This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

On connections between Morita semigroups and strong Morita equivalence

Alvin Lepik Institute of Mathematics and Statistics, University of Tartu, Narva rd 18, Tartu, Estonia [email protected]
Abstract.

A surjective Morita context connecting semigroups SS and TT yields a Morita semigroup and a strict local isomorphism from it onto SS along which idempotents lift. We describe strong Morita equivalence of firm semigroups in terms of Morita semigroups and isomorphisms. We also generalize some of Hotzel’s theorems to semigroups with weak local units. In particular, the Morita semigroup induced by a dual pair β\beta over a semigroup with weak local units can be identified with Σβ\Sigma^{\beta}.

Key words and phrases:
dual pair, Morita context, Morita equivalence, Morita semigroup, Rees matrix semigroup
2010 Mathematics Subject Classification:
20M30
This work was partially supported by the Estonian Research Council grant PRG1204.

1. Introduction

The study of Morita equivalence began in the theory of rings with identity. In the seventies, Banaschewski [3] and Knauer [7] independently developed Morita theory of monoids regarding monoids to be Morita equivalent if the categories of right acts, satisfying the identity x1=xx1=x, are equivalent. Banaschewski [3] also showed that categories of right acts over semigroups are equivalent only if the semigroups themselves are isomorphic. Further developments were brought about in the nineties, when Talwar [13] provided a non category theoretical notion of Morita equivalence for semigroups with local units and extended it to the subclass of factorizable semigroups. Since then, Morita equivalence of semigroups with local units has been described by Lawson [11] and Laan and Márki [8] with an array of qualitatively different conditions.

In the present paper, we mainly focus on strong Morita equivalence of semigroups and seek to generalize results from Hotzel [4] and Laan and Márki [8], which is the subject of Sections 2 and 3. In particular, we study relationships between Morita semigroups, Rees matrix semigroups and certain semigroups of adjoint pairs of endomorphisms of acts. Among other things we prove in Section 2 that two firm semigroups are strongly Morita equivalent if and only if any of them is isomorphic to a surjectively defined Morita semigroup over the other. In Section 3 we turn to dual pairs of acts, introduced by Hotzel [4], which he uses to describe completely 0-simple semigroups. Hotzel’s work has also inspired a number of ring theoretic papers. Ánh and Márki [2] describe rings with minimal one-sided ideals in terms of Rees matrix rings and dual pairs of modules. Ánh [1] describes Morita equivalence of rings with local units in terms of locally projective pairs (these are dual pairs satisfying further restrictions) and tensor product rings. We use dual pairs to deduce a sufficient condition for strong Morita equivalence of semigroups with weak local units.

Throughout this paper, SS denotes a semigroup. We are considering the following subclasses of semigroups, listed in ascending order containment-wise, where all containments are proper.

Definition 1.1.

A semigroup SS

  1. i)

    has local units if for every sSs\in S, there exist idempotents e,fSe,f\in S such that fs=s=sefs=s=se;

  2. ii)

    has weak local units if for every sSs\in S, there exist u,vSu,v\in S such that us=s=svus=s=sv;

  3. iii)

    is firm if the map

    SSSS,ssssS\otimes_{S}S\>\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 0.0pt\hbox{\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces{\hbox{\kern 4.49588pt\raise 0.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\scriptstyle{}$}}}\kern 3.0pt}}}}}}\ignorespaces\ignorespaces{\hbox{\kern 4.49588pt\raise 0.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\scriptstyle{}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 14.99176pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces}}}}\>S,\quad s\otimes s^{\prime}\mapsto ss^{\prime}

    is bijective;

  4. iv)

    is factorizable if for every sSs\in S, there exist s1,s2Ss_{1},s_{2}\in S such that s=s1s2s=s_{1}s_{2}.

For subsets U,VSU,V\subseteq S we write UV:={uvuU,vV}UV:=\{uv\mid u\in U,v\in V\}. For singleton subsets we write aS:={a}SaS:=\{a\}S. A semigroup act ASA_{S} (AS{}_{S}A) is called unitary if AS=AAS=A (SA=ASA=A). An (S,T)(S,T)-biact ATS{}_{S}A_{T} is unitary if AA is unitary both as a left SS-act and a right TT-act. Semigroup theoretic notions that are not explicitly defined in this paper are covered in Howie’s book [5]. Subject matter pertaining to tensor products of acts is covered in [6].

A central notion is that of a Morita context due to Talwar [13].

Definition 1.2.

A Morita context connecting semigroups SS and TT is a six-tuple
(S,T,PTS,QST,θ,ϕ)(S,T,{}_{S}P_{T},{}_{T}Q_{S},\theta,\phi), where PTS{}_{S}P_{T} is an (S,T)(S,T)-biact, QST{}_{T}Q_{S} is a (T,S)(T,S)-biact and

θ:(PTQ)SSSSSandϕ:(QSP)TTTTT\displaystyle\theta:{}_{S}(P\otimes_{T}Q)_{S}\>\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 0.0pt\hbox{\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces{\hbox{\kern 4.49588pt\raise 0.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\scriptstyle{}$}}}\kern 3.0pt}}}}}}\ignorespaces\ignorespaces{\hbox{\kern 4.49588pt\raise 0.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\scriptstyle{}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 14.99176pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces}}}}\>{}_{S}S_{S}\quad\mbox{and}\quad\phi:{}_{T}(Q\otimes_{S}P)_{T}\>\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 0.0pt\hbox{\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces{\hbox{\kern 4.49588pt\raise 0.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\scriptstyle{}$}}}\kern 3.0pt}}}}}}\ignorespaces\ignorespaces{\hbox{\kern 4.49588pt\raise 0.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\scriptstyle{}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 14.99176pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces}}}}\>{}_{T}T_{T}

are biact morphisms satisfying the identities

θ(pq)p=pϕ(qp)andqθ(pq)=ϕ(qp)q.\displaystyle\theta(p\otimes q)p^{\prime}=p\phi(q\otimes p^{\prime})\quad\mbox{and}\quad q^{\prime}\theta(p\otimes q)=\phi(q^{\prime}\otimes p)q.

A Morita context is called

  1. i)

    unitary if the biacts are unitary;

  2. ii)

    surjective if the biact morphisms are surjective.

Semigroups that are connected by a unitary surjective Morita context are called strongly Morita equivalent [13].

Strong Morita equivalence is an equivalence relation on the subclass of factorizable semigroups. In fact, strong Morita equivalence can only occur between factorizable semigroups by Proposition 1 in [8]. From the category theoretical perspective, semigroups SS and TT are called Morita equivalent if the categories of firm acts 𝖥𝖠𝖼𝗍S\mathsf{FAct}_{S} and 𝖥𝖠𝖼𝗍T\mathsf{FAct}_{T} are equivalent (cf. [11]). However, in the subclass of factorizable semigroups, it is sufficient to consider strong Morita equivalence, which coincides with the category theoretical Morita equivalence by Theorem 4.11 in [10].

2. Morita semigroups and strong Morita equivalence

The following definition is due to Talwar [13].

Definition 2.1.

Let PS{}_{S}P and QSQ_{S} be SS-acts. A Morita semigroup over SS defined by ,\left\langle\,,\,\right\rangle is the set QSPQ\otimes_{S}P with multiplication

(qp)(qp):=qp,qp,(q\otimes p)(q^{\prime}\otimes p^{\prime}):=q\otimes\left\langle\,p,q^{\prime}\,\right\rangle p^{\prime},

where ,:PS×QSSSS\left\langle\,,\,\right\rangle:{}_{S}P\times Q_{S}\>\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 0.0pt\hbox{\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces{\hbox{\kern 4.49588pt\raise 0.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\scriptstyle{}$}}}\kern 3.0pt}}}}}}\ignorespaces\ignorespaces{\hbox{\kern 4.49588pt\raise 0.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\scriptstyle{}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 14.99176pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces}}}}\>{}_{S}S_{S} is an (S,S)(S,S)-biact morphism. The Morita semigroup is

  1. i)

    unitary if PP and QQ are unitary SS-acts;

  2. ii)

    surjectively defined if the map ,\left\langle\,,\,\right\rangle is surjective.

Example 2.2.

Every Morita context gives, in a natural way, rise to two Morita semigroups. Let arbitrary semigroups SS and TT be connected by a Morita context
(S,T,PTS,QST,θ,ϕ)(S,T,{}_{S}P_{T},{}_{T}Q_{S},\theta,\phi). Then using the biact morphism

,:PS×QSSSS,(p,q)θ(pq),\left\langle\,,\,\right\rangle:{}_{S}P\times Q_{S}\>\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 0.0pt\hbox{\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces{\hbox{\kern 4.49588pt\raise 0.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\scriptstyle{}$}}}\kern 3.0pt}}}}}}\ignorespaces\ignorespaces{\hbox{\kern 4.49588pt\raise 0.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\scriptstyle{}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 14.99176pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces}}}}\>{}_{S}S_{S},\;\;(p,q)\mapsto\theta(p\otimes q),

we can turn QSPQ\otimes_{S}P into a Morita semigroup with multiplication

(qp)(qp)=qθ(pq)p=qpϕ(qp).(q\otimes p)(q^{\prime}\otimes p^{\prime})=q\otimes\theta(p\otimes q^{\prime})p^{\prime}=q\otimes p\phi(q^{\prime}\otimes p^{\prime}).

