This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

On category of Lie algebras

Abstract.

In this paper we describe the the category of Lie algebras of group algebras and the category of Plesken Lie algebras and explore the catgorical relations between them. Further we provide the examples of the Lie algebra of the group algebra of subgroups of Heisenburg group and the Plesken Lie algebra of subgroups of Heisenburg group.

Key words and phrases:
Lie algebra, Plesken Lie algebra, Group algebra, Category, Functor.
1991 Mathematics Subject Classification:
20M10

1. INTRODUCTION

The concept of Lie algebras was introduced by Sophus Lie to solve problems in Lie groups with some ease. Here we introduce some class of Lie algebras like Lie algebras of group algebras and Plesken Lie algebras of groups. In recent times category theory established itself as a practical tool in dealing with mathematical structures. In particular a categorical approach enables to extract more insight into the interactions between Lie groups and Lie algebras. Here we discuss the category of some class of Lie algebras, functorial relation that exists between them with some examples.

2. PRELIMINARIES

In the following we briefly recall all basic definitions and the elementary concepts needed in the sequel. In particular we recall the definitions of Lie algebra, group algebra, Plesken Lie algebra, categories, functors and discusses some interesting properties of these structures.

Definition 1.

(cf.[5]) A category 𝒞{\mathcal{C}} consists of the following data::

  1. (1)

    A class called the class of vertices or objects ν𝒞.\nu{\mathcal{C}}.

  2. (2)

    A class of disjoint sets 𝒞(a,b){\mathcal{C}}(a,b) one for each pair (a,b)ν𝒞×ν𝒞.(a,b)\in\nu{\mathcal{C}}\times\nu{\mathcal{C}}. An element f𝒞f\in{\mathcal{C}} is called a morphism from aa to b,b, written f:abf:a\rightarrow b ; a=domfa=dom\;f called the domain of ff and b=codfb=cod\;f called the codomain of f.f.

  3. (3)

    For a,b,c,ν𝒞,a,b,c,\in\nu{\mathcal{C}}, a map
    :𝒞(a,b)×𝒞(b,c)𝒞(a,c)(f,g)gf\circ:{\mathcal{C}}(a,b)\times{\mathcal{C}}(b,c)\rightarrow{\mathcal{C}}(a,c)\hskip 40.0pt(f,g)\rightarrow g\circ f
    \circ is called the compositioncomposition of morphisms in 𝒞.{\mathcal{C}}.

  4. (4)

    for each aν𝒞a\in\nu{\mathcal{C}}, a unique 1a𝒞(a,a)1_{a}\in{\mathcal{C}}(a,a) is called the identity morphism on a.a.

These must satisfy the following axioms :

  • (cat1) The composition is associative : for f𝒞(a,b),g𝒞(b,c)andh𝒞(c,d),f\in{\mathcal{C}}(a,b),g\in{\mathcal{C}}(b,c)\;and\;h\in{\mathcal{C}}(c,d), we have

    f(gh)=(fg)hf\circ(g\circ h)=(f\circ g)\circ h
  • (cat 2) for each aν𝒞,f𝒞(a,b)andg𝒞(c,a),a\in\nu{\mathcal{C}},f\in{\mathcal{C}}\;(a,b)\;and\;g\in{\mathcal{C}}(c,a),

    1af=fandg1a=g1_{a}\circ f=f\qquad and\qquad g\circ 1_{a}=g

    .

Clearly ν𝒞\nu\mathcal{C} can be identify as a subclass of 𝒞\mathcal{C} and with this identification it is possible to regard categories in terms of morphisms alone. The category 𝒞\mathcal{C} is said to be small if the class 𝒞\mathcal{C} is a set. A morphism f𝒞(a,b)f\in\mathcal{C}(a,b) is said to be an isomorphism if there exists f1𝒞(b,a)f^{-1}\in\mathcal{C}(b,a) such that ff1=1a=ea,ff^{-1}=1_{a}=e_{a}, domain identity and f1f=1b=fb,f^{-1}f=1_{b}=f_{b}, range identity.

Example 1.

A group GG can be regarded as a category 𝒞\mathcal{C} with the object set of 𝒞\mathcal{C} say νC=G\nu C={G}, and morphisms 𝒞(G,G)=G\mathcal{C}(G,G)=G and composition in 𝒞\mathcal{C} is the binary operation in G.G. Identity element in the group will be the identity morphism on the vertex G.G.

Definition 2.

[1] For categories 𝒞\mathcal{C} and 𝒟\mathcal{D} a functor T:𝒞𝒟T:\mathcal{C}\rightarrow\mathcal{D} with domain 𝒞\mathcal{C} and codomain 𝒟\mathcal{D} consists of two functions: the object function TT, which assigns to each object cc of 𝒞\mathcal{C} an object TcTc of 𝒟\mathcal{D} and the arrow function which assigns to each arrow f:ccf:c\rightarrow c^{\prime} of 𝒞\mathcal{C} an arrow Tf:TcTcTf:Tc\rightarrow Tc^{\prime} of 𝒟\mathcal{D}, in such a way that T(1c)=1TcT(1_{c})=1_{Tc} and T(gf)=TgTfT(g\circ f)=Tg\circ Tf.

Definition 3.

