This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

On commutativity of prime rings with skew derivations

Nadeem ur Rehman and Shuliang Huang Nadeem ur Rehman – Department of Mathematics, Aligarh Muslim University, Aligarh-202002 India. [email protected] Shuliang Huang – School of Mathematics and Finance, Chuzhou University, Chuzhou-239000 China. [email protected]
Abstract

Let \mathscr{R} be a prime ring of Char()2(\mathscr{R})\neq 2 and m1m\neq 1 be a positive integer. If SS is a nonzero skew derivation with an associated automorphism 𝒯\mathscr{T} of \mathscr{R} such that ([S([a,b]),[a,b]])m=[S([a,b]),[a,b]]([S([a,b]),[a,b]])^{m}=[S([a,b]),[a,b]] for all a,ba,b\in\mathscr{R}, then \mathscr{R} is commutative.

keywords:
Prime ring, Skew derivation, Generalized polynomial identity.
\msc

16W25, 16N60. \VOLUME31 \YEAR2023 \NUMBER1 \DOIhttps://doi.org/10.46298/cm.10319 {paper}

1 Introduction

In all that follows, unless specifically stated otherwise, \mathscr{R} will be an associative ring, Z()Z(\mathscr{R}) the center of \mathscr{R}, 𝒬\mathscr{Q} its Martindale quotient ring and UU its Utumi quotient ring. The center 𝒞\mathscr{C} of 𝒬\mathscr{Q} or UU, called the extended centroid of \mathscr{R}, is a field (see [3] for further details). For any a,ba,b\in\mathscr{R}, the symbol [a,b][a,b] denotes the Lie product abbaab-ba. Recall that a ring \mathscr{R} is prime if for any a,ba,b\in\mathscr{R}, ab=(0)a\mathscr{R}b=(0) implies a=0a=0 or b=0b=0, and is semiprime if for any aa\in\mathscr{R}, aa=(0)a\mathscr{R}a=(0) implies a=0a=0. An additive subgroup \mathscr{L} of \mathscr{R} is said to be a Lie ideal of \mathscr{R} if [l,r][l,r]\in\mathscr{L} for all ll\in\mathscr{L} and rr\in\mathscr{R}. By a derivation of \mathscr{R}, we mean an additive map d:d:\mathscr{R}\longrightarrow\mathscr{R} such that d(ab)=d(a)b+ad(b)d(ab)=d(a)b+ad(b) holds for all a,ba,b\in\mathscr{R}. An additive map F:F:\mathscr{R}\longrightarrow\mathscr{R} is called a generalized derivation if there exists a derivation d:d:\mathscr{R}\longrightarrow\mathscr{R} such that F(ab)=F(a)b+ad(b)F(ab)=F(a)b+ad(b) holds for all a,ba,b\in\mathscr{R}, and dd is called the associated derivation of FF. The standard identity s4s_{4} in four variables is defined as follows:

s4=(1)τXτ(1)Xτ(2)Xτ(3)Xτ(4)s_{4}=\sum(-1)^{\tau}X_{\tau(1)}X_{\tau(2)}X_{\tau(3)}X_{\tau(4)}

where (1)τ(-1)^{\tau} is the sign of a permutation τ\tau of the symmetric group of degree 44. It is well known that any automorphism of \mathscr{R} can be uniquely extended to an automorphism of 𝒬\mathscr{Q}. An automorphism 𝒯\mathscr{T} of \mathscr{R} is called 𝒬\mathscr{Q}-inner if there exists an invertible element α𝒬\alpha\in\mathscr{Q} such that 𝒯(a)=αaα1\mathscr{T}(a)=\alpha a\alpha^{-1} for every aa\in\mathscr{R}. Otherwise, 𝒯\mathscr{T} is called 𝒬\mathscr{Q}-outer. Following [7], an additive map S:S:\mathscr{R}\to\mathscr{R} is said to be a skew derivation if there exists an automorphism 𝒯\mathscr{T} of \mathscr{R} such that S(ab)=S(a)b+𝒯(a)S(b)S(ab)=S(a)b+\mathscr{T}(a)S(b) holds for every a,ba,b\in\mathscr{R}. It is easy to see that if 𝒯=1\mathscr{T}=1_{\mathscr{R}}, where 11_{\mathscr{R}} the identity map on \mathscr{R}, then a skew derivation is just a usual derivation. If 𝒯1\mathscr{T}\neq 1_{\mathscr{R}}, then 𝒯1\mathscr{T}-1_{\mathscr{R}} is a skew derivation. Given any b𝒬b\in\mathscr{Q}, obviously the map S:aba𝒯(a)bS:a\in\mathscr{R}\to ba-\mathscr{T}(a)b defines a skew derivation of \mathscr{R}, called 𝒬\mathscr{Q}-inner skew derivation. If a skew derivation SS is not 𝒬\mathscr{Q}-inner, then it is called 𝒬\mathscr{Q}-outer. Hence the concept of skew derivations unites the notions of derivations and automorphisms, which have been examined many algebraists from diverse points of view (see [CL], [Lanski] and [Liu]). A classical result of Divinsky [11] states that if \mathscr{R} is a simple Artinian ring, σ\sigma a non-identity automorphism such that [σ(a),a]=0[\sigma(a),a]=0 for all aa\in\mathscr{R}, then \mathscr{R} must be commutative. Many authors have recently investigated and demonstrated commutativity of prime and semiprime rings using derivations, automorphisms, skew derivations, and other techniques that satisfy specific polynomial criteria (see , [DR], [27], [28], [31] and references therein). Carini and De Filippis [4], showed if a 2-torsion free semiprime ring \mathscr{R} admits a nonzero derivation dd such that [d([a,b]),[a,b]]n=0[d([a,b]),[a,b]]^{n}=0 for all a,ba,b\in\mathscr{R}, then there exists a central idempotent element eUe\subseteq U such that on the direct sum decomposition eU(1e)UeU\bigoplus(1-e)U, dd vanishes identically on eUeU and the ring (1e)U(1-e)U is commutative. In [13], Scudo and Ansari studied the identity [G(u),u]n=[G(u),u][G(u),u]^{n}=[G(u),u] involving a nonzero generalized derivation GG on a noncentral Lie ideal of a prime ring \mathscr{R} and they described the structure of \mathscr{R}. Wang [32] obtained that if \mathscr{R} is a prime ring, \mathscr{L} a non-central Lie ideal of \mathscr{R} such [σ(a),a]n=0[\sigma(a),a]^{n}=0 for all aa\in\mathscr{L}, and if either char()>nchar(\mathscr{R})>n or char()=0char(\mathscr{R})=0, then \mathscr{R} satisfies s4s_{4}. Replaced the automorphism σ\sigma by a skew derivation dd, it is proved in [9] the following result: Let \mathscr{R} be a prime ring of characteristic different from 22 and 33, \mathscr{L} a non-central Lie ideal of \mathscr{R}, dd a nonzero skew derivation of \mathscr{R}, nn is a fixed positive integer. If [d(a),a]n=0[d(a),a]^{n}=0 for all aa\in\mathscr{L}, then \mathscr{R} satisfies s4s_{4}. Motivated by the previous cited results, our aim here is to examine what happens if a prime ring \mathscr{R} admits a nonzero skew derivation SS such that

([S([a,b]),[a,b]])m=[S([a,b]),[a,b]] for all a,b.([S([a,b]),[a,b]])^{m}=[S([a,b]),[a,b]]\quad\textup{ for all }a,b\in\mathscr{R}.

2 Notation and Preliminaries

First, we mention some important well-known facts which are needed in the proof of our results.

Fact 1 ([2, Lemma 7.1]).

Let VDV_{D} be a vector space over a division ring DD with dimVD2dimV_{D}\geq 2 and ϕEnd(V)\phi\in End(V). If rr and ϕr\phi r are DD-dependent for every rVr\in V, then there exists λD\lambda\in D such that ϕr=λr\phi r=\lambda r for every rVr\in V.

Fact 2 ([6, Theorem 1]).

Let \mathscr{R} be a prime ring and II be a two-sided ideal of \mathscr{R}. Then II, \mathscr{R} and 𝒬\mathscr{Q} satisfy the same generalized polynomial identities (GPIs) with automorphisms.

Fact 3 ([8, Fact 4]).

Let \mathscr{R} be a domain and 𝒯\mathscr{T} be an automorphism of \mathscr{R} which is outer. If \mathscr{R} satisfies a GPI Ξ(ri,𝒯(ri))\Xi(r_{i},\mathscr{T}(r_{i})), then \mathscr{R} also satisfies the nontrivial GPI Ξ(ri,si)\Xi(r_{i},s_{i}), where rir_{i} and sis_{i} are distinct indeterminates.

Lemma 2.1.

Let \mathscr{R} be a dense subring of the ring of linear transformations of a vector space VV over a division ring DD and m1m\neq 1 a positive integer. If 𝒯:\mathscr{T}:\mathscr{R}\to\mathscr{R} is an automorphism of \mathscr{R} and ϑ\vartheta\in\mathscr{R} such that

([ϑ[a,b]𝒯([a,b])ϑ,[a,b]])m=[ϑ[a,b]𝒯([a,b])ϑ,[a,b]],([\vartheta[a,b]-\mathscr{T}([a,b])\vartheta,[a,b]])^{m}=[\vartheta[a,b]-\mathscr{T}([a,b])\vartheta,[a,b]],

for every a,ba,b\in\mathscr{R}, then dimDV=1dim_{D}V=1.

Proof 2.2.

We have

([ϑ[a,b]𝒯([a,b])ϑ,[a,b]])m=[ϑ[a,b]𝒯([a,b])ϑ,[a,b]],([\vartheta[a,b]-\mathscr{T}([a,b])\vartheta,[a,b]])^{m}=[\vartheta[a,b]-\mathscr{T}([a,b])\vartheta,[a,b]],

for every a,ba,b\in\mathscr{R}. As \mathscr{R} and 𝒬\mathscr{Q} satisfy the same GPIs with automorphisms by Fact 2, and hence it is a GPI for 𝒬\mathscr{Q}. We prove it by contradiction. We assume that dimDV2dim_{D}V\geq 2. There exists a semi-linear automorphism ΦEnd(V)\Phi\in End(V), by [20, p.79], such that 𝒯(a)=ΦaΦ1\mathscr{T}(a)=\Phi a\Phi^{-1} a𝒬\forall a\in\mathscr{Q}. Hence, 𝒬\mathscr{Q} satisfies

([ϑ[a,b]Φ[a,b]Φ1ϑ,[a,b]])m=[ϑ[a,b]Φ[a,b]Φ1ϑ,[a,b]].([\vartheta[a,b]-\Phi[a,b]\Phi^{-1}\vartheta,[a,b]])^{m}=[\vartheta[a,b]-\Phi[a,b]\Phi^{-1}\vartheta,[a,b]].

Suppose that ΦuspanD{u,Φ1ϑu}\Phi u\not\in span_{D}\{u,\Phi^{-1}\vartheta u\}, then {u,Φu,Φ1ϑu}\{u,\Phi u,\Phi^{-1}\vartheta u\} is linearly DD-independent. By density theorem for \mathscr{R}, there exists a,ba,b\in\mathscr{R} such that

au=0aΦ1ϑu=2uaΦu=ubu=ubΦ1ϑu=0bΦu=0.\begin{array}[]{llllll}au=0&a\Phi^{-1}\vartheta u=2u&a\Phi u=u\\ bu=-u&b\Phi^{-1}\vartheta u=0&b\Phi u=0.\end{array}

The above relation gives [a,b]u=0[a,b]u=0, [a,b]Φ1ϑu=2u[a,b]\Phi^{-1}\vartheta u=2u and [a,b]Φu=u[a,b]\Phi u=u. This implies that

(2m2)u=(([ϑ[a,b]Φ[a,b]Φ1ϑ,[a,b]])m[ϑ[a,b]Φ[a,b]Φ1ϑ,[a,b]])u=0,(2^{m}-2)u=\left(([\vartheta[a,b]-\Phi[a,b]\Phi^{-1}\vartheta,[a,b]])^{m}-[\vartheta[a,b]-\Phi[a,b]\Phi^{-1}\vartheta,[a,b]]\right)u=0,

a contradiction. Now, we assume that ΦuSpanD{u,Φ1ϑu}\Phi u\in Span_{D}\{u,\Phi^{-1}\vartheta u\}, then Φu=uζ+Φ1ϑuθ\Phi u=u\zeta+\Phi^{-1}\vartheta u\theta for some ζ,θD\zeta,\theta\in D. We see that θ0\theta\neq 0 otherwise if θ=0\theta=0, then we get Φu=uζ\Phi u=u\zeta and hence this gives that u=Φ1uζu=\Phi^{-1}u\zeta. Again by density theorem for \mathscr{R}, a,b\exists a,b\in\mathscr{R}, we have

au=0aΦ1u=2ubu=ubΦ1u=0.\begin{array}[]{lll}au=0&a\Phi^{-1}u=2u\\ bu=-u&b\Phi^{-1}u=0.\end{array}

The above expression again gives that a contradiction

(2mθm2θ)u=(([ϑ[a,b]Φ[a,b]Φ1ϑ,[a,b]])m[ϑ[a,b]Φ[a,b]Φ1ϑ,[a,b]])u=0.(2^{m}\theta^{m}-2\theta)u=\left(([\vartheta[a,b]-\Phi[a,b]\Phi^{-1}\vartheta,[a,b]])^{m}-[\vartheta[a,b]-\Phi[a,b]\Phi^{-1}\vartheta,[a,b]]\right)u=0.

For uVu\in V, the set {u,Φ1ϑu}\{u,\Phi^{-1}\vartheta u\} is DD-dependent. By Fact 1, ΔD\exists\Delta\in D such that Φ1ϑu=uΔ\Phi^{-1}\vartheta u=u\Delta, uV\forall u\in V and hence we have

𝒯(a)ϑu=(ΦaΦ1)ϑu=ΦauΔ\mathscr{T}(a)\vartheta u=(\Phi a\Phi^{-1})\vartheta u=\Phi au\Delta

and

(𝒯(a)ϑϑa)u=Φ(auΔ)ϑau=Φ(Φ1ϑau)ϑau=0.(\mathscr{T}(a)\vartheta-\vartheta a)u=\Phi(au\Delta)-\vartheta au=\Phi(\Phi^{-1}\vartheta au)-\vartheta au=0.

The last expression forces that (𝒯(a)ϑϑa)V=(0)(\mathscr{T}(a)\vartheta-\vartheta a)V=(0) a\forall a\in\mathscr{R}, and hence 𝒯(a)V=(0)\mathscr{T}(a)V=(0) a\forall a\in\mathscr{R} and as VV is faithful, it yields that 𝒯(a)=0\mathscr{T}(a)=0 a\forall a\in\mathscr{R}. This is a contradiction.

3 Main Results

Proposition 3.1.

Let m1m\neq 1 be a positive integer, \mathscr{R} be a prime ring of char()2(\mathscr{R})\neq 2 and ϑ𝒬\vartheta\in\mathscr{Q} such that

([𝒯([a,b])ϑ,[a,b]])m=[𝒯([a,b])ϑ,[a,b]].([\mathscr{T}([a,b])\vartheta,[a,b]])^{m}=[\mathscr{T}([a,b])\vartheta,[a,b]].

Then ϑ𝒞\vartheta\in\mathscr{C}.

Proof 3.2.

First we assume that 𝒯\mathscr{T} is an identity automorphism of \mathscr{R}. Then we have that ([[a,b]ϑ,[a,b]])m=[[a,b]ϑ,[a,b]]([[a,b]\vartheta,[a,b]])^{m}=[[a,b]\vartheta,[a,b]] is a GPI of \mathscr{R}. On contrary we assume that ϑ𝒞\vartheta\not\in\mathscr{C}. Since the identity ([[a,b]ϑ,[a,b]])m=[[a,b]ϑ,[a,b]]([[a,b]\vartheta,[a,b]])^{m}=[[a,b]\vartheta,[a,b]] is satisfied by 𝒬\mathscr{Q} (Fact 2). As ϑ𝒞\vartheta\not\in\mathscr{C}, then the above identity is an non-trivial GPI for 𝒬\mathscr{Q}. By Martindale’s theorem in [24], 𝒬\mathscr{Q} is primitive ring which is isomorphic to a dense ring of linear transformations of a vector space VV over 𝒞\mathscr{C}. Assume that dim𝒞(V)=l\mathscr{C}(V)=l, where 1<l+1<l\in\mathbb{Z}^{+}. For this situation, we take 𝒬=Ml(𝒞)\mathscr{Q}=M_{l}(\mathscr{C}) as a ring of l×ll\times l matrices over the field 𝒞\mathscr{C} such that ([[a,b]ϑ,[a,b]])m=[[a,b]ϑ,[a,b]]([[a,b]\vartheta,[a,b]])^{m}=[[a,b]\vartheta,[a,b]] for all a,bMl(𝒞)a,b\in M_{l}(\mathscr{C}). Let eije_{ij} be the usual unit matrix with 11 in (i,j)(i,j)-entry and zero elsewhere. First, we claim that ϑ\vartheta is a diagonal matrix. Say ϑ=ijeijϑij\vartheta=\sum_{ij}e_{ij}\vartheta_{ij}, where ϑij𝒞\vartheta_{ij}\in\mathscr{C}. Choose a=eij,b=ejja=e_{ij},b=e_{jj}. Then by the hypothesis, we have ([eijϑ,eij])m=[eijϑ,eij]([e_{ij}\vartheta,e_{ij}])^{m}=[e_{ij}\vartheta,e_{ij}], i.e, eijϑij=0e_{ij}\vartheta_{ij}=0 and so ϑji=0\vartheta_{ji}=0, for any iji\neq j and hence ϑ\vartheta is a diagonal matrix. Since ξAut𝒞(𝒬)\xi\in Aut_{\mathscr{C}}(\mathscr{Q}), the expression

([[a,b]ξ(ϑ),[a,b]])m=[[a,b]ξ(ϑ),[a,b]]([[a,b]\xi(\vartheta),[a,b]])^{m}=[[a,b]\xi(\vartheta),[a,b]]

is also a GPI for 𝒬\mathscr{Q}, therefore ξ(ϑ)\xi(\vartheta) is also diagonal. The automorphism, in particular ξ(ϑ)=(1+eij)ϑ(1eij)\xi(\vartheta)=(1+e_{ij})\vartheta(1-e_{ij}), for any iji\neq j and say ϑξ=ijeijϑij\vartheta^{\xi}=\sum_{ij}e_{ij}\vartheta^{\prime}_{ij}, where ϑij𝒞\vartheta^{\prime}_{ij}\in\mathscr{C}. Since ϑij=0\vartheta^{\prime}_{ij}=0, then we get 0=ϑij=ϑjjϑii0=\vartheta^{\prime}_{ij}=\vartheta_{jj}-\vartheta_{ii}, by easy computation. So that ϑjj=ϑii\vartheta_{jj}=\vartheta_{ii} hold for any iji\neq j, and we get a contradiction that ϑ𝒞\vartheta\in\mathscr{C}. Assume that dim𝒞V=dim_{\mathscr{C}}V=\infty.

([[a,b]ϑ,[a,b]])m=[[a,b]ϑ,[a,b]],for alla,b𝒬.([[a,b]\vartheta,[a,b]])^{m}=[[a,b]\vartheta,[a,b]],~{}\text{for all}~{}a,b\in\mathscr{Q}. (1)

By Martindale’s theorem [24], it observes that Soc(𝒬)=F(0)Soc(\mathscr{Q})=F\neq(0) and eFeeFe is finite dimensional simple central algebra over 𝒞\mathscr{C}, for any minimal idempotent element eFe\in F. We can also suppose that FF is non-commutative, because else 𝒬\mathscr{Q} must be commutative. Clearly, FF satisfies ([[a,b]ϑ,[a,b]])m=[[a,b]ϑ,[a,b]]([[a,b]\vartheta,[a,b]])^{m}=[[a,b]\vartheta,[a,b]] (see, for example, the proof of [23, Theorem 1]). As FF is a simple ring, either FF does not contain any non-trivial idempotent element or FF is generated by its idempotents. In this last case, assume that FF contains two minimal orthogonal idempotent elements ee and ff. Using the assumption, one can see that, for [a,b]=[ea,f]=eaf[a,b]=[ea,f]=eaf, we have

eafϑeaf=0,eaf\vartheta eaf=0, (2)

in this case we get fϑeafϑeafϑe=0f\vartheta eaf\vartheta eaf\vartheta e=0, and primeness of \mathscr{R}, we get fϑe=0f\vartheta e=0 for any rank 11 orthogonal idempotent element ee and ff. Notably, for any rank 11 idempotent element ee, we have eϑ(1e)=0e\vartheta(1-e)=0 and (1e)ϑe=0(1-e)\vartheta e=0, that is, eϑ=eϑe=ϑee\vartheta=e\vartheta e=\vartheta e. Hence, [ϑ,e]=0[\vartheta,e]=0 gives that FF is commutative or ϑ𝒞\vartheta\in\mathscr{C}. We get a contradiction, in this case. Now, we consider when FF cannot contain two minimal orthogonal idempotent elements and so, F=DF=D for suitable finite dimensional division ring DD over its center which implies that 𝒬=F\mathscr{Q}=F and ϑF\vartheta\in F. By [20, Theorem 2.3.29] (see also [23, Lemma 2]), there exists a field 𝕂\mathbb{K} such that FMn(𝕂)F\subseteq M_{n}(\mathbb{K}) and Mn(𝕂)M_{n}(\mathbb{K}) satisfies ([[a,b]ϑ,[a,b]])m=[[a,b]ϑ,[a,b]]([[a,b]\vartheta,[a,b]])^{m}=[[a,b]\vartheta,[a,b]]. If n=1n=1 then F𝕂F\subseteq\mathbb{K} and we have also a contradiction. Moreover, as we have just seen, if n2n\geq 2, then ϑZ(Mn(𝕂))\vartheta\in Z(M_{n}(\mathbb{K})). Finally, if FF does not contain any non-trivial idempotent element, then FF is finite dimensional division algebra over 𝒞\mathscr{C} and ϑF=𝒞=𝒬\vartheta\in F=\mathscr{R}\mathscr{C}=\mathscr{Q}. If 𝒞\mathscr{C} is finite, then FF is finite division ring, that is, FF is a commutative field and so \mathscr{R} is commutative too. If 𝒞\mathscr{C} is infinite, then F𝒞𝕂Mn(𝕂)F\bigotimes_{\mathscr{C}}\mathbb{K}\cong M_{n}(\mathbb{K}), where 𝕂\mathbb{K} is a splitting field of FF. We get the conclusion. Henceforward, 𝒯\mathscr{T} is non-identity automorphism of \mathscr{R}. Now, we have two cases: Case I: If 𝒯\mathscr{T} is 𝒬\mathscr{Q}-inner, then there exists an invertible element α\alpha of 𝒬\mathscr{Q} such that 𝒯(a)=αaα1\mathscr{T}(a)=\alpha a\alpha^{-1} for every aa\in\mathscr{R}. Thus, ([α[a,b]α1ϑ,[a,b]])m=[α[a,b]α1ϑ,[a,b]]([\alpha[a,b]\alpha^{-1}\vartheta,[a,b]])^{m}=[\alpha[a,b]\alpha^{-1}\vartheta,[a,b]] for every a,ba,b\in\mathscr{R}. If α1ϑ𝒞\alpha^{-1}\vartheta\in\mathscr{C}, then \mathscr{R} satisfies ([α[a,b],[a,b]])m=[ϑ[a,b],[a,b]]([\alpha[a,b],[a,b]])^{m}=[\vartheta[a,b],[a,b]] and we get the conclusion as above. Now we assume that α1ϑ𝒞\alpha^{-1}\vartheta\not\in\mathscr{C}, therefore

([α[a,b]α1ϑ,[a,b]])m=[α[a,b],[a,b]]([\alpha[a,b]\alpha^{-1}\vartheta,[a,b]])^{m}=[\alpha[a,b],[a,b]]

is a non-trivial GPI for \mathscr{R} and hence for 𝒬\mathscr{Q} by Fact 2. In light of “Martindale’s theorem [24], 𝒬\mathscr{Q} is isomorphic to a dense subring of linear transformations of a vector space VV over DD, where DD is a finite dimensional division ring over 𝒞\mathscr{C}”. By Lemma 2.1, the result follows. Case II: If 𝒯\mathscr{T} is 𝒬\mathscr{Q}-outer, and 𝒬\mathscr{Q} satisfies ([𝒯([a,b])ϑ,[a,b]])m=[𝒯([a,b])ϑ,[a,b]]([\mathscr{T}([a,b])\vartheta,[a,b]])^{m}=[\mathscr{T}([a,b])\vartheta,[a,b]], then by Lemma 2.1 we get dimDV=1dim_{D}V=1, that is 𝒬\mathscr{Q} is a domain. By Fact 3, 𝒬\mathscr{Q} satisfies [[r,s]ϑ,[a,b]]m=[[r,s],[a,b]][[r,s]\vartheta,[a,b]]^{m}=[[r,s],[a,b]] and in particular, for r=ar=a and s=bs=b, we have [[a,b]ϑ,[a,b]]m=[[a,b]ϑ,[a,b]][[a,b]\vartheta,[a,b]]^{m}=[[a,b]\vartheta,[a,b]] for every a,b𝒬a,b\in\mathscr{Q}. Hence, using the same technique as above we get the required conclusion.

Theorem 3.3.

Let \mathscr{R} be a prime ring of Char()2(\mathscr{R})\neq 2 and m1m\neq 1 be a positive integer. If SS is a nonzero skew derivation with an associated automorphism 𝒯\mathscr{T} of \mathscr{R} such that ([S([a,b]),[a,b]])m=[S([a,b]),[a,b]]([S([a,b]),[a,b]])^{m}=[S([a,b]),[a,b]] for all a,ba,b\in\mathscr{R}, then \mathscr{R} is commutative.

Proof 3.4.

We have

([S([a,b]),[a,b]])m=[S([a,b]),[a,b]]for everya,b.([S([a,b]),[a,b]])^{m}=[S([a,b]),[a,b]]~{}\text{for every}a,b\in\mathscr{R}.

Firstly, we assume that SS is 𝒬\mathscr{Q}-inner, that is, S(a)=ϑa𝒯(a)ϑS(a)=\vartheta a-\mathscr{T}(a)\vartheta with 0ϑ𝒬0\neq\vartheta\in\mathscr{Q}. Thus, a,b\forall a,b\in\mathscr{R}, we have

[ϑ[a,b]𝒯([a,b])ϑ,[a,b]])m=[ϑ[a,b]𝒯([a,b])ϑ,[a,b]].[\vartheta[a,b]-\mathscr{T}([a,b])\vartheta,[a,b]])^{m}=[\vartheta[a,b]-\mathscr{T}([a,b])\vartheta,[a,b]].

If ϑ𝒞\vartheta\in\mathscr{C}, then \mathscr{R} satisfies the GPI ([𝒯([a,b])ϑ,[a,b]])m=[𝒯([a,b])ϑ,[a,b]]([\mathscr{T}([a,b])\vartheta,[a,b]])^{m}=[\mathscr{T}([a,b])\vartheta,[a,b]]. We get the desired conclusion, by Proposition 3.1. Therefore ϑ𝒞\vartheta\not\in\mathscr{C}, and so

[ϑ[a,b]𝒯([a,b])ϑ,[a,b]])m=[ϑ[a,b]𝒯([a,b])ϑ,[a,b]][\vartheta[a,b]-\mathscr{T}([a,b])\vartheta,[a,b]])^{m}=[\vartheta[a,b]-\mathscr{T}([a,b])\vartheta,[a,b]]

is nontrivial GPI for \mathscr{R}. Thus, Lemma 2.1 yields the required result. Finally, when SS is 𝒬\mathscr{Q}-outer, then the above identity can be rewritten as

[S(a)b+𝒯(a)S(b)S(b)a𝒯(b)S(a),[a,b]]m=[S(a)b+𝒯(a)S(b)S(b)a𝒯(b)S(a),[a,b]],[S(a)b+\mathscr{T}(a)S(b)-S(b)a\mathscr{T}(b)S(a),[a,b]]^{m}=[S(a)b+\mathscr{T}(a)S(b)-S(b)a-\mathscr{T}(b)S(a),[a,b]],

and hence \mathscr{R} satisfies

([ϑb+𝒯(a)ssa𝒯(b)r,[a,b]])m=[rb+𝒯(a)ssa𝒯(b)r,[a,b]].([\vartheta b+\mathscr{T}(a)s-sa-\mathscr{T}(b)r,[a,b]])^{m}=[rb+\mathscr{T}(a)s-sa-\mathscr{T}(b)r,[a,b]].

In particular \mathscr{R} satisfies ([𝒯(a)ssa,[a,b]])m=[𝒯(a)ssa,[a,b]]([\mathscr{T}(a)s-sa,[a,b]])^{m}=[\mathscr{T}(a)s-sa,[a,b]]. We divide it into two cases. First, 𝒯\mathscr{T} be an identity map of \mathscr{R}. Then ([[r,s],[a,b]])m=[[r,s],[a,b]]([[r,s],[a,b]])^{m}=[[r,s],[a,b]] for every a,b,r,sa,b,r,s\in\mathscr{R}, that is, \mathscr{R} is a polynomial identity ring. Thus, \mathscr{R} and Mn(𝕂)M_{n}(\mathbb{K}) satisfy the same polynomial identities [23, Lemma 1], i.e.,

([[r,s],[a,b]])m=[[r,s],[a,b]] for each a,b,r,sMn(𝕂),([[r,s],[a,b]])^{m}=[[r,s],[a,b]]\quad\textup{ for each }a,b,r,s\in M_{n}(\mathbb{K}),

Let n2n\geq 2 and eije_{ij} be the usual unit matrix. Then r=b=e12r=b=e_{12}, s=e21s=e_{21} and a=e11a=e_{11}, we get a contradiction 2e12=02e_{12}=0. Thus, n=1n=1 and we are done. Now consider 𝒯\mathscr{T} is not the identity map. Therefore,

([𝒯(a)ssa,[a,b]])m=[𝒯(a)ssa,[a,b]]([\mathscr{T}(a)s-sa,[a,b]])^{m}=[\mathscr{T}(a)s-sa,[a,b]]

is a non-trivial GPI for \mathscr{R}, by Main Theorem in [5]. Moreover, by Fact 2, \mathscr{R} and 𝒬\mathscr{Q} satisfy the same GPIs with automorphisms and hence ([𝒯(a)ssa,[a,b]])m=[𝒯(a)ssa,[a,b]]([\mathscr{T}(a)s-sa,[a,b]])^{m}=[\mathscr{T}(a)s-sa,[a,b]] is also an identity for 𝒬\mathscr{Q}. Since \mathscr{R} is a GPI-ring, by [24]𝒬\mathscr{Q} is a primitive ring, which is isomorphic to a dense subring of the ring of linear transformations of a vector space VV over a division ring DD”. If 𝒬\mathscr{Q} is a domain, then by Fact 3, we have that 𝒬\mathscr{Q} satisfies the equation ([tssa,[a,b]])m=[tssa,[a,b]]([ts-sa,[a,b]])^{m}=[ts-sa,[a,b]]. In particular, ([[a,z],[a,b]])m=[[a,z],[a,b]]([[a,z],[a,b]])^{m}=[[a,z],[a,b]] for all a,b,z𝒬a,b,z\in\mathscr{Q}, which yields that 𝒬\mathscr{Q} is commutative (by using the same above argument) and hence \mathscr{R}. Henceforth, 𝒬\mathscr{Q} is not a domain. We have 𝒯(a)=hah1\mathscr{T}(a)=hah^{-1} a𝒬\forall a\in\mathscr{Q}, as mentioned above. Thus, ([hah1zza,[a,b]])m=[hah1zza,[a,b]]([hah^{-1}z-za,[a,b]])^{m}=[hah^{-1}z-za,[a,b]] Hence, we may consider that dimDV2dim~{}D_{V}\geq 2. By [20, p. 79], there exists a semi-linear automorphism hEnd(V)h\in End(V) such that 𝒯(a)=hah1\mathscr{T}(a)=hah^{-1} a𝒬\forall a\in\mathscr{Q}. Hence, 𝒬\mathscr{Q} satisfies ([hah1zza,[a,b]])m=[hah1zza,[a,b]]([hah^{-1}z-za,[a,b]])^{m}=[hah^{-1}z-za,[a,b]]. If for any vVv\in V ΘvD\exists~{}\Theta_{v}\in D such that h1v=vΘvh^{-1}v=v\Theta_{v}, then, it follows that there exists a unique ΘD\Theta\in D such that h1v=vΘh^{-1}v=v\Theta, vV\forall v\in V (see for example Lemma 1 in [ccl]). In this case 𝒯(a)v=(hah1)v=havΘ\mathscr{T}(a)v=(hah^{-1})v=hav\Theta and

(𝒯(a)a)v=h(avΘ)av=h(h1av)av=0,(\mathscr{T}(a)-a)v=h(av\Theta)-av=h(h^{-1}av)-av=0,

since VV is faithful, which is a contradiction that 𝒯\mathscr{T} is the identity map. Thus, \exists vVv\in V such that {v,h1v}\{v,h^{-1}v\} is linearly DD-independent. In this case, first we assume that dimVD3dim~{}V_{D}\geq 3. Thus, uV\exists~{}u\in V such that {u,v,h1v}\{u,v,h^{-1}v\} is linearly DD-independent. Hence, the density theorem for 𝒬\mathscr{Q}, a,b,z𝒬\exists~{}a,b,z\in\mathscr{Q} such that

zv\displaystyle zv =0\displaystyle=0 zh1v\displaystyle zh^{-1}v =h1v\displaystyle=h^{-1}v
bv\displaystyle bv =0\displaystyle=0 bh1v\displaystyle bh^{-1}v =0\displaystyle=0
av\displaystyle av =h1v\displaystyle=h^{-1}v bu\displaystyle bu =2v\displaystyle=-2v
ah1v\displaystyle ah^{-1}v =u.\displaystyle=u.

The above relation gives that

0=(([hah1zza,[a,b]])m[hah1zza,[a,b]])v=(2m2)v00=(([hah^{-1}z-za,[a,b]])^{m}-[hah^{-1}z-za,[a,b]])v=(2^{m}-2)v\neq 0

again a contradiction. Now, the case when dimVD=2dim~{}V_{D}=2 that is, 𝒬=M2(𝕂)\mathscr{Q}=M_{2}(\mathbb{K}). Thus

([𝒯(a)zza,[a,b]])2=[𝒯(a)zza,[a,b]] for all a,b,z𝒬.([\mathscr{T}(a)z-za,[a,b]])^{2}=[\mathscr{T}(a)z-za,[a,b]]\quad\textup{ for all }a,b,z\in\mathscr{Q}.

Since 𝒯(a)\mathscr{T}(a)-word of degree 22 and Char()>3(\mathscr{R})>3 by [6, Theorem 3],

([tzza,[a,b]])2[tzza,[a,b]]=0 for every t,z,a,b𝒬.([tz-za,[a,b]])^{2}-[tz-za,[a,b]]=0\quad\textup{ for every }t,z,a,b\in\mathscr{Q}.

Using the same technique as above its shows that 𝒬\mathscr{Q} is commutative and hence \mathscr{R} is commutative.

The following corollary is an immediate consequence of our result.

Corollary 3.5.

[10, Theorem 2.3] Let \mathscr{R} be a prime ring of characteristic not two and dd be a nonzero derivation of \mathscr{R} such that ([d([a,b]),[a,b]])m=[d([a,b]),[a,b]]([d([a,b]),[a,b]])^{m}=[d([a,b]),[a,b]] for all a,ba,b\in\mathscr{R}. Then \mathscr{R} is commutative.

Theorem 3.6.

Let \mathscr{R} be a prime ring of Char()2(\mathscr{R})\neq 2, m1m\neq 1 be a positive integer and \mathscr{L} a Lie ideal of \mathscr{R}. If SS is a nonzero skew derivation with an associated automorphism 𝒯\mathscr{T} of \mathscr{R} such that ([S(v),v])m=[S(v),v]([S(v),v])^{m}=[S(v),v] for all vv\in\mathscr{L}, then LL contained in the center of \mathscr{R}.

Proof 3.7.

Suppose that Z()\mathscr{L}\not\subseteq Z(\mathscr{R}) is a Lie ideal of \mathscr{R}. Then by [15], there exists an ideal II of \mathscr{R} such that 0[I,]0\neq[I,\mathscr{R}]\subseteq\mathscr{L} and [,](0)[\mathscr{L},\mathscr{L}]\neq(0). Also, Z()\mathscr{R}\not\subseteq Z(\mathscr{R}) as \mathscr{L} is a noncentral Lie ideal of \mathscr{R}. Therefore by the given hypothesis, II as well as \mathscr{R} (Fact 2) satisfy [S([a,b]),[a,b]])m=[S([a,b]),[a,b]][S([a,b]),[a,b]])^{m}=[S([a,b]),[a,b]]. By Theorem 3.3, we get the required result.

Acknowledgment:

The authors are greatly indebted to the referee for his/her valuable suggestions, which have immensely improved the paper. For the first author, this research is supported by the Council of Scientific and Industrial Research (CSIR-HRDG), India, Grant No. 25(0306)/20/EMR-II.

References

  • [1] \referPaper0 \RauthorAli, S. and Khan, M. S., and Khan A. N. and Muthana, N. M. \RtitleOn rings and algebras with derivations \RjournalJ. Algebra Appl. \Rvolume15 \Ryear2016 \Rnumber6 \Rpages650107 (10 pages)
  • [2] \referPaper2 \RauthorBeidar, K. I. and Bresar, M. \RtitleExtended Jacobson density theorem for rings with automorphisms and derivations \RjournalIsrael J. Math. \Rvolume122 \Ryear2001 \Rpages317-346
  • [3] \referBook3 \RauthorBeidar, K. I. and Martindale III, W. S. and Mikhalev, A. V. \RtitleRings with generalized identities \RpublisherPure and Applied Mathematics, Marcel Dekker 196, New York \Ryear1996
  • [4] \referPaper4 \RauthorCarini, L. and De Filliippis, V. \RtitleCommutators with power central values on Lie ideals \RjournalPacific J. Math. \Rvolume193 \Ryear2000 \Rpages269-278
  • [5] \referPaper5 \RauthorChuang, C. L. \RtitleDifferential identities with automorphisms and anti-automorphisms-I \RjournalJ. Algebra \Rvolume149 \Ryear1993 \Rpages371-404
  • [6] \referPaper6 \RauthorChuang, C. L. \RtitleDifferential identities with automorphisms and anti-automorphisms-II \RjournalJ. Algebra \Rvolume160 \Ryear1993 \Rpages291-335
  • [7] \referPaperccl \RauthorChuang, C. L. and Chou, M. C., and Liu, C. K. \RtitleSkew derivations with annihilating Engel conditions \RjournalPubl. Math. Debrecen \Rvolume68 \Ryear2006 \Rpages161-170
  • [8] \referPaperCL \RauthorChou, M. C., and Liu, C. K. \RtitleAnnihilators of skew derivations with Engel conditions on Lie ideals \RjournalComm. Algebra \Rvolume44 \Ryear2016 \Rpages898-911
  • [9] \referPaperDR \RauthorDe Filippis, V. and Rehman, N. \RtitleOn certain identities with automorphisms on Lie ideals in prime and semiprime rings \RjournalAlgebra Colloq. \Rvolume29 \Ryear2019 \Rnumber1 \Rpages93-104
  • [10] \referPaper7 \RauthorDe Filippis, V. \RtitleAnnihilators and power values of generalized skew derivations on Lie ideals \RjournalCanad. Math. Bull. \Rvolume59 \Ryear2016 \Rnumber2 \Rpages258-270
  • [11] \referPaper8 \RauthorDe Filippis, V. and Di Vincenzo, O. M. \RtitleGeneralized skew derivations on semiprime rings \RjournalLinear and Multilinear Algebra \Rvolume63 \Ryear2015 \Rnumber5 \Rpages927-939
  • [12] \referPaper9 \RauthorDe Filippis, V. and Huang, S. \RtitlePower-commuting skew derivations on Lie ideals \RjournalMonatsh Math. \Rvolume177 \Ryear2015 \Rpages363-372
  • [13] \referPaper10 \RauthorDe Filippis, V. Raza, M. A. and Rehman, N. \RtitleCommutators with idempotent values on multilinear polynomials in prime rings \RjournalProc. Indian Acad. Sci. (Math. Sci.) \Rvolume127 \Ryear2017 \Rnumber1 \Rpages91-98
  • [14] \referPaper11 \RauthorDivinsky, N. \RtitleOn commuting automorphisms of rings \RjournalTrans. Roy. Soc. Canad Sect. III \Rvolume49 \Ryear1959 \Rpages19-22
  • [15] \referPaper13 \RauthorScudo, G. and Ansari, A. Z. \RtitleGeneralized derivations on Lie ideals and power values on prime rings \RjournalMathematica Slovaca \Rvolume65 \Ryear2015 \Rnumber5 \Rpages975-980
  • [16] \referBook15 \RauthorHerstein, I. N. \RtitleTopics in ring theory \RpublisherThe University of Chicago Press, Chicago, London \Ryear1965
  • [17] \referBook20 \RauthorJacobson, N. \RtitleStructure of rings \RpublisherAmer. Math. Soc. Colloq. Pb. 37 Rhode Island \Ryear1964
  • [18] \referPaper23 \RauthorLanski, C. \RtitleAn Engel condition with derivations \RjournalProc. Amer. Math. Soc. \Rvolume118 \Ryear1993 \Rpages731-734
  • [19] \referPaperLanski \RauthorLanski, C. \RtitleSkew derivations and Engel conditions \RjournalComm. Algebra \Rvolume42 \Ryear2014 \Rpages139-152
  • [20] \referPaperLiu \RauthorLiu, C. K. \RtitleAn Engel condition with skew derivations for one-sided ideals \RjournalMonatsh. Math. \Rvolume180 \Ryear2016 \Rpages833-852
  • [21] \referPaper24 \RauthorMartindale III, W. S. \RtitlePrime rings satisfying a generalized polynomial identity \RjournalJ. Algebra \Rvolume12 \Ryear1969 \Rpages576-584
  • [22] \referPaper27 \RauthorPinter-Lucke, J. \RtitleCommutativity conditions for rings 1950-2005 \RjournalExpo Math. \Rvolume25 \Ryear2007 \Rpages165-174
  • [23] \referPaper28 \RauthorRaza, M. A. and Rehman, N. \RtitleAn identity on automorphisms of Lie ideals in prime rings \RjournalAnn Univ. Ferrara. \Rvolume62 \Ryear2016 \Rnumber1 \Rpages143-150
  • [24] \referPaper31 \RauthorRehman, N. and Raza, M. A. \RtitleOn m-commuting mappings with skew derivations in prime rings \RjournalSt. Petersburg Math. J. \Rvolume27 \Ryear2016 \Rnumber4 \Rpages641-650
  • [25] \referPaper32 \RauthorWang, Y. \RtitlePower-centralizing automorphisms of Lie ideals in prime rings \RjournalComm. Algebra \Rvolume34 \Ryear2016 \Rpages609-615
  • [26]
\EditInfo

June 17, 2021August 12, 2021Ivan Kaygorodov