The equalities

ϕ((qp)(qp))=ϕ(qpϕ(qp))=ϕ(qp)ϕ(qp)\phi((q\otimes p)(q^{\prime}\otimes p^{\prime}))=\phi(q\otimes p\phi(q^{\prime}\otimes p^{\prime}))=\phi(q\otimes p)\phi(q^{\prime}\otimes p^{\prime})

yield that ϕ\phi is a semigroup morphism. In a similar way, PTQP\otimes_{T}Q is a Morita semigroup.

Given a Morita context with morphisms θ\theta and ϕ\phi, these, of course, need not be isomorphisms, but they do have good properties, in general.

Definition 2.3.

We say a semigroup morphism φ:ST\varphi:S\>\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 0.0pt\hbox{\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces{\hbox{\kern 4.49588pt\raise 0.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\scriptstyle{}$}}}\kern 3.0pt}}}}}}\ignorespaces\ignorespaces{\hbox{\kern 4.49588pt\raise 0.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\scriptstyle{}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 14.99176pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces}}}}\>T is almost injective if it is injective on all subsemigroups of the form aSbaSb, where aSaa\in Sa and bbSb\in bS. An almost injective semigroup morphism is called a strict local isomorphism if it is also surjective. Idempotents lift along φ\varphi, if for every fE(T)f\in E(T), there exists eE(S)e\in E(S) such that f=φ(e)f=\varphi(e).

Remark 2.4.

Given a strict local isomorphism along which idempotents lift, regular elements also lift by Lemma 3.1 in [12].

Strict local isomorphisms along which idempotents lift appear in a covering theorem by Rees matrix semigroups (cf. Theorem 3.2 in [12]). Laan and Márki [8] also use such morphisms to describe strong Morita equivalence of semigroups with local units.

A semigroup SS is said to have common weak local units if for every s,sSs,s^{\prime}\in S there exist u,vSu,v\in S such that us=s,us=sus=s,us^{\prime}=s^{\prime} and sv=s,sv=ssv=s,s^{\prime}v=s^{\prime}. Semigroups with common weak local units are introduced in [9] and also shown to be firm (cf. Proposition 2.4).

Lemma 2.5.

Let φ:ST\varphi:S\>\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 0.0pt\hbox{\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces{\hbox{\kern 4.49588pt\raise 0.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\scriptstyle{}$}}}\kern 3.0pt}}}}}}\ignorespaces\ignorespaces{\hbox{\kern 4.49588pt\raise 0.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\scriptstyle{}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 14.99176pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces}}}}\>T be a semigroup morphism. Assume that SS has common weak local units. The following are equivalent.

  • 1. φ\varphi is almost injective.

  • 2. φ|sS\varphi|_{sS} is injective for every sSs\in S.

  • 3. φ|Ss\varphi|_{Ss} is injective for every sSs\in S.

Proof.

1. \Rightarrow 2. Assume φ\varphi is almost injective and take sSs\in S. Take s,s′′Ss^{\prime},s^{\prime\prime}\in S such that φ(ss)=φ(ss′′)\varphi(ss^{\prime})=\varphi(ss^{\prime\prime}). Since SS has common weak local units, there exists uSu\in S such that ss=ssuss^{\prime}=ss^{\prime}u and ss′′=ss′′uss^{\prime\prime}=ss^{\prime\prime}u. Now φ(ssu)=φ(ss′′u)\varphi(ss^{\prime}u)=\varphi(ss^{\prime\prime}u) implies ssu=ss′′uss^{\prime}u=ss^{\prime\prime}u and hence ss=ss′′ss^{\prime}=ss^{\prime\prime}. The implication 1.3.1.\Rightarrow 3. is proved similarly. Implications 2.1.2.\Rightarrow 1. and 3.1.3.\Rightarrow 1. hold with no restrictions to SS. ∎

Remark 2.6.

A ring RR is called s-unital if for every sRs\in R, there exist u,vRu,v\in R such that us=s=svus=s=sv. Tominaga [14] showed that this implies every finite non-empty subset FRF\subseteq R admits u,vRu,v\in R such that uf=f=fvuf=f=fv for every fFf\in F (cf. Theorem 1). In particular, in present terminology, a ring has weak local units if and only if it has common weak local units. For semigroups, however, this is false. Any right zero semigroup does have local units, but does not have common weak local units. The same is true of rectangular bands.

For an RR-module MRM_{R}, where RR is a ring (not necessarily with identity) and a morphism f:MRRRf:M_{R}\>\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 0.0pt\hbox{\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces{\hbox{\kern 4.49588pt\raise 0.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\scriptstyle{}$}}}\kern 3.0pt}}}}}}\ignorespaces\ignorespaces{\hbox{\kern 4.49588pt\raise 0.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\scriptstyle{}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 14.99176pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces}}}}\>R_{R} of RR-modules, the set MM can be turned into a ring, where ff then becomes an almost injective morphism of rings and conversely, every strict local isomorphism SRS\>\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 0.0pt\hbox{\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces{\hbox{\kern 4.49588pt\raise 0.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\scriptstyle{}$}}}\kern 3.0pt}}}}}}\ignorespaces\ignorespaces{\hbox{\kern 4.49588pt\raise 0.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\scriptstyle{}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 14.99176pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces}}}}\>R is, essentially, an RR-valued linear functional [15]. A similar idea works in the semigroup case.

Proposition 2.7.

Let SS be a semigroup, ASA_{S} an SS-act and ρ:ASSS\rho:A_{S}\>\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 0.0pt\hbox{\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces{\hbox{\kern 4.49588pt\raise 0.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\scriptstyle{}$}}}\kern 3.0pt}}}}}}\ignorespaces\ignorespaces{\hbox{\kern 4.49588pt\raise 0.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\scriptstyle{}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 14.99176pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces}}}}\>S_{S} an SS-morphism. The following statements hold.

  • 1. The set AA is a semigroup under multiplication aa:=aρ(a)a\cdot a^{\prime}:=a\rho(a^{\prime}). The SS-morphism ρ\rho is an almost injective semigroup morphism. If ρ\rho is also surjective, then idempotents lift along ρ\rho.

  • 2. If TT is a semigroup with common weak local units, then all strict local isomorphisms TST\>\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 0.0pt\hbox{\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces{\hbox{\kern 4.49588pt\raise 0.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\scriptstyle{}$}}}\kern 3.0pt}}}}}}\ignorespaces\ignorespaces{\hbox{\kern 4.49588pt\raise 0.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\scriptstyle{}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 14.99176pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces}}}}\>S arise in the manner specified in 1.

Proof.

For the first item we have associativity due to the equalities

(aa)a′′=(aρ(a))a′′=aρ(a)ρ(a′′)=aρ(aρ(a′′))=a(aa′′),\displaystyle(a\cdot a^{\prime})\cdot a^{\prime\prime}=(a\rho(a^{\prime}))\cdot a^{\prime\prime}=a\rho(a^{\prime})\rho(a^{\prime\prime})=a\rho(a^{\prime}\rho(a^{\prime\prime}))=a\cdot(a^{\prime}\cdot a^{\prime\prime}),

where a,a,a′′Aa,a^{\prime},a^{\prime\prime}\in A. It is clear that ρ\rho is a semigroup morphism. We show ρ\rho is injective on subsemigroups of the form aAa\cdot A, where aAaa\in A\cdot a. Let a=aaa=a^{\prime}\cdot a for some aAa^{\prime}\in A. Take m,nAm,n\in A such that ρ(am)=ρ(an)\rho(a\cdot m)=\rho(a\cdot n). Then

am=a(am)=aρ(am)=aρ(an)=a(an)=an.a\cdot m=a^{\prime}\cdot(a\cdot m)=a^{\prime}\rho(a\cdot m)=a^{\prime}\rho(a\cdot n)=a^{\prime}\cdot(a\cdot n)=a\cdot n.

Assume ρ\rho is surjective and let e=ρ(a)e=\rho(a) be an idempotent. Then

a4=aρ(a3)=a(ρ(a))3=aρ(a)=a2E(A)a^{4}=a\rho(a^{3})=a(\rho(a))^{3}=a\rho(a)=a^{2}\in E(A)

and ρ(a2)=(ρ(a))2=e\rho(a^{2})=(\rho(a))^{2}=e.

