This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

On Diameters of Cayley Graphs over Matrix Groups

Eitan Porat
Abstract.

We establish that for the matrix groups G=GLn(𝔽p)G=\mathrm{GL}_{n}\left(\mathbb{F}_{p}\right) or G=SLn(𝔽p)G=\mathrm{SL}_{n}\left(\mathbb{F}_{p}\right), there exist absolute constants c(0,1)c\in\left(0,1\right) and C>0C>0 such that any symmetric generating set AA with |A||G|1c\left|A\right|\geq\left|G\right|^{1-c} has a covering number Cn2\leq Cn^{2}. This result is sharp up to the value of the constant C>0C>0.

1. Introduction

For a finite group GG and a symmetric generating set AGA\subseteq G (in the sense that A1=AA^{-1}=A), the Cayley graph Cay(G,A)\mathrm{Cay}\left(G,A\right) is defined as a connected graph with vertex set GG and edge set

{(g,ag)gG,aA}.\left\{\left(g,ag\right)\mid g\in G,a\in A\right\}.

The diameter of this graph is the smallest integer kk such that every element of GG can be expressed as a product of at most kk elements from AA. The diameter of the group is denoted by diam(G)\mathrm{diam}\left(G\right), and it represents the maximum among all Cayley graph diameters Cay(G,A)\mathrm{Cay}\left(G,A\right) where AA runs through all generating sets of GG.

This becomes an intrinsic property of GG, rather than being tied to the Cayley graph associated with GG or any specific generating set.

The diameter of Cay(G,A)\mathrm{Cay}\left(G,A\right) is referred to as the covering number of AA, denoted by cn(A)=min{k:Ak=G}\mathrm{cn}\left(A\right)=\min\left\{k:A^{k}=G\right\}. Babai [1] proposed the following conjecture:

Conjecture 1.

If GG is a non-Abelian finite simple group, then diam(G)=(log|G|)O(1)\mathrm{diam}\left(G\right)=\left(\log\left|G\right|\right)^{O\left(1\right)}.

This conjecture remains one of the major unresolved problems in combinatorics. Liebeck and Shalev [7] confirmed the conjecture when the generating set AA is a normal set. The conjecture was proven by Helfgott [5] for the case G=SL2(𝔽p)G=\mathrm{SL}_{2}\left(\mathbb{F}_{p}\right), and subsequently, it was verified for finite simple groups of Lie type and bounded rank independently by Pyber and Szabo [8] and Breuillard, Green, and Tao [2]. It remains to prove Babai’s conjecture for alternating groups and for classical groups of unbounded rank. A special case of this conjecture was proven by Halasi [4] for the case where G=SLn(𝔽p)G=\mathrm{SL}_{n}\left(\mathbb{F}_{p}\right) and AA is a generating set that includes a transvection, defined as a matrix of the form I+xI+x, where xx is a rank 1 matrix.

In this paper, we prove a special case of this conjecture for the scenario where GG is the general linear group GLn(𝔽p)\mathrm{GL}_{n}\left(\mathbb{F}_{p}\right) and AA is a sufficiently large generating set.

Theorem 2.

If |A||GLn(𝔽p)|1c\left|A\right|\geq\left|\mathrm{GL}_{n}\left(\mathbb{F}_{p}\right)\right|^{1-c} for some 0<c<10<c<1, then for some absolute constant C>0C>0, cn(A)Cn2\mathrm{cn}(A)\leq Cn^{2}.

Remark 3.

The proof can be readily adapted to work with G=SLn(𝔽p)G=\mathrm{SL}_{n}\left(\mathbb{F}_{p}\right).

Remark 4.

Although SLn(𝔽p)\mathrm{SL}_{n}\left(\mathbb{F}_{p}\right) is not a simple group, the theorem also holds for PSLn(𝔽p)\mathrm{PSL}_{n}\left(\mathbb{F}_{p}\right).

This result is sharp up to the absolute constant CC. Our proof relies on the concept of a groumvirate, which is a conjugate of the natural embedding of GLnt(𝔽p)\mathrm{\mathrm{G}L}_{n-t}\left(\mathbb{F}_{p}\right) in GLn(𝔽p)\mathrm{\mathrm{G}L}_{n}\left(\mathbb{F}_{p}\right), i.e., the subgroup

{(It×t00X)XGLnt(𝔽p)}\left\{\begin{pmatrix}I_{t\times t}&0\\ 0&X\end{pmatrix}\mid X\in\mathrm{\mathrm{G}L}_{n-t}\left(\mathbb{F}_{p}\right)\right\}

where 0tn0\leq t\leq n. We define μ(A):=|A||GLn(𝔽p)|\mu\left(A\right):=\frac{\left|A\right|}{\left|\mathrm{\mathrm{G}L}_{n}\left(\mathbb{F}_{p}\right)\right|} as the uniform measure on GLn(𝔽p)\mathrm{GL}_{n}\left(\mathbb{F}_{p}\right).

Theorem 5 (Evra, Kindler, and Lifshitz [3]).

There exists a d>0d>0 such that for every subset AA of SLn(𝔽p)\mathrm{SL}_{n}\left(\mathbb{F}_{p}\right), the set AA1AA1AA^{-1}AA^{-1} contains a groumvirate with density at least μ(A)d\mu\left(A\right)^{d}.

For a given tt,

μ({(It×t00X)XGLnt(𝔽p)})q(nt)2|GLn(𝔽p)|=q(nt)2qn2(q1)nq(nt)2n2\mu\left(\left\{\begin{pmatrix}I_{t\times t}&0\\ 0&X\end{pmatrix}\mid X\in\mathrm{GL}_{n-t}\left(\mathbb{F}_{p}\right)\right\}\right)\leq\frac{q^{\left(n-t\right)^{2}}}{\left|\mathrm{\mathrm{G}L}_{n}\left(\mathbb{F}_{p}\right)\right|}=\frac{q^{\left(n-t\right)^{2}}}{q^{n^{2}}\left(q-1\right)^{n}}\leq q^{\left(n-t\right)^{2}-n^{2}}

Thus, to contain a groumvirate on ntn-t variables, the density of AA must exceed,

μ(A)q(nt)2n2d\mu\left(A\right)\geq q^{\frac{\left(n-t\right)^{2}-n^{2}}{d}}

That is

|A|q(nt)2n2dqn2=q(11d)n2+1d(nt)2\left|A\right|\geq q^{\frac{\left(n-t\right)^{2}-n^{2}}{d}}q^{n^{2}}=q^{\left(1-\frac{1}{d}\right)n^{2}+\frac{1}{d}\left(n-t\right)^{2}}

For t=εnt=\varepsilon n,

|A|q(1(1(1ε)2d))n2=q(1cε)n2=Ω(|GLn(𝔽p)|1cε)\left|A\right|\geq q^{\left(1-\left(\frac{1-\left(1-\varepsilon\right)^{2}}{d}\right)\right)n^{2}}=q^{\left(1-c_{\varepsilon}\right)n^{2}}=\Omega\left(\left|\mathrm{GL}_{n}\left(\mathbb{F}_{p}\right)\right|^{1-c_{\varepsilon}}\right)

where cε=1(1ε)2dc_{\varepsilon}=\frac{1-\left(1-\varepsilon\right)^{2}}{d}. The bound is non-trivial if ε>0\varepsilon>0. For the remainder of the paper, we take ε=14\varepsilon=\frac{1}{4} and |A||GLn(𝔽p)|1cε\left|A\right|\geq\left|\mathrm{GL}_{n}\left(\mathbb{F}_{p}\right)\right|^{1-c_{\varepsilon}}, and we will often omit explicitly stating this assumption.

In this paper, we assume that the groumvirate is expressed in the standard basis, i.e., {(It×t00X)XGLnt(𝔽p)}=ItGLnt(𝔽p)\left\{\begin{pmatrix}I_{t\times t}&0\\ 0&X\end{pmatrix}\mid X\in\mathrm{GL}_{n-t}\left(\mathbb{F}_{p}\right)\right\}=I_{t}\otimes\mathrm{GL}_{n-t}\left(\mathbb{F}_{p}\right) for some tt. Since AA is symmetric, AA1AA1=A4AA^{-1}AA^{-1}=A^{4}. We may assume without loss of generality that IAI\in A (this does not alter the asymptotics since IAA1I\in AA^{-1}).

