This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

On boundedness of characteristic class via quasi-morphism

Morimichi Kawasaki Department of Mathematical Sciences, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara-shi, Kanagawa, 252-5258, Japan [email protected]  and  Shuhei Maruyama Graduate School of Mathematics, Nagoya University, Japan [email protected]
Abstract.

In this paper, we characterize the second bounded characteristic classes of foliated bundles in terms of the non-descendible quasi-morphisms on the universal covering of the structure group. As its application, we study the boundedness of obstruction classes for (contact) Hamiltonian fibrations and show the non-existence of foliated structures on some Hamiltonian fibrations. Moreover, for any closed symplectic manifold, we show the non-triviality of the second bounded cohomology group of the Hamiltonian diffeomorphism group.

Key words and phrases:
Symplectic manifolds; the groups of Hamiltonian diffeomorphisms; quasi-morphism; group cohomology; bounded cohomology; characteristic class; Hamiltonian fibration.

1. Key Theorems

Let GG be a connected topological group which admits the universal covering π:G~G\pi\colon\tilde{G}\to G and GδG^{\delta} denote the group GG with the discrete topology. Cohomology classes of the classifying spaces BGBG and BGδBG^{\delta} are considered as universal characteristic classes of principal GG-bundles and foliated GG-bundles (or flat GG-bundles), respectively. In this paper, we concentrate our interest on the characteristic classes in degree two. The identity homomorphism ι:GδG\iota\colon G^{\delta}\to G induces a continuous map Bι:BGδBGB\iota\colon BG^{\delta}\to BG and a homomorphism

Bι:H2(BG;)H2(BGδ;).B\iota^{*}\colon H^{2}(BG;\mathbb{R})\to H^{2}(BG^{\delta};\mathbb{R}).

In this article, an element of Im(Bι)\mathrm{Im}(B\iota^{*}) is simply called a characteristic class of foliated GG-bundles. Hence in our terminology, if a characteristic class is non-zero for a foliated GG-bundle EE, the bundle EE is non-trivial not only as a foliated GG-bundle but also as a GG-bundle.

Let Hgrp2(G;)H_{\mathop{\mathrm{grp}}\nolimits}^{2}(G;\mathbb{R}) and Hb2(G;)H_{b}^{2}(G;\mathbb{R}) be the second group cohomology and second bounded cohomology of GG, respectively. Then, there is a canonical map

cG:Hb2(G;)Hgrp2(G;)c_{G}\colon H_{b}^{2}(G;\mathbb{R})\to H_{\mathop{\mathrm{grp}}\nolimits}^{2}(G;\mathbb{R})

called the comparison map. A group cohomology class αHgrp2(G;)\alpha\in H_{\mathop{\mathrm{grp}}\nolimits}^{2}(G;\mathbb{R}) is called bounded if it is in the image of cGc_{G}.

Since the cohomology group H2(BGδ;)H^{2}(BG^{\delta};\mathbb{R}) is canonically isomorphic to Hgrp2(G;)H_{\mathop{\mathrm{grp}}\nolimits}^{2}(G;\mathbb{R}), we can consider the intersection

Im(cG)Im(Bι)\mathrm{Im}(c_{G})\cap\mathrm{Im}(B\iota^{*})

as a subspace of Hgrp2(G;)H_{\mathop{\mathrm{grp}}\nolimits}^{2}(G;\mathbb{R}). This intersection Im(cG)Im(Bι)\mathrm{Im}(c_{G})\cap\mathrm{Im}(B\iota^{*}) is the vector space of bounded characteristic classes of foliated GG-bundles.

Our main theorem stated below characterizes the space Im(cG)Im(Bι)\mathrm{Im}(c_{G})\cap\mathrm{Im}(B\iota^{*}) in terms of the homogeneous quasi-morphisms on the universal covering G~\tilde{G} of GG. Let Q(G~)Q(\tilde{G}) and Q(G)Q(G) be the vector space of all homogeneous quasi-morphisms on G~\tilde{G} and on GG, respectively (see Subsection 3.1 for the definition). Let π:Q(G)Q(G~)\pi^{*}\colon Q(G)\to Q(\tilde{G}) be the pullback induced from π:G~G\pi\colon\tilde{G}\to G.

Theorem 1.1 (Theorem 6.4).

There exists an isomorphism

Q(G~)/(Hgrp1(G~;)+πQ(G))Im(cG)Im(Bι).Q(\tilde{G})/\big{(}H_{\mathop{\mathrm{grp}}\nolimits}^{1}(\tilde{G};\mathbb{R})+\pi^{*}Q(G)\big{)}\xrightarrow{\cong}\mathrm{Im}(c_{G})\cap\mathrm{Im}(B\iota^{*}).

The following corollary, which is mainly used in applications, immediately follows from Theorem 1.1.

Corollary 1.2 (Corollary 6.5).

Let GG be a topological group whose universal covering G~\tilde{G} satisfies Hgrp1(G~;)=0H_{\mathop{\mathrm{grp}}\nolimits}^{1}(\tilde{G};\mathbb{R})=0. Then there exists an isomorphism

Q(G~)/πQ(G)Im(cG)Im(Bι)(Hgrp2(G;)).Q(\tilde{G})/\pi^{*}Q(G)\xrightarrow{\cong}\mathrm{Im}(c_{G})\cap\mathrm{Im}(B\iota^{*})\ \left(\subset H_{\mathop{\mathrm{grp}}\nolimits}^{2}(G;\mathbb{R})\right).

In particular, if μQ(G~)\mu\in Q(\tilde{G}) does not descend to GG i.e., μπQ(G)\mu\notin\pi^{*}Q(G), then μ\mu gives rise to a non-trivial element of Hgrp2(G;)H_{\mathop{\mathrm{grp}}\nolimits}^{2}(G;\mathbb{R}).

In the present paper, we apply the above results to the group of (contact) Hamiltonian diffeomorphisms. As an important topic of symplectic and contact topology, many researchers have studied quasi-morphisms on these groups (for examples, see [EP03], [GG04], [Py06b], [FOOO19], [BZ15] and [FPR18]). By combining these outcomes and our results (Theorem 1.1 and Corollary 1.2), we obtain some results on the ordinary group cohomology of these groups (see Corollaries 2.1 and 2.2, Example 2.4, 2.6, 2.5 and 2.7, Corollary 2.9, Proposition A.2 and A.4).

Remark 1.3.

Let G=Homeo+(S1)G=\mathop{\mathrm{Homeo}}\nolimits_{+}(S^{1}) be the group of orientation preserving homeomorphisms of the circle. By the theorem of Thurston [Thu74], we have Hgrp2(G;)=Im(Bι)eH_{\mathop{\mathrm{grp}}\nolimits}^{2}(G;\mathbb{R})=\mathrm{Im}(B\iota^{*})\cong\mathbb{R}\cdot e, where ee is the Euler class of Homeo+(S1)\mathop{\mathrm{Homeo}}\nolimits_{+}(S^{1}). It is known that the space Q(G~)Q(\tilde{G}) is spanned by Poincaré’s rotation number rot:G~\mathrm{rot}\colon\tilde{G}\to\mathbb{R}, that is, Q(G~)rotQ(\tilde{G})\cong\mathbb{R}\cdot\mathrm{rot} (see [Ghy01]). Therefore we have Q(G~)Hgrp2(G;)Q(\tilde{G})\cong H_{\mathop{\mathrm{grp}}\nolimits}^{2}(G;\mathbb{R}). Note that the cohomology Hgrp2(G;)H_{\mathop{\mathrm{grp}}\nolimits}^{2}(G;\mathbb{R}) is equal to Im(Bι)Im(cG)\mathrm{Im}(B\iota^{*})\cap\mathrm{Im}(c_{G}) since the Euler class is bounded. Moreover, the space Q(G~)Q(\tilde{G}) is equal to Q(G~)/(Hgrp1(G~;)+πQ(G))Q(\tilde{G})/\left(H_{\mathop{\mathrm{grp}}\nolimits}^{1}(\tilde{G};\mathbb{R})+\pi^{*}Q(G)\right) since GG is uniformly perfect and G~\tilde{G} is perfect. Thus, Theorem 1.1 can be seen as a generalization of this isomorphism to an arbitrary topological group.

2. Applications to symplectic and contact geometry

We apply Corollary 1.2 to symplectic and contact geometry. A symplectic manifold (M,ω)(M,\omega) has the natural transformation group Ham(M,ω)\mathop{\mathrm{Ham}}\nolimits(M,\omega) called the group of Hamiltonian diffeomorphisms [Ban97, DEFINITION 4.2.4.], [PR14, Subsection 1.2]. A contact manifold (M,ξ)(M,\xi) also has the natural transformation group Cont0(M,ξ)\mathop{\mathrm{Cont}}\nolimits_{0}(M,\xi) called the group of contact Hamiltonian diffeomorphisms [Gei08].

2.1. Boundedness of characteristic classes

It is an interesting and difficult problem to determine whether a given characteristic class is bounded. The Milnor-Wood inequality ([Mil58], [Woo71]) asserts that the Euler class of foliated SL(2,)SL(2,\mathbb{R})-bundles (and foliated Homeo+(S1)\mathop{\mathrm{Homeo}}\nolimits_{+}(S^{1})-bundles) is bounded. It was shown that any element of Im(Bι)\mathrm{Im}(B\iota^{*}) is bounded for any real algebraic subgroups of GL(n,)GL(n,\mathbb{R}) ([Gro82]) and for any virtually connected Lie group with linear radical ([CMPSC11]).

As far as the authors know, for homeomorphism groups and diffeomorphism groups, in contrast, the boundedness of characteristic classes is known only for the following specific examples.

  • The Euler class of Homeo+(S1)\mathop{\mathrm{Homeo}}\nolimits_{+}(S^{1}) is bounded [Woo71].

  • The Godbillon-Vey class integrated along the fiber on Diff+(S1)\mathop{\mathrm{Diff}}\nolimits_{+}(S^{1}) is unbounded [Thu72].

  • Any non-zero cohomology class of Homeo0(2)\mathop{\mathrm{Homeo}}\nolimits_{0}(\mathbb{R}^{2}) is unbounded [Cal04].

  • Any non-zero cohomology class of Homeo0(T2)\mathop{\mathrm{Homeo}}\nolimits_{0}(T^{2}) is unbounded, where T2T^{2} is the two-dimensional torus [MR18].

  • Some cohomology classes of Homeo0(M)\mathop{\mathrm{Homeo}}\nolimits_{0}(M) are unbounded, where MM is a closed Seifert-fibered 33-manifold such that the inclusion SO(2)Homeo0(M)SO(2)\to\mathop{\mathrm{Homeo}}\nolimits_{0}(M) induces an inclusion of π1(SO(2))\pi_{1}(SO(2)) as a direct factor in π1(Homeo0(M))\pi_{1}(\mathop{\mathrm{Homeo}}\nolimits_{0}(M)) [Man20] (see also [MN21]).

Using Corollary 1.2, we show the boundedness and unboundedness of characteristic classes on (contact) Hamiltonian diffeomorphism groups. Let us consider the symplectic manifold (S2×S2,ωλ)(S^{2}\times S^{2},\omega_{\lambda}) and the contact manifold (S3,ξ)(S^{3},\xi). The symplectic form ωλ\omega_{\lambda} is defined by ωλ=pr1ω0+λpr2ω0\omega_{\lambda}=\mathrm{pr}_{1}^{\ast}\omega_{0}+\lambda\cdot\mathrm{pr}_{2}^{\ast}\omega_{0}, where ω0\omega_{0} is the area form on S2S^{2} and prj:S2×S2S2\mathrm{pr}_{j}\colon S^{2}\times S^{2}\to S^{2} is the jj-th projection. The contact structure ξ\xi is the standard one on S3S^{3}.