Now let τ:TS\tau:T\>\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 0.0pt\hbox{\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces{\hbox{\kern 4.49588pt\raise 0.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\scriptstyle{}$}}}\kern 3.0pt}}}}}}\ignorespaces\ignorespaces{\hbox{\kern 4.49588pt\raise 0.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\scriptstyle{}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 14.99176pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces}}}}\>S be a strict local isomorphism, where TT has common weak local units. Define ts:=ttt\star s^{\prime}:=tt^{\prime}, where t,tTt,t^{\prime}\in T and sSs^{\prime}\in S such that τ(t)=s\tau(t^{\prime})=s^{\prime}. Suppose τ(t′′)=s\tau(t^{\prime\prime})=s^{\prime} for some t′′Tt^{\prime\prime}\in T. Then τ(tt)=τ(t)s=τ(tt′′)\tau(tt^{\prime})=\tau(t)s^{\prime}=\tau(tt^{\prime\prime}). By Lemma 2.5, the map τ|tT\tau|_{tT} is injective, hence tt=tt′′tt^{\prime}=tt^{\prime\prime}. Thus, the map \star is well defined. Now take s,s′′Ss^{\prime},s^{\prime\prime}\in S, tTt\in T and assume τ(t)=s\tau(t^{\prime})=s^{\prime} and τ(t′′)=s′′\tau(t^{\prime\prime})=s^{\prime\prime} for some t,t′′Tt^{\prime},t^{\prime\prime}\in T. It follows that

(ts)s′′=tts′′=ttt′′=t(ss′′),\displaystyle(t\star s^{\prime})\star s^{\prime\prime}=tt^{\prime}\star s^{\prime\prime}=tt^{\prime}t^{\prime\prime}=t\star(s^{\prime}s^{\prime\prime}),

where the last equality holds due to ss′′=τ(tt′′)s^{\prime}s^{\prime\prime}=\tau(t^{\prime}t^{\prime\prime}). Thus, we have a right SS-action on TT. The equalities

τ(ts)=τ(tt)=τ(t)τ(t)=τ(t)s\tau(t\star s^{\prime})=\tau(tt^{\prime})=\tau(t)\tau(t^{\prime})=\tau(t)s^{\prime}

show that τ\tau is an SS-morphism. ∎

As we are naturally provided with two Morita semigroups, a Morita context also yields two almost injective semigroup morphisms.

Theorem 2.8.

Let arbitrary non-empty semigroups SS and TT be connected by a Morita context (S,T,PTS,QST,θ,ϕ)(S,T,{}_{S}P_{T},{}_{T}Q_{S},\theta,\phi). Then θ\theta and ϕ\phi are almost injective semigroup morphisms. If θ\theta is surjective, then idempotents lift along θ\theta. The same holds for ϕ\phi.

Proof.

It suffices to prove these statements for θ\theta. The map θ:(PTQ)SSS\theta:(P\otimes_{T}Q)_{S}\>\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 0.0pt\hbox{\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces{\hbox{\kern 4.49588pt\raise 0.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\scriptstyle{}$}}}\kern 3.0pt}}}}}}\ignorespaces\ignorespaces{\hbox{\kern 4.49588pt\raise 0.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\scriptstyle{}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 14.99176pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces}}}}\>S_{S} is an SS-morphism by definition. Additionally, for every pq,pqPTQp\otimes q,p^{\prime}\otimes q^{\prime}\in P\otimes_{T}Q, we have (pq)(pq)=pqθ(pq)(p\otimes q)(p^{\prime}\otimes q^{\prime})=p\otimes q\theta(p^{\prime}\otimes q^{\prime}). Then θ\theta is almost injective by the first item of Proposition 2.7. Therefore, if θ\theta is also surjective, idempotents lift along θ\theta. ∎

The following example illustrates that almost injective morphisms need not be injective.

Example 2.9.

Let SS be factorizable such that it is not firm. An example of such a semigroup can be found in [9]. Then SSSS\otimes_{S}S is firm both as a biact and a semigroup by Theorem 2.6 in [10] and μ:SSSS,ssss,\mu:S\otimes_{S}S\>\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 0.0pt\hbox{\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces{\hbox{\kern 4.49588pt\raise 0.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\scriptstyle{}$}}}\kern 3.0pt}}}}}}\ignorespaces\ignorespaces{\hbox{\kern 4.49588pt\raise 0.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\scriptstyle{}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 14.99176pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces}}}}\>S,\ s\otimes s^{\prime}\mapsto ss^{\prime}, is a biact morphism in the Morita context connecting SS and SSSS\otimes_{S}S (cf. Proposition 4.7 in [10]). The morphism μ\mu is a strict local isomorphism by Theorem 2.8, but it cannot be injective, because SS is not firm.

Theorem 2.8 also generalizes necessity part of Theorem 13 in [8] from semigroups with local units to factorizable semigroups. It could also be considered as an analogue of Theorem 3 in [8], where Rees matrix semigroups are replaced by Morita semigroups.

Corollary 2.10.

If SS and TT are strongly Morita equivalent semigroups then there exists a surjectively defined unitary Morita semigroup QSPQ\otimes_{S}P and a strict local isomorphism τ:QSPT\tau:Q\otimes_{S}P\>\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 0.0pt\hbox{\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces{\hbox{\kern 4.49588pt\raise 0.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\scriptstyle{}$}}}\kern 3.0pt}}}}}}\ignorespaces\ignorespaces{\hbox{\kern 4.49588pt\raise 0.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\scriptstyle{}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 14.99176pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces}}}}\>T along which idempotent and regular elements lift.

The following strengthens considerably Theorem 13 in [8]. Firstly, only firmness is assumed from the semigroups instead of having local units and, secondly, strict local isomorphisms are replaced by isomorphisms. It could also be viewed as a semigroup theoretic analogue of Theorem 2.6 in [1].

Theorem 2.11.

Let SS and TT be firm semigroups. The following are equivalent.

  • 1. SS and TT are strongly Morita equivalent.

  • 2. SS is isomorphic to a surjectively defined Morita semigroup over TT.

Proof.

For 1.2.1.\Rightarrow 2. assume the firm semigroups SS and TT are strongly Morita equivalent. By Theorem 5.9 in [9], they are connected by a unitary Morita context (S,T,PTS,QST,θ,ϕ)(S,T,{}_{S}P_{T},{}_{T}Q_{S},\theta,\phi) with bijective mappings. Then PTQP\otimes_{T}Q defined by ϕ:Q×PT\phi\circ\otimes:Q\times P\>\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 0.0pt\hbox{\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces{\hbox{\kern 4.49588pt\raise 0.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\scriptstyle{}$}}}\kern 3.0pt}}}}}}\ignorespaces\ignorespaces{\hbox{\kern 4.49588pt\raise 0.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\scriptstyle{}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 14.99176pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces}}}}\>T is a unitary surjectively defined Morita semigroup over TT. Similarly to Example 2.2, θ:PTQS\theta:P\otimes_{T}Q\>\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 0.0pt\hbox{\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces{\hbox{\kern 4.49588pt\raise 0.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\scriptstyle{}$}}}\kern 3.0pt}}}}}}\ignorespaces\ignorespaces{\hbox{\kern 4.49588pt\raise 0.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\scriptstyle{}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 14.99176pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces}}}}\>S also respects the semigroup structure and is therefore an isomorphism of semigroups.

For 2.1.2.\Rightarrow 1., assume that SS is isomorphic to a surjectively defined Morita semigroup PTQP\otimes_{T}Q over TT. By Theorem 5 in [13], the Morita semigroup PTQP\otimes_{T}Q is strongly Morita equivalent to TT. Using transitivity, we conclude that the semigroups SS and TT are strongly Morita equivalent. ∎

Hotzel [4] noted that a surjectively defined unitary Morita semigroup over a monoid with free acts is a coordinate-free copy of a Rees matrix semigroup over that monoid. Laan and Márki [8] showed that this is true of semigroups with weak local units (cf. Proposition 10). We can make use of their construction to show the following.

Theorem 2.12.

Let SS be a factorizable semigroup and :=(S,U,V,p)\mathcal{M}:=\mathcal{M}(S,U,V,p) a Rees matrix semigroup over SS. Then there exists a unitary Morita semigroup QSPQ\otimes_{S}P and a strict local isomorphism QSPQ\otimes_{S}P\>\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 0.0pt\hbox{\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces{\hbox{\kern 4.49588pt\raise 0.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\scriptstyle{}$}}}\kern 3.0pt}}}}}}\ignorespaces\ignorespaces{\hbox{\kern 4.49588pt\raise 0.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\scriptstyle{}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 14.99176pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces}}}}\>\mathcal{M} along which idempotents lift.

Proof.

Put QS:=(U×S)SQ_{S}:=(U\times S)_{S} and PS:=(S×V)S{}_{S}P:={}_{S}(S\times V), where the SS-action on QQ is defined by (u,s)s:=(u,ss)(u,s)s^{\prime}:=(u,ss^{\prime}) and similarly for PP. Due to factorisability of SS, they are unitary SS-acts. Define

,:(P×Q)SSSSS,(s,v),(u,s)=sp(v,u)s.\left\langle\,,\,\right\rangle:{}_{S}(P\times Q)_{S}\>\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 0.0pt\hbox{\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces{\hbox{\kern 4.49588pt\raise 0.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\scriptstyle{}$}}}\kern 3.0pt}}}}}}\ignorespaces\ignorespaces{\hbox{\kern 4.49588pt\raise 0.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\scriptstyle{}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 14.99176pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces}}}}\>{}_{S}S_{S},\quad\langle(s,v),(u,s^{\prime})\rangle=s\,p(v,u)\,s^{\prime}.