Corollary 6.

Suppose |A||GLn(𝔽p)|1cε\left|A\right|\geq\left|\mathrm{GL}_{n}\left(\mathbb{F}_{p}\right)\right|^{1-c_{\varepsilon}}, A4{(Iϵn00X)XGL(1ε)n(𝔽p)}A^{4}\supseteq\left\{\begin{pmatrix}I_{\epsilon n}&0\\ 0&X\end{pmatrix}\mid X\in\mathrm{\mathrm{GL}}_{(1-\varepsilon)n}\left(\mathbb{F}_{p}\right)\right\}, up to a change of basis.

This groumvirate acts as GLnt(𝔽p)\mathrm{GL}_{n-t}\left(\mathbb{F}_{p}\right) on a subspace of 𝔽pn\mathbb{F}_{p}^{n}. Our goal is to upgrade it to an action on the whole space.

We define the standard basis to be e1=(100),e2=(010),,en=(001)e_{1}=\begin{pmatrix}1\\ 0\\ \vdots\\ 0\end{pmatrix},e_{2}=\begin{pmatrix}0\\ 1\\ \vdots\\ 0\end{pmatrix},\dots,e_{n}=\begin{pmatrix}0\\ 0\\ \vdots\\ 1\end{pmatrix}. The span of a set of vectors v1,,vkv_{1},\dots,v_{k} is denoted by v1,,vk\left\langle v_{1},\dots,v_{k}\right\rangle. For a set S[n]S\subseteq[n], denote eS={ei:iS}e_{S}=\{e_{i}:i\in S\} and eS¯={ei:iS}e_{\bar{S}}=\{e_{i}:i\notin S\}. We define the projection of a vector vv onto e1,,et\left\langle e_{1},\dots,e_{t}\right\rangle by π1(v)\pi_{1}\left(v\right) and its projection onto et+1,,en\left\langle e_{t+1},\dots,e_{n}\right\rangle by π2(v)\pi_{2}\left(v\right). Additionally, we can modify the π2\pi_{2} component of vectors using MA4M\in A^{4}.

Lemma 7.

Let {v1,,vk}et+1,,en\{v_{1},\dots,v_{k}\}\subseteq\left\langle e_{t+1},\dots,e_{n}\right\rangle and {v1,,vk}et+1,,en\{v^{\prime}_{1},\dots,v^{\prime}_{k}\}\subseteq\left\langle e_{t+1},\dots,e_{n}\right\rangle, for kntk\leq n-t. Assume that {v1,,vk}\{v_{1},\dots,v_{k}\} is a linearly independent set and {v1,,vk}\{v_{1}^{\prime},\dots,v_{k}^{\prime}\} is also linearly independent; then there exists MA4M\in A^{4} such that vi=viv_{i}=v^{\prime}_{i}, which fixes {e1,,et}\{e_{1},\dots,e_{t}\}.

Proof.

Since {v1,,vk}et+1,,en\left\{v_{1},\dots,v_{k}\right\}\subseteq\left\langle e_{t+1},\dots,e_{n}\right\rangle and {v1,,vk}et+1,,en\{v_{1}^{\prime},\dots,v_{k}^{\prime}\}\subseteq\left\langle e_{t+1},\dots,e_{n}\right\rangle are linearly independent sets, there exists an invertible linear transformation T:et+1,,enet+1,,enT:\left\langle e_{t+1},\dots,e_{n}\right\rangle\to\left\langle e_{t+1},\dots,e_{n}\right\rangle such that T(vi)=viT\left(v_{i}\right)=v_{i}^{\prime} for every 1ik1\leq i\leq k. We can extend TT to a transformation T:𝔽pn𝔽pnT^{\prime}:\mathbb{F}_{p}^{n}\to\mathbb{F}_{p}^{n} such that T(ei)=eiT\left(e_{i}\right)=e_{i} for every 1it1\leq i\leq t. Define MM to be a matrix representation of TT^{\prime} in the standard basis, that is M=[T]e1,,ene1,,enM=\left[T^{\prime}\right]_{\left\langle e_{1},\dots,e_{n}\right\rangle}^{\left\langle e_{1},\dots,e_{n}\right\rangle}. By construction, MItGLnt(𝔽𝕡)A4M\in I_{t}\otimes\mathrm{GL}_{n-t}(\mathbb{F_{p}})\subseteq A^{4}. ∎

Our main contribution is the following Theorem:

Theorem 8.

Let 𝒱={(U,W)UW=𝔽pn}\mathcal{V}=\left\{(U,W)\mid U\oplus W=\mathbb{F}_{p}^{n}\right\}, and define an action :A×𝒱𝒱\cdot:A\times\mathcal{V}\to\mathcal{V} by g(U,W)=(gU,gW)g\cdot(U,W)=(gU,gW). Consider the Schreier graph corresponding to this action on the vertex set 𝒱\mathcal{V}. Then, any two vertices in 𝒱={(eS,eS¯)S[n],|S|=t}\mathcal{V}^{\prime}=\left\{(\langle e_{S}\rangle,\langle e_{\bar{S}}\rangle)\mid S\subseteq[n],|S|=t\right\} are at most O(t2)O(t^{2}) steps apart in this graph.

Intuitively, this allows us to upgrade the action of the groumvirate to an arbitrary set of size ntn-t of columns or rows of our choosing.

Corollary 9.

Any transformation XGLn(𝔽p)X\in\mathrm{GL}_{n}(\mathbb{F}_{p}) which fixes eSe_{S} and is invariant on eS¯\langle e_{\bar{S}}\rangle for |S|=t|S|=t, can be constructed in O(t2)O(t^{2}) steps.

2. Upgrading The Groumvirate’s Action

Lemma 10.

Let Vet+1,,enV\subseteq\left\langle e_{t+1},\dots,e_{n}\right\rangle be a vector space of dimension dim(V)=k\dim\left(V\right)=k. Let {ui}i=1m{wi}i=1et+1,,en\left\{u_{i}\right\}_{i=1}^{m}\cup\left\{w_{i}\right\}_{i=1}^{\ell}\subseteq\left\langle e_{t+1},\dots,e_{n}\right\rangle be a linearly independent set, where m+km+\ell\leq k. There exists TA4T\in A^{4} such that Tui=uiTu_{i}=u_{i} for every 1im1\leq i\leq m, TwiVTw_{i}\in V for every 1i1\leq i\leq\ell, and Tei=eiTe_{i}=e_{i} for every 1it1\leq i\leq t.

Proof.

Let {v1,,vk}\left\{v_{1},\dots,v_{k}\right\} be a basis of VV. Since dim(u1,,um)=mk\dim\left(\left\langle u_{1},\dots,u_{m}\right\rangle\right)=m\leq k, there exists a vector v1Vv_{1}\in V such that dimv,u1,=m+1\dim\left\langle v,u_{1},\dots\right\rangle=m+1. We inductively add vectors v1,,vkmv_{1},\dots,v_{k-m} until we obtain a linearly independent set {u1,,um,v1,,vkm}\left\{u_{1},\dots,u_{m},v_{1},\dots,v_{k-m}\right\}. Applying Lemma 7, there exists a transformation such that Tui=uiTu_{i}=u_{i} for every 1im1\leq i\leq m, Twi=viTw_{i}=v_{i} for every 1i1\leq i\leq\ell, and Tei=eiTe_{i}=e_{i} for every 1it1\leq i\leq t. ∎

Lemma 11.

Let VV be a vector space and aGLn(𝔽p)a\in\mathrm{GL}_{n}\left(\mathbb{F}_{p}\right). Consider the subspace WVW\subseteq V of vVv\in V such that avVav\in V, then dim(W)2dim(V)n\dim\left(W\right)\geq 2\dim\left(V\right)-n.