[3] A vector space LL over a field 𝔽\mathbb{F}, with an operation L×LLL\times L\rightarrow L, denoted by (x,y)[x,y](x,y)\mapsto[x,y] for xx and yy in LL and satisfying the following axioms:

  1. (1)

    The bracket operation is bilinear. For x,y,zL,a,b𝔽x,y,z\in L,a,b\in\mathbb{F}

    [ax+by,z]=a[x,z]+b[y,z][ax+by,z]=a[x,z]+b[y,z]

    [x,ay+bz]=a[x,y]+b[x,z][x,ay+bz]=a[x,y]+b[x,z]

  2. (2)

    [x,x]=0[x,x]=0 for all xLx\in L

  3. (3)

    Jacobi identitiy :
    [x,[y,z]]+[y,[z,x]]+[z,[x,y]]=0[x,[y,z]]+[y,[z,x]]+[z,[x,y]]=0 for all x,y,zLx,y,z\in L

is called a bracket product and (L,[.,.])(L,[.,.]) is called a Lie algebra over 𝔽\mathbb{F}.

Example 2.

End(V)End(V), the set of all linear transformations on a finite dimensional vector space V over a field 𝔽\mathbb{F} is a Lie algebra with Lie bracket [x,y]=xyyx[x,y]=xy-yx for x,yEnd(V)x,y\in End(V).

A subspace KK of a Lie algebra LL is called a Lie subalgebra if [x,y]K[x,y]\in K whenever x,yKx,y\in K.

Definition 4.

Let GG be a group and let 𝔽\mathbb{F} be \mathbb{R} or \mathbb{C}. Define a vector space over 𝔽\mathbb{F} with elements of GG as a basis, and denote it by 𝔽G\mathbb{F}G.That is; 𝔽G={iaigi:ai𝔽for all i}\mathbb{F}G=\{\displaystyle\sum_{i}a_{i}g_{i}:a_{i}\in\mathbb{F}\ \text{for all i}\}.The addition and scalar multiplication in 𝔽G\mathbb{F}G are defined by; for

α=i=0aigiandβ=i=0bigi\alpha=\displaystyle\sum_{i=0}a_{i}g_{i}\ \text{and}\ \beta=\displaystyle\sum_{i=0}b_{i}g_{i}

in 𝔽G\mathbb{F}G and k𝔽k\in\mathbb{F},

α+β=i(ai+bi)gi{\alpha}+\beta=\displaystyle\sum_{i}(a_{i}+b_{i})g_{i} and kα=i(kai)gik\alpha=\displaystyle\sum_{i}(ka_{i})g_{i}

The vector space 𝔽G\mathbb{F}G, with multiplication defined by

(iaigi)(jbjgj)=i,jaibj(gigj),ai,bj𝔽\begin{pmatrix}\displaystyle\sum_{i}a_{i}g_{i}\end{pmatrix}\begin{pmatrix}\displaystyle\sum_{j}b_{j}g_{j}\end{pmatrix}=\displaystyle\sum_{i,j}a_{i}b_{j}(g_{i}g_{j}),\ \indent a_{i},b_{j}\in\mathbb{F}

is called the group algebra of GG over 𝔽\mathbb{F}.

The group algebra of a finite group GG is a vector space of dimension |G||G| which also carries extra structure involving the the product operation on GG.

Example 3.

G=C3=<a:a3=e>G=C_{3}=\ <a:a^{3}=e> where e is the identity in GG. Then

G={λ1e+λ2a+λ3a2:λifori=1,2,3}\mathbb{C}G=\{\lambda_{1}e+\lambda_{2}a+\lambda_{3}a^{2}:\lambda_{i}\in\mathbb{C}\ \text{for}\ i=1,2,3\}

G\mathbb{C}G is a group algebra with usual addition and multiplication of series.

3. Lie algebras of group algebras and Plesken Lie algebras

Let 𝔽G\mathbb{F}G be a group algebra over 𝔽\mathbb{F}. Then 𝔽G\mathbb{F}G can be regarded as a Lie algebra by defining the Lie bracket [,]:𝔽G×𝔽G𝔽G[\ ,\ ]:\mathbb{F}G\times\mathbb{F}G\rightarrow\mathbb{F}G as follows :

[α,β]=αββα[\alpha,\beta]=\alpha\beta-\beta\alpha for α=iaigiandβ=ibigi\alpha=\displaystyle\sum_{i}a_{i}g_{i}\ \text{and}\ \beta=\displaystyle\sum_{i}b_{i}g_{i} in 𝔽G\mathbb{F}G

Clearly 𝔽G\mathbb{F}G is a Lie algebra with respect to the given Lie bracket and is called the Lie algebra of the group algebra 𝔽G\mathbb{F}G and we denote it by L𝔽GL_{\mathbb{F}G}.
A linear map between L𝔽GL_{\mathbb{F}G} and L𝔽HL_{\mathbb{F}H} which preserves the Lie bracket is a homomorphism of Lie algebras of group algebras.

Proposition 1.

Let f:GHf:G\rightarrow H be a group homomorphism. Then f¯:L𝔽GL𝔽H\bar{f}:L_{\mathbb{F}G}\rightarrow L_{\mathbb{F}H} defined by

f¯(α)=f¯(iaigi)=iaif(gi)\bar{f}(\alpha)=\bar{f}(\displaystyle\sum_{i}a_{i}g_{i})=\displaystyle\sum_{i}a_{i}f(g_{i})

is a homomorphism between Lie algebras of group algebras.

Proof.