One readily verifies ,\left\langle\,,\,\right\rangle is an (S,S)(S,S)-biact morphism. Define

ψ:QSP,(u,s)(t,v)(u,st,v).\psi:Q\otimes_{S}P\>\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 0.0pt\hbox{\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces{\hbox{\kern 4.49588pt\raise 0.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\scriptstyle{}$}}}\kern 3.0pt}}}}}}\ignorespaces\ignorespaces{\hbox{\kern 4.49588pt\raise 0.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\scriptstyle{}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 14.99176pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces}}}}\>\mathcal{M},\quad(u,s)\otimes(t,v)\mapsto(u,st,v).

Consider the corresponding map ψ^:Q×P\hat{\psi}:Q\times P\>\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 0.0pt\hbox{\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces{\hbox{\kern 4.49588pt\raise 0.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\scriptstyle{}$}}}\kern 3.0pt}}}}}}\ignorespaces\ignorespaces{\hbox{\kern 4.49588pt\raise 0.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\scriptstyle{}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 14.99176pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces}}}}\>\mathcal{M}. The equalities

ψ^((u,s)s0,(t,v))=(u,(ss0)t,v)=(u,s(s0t),v)=ψ^((u,s),s0(t,v))\displaystyle\hat{\psi}\left((u,s)s_{0},(t,v)\right)=(u,(ss_{0})t,v)=(u,s(s_{0}t),v)=\hat{\psi}\left((u,s),s_{0}(t,v)\right)

show that ψ^\hat{\psi} is SS-balanced, therefore ψ\psi is well defined by the universal property of the tensor product. Surjectivity of ψ\psi is clear.

Since SS is factorizable, every element in \mathcal{M} can be written as (u0,s0t0,v0)(u_{0},s_{0}t_{0},v_{0}) for some u0U,v0Vu_{0}\in U,v_{0}\in V and s0,t0Ss_{0},t_{0}\in S. Define :(QSP)×QSP\star:(Q\otimes_{S}P)\times\mathcal{M}\>\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 0.0pt\hbox{\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces{\hbox{\kern 4.49588pt\raise 0.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\scriptstyle{}$}}}\kern 3.0pt}}}}}}\ignorespaces\ignorespaces{\hbox{\kern 4.49588pt\raise 0.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\scriptstyle{}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 14.99176pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces}}}}\>Q\otimes_{S}P with the equality

((u,s)(t,v))(u0,s0t0,v0):=(u,s)(t,v),(u0,s0)(t0,v0).\displaystyle\left((u,s)\otimes(t,v)\right)\star(u_{0},s_{0}t_{0},v_{0}):=(u,s)\otimes\left\langle\,(t,v),(u_{0},s_{0})\,\right\rangle(t_{0},v_{0}).

Take (u0,s0t0,v0)(u_{0},s_{0}t_{0},v_{0})\in\mathcal{M} and denote the multiplication of the Morita semigroup QSPQ\otimes_{S}P by the symbol \cdot. For every (u,s)(t,v)QSP(u,s)\otimes(t,v)\in Q\otimes_{S}P we have the equality

((u,s)(t,v))(u0,s0t0,v0)=((u,s)(t,v))((u0,s0)(t0,v0)).\displaystyle\left((u,s)\otimes(t,v)\right)\star(u_{0},s_{0}t_{0},v_{0})=\left((u,s)\otimes(t,v)\right)\,\cdot\,\left((u_{0},s_{0})\otimes(t_{0},v_{0})\right).

Thus, the maps (u0,s0t0,v0)-\star(u_{0},s_{0}t_{0},v_{0}) and ((u0,s0)(t0,v0))-\cdot\left((u_{0},s_{0})\otimes(t_{0},v_{0})\right) coincide on QSPQ\otimes_{S}P. It follows that \star is well defined on QSPQ\otimes_{S}P. Take (u,s)(t,v)QSP(u,s)\otimes(t,v)\in Q\otimes_{S}P. It is clear that in the event s0t0=s0t0s_{0}t_{0}=s_{0}^{\prime}t_{0}^{\prime}, we have

((u,s)(t,v))(u0,s0t0,v0)=((u,s)(t,v))(u0,s0t0,v0).\left((u,s)\otimes(t,v)\right)\star(u_{0},s_{0}t_{0},v_{0})=\left((u,s)\otimes(t,v)\right)\star(u_{0},s_{0}^{\prime}t_{0}^{\prime},v_{0}).

Take also (u1,s1t1,v1)(u_{1},s_{1}t_{1},v_{1})\in\mathcal{M}. We have the equalities

(((u,s)(t,v))(u0,s0t0,v0))(u1,s1t1,v1)\displaystyle\left(\left((u,s)\otimes(t,v)\right)\star(u_{0},s_{0}t_{0},v_{0})\right)\star(u_{1},s_{1}t_{1},v_{1})
=\displaystyle= ((u,s)(t,v))((u0,s0)(t0,v0))((u1,s1)(t1,v1))\displaystyle\,\left((u,s)\otimes(t,v)\right)\,\cdot\,\left((u_{0},s_{0})\otimes(t_{0},v_{0})\right)\,\cdot\,\left((u_{1},s_{1})\otimes(t_{1},v_{1})\right)
=\displaystyle= ((u,s)(t,v))((u0,s0)t0p(v0,u1)(s1t1,v1))\displaystyle\,\left((u,s)\otimes(t,v)\right)\,\cdot\,\left((u_{0},s_{0})\otimes t_{0}\,p(v_{0},u_{1})\,(s_{1}t_{1},v_{1})\right)
=\displaystyle= ((u,s)(t,v))(u0,s0t0p(v0,u1)s1t1,v0)\displaystyle\,\left((u,s)\otimes(t,v)\right)\star(u_{0},s_{0}t_{0}\,p(v_{0},u_{1})s_{1}t_{1},v_{0})
=\displaystyle= ((u,s)(t,v))((u0,s0t0,v0)(u1,s1t1,v1)).\displaystyle\,\left((u,s)\otimes(t,v)\right)\star\left((u_{0},s_{0}t_{0},v_{0})(u_{1},s_{1}t_{1},v_{1})\right).

Therefore, \star is an \mathcal{M}-action. We also have the equalities

ψ(((u,s)(t,v))(u0,s0t0,v0))\displaystyle\psi\left(\left((u,s)\otimes(t,v)\right)\star(u_{0},s_{0}t_{0},v_{0})\right) =ψ((u,s)tp(v,u0)s0(t0,v0))\displaystyle=\psi\left((u,s)\otimes t\,p(v,u_{0})\,s_{0}(t_{0},v_{0})\right)
=(u,stp(v,u0)s0t0,v0)\displaystyle=(u,st\,p(v,u_{0})\,s_{0}t_{0},v_{0})
=(u,st,v)(u0,s0t0,v0)\displaystyle=(u,st,v)(u_{0},s_{0}t_{0},v_{0})
=ψ((u,s)(t,v))(u0,s0t0,v0),\displaystyle=\psi((u,s)\otimes(t,v))\,(u_{0},s_{0}t_{0},v_{0}),

which implies ψ\psi is an \mathcal{M}-morphism. Due to the equality

((u,s)(t,v))((u0,s0)(t0,v0))=((u,s)(t,v))ψ((u0,s0)(t0,v0))\left((u,s)\otimes(t,v)\right)\cdot\left((u_{0},s_{0})\otimes(t_{0},v_{0})\right)=\left((u,s)\otimes(t,v)\right)\star\psi((u_{0},s_{0})\otimes(t_{0},v_{0}))

we have by Proposition 2.7 that ψ\psi is a strict local isomorphism along which idempotents lift. ∎

Corollary 2.13.

Let SS be a factorizable semigroup and \mathcal{M} a Rees matrix semigroup over SS. Then \mathcal{M} is a quotient of a unitary Morita semigroup.

It also turns out that the construction given by Laan and Márki [8] yields an isomorphism if SS is firm.

Corollary 2.14.

Let SS be a firm semigroup and :=(S,U,V,p)\mathcal{M}:=\mathcal{M}(S,U,V,p) a Rees matrix semigroup over SS. Then \mathcal{M} is isomorphic to a unitary Morita semigroup over SS. If S=Sim(p)SS=S\mathrm{im}(p)S, then \mathcal{M} is isomorphic to a surjectively defined unitary Morita semigroup over SS.

Proof.