Proof.

By Grassmann’s Lemma,

dim(W)\displaystyle\dim\left(W\right) =dim(Va1V)=dim(V)+dim(a1V)dim(V+a1V)\displaystyle=\dim\left(V\cap a^{-1}V\right)=\dim\left(V\right)+\dim\left(a^{-1}V\right)-\dim\left(V+a^{-1}V\right)
=2dim(V)dim(V+a1V)2dim(V)n.\displaystyle=2\dim\left(V\right)-\dim\left(V+a^{-1}V\right)\geq 2\dim\left(V\right)-n.

Lemma 12.

There exists aAO(t2)a\in A^{O(t^{2})} such that aei=et+iae_{i}=e_{t+i} for 1it1\leq i\leq t.

Proof.
  1. (1)

    We use Lemma 13 to construct vectors v1,,vtet+1,,env_{1},\dots,v_{t}\in\left\langle e_{t+1},\dots,e_{n}\right\rangle and aiAia_{i}\in A^{i} and btAO(t2)b_{t}\in A^{O(t^{2})} such that {π1(aivi)}i=1t\left\{\pi_{1}\left(a_{i}v_{i}\right)\right\}_{i=1}^{t} is a basis for e1,,et\left\langle e_{1},\dots,e_{t}\right\rangle, {π2(aivi)}i=1t\left\{\pi_{2}\left(a_{i}v_{i}\right)\right\}_{i=1}^{t} is a linearly independent set, and btaiviet+1,,enb_{t}a_{i}v_{i}\in\left\langle e_{t+1},\dots,e_{n}\right\rangle for every 1it1\leq i\leq t.

  2. (2)

    We use Lemma 14 to construct a transformation ctAO(t2)c_{t}\in A^{O(t^{2})} such that {π2(ctei)}i=1t\left\{\pi_{2}\left(c_{t}e_{i}\right)\right\}_{i=1}^{t} is a linearly independent set. There exist {z1,zt}et+1,,en\left\{z_{1},\dots z_{t}\right\}\subseteq\left\langle e_{t+1},\dots,e_{n}\right\rangle such that {π2(aivi)}i=1t{z1,zt}\left\{\pi_{2}\left(a_{i}v_{i}\right)\right\}_{i=1}^{t}\cup\left\{z_{1},\dots z_{t}\right\} is a basis of et+1,,en\left\langle e_{t+1},\dots,e_{n}\right\rangle. By Lemma 7, there exists T1A4T_{1}\in A^{4} such that Tπ2(ctei)=ziT\pi_{2}\left(c_{t}e_{i}\right)=z_{i} for 1it1\leq i\leq t. Hence, we may generally assume that {π2(ctei)}i=1t{π2(aivi)}i=1t\left\{\pi_{2}\left(c_{t}e_{i}\right)\right\}_{i=1}^{t}\cup\left\{\pi_{2}\left(a_{i}v_{i}\right)\right\}_{i=1}^{t} is a linearly independent set.

  3. (3)

    We express cteic_{t}e_{i} as ctei=j=1tαijajvj+wic_{t}e_{i}=\sum_{j=1}^{t}\alpha_{ij}a_{j}v_{j}+w_{i} with αij𝔽p\alpha_{ij}\in\mathbb{F}_{p} and wiet+1,,enw_{i}\in\left\langle e_{t+1},\dots,e_{n}\right\rangle (since {π1(aivi)}i=1t\{\pi_{1}(a_{i}v_{i})\}_{i=1}^{t} is a basis of e1,,et\left\langle e_{1},\dots,e_{t}\right\rangle). By construction {π2(ctei)}i=1t{π2(aivi)}i=1t\left\{\pi_{2}\left(c_{t}e_{i}\right)\right\}_{i=1}^{t}\cup\left\{\pi_{2}\left(a_{i}v_{i}\right)\right\}_{i=1}^{t} is linearly independent. Since elementary operations do not change the linear independence of a set, {π2(wi)}i=1t{π2(aivi)}i=1t\left\{\pi_{2}\left(w_{i}\right)\right\}_{i=1}^{t}\cup\left\{\pi_{2}\left(a_{i}v_{i}\right)\right\}_{i=1}^{t} is also linearly independent. By Lemmas 10 and 11, there exists a transformation T2A4T_{2}\in A^{4} such that T2wi=wibt1et+1,,enet+1,,enT_{2}w_{i}=w_{i}^{\prime}\in b_{t}^{-1}\left\langle e_{t+1},\dots,e_{n}\right\rangle\cap\left\langle e_{t+1},\dots,e_{n}\right\rangle, T2π2(aivi)=π2(aivi)T_{2}\pi_{2}\left(a_{i}v_{i}\right)=\pi_{2}\left(a_{i}v_{i}\right), and T2ei=eiT_{2}e_{i}=e_{i} for 1it1\leq i\leq t.

  4. (4)

    Since btajvjet+1,,enb_{t}a_{j}v_{j}\in\left\langle e_{t+1},\dots,e_{n}\right\rangle and btwiet+1,,enb_{t}w_{i}^{\prime}\in\left\langle e_{t+1},\dots,e_{n}\right\rangle,

    bt(j=1tαijajvj+wi)et+1,,en.b_{t}\left(\sum_{j=1}^{t}\alpha_{ij}a_{j}v_{j}+w_{i}^{\prime}\right)\in\left\langle e_{t+1},\dots,e_{n}\right\rangle.
  5. (5)

    We apply lemma 7 to construct a transformation T3ItGLn(𝔽p)T_{3}\in I_{t}\otimes\mathrm{GL}_{n}(\mathbb{F}_{p}) such that T3btT2T1ctei=et+iT_{3}b_{t}T_{2}T_{1}c_{t}e_{i}=e_{t+i} for every 1it1\leq i\leq t.

Lemma 13.

There exist {vi}i=1tet+1,,en\{v_{i}\}_{i=1}^{t}\subseteq\left\langle e_{t+1},\dots,e_{n}\right\rangle, {ai}i=1tAt\{a_{i}\}_{i=1}^{t}\subseteq A^{t} and bAO(t2)b\in A^{O(t^{2})} such that the following hold:

  1. (1)

    {π1(aivi)}i=1t\left\{\pi_{1}\left(a_{i}v_{i}\right)\right\}_{i=1}^{t} is a basis for e1,,et\left\langle e_{1},\dots,e_{t}\right\rangle.

  2. (2)

    {π2(aivi)}i=1t\left\{\pi_{2}\left(a_{i}v_{i}\right)\right\}_{i=1}^{t} is a linearly independent set.

  3. (3)

    {baivi}i=1tet+1,,en\{ba_{i}v_{i}\}_{i=1}^{t}\subseteq\left\langle e_{t+1},\dots,e_{n}\right\rangle.

Proof.

Part 1 is proven by induction on tt. Since AA is a generating set, et+1,,en\left\langle e_{t+1},\dots,e_{n}\right\rangle is not invariant under AA, thus there exists v1et+1,,env_{1}\in\left\langle e_{t+1},\dots,e_{n}\right\rangle and a1Aa_{1}\in A such that π1(a1v1)0\pi_{1}\left(a_{1}v_{1}\right)\neq 0. For the induction step, since a1v1,,aivi,et+1,,en\left\langle a_{1}v_{1},\dots,a_{i}v_{i},e_{t+1},\dots,e_{n}\right\rangle is not invariant under AA, there exists va1v1,,aivi,et+1,,env\in\left\langle a_{1}v_{1},\dots,a_{i}v_{i},e_{t+1},\dots,e_{n}\right\rangle and ai+1Aa_{i+1}\in A such that ai+1va1v1,,aivi,et+1,,ena_{i+1}v\notin\left\langle a_{1}v_{1},\dots,a_{i}v_{i},e_{t+1},\dots,e_{n}\right\rangle. Therefore, there exists vi+1=eiv_{i+1}=e_{i} for some t+1int+1\leq i\leq n or vi+1=ajvjAjet+1,,env_{i+1}=a_{j}v_{j}\in A^{j}\left\langle e_{t+1},\dots,e_{n}\right\rangle such that ai+1vi+1a1v1,,aivi,et+1,,ena_{i+1}v_{i+1}\notin\left\langle a_{1}v_{1},\dots,a_{i}v_{i},e_{t+1},\dots,e_{n}\right\rangle, therefore ai+1vi+1Ai+1et+1,,ena_{i+1}v_{i+1}\in A^{i+1}\left\langle e_{t+1},\dots,e_{n}\right\rangle. Hence, {π1(aivi)}i=1t\left\{\pi_{1}\left(a_{i}v_{i}\right)\right\}_{i=1}^{t} is a linearly independent set.