Let G={g1,g2,g3,}G=\{g_{1},g_{2},g_{3}...,\} and L𝔽G={iaigi:ai𝔽for all i}L_{\mathbb{F}G}=\{\displaystyle\sum_{i}a_{i}g_{i}:a_{i}\in\mathbb{F}\ \text{for all i}\}. Then for α=iaigi,β=jbjgjL𝔽G\alpha=\displaystyle\sum_{i}a_{i}g_{i},\beta=\displaystyle\sum_{j}b_{j}g_{j}\in L_{\mathbb{F}G},

f¯([α,β])=f¯(αββα)=f¯(iaigijbjgjjbjgjiaigi)=f¯(i,jaibjgigjj,ibjaigjgi)=i,jaibjf(gigj)j,ibjaif(gjgi)=i,jaibjf(gi)f(gj)j,ibjaif(gj)f(gi)=iaif(gi)jbjf(gj)jbjf(gj)iaif(gi)=[f¯(α),f¯(β)]\begin{split}\bar{f}([\alpha,\beta])&=\bar{f}(\alpha\beta-\beta\alpha)\\ &=\bar{f}(\displaystyle\sum_{i}a_{i}g_{i}\displaystyle\sum_{j}b_{j}g_{j}-\displaystyle\sum_{j}b_{j}g_{j}\displaystyle\sum_{i}a_{i}g_{i})\\ &=\bar{f}(\displaystyle\sum_{i,j}a_{i}b_{j}g_{i}g_{j}-\displaystyle\sum_{j,i}b_{j}a_{i}g_{j}g_{i})\\ &=\displaystyle\sum_{i,j}a_{i}b_{j}f(g_{i}g_{j})-\displaystyle\sum_{j,i}b_{j}a_{i}f(g_{j}g_{i})\\ &=\displaystyle\sum_{i,j}a_{i}b_{j}f(g_{i})f(g_{j})-\displaystyle\sum_{j,i}b_{j}a_{i}f(g_{j})f(g_{i})\\ &=\displaystyle\sum_{i}a_{i}f(g_{i})\displaystyle\sum_{j}b_{j}f(g_{j})-\displaystyle\sum_{j}b_{j}f(g_{j})\displaystyle\sum_{i}a_{i}f(g_{i})\\ &=[\bar{f}(\alpha),\bar{f}(\beta)]\end{split}

Hence, f¯\bar{f} is a homomorphism between Lie algebras of group algebras. ∎

Next we proceed to describe Plesken Lie algebra. Let GG be a group and 𝔽G\mathbb{F}G be its group algebra over 𝔽\mathbb{F}, then for each gGg\in G, gg1𝔽Gg-g^{-1}\in\mathbb{F}G, denote it by g^\hat{g}, then the linear span of g^\hat{g} admits a Lie algebra structure as expailned below.

Definition 5.

[2]  Plesken Lie algebra (G)\mathcal{L}(G) of a group GG over 𝔽\mathbb{F} is the linear span of elements g^𝔽G\hat{g}\in\mathbb{F}G together with the Lie bracket

[g^,h^]=g^h^h^g^[\hat{g},\hat{h}]=\hat{g}\hat{h}-\hat{h}\hat{g}

That is, for any group G={g1,g2,g3,}G=\{g_{1},g_{2},g_{3},...\}, {iaigi^:ai𝔽for all i}\{\displaystyle\sum_{i}{a_{i}}\hat{g_{i}}:a_{i}\in\mathbb{F}\ \text{for all i}\} together with the Lie bracket defined above is the Plesken Lie algebra (G)\mathcal{L}(G).

Lemma 1.

The Plesken Lie algebra (G)\mathcal{L}(G) over 𝔽\mathbb{F} is a Lie subalgebra of the Lie algebra L𝔽GL_{\mathbb{F}G}.

Proof.

Let G={g1,g2,g3,}G=\{g_{1},g_{2},g_{3},...\} be a group. Then the Lie algebra of the group algebra 𝔽G\mathbb{F}G is L𝔽G={iλigi:ai𝔽for all i}L_{\mathbb{F}G}=\{\displaystyle\sum_{i}{\lambda_{i}}{g_{i}}:a_{i}\in\mathbb{F}\ \text{for all i}\} and the Plesken Lie algebra is (G)={iaigi^:ai𝔽for all i}\mathcal{L}(G)=\{\displaystyle\sum_{i}{a_{i}}\hat{g_{i}}:a_{i}\in\mathbb{F}\ \text{for all i}\}. Since (G)\mathcal{L}(G) is the linear span of g^\hat{g} and g^L𝔽G\hat{g}\in L_{\mathbb{F}G}, (G)\mathcal{L}(G) is a subset of L𝔽GL_{\mathbb{F}G}.
Let α^=iaigi^andβ^=ibigi^\hat{\alpha}=\displaystyle\sum_{i}{a_{i}}\hat{g_{i}}\ \text{and}\ \hat{\beta}=\displaystyle\sum_{i}{b_{i}}\hat{g_{i}} in (G)\mathcal{L}(G),

α^+β^=iaigi^+ibigi^=i(ai+bi)gi^(G)\begin{split}\hat{\alpha}+\hat{\beta}&=\displaystyle\sum_{i}{a_{i}}\hat{g_{i}}+\displaystyle\sum_{i}{b_{i}}\hat{g_{i}}\\ &=\displaystyle\sum_{i}({a_{i}}+{b_{i}})\hat{g_{i}}\in\mathcal{L}(G)\end{split}

and k(α^)=kiaigi^=i(kai)gi^(G)k(\hat{\alpha})=k\displaystyle\sum_{i}{a_{i}}\hat{g_{i}}=\displaystyle\sum_{i}(k{a_{i}})\hat{g_{i}}\in\mathcal{L}(G).
Thus, (G)\mathcal{L}(G) is a subspace of L𝔽GL_{\mathbb{F}G}.
Let g^,h^(G)\hat{g},\hat{h}\in\mathcal{L}(G), then

[g^,h^]=g^h^h^g^=(gg1)(hh1)(hh1)(gg1)=gh^gh1^g1h^+g1h1^\begin{split}[\hat{g},\hat{h}]&=\hat{g}\hat{h}-\hat{h}\hat{g}\\ &=(g-g^{-1})(h-h^{-1})-(h-h^{-1})(g-g^{-1})\\ &=\widehat{gh}-\widehat{gh^{-1}}-\widehat{g^{-1}h}+\widehat{g^{-1}h^{-1}}\end{split}

Thus Lie bracket is closed in (G)\mathcal{L}(G). Hence, (G)\mathcal{L}(G) is a Lie subalgebra of L𝔽GL_{\mathbb{F}G}. ∎

Example 4.