To simplify the notation, we set Gλ=Ham(S2×S2,ωλ)G_{\lambda}=\mathop{\mathrm{Ham}}\nolimits(S^{2}\times S^{2},\omega_{\lambda}) and H=Cont0(S3,ξ)H=\mathop{\mathrm{Cont}}\nolimits_{0}(S^{3},\xi). For 1<λ21<\lambda\leq 2, we have H2(BGλ;)H^{2}(BG_{\lambda};\mathbb{Z})\cong\mathbb{Z} and H2(BH;)H^{2}(BH;\mathbb{Z})\cong\mathbb{Z} (see Section 6). Let 𝔬GλH2(BGλ;)\mathfrak{o}_{G_{\lambda}}\in H^{2}(BG_{\lambda};\mathbb{Z}) and 𝔬HH2(BH;)\mathfrak{o}_{H}\in H^{2}(BH;\mathbb{Z}) be the generators (or the “primary obstruction classes with coefficients in \mathbb{Z}” of GλG_{\lambda}-bundles and HH-bundles, respectively).

Using Corollary 1.2, we can clarify the difference between these classes in terms of the boundedness. For any cHgrp2(G;)c\in H_{\mathop{\mathrm{grp}}\nolimits}^{2}(G;\mathbb{Z}), let cHgrp2(G;)c_{\mathbb{R}}\in H_{\mathop{\mathrm{grp}}\nolimits}^{2}(G;\mathbb{R}) denote the corresponding cohomology class with coefficients in \mathbb{R}.

Corollary 2.1.

The following properties hold.

  1. (1)

    The cohomology class

    Bι(𝔬Gλ)Hgrp2(Gλ;)B\iota^{*}(\mathfrak{o}_{G_{\lambda}})_{\mathbb{R}}\in H_{\mathop{\mathrm{grp}}\nolimits}^{2}(G_{\lambda};\mathbb{R})

    is bounded.

  2. (2)

    The cohomology class

    Bι(𝔬H)Hgrp2(H;)B\iota^{*}(\mathfrak{o}_{H})_{\mathbb{R}}\in H_{\mathop{\mathrm{grp}}\nolimits}^{2}(H;\mathbb{R})

    is unbounded.

We will prove Corollary 2.1 in Section 6. In order to show Corollary 2.1, we use Ostrover’s Calabi quasi-morphism, which is a Hamiltonian Floer theoretic invariant.

Moreover, we will show the Milnor-Wood type inequality in Section 7 (Theorem 7.1). Applying it to the obstruction class (𝔬Gλ)(\mathfrak{o}_{G_{\lambda}})_{\mathbb{R}}, we obtain the following:

Corollary 2.2.

Let Σh\Sigma_{h} be a closed orientable surface of genus h1h\geq 1. Then, there exist infinitely many isomorphism classes of Hamiltonian fibrations over Σh\Sigma_{h} with the structure group Gλ=Ham(S2×S2,ωλ)G_{\lambda}=\mathop{\mathrm{Ham}}\nolimits(S^{2}\times S^{2},\omega_{\lambda}) which do not admit foliated GλG_{\lambda}-bundle structures.

Remark 2.3.

The boundedness of cc and cc_{\mathbb{R}} are equivalent, that is, the integer cohomology class cc is bounded if and only if the real cohomology class cc_{\mathbb{R}} is bounded (this is shown by the same arguments in [CMPSC11, Lemma 29]). Hence, the statement same as in Corollary 2.1 holds for the integer coefficients cohomology classes Bι(𝔬Gλ)B\iota^{*}(\mathfrak{o}_{G_{\lambda}}) and Bι(𝔬H)B\iota^{*}(\mathfrak{o}_{H}).

Corollaries 2.1 and 2.2 will be restated in more general form (see Corollary 6.6 and Theorem 7.2, respectively).

2.2. Cohomology of (contact) Hamiltonian diffeomorphism group

Many researchers have constructed non-trivial cohomology classes of Ham(M,ω)\mathop{\mathrm{Ham}}\nolimits(M,\omega) and Cont0(M,ξ)\mathop{\mathrm{Cont}}\nolimits_{0}(M,\xi) (associated with the discrete topology or the CC^{\infty}-topology) as characteristic classes of some (contact) Hamiltonian fibrations ([Rez97], [JK02], [GKT11], [McD04], [SS20], [Mar20], [CS16]). Many non-trivial homogeneous quasi-morphisms on Ham(M,ω)\mathop{\mathrm{Ham}}\nolimits(M,\omega) also have been obtained in several papers ([BG92], [EP03], [GG04], [Py06b], [Py06a], [McD10], [FOOO19, THEOREM 1.10 (1)], [Ish14], [Bra15] et. al.). From these homogeneous quasi-morphisms on Ham(M,ω)\mathop{\mathrm{Ham}}\nolimits(M,\omega), we can construct non-trivial elements of Hb2(Ham(M,ω);)H_{b}^{2}\left(\mathop{\mathrm{Ham}}\nolimits(M,\omega);\mathbb{R}\right) under the canonical map

𝐝:Q(Ham(M,ω))Hb2(Ham(M,ω);)\mathbf{d}\colon Q(\mathop{\mathrm{Ham}}\nolimits(M,\omega))\to H_{b}^{2}(\mathop{\mathrm{Ham}}\nolimits(M,\omega);\mathbb{R})

(for the map 𝐝\mathbf{d}, see Section 3). Note that the classes obtained by this map are trivial as ordinary group cohomology classes in Hgrp2(Ham(M,ω);)H_{\mathop{\mathrm{grp}}\nolimits}^{2}(\mathop{\mathrm{Ham}}\nolimits(M,\omega);\mathbb{R}).

On the other hand, using Corollary 1.2 and homogeneous quasi-morphisms on the universal covering groups, we can construct non-trivial second bounded cohomology class of Ham(M,ω)\mathop{\mathrm{Ham}}\nolimits(M,\omega) and Cont0(M,ξ)\mathop{\mathrm{Cont}}\nolimits_{0}(M,\xi), which are also non-trivial as ordinary cohomology classes. Note that the universal covering Ham~(M,ω)\widetilde{\mathop{\mathrm{Ham}}\nolimits}(M,\omega) and Cont~0(M,ξ)\widetilde{\mathop{\mathrm{Cont}}\nolimits}_{0}(M,\xi) are perfect for closed symplectic and contact manifolds ([Ban78], [Ryb10]). Therefore these groups satisfy the assumption in Corollary 1.2.

In the following cases, Corollary 1.2 provides non-trivial cohomology classes in Hgrp2(Ham(M,ω);)H_{\mathop{\mathrm{grp}}\nolimits}^{2}(\mathop{\mathrm{Ham}}\nolimits(M,\omega);\mathbb{R}) and Hgrp2(Cont0(M,ξ);)H_{\mathop{\mathrm{grp}}\nolimits}^{2}(\mathop{\mathrm{Cont}}\nolimits_{0}(M,\xi);\mathbb{R}).

Example 2.4.

Ostrover [Ost06] constructed quasi-morphism μλ\mu^{\lambda} on Ham~(S2×S2,ωλ)\widetilde{\mathop{\mathrm{Ham}}\nolimits}(S^{2}\times S^{2},\omega_{\lambda}) for λ>1\lambda>1. The homogeneous quasi-morphism μλ\mu^{\lambda} does not descend to Ham(S2×S2,ωλ)\mathop{\mathrm{Ham}}\nolimits(S^{2}\times S^{2},\omega_{\lambda}) (Proposition 3.2). Hence, we obtain a non-trivial cohomology class of Ham(S2×S2,ωλ)\mathop{\mathrm{Ham}}\nolimits(S^{2}\times S^{2},\omega_{\lambda}) from μλ\mu^{\lambda}.

Example 2.5.

Ostrover and Tyomkin [OT09] constructed two homogeneous quasi-morphisms μ1,μ2:Ham~(M,ω)\mu^{1},\mu^{2}\colon\widetilde{\mathop{\mathrm{Ham}}\nolimits}(M,\omega)\to\mathbb{R} when (M,ω)(M,\omega) is the 11 points blow up of P2\mathbb{C}P^{2} with some toric Fano symplectic form. The restrictions of μ1,μ2\mu_{1},\mu_{2} to π1(Ham(M,ω))\pi_{1}\left(\mathop{\mathrm{Ham}}\nolimits(M,\omega)\right) are linear independent. Hence, Corollary 1.2 implies the dimension of Hgrp2(Ham(M,ω);)H_{\mathop{\mathrm{grp}}\nolimits}^{2}\left(\mathop{\mathrm{Ham}}\nolimits(M,\omega);\mathbb{R}\right) is larger than one.

Example 2.6.

Fukaya, Oh, Ohta and Ono [FOOO19, THEOREM 1.10 (3)] constructed quasi-morphisms on Ham~(M,ω)\widetilde{\mathop{\mathrm{Ham}}\nolimits}(M,\omega) when (M,ω)(M,\omega) is the kk points blow up of P2\mathbb{C}P^{2} with some toric symplectic form, where k2k\geq 2. Their quasi-morphisms do not descend to Ham(M,ω)\mathop{\mathrm{Ham}}\nolimits(M,\omega) [FOOO19, THEOREM 30.13]. Hence, we can construct a non-trivial element of Hgrp2(Ham(M,ω);)H_{\mathop{\mathrm{grp}}\nolimits}^{2}\left(\mathop{\mathrm{Ham}}\nolimits(M,\omega);\mathbb{R}\right) from their quasi-morphisms.

Example 2.7.

Givental [Giv90] constructed a homogeneous quasi-morphism μ\mu on Cont~0(P2n+1,ξ)\widetilde{\mathop{\mathrm{Cont}}\nolimits}_{0}(\mathbb{R}P^{2n+1},\xi) that is called the non-linear Maslov index (see also [Sim07], [BZ15]). This quasi-morphism μ\mu does not descend to Cont0(P2n+1,ξ)\mathop{\mathrm{Cont}}\nolimits_{0}(\mathbb{R}P^{2n+1},\xi). Hence we obtain a non-trivial element of Hgrp2(Cont0(P2n+1,ξ);)H_{\mathop{\mathrm{grp}}\nolimits}^{2}(\mathop{\mathrm{Cont}}\nolimits_{0}(\mathbb{R}P^{2n+1},\xi);\mathbb{R}).

In Section 6, we also show the following:

Corollary 2.8.

Let (M,ω)(M,\omega) be a closed symplectic manifold. Then there exists an injective homomorphism

𝔡b:Q(Ham~(M,ω))Hb2(Ham(M,ω);).\mathfrak{d}_{b}\colon Q(\widetilde{\mathop{\mathrm{Ham}}\nolimits}(M,\omega))\to H_{b}^{2}(\mathop{\mathrm{Ham}}\nolimits(M,\omega);\mathbb{R}).

In [She14], for every closed symplectic manifold (M,ω)(M,\omega), Shelukhin constructed a non-trivial homogeneous quasi-morphism μS:Ham~(M,ω)\mu_{S}\colon\widetilde{\mathop{\mathrm{Ham}}\nolimits}(M,\omega)\to\mathbb{R}. Therefore, the following corollary follows from Corollary 2.8.

Corollary 2.9.

For every closed symplectic manifold (M,ω)(M,\omega), the bounded cohomology group Hb2(Ham(M,ω);)H_{b}^{2}(\mathop{\mathrm{Ham}}\nolimits(M,\omega);\mathbb{R}) is non-zero.