Part 2 is proven by induction. By Lemma 13,

dim(ai1et+1,,enet+1,,en)t\dim\left(a_{i}^{-1}\left\langle e_{t+1},\dots,e_{n}\right\rangle\cap\left\langle e_{t+1},\dots,e_{n}\right\rangle\right)\geq t

for every 1it1\leq i\leq t.

Thus, there exists u1et+1,,enu_{1}\in\left\langle e_{t+1},\dots,e_{n}\right\rangle such that π2(a1u1)0\pi_{2}(a_{1}u_{1})\neq 0, set v1=v1+u1v_{1}^{\prime}=v_{1}+u_{1}. Assume we have constructed v1,,viv_{1}^{\prime},\dots,v_{i}^{\prime} such that {π2(ajvj)}j=1i\{\pi_{2}(a_{j}v_{j}^{\prime})\}_{j=1}^{i} is a linearly independent set. For the induction step, if π2(ai+1vi+1)\pi_{2}(a_{i+1}v_{i+1}) is linearly independent of {π2(ajvj)}ji\{\pi_{2}(a_{j}v_{j}^{\prime})\}_{j\leq i}, set vi+1=vi+1v_{i+1}^{\prime}=v_{i+1}. Otherwise, set vi+1=vi+1+ui+1v_{i+1}^{\prime}=v_{i+1}+u_{i+1} where ui+1ai+11et+1,,enet+1,,enu_{i+1}\in a_{i+1}^{-1}\left\langle e_{t+1},\dots,e_{n}\right\rangle\cap\left\langle e_{t+1},\dots,e_{n}\right\rangle and π2(ai+1ui+1)\pi_{2}(a_{i+1}u_{i+1}) is linearly independent of {π2(ajvj)}ji\{\pi_{2}(a_{j}v_{j}^{\prime})\}_{j\leq i}. We replace {v1,,vt}\{v_{1},\dots,v_{t}\} with {v1,,vt}\{v_{1}^{\prime},\dots,v_{t}^{\prime}\} and proceed to the last part.

For Part 3, the construction of b=btb=b_{t} is done inductively, where the induction is on the number of vectors {a1v1,,aivi}\{a_{1}v_{1},\dots,a_{i}v_{i}\} such that {bia1v1,,biaivi}et+1,,en\{b_{i}a_{1}v_{1},\dots,b_{i}a_{i}v_{i}\}\subseteq\left\langle e_{t+1},\dots,e_{n}\right\rangle. Initially, we are given a set {a1v1,,atvt}\left\{a_{1}v_{1},\dots,a_{t}v_{t}\right\} where {a1v1,,atvt}et+1,,en=\{a_{1}v_{1},\dots,a_{t}v_{t}\}\cap\left\langle e_{t+1},\dots,e_{n}\right\rangle=\emptyset and {π2(aivi)}i=1t\left\{\pi_{2}\left(a_{i}v_{i}\right)\right\}_{i=1}^{t} is linearly independent. For the base case, we use Lemma 7 to add wia1et+1,,enet+1,,enw_{i}\in a_{1}\left\langle e_{t+1},\dots,e_{n}\right\rangle\cap\left\langle e_{t+1},\dots,e_{n}\right\rangle to aivia_{i}v_{i} for every 1it1\leq i\leq t, where {wi}i=1t\left\{w_{i}\right\}_{i=1}^{t} are chosen such that {π2(a11(aivi+wi))}i=1t\left\{\pi_{2}\left(a_{1}^{-1}\left(a_{i}v_{i}+w_{i}\right)\right)\right\}_{i=1}^{t} is a linearly independent set. After adding {wi}i=1t\left\{w_{i}\right\}_{i=1}^{t}, we apply a11a_{1}^{-1} to all the vectors. We are left with the set

{v1+a11w1,a11a2v2+a11w2,,a11atvt+a11wt}\left\{v_{1}+a_{1}^{-1}w_{1},a_{1}^{-1}a_{2}v_{2}+a_{1}^{-1}w_{2},\dots,a_{1}^{-1}a_{t}v_{t}+a_{1}^{-1}w_{t}\right\}

We define d1=v1+a11w1et+1,,end_{1}=v_{1}+a_{1}^{-1}w_{1}\in\left\langle e_{t+1},\dots,e_{n}\right\rangle. Note that {π2(a11(aivi+wi))}i=1t\left\{\pi_{2}\left(a_{1}^{-1}\left(a_{i}v_{i}+w_{i}\right)\right)\right\}_{i=1}^{t} is a linearly independent set.

Now assume we are given

{d1,,di,ai1ai+1vi+1+wi+1,,ai1atvt+wt}\left\{d_{1},\dots,d_{i},a_{i}^{-1}a_{i+1}v_{i+1}+w_{i+1},\dots,a_{i}^{-1}a_{t}v_{t}+w_{t}\right\}

where d1,,di,wi+1,,wtet+1,,end_{1},\dots,d_{i},w_{i+1},\dots,w_{t}\in\left\langle e_{t+1},\dots,e_{n}\right\rangle and

{π2(d1),,π2(di)}{π2(ai1ai+1vi+1+wi+1),,π2(ai1atvt+wt)}\left\{\pi_{2}\left(d_{1}\right),\dots,\pi_{2}\left(d_{i}\right)\right\}\cup\left\{\pi_{2}\left(a_{i}^{-1}a_{i+1}v_{i+1}+w_{i+1}\right),\dots,\pi_{2}\left(a_{i}^{-1}a_{t}v_{t}+w_{t}\right)\right\}

is a linearly independent set. By Lemma 10 and 11, there exists a transformation MItGLnt(𝔽p)M\in I_{t}\otimes\mathrm{GL}_{n-t}\left(\mathbb{F}_{p}\right) such that Mdjai1ai+1et+1,,enet+1,,enMd_{j}\in a_{i}^{-1}a_{i+1}\left\langle e_{t+1},\dots,e_{n}\right\rangle\cap\left\langle e_{t+1},\dots,e_{n}\right\rangle for every 1ij1\leq i\leq j such that Mπ2(ai1ai+1vj+wi+1)=π2(ai1ai+1vj+wi+1)M\pi_{2}\left(a_{i}^{-1}a_{i+1}v_{j}+w_{i+1}\right)=\pi_{2}\left(a_{i}^{-1}a_{i+1}v_{j}+w_{i+1}\right). This is where the tn4t\leq\frac{n}{4} assumption comes into play.