Consider the symmetric group S3S_{3}, then

L(S3)=span{σσ1:σS3}={a1((1)(1))+a2((1 2)(1 2))+a3((1 3)(1 3))++a4((2 3)(2 3))+a5((1 2 3)(1 3 2))+a6((1 3 2)(1 2 3)):ai}={a((1 2 3)(1 3 2)):a}\begin{split}L(S_{3})&=\text{span}\{\sigma-{\sigma}^{-1}:\sigma\in S_{3}\}\\ &=\{a_{1}((1)-(1))+a_{2}((1\ 2)-(1\ 2))+a_{3}((1\ 3)-(1\ 3))++a_{4}((2\ 3)-(2\ 3))\\ &\ \indent\quad+a_{5}((1\ 2\ 3)-(1\ 3\ 2))+a_{6}((1\ 3\ 2)-(1\ 2\ 3)):a_{i}\in\mathbb{C}\}\\ &=\{a((1\ 2\ 3)-(1\ 3\ 2)):a\in\mathbb{C}\}\end{split}

is a one dimensional Plesken Lie algebra over \mathbb{C} with Lie bracket

[a(1 2 3)^,b(1 2 3)^]=0[a\widehat{(1\ 2\ 3)},b\widehat{(1\ 2\ 3)}]=0

A linear map between two Plesken Lie algebras (G)\mathcal{L}(G) and (H)\mathcal{L}(H) is a Plesken Lie algebra homomorphism if it preserves the Lie bracket.

Proposition 2.

Let f:GHf:G\rightarrow H be a group homomorphism. Then f^:(G)(H)\hat{f}:\mathcal{L}(G)\rightarrow\mathcal{L}(H) defined by

f^(iaigi^)=iaif(gi)^\hat{f}(\displaystyle\sum_{i}a_{i}\hat{g_{i}})=\displaystyle\sum_{i}a_{i}\widehat{f(g_{i})}

is a Plesken Lie algebra homomorphism.

Proof.

For iaigi^,ibigi^(G)\displaystyle\sum_{i}a_{i}\hat{g_{i}},\displaystyle\sum_{i}b_{i}\hat{g_{i}}\in\mathcal{L}(G) and k𝔽k\in\mathbb{F},

f^(iaigi^+kibigi^)=f^(i(ai+kbi)gi^)=i(ai+kbi)f(gi)^=f^(iaigi^)+kf^(ibigi^)\begin{split}\hat{f}(\displaystyle\sum_{i}a_{i}\hat{g_{i}}+k\displaystyle\sum_{i}b_{i}\hat{g_{i}})&=\hat{f}(\displaystyle\sum_{i}(a_{i}+kb_{i})\hat{g_{i}})\\ &=\displaystyle\sum_{i}(a_{i}+kb_{i})\widehat{f(g_{i})}\\ &=\hat{f}(\displaystyle\sum_{i}a_{i}\hat{g_{i}})+k\hat{f}(\displaystyle\sum_{i}b_{i}\hat{g_{i}})\end{split}

thus f^\hat{f} is linear.

For iaigi^,jbjgj^(G)\displaystyle\sum_{i}a_{i}\hat{g_{i}},\displaystyle\sum_{j}b_{j}\hat{g_{j}}\in\mathcal{L}(G),

f^([iaigi^,jbjgj^])=f^(i,j(aibjbiaj)gigj^i,j(aibjbiaj)gigj1^i,j(aibjbiaj)gi1gj^+i,j(aibjbiaj)gi1gj1^)=i,j(aibjbiaj)f(gi)f(gj)^i,j(aibjbiaj)f(gi)f(gj1)^i,j(aibjbiaj)f(gi1)f(gj)^+i,j(aibjbiaj)f(gi1)f(gj1)^=[iaif(gi)^,jajf(gj)^]\begin{split}\hat{f}([\displaystyle\sum_{i}a_{i}\hat{g_{i}},\displaystyle\sum_{j}b_{j}\hat{g_{j}}])&=\hat{f}(\displaystyle\sum_{i,j}(a_{i}b_{j}-b_{i}a_{j})\widehat{g_{i}g_{j}}-\displaystyle\sum_{i,j}(a_{i}b_{j}-b_{i}a_{j})\widehat{g_{i}{g_{j}}^{-1}}\\ &\hskip 10.84006pt-\displaystyle\sum_{i,j}(a_{i}b_{j}-b_{i}a_{j})\widehat{{g_{i}}^{-1}g_{j}}+\displaystyle\sum_{i,j}(a_{i}b_{j}-b_{i}a_{j})\widehat{{g_{i}}^{-1}{g_{j}}^{-1}})\\ &=\displaystyle\sum_{i,j}(a_{i}b_{j}-b_{i}a_{j})\widehat{f(g_{i})f(g_{j})}-\displaystyle\sum_{i,j}(a_{i}b_{j}-b_{i}a_{j})\widehat{f(g_{i})f({g_{j}}^{-1})}\\ &\hskip 10.84006pt-\displaystyle\sum_{i,j}(a_{i}b_{j}-b_{i}a_{j})\widehat{f({g_{i}}^{-1})f(g_{j})}+\displaystyle\sum_{i,j}(a_{i}b_{j}-b_{i}a_{j})\widehat{f({g_{i}}^{-1})f({g_{j}}^{-1})}\\ &=[\displaystyle\sum_{i}a_{i}\widehat{f(g_{i})},\displaystyle\sum_{j}a_{j}\widehat{f(g_{j})}]\end{split}