Assume the construction given in the proof of Theorem 2.12. It is clear that the map ,\left\langle\,,\,\right\rangle is surjective if and only if the equality S=Sim(p)SS=S\mathrm{im}(p)S holds. It remains to show that ψ\psi is injective.

Let the equality (u,st,v)=(u,st,v)(u,st,v)=(u,s^{\prime}t^{\prime},v) hold in \mathcal{M}. Then st=stst=s^{\prime}t^{\prime} if and only if st=sts\otimes t=s^{\prime}\otimes t^{\prime} in SSSS\otimes_{S}S due to firmness of SS. Thus, we have an SS-tossing connecting sts\otimes t and sts^{\prime}\otimes t^{\prime}, which we may extend to the following SS-tossing

r1(y1,v)=(t,v)(u,s)r1=(u,x1)s1r2(y2,v)=s1(y1,v)(u,x1)r2=(u,x2)s2r3(y3,v)=s2(y2,v)(u,xn2)rn1=(u,xn1)sn1rn(yn,v)=sn1(yn1,v)(u,xn1)rn=(u,s)sn(t,v)=sn(yn,v)\begin{array}[]{lclcrcl}&&&&r_{1}(y_{1},v)&=&(t,v)\\ (u,s)r_{1}&=&(u,x_{1})s_{1}&&r_{2}(y_{2},v)&=&s_{1}(y_{1},v)\\ (u,x_{1})r_{2}&=&(u,x_{2})s_{2}&&r_{3}(y_{3},v)&=&s_{2}(y_{2},v)\\ &\ldots&&&&\ldots&\\ (u,x_{n-2})r_{n-1}&=&(u,x_{n-1})s_{n-1}&&r_{n}(y_{n},v)&=&s_{n-1}(y_{n-1},v)\\ (u,x_{n-1})r_{n}&=&(u,s^{\prime})s_{n}&&(t^{\prime},v)&=&s_{n}(y_{n},v)\\ \end{array}

where xi,yiSx_{i},y_{i}\in S and ri,siS1r_{i},s_{i}\in S^{1}. Equivalently, the equality

(u,s)(t,v)=(u,s)(t,v)(u,s)\otimes(t,v)=(u,s^{\prime})\otimes(t^{\prime},v)

holds in QSPQ\otimes_{S}P. Therefore, ψ\psi is injective. ∎

Remark 2.15.

For a Rees matrix semigroup :=(S,U,V,p)\mathcal{M}:=\mathcal{M}(S,U,V,p) over a factorizable semigroup SS, the condition S=Sim(p)SS=S\mathrm{im}(p)S is equivalent to \mathcal{M} being factorizable, which, in turn, is equivalent to SS being strongly Morita equivalent to \mathcal{M} by Proposition 2 in [8].

By Laan and Reimaa [10], we have that a semigroup SS is factorizable if and only if SSS\otimes S is a firm semigroup. In the same article it is shown that ASB=ASSBA\otimes_{S}B=A\otimes_{S\otimes S}B holds for factorizable semigroups SS. While we do not know, whether Theorem 2.12 holds for factorizable semigroups, we can conclude the following.

Corollary 2.16.

Let SS be a factorizable semigroup and :=(SS,U,V,p)\mathcal{M}:=\mathcal{M}(S\otimes S,U,V,p) a Rees matrix semigroup over SSS\otimes S. Then \mathcal{M} is isomorphic to a unitary Morita semigroup over SS, which may be assumed to be surjectively defined if \mathcal{M} is factorizable.

3. Dual pairs and Morita semigroups

Hotzel [4] considers Morita semigroups over monoids with 0. His acts also must have a fixed zero element. We show that the mapping presented in Theorem 2.4 in [4] is a well-behaved morphism, in general. It also turns out that it is an isomorphism for dual pairs over a semigroup with weak local units.

We would prefer to use notation that is somewhat different from Hotzel’s notation. For example, we write SS instead of DD and we do not assume that SS is a monoid with zero.

Definition 3.1.

A pair over a semigroup SS consists of

  • a left act AS{{}_{S}A},

  • a right act BSB_{S},

  • an (S,S)(S,S)-biact morphism ,:AS×BSSSS\left\langle\,,\,\right\rangle:{{}_{S}A}\times B_{S}\>\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 0.0pt\hbox{\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces{\hbox{\kern 4.49588pt\raise 0.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\scriptstyle{}$}}}\kern 3.0pt}}}}}}\ignorespaces\ignorespaces{\hbox{\kern 4.49588pt\raise 0.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\scriptstyle{}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 14.99176pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces}}}}\>{{}_{S}S_{S}}.

Denote such a pair by β\beta and write β=(AS,BS)\beta=({{}_{S}A},B_{S}).

Hotzel assumes the acts in a pair are unitary, but we do not need to assume this. Every pair induces a Morita semigroup which is denoted by BSβAB\otimes^{\beta}_{S}A and defined by ,\left\langle\,,\,\right\rangle 111Hotzel did not call these Morita semigroups. We use Talwar’s terminology for the construction inspired by Hotzel’s ( cf. p. 386 in [13]).. Often it is clear BSβAB\otimes_{S}^{\beta}A is taken with respect to β\beta, so the superscript β\beta is omitted. With β\beta is associated the following subsemigroup of 𝙴𝚗𝚍(AS)×𝙴𝚗𝚍(BS)\mathtt{End}({{}_{S}A})\times\mathtt{End}(B_{S}):

Ωβ:={(ρ,σ)ρ𝙴𝚗𝚍(AS),σ𝙴𝚗𝚍(BS),ρ(a),b=a,σ(b) for all aA,bB}.\Omega^{\beta}:=\{(\rho,\sigma)\mid\rho\in\mathtt{End}({{}_{S}A}),\sigma\in\mathtt{End}(B_{S}),\left\langle\,\rho(a),b\,\right\rangle=\left\langle\,a,\sigma(b)\,\right\rangle\mbox{ for all }a\in A,b\in B\}\,.

The multiplication on 𝙴𝚗𝚍(SA)×𝙴𝚗𝚍(BS)\mathtt{End}(_{S}A)\times\mathtt{End}(B_{S}) is given by the equality

(f,g)(f,g):=(ff,gg).(f,g)(f^{\prime},g^{\prime}):=(f^{\prime}f,gg^{\prime}).

Hotzel refers to such ρ\rho and σ\sigma as linked endomorphisms. We call such ρ\rho and σ\sigma adjoint endomorphisms as does Ánh [1].

Example 3.2.

Every Morita context induces a number of pairs of adjoint endomorphisms. For a given Morita context (S,T,P,Q,θ,ϕ)(S,T,P,Q,\theta,\phi), we consider the biact morphism

,:PS×QSS,(p,q)θ(pq).\left\langle\,\;,\;\,\right\rangle:{{}_{S}P}\times Q_{S}\>\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 0.0pt\hbox{\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces{\hbox{\kern 4.49588pt\raise 0.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\scriptstyle{}$}}}\kern 3.0pt}}}}}}\ignorespaces\ignorespaces{\hbox{\kern 4.49588pt\raise 0.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\scriptstyle{}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 14.99176pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces}}}}\>S,\;\;(p,q)\mapsto\theta(p\otimes q).

For fixed elements p0Pp_{0}\in P and q0Qq_{0}\in Q

ρ\displaystyle\rho :=θ(q0)p0𝙴𝚗𝚍(SP),\displaystyle:=\theta(-\otimes q_{0})p_{0}\in\mathtt{End}(_{S}P),
σ\displaystyle\sigma :=q0θ(p0)𝙴𝚗𝚍(QS)\displaystyle:=q_{0}\theta(p_{0}\otimes-)\in\mathtt{End}(Q_{S})

are adjoint. Indeed, for any pPp\in P and qQq\in Q

ρ(p),q=θ(pq0)p0,q\displaystyle\left\langle\,\rho(p),q\,\right\rangle=\left\langle\,\theta(p\otimes q_{0})p_{0},q\,\right\rangle =θ(θ(pq0)p0q)\displaystyle=\theta(\theta(p\otimes q_{0})p_{0}\otimes q)
=θ(pq0)θ(p0q)\displaystyle=\theta(p\otimes q_{0})\theta(p_{0}\otimes q)
=θ(pq0θ(p0q))\displaystyle=\theta(p\otimes q_{0}\theta(p_{0}\otimes q))
=p,q0θ(p0q)\displaystyle=\left\langle\,p,q_{0}\theta(p_{0}\otimes q)\,\right\rangle
=p,σ(q).\displaystyle=\left\langle\,p,\sigma(q)\,\right\rangle.

A symmetric construction works for ϕ\phi.

We have an ideal of Ωβ\Omega^{\beta}:

Ω1β:={(ρ,σ)ΩβaA,bB,ρ(A)Saandσ(B)bS}.\Omega_{1}^{\beta}:=\left\{(\rho,\sigma)\in\Omega^{\beta}\mid\exists a\in A,\exists b\in B,\ \rho(A)\subseteq Sa\quad\mbox{and}\quad\sigma(B)\subseteq bS\right\}.