With some abuse of notation, we assume d1,,did_{1},\dots,d_{i} are already in ai1ai+1et+1,,enet+1,,ena_{i}^{-1}a_{i+1}\left\langle e_{t+1},\dots,e_{n}\right\rangle\cap\left\langle e_{t+1},\dots,e_{n}\right\rangle. Now we add {wj}j=1tai1ai+1et+1,,enet+1,,en\left\{w_{j}^{\prime}\right\}_{j=1}^{t}\in a_{i}^{-1}a_{i+1}\left\langle e_{t+1},\dots,e_{n}\right\rangle\cap\left\langle e_{t+1},\dots,e_{n}\right\rangle to all the vectors such that

{π2(ai+11ai(dj+wj))}j=1i\displaystyle\left\{\pi_{2}\left(a_{i+1}^{-1}a_{i}\left(d_{j}+w_{j}^{\prime}\right)\right)\right\}_{j=1}^{i}\cup {π2(ai+11ai(ai1ajvj+wj+wj))}j=i+1t\displaystyle\left\{\pi_{2}\left(a_{i+1}^{-1}a_{i}\left(a_{i}^{-1}a_{j}v_{j}+w_{j}+w_{j}^{\prime}\right)\right)\right\}_{j=i+1}^{t}

is a linearly independent set. We set wj′′ai+11ai(wj+wj)w_{j}^{\prime\prime}\leftarrow a_{i+1}^{-1}a_{i}\left(w_{j}+w_{j}^{\prime}\right), and djdj+wj′′d_{j}\leftarrow d_{j}+w_{j}^{\prime\prime}. Thus djet+1,,end_{j}\in\left\langle e_{t+1},\dots,e_{n}\right\rangle and

ai+11ai(ai1ai+1vi+1+wj+wj)=vi+1+wj′′et+1,,ena_{i+1}^{-1}a_{i}\left(a_{i}^{-1}a_{i+1}v_{i+1}+w_{j}+w_{j}^{\prime}\right)=v_{i+1}+w_{j}^{\prime\prime}\in\left\langle e_{t+1},\dots,e_{n}\right\rangle

and for ji+1nj\leq i+1\leq n,

ai+11ai(ai1ajvj+wj+wj)=ai+11ajvj+wj′′.a_{i+1}^{-1}a_{i}\left(a_{i}^{-1}a_{j}v_{j}+w_{j}+w_{j}^{\prime}\right)=a_{i+1}^{-1}a_{j}v_{j}+w_{j}^{\prime\prime}.

We set di+1=vi+1+wj′′d_{i+1}=v_{i+1}+w_{j}^{\prime\prime}, and proceed inductively. As each step takes O(t)O\left(t\right) operations in AA and there are tt steps, the number of operations required to construct bb is O(t2)O\left(t^{2}\right). ∎

Lemma 14.

There exists ctAO(t2)c_{t}\in A^{O\left(t^{2}\right)} such that {π2(ctei)}i=1t\left\{\pi_{2}\left(c_{t}e_{i}\right)\right\}_{i=1}^{t} is a linearly independent set.

Proof.

We prove this lemma by induction on ii, where ii is the maximum number such that {π2(ciej)}j=1i\left\{\pi_{2}\left(c_{i}e_{j}\right)\right\}_{j=1}^{i} is linearly independent. For the base case i=1i=1, since AA is a generating set, dim(Ate1)>t\dim\left(A^{t}\left\langle e_{1}\right\rangle\right)>t, there exists c1Atc_{1}\in A^{t} such that π2(c1e1)0\pi_{2}\left(c_{1}e_{1}\right)\neq 0.

For the induction step, assume we have constructed cic_{i} such that {π2(ciej)}j=1i\left\{\pi_{2}\left(c_{i}e_{j}\right)\right\}_{j=1}^{i} is linearly independent. If π2(ciei+1)\pi_{2}\left(c_{i}e_{i+1}\right) is linearly independent of {π2(ciej)}j=1i\left\{\pi_{2}\left(c_{i}e_{j}\right)\right\}_{j=1}^{i}, then we are done. Otherwise, π2(ciei+1)=j=1iαjπ2(ciej)\pi_{2}\left(c_{i}e_{i+1}\right)=\sum_{j=1}^{i}\alpha_{j}\pi_{2}\left(c_{i}e_{j}\right) for some {αj}j=1i𝔽pn\left\{\alpha_{j}\right\}_{j=1}^{i}\in\mathbb{F}_{p}^{n}. As ciei+1c_{i}e_{i+1} is linearly independent of {ciej}j=1i\left\{c_{i}e_{j}\right\}_{j=1}^{i}, π1(ciei+1)π1(cij=1iαjej)\pi_{1}\left(c_{i}e_{i+1}\right)\neq\pi_{1}\left(c_{i}\sum_{j=1}^{i}\alpha_{j}e_{j}\right).

Let z=π1(ciei+1)π1(cij=1iαjej)z=\pi_{1}\left(c_{i}e_{i+1}\right)-\pi_{1}\left(c_{i}\sum_{j=1}^{i}\alpha_{j}e_{j}\right). Since dim(Atz)t\dim\left(A^{t}\left\langle z\right\rangle\right)\geq t, there exists c~i+1At\tilde{c}_{i+1}\in A^{t} such that π2(c~i+1z)0\pi_{2}\left(\tilde{c}_{i+1}z\right)\neq 0. Consider the vector space Vet+1,,enV\subseteq\left\langle e_{t+1},\dots,e_{n}\right\rangle spanned by the set {π2(c~i+1e1),,π2(c~i+1et)}\left\{\pi_{2}\left(\tilde{c}_{i+1}e_{1}\right),\dots,\pi_{2}\left(\tilde{c}_{i+1}e_{t}\right)\right\} which has a basis {v1,,v}\left\{v_{1},\dots,v_{\ell}\right\}.

Let W=et+1,,enc~i+11et+1,,enW=\left\langle e_{t+1},\dots,e_{n}\right\rangle\cap\tilde{c}_{i+1}^{-1}\left\langle e_{t+1},\dots,e_{n}\right\rangle, by Lemma 11, dim(W)2nt2t\dim\left(W\right)\geq 2n-t\geq 2t. So there exist {w1,,wi}W\left\{w_{1},\dots,w_{i}\right\}\subseteq W such that {v1,,v,w1,,wi}et+1,,en\left\{v_{1},\dots,v_{\ell},w_{1},\dots,w_{i}\right\}\subseteq\left\langle e_{t+1},\dots,e_{n}\right\rangle is a linearly independent set.

Let MItGLnt(𝔽p)M\in I_{t}\otimes\mathrm{GL}_{n-t}\left(\mathbb{F}_{p}\right) be a linear transformation such that Mπ2(ciej)=c~i+11wjM\pi_{2}\left(c_{i}e_{j}\right)=\tilde{c}_{i+1}^{-1}w_{j} for every 1ji1\leq j\leq i. For 1ji1\leq j\leq i,

π2(c~i+1Mciej)\displaystyle\pi_{2}\left(\tilde{c}_{i+1}Mc_{i}e_{j}\right) =π2(c~i+1(π1(Mciej)+π2(Mciej)))\displaystyle=\pi_{2}\left(\tilde{c}_{i+1}\left(\pi_{1}\left(Mc_{i}e_{j}\right)+\pi_{2}\left(Mc_{i}e_{j}\right)\right)\right)
=π2c~i+1π1Mciej+π2c~i+1π2Mciej\displaystyle=\pi_{2}\tilde{c}_{i+1}\pi_{1}Mc_{i}e_{j}+\pi_{2}\tilde{c}_{i+1}\pi_{2}Mc_{i}e_{j}

Since MItGLnt(𝔽p)M\in I_{t}\otimes\mathrm{GL}_{n-t}\left(\mathbb{F}_{p}\right),

π2(c~i+1Mciej)=π2c~i+1π1ciej+π2c~i+1π2Mciej.\pi_{2}\left(\tilde{c}_{i+1}Mc_{i}e_{j}\right)=\pi_{2}\tilde{c}_{i+1}\pi_{1}c_{i}e_{j}+\pi_{2}\tilde{c}_{i+1}\pi_{2}Mc_{i}e_{j}.

Since Mπ2ciej=c~i+11wjM\pi_{2}c_{i}e_{j}=\tilde{c}_{i+1}^{-1}w_{j},

π2(c~i+1Mciej)\displaystyle\pi_{2}\left(\tilde{c}_{i+1}Mc_{i}e_{j}\right) =π2c~i+1π1ciej+π2wj\displaystyle=\pi_{2}\tilde{c}_{i+1}\pi_{1}c_{i}e_{j}+\pi_{2}w_{j}
=π2c~i+1π1ciej+wjVW\displaystyle=\pi_{2}\tilde{c}_{i+1}\pi_{1}c_{i}e_{j}+w_{j}\in V\oplus W

On the other hand,

π2(c~i+1Mciei+1)=π2c~i+1π1ciei+1+j=1iαjwjVW\pi_{2}\left(\tilde{c}_{i+1}Mc_{i}e_{i+1}\right)=\pi_{2}\tilde{c}_{i+1}\pi_{1}c_{i}e_{i+1}+\sum_{j=1}^{i}\alpha_{j}w_{j}\in V\oplus W

Since wjw_{j} are linearly independent and VW={0}V\cap W=\left\{0\right\} then {π2(c~i+1Mciej)}j=1i\left\{\pi_{2}\left(\tilde{c}_{i+1}Mc_{i}e_{j}\right)\right\}_{j=1}^{i} is a linearly independent set.

