ψΦn{tTt(ψ)|s([π]ψ)=1 and s(πψ)=1}\mathcal{I}^{n}(\pi,s,T)=\bigwedge_{\psi\in\Phi_{n}}\{\wedge_{t\in T}t(\psi)\;|\;s([\pi]\psi)=1\mbox{ and }s(\langle\pi\rangle\psi)=1\}.

\theorem@notefont
Lemma 3

s(φ)=1s(\varphi)=1 for all sSns\in S^{n} iff φtheoremn\varphi\in theorem_{n}.

\theorem@notefont
Proof

The if direction holds by the definition of SnS^{n}. Suppose that nφ\nvdash_{\textbf{D\L}_{n}}\varphi, then theoremnnφtheorem_{n}\nvdash_{\textbf{D\L}_{n}}\varphi. From Theorem 4.1, there exists a Łn\textbf{\L}_{n}-homomorphism hh such that h[theoremn]{1}h[theorem_{n}]\subseteq\{1\} but h(φ)<1h(\varphi)<1 which is a contradiction.

\theorem@notefont
Lemma 4

For all nωn\in\omega and all finite closed ΓΦn\Gamma\subseteq\Phi_{n}

  1. 1.

    n(π,s,T)Γn(π,|s|Γ,|T|Γ)\mathcal{I}^{n}(\pi,s,T)\leq\mathcal{I}^{n}_{\Gamma}(\pi,|s|_{\Gamma},|T|_{\Gamma}),

  2. 2.

    If [π]φΓ[\pi]\varphi\in\Gamma, then s([π]φ)Γn(π,|s|Γ,|T|Γ)tTt(φ)s([\pi]\varphi)\leq\mathcal{I}^{n}_{\Gamma}(\pi,|s|_{\Gamma},|T|_{\Gamma})\to\wedge_{t\in T}t(\varphi),

  3. 3.

    If πφΓ\langle\pi\rangle\varphi\in\Gamma, then s(πφ)Γn(π,|s|Γ,|T|Γ)tTt(φ)s(\langle\pi\rangle\varphi)\leq\mathcal{I}^{n}_{\Gamma}(\pi,|s|_{\Gamma},|T|_{\Gamma})\odot\wedge_{t\in T}t(\varphi)

\theorem@notefont
Theorem 6.1

For all nωn\in\omega and all finite closed ΓΦn\Gamma\subseteq\Phi_{n}, if φΓ\varphi\in\Gamma, then n(φ,s)=Γn(φ,|s|Γ)\mathcal{I}^{n}(\varphi,s)=\mathcal{I}^{n}_{\Gamma}(\varphi,|s|_{\Gamma}).

\theorem@notefont
Proof

By induction on the complexity of formulas φ\varphi and using Lemma4.

Now, we are ready to the soundness and completeness theorem. \theorem@notefont

Theorem 6.2

For all n>1n>1 and φn\varphi\in\mathcal{L}_{n},

Łnφ iff nφ\Vdash_{\textbf{\L}_{n}}\varphi\mbox{ iff }\vdash_{\textbf{D\L}_{n}}\varphi
\theorem@notefont
Proof

For the only if direction, we assume that nφ\nvdash_{\textbf{D\L}_{n}}\varphi. Consider the FL-closure of {φ}\{\varphi\} and denote it as Γ\Gamma. From lemma 3, there exists sSns\in S^{n} such that s(φ)s(\varphi). Consider the canonical model c,Γn\mathcal{M}^{n}_{c,\Gamma} constructed as above. Using Theorem 6.1, we have c,ΓnŁnφ\mathcal{M}^{n}_{c,\Gamma}\nVdash_{\textbf{\L}_{n}}\varphi which contradicts to the assumption.

7 Conclusion

We studied many-valued concurrent propositional dynamic logics through relational models where both statisfaction of formulas and accessibility relations are evaluated in finite MV-chains. We provides a sound and weakly complete axiomatization based on extending the framework from many-valued bimodal logics in [13] and classical concurrent PDL in [7]. We believe this research direction lays the groundwork for future investigations.

For the future research directions, let us mention two here. Firstly, the revision and extension of PDL toward modeling concurrency have been studied in various models such as π\pi-calculus [2], Petri nets [9], and operational semantics [1]. It would be interesting to study the PDL in the setting of concurrency with imprecise concepts. Secondly, in light of [11] to use the finitely weighted Kleene algebra with tests as an algebraic semantic for graded PDL, it is interesting to explore the algebraic framework of graded concurrent PDL. A first step of this goal would be expanding the concurrent Kleene algebras with tests proposed in [8].

7.0.1 Acknowledgements

This work was supported by the Czech Science Foundation grant 22-16111S for the project GRADLACT: Graded Logics of Action and Charles University research grant GAUK 101724 for the project Zkoumání základu uvažování v racionálních interakcích za nejistých podmínek.

References

  • [1] Matteo Acclavio, Fabrizio Montesi, and Marco Peressotti. On propositional dynamic logic and concurrency. arXiv preprint arXiv:2403.18508, 2024.
  • [2] Mario RF Benevides and L Menasché Schechter. A propositional dynamic logic for concurrent programs based on the π\pi-calculus. Electronic Notes in Theoretical Computer Science, 262:49–64, 2010.
  • [3] Roberto L Cignoli, Itala M d’Ottaviano, and Daniele Mundici. Algebraic foundations of many-valued reasoning, volume 7. Springer Science & Business Media, 2013.
  • [4] Petr Cintula, Petr Hájek, and Carles Noguera. Handbook of mathematical fuzzy logic (in 2 volumes), Volume 37, 38 of Studies in Logic, Mathematical Logic and Foundations, 2011.
  • [5] Michael J. Fischer and Richard E. Ladner. Propositional dynamic logic of regular programs. Journal of Computer and System Sciences, 18:194–211, 1979.
  • [6] Robert Goldblatt. Parallel action: Concurrent dynamic logic with independent modalities. Studia logica, 51:551–578, 1992.
  • [7] Robert Goldblatt. Parallel action: Concurrent dynamic logic with independent modalities. Studia logica, 51(3):551–578, 1992.
  • [8] Peter Jipsen. Concurrent kleene algebra with tests. In Relational and Algebraic Methods in Computer Science: 14th International Conference, RAMiCS 2014, Marienstatt, Germany, April 28–May 1, 2014. Proceedings 14, pages 37–48. Springer, 2014.
  • [9] Bruno Lopes, Mario Benevides, and Edward Hermann Haeusler. Propositional dynamic logic for petri nets. Logic Journal of the IGPL, 22(5):721–736, 2014.
  • [10] David Peleg. Concurrent dynamic logic. J. ACM, 34(2):450–479, April 1987.
  • [11] Igor Sedlár. Completeness of finitely weighted kleene algebra with tests. In International Workshop on Logic, Language, Information, and Computation, pages 210–224. Springer, 2024.
  • [12] Igor Sedlár. Decidability and Complexity of Some Finitely-valued Dynamic Logics. In Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning (KR 2021), pages 570–580, 11 2021.
  • [13] Amanda Vidal, Francesc Esteva, and Lluis Godo. On finite-valued bimodal logics with an application to reasoning about preferences. In Advances in Fuzzy Logic and Technology 2017, pages 505–517. Springer, 2017.