Remark 2.10.

Quasi-morphisms in [EP03], [Ost06], [OT09], [McD10], [FOOO19], [Ush11], [Bor13], [Cas17] and [Via18] are constructed via the Hamiltonian Floer theory. As good textbooks on this topic, we refer to [PR14] and [FOOO19].

Disclaimer 2.11.

Throughout the present paper, we tacitly assume that topological group GG is path-connected, locally path-connected, and semilocally simply-connected. In particular, every topological group GG in the present paper admits the universal covering π:G~G\pi\colon\tilde{G}\to G.

2.3. Organization of the paper

Section 3 collects preliminary facts. Section 4 and Section 5 are devoted to show an isomorphism theorem (Theorem 5.4) for an arbitrary group extension. In Section 6, we prove Theorem 1.1 by applying the isomorphism theorem to a topological group and its universal covering. We give applications in Section 7 and Section 8. In Section 7, we prove a Milnor-Wood type inequality and show the non-existence of foliated structures on Hamiltonian fibrations. In Section 8, we consider an extension problem of homomorphisms on π1(G)\pi_{1}(G) to G~\tilde{G}. In Appendix A, we give examples of non-trivial (contact) Hamiltonian fibrations.

3. Preliminaries

3.1. (Bounded) group cohomology and quasi-morphism

We briefly review the (bounded) cohomology of (discrete) group and the quasi-morphism. Let GG be a group and AA an abelian group. Let Cgrpn(G;A)C_{\mathop{\mathrm{grp}}\nolimits}^{n}(G;A) denote the set of nn-cochains c:GnAc\colon G^{n}\to A and δ:Cgrpn(G;A)Cgrpn+1(G;A)\delta\colon C_{\mathop{\mathrm{grp}}\nolimits}^{n}(G;A)\to C_{\mathop{\mathrm{grp}}\nolimits}^{n+1}(G;A) the coboundary map. For cCgrp1(G;A)c\in C_{\mathop{\mathrm{grp}}\nolimits}^{1}(G;A), its coboundary δcCgrp2(G;A)\delta c\in C_{\mathop{\mathrm{grp}}\nolimits}^{2}(G;A) is defined by

δc(g1,g2)=c(g1)+c(g2)c(g1g2)\delta c(g_{1},g_{2})=c(g_{1})+c(g_{2})-c(g_{1}g_{2})

for g1,g2Gg_{1},g_{2}\in G (see [Bro82] for the precise definition of δ\delta). The cohomology Hgrp(G;A)H_{\mathop{\mathrm{grp}}\nolimits}^{\bullet}(G;A) of the cochain complex (Cgrp(G;A),δ)(C_{\mathop{\mathrm{grp}}\nolimits}^{\bullet}(G;A),\delta) is called the (ordinary) group cohomology of GG.

It is known that the cohomology of group GG is canonically isomorphic to the cohomology of classifying space BGδBG^{\delta} of discrete group GδG^{\delta}. This isomorphism is given by an isomorphism of cochains (see, for example, [Dup78]). Under this isomorphism, we identify H(BGδ;A)H^{\bullet}(BG^{\delta};A) with Hgrp(G;A)H_{\mathop{\mathrm{grp}}\nolimits}^{\bullet}(G;A).

Let A=A=\mathbb{Z} or \mathbb{R}. Let Cbn(G;A)C_{b}^{n}(G;A) denote the set of bounded nn-cochains, i.e., cCgrpn(G;A)c\in C_{\mathop{\mathrm{grp}}\nolimits}^{n}(G;A) such that

c=supg1,,gnG|c(g1,,gn)|<+.\|c\|_{\infty}=\sup_{g_{1},\dots,g_{n}\in G}|c(g_{1},\dots,g_{n})|<+\infty.

The cohomology Hb(G,A)H_{b}^{\bullet}(G,A) of the cochain complex (Cb(G;A),δ)(C_{b}^{\bullet}(G;A),\delta) is called the bounded cohomology of GG. The inclusion map from Cb(G;A)C_{b}^{\bullet}(G;A) to Cgrp(G;A)C_{\mathop{\mathrm{grp}}\nolimits}^{\bullet}(G;A) induces the homomorphism cG:Hb(G;A)Hgrp(G;A)c_{G}\colon H_{b}^{\bullet}(G;A)\to H_{\mathop{\mathrm{grp}}\nolimits}^{\bullet}(G;A), which is called the comparison map.

Definition 3.1.

A real-valued function μ\mu on a group GG is called a quasi-morphism if

D(μ)=supg,hG|μ(gh)μ(g)μ(h)|D(\mu)=\sup_{g,h\in G}|\mu(gh)-\mu(g)-\mu(h)|

is finite. The value D(μ)D(\mu) is called the defect of μ\mu. A quasi-morphism μ\mu on GG is called homogeneous if μ(gn)=nμ(g)\mu(g^{n})=n\mu(g) for all gGg\in G and nn\in\mathbb{Z}. Let Q(G)Q(G) denote the real vector space of homogeneous quasi-morphisms on GG.

It is known that any homogeneous quasi-morphism is conjugation-invariant, that is, μQ(G)\mu\in Q(G) satisfies

(3.1) μ(ghg1)=μ(h)\displaystyle\mu(ghg^{-1})=\mu(h)

for any g,hGg,h\in G (see [Cal09, Section 2.2.3] for example).

By definition, the coboundary δμ\delta\mu of a homogeneous quasi-morphism μQ(G)\mu\in Q(G) defines a bounded two-cocycle on GG. This induces the following exact sequence

(3.2) 0Hgrp1(G;)Q(G)𝐝Hb2(G;)cGHgrp2(G;)\displaystyle 0\to H_{\mathop{\mathrm{grp}}\nolimits}^{1}(G;\mathbb{R})\to Q(G)\xrightarrow{\mathbf{d}}H_{b}^{2}(G;\mathbb{R})\xrightarrow{c_{G}}H_{\mathop{\mathrm{grp}}\nolimits}^{2}(G;\mathbb{R})

(see [Cal09, Theorem 2.50] for example).

The following property of homogeneous quasi-morphisms is important in the present paper:

(3.3) μ(fg)=μ(f)+μ(g)=μ(gf) for any f,gG with fg=gf\mu(fg)=\mu(f)+\mu(g)=\mu(gf)\text{ for any }f,g\in G\text{ with }fg=gf

(see [PR14, Proposition 3.1.4] for example).

In the present paper, we often refer to Ostrover’s Calabi quasi-morphism and so we explain here. Let (S2×S2,ωλ)(S^{2}\times S^{2},\omega_{\lambda}) be the symplectic manifold defined in Subsection 2.1. Entov and Polterovich [EP03] constructed a homogeneous quasi-morphism μ1\mu^{1} on Ham~(S2×S2,ω1)\widetilde{\mathop{\mathrm{Ham}}\nolimits}(S^{2}\times S^{2},\omega_{1}) using the Hamiltonian Floer theory. More precisely, μ1\mu^{1} is constructed as the homogenization of Oh-Schwarz’s spectral invariants, which is a Hamiltonian Floer theoretic invariant [Sch00], [Oh05]. (See also Remark 2.10.) They also proved that μ1\mu^{1} descends to Ham(S2×S2,ω1)\mathop{\mathrm{Ham}}\nolimits(S^{2}\times S^{2},\omega_{1}).

After their work, Ostrover [Ost06] applied Entov-Polterovich’s idea to Ham~(S2×S2,ωλ)\widetilde{\mathop{\mathrm{Ham}}\nolimits}(S^{2}\times S^{2},\omega_{\lambda}) for λ>1\lambda>1 and studied a quasi-morphism μλ:Ham~(S2×S2,ωλ)\mu^{\lambda}\colon\widetilde{\mathop{\mathrm{Ham}}\nolimits}(S^{2}\times S^{2},\omega_{\lambda})\to\mathbb{R}. In contrast to Entov-Polterovich’s quasi-morphisms, Ostrover’s Calabi quasi-morphism μλ\mu^{\lambda} does not descend to Ham(S2×S2,ωλ)\mathop{\mathrm{Ham}}\nolimits(S^{2}\times S^{2},\omega_{\lambda}).

Proposition 3.2 ([Ost06]).

For λ>1\lambda>1, there exists g~π1(Ham(S2×S2,ωλ))\tilde{g}\in\pi_{1}(\mathop{\mathrm{Ham}}\nolimits(S^{2}\times S^{2},\omega_{\lambda})) such that μ(g~)0\mu(\tilde{g})\neq 0. In particular, μλ\mu^{\lambda} does not descend to Ham(S2×S2,ωλ)\mathop{\mathrm{Ham}}\nolimits(S^{2}\times S^{2},\omega_{\lambda}).

3.2. Characteristic classes

For a fibration, the primary obstruction class is defined as an obstruction to the construction of a cross-section. We briefly recall the definition of the obstruction class via the Serre spectral sequence (see [Whi78] for details). Let FEBF\to E\to B be a fibration. For simplicity, we suppose the following; the base space BB is one-connected, the fiber FF is path-connected, and the fundamental group π1(F)\pi_{1}(F) is abelian. Let (Erp,q,drp,q)(E_{r}^{p,q},d_{r}^{p,q}) be the Serre spectral sequence with coefficients in π1(F)\pi_{1}(F). Since BB is one-connected, any local coefficient system on BB is simple, and therefore we have

E2p,qHp(B;Hq(F;π1(F))).E_{2}^{p,q}\cong H^{p}(B;H^{q}(F;\pi_{1}(F))).

Hence we obtain E22,0H2(B;π1(F))E_{2}^{2,0}\cong H^{2}(B;\pi_{1}(F)) and E20,1H1(F;π1(F))E_{2}^{0,1}\cong H^{1}(F;\pi_{1}(F)). Since the cohomology group H1(F;π1(F))H^{1}(F;\pi_{1}(F)) is isomorphic to Hom(π1(F);π1(F))\mathop{\mathrm{Hom}}\nolimits(\pi_{1}(F);\pi_{1}(F)), the derivation map d20,1:E20,1E22,0d_{2}^{0,1}\colon E_{2}^{0,1}\to E_{2}^{2,0} defines a map

d20,1:Hom(π1(F),π1(F))H2(B;π1(F)).d_{2}^{0,1}\colon\mathop{\mathrm{Hom}}\nolimits(\pi_{1}(F),\pi_{1}(F))\to H^{2}(B;\pi_{1}(F)).

Here we abuse the symbol d20,1d_{2}^{0,1}.

We are now ready to state the definition of the primary obstruction class of fibrations.

Definition 3.3.

Let FEBF\to E\to B be a fibration such that BB is one-connected, FF is path-connected, and π1(F)\pi_{1}(F) is abelian. Let (Erp,q,drp,q)(E_{r}^{p,q},d_{r}^{p,q}) be the Serre spectral sequence of the fibration. The cohomology class 𝔬(E)=d20,1(idπ1(F))H2(B;π1(F))\mathfrak{o}(E)=-d_{2}^{0,1}(\mathop{\mathrm{id}}\nolimits_{\pi_{1}(F)})\in H^{2}(B;\pi_{1}(F)) is called the primary obstruction class of EE, where idπ1(F)Hom(π1(F),π1(F))\mathop{\mathrm{id}}\nolimits_{\pi_{1}(F)}\in\mathop{\mathrm{Hom}}\nolimits(\pi_{1}(F),\pi_{1}(F)) is the identity homomorphism.

Remark 3.4.