Suppose towards contradiction that π2(c~i+1Mciei+1)\pi_{2}\left(\tilde{c}_{i+1}Mc_{i}e_{i+1}\right) is linearly dependent on {π2(c~i+1Mciej)}j=1i\left\{\pi_{2}\left(\tilde{c}_{i+1}Mc_{i}e_{j}\right)\right\}_{j=1}^{i}, then there exist {βj}j=1i𝔽p\left\{\beta_{j}\right\}_{j=1}^{i}\subseteq\mathbb{F}_{p} such that

π2(c~i+1Mciei+1)=j=1iβjπ2(c~i+1Mciej)\pi_{2}\left(\tilde{c}_{i+1}Mc_{i}e_{i+1}\right)=\sum_{j=1}^{i}\beta_{j}\pi_{2}\left(\tilde{c}_{i+1}Mc_{i}e_{j}\right)

In particular, since VWV\oplus W is a direct sum of vector spaces

j=1iβjwj=j=1iαjwj\sum_{j=1}^{i}\beta_{j}w_{j}=\sum_{j=1}^{i}\alpha_{j}w_{j}

thus βj=wj\beta_{j}=w_{j}. On the other hand,

π2c~i+1π1ciei+1=j=1iβjπ2c~i+1π1ciej\pi_{2}\tilde{c}_{i+1}\pi_{1}c_{i}e_{i+1}=\sum_{j=1}^{i}\beta_{j}\pi_{2}\tilde{c}_{i+1}\pi_{1}c_{i}e_{j}

thus

0\displaystyle 0 =π2(c~i+1π1ciei+1j=1iβjc~i+1π1ciej)\displaystyle=\pi_{2}\left(\tilde{c}_{i+1}\pi_{1}c_{i}e_{i+1}-\sum_{j=1}^{i}\beta_{j}\tilde{c}_{i+1}\pi_{1}c_{i}e_{j}\right)
=π2(c~i+1π1ciei+1j=1iαjc~i+1π1ciej)\displaystyle=\pi_{2}\left(\tilde{c}_{i+1}\pi_{1}c_{i}e_{i+1}-\sum_{j=1}^{i}\alpha_{j}\tilde{c}_{i+1}\pi_{1}c_{i}e_{j}\right)
=π2(c~i+1z)0\displaystyle=\pi_{2}\left(\tilde{c}_{i+1}z\right)\neq 0

So for ci+1=c~i+1Mcic_{i+1}=\tilde{c}_{i+1}Mc_{i}, the set {π2(ci+1ej)}j=1i+1\left\{\pi_{2}\left(c_{i+1}e_{j}\right)\right\}_{j=1}^{i+1} is linearly independent. As every iteration takes O(t)O(t) steps and there are tt such iterations, it takes O(t2)O(t^{2}) steps to construct ctc_{t}. ∎

Our goal is to modify aa so that in addition to aei=et+iae_{i}=e_{t+i} for 1it1\leq i\leq t, we will also have aet+i=eiae_{t+i}=e_{i}. To achieve this, we first prove the following lemma,

Lemma 15.

Let AMatt×t(𝔽p)A\in\mathrm{Mat}_{t\times t}\left(\mathbb{F}_{p}\right) and BMatt×n2t(𝔽p)B\in\mathrm{Mat}_{t\times n-2t}\left(\mathbb{F}_{p}\right), where (AB)\begin{pmatrix}A&B\end{pmatrix} has full column rank; then there exists JMatnt×t(𝔽p)J\in\mathrm{Mat}_{n-t\times t}\left(\mathbb{F}_{p}\right) such that A+BJA+BJ has full column rank.

Proof.

We prove by induction on tdim(col(A))t-\dim\left(\mathrm{col}\left(A\right)\right). If dim(col(A))=t\dim\left(\mathrm{col}\left(A\right)\right)=t, then we are done. Otherwise, there exists AiA_{i} such that AiSpan{Aj}jiA_{i}\in\mathrm{Span}\left\{A_{j}\right\}_{j\neq i}; without loss of generality, assume i=1i=1. Since dim(col(A))<t\dim\left(\mathrm{col}\left(A\right)\right)<t, there exists BkB_{k} for 1kn2t1\leq k\leq n-2t such that dim(col(A)+Bk)=dim(col(A))+1\dim\left(\mathrm{col}\left(A\right)+\left\langle B_{k}\right\rangle\right)=\dim\left(\mathrm{col}\left(A\right)\right)+1. Thus for J=Ek1J=E_{k1},

dimcol(A1+BkA2At)=dimcol(A+BJ)=dim(col(A))+1.\dim\mathrm{col}\begin{pmatrix}A_{1}+B_{k}&A_{2}&\dots&A_{t}\end{pmatrix}=\dim\mathrm{col}\left(A+BJ\right)=\dim\left(\mathrm{col}\left(A\right)\right)+1.

Lemma 16 (Swapping Lemma).
Aswap=(0It×t0It×t0000In2t×n2t)AO(t2)A_{\mathrm{swap}}=\begin{pmatrix}0&I_{t\times t}&0\\ I_{t\times t}&0&0\\ 0&0&I_{n-2t\times n-2t}\end{pmatrix}\in A^{O\left(t^{2}\right)}
Proof.

In Lemma 12, we constructed aAO(t2)a\in A^{O(t^{2})} which such that aei=et+iae_{i}=e_{t+i} for every 1it1\leq i\leq t. Thus the matrix aa is of the form

a=(0t×tAt×tBt×n2tIt×tCt×tDt×n2t0n2t×tEn2t×tFn2t×n2t)a=\begin{pmatrix}0_{t\times t}&A_{t\times t}&B_{t\times n-2t}\\ I_{t\times t}&C_{t\times t}&D_{t\times n-2t}\\ 0_{n-2t\times t}&E_{n-2t\times t}&F_{n-2t\times n-2t}\end{pmatrix}

where (AB)\begin{pmatrix}A&B\end{pmatrix} has full column rank and (EF)\begin{pmatrix}E&F\end{pmatrix} also has full column rank. Since (AB)\begin{pmatrix}A&B\end{pmatrix} has full column rank there exists X1Matnt×t(𝔽p)X_{1}\in\mathrm{Mat}_{n-t\times t}\left(\mathbb{F}_{p}\right) such that A+BX1A+BX_{1} has rank tt. Applying (It000It00X1In2t)\begin{pmatrix}I_{t}&0&0\\ 0&I_{t}&0\\ 0&X_{1}&I_{n-2t}\end{pmatrix} from the right

a\displaystyle a (0t×tAt×t+Bt×n2tX1Bt×n2tIt×tCt×t+Dt×n2tX1Dt×n2t0n2t×tEn2t×t+Fn2t×n2tX1Fn2t×n2t)\displaystyle\leftarrow\begin{pmatrix}0_{t\times t}&A_{t\times t}+B_{t\times n-2t}X_{1}&B_{t\times n-2t}\\ I_{t\times t}&C_{t\times t}+D_{t\times n-2t}X_{1}&D_{t\times n-2t}\\ 0_{n-2t\times t}&E_{n-2t\times t}+F_{n-2t\times n-2t}X_{1}&F_{n-2t\times n-2t}\end{pmatrix}
=(0t×tAt×tBt×n2tIt×tCt×tDt×n2t0n2t×tEn2t×tFn2t×n2t)\displaystyle=\begin{pmatrix}0_{t\times t}&A_{t\times t}^{\prime}&B_{t\times n-2t}\\ I_{t\times t}&C_{t\times t}^{\prime}&D_{t\times n-2t}\\ 0_{n-2t\times t}&E_{n-2t\times t}^{\prime}&F_{n-2t\times n-2t}\end{pmatrix}