Hence f^\hat{f} preserves Lie bracket and is a Plesken Lie algebra homomorphism. ∎

4. CATEGORY OF LIE ALGEBRAS

Here we describe the category of Lie algebras over 𝔽\mathbb{F} whose objects are Lie algebras over 𝔽\mathbb{F} and morphisms Lie algebra homomorphisms. Let LL and LL^{\prime} be two Lie algebras over a field 𝔽\mathbb{F}. If ff and gg are two morphisms, then fgf\circ g exists only when fhom(L,L)f\in hom(L,L^{\prime}) and ghom(L,L′′)g\in hom(L^{\prime},L^{\prime\prime}). Also the identity in hom(L,L)hom(L,L) is the morphism 1L1_{L}.

Example 5.

Consider a group GG and all its subgroups HiH_{i}. The group algebras 𝔽Hi\mathbb{F}H_{i} of each subgroup HiH_{i} of GG together with a Lie bracket [x,y]=xyyx[x,y]=xy-yx for x=iaihi,y=jbjhj𝔽Hix=\displaystyle\sum_{i}a_{i}h_{i},y=\displaystyle\sum_{j}b_{j}h_{j}\in\mathbb{F}H_{i} is the Lie algebra L𝔽HiL_{\mathbb{F}H_{i}}. The collection of all such Lie algebras of group algebras of subgroups of GG form the category L𝔽GL_{\mathbb{F}G} whose morphisms are { f¯ij:L𝔽HiL𝔽Hj|f¯(iaigi)=iaif(gi)\bar{f}_{ij}:L_{\mathbb{F}H_{i}}\rightarrow L_{\mathbb{F}H_{j}}|\bar{f}(\displaystyle\sum_{i}a_{i}g_{i})=\displaystyle\sum_{i}a_{i}f(g_{i}) where f:HiHjf:H_{i}\rightarrow H_{j} is the group homomorphism }.

Example 6.

Consider the Heisenberg group H()={(1ab01c001):a,b,c}H(\mathbb{R})=\{\begin{pmatrix}1&a&b\\ 0&1&c\\ 0&0&1\end{pmatrix}:a,b,c\in\mathbb{R}\} and its non-isomorphic subgroups :

H1={I3×3, the idenity matrix },H2={(10b010001):b}H3={(10b01c001):b,c},H4=H()\begin{split}H_{1}&=\{I_{3\times 3},\text{ \ the idenity matrix \ }\},H_{2}=\{\begin{pmatrix}1&0&b\\ 0&1&0\\ 0&0&1\end{pmatrix}:b\in\mathbb{R}\}\\ H_{3}&=\{\begin{pmatrix}1&0&b\\ 0&1&c\\ 0&0&1\end{pmatrix}:b,c\in\mathbb{R}\},\ H_{4}=H(\mathbb{R})\end{split}

The group algebras 𝔽Hi\mathbb{F}H_{i} over 𝔽\mathbb{F} of each subgroups HiH_{i} of H()H(\mathbb{R}) together with a Lie bracket [X,Y]=XYYX[X,Y]=XY-YX where X=iλiAi,Y=iμiBi𝔽HiX=\displaystyle\sum_{i}\lambda_{i}A_{i},Y=\displaystyle\sum_{i}\mu_{i}B_{i}\in\mathbb{F}H_{i} is the Lie algebra L𝔽HiL_{\mathbb{F}H_{i}} of the group algebra 𝔽Hi\mathbb{F}H_{i}. Consider L𝔽H()L_{\mathbb{F}H(\mathbb{R})} whose objects are

L𝔽H1={λI:λ𝔽}= the Lie algebra of scalar matrices L𝔽H2={iλiAi:AiH2,λi𝔽}={(iλi0iλibi0iλi000iλi)}L𝔽H3={iλiAi:AiH3,λi𝔽}={(iλi0iλibi0iλiiλici00iλi)}\begin{split}L_{\mathbb{F}H_{1}}&=\{\lambda I:\lambda\in\mathbb{F}\}=\text{ \ the Lie algebra of scalar matrices \ }\\ L_{\mathbb{F}H_{2}}&=\{\displaystyle\sum_{i}\lambda_{i}A_{i}:A_{i}\in H_{2},\lambda_{i}\in\mathbb{F}\}=\{\begin{pmatrix}\displaystyle\sum_{i}\lambda_{i}&0&\displaystyle\sum_{i}\lambda_{i}b_{i}\\ 0&\displaystyle\sum_{i}\lambda_{i}&0\\ 0&0&\displaystyle\sum_{i}\lambda_{i}\end{pmatrix}\}\\ L_{\mathbb{F}H_{3}}&=\{\displaystyle\sum_{i}\lambda_{i}A_{i}:A_{i}\in H_{3},\lambda_{i}\in\mathbb{F}\}=\{\begin{pmatrix}\displaystyle\sum_{i}\lambda_{i}&0&\displaystyle\sum_{i}\lambda_{i}b_{i}\\ 0&\displaystyle\sum_{i}\lambda_{i}&\displaystyle\sum_{i}\lambda_{i}c_{i}\\ 0&0&\displaystyle\sum_{i}\lambda_{i}\end{pmatrix}\}\\ \end{split}
L𝔽H4={iλiAi:AiH4,λi𝔽}={(iλiiλiaiiλibi0iλiiλici00iλi)}\begin{split}L_{\mathbb{F}H_{4}}&=\{\displaystyle\sum_{i}\lambda_{i}A_{i}:A_{i}\in H_{4},\lambda_{i}\in\mathbb{F}\}=\{\begin{pmatrix}\displaystyle\sum_{i}\lambda_{i}&\displaystyle\sum_{i}\lambda_{i}a_{i}&\displaystyle\sum_{i}\lambda_{i}b_{i}\\ 0&\displaystyle\sum_{i}\lambda_{i}&\displaystyle\sum_{i}\lambda_{i}c_{i}\\ 0&0&\displaystyle\sum_{i}\lambda_{i}\end{pmatrix}\}\\ \end{split}