It is known that the above definition is equivalent to the classical definition of the obstruction class to the construction of a cross-section (see, for example, [Whi78, (6.10) Corollary in Chapter VI and (7.9*) Theorem in Chapter XIII]).

By the naturality of the spectral sequence, the primary obstruction class is a characteristic class. Its universal element 𝔬\mathfrak{o} is given as the primary obstruction class of the principal universal bundle GEGBGG\to EG\to BG. Note that the classifying space BGBG is one-connected and π1(G)\pi_{1}(G) is abelian.

Remark 3.5.

The class 𝔬\mathfrak{o} is also obtained as follows. By taking classifying spaces of the central extension 0π1(G)G~G10\to\pi_{1}(G)\to\tilde{G}\to G\to 1, we obtain the following fibration

(3.4) Bπ1(G)BG~BG.\displaystyle B\pi_{1}(G)\to B\tilde{G}\to BG.

Note that the fundamental group of Bπ1(G)B\pi_{1}(G) is isomorphic to π1(G)\pi_{1}(G) and this is abelian. Then, the primary obstruction class of fibration (3.4) is the class 𝔬H2(BG;π1(G))\mathfrak{o}\in H^{2}(BG;\pi_{1}(G)).

Let f:π1(G)f\colon\pi_{1}(G)\to\mathbb{R} be a homomorphism and

f:H(;π1(G))H(;)f_{*}\colon H^{\bullet}(-;\pi_{1}(G))\to H^{\bullet}(-;\mathbb{R})

denote the change of coefficients homomorphism. Let (Erp,q,drp,q)(E_{r}^{p,q},d_{r}^{p,q}) be the Serre spectral sequence of (3.4) with coefficients in \mathbb{R}. Since E20,1H1(Bπ1(G);)Hom(π1(G);)E_{2}^{0,1}\cong H^{1}(B\pi_{1}(G);\mathbb{R})\cong\mathop{\mathrm{Hom}}\nolimits(\pi_{1}(G);\mathbb{R}) and E22,0H2(BG;)E_{2}^{2,0}\cong H^{2}(BG;\mathbb{R}), the derivation d20,1:E20,1E22,0d_{2}^{0,1}\colon E_{2}^{0,1}\to E_{2}^{2,0} defines a homomorphism

d20,1:Hom(π1(G),)H2(BG;).d_{2}^{0,1}\colon\mathop{\mathrm{Hom}}\nolimits(\pi_{1}(G),\mathbb{R})\to H^{2}(BG;\mathbb{R}).
Proposition 3.6.

Let (Erp,q,drp,q)(E_{r}^{p,q},d_{r}^{p,q}) be the Serre spectral sequence of (3.4)(\ref{seq:classifying_spaces_univ_cover_top}) with coefficients in \mathbb{R}. For a homomorphism f:π1(G)f\colon\pi_{1}(G)\to\mathbb{R}, the equality

d20,1(f)=f𝔬H2(BG;)-d_{2}^{0,1}(f)=f_{*}\mathfrak{o}\in H^{2}(BG;\mathbb{R})

holds.

Proof.

Let (Erp,q,drp,q)(E_{r}^{{}^{\prime}p,q},d_{r}^{{}^{\prime}p,q}) be the Serre spectral sequence of (3.4) with coefficients in π1(G)\pi_{1}(G). Then the equality d20,1(idπ1(G))=𝔬-d_{2}^{{}^{\prime}0,1}(\mathop{\mathrm{id}}\nolimits_{\pi_{1}(G)})=\mathfrak{o} holds. Since the derivation maps in the Serre spectral sequence is compatible with the change of coefficients homomorphisms, we have the following commutative diagram

Hom(π1(G),π1(G))E20,1\textstyle{\mathop{\mathrm{Hom}}\nolimits(\pi_{1}(G),\pi_{1}(G))\cong E_{2}^{{}^{\prime}0,1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}d20,1\scriptstyle{d_{2}^{{}^{\prime}0,1}}f\scriptstyle{f_{*}}E22,0H2(BG;π1(G))\textstyle{E_{2}^{{}^{\prime}2,0}\cong H^{2}(BG;\pi_{1}(G))\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f\scriptstyle{f_{*}}Hom(π1(G),)E20,1\textstyle{\mathop{\mathrm{Hom}}\nolimits(\pi_{1}(G),\mathbb{R})\cong E_{2}^{0,1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}d20,1\scriptstyle{d_{2}^{0,1}}E22,0H2(BG;).\textstyle{E_{2}^{2,0}\cong H^{2}(BG;\mathbb{R}).}

Since f=f(idπ1(G))f=f_{*}(\mathop{\mathrm{id}}\nolimits_{\pi_{1}(G)}), we obtain

d20,1(f)=d20,1(f(idπ1(G)))=f(d20,1(idπ1(G)))=f𝔬-d_{2}^{0,1}(f)=-d_{2}^{0,1}(f_{*}(\mathop{\mathrm{id}}\nolimits_{\pi_{1}(G)}))=f_{*}(-d_{2}^{{}^{\prime}0,1}(\mathop{\mathrm{id}}\nolimits_{\pi_{1}(G)}))=f_{*}\mathfrak{o}

and the proposition follows. ∎

Remark 3.7.

Let (Erp,q,drp,q)(E_{r}^{p,q},d_{r}^{p,q}) be the Serre spectral sequence of (3.4) with coefficients in \mathbb{R}. Then, the map d20,1d_{2}^{0,1} is an isomorphism. Indeed, the E2E_{2}-page of the spectral sequence induces an exact sequence

0H1(BG;)H1(\displaystyle 0\to H^{1}(BG;\mathbb{R})\to H^{1}( BG~;)H1(Bπ1(G);)\displaystyle B\tilde{G};\mathbb{R})\to H^{1}(B\pi_{1}(G);\mathbb{R})
d20,1H2(BG;)H2(BG~;).\displaystyle\xrightarrow{d_{2}^{0,1}}H^{2}(BG;\mathbb{R})\to H^{2}(B\tilde{G};\mathbb{R}).

Since G~\tilde{G} is one-connected, the classifying space BG~B\tilde{G} is two-connected. Hence the cohomology groups H1(BG~;)H^{1}(B\tilde{G};\mathbb{R}) and H2(BG~;)H^{2}(B\tilde{G};\mathbb{R}) are trivial, and this implies that the derivation map d20,1d_{2}^{0,1} is an isomorphism. In particular, the class f𝔬=d20,1(f)f_{*}\mathfrak{o}=-d_{2}^{0,1}(f) is non-zero if and only if the homomorphism ff is non-zero.

4. Construction of group cohomology classes

Let us consider an exact sequence

(4.1) 1K𝑖Γ𝜋G1\displaystyle 1\to K\xrightarrow{i}\Gamma\xrightarrow{\pi}G\to 1

of discrete groups.

Definition 4.1.

A subspace 𝒞(Γ)\mathcal{C}(\Gamma) of C1(Γ;A)C^{1}(\Gamma;A) is defined by

𝒞(Γ)={F\displaystyle\mathcal{C}(\Gamma)=\{F\in Cgrp1(Γ;A)\displaystyle C_{\mathop{\mathrm{grp}}\nolimits}^{1}(\Gamma;A)
(4.2) F(kγ)=F(γk)=F(γ)+F(k) for any γΓ,kK}.\displaystyle\mid F(k\gamma)=F(\gamma k)=F(\gamma)+F(k)\text{ for any }\gamma\in\Gamma,k\in K\}.

We define a map 𝔇:𝒞(Γ)Cgrp2(G;A)\mathfrak{D}\colon\mathcal{C}(\Gamma)\to C_{\mathop{\mathrm{grp}}\nolimits}^{2}(G;A) by setting

𝔇(F)(g1,g2)=F(γ2)F(γ1γ2)+F(γ1),\mathfrak{D}(F)(g_{1},g_{2})=F(\gamma_{2})-F(\gamma_{1}\gamma_{2})+F(\gamma_{1}),

where γj\gamma_{j} is an element of Γ\Gamma satisfying π(γj)=gj\pi(\gamma_{j})=g_{j}.

Lemma 4.2.

The map 𝔇:𝒞(Γ)Cgrp2(G;A)\mathfrak{D}\colon\mathcal{C}(\Gamma)\to C_{\mathop{\mathrm{grp}}\nolimits}^{2}(G;A) is well-defined.

Proof.

Let γj\gamma_{j}^{\prime} be another element of Γ\Gamma satisfying π(γj)=gj\pi(\gamma_{j}^{\prime})=g_{j}. Then there exist k1,k2Kk_{1},k_{2}\in K satisfying γ1=k1γ1\gamma_{1}^{\prime}=k_{1}\gamma_{1} and γ2=γ2k2\gamma_{2}^{\prime}=\gamma_{2}k_{2}. By the definition of 𝒞(Γ)\mathcal{C}(\Gamma), we have

F(γ2)F(γ1γ2)+F(γ1)\displaystyle F(\gamma_{2}^{\prime})-F(\gamma_{1}^{\prime}\gamma_{2}^{\prime})+F(\gamma_{1}^{\prime})
=F(γ2k2)F(k1γ1γ2k2)+F(k1γ1)\displaystyle=F(\gamma_{2}k_{2})-F(k_{1}\gamma_{1}\gamma_{2}k_{2})+F(k_{1}\gamma_{1})
=(F(γ2)+F(k2))(F(k1)+F(γ1γ2)+F(k2))+(F(k1)+F(γ1))\displaystyle=(F(\gamma_{2})+F(k_{2}))-(F(k_{1})+F(\gamma_{1}\gamma_{2})+F(k_{2}))+(F(k_{1})+F(\gamma_{1}))
=F(γ2)F(γ1γ2)+F(γ1).\displaystyle=F(\gamma_{2})-F(\gamma_{1}\gamma_{2})+F(\gamma_{1}).

This implies the well-definedness of the map 𝔇\mathfrak{D}. ∎

Lemma 4.3.

For any F𝒞(Γ)F\in\mathcal{C}(\Gamma), the cochain 𝔇(F)\mathfrak{D}(F) is a cocycle.

Proof.

Since π𝔇(F)=δF\pi^{*}\mathfrak{D}(F)=-\delta F by the definition of 𝔇(f)\mathfrak{D}(f), we have

π(δ𝔇(F))=δδF=0.\pi^{*}(\delta\mathfrak{D}(F))=-\delta\delta F=0.

By the surjectivity of π:ΓG\pi\colon\Gamma\to G, we have δ𝔇(F)=0\delta\mathfrak{D}(F)=0. ∎

Definition 4.4.

A homomorphism 𝔡:𝒞(Γ)Hgrp2(G;A)\mathfrak{d}\colon\mathcal{C}(\Gamma)\to H_{\mathop{\mathrm{grp}}\nolimits}^{2}(G;A) is defined by

𝔡(F)=[𝔇(F)]Hgrp2(G;A).\mathfrak{d}(F)=[\mathfrak{D}(F)]\in H_{\mathop{\mathrm{grp}}\nolimits}^{2}(G;A).

For an element FF of 𝒞(Γ)\mathcal{C}(\Gamma), the restriction F|K=iFF|_{K}=i^{*}F to KK is a homomorphism. Moreover, F|KF|_{K} is Γ\Gamma-invariant since

F(γ1kγ)=F(γγ1kγ)F(γ)=F(kγ)F(γ)=F(k).F(\gamma^{-1}k\gamma)=F(\gamma\cdot\gamma^{-1}k\gamma)-F(\gamma)=F(k\gamma)-F(\gamma)=F(k).