Now At×tA_{t\times t}^{\prime} is full rank. We apply (It×t000(At×t)1000In2t×n2t)\begin{pmatrix}I_{t\times t}&0&0\\ 0&\left(A_{t\times t}^{\prime}\right)^{-1}&0\\ 0&0&I_{n-2t\times n-2t}\end{pmatrix} from the right.

a(0t×tIt×tBt×n2tIt×tCt×t(At×t)1Dt×n2t0n2t×tEn2t×t(At×t)1Fn2t×n2t)a\leftarrow\begin{pmatrix}0_{t\times t}&I_{t\times t}&B_{t\times n-2t}\\ I_{t\times t}&C_{t\times t}^{\prime}\left(A_{t\times t}^{\prime}\right)^{-1}&D_{t\times n-2t}\\ 0_{n-2t\times t}&E_{n-2t\times t}^{\prime}\left(A_{t\times t}^{\prime}\right)^{-1}&F_{n-2t\times n-2t}\end{pmatrix}

renaming

C′′\displaystyle C^{\prime\prime} =CA1\displaystyle=C^{\prime}A^{\prime-1}
E′′\displaystyle E^{\prime\prime} =EA1.\displaystyle=E^{\prime}A^{\prime-1}.

We have

a(0t×tIt×tBt×n2tIt×tCt×t′′Dt×n2t0n2t×tEn2t×t′′Fn2t×n2t)a\leftarrow\begin{pmatrix}0_{t\times t}&I_{t\times t}&B_{t\times n-2t}\\ I_{t\times t}&C_{t\times t}^{\prime\prime}&D_{t\times n-2t}\\ 0_{n-2t\times t}&E_{n-2t\times t}^{\prime\prime}&F_{n-2t\times n-2t}\end{pmatrix}

Now we apply

(It×t000It×tBt×n2t00In2t×n2t)\begin{pmatrix}I_{t\times t}&0&0\\ 0&I_{t\times t}&-B_{t\times n-2t}^{\prime}\\ 0&0&I_{n-2t\times n-2t}\end{pmatrix}

from the right.

a\displaystyle a (0t×tIt×tBt×n2tBt×n2tIt×tCt×t′′Dt×n2tCt×t′′Bt×n2t0n2t×tEn2t×t′′Fn2t×n2tEt×t′′Bt×n2t)\displaystyle\leftarrow\begin{pmatrix}0_{t\times t}&I_{t\times t}&B_{t\times n-2t}-B_{t\times n-2t}\\ I_{t\times t}&C_{t\times t}^{\prime\prime}&D_{t\times n-2t}-C_{t\times t}^{\prime\prime}B_{t\times n-2t}\\ 0_{n-2t\times t}&E_{n-2t\times t}^{\prime\prime}&F_{n-2t\times n-2t}-E_{t\times t}^{\prime\prime}B_{t\times n-2t}\end{pmatrix}
=(0t×tIt×t0t×tIt×tCt×t′′Dt×n2tCt×t′′Bt×n2t0n2t×tEn2t×t′′Fn2t×n2tEt×t′′Bt×n2t)\displaystyle=\begin{pmatrix}0_{t\times t}&I_{t\times t}&0_{t\times t}\\ I_{t\times t}&C_{t\times t}^{\prime\prime}&D_{t\times n-2t}-C_{t\times t}^{\prime\prime}B_{t\times n-2t}\\ 0_{n-2t\times t}&E_{n-2t\times t}^{\prime\prime}&F_{n-2t\times n-2t}-E_{t\times t}^{\prime\prime}B_{t\times n-2t}\end{pmatrix}

As Y=(It×tDt×n2tCt×t′′Bt×n2t0n2t×tFn2t×n2tEt×t′′Bt×n2t)Y=\begin{pmatrix}I_{t\times t}&D_{t\times n-2t}-C_{t\times t}^{\prime\prime}B_{t\times n-2t}\\ 0_{n-2t\times t}&F_{n-2t\times n-2t}-E_{t\times t}^{\prime\prime}B_{t\times n-2t}\end{pmatrix} has full row rank we can apply (I00Ynt×n2t1)\begin{pmatrix}I&0\\ 0&Y_{n-t\times n-2t}^{-1}\end{pmatrix} from the left to get

a(0t×tIt×t0t×tIt×tX0t×n2t0n2t×tZIn2t×n2t)a\leftarrow\begin{pmatrix}0_{t\times t}&I_{t\times t}&0_{t\times t}\\ I_{t\times t}&X&0_{t\times n-2t}\\ 0_{n-2t\times t}&Z&I_{n-2t\times n-2t}\end{pmatrix}

from some XX and ZZ. Apply

(It000It00ZIn2t)\begin{pmatrix}I_{t}&0&0\\ 0&I_{t}&0\\ 0&-Z&I_{n-2t}\end{pmatrix}

from the right to obtain

a(0t×tIt×t0t×tIt×tX0t×n2t0n2t×t0In2t×n2t)a\leftarrow\begin{pmatrix}0_{t\times t}&I_{t\times t}&0_{t\times t}\\ I_{t\times t}&X&0_{t\times n-2t}\\ 0_{n-2t\times t}&0&I_{n-2t\times n-2t}\end{pmatrix}

Restricting our focus on the first 3t3t indices of the matrix

a~=(0It×t0It×tX000It×t)\tilde{a}=\begin{pmatrix}0&I_{t\times t}&0\\ I_{t\times t}&X&0\\ 0&0&I_{t\times t}\end{pmatrix}

as we could construct the matrix a~\tilde{a}, we can also construct a~1\tilde{a}^{-1} by applying the inverse transformations in reverse order

a~1=(XIt×t0It×t0000It×t).\tilde{a}^{-1}=\begin{pmatrix}-X&I_{t\times t}&0\\ I_{t\times t}&0&0\\ 0&0&I_{t\times t}\end{pmatrix}.

Conjugating the constructable matrix (as it is in the groumvirate)

b=(It×t000It×tX00It×t)b=\begin{pmatrix}I_{t\times t}&0&0\\ 0&I_{t\times t}&-X\\ 0&0&I_{t\times t}\end{pmatrix}

by the matrix a~1\tilde{a}^{-1},

a~1ba~=(It×t0X0It×t000It×t).\tilde{a}^{-1}b\tilde{a}=\begin{pmatrix}I_{t\times t}&0&-X\\ 0&I_{t\times t}&0\\ 0&0&I_{t\times t}\end{pmatrix}.

Applying a permutation matrix PP from both sides which swaps the {t+1,,2t}\left\{t+1,\dots,2t\right\} columns with the {2t+1,,3t}\left\{2t+1,\dots,3t\right\}, we get a matrix

PA~1BA~P=(It×tX00It×t000It×t)P\tilde{A}^{-1}B\tilde{A}P=\begin{pmatrix}I_{t\times t}&-X&0\\ 0&I_{t\times t}&0\\ 0&0&I_{t\times t}\end{pmatrix}

and

A~PA~1BA~P=(0It×t0It×tX000It×t)(It×tX00It×t000It×t)=(0It×t0It×t0000It×t)\tilde{A}P\tilde{A}^{-1}B\tilde{A}P=\begin{pmatrix}0&I_{t\times t}&0\\ I_{t\times t}&X&0\\ 0&0&I_{t\times t}\end{pmatrix}\begin{pmatrix}I_{t\times t}&-X&0\\ 0&I_{t\times t}&0\\ 0&0&I_{t\times t}\end{pmatrix}=\begin{pmatrix}0&I_{t\times t}&0\\ I_{t\times t}&0&0\\ 0&0&I_{t\times t}\end{pmatrix}

which is the desired swap matrix. ∎

Proof of Theorem 8.

By Lemma 16, the matrix AswapA_{\mathrm{swap}} can be constructed in O(t2)O\left(t^{2}\right) steps. Combining the swap transformation and any permutation on the last ntn-t vectors, we obtain a transitive action on VV^{\prime}. The distance between any two vertices in VV^{\prime} is O(t2)O(t^{2}) since each step in the proof requires at most O(t2)O(t^{2}) multiplications. ∎

3. Constructing the Matrix Group via Its Bruhat Decomposition

Our proof relies on the following decomposition of GLn(𝔽p)\mathrm{GL}_{n}\left(\mathbb{F}_{p}\right) known in the literature as the Bruhat decomposition (a reference for the case SLn(𝔽p)\mathrm{SL}_{n}\left(\mathbb{F}_{p}\right) is proven in [6]).

Theorem 17.

GLn(𝔽p)=BWB\mathrm{GL}_{n}\left(\mathbb{F}_{p}\right)=BWB where BGLn(𝔽p)B\subseteq\mathrm{GL}_{n}\left(\mathbb{F}_{p}\right) is the group of lower-triangular matrices and WGLn(𝔽p)W\subseteq\mathrm{GL}_{n}\left(\mathbb{F}_{p}\right) is the set of monomial matrices (the set of matrices in which each row and column contains exactly one non-zero element).

To construct a matrix MGLn(𝔽p)M\in\mathrm{GL}_{n}\left(\mathbb{F}_{p}\right), we construct its Bruhat decomposition b1,b2Bb_{1},b_{2}\in B and wWw\in W and we compose all elements to get M=b1wb2M=b_{1}wb_{2}.

Lemma 18.

The triangular matrices can be constructed in O(n2)O\left(n^{2}\right) steps, i.e., BAO(n2)B\subseteq A^{O\left(n^{2}\right)}.

Proof.

Let LBL\in B. Using Theorem 8, we construct a primitive which modifies the {1,,n3}\left\{1,\dots,\frac{n}{3}\right\} columns for row indices J{n3+1,,n}J\subseteq\left\{\frac{n}{3}+1,\dots,n\right\} where |J|=n3\left|J\right|=\frac{n}{3}. Applying this primitive 2 times enables us to construct the {1,,n3}\left\{1,\dots,\frac{n}{3}\right\} columns of the matrix. Using Lemma 7, we can construct the rest of the columns using a matrix in A4A^{4}. ∎

Lemma 19.

The monomial matrices can be constructed in O(n2)O\left(n^{2}\right) steps, i.e., WAO(n2)W\subseteq A^{O\left(n^{2}\right)}.

Proof.

Using Theorem 8, we construct a matrix which swaps the {1,,t}\{1,\dots,t\} columns with the {σ(1),,σ(t)}\{\sigma(1),\dots,\sigma(t)\} columns in AO(t2)A^{O(t^{2})} steps. Now all of the first tt columns are fixed in position. All that remains is to set the remaining ntn-t columns in place. By Corollary 9, any permutation of the last ntn-t columns can be constructed in O(t2)O(t^{2}) steps. ∎

4. A Matching Lower Bound on the Diameter

Let t=Cnt=Cn for 0<C<10<C<1. We define the generating set

A={(It×t00X):XGLnt(𝔽p)}{eiei+1:i=1,,t},A=\left\{\begin{pmatrix}I_{t\times t}&0\\ 0&X\end{pmatrix}:X\in\mathrm{GL}_{n-t}\left(\mathbb{F}_{p}\right)\right\}\bigcup\left\{e_{i}\leftrightarrow e_{i+1}:i=1,\dots,t\right\},

where eiei+1e_{i}\leftrightarrow e_{i+1} is the swap between eie_{i} and ei+1e_{i+1} which fixes the other basis vectors. This is a generating set because it generates the swap matrix (as transpositions generate the permutations). Moreover,

|A|=Θ(p(nt)2)=Θ((pn2)(ntn)2)|G|1c\left|A\right|=\Theta\left(p^{\left(n-t\right)^{2}}\right)=\Theta\left(\left(p^{n^{2}}\right)^{\left(\frac{n-t}{n}\right)^{2}}\right)\leq|G|^{1-c}

for an appropriately chosen cc. Let B=(0It×t0It×t0000In2t×n2t)B=\begin{pmatrix}0&I_{t\times t}&0\\ I_{t\times t}&0&0\\ 0&0&I_{n-2t\times n-2t}\end{pmatrix}. Assume B=akak1a1B=a_{k}a_{k-1}\dots a_{1}, where aiAa_{i}\in A. Define A0=eA_{0}=e, and Al=alal1a1A_{l}=a_{l}a_{l-1}\dots a_{1} for 1lk1\leq l\leq k. We set 0={1,,t}\mathcal{F}_{0}=\left\{1,\dots,t\right\} and l={i{1,,t}:Ajei{e1,,et}1jl}\mathcal{F}_{l}=\left\{i\in\left\{1,\dots,t\right\}:A_{j}e_{i}\in\left\{e_{1},\dots,e_{t}\right\}\forall 1\leq j\leq l\right\}. Let

di,l={t+1jif Alei=ej for j{1,,t+1}il0otherwised_{i,l}=\begin{cases}t+1-j&\text{if }A_{l}e_{i}=e_{j}\text{ for }j\in\left\{1,\dots,t+1\right\}\wedge i\in\mathcal{F}_{l}\\ 0&\text{otherwise}\end{cases}

and

dl=i=1tdi,l.d_{l}=\sum_{i=1}^{t}d_{i,l}.

We prove that dl+1dl1d_{l+1}\geq d_{l}-1 for every 1lk11\leq l\leq k-1. Assume al+1a_{l+1} is a swap between eie_{i} and ei+1e_{i+1} then dldl+1d_{l}\neq d_{l+1} iff al+1a_{l+1} swaps tt and t+1t+1, thus dl+1=dl1d_{l+1}=d_{l}-1. Otherwise al+1a_{l+1} acts on {et+1,,en}\left\{e_{t+1},\dots,e_{n}\right\} so it cannot change di,ld_{i,l} for any ii. Therefore

dkd0k=i=1tik=(t+12)k.d_{k}\geq d_{0}-k=\sum_{i=1}^{t}i-k=\begin{pmatrix}t+1\\ 2\end{pmatrix}-k.

But dk=0d_{k}=0 since BB is the matrix that swaps e1,,ete_{1},\dots,e_{t} with et+1,,e2te_{t+1},\dots,e_{2t}, and thus

k(t+12)=Ω(n2).k\geq\begin{pmatrix}t+1\\ 2\end{pmatrix}=\Omega\left(n^{2}\right).

Acknowledgments

We would like to thank Noam Lifshitz for his guidance, Elad Tzalik for helpful discussions, and Edan Orzech for reviewing the manuscript.

References

  • [1] László Babai and Ákos Seress. On the diameter of permutation groups. European journal of combinatorics, 13(4):231–243, 1992.
  • [2] Emmanuel Breuillard, Ben Green, and Terence Tao. The structure of approximate groups. Publications mathématiques de l’IHÉS, 116:115–221, 2012.
  • [3] Shai Evra, Guy Kindler, and Noam Lifshitz. Polynomial bogolyubov for special linear groups via tensor rank, 2024.
  • [4] Zoltán Halasi. Diameter of cayley graphs of sl (n, p) with generating sets containing a transvection. Journal of Algebra, 569:195–219, 2021.
  • [5] Harald Andrés Helfgott. Growth and generation in. Annals of Mathematics, pages 601–623, 2008.
  • [6] Matthieu JOSEPH. Dynamics and subgroups of sln(z). https://www.imo.universite-paris-saclay.fr/ matthieu.joseph/minicourseFMJH.pdf, 2023.
  • [7] Martin W Liebeck and Aner Shalev. Diameters of finite simple groups: sharp bounds and applications. Annals of mathematics, pages 383–406, 2001.
  • [8] László Pyber and Endre Szabó. Growth in finite simple groups of lie type. Journal of the American Mathematical Society, 29(1):95–146, 2016.