and morphisms : hom(L𝔽Hi,L𝔽Hj)={f¯ij:L𝔽HiL𝔽Hj|f¯(iaigi)=iaif(gi)L_{\mathbb{F}H_{i}},L_{\mathbb{F}H_{j}})=\{\bar{f}_{ij}:L_{\mathbb{F}H_{i}}\rightarrow L_{\mathbb{F}H_{j}}|\bar{f}(\displaystyle\sum_{i}a_{i}g_{i})=\displaystyle\sum_{i}a_{i}f(g_{i}) where f:HiHjf:H_{i}\rightarrow H_{j} is the group homomorphism } is the category L𝔽(H())L_{\mathbb{F}(H(\mathbb{R}))} of Lie algebras of the group algebras of subgroups of H()H(\mathbb{R}).

Next we consider the category whose objects are Plesken Lie algebras (G)\mathcal{L}(G) over a field 𝔽\mathbb{F} and morphisms are Plesken Lie algebra homomorphisms which we denote it by 𝒞PLG\mathcal{C}_{PLG}.

Example 7.

Consider the Heisenberg group H()={(1ab01c001):a,b,c}H(\mathbb{R})=\{\begin{pmatrix}1&a&b\\ 0&1&c\\ 0&0&1\end{pmatrix}:a,b,c\in\mathbb{R}\} and its non-isomorphic subgroups H1,H2,H3H_{1},H_{2},H_{3} and H4H_{4} as given in Example.6. For each A=(1ab01c001)HiA=\begin{pmatrix}1&a&b\\ 0&1&c\\ 0&0&1\end{pmatrix}\in H_{i},

A^=AA1=(1ab01c001)(1aacb01c001)=(02a2bac002c000)\begin{split}\hat{A}&=A-A^{-1}=\begin{pmatrix}1&a&b\\ 0&1&c\\ 0&0&1\end{pmatrix}-\begin{pmatrix}1&-a&ac-b\\ 0&1&-c\\ 0&0&1\end{pmatrix}=\begin{pmatrix}0&2a&2b-ac\\ 0&0&2c\\ 0&0&0\end{pmatrix}\end{split}

Thus (Hi)={iλiAi^:AiHi,λi𝔽}\mathcal{L}(H_{i})=\{\displaystyle\sum_{i}\lambda_{i}\hat{A_{i}}:A_{i}\in H_{i},\lambda_{i}\in\mathbb{F}\} and so

(H1)={0},(H2)={(002iλibi000000)}(H3)={(002iλibi002iλici000)},(H4)={(02iλiaiiλi(2biaici)002iλici000)}\begin{split}\mathcal{L}(H_{1})&=\{0\},\ \indent\mathcal{L}(H_{2})=\{\begin{pmatrix}0&0&2\displaystyle\sum_{i}\lambda_{i}b_{i}\\ 0&0&0\\ 0&0&0\end{pmatrix}\}\\ \mathcal{L}(H_{3})&=\{\begin{pmatrix}0&0&2\displaystyle\sum_{i}\lambda_{i}b_{i}\\ 0&0&2\displaystyle\sum_{i}\lambda_{i}c_{i}\\ 0&0&0\end{pmatrix}\},\mathcal{L}(H_{4})=\{\begin{pmatrix}0&2\displaystyle\sum_{i}\lambda_{i}a_{i}&\displaystyle\sum_{i}\lambda_{i}(2b_{i}-a_{i}c_{i})\\ 0&0&2\displaystyle\sum_{i}\lambda_{i}c_{i}\\ 0&0&0\end{pmatrix}\}\\ \end{split}

The category whose objects are (Hi),i=1,2,3,4\mathcal{L}(H_{i}),i=1,2,3,4 and morphisms are hom((Hi),(Hj))={f^:(Hi)(Hj)|f^(iλiAi^)=iλif(Ai)^hom(\mathcal{L}(H_{i}),\mathcal{L}(H_{j}))=\{\hat{f}:\mathcal{L}(H_{i})\rightarrow\mathcal{L}(H_{j})\ |\ \hat{f}(\displaystyle\sum_{i}\lambda_{i}\hat{A_{i}})=\displaystyle\sum_{i}\lambda_{i}\widehat{f(A_{i})} where f:HiHjf:H_{i}\rightarrow H_{j} is the group homomorphism } is the category of Plesken Lie algebras of subgroups of H()H(\mathbb{R}).

Theorem 1.

If L𝔽GL_{\mathbb{F}G} is the category of Lie algebras of group algebras and 𝒞PLG\mathcal{C}_{PLG} is the category of Plesken Lie algebras, then there exists a functor from L𝔽GL_{\mathbb{F}G} to 𝒞PLG\mathcal{C}_{PLG}.

Proof.