Elements of Ω1β\Omega_{1}^{\beta} are sometimes called adjoint endomorphisms of rank one 222In the terminology of analysis, a linear operator of rank one has a one-dimensional image. In the present case, we do not require equality.. We also have another ideal of Ωβ\Omega^{\beta}:

Σβ={(ρ,σ)ΩβbB,aA,ρ=,ba and σ=ba,}Ω1β.\Sigma^{\beta}=\{(\rho,\sigma)\in\Omega^{\beta}\mid\exists b\in B,\exists a\in A,\ \rho=\left\langle\,-,b\,\right\rangle a\mbox{ and }\sigma=b\left\langle\,a,-\,\right\rangle\}\subseteq\Omega^{\beta}_{1}.

Such pairs are denoted with the symbol [b,a][b,a]. So,

[b,a]=(,ba,ba,).[b,a]=\left(\left\langle\,-,b\,\right\rangle a,b\left\langle\,a,-\,\right\rangle\right).

Note that for [b,a],[b,a]Σβ[b,a],[b^{\prime},a^{\prime}]\in\Sigma^{\beta} we have

[b,a][b,a]\displaystyle[b,a][b^{\prime},a^{\prime}] =(,ba;ba,)(,ba;ba,)\displaystyle=\left(\left\langle\,-,b\,\right\rangle a\,;\,b\left\langle\,a,-\,\right\rangle\right)\,\left(\left\langle\,-,b^{\prime}\,\right\rangle a^{\prime}\,;\,b^{\prime}\left\langle\,a^{\prime},-\,\right\rangle\right)
=(,ba,ba;ba,ba,)\displaystyle=\left(\left\langle\,-,b\,\right\rangle\left\langle\,a,b^{\prime}\,\right\rangle a^{\prime}\,;\,b\left\langle\,\left\langle\,a,b^{\prime}\,\right\rangle a^{\prime},-\,\right\rangle\right)
=[b,a,ba].\displaystyle=[b,\left\langle\,a,b^{\prime}\,\right\rangle a^{\prime}]. (3.1)

Before we proceed, we will justify the above.

Proposition 3.3.

The following statements hold.

  • 1. The subset Ωβ\Omega^{\beta} is a submonoid.

  • 2. The subset Ω1β\Omega_{1}^{\beta} is an ideal in Ωβ\Omega^{\beta}.

  • 3. The subset ΣβΩ1β\Sigma^{\beta}\subseteq\Omega_{1}^{\beta} is an ideal in Ωβ\Omega^{\beta}.

Proof.

For the first item take (ρ1,σ1),(ρ2,σ2)Ωβ(\rho_{1},\sigma_{1}),(\rho_{2},\sigma_{2})\in\Omega^{\beta} and let aA,bBa\in A,b\in B. Then

ρ2ρ1(a),b=ρ1(a),σ2(b)=a,σ1σ2(b).\displaystyle\left\langle\,\rho_{2}\rho_{1}(a),b\,\right\rangle=\left\langle\,\rho_{1}(a),\sigma_{2}(b)\,\right\rangle=\left\langle\,a,\sigma_{1}\sigma_{2}(b)\,\right\rangle.

Thus, the morphisms ρ2ρ1\rho_{2}\rho_{1} and σ1σ2\sigma_{1}\sigma_{2} are adjoint. As 𝚒𝚍A\mathtt{id}_{A} and 𝚒𝚍B\mathtt{id}_{B} are clearly adjoint, Ωβ\Omega^{\beta} is a monoid.

For the second item take (ρ,σ)Ωβ(\rho,\sigma)\in\Omega^{\beta} and (ρ1,σ1)Ω1β(\rho_{1},\sigma_{1})\in\Omega_{1}^{\beta}. There exist a1Aa_{1}\in A and b1Bb_{1}\in B such that ρ1(A)Sa1\rho_{1}(A)\subseteq Sa_{1} and σ1(B)b1S\sigma_{1}(B)\subseteq b_{1}S. Then ρ1ρ(A)ρ1(A)Sa1\rho_{1}\rho(A)\subseteq\rho_{1}(A)\subseteq Sa_{1} and σσ1(B)σ(b1S)=σ(b1)S.\sigma\sigma_{1}(B)\subseteq\sigma(b_{1}S)=\sigma(b_{1})S. Thus Ω1β\Omega_{1}^{\beta} is a left ideal in Ωβ\Omega^{\beta}. The right ideal case is proved similarly.

For the third item let (ρ1,σ1)Σβ(\rho_{1},\sigma_{1})\in\Sigma^{\beta}, i.e, ρ1=,b1a1\rho_{1}=\left\langle\,-,b_{1}\,\right\rangle a_{1} and σ1=b1a1,\sigma_{1}=b_{1}\left\langle\,a_{1},-\,\right\rangle for some a1Aa_{1}\in A and b1Bb_{1}\in B. The inclusion (ρ1,σ1)Ω1β(\rho_{1},\sigma_{1})\in\Omega_{1}^{\beta} is clear. Take (ρ,σ)Ωβ(\rho,\sigma)\in\Omega^{\beta} and note that for every xAx\in A we have

ρ1ρ(x)=ρ(x),b1a1=x,σ(b1)a1\displaystyle\rho_{1}\rho(x)=\left\langle\,\rho(x),b_{1}\,\right\rangle a_{1}=\left\langle\,x,\sigma(b_{1})\,\right\rangle a_{1}

and, on the other hand, for every yBy\in B we have

σσ1(y)=σ(b1a1,y)=σ(b1)a1,y.\displaystyle\sigma\sigma_{1}(y)=\sigma\left(b_{1}\left\langle\,a_{1},y\,\right\rangle\right)=\sigma(b_{1})\left\langle\,a_{1},y\,\right\rangle.

Therefore, ρ1ρ=,σ(b1)a1\rho_{1}\rho=\left\langle\,-,\sigma(b_{1})\,\right\rangle a_{1}, σσ1=σ(b1)a1,\sigma\sigma_{1}=\sigma(b_{1})\left\langle\,a_{1},-\,\right\rangle and Σβ\Sigma^{\beta} is a left ideal in Ωβ\Omega^{\beta}. The right ideal case is proved similarly. ∎

Definition 3.4.

A pair β=(AS,BS)\beta=({{}_{S}A},B_{S}) is called dual if

  • (1)

    aA,aA,aSa and a,B=S\forall a\in A,\exists a^{\prime}\in A,\quad a\in Sa^{\prime}\mbox{ and }\left\langle\,a^{\prime},B\,\right\rangle=S,

  • (2)

    bB,bB,bbS and A,b=S\forall b\in B,\exists b^{\prime}\in B,\quad b\in b^{\prime}S\mbox{ and }\left\langle\,A,b^{\prime}\,\right\rangle=S.

Examples of dual pairs can be found in Hotzel [4]. Note that acts AS{{}_{S}A} and BSB_{S} in a dual pair are necessarily unitary. By Theorem 2.5 in [4], the equality Σβ=Ω1β\Sigma^{\beta}=\Omega_{1}^{\beta} holds for a dual pair over monoid with 0. This is also true in case of a dual pair over a semigroup with weak local units.

Theorem 3.5 (cf. Theorem 2.5 in [4]).

Let β=(SA,BS)\beta=(_{S}A,B_{S}) be a dual pair over a semigroup SS with weak local units. Then Σβ=Ω1β\Sigma^{\beta}=\Omega_{1}^{\beta}.

Proof.

The inclusion ΣβΩ1β\Sigma^{\beta}\subseteq\Omega_{1}^{\beta} is clear. We show Ω1βΣβ\Omega_{1}^{\beta}\subseteq\Sigma^{\beta}. Take (ρ,σ)Ω1β(\rho,\sigma)\in\Omega_{1}^{\beta}, that is, ρ(A)Sa1\rho(A)\subseteq Sa_{1} and σ(B)bS\sigma(B)\subseteq b^{\prime}S for some a1Aa_{1}\in A and bBb^{\prime}\in B. We must show that there exist aAa\in A and bBb\in B such that ρ=,ba\rho=\left\langle\,-,b\,\right\rangle a and σ=ba,\sigma=b\left\langle\,a,-\,\right\rangle.

Since we have a dual pair, a1=sa2a_{1}=sa_{2} for some sSs\in S and a2Aa_{2}\in A. Due to presence of weak local units in SS take srSs_{r}\in S such that s=ssrs=ss_{r} and let a2,b2=sr\left\langle\,a_{2},b_{2}\,\right\rangle=s_{r} for some b2Bb_{2}\in B. Similarly, b=b′′tb^{\prime}=b^{\prime\prime}t, t=ttt=t_{\ell}t for some tSt_{\ell}\in S and a′′,b′′=t\left\langle\,a^{\prime\prime},b^{\prime\prime}\,\right\rangle=t_{\ell} for some a′′Aa^{\prime\prime}\in A. Then σ(b2)=bv\sigma(b_{2})=b^{\prime}v^{\prime} and ρ(a′′)=ua1\rho(a^{\prime\prime})=u^{\prime}a_{1} for some u,vSu^{\prime},v^{\prime}\in S. Putting v:=tvv:=tv^{\prime} and u:=usu:=u^{\prime}s we have

σ(b2)=bv=b′′tv=b′′v and ρ(a′′)=ua1=usa2=ua2.\sigma(b_{2})=b^{\prime}v^{\prime}=b^{\prime\prime}tv^{\prime}=b^{\prime\prime}v\;\;\mbox{ and }\;\;\rho(a^{\prime\prime})=u^{\prime}a_{1}=u^{\prime}sa_{2}=ua_{2}.