Let Hgrp1(K;A)ΓH_{\mathop{\mathrm{grp}}\nolimits}^{1}(K;A)^{\Gamma} denote the space of Γ\Gamma-invariant homomorphisms from KK to AA. Then the restriction to KK defines a homomorphism i:𝒞(Γ)Hgrp1(K;A)Γi^{*}\colon\mathcal{C}(\Gamma)\to H_{\mathop{\mathrm{grp}}\nolimits}^{1}(K;A)^{\Gamma}.

Lemma 4.5.

The homomorphism i:𝒞(Γ)Hgrp1(K;A)Γi^{*}\colon\mathcal{C}(\Gamma)\to H_{\mathop{\mathrm{grp}}\nolimits}^{1}(K;A)^{\Gamma} is surjective.

Proof.

Let s:GΓs\colon G\to\Gamma be a section of p:ΓGp\colon\Gamma\to G satisfying s(1G)=1Γs(1_{G})=1_{\Gamma}, where 1GG1_{G}\in G and 1ΓΓ1_{\Gamma}\in\Gamma are the unit elements of GG and Γ\Gamma, respectively. Since γs(π(γ))1\gamma\cdot s(\pi(\gamma))^{-1} is in Ker(π:ΓG)\mathrm{Ker}(\pi\colon\Gamma\to G), we regard γs(π(γ))1\gamma\cdot s(\pi(\gamma))^{-1} as an element of KK under the injection i:KΓi\colon K\to\Gamma. For an element ff of Hgrp1(K;A)ΓH_{\mathop{\mathrm{grp}}\nolimits}^{1}(K;A)^{\Gamma}, define fs:ΓAf_{s}\colon\Gamma\to A by

fs(γ)=f(γs(π(γ))1).f_{s}(\gamma)=f(\gamma\cdot s(\pi(\gamma))^{-1}).

Note that the restriction of fsf_{s} to KK is equal to ff. Moreover, the equalities

fs(kγ)\displaystyle f_{s}(k\gamma) =f(kγs(π(kγ))1)=f(kγs(π(γ))1)\displaystyle=f(k\gamma\cdot s(\pi(k\gamma))^{-1})=f(k\gamma\cdot s(\pi(\gamma))^{-1})
=fs(k)+fs(γs(π(kγ))1)=fs(k)+fs(γ)\displaystyle=f_{s}(k)+f_{s}(\gamma\cdot s(\pi(k\gamma))^{-1})=f_{s}(k)+f_{s}(\gamma)

and

fs(γk)\displaystyle f_{s}(\gamma k) =f(γks(π(γk))1)=f(γks(π(γ))1)\displaystyle=f(\gamma k\cdot s(\pi(\gamma k))^{-1})=f(\gamma k\cdot s(\pi(\gamma))^{-1})
=f(γkγ1)+fs(γs(π(kγ))1)\displaystyle=f(\gamma k\gamma^{-1})+f_{s}(\gamma\cdot s(\pi(k\gamma))^{-1})
=f(k)+fs(γs(π(kγ))1)\displaystyle=f(k)+f_{s}(\gamma\cdot s(\pi(k\gamma))^{-1})
=fs(k)+fs(γs(π(kγ))1)=fs(k)+fs(γ)\displaystyle=f_{s}(k)+f_{s}(\gamma\cdot s(\pi(k\gamma))^{-1})=f_{s}(k)+f_{s}(\gamma)

hold, where we use the Γ\Gamma-invariance of ff in the second equalities. Hence fsf_{s} is an element of 𝒞(Γ)\mathcal{C}(\Gamma) and the surjectivity follows. ∎

For sequence (4.1), there is an exact sequence

0Hgrp1(G;)πHgrp1(\displaystyle 0\to H_{\mathop{\mathrm{grp}}\nolimits}^{1}(G;\mathbb{R})\xrightarrow{\pi^{*}}H_{\mathop{\mathrm{grp}}\nolimits}^{1}( Γ;)iHgrp1(K;)Γ\displaystyle\Gamma;\mathbb{R})\xrightarrow{i^{*}}H_{\mathop{\mathrm{grp}}\nolimits}^{1}(K;\mathbb{R})^{\Gamma}
(4.3) 𝜏Hgrp2(G;)πHgrp2(Γ;)\displaystyle\xrightarrow{\tau}H_{\mathop{\mathrm{grp}}\nolimits}^{2}(G;\mathbb{R})\xrightarrow{\pi^{*}}H_{\mathop{\mathrm{grp}}\nolimits}^{2}(\Gamma;\mathbb{R})

called the five-term exact sequence. This five-term exact sequence is obtained by the Hochschild-Serre spectral sequence (Erp,q,drp,q)(E_{r}^{p,q},d_{r}^{p,q}) of (4.1), and the map τ\tau is the derivation d20,1:E20,1=Hgrp1(K;)ΓE22,0=Hgrp2(G;)d_{2}^{0,1}\colon E_{2}^{0,1}=H_{\mathop{\mathrm{grp}}\nolimits}^{1}(K;\mathbb{R})^{\Gamma}\to E_{2}^{2,0}=H_{\mathop{\mathrm{grp}}\nolimits}^{2}(G;\mathbb{R}).

Lemma 4.6.

The diagram

𝒞(Γ)\textstyle{\mathcal{C}(\Gamma)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝔡\scriptstyle{\mathfrak{d}}i\scriptstyle{i^{*}}Hgrp1(K;A)Γ\textstyle{H_{\mathop{\mathrm{grp}}\nolimits}^{1}(K;A)^{\Gamma}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}τ\scriptstyle{\tau}Hgrp2(G;A).\textstyle{H_{\mathop{\mathrm{grp}}\nolimits}^{2}(G;A).}

commutes.

Proof.

By Definition 4.4 and Proposition 4.7 below, the commutativity follows. ∎

Proposition 4.7 ([NSW08, (1.6.6) Proposition]).

For any Γ\Gamma-invariant homomorphism fHgrp1(K;A)Γf\in H_{\mathop{\mathrm{grp}}\nolimits}^{1}(K;A)^{\Gamma}, there exists a one-cochain F:ΓAF\colon\Gamma\to A such that iF=fi^{*}F=f and that δF(γ1,γ2)\delta F(\gamma_{1},\gamma_{2}) depends only on π(γ1)\pi(\gamma_{1}) and π(γ2)\pi(\gamma_{2}), that is, there exists a cocycle cCgrp2(G;A)c\in C_{\mathop{\mathrm{grp}}\nolimits}^{2}(G;A) satisfying c(π(γ1),π(γ2))=δF(γ1,γ2)c(\pi(\gamma_{1}),\pi(\gamma_{2}))=\delta F(\gamma_{1},\gamma_{2}) for any γ1,γ2Γ\gamma_{1},\gamma_{2}\in\Gamma. Moreover, the class τ(f)\tau(f) is equal to [c]Hgrp2(G;A)[c]\in H_{\mathop{\mathrm{grp}}\nolimits}^{2}(G;A).

5. A diagram via bounded cohomology and quasi-morphism

From this section, we mainly consider cohomology with coefficients in \mathbb{R}. In this section, we refine the commutative diagram in view of bounded cohomology and homogeneous quasi-morphism. Recall that a cohomology class αHgrp2(G;)\alpha\in H_{\mathop{\mathrm{grp}}\nolimits}^{2}(G;\mathbb{R}) is called bounded if α\alpha is in the image of the comparison map cG:Hb2(G;)Hgrp2(G;)c_{G}\colon H_{b}^{2}(G;\mathbb{R})\to H_{\mathop{\mathrm{grp}}\nolimits}^{2}(G;\mathbb{R}).

Proposition 5.1.

There is a commutative diagram

𝒞(Γ)Q(Γ)\textstyle{\mathcal{C}(\Gamma)\cap Q(\Gamma)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝔡b\scriptstyle{\mathfrak{d}_{b}}𝔡\scriptstyle{\mathfrak{d}}i\scriptstyle{i^{*}}Hb2(G;)\textstyle{H_{b}^{2}(G;\mathbb{R})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}cG\scriptstyle{c_{G}}Hgrp1(K;)G\textstyle{H_{\mathop{\mathrm{grp}}\nolimits}^{1}(K;\mathbb{R})^{G}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}τ\scriptstyle{\tau}Hgrp2(G;).\textstyle{H_{\mathop{\mathrm{grp}}\nolimits}^{2}(G;\mathbb{R}).}
Proof.

Let FF be an element of 𝒞(Γ)Q(Γ)\mathcal{C}(\Gamma)\cap Q(\Gamma). Then, the cocycle 𝔇(F)\mathfrak{D}(F) is bounded since FF is a quasi-morphism and 𝔇(F)(g1,g2)=F(γ2)F(γ1γ2)+F(γ1)\mathfrak{D}(F)(g_{1},g_{2})=F(\gamma_{2})-F(\gamma_{1}\gamma_{2})+F(\gamma_{1}) for any g1,g2Gg_{1},g_{2}\in G and their lifts γ1,γ2Γ\gamma_{1},\gamma_{2}\in\Gamma. Hence the homomorphism 𝔇:𝒞(Γ)Cgrp2(G;)\mathfrak{D}\colon\mathcal{C}(\Gamma)\to C_{\mathop{\mathrm{grp}}\nolimits}^{2}(G;\mathbb{R}) induces a homomorphism

𝔡b:𝒞(Γ)Q(Γ)Hb2(G;).\mathfrak{d}_{b}\colon\mathcal{C}(\Gamma)\cap Q(\Gamma)\to H_{b}^{2}(G;\mathbb{R}).

By the definition of the comparison map cGc_{G}, we have 𝔡=cG𝔡b\mathfrak{d}=c_{G}\circ\mathfrak{d}_{b}. ∎

Remark 5.2.

For a central extension

0A𝑖Γ𝜋G1,0\to A\xrightarrow{i}\Gamma\xrightarrow{\pi}G\to 1,

the space Q(Γ)Q(\Gamma) is contained in 𝒞(Γ)\mathcal{C}(\Gamma). Indeed, by the definition of central extension, we have aγ=γaa\gamma=\gamma a for any aAa\in A and γΓ\gamma\in\Gamma. Hence, by (3.3), any homogeneous quasi-morphism μQ(Γ)\mu\in Q(\Gamma) satisfies

μ(aγ)=μ(γa)=μ(a)+μ(γ).\mu(a\gamma)=\mu(\gamma a)=\mu(a)+\mu(\gamma).

This implies that Q(Γ)𝒞(Γ)Q(\Gamma)\subset\mathcal{C}(\Gamma). Moreover, any homomorphism f:Af\colon A\to\mathbb{R} is Γ\Gamma-invariant since γ1aγ=aγ1γ=a\gamma^{-1}a\gamma=a\gamma^{-1}\gamma=a for any γΓ\gamma\in\Gamma and any aAa\in A. Hence, together with Proposition 5.1, we obtain the following commutative diagram

Q(Γ)\textstyle{Q(\Gamma)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝔡b\scriptstyle{\mathfrak{d}_{b}}𝔡\scriptstyle{\mathfrak{d}}i\scriptstyle{i^{*}}Hb2(G;)\textstyle{H_{b}^{2}(G;\mathbb{R})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}cG\scriptstyle{c_{G}}Hgrp1(A;)\textstyle{H_{\mathop{\mathrm{grp}}\nolimits}^{1}(A;\mathbb{R})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}τ\scriptstyle{\tau}Hgrp2(G;)\textstyle{H_{\mathop{\mathrm{grp}}\nolimits}^{2}(G;\mathbb{R})}

for a central extension 0AΓG10\to A\to\Gamma\to G\to 1.

Lemma 5.3.

Let μ\mu be a homogeneous quasi-morphism on Γ\Gamma whose restriction to KK is a homomorphism. Then μ\mu is contained in 𝒞(Γ)\mathcal{C}(\Gamma).

Proof.

For any γΓ\gamma\in\Gamma, kKk\in K, and nn\in\mathbb{N}, the equalities

(kγ)n=kγkγ1γ2kγ2γn1kγ(n1)γn(k\gamma)^{n}=k\cdot\gamma k\gamma^{-1}\cdot\gamma^{2}k\gamma^{-2}\cdot\cdots\cdot\gamma^{n-1}k\gamma^{-(n-1)}\cdot\gamma^{n}

and

(γk)n=γnγ(n1)kγn1γ2kγ2γ1kγk(\gamma k)^{n}=\gamma^{n}\cdot\gamma^{-(n-1)}k\gamma^{n-1}\cdot\cdots\cdot\gamma^{-2}k\gamma^{2}\cdot\gamma^{-1}k\gamma\cdot k

hold. By (3.1), the restriction μ|K\mu|_{K} is Γ\Gamma-invariant. Hence we have

μ(kγkγ1γ2kγ2γn1kγ(n1))=μ(kn)\mu(k\cdot\gamma k\gamma^{-1}\cdot\gamma^{2}k\gamma^{-2}\cdot\cdots\cdot\gamma^{n-1}k\gamma^{-(n-1)})=\mu(k^{n})

and

μ(γ(n1)kγn1γ2kγ2γ1kγk)=μ(kn).\mu(\gamma^{-(n-1)}k\gamma^{n-1}\cdot\cdots\cdot\gamma^{-2}k\gamma^{2}\cdot\gamma^{-1}k\gamma\cdot k)=\mu(k^{n}).

These equalities imply that

n|μ(kγ)μ(k)μ(γ)|=|μ((kγ)n)μ(kn)μ(γn)|<D(μ)\displaystyle n\cdot|\mu(k\gamma)-\mu(k)-\mu(\gamma)|=|\mu((k\gamma)^{n})-\mu(k^{n})-\mu(\gamma^{n})|<D(\mu)

and

n|μ(γk)μ(γ)μ(k)|=|μ((γk)n)μ(γn)μ(kn)|<D(μ).\displaystyle n\cdot|\mu(\gamma k)-\mu(\gamma)-\mu(k)|=|\mu((\gamma k)^{n})-\mu(\gamma^{n})-\mu(k^{n})|<D(\mu).

Hence we obtain μ(kγ)=μ(k)+μ(γ)\mu(k\gamma)=\mu(k)+\mu(\gamma) and μ(γk)=μ(γ)+μ(k)\mu(\gamma k)=\mu(\gamma)+\mu(k). ∎

Theorem 5.4.

The homomorphism 𝔡:𝒞(Γ)Hgrp2(G;)\mathfrak{d}\colon\mathcal{C}(\Gamma)\to H_{\mathop{\mathrm{grp}}\nolimits}^{2}(G;\mathbb{R}) induces an isomorphism

(𝒞(Γ)Q(Γ))/(Hgrp1(Γ;)+πQ(G))Im(τ)Im(cG).(\mathcal{C}(\Gamma)\cap Q(\Gamma))/(H_{\mathop{\mathrm{grp}}\nolimits}^{1}(\Gamma;\mathbb{R})+\pi^{*}Q(G))\to\mathrm{Im}(\tau)\cap\mathrm{Im}(c_{G}).
Proof.

Let us consider the following commutative diagram whose rows and columns are exact:

H1(K;)Γ\textstyle{H^{1}(K;\mathbb{R})^{\Gamma}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Q(K)Γ\textstyle{Q(K)^{\Gamma}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Hb2(K;)Γ\textstyle{H_{b}^{2}(K;\mathbb{R})^{\Gamma}}H1(Γ;)\textstyle{H^{1}(\Gamma;\mathbb{R})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Q(Γ)\textstyle{Q(\Gamma)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝐝\scriptstyle{\mathbf{d}}Hb2(Γ;)\textstyle{H_{b}^{2}(\Gamma;\mathbb{R})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}H2(Γ;)\textstyle{H^{2}(\Gamma;\mathbb{R})}H1(G;)\textstyle{H^{1}(G;\mathbb{R})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Q(G)\textstyle{Q(G)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}π\scriptstyle{\pi^{*}}Hb2(G;)\textstyle{H_{b}^{2}(G;\mathbb{R})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}π\scriptstyle{\pi^{*}}cG\scriptstyle{c_{G}}H2(G;)\textstyle{H^{2}(G;\mathbb{R})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}π\scriptstyle{\pi^{*}}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}H1(K;)Γ,\textstyle{H^{1}(K;\mathbb{R})^{\Gamma},\ignorespaces\ignorespaces\ignorespaces\ignorespaces}τ\scriptstyle{\tau}

where the exactness of the third column was shown in [Bou95]. By the definition of 𝔡b\mathfrak{d}_{b}, we have π𝔡b(μ)=𝐝(μ)\pi^{*}\mathfrak{d}_{b}(\mu)=\mathbf{d}(\mu) for μ𝒞(Γ)Q(Γ)\mu\in\mathcal{C}(\Gamma)\cap Q(\Gamma). Hence the map π:Hb2(G;)Hb2(Γ;)\pi^{*}\colon H_{b}^{2}(G;\mathbb{R})\to H_{b}^{2}(\Gamma;\mathbb{R}) gives an isomorphism

π:Hb2(G;)𝐝(𝒞(Γ)Q(Γ)).\pi^{*}\colon H_{b}^{2}(G;\mathbb{R})\xrightarrow{\cong}\mathbf{d}(\mathcal{C}(\Gamma)\cap Q(\Gamma)).

Then, in this diagram, the map 𝔡\mathfrak{d} is given as the composite

cG(π)1𝐝:𝒞(Γ)Q(Γ)Hgrp2(G;).c_{G}\circ(\pi^{*})^{-1}\circ\mathbf{d}\colon\mathcal{C}(\Gamma)\cap Q(\Gamma)\to H_{\mathop{\mathrm{grp}}\nolimits}^{2}(G;\mathbb{R}).

The equality Ker(𝔡)=Hgrp1(Γ;)+πQ(G)\mathrm{Ker}(\mathfrak{d})=H_{\mathop{\mathrm{grp}}\nolimits}^{1}(\Gamma;\mathbb{R})+\pi^{*}Q(G) is verified by a diagram chasing argument. By Lemma 5.3 and a diagram chasing argument, the surjectivity of the map 𝔡:𝒞(Γ)Q(Γ)Im(τ)Im(cG)\mathfrak{d}\colon\mathcal{C}(\Gamma)\cap Q(\Gamma)\to\mathrm{Im}(\tau)\cap\mathrm{Im}(c_{G}) also follows. ∎

Remark 5.5.

For a central extension Γ\Gamma of GG, the homomorphism 𝔡:𝒞(Γ)H2(G;)\mathfrak{d}\colon\mathcal{C}(\Gamma)\to H^{2}(G;\mathbb{R}) induces an isomorphism

Q(Γ)/(Hgrp1(Γ;)+πQ(G))Im(τ)Im(cG)Q(\Gamma)/(H_{\mathop{\mathrm{grp}}\nolimits}^{1}(\Gamma;\mathbb{R})+\pi^{*}Q(G))\to\mathrm{Im}(\tau)\cap\mathrm{Im}(c_{G})

since 𝒞(Γ)Q(Γ)=Q(Γ)\mathcal{C}(\Gamma)\cap Q(\Gamma)=Q(\Gamma) (see Remark 5.2).

6. On topological groups

6.1. General topological groups

Let GG be a topological group and π:G~G\pi\colon\tilde{G}\to G the universal covering. Since the exact sequence

(6.1) 0π1(G)𝑖G~𝜋G1\displaystyle 0\to\pi_{1}(G)\xrightarrow{i}\tilde{G}\xrightarrow{\pi}G\to 1

is a central extension ([Pon86, Theorem 15])), we obtain the commutative diagram

(6.6)

by Remark 5.2. Moreover, by Remark 5.5, the homomorphism 𝔡:Q(G~)Hgrp2(G;)\mathfrak{d}\colon Q(\tilde{G})\to H_{\mathop{\mathrm{grp}}\nolimits}^{2}(G;\mathbb{R}) induces an isomorphism

(6.7) Q(G~)/(Hgrp1(G~;)+πQ(G))Im(τ)Im(cG).\displaystyle Q(\tilde{G})/(H_{\mathop{\mathrm{grp}}\nolimits}^{1}(\tilde{G};\mathbb{R})+\pi^{*}Q(G))\to\mathrm{Im}(\tau)\cap\mathrm{Im}(c_{G}).

In this section, we clarify the relation between the class 𝔡(μ)Hgrp2(G;)\mathfrak{d}(\mu)\in H_{\mathop{\mathrm{grp}}\nolimits}^{2}(G;\mathbb{R}) and the primary obstruction class 𝔬H2(BG;π1(G))\mathfrak{o}\in H^{2}(BG;\pi_{1}(G)).

By taking the classifying spaces of (6.1), we obtain a commutative diagram of fibrations

Bπ1(G)\textstyle{B\pi_{1}(G)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}BG~δ\textstyle{B\tilde{G}^{\delta}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}BGδ\textstyle{BG^{\delta}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Bι\scriptstyle{B\iota}Bπ1(G)\textstyle{B\pi_{1}(G)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}BG~\textstyle{B\tilde{G}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}BG.\textstyle{BG.}

In what follows, we regard the pullback Bι:H(BG;)H(BGδ;)B\iota^{*}\colon H^{\bullet}(BG;\mathbb{R})\to H^{\bullet}(BG^{\delta};\mathbb{R}) as a homomorphism

Bι:H(BG;)Hgrp(G;)B\iota^{*}\colon H^{\bullet}(BG;\mathbb{R})\to H_{\mathop{\mathrm{grp}}\nolimits}^{\bullet}(G;\mathbb{R})

under the isomorphism H(BGδ;)Hgrp(G;)H^{\bullet}(BG^{\delta};\mathbb{R})\cong H_{\mathop{\mathrm{grp}}\nolimits}^{\bullet}(G;\mathbb{R}).

Lemma 6.1.

Let (Erp,q,drp,q)(E_{r}^{p,q},d_{r}^{p,q}) be the \mathbb{R}-coefficients cohomology Serre spectral sequence of the fibration Bπ1(G)BG~BGB\pi_{1}(G)\to B\tilde{G}\to BG. Then the equality

Bιd20,1=τ:Hgrp1(π1(G);)Hgrp2(G;)B\iota^{*}\circ d_{2}^{0,1}=\tau\colon H_{\mathop{\mathrm{grp}}\nolimits}^{1}(\pi_{1}(G);\mathbb{R})\to H_{\mathop{\mathrm{grp}}\nolimits}^{2}(G;\mathbb{R})

holds, where we identify E20,1=H1(Bπ1(G);)E_{2}^{0,1}=H^{1}(B\pi_{1}(G);\mathbb{R}) with Hgrp1(π1(G);)H_{\mathop{\mathrm{grp}}\nolimits}^{1}(\pi_{1}(G);\mathbb{R}).

Proof.

Let (Erp,qδ,drp,qδ)({}^{\delta}E_{r}^{p,q},{}^{\delta}d_{r}^{p,q}) be the Hochschild-Serre spectral sequence of central extension (6.1). Note that the spectral sequence (Erp,qδ,drp,qδ)({}^{\delta}E_{r}^{p,q},{}^{\delta}d_{r}^{p,q}) is isomorphic to the Serre spectral sequence of the fibration Bπ1(G)BG~δBGδB\pi_{1}(G)\to B\tilde{G}^{\delta}\to BG^{\delta} (see [Ben91] for example). Since the map τ\tau is equal to the derivation map d20,1δ{}^{\delta}d_{2}^{0,1} by definition, the naturality of the Serre spectral sequence asserts that

Bιd20,1=d20,1δ=τ,B\iota^{*}\circ d_{2}^{0,1}={}^{\delta}d_{2}^{0,1}=\tau,

and the lemma follows. ∎

Corollary 6.2.

Let 𝔬H2(BG;)\mathfrak{o}\in H^{2}(BG;\mathbb{R}) be the primary obstruction class for GG-bundles. Then, for any homogeneous quasi-morphism μQ(G~)\mu\in Q(\tilde{G}), the equality

𝔡(μ)=Bι((μ|π1(G))𝔬)\mathfrak{d}(\mu)=-B\iota^{*}((\mu|_{\pi_{1}(G)})_{*}\mathfrak{o})

holds.

Proof.

Let (Erp,q,drp,q)(E_{r}^{p,q},d_{r}^{p,q}) be the Serre spectral sequence as in Lemma 6.1. Using Proposition 3.6, we obtain

Bιd20,1(μ|π1(G))=Bι((μ|π1(G))𝔬).B\iota^{*}\circ d_{2}^{0,1}(\mu|_{\pi_{1}(G)})=-B\iota^{*}((\mu|_{\pi_{1}(G)})_{*}\mathfrak{o}).

On the other hand, using Lemma 6.1 and commutative diagram (6.6), we obtain

Bιd20,1(μ|π1(G))=τ(μ|π1(G))=τ(i(μ))=𝔡(μ).B\iota^{*}\circ d_{2}^{0,1}(\mu|_{\pi_{1}(G)})=\tau(\mu|_{\pi_{1}(G)})=\tau(i^{*}(\mu))=\mathfrak{d}(\mu).

Hence the equality 𝔡(μ)=Bι((μ|π1(G))𝔬)\mathfrak{d}(\mu)=-B\iota^{*}((\mu|_{\pi_{1}(G)})_{*}\mathfrak{o}) holds. ∎

Corollary 6.3.

If H1(G~;)H^{1}(\tilde{G};\mathbb{R}) is trivial, then the homomorphism

Bι:H2(BG;)Hgrp2(G;)B\iota^{*}\colon H^{2}(BG;\mathbb{R})\to H_{\mathop{\mathrm{grp}}\nolimits}^{2}(G;\mathbb{R})

is injective.

Proof.

By the five-term exact sequence

0Hgrp1(G;)Hgrp1(\displaystyle 0\to H_{\mathop{\mathrm{grp}}\nolimits}^{1}(G;\mathbb{R})\to H_{\mathop{\mathrm{grp}}\nolimits}^{1}( G~;)Hgrp1(π1(G);)\displaystyle\tilde{G};\mathbb{R})\to H_{\mathop{\mathrm{grp}}\nolimits}^{1}(\pi_{1}(G);\mathbb{R})
𝜏Hgrp2(G;)Hgrp2(G~;),\displaystyle\xrightarrow{\tau}H_{\mathop{\mathrm{grp}}\nolimits}^{2}(G;\mathbb{R})\to H_{\mathop{\mathrm{grp}}\nolimits}^{2}(\tilde{G};\mathbb{R}),

the triviality of Hgrp1(G~;)H_{\mathop{\mathrm{grp}}\nolimits}^{1}(\tilde{G};\mathbb{R}) implies the injectivity of the map τ\tau. Hence the map BιB\iota^{*} is injective by Lemma 6.1 and Remark 3.7. ∎

Theorem 6.4.

The homomorphism 𝔡:Q(G~)Hgrp2(G;)\mathfrak{d}\colon Q(\tilde{G})\to H_{\mathop{\mathrm{grp}}\nolimits}^{2}(G;\mathbb{R}) induces an isomorphism

Q(G~)/(Hgrp1(G~;)+πQ(G))Im(Bι)Im(cG).Q(\tilde{G})/(H_{\mathop{\mathrm{grp}}\nolimits}^{1}(\tilde{G};\mathbb{R})+\pi^{*}Q(G))\to\mathrm{Im}(B\iota^{*})\cap\mathrm{Im}(c_{G}).
Proof.

The equality

Im(Bι)=Im(τ)\mathrm{Im}(B\iota^{*})=\mathrm{Im}(\tau)

holds by Lemma 6.1 and Remark 3.7. Hence, isomorphism (6.7) implies the theorem. ∎

The following corollary immediately follows from Theorem 6.4.

Corollary 6.5.

If the first cohomology Hgrp1(G~;)H_{\mathop{\mathrm{grp}}\nolimits}^{1}(\tilde{G};\mathbb{R}) is trivial, then the homomorphism 𝔡\mathfrak{d} induces an isomorphism

Q(G~)/πQ(G)Im(Bι)Im(cG).Q(\tilde{G})/\pi^{*}Q(G)\to\mathrm{Im}(B\iota^{*})\cap\mathrm{Im}(c_{G}).

In particular, if μQ(G~)\mu\in Q(\tilde{G}) does not descend to GG, then the class 𝔡(μ)Hgrp2(G;)\mathfrak{d}(\mu)\in H_{\mathop{\mathrm{grp}}\nolimits}^{2}(G;\mathbb{R}) is non-zero.

By using Corollary 6.2, Corollary 6.3, and Theorem 6.4, we obtain the following corollary.

Corollary 6.6.

Let GG be a topological group and G~\tilde{G} the universal covering of GG.

  1. (1)

    Let μ:G~\mu\colon\tilde{G}\to\mathbb{R} be a homogeneous quasi-morphism which does not descend to GG. Let 𝔬H2(BG;π1(G))\mathfrak{o}\in H^{2}(BG;\pi_{1}(G)) denote the primary obstruction class of GG. Then, the cohomology class

    Bι(((μ|π1(G))𝔬))Hgrp2(G;)B\iota^{*}(((\mu|_{\pi_{1}(G)})_{*}\mathfrak{o})_{\mathbb{R}})\in H_{\mathop{\mathrm{grp}}\nolimits}^{2}(G;\mathbb{R})

    is bounded. Here, (μ|π1(G)):H2(BG;π1(G))H2(BG;)(\mu|_{\pi_{1}(G)})_{*}\colon H^{2}(BG;\pi_{1}(G))\to H^{2}(BG;\mathbb{R}) is the change of coefficients homomorphism induced from μ|π1(G):π1(G)\mu|_{\pi_{1}(G)}\colon\pi_{1}(G)\to\mathbb{R}.

  2. (2)

    Assume that the space Q(G~)Q(\tilde{G}) is trivial. Then, for any non-zero element 𝔠\mathfrak{c} of H2(BG;)H^{2}(BG;\mathbb{R}), a cohomology class

    (Bι)(𝔠)Hgrp2(G;)(B\iota)^{*}(\mathfrak{c})\in H_{\mathop{\mathrm{grp}}\nolimits}^{2}(G;\mathbb{R})

    is unbounded.

6.2. Hamiltonian and contact Hamiltonian diffeomorphism groups

We set Gλ=Ham(S2×S2,ωλ)G_{\lambda}=\mathop{\mathrm{Ham}}\nolimits(S^{2}\times S^{2},\omega_{\lambda}) and H=Cont0(S3,ξ)H=\mathop{\mathrm{Cont}}\nolimits_{0}(S^{3},\xi). For 1<λ21<\lambda\leq 2, it is known that π1(Gλ)×/2×/2\pi_{1}(G_{\lambda})\cong\mathbb{Z}\times\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/2\mathbb{Z} ([Anj02]) and π1(H)\pi_{1}(H)\cong\mathbb{Z} ([Eli92]). By Remark 3.7, we have

H2(BGλ;)H1(Bπ1(Gλ);)Hom(π1(Gλ),)H^{2}(BG_{\lambda};\mathbb{Z})\cong H^{1}(B\pi_{1}(G_{\lambda});\mathbb{Z})\cong\mathop{\mathrm{Hom}}\nolimits(\pi_{1}(G_{\lambda}),\mathbb{Z})\cong\mathbb{Z}

and

H2(BH;)H1(Bπ1(H);)Hom(π1(H),).H^{2}(BH;\mathbb{Z})\cong H^{1}(B\pi_{1}(H);\mathbb{Z})\cong\mathop{\mathrm{Hom}}\nolimits(\pi_{1}(H),\mathbb{Z})\cong\mathbb{Z}.

Let 𝔬H\mathfrak{o}_{H} be the primary obstruction class of HH-bundles, which is a generator of H2(BH;)H^{2}(BH;\mathbb{Z}). The primary obstruction class 𝔬\mathfrak{o} of GλG_{\lambda}-bundles is defined as an identity homomorphism in H2(BGλ;π1(Gλ))Hom(π1(Gλ),π1(Gλ))H^{2}(BG_{\lambda};\pi_{1}(G_{\lambda}))\cong\mathop{\mathrm{Hom}}\nolimits(\pi_{1}(G_{\lambda}),\pi_{1}(G_{\lambda})). Let

(6.8) ϕ:π1(Gλ)×/2×/2\displaystyle\phi\colon\pi_{1}(G_{\lambda})\cong\mathbb{Z}\times\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/2\mathbb{Z}\to\mathbb{Z}

be the homomorphism sending (n,a,b)×/2×/2(n,a,b)\in\mathbb{Z}\times\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/2\mathbb{Z} to nn\in\mathbb{Z}. We set

𝔬Gλ=ϕ𝔬H2(BGλ;).\mathfrak{o}_{G_{\lambda}}=\phi_{*}\mathfrak{o}\in H^{2}(BG_{\lambda};\mathbb{Z}).

Then the class 𝔬Gλ\mathfrak{o}_{G_{\lambda}} is a generator of H2(BGλ;)H^{2}(BG_{\lambda};\mathbb{Z}).

Proof of Corollary 2.1.

First, we prove (1). Recall that the restriction μλ|π1(Gλ)\mu^{\lambda}|_{\pi_{1}(G_{\lambda})} of Ostrover’s Calabi quasi-morphism is a non-trivial homomorphism to \mathbb{R} (Proposition 3.2). Hence there exists a non-zero constant aa such that

ϕ=aμλ|π1(Gλ):π1(Gλ),\phi=a\mu^{\lambda}|_{\pi_{1}(G_{\lambda})}\colon\pi_{1}(G_{\lambda})\to\mathbb{R},

where ϕ\phi is the homomorphism given as (6.8). Therefore we have

Bι(𝔬Gλ)=aBι((μ|π1(Gλ))𝔬).B\iota^{*}(\mathfrak{o}_{G_{\lambda}})_{\mathbb{R}}=a\cdot B\iota^{*}((\mu|_{\pi_{1}(G_{\lambda})})_{*}\mathfrak{o})_{\mathbb{R}}.

Since Ostrover’s Calabi quasi-morphism does not descend to GλG_{\lambda}, the class Bι(𝔬Gλ)B\iota^{*}(\mathfrak{o}_{G_{\lambda}})_{\mathbb{R}} is bounded by Corollary 6.6 (1).

Next, we prove (2). Because the universal covering group H~=Cont~0(S3,ξ)\widetilde{H}=\widetilde{\mathop{\mathrm{Cont}}\nolimits}_{0}(S^{3},\xi) is uniformly perfect (see [FPR18, Corollary 3.6 and Remark 3.7]), we have Q(H~)=0Q(\widetilde{H})=0. By Corollary 6.6 (2), the class Bι(𝔬H)B\iota^{*}(\mathfrak{o}_{H})_{\mathbb{R}} is unbounded. ∎

In Section 7, we provide another proof of Corollary 2.1 (2) by using a Milnor-Wood type inequality (Theorem 7.1) instead of Corollary 6.6 (2) (see Remark 7.4).

We end this section with a proof of Corollary 2.8. To do this, we prepare the following lemma.

Lemma 6.7.

For any topological group GG whose universal covering group G~\tilde{G} satisfies Hgrp1(G~;)=0H_{\mathop{\mathrm{grp}}\nolimits}^{1}(\tilde{G};\mathbb{R})=0, the map

𝔡b:Q(G~)Hb2(G;)\mathfrak{d}_{b}\colon Q(\tilde{G})\to H_{b}^{2}(G;\mathbb{R})

is injective.

Proof.

By exact sequence (3.2) and the assumption Hgrp1(G~;)=0H_{\mathop{\mathrm{grp}}\nolimits}^{1}(\tilde{G};\mathbb{R})=0, the map Q(G~)Hb2(G~;)Q(\tilde{G})\to H_{b}^{2}(\tilde{G};\mathbb{R}) is injective. Hence, for any homogeneous quasi-morphism μQ(G~)\mu\in Q(\tilde{G}), the bounded cohomology class [δμ]Hb2(G~;)[\delta\mu]\in H_{b}^{2}(\tilde{G};\mathbb{R}) is non-zero. Since

π(𝔡b(μ))=[δμ]Hb2(G~;),\pi^{*}(\mathfrak{d}_{b}(\mu))=[\delta\mu]\in H_{b}^{2}(\tilde{G};\mathbb{R}),

where π:Hb2(G;)Hb2(G~;)\pi^{*}\colon H_{b}^{2}(G;\mathbb{R})\to H_{b}^{2}(\tilde{G};\mathbb{R}) is the homomorphism induced by the universal covering π:G~G\pi\colon\tilde{G}\to G, the class 𝔡b(μ)\mathfrak{d}_{b}(\mu) is also non-zero. ∎

Proof of Corollary 2.8.

Because Ham~(M,ω)\widetilde{\mathop{\mathrm{Ham}}\nolimits}(M,\omega) is perfect ([Ban78]), Lemma 6.7 implies Corollary 2.8. ∎

7. Milnor-Wood type inequality and bundles with no flat structures

In this section, we show the existence of bundles over a surface which do not admit foliated (flat) structures. To this end, first we introduce a Milnor-Wood type inequality.

Let cc be a universal characteristic class of foliated principal GG-bundles. Then the characteristic class cc is given as an element in H2(BGδ;)H^{2}(BG^{\delta};\mathbb{R}). For a foliated principal GG-bundle GEBG\to E\to B, the characteristic class c(E)c(E) of EE associated to cc is defined by

c(E)=fcH2(B;),c(E)=f^{*}c\in H^{2}(B;\mathbb{R}),

where f:BBGδf\colon B\to BG^{\delta} is the classifying map of EE.

Let Σh\Sigma_{h} denote a closed oriented surface of genus h1h\geq 1 and GEΣhG\to E\to\Sigma_{h} be a foliated GG-bundle. Let ρ:π1(Σh)G\rho\colon\pi_{1}(\Sigma_{h})\to G be a holonomy homomorphism of the bundle EE. Then the classifying map of the bundle EE is given by

Bρ:ΣhBπ1(Σh)BGδ.B\rho\colon\Sigma_{h}\simeq B\pi_{1}(\Sigma_{h})\to BG^{\delta}.
Theorem 7.1.

Let cc be an element of Im(cG)Im(Bι)\mathrm{Im}(c_{G})\cap\mathrm{Im}(B\iota^{*}) and [Σh]H2(Σh;)[\Sigma_{h}]\in H_{2}(\Sigma_{h};\mathbb{Z}) the fundamental class of Σh\Sigma_{h}. Then, for any foliated principal GG-bundle GEΣhG\to E\to\Sigma_{h}, an inequality

|c(E),[Σh]|D(μ)(4h4)|\langle c(E),[\Sigma_{h}]\rangle|\leq D(\mu)(4h-4)

holds, where μQ(G~)\mu\in Q(\tilde{G}) is a homogeneous quasi-morphism satisfying 𝔡(μ)=c\mathfrak{d}(\mu)=c.

Proof.

By Theorem 6.4, there exists a homogeneous quasi-morphism μQ(G~)\mu\in Q(\tilde{G}) satisfying 𝔡(μ)=[𝔇(μ)]=c\mathfrak{d}(\mu)=[\mathfrak{D}(\mu)]=c. Since π𝔇(μ)=δμ\pi^{*}\mathfrak{D}(\mu)=\delta\mu, we have

𝔇(μ)=δμ=D(μ).\|\mathfrak{D}(\mu)\|_{\infty}=\|\delta\mu\|_{\infty}=D(\mu).

In particular, we have 𝔡(μ)D(μ)\|\mathfrak{d}(\mu)\|_{\infty}\leq D(\mu). Let ρ:π1(Σh)G\rho\colon\pi_{1}(\Sigma_{h})\to G be a holonomy homomorphism associated with the foliated bundle GEΣhG\to E\to\Sigma_{h}. Since the operator norm of ρ:Hb2(G;)Hb2(π1(Σh);)\rho^{*}\colon H_{b}^{2}(G;\mathbb{R})\to H_{b}^{2}(\pi_{1}(\Sigma_{h});\mathbb{R}) is equal or lower than 11, we have

ρ(𝔡(μ))𝔡(μ)D(μ).\|\rho^{*}(\mathfrak{d}(\mu))\|_{\infty}\leq\|\mathfrak{d}(\mu)\|_{\infty}\leq D(\mu).

Note that the bounded cohomology of a topological space XX is isometrically isomorphic to the bounded cohomology of the fundamental group π1(X)\pi_{1}(X) [Gro82]. Hence we have

c(E)=ρ(𝔡(μ))D(μ).\|c(E)\|_{\infty}=\|\rho^{*}(\mathfrak{d}(\mu))\|_{\infty}\leq D(\mu).

Let Σh\|\Sigma_{h}\| denote the simplicial volume of Σh\Sigma_{h}. Then we have |c,[Σh]|cΣh|\langle c,[\Sigma_{h}]\rangle|\leq\|c\|_{\infty}\|\Sigma_{h}\| ([Fri17, Proposition 7.10]). Finally we obtain the inequality

|c(E),[Σh]|cΣhD(μ)(4h4).|\langle c(E),[\Sigma_{h}]\rangle|\leq\|c\|_{\infty}\|\Sigma_{h}\|\leq D(\mu)(4h-4).

Theorem 7.2.

Let GG be a topological group and Σh\Sigma_{h} a closed surface of genus h1h\geq 1. Assume that there exist a homogeneous quasi-morphism μQ(G~)\mu\in Q(\tilde{G}) and γπ1(G)\gamma\in\pi_{1}(G) satisfying μ(γ)0\mu(\gamma)\neq 0. Then, there exist infinitely many isomorphism classes of principal GG-bundles over Σh\Sigma_{h} which do not admit foliated GG-bundle structures.

Proof.

We normalize the homogeneous quasi-morphism μ\mu as μ(γ)=1\mu(\gamma)=1 by a non-zero constant multiple. We set c=𝔡(μ)=Bι((μ|π1(G))𝔬)H2(BGδ;)c=\mathfrak{d}(\mu)=B\iota^{*}((\mu|_{\pi_{1}(G)})_{*}\mathfrak{o})\in H^{2}(BG^{\delta};\mathbb{R}), then cc belongs to Im(cG)Im(Bι)\mathrm{Im}(c_{G})\cap\mathrm{Im}(B\iota^{*}). Assume that a principal GG-bundle EΣhE\to\Sigma_{h} admits a foliated structure. Then, there exists a continuous map fδ:ΣhBGδf_{\delta}\colon\Sigma_{h}\to BG^{\delta} such that f=Bιfδf=B\iota\circ f_{\delta}, where f:ΣhBGf\colon\Sigma_{h}\to BG is the classifying map of EE. Let EδE_{\delta} be a foliated GG-bundle on Σh\Sigma_{h} induced from fδf^{\delta}. Then,

c(Eδ)=fδc=fδ(Bιμ𝔬)=μ(fδBι𝔬)=μ(f𝔬)=μ𝔬(E).c(E_{\delta})=f_{\delta}^{\ast}c=f_{\delta}^{\ast}(B\iota^{\ast}\mu_{\ast}\mathfrak{o})=\mu_{\ast}(f_{\delta}^{\ast}B\iota^{\ast}\mathfrak{o})=\mu_{\ast}(f^{\ast}\mathfrak{o})=\mu_{\ast}\mathfrak{o}(E).

Hence we obtain that

(7.1) (μ|π1(G))𝔬(E),[Σh]=c(Eδ),[Σh]D(μ)(4h4)\langle(\mu|_{\pi_{1}(G)})_{*}\mathfrak{o}(E),[\Sigma_{h}]\rangle=\langle c(E_{\delta}),[\Sigma_{h}]\rangle\leq D(\mu)(4h-4)

by Theorem 7.1.

For each nn\in\mathbb{Z}, we now construct a principal GG-bundle EnE_{n} over Σh\Sigma_{h} whose characteristic number (μ|π1(G))𝔬(En),[Σh]=n\langle(\mu|_{\pi_{1}(G)})_{*}\mathfrak{o}(E_{n}),[\Sigma_{h}]\rangle=n. Let us fix a triangulation 𝒯\mathcal{T} of Σh\Sigma_{h} and take a triangle Δ𝒯\Delta\in\mathcal{T}. For nn\in\mathbb{Z}, we take a loop {gt}0t1\{g_{t}\}_{0\leq t\leq 1} in GG which represents γnπ1(G)\gamma^{n}\in\pi_{1}(G). Let EΣhInt(Δ)E\to\Sigma_{h}\setminus\mathrm{Int}(\Delta) and EΔE^{\prime}\to\Delta be trivial GG-bundles, where Int(Δ)\mathrm{Int}(\Delta) be the interior of Δ\Delta. Then, we obtain a bundle EnE_{n} by gluing the bundles EE and EE^{\prime} along ΔS1\partial\Delta\approx S^{1} with the transition function S1G;tgtS^{1}\to G;t\to g_{t}. Since the class 𝔬(En)\mathfrak{o}(E_{n}) is the primary obstruction to the cross-sections (see Remark 3.4), we have 𝔬(En),[Σh]=γn\langle\mathfrak{o}(E_{n}),[\Sigma_{h}]\rangle=\gamma^{n} and therefore we obtain

(μ|π1(G))𝔬(En),[Σh]=μ(γn)=n.\langle(\mu|_{\pi_{1}(G)})_{*}\mathfrak{o}(E_{n}),[\Sigma_{h}]\rangle=\mu(\gamma^{n})=n.

Hence, by equation (7.1), for a sufficiently large nn, EnE_{n} do not admit foliated GG-bundle structures and we complete the proof. ∎

Remark 7.3.

Any non-trivial principal GG-bundle over the 22-sphere Σ0\Sigma_{0} does not admit foliated structures since the fundamental group of Σ0\Sigma_{0} is trivial. Hence, if the order of π1(G)\pi_{1}(G) is infinite, there exist infinitely many isomorphism classes of principal GG-bundles over Σ0\Sigma_{0} which do not admit foliated structures.

Proof of Corollary 2.