Define T:L𝔽G𝒞PLGT:L_{\mathbb{F}G}\rightarrow\mathcal{C}_{PLG} such that νT:L𝔽Gi(Gi)\nu T:L_{\mathbb{F}G_{i}}\rightarrow\mathcal{L}(G_{i}) is defined by

νT(iaigi)=i(aiai)(gigi1)\nu T(\displaystyle\sum_{i}a_{i}g_{i})=\displaystyle\sum_{i}(a_{i}-a_{i}^{\prime})(g_{i}-{g_{i}}^{-1})

and on morphisms, for a group homomorphism f:GiGjf:G_{i}\rightarrow G_{j}, f¯:L𝔽GiL𝔽Gj\bar{f}:L_{\mathbb{F}G_{i}}\rightarrow L_{\mathbb{F}G_{j}} is given by

f¯(iaigi)=iaif(gi)\bar{f}(\displaystyle\sum_{i}a_{i}g_{i})=\displaystyle\sum_{i}a_{i}f(g_{i})

and Tf¯:T(L𝔽Gi)T(L𝔽Gj)T\bar{f}:T(L_{\mathbb{F}G_{i}})\rightarrow T(L_{\mathbb{F}G_{j}}) is defined by

Tf¯=f^T\bar{f}=\hat{f}

and f^:(Gi)(Gj)\hat{f}:\mathcal{L}(G_{i})\rightarrow\mathcal{L}(G_{j}) is given by

f^(i(aiai)(gigi1))=i(aiai)(f(gi)f(gi)1)\hat{f}(\displaystyle\sum_{i}(a_{i}-a_{i}^{\prime})(g_{i}-{g_{i}}^{-1}))=\displaystyle\sum_{i}(a_{i}-a_{i}^{\prime})(f(g_{i})-f({g_{i}})^{-1})

where f^\hat{f} is a Plesken Lie algebra homomorphism ( Proposition 2).
Let f1¯:L𝔽GiL𝔽Gj\bar{f_{1}}:L_{\mathbb{F}G_{i}}\rightarrow L_{\mathbb{F}G_{j}} and f2¯:L𝔽GjL𝔽Gk\bar{f_{2}}:L_{\mathbb{F}G_{j}}\rightarrow L_{\mathbb{F}G_{k}} be two homomorphisms between Lie algebras of group algebras which are induced from the group homomorphisms f1:GiGjf_{1}:G_{i}\rightarrow G_{j} and f2:GjGkf_{2}:G_{j}\rightarrow G_{k}. Then T(f1¯):T(L𝔽Gi)T(L𝔽Gj)T(\bar{f_{1}}):T(L_{\mathbb{F}G_{i}})\rightarrow T(L_{\mathbb{F}G_{j}}) and T(f2¯):T(L𝔽Gj)T(L𝔽Gk)T(\bar{f_{2}}):T(L_{\mathbb{F}G_{j}})\rightarrow T(L_{\mathbb{F}G_{k}}) are Plesken Lie algebra homomorphisms. Then their composition T(f2¯)T(f1¯):T(L𝔽Gi)T(L𝔽Gk)T(\bar{f_{2}})\circ T(\bar{f_{1}}):T(L_{\mathbb{F}G_{i}})\rightarrow T(L_{\mathbb{F}G_{k}}) is also a Plesken Lie algebra homomorphism. Moreover,

(1) (T(f2¯)T(f1¯))(i(aiai)(gigi1))=(f2^f1^)(i(aiai)(gigi1)))=f2^(i=1(aiai)(f1(gi)f1(gi1)))=i(aiai)((f2f1)(gi)((f2f1)(gi))1)\begin{split}(T(\bar{f_{2}})\circ T(\bar{f_{1}}))(\displaystyle\sum_{i}(a_{i}-a_{i}^{\prime})(g_{i}-{g_{i}}^{-1}))&=(\hat{f_{2}}\circ\hat{f_{1}})(\displaystyle\sum_{i}(a_{i}-a_{i}^{\prime})(g_{i}-{g_{i}}^{-1})))\\ &=\hat{f_{2}}(\displaystyle\sum_{i=1}(a_{i}-a_{i}^{\prime})(f_{1}(g_{i})-f_{1}({g_{i}}^{-1})))\\ &=\displaystyle\sum_{i}(a_{i}-a_{i}^{\prime})((f_{2}\circ f_{1})(g_{i})-((f_{2}\circ f_{1})(g_{i}))^{-1})\end{split}

and

(2) T(f2¯f1¯)(i(aiai)(gigi1))=(f2f1^)(i(aiai)(gigi1))=i(aiai)((f2f1)(gi)((f2f1)(gi))1)\begin{split}T(\bar{f_{2}}\circ\bar{f_{1}})(\displaystyle\sum_{i}(a_{i}-a_{i}^{\prime})(g_{i}-{g_{i}}^{-1}))&=(\widehat{f_{2}\circ f_{1}})(\displaystyle\sum_{i}(a_{i}-a_{i}^{\prime})(g_{i}-{g_{i}}^{-1}))\\ &=\displaystyle\sum_{i}(a_{i}-a_{i}^{\prime})((f_{2}\circ f_{1})(g_{i})-((f_{2}\circ f_{1})(g_{i}))^{-1})\end{split}

(1)(1) and (2)(2) shows that T(f2¯f1¯)=T(f2¯)T(f1¯)T(\bar{f_{2}}\circ\bar{f_{1}})=T(\bar{f_{2}})\circ T(\bar{f_{1}}).
The identity Lie algebra homomorphism, 1L𝔽Gi:L𝔽GiL𝔽Gi1_{L_{\mathbb{F}G_{i}}}:L_{\mathbb{F}G_{i}}\rightarrow L_{\mathbb{F}G_{i}} is induced from the identity group homomorphism 1Gi:GiGi1_{G_{i}}:G_{i}\rightarrow G_{i}. Then T(1L𝔽Gi):T(L𝔽Gi)T(L𝔽Gi)T(1_{L_{\mathbb{F}G_{i}}}):T(L_{\mathbb{F}G_{i}})\rightarrow T(L_{\mathbb{F}G_{i}}) is a Plesken Lie algebra homomorphism and