Hence

u\displaystyle u =us=ussr=usa2,b2=usa2,b2=ρ(a′′),b2\displaystyle=u^{\prime}s=u^{\prime}ss_{r}=u^{\prime}s\left\langle\,a_{2},b_{2}\,\right\rangle=\left\langle\,u^{\prime}sa_{2},b_{2}\,\right\rangle=\left\langle\,\rho(a^{\prime\prime}),b_{2}\,\right\rangle
=a′′,σ(b2)=a′′,b′′tv=a′′,b′′tv=ttv=tv=v.\displaystyle=\left\langle\,a^{\prime\prime},\sigma(b_{2})\,\right\rangle=\left\langle\,a^{\prime\prime},b^{\prime\prime}tv^{\prime}\,\right\rangle=\left\langle\,a^{\prime\prime},b^{\prime\prime}\,\right\rangle tv^{\prime}=t_{\ell}tv^{\prime}=tv^{\prime}=v.

Take xAx\in A, then ρ(x)=za1\rho(x)=za_{1} for some zSz\in S and

ρ(x),b2a2=zsa2,b2a2=zsa2,b2a2=zssra2=zsa2=za1=ρ(x)\left\langle\,\rho(x),b_{2}\,\right\rangle a_{2}=\left\langle\,zsa_{2},b_{2}\,\right\rangle a_{2}=zs\left\langle\,a_{2},b_{2}\,\right\rangle a_{2}=zss_{r}a_{2}=zsa_{2}=za_{1}=\rho(x)

and therefore, for every xAx\in A we have

ρ(x)=ρ(x),b2a2=x,σ(b2)a2=x,b′′va2.\rho(x)=\left\langle\,\rho(x),b_{2}\,\right\rangle a_{2}=\left\langle\,x,\sigma(b_{2})\,\right\rangle a_{2}=\left\langle\,x,b^{\prime\prime}\,\right\rangle va_{2}.

Similarly, for a fixed yBy\in B, we have σ(y)=bw\sigma(y)=b^{\prime}w for some wSw\in S and

b′′a′′,bw=b′′a′′,b′′tw=b′′a′′,b′′tw=b′′ttw=b′′tw=bw=σ(y).b^{\prime\prime}\left\langle\,a^{\prime\prime},b^{\prime}w\,\right\rangle=b^{\prime\prime}\left\langle\,a^{\prime\prime},b^{\prime\prime}tw\,\right\rangle=b^{\prime\prime}\left\langle\,a^{\prime\prime},b^{\prime\prime}\,\right\rangle tw=b^{\prime\prime}t_{\ell}tw=b^{\prime\prime}tw=b^{\prime}w=\sigma(y).

Therefore, for every yBy\in B we have

σ(y)=b′′a′′,σ(y)=b′′ρ(a′′),y=b′′ua2,y=b′′va2,y.\sigma(y)=b^{\prime\prime}\left\langle\,a^{\prime\prime},\sigma(y)\,\right\rangle=b^{\prime\prime}\left\langle\,\rho(a^{\prime\prime}),y\,\right\rangle=b^{\prime\prime}\left\langle\,ua_{2},y\,\right\rangle=b^{\prime\prime}\left\langle\,va_{2},y\,\right\rangle.

Thus, it suffices to take b=b′′b=b^{\prime\prime} and a=ua2a=ua_{2}. ∎

The following is a semigroup theoretic analogue for Proposition 2.2 in [1].

Lemma 3.6.

Let β=(AS,BS)\beta=({}_{S}A,B_{S}) be a dual pair, where SS is a semigroup with weak local units. Then the Morita semigroup BSβAB\otimes_{S}^{\beta}A has weak local units. If SS has local units, then BSβAB\otimes_{S}^{\beta}A also has local units.

Proof.

Take baBSAb\otimes a\in B\otimes_{S}A. Since we have a dual pair, there exist a1Aa_{1}\in A and sSs\in S such that a=sa1a=sa_{1}. Since SS has weak local units, we can write s=sus=su for some uSu\in S. By duality, we also have u=a1,b1u=\left\langle\,a_{1},b_{1}\,\right\rangle for some b1Bb_{1}\in B. Then

a=sa1=sua1=sa1,b1a1=sa1,b1a1=a,b1a1,a=sa_{1}=sua_{1}=s\left\langle\,a_{1},b_{1}\,\right\rangle a_{1}=\left\langle\,sa_{1},b_{1}\,\right\rangle a_{1}=\left\langle\,a,b_{1}\,\right\rangle a_{1},

hence

ba=ba,b1a1=(ba)(b1a1).b\otimes a=b\otimes\left\langle\,a,b_{1}\,\right\rangle a_{1}=(b\otimes a)(b_{1}\otimes a_{1}).

If SS has local units, then we may assume uu is an idempotent and we have that

(b1a1)4=b1a1,b13a1=b1a1,b1a1=(b1a1)2E(BSA).(b_{1}\otimes a_{1})^{4}=b_{1}\otimes\left\langle\,a_{1},b_{1}\,\right\rangle^{3}a_{1}=b_{1}\otimes\left\langle\,a_{1},b_{1}\,\right\rangle a_{1}=(b_{1}\otimes a_{1})^{2}\in E\left(B\otimes_{S}A\right).

Similarly, b=b2tb=b_{2}t and t=vtt=vt, where v=a2,b2v=\left\langle\,a_{2},b_{2}\,\right\rangle for some a2Aa_{2}\in A. The equality ba=(b2a2)(ba)b\otimes a=(b_{2}\otimes a_{2})(b\otimes a) follows. ∎

It turns out that Hotzel’s construction (cf. Theorem 2.4 in [4]) yields a morphism with good properties in case of an arbitrary pair.

Theorem 3.7.

For any pair β=(AS,BS)\beta=({{}_{S}A},B_{S}) over an arbitrary non-empty semigroup SS there exists a strict local isomorphism from BSβAB\otimes^{\beta}_{S}A onto Σβ\Sigma^{\beta} along which idempotents lift.

Proof.

Define the same way as in [4]

φ:BSAΣβ,ba[b,a].\varphi:B\otimes_{S}A\>\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 0.0pt\hbox{\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces{\hbox{\kern 4.49588pt\raise 0.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\scriptstyle{}$}}}\kern 3.0pt}}}}}}\ignorespaces\ignorespaces{\hbox{\kern 4.49588pt\raise 0.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\scriptstyle{}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 14.99176pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces}}}}\>\Sigma^{\beta},\quad b\otimes a\mapsto[b,a].

The corresponding map

B×AΣβ,(b,a)[b,a],B\times A\>\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 0.0pt\hbox{\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces{\hbox{\kern 4.49588pt\raise 0.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\scriptstyle{}$}}}\kern 3.0pt}}}}}}\ignorespaces\ignorespaces{\hbox{\kern 4.49588pt\raise 0.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\scriptstyle{}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 14.99176pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces}}}}\>\Sigma^{\beta},\quad(b,a)\mapsto[b,a],

is SS-balanced. Indeed, for any sSs\in S we have the equalities

,bsa=,bsaandbsa,=bsa,.\left\langle\,-,bs\,\right\rangle a=\left\langle\,-,b\,\right\rangle sa\quad\mathrm{and}\quad bs\left\langle\,a,-\,\right\rangle=b\left\langle\,sa,-\,\right\rangle.

Thus, φ\varphi is well defined. Surjectivity is clear. Define :(BSA)×ΣβBSA\star:(B\otimes_{S}A)\times\Sigma^{\beta}\>\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 0.0pt\hbox{\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces{\hbox{\kern 4.49588pt\raise 0.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\scriptstyle{}$}}}\kern 3.0pt}}}}}}\ignorespaces\ignorespaces{\hbox{\kern 4.49588pt\raise 0.0pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\scriptstyle{}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 14.99176pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces}}}}\>B\otimes_{S}A with the equality

(ba)[b,a]:=ba,ba.(b\otimes a)\star[b^{\prime},a^{\prime}]:=b\otimes\left\langle\,a,b^{\prime}\,\right\rangle a^{\prime}.

Let bBb^{\prime}\in B and aAa^{\prime}\in A be fixed, then for every baBSAb\otimes a\in B\otimes_{S}A we have the equality (ba)[b,a]=(ba)(ba)(b\otimes a)\star[b^{\prime},a^{\prime}]=(b\otimes a)(b^{\prime}\otimes a^{\prime}). Thus, the maps [b,a]-\star[b^{\prime},a^{\prime}] and ba-\cdot b^{\prime}\otimes a^{\prime} coincide on BSAB\otimes_{S}A. It follows that \star is well defined. Take ba,b′′a′′BSAb\otimes a,b^{\prime\prime}\otimes a^{\prime\prime}\in B\otimes_{S}A. The equalities

(ba[ba])b′′a′′\displaystyle\left(b\otimes a\star[b^{\prime}\otimes a^{\prime}]\right)\star b^{\prime\prime}\otimes a^{\prime\prime} =(ba)(ba)(b′′a′′)\displaystyle=(b\otimes a)(b^{\prime}\otimes a^{\prime})(b^{\prime\prime}\otimes a^{\prime\prime})
=(ba)(ba,b′′a′′)\displaystyle=(b\otimes a)\left(b^{\prime}\otimes\left\langle\,a^{\prime},b^{\prime\prime}\,\right\rangle a^{\prime\prime}\right)
=(ba)[b,a,b′′a′′]\displaystyle=(b\otimes a)\star\left[b^{\prime},\left\langle\,a^{\prime},b^{\prime\prime}\,\right\rangle a^{\prime\prime}\right]
=(ba)([b,a][b′′,a′′])\displaystyle=(b\otimes a)\star\left([b^{\prime},a^{\prime}]\,[b^{\prime\prime},a^{\prime\prime}]\right) (cf. 3.1)

show that \star is a Σβ\Sigma^{\beta}-action. We also have

φ((ba)[b,a])\displaystyle\varphi\left((b\otimes a)\star[b^{\prime},a^{\prime}]\right) =φ(ba,ba)\displaystyle=\varphi\left(b\otimes\left\langle\,a,b^{\prime}\,\right\rangle a^{\prime}\right)
=[b,a,ba]\displaystyle=\left[b,\left\langle\,a,b^{\prime}\,\right\rangle a^{\prime}\right]
=[b,a][b,a]\displaystyle=[b,a]\,[b^{\prime},a^{\prime}]
=φ(ba)[b,a].\displaystyle=\varphi(b\otimes a)\,\left[b^{\prime},a^{\prime}\right].

Thus, φ\varphi is a Σβ\Sigma^{\beta}-morphism. Due to

(ba)(ba)=(ba)φ(ba)(b\otimes a)(b^{\prime}\otimes a^{\prime})=(b\otimes a)\star\varphi(b^{\prime}\otimes a^{\prime})

we have by Proposition 2.7 that φ\varphi is a strict local isomorphism along which idempotents lift. ∎

By Theorem 2.4 in [4], for a dual pair β\beta over a monoid with zero, the Morita semigroup BSβAB\otimes^{\beta}_{S}A is isomorphic to the semigroup Σβ\Sigma^{\beta}. This is also true for semigroups with weak local units.

Theorem 3.8.

Let SS be a semigroup with weak local units and β=(SA,BS)\beta=(_{S}A,B_{S}) a dual pair. Then the Morita semigroup BSβAB\otimes^{\beta}_{S}A is isomorphic to the semigroup Σβ\Sigma^{\beta}.

Proof.

It suffices to show that the map φ\varphi from the proof of Theorem 3.7 is injective. Suppose [b,a]=[b,a][b,a]=[b^{\prime},a^{\prime}] for some ba,bab\otimes a,b^{\prime}\otimes a^{\prime} in BSAB\otimes_{S}A. Said equality means that

a′′A,a′′,ba=a′′,ba,\displaystyle\forall a^{\prime\prime}\in A,\quad\left\langle\,a^{\prime\prime},b\,\right\rangle a=\left\langle\,a^{\prime\prime},b^{\prime}\,\right\rangle a^{\prime},
b′′B,ba,b′′=ba,b′′.\displaystyle\forall b^{\prime\prime}\in B,\quad b\left\langle\,a,b^{\prime\prime}\,\right\rangle=b^{\prime}\left\langle\,a^{\prime},b^{\prime\prime}\,\right\rangle.

By Lemma 3.6, take b1a1,b2a2BSAb_{1}\otimes a_{1},b_{2}\otimes a_{2}\in B\otimes_{S}A such that

ba=(ba)(b1a1)andba=(b2a2)(ba).b\otimes a=(b\otimes a)(b_{1}\otimes a_{1})\quad\mathrm{and}\quad b^{\prime}\otimes a^{\prime}=(b_{2}\otimes a_{2})(b^{\prime}\otimes a^{\prime}).

We then have

ba\displaystyle b\otimes a =(ba)(b1a1)\displaystyle=(b\otimes a)(b_{1}\otimes a_{1})
=ba,b1a1\displaystyle=b\otimes\left\langle\,a,b_{1}\,\right\rangle a_{1}
=ba,b1a1\displaystyle=b\left\langle\,a,b_{1}\,\right\rangle\otimes a_{1}
=ba,b1a1\displaystyle=b^{\prime}\left\langle\,a^{\prime},b_{1}\,\right\rangle\otimes a_{1}
=(ba)(b1a1)\displaystyle=(b^{\prime}\otimes a^{\prime})(b_{1}\otimes a_{1})

and therefore,

ba\displaystyle b\otimes a =(b2a2)(ba)(b1a1)\displaystyle=(b_{2}\otimes a_{2})(b^{\prime}\otimes a^{\prime})(b_{1}\otimes a_{1})
=(b2a2)(ba)\displaystyle=(b_{2}\otimes a_{2})(b\otimes a)
=b2a2,ba\displaystyle=b_{2}\otimes\left\langle\,a_{2},b\,\right\rangle a
=b2a2,ba\displaystyle=b_{2}\otimes\left\langle\,a_{2},b^{\prime}\,\right\rangle a^{\prime}
=(b2a2)(ba)\displaystyle=(b_{2}\otimes a_{2})(b^{\prime}\otimes a^{\prime})
=ba.\displaystyle=b^{\prime}\otimes a^{\prime}.

We can deduce a sufficient condition for strong Morita equivalence.

Corollary 3.9.

Let SS and TT be semigroups with weak local units. If TΣβT\cong\Sigma^{\beta} for some dual pair β=(AS,BS)\beta=({{}_{S}A},B_{S}) then SS and TT are strongly Morita equivalent.

Proof.

By Theorem 3.8, TΣβBSβAT\cong\Sigma^{\beta}\cong B\otimes_{S}^{\beta}A, where BSβAB\otimes_{S}^{\beta}A is surjectively defined. Hence TT and SS are strongly Morita equivalent by Theorem 2.11. ∎

In particular, each dual pair β\beta over SS with weak local units gives rise to a semigroup Σβ\Sigma^{\beta} which is strongly Morita equivalent to SS.

References

  • [1] P. N. Ánh, Morita equivalence and tensor product rings, Commun. Algebra 17, 1989, 2717–2737.
  • [2] P. N. Ánh, L. Márki, Rees matrix rings, J. Algebra 81 (1983), 340–369.
  • [3] B. Banaschewski, Functors into categories of MM-sets, Abh. Math. Semin. Univ. Hamburg. 8 (1972), 49–64.
  • [4] E. Hotzel, Dual DD-operands and the Rees theorem, Algebraic Theory of Semigroups (Szeged 1976), Proc. Conf. Szeged, Coll. Soc. J. Bolyai 20, North-Holland, Amsterdam, 1979, 247–275.
  • [5] J. M. Howie, Fundamentals of semigroup theory, Clarendon Press, Oxford, 1995.
  • [6] M. Kilp, U. Knauer, A. V. Mikhalev, Monoids, Acts and Categories, Walter de Gruytor, Berlin, New York, 2000.
  • [7] U. Knauer, Projectivity of acts and Morita equivalence of monoids, Semigroup Forum 3 (1972), 359–370.
  • [8] V. Laan, L. Márki, Strong Morita equivalence of semigroups with local units, J. Pure Appl. Algebra 215 (2011), 2538-2546.
  • [9] V. Laan, L. Márki, Ü. Reimaa, Morita equivalence of semigroups revisited: firm semigroups, J. Algebra 505 (2018), 247–270.
  • [10] V. Laan, Ü. Reimaa, Morita equivalence of factorizable semigroups, Internat. J. Algebra Comput. 29 (2019), 723–741.
  • [11] M.V. Lawson, Morita equivalence of semigroups with local units, J. Pure Appl. Algebra 215 (2011), 455–470.
  • [12] M. V. Lawson, L. Márki, Enlargements and coverings by Rees matrix semigroups, Monatsh. Math. 129 (2000), 191–195.
  • [13] S. Talwar, Strong Morita equivalence and a generalisation of the Rees theorem, Internat. J Algebra 181 (1996), 371-394.
  • [14] H. Tominaga, On s-unital rings, Math. J. Okayama Univ. 18 (2) (1975/76), 117–134.
  • [15] K. Väljako, Rees Matrix Rings and Tensor Product Rings, manuscript, 2021.