T(1L𝔽Gi)(i(aiai)(gigi1))=i(aiai)(1Gi(gi)(1Gi(gi))1)=i(aiai)(gigi1)=1T(L𝔽Gi)(i(aiai)(gigi1))\begin{split}T(1_{L_{\mathbb{F}G_{i}}})(\displaystyle\sum_{i}(a_{i}-a_{i}^{\prime})(g_{i}-{g_{i}}^{-1}))&=\displaystyle\sum_{i}(a_{i}-a_{i}^{\prime})(1_{G_{i}}(g_{i})-(1_{G_{i}}({g_{i}}))^{-1})\\ &=\displaystyle\sum_{i}(a_{i}-a_{i}^{\prime})(g_{i}-{g_{i}}^{-1})\\ &=1_{T(L_{\mathbb{F}G_{i}})}(\displaystyle\sum_{i}(a_{i}-a_{i}^{\prime})(g_{i}-{g_{i}}^{-1}))\end{split}

That is, T(1L𝔽Gi)=1T(L𝔽Gi)T(1_{L_{\mathbb{F}G_{i}}})=1_{T(L_{\mathbb{F}G_{i}})}, hence TT is a functor.

Corollary 1.

The functor T:L𝔽G𝒞PLGT:L_{\mathbb{F}G}\rightarrow\mathcal{C}_{PLG} in Theorem 1 is a full functor.

Proof.

For the functor T:L𝔽G𝒞PLGT:L_{\mathbb{F}G}\rightarrow\mathcal{C}_{PLG} define a map TL𝔽Gi,L𝔽Gj:hom(L𝔽Gi,L𝔽Gj)hom(TL𝔽Gi,TL𝔽Gj)T_{L_{\mathbb{F}G_{i}},L_{\mathbb{F}G_{j}}}:hom(L_{\mathbb{F}G_{i}},L_{\mathbb{F}G_{j}})\rightarrow hom(TL_{\mathbb{F}G_{i}},TL_{\mathbb{F}G_{j}}) by

TL𝔽Gi,L𝔽Gj(f¯)=f^T_{L_{\mathbb{F}G_{i}},L_{\mathbb{F}G_{j}}}(\bar{f})=\hat{f}

Now it is enough to prove that TL𝔽Gi,L𝔽GjT_{L_{\mathbb{F}G_{i}},L_{\mathbb{F}G_{j}}} is surjective. For f^hom(TL𝔽Gi,TL𝔽Gj)\hat{f}\in hom(TL_{\mathbb{F}G_{i}},TL_{\mathbb{F}G_{j}}), a Plesken Lie algebra homomorphism, define f¯:L𝔽GiL𝔽Gj\bar{f}:L_{\mathbb{F}G_{i}}\rightarrow L_{\mathbb{F}G_{j}} by

f¯(iaigi)=iaif(gi)\bar{f}(\displaystyle\sum_{i}a_{i}g_{i})=\displaystyle\sum_{i}a_{i}f(g_{i})

is a homomorphism between Lie algebras of group algebras and Tf¯:TL𝔽GiTL𝔽GjT\bar{f}:TL_{\mathbb{F}G_{i}}\rightarrow TL_{\mathbb{F}G_{j}} given by,

Tf¯(iaigi^)=iaif(gi)^=f^(iaigi^)T\bar{f}(\displaystyle\sum_{i}a_{i}\hat{g_{i}})=\displaystyle\sum_{i}a_{i}\widehat{f(g_{i})}=\hat{f}(\displaystyle\sum_{i}a_{i}\hat{g_{i}})

That is, Tf¯=f^T\bar{f}=\hat{f}. Hence TT is full. ∎

However, it should be noted that the functor defined above need not be faithful as illustrated in the following example.

Example 8.

Let K4={e,a,b,c}K_{4}=\{e,a,b,c\} be the Klein 4- group and L𝔽K4L_{\mathbb{F}K_{4}} Lie algebra of the group algebra 𝔽K4\mathbb{F}K_{4}. Consider the identity map 1L𝔽K41_{L_{\mathbb{F}K_{4}}} and f¯:L𝔽K4L𝔽K4\bar{f}:L_{\mathbb{F}K_{4}}\rightarrow L_{\mathbb{F}K_{4}} given by

f¯(iaigi)=iaif(gi)\bar{f}(\displaystyle\sum_{i}a_{i}g_{i})=\displaystyle\sum_{i}a_{i}f(g_{i})

where giK4g_{i}\in K_{4} and ff is the trivial homomorphism. Clearly both Tf¯T\bar{f} and T1L𝔽K4T1_{L_{\mathbb{F}K_{4}}} are zeroes for the functor T:L𝔽G𝒞PLGT:L_{\mathbb{F}G}\rightarrow\mathcal{C}_{PLG}.

References

  • [1] Saunders Mac Lane, Categories for the working Mathematician, Second edition, Springer, 1997
  • [2] Arjeh M. Cohen and D. E. Taylor, On a Certain Lie algebra Defined by a Finite Group. The American Mathematical Monthly, pp. 633 - 639, Aug. - Sep., 2007.
  • [3] James E. Humphreys, Introduction to Lie Algebras and Representation Theory. Springer - Verlag, 1972.
  • [4] Brian C. Hall, Lie groups, Lie Algebras, and Representations An Elementary Introduction, Springer, 2003
  • [5] K.S.S. Nambooripad, Theory of Regular Semigroups. Sayahna Foundation, Trivandrum, 2018.
  • [6] Gordon James and Martin Liebeck, Representations and Characters of Groups. Second Edition, Cambridge University Press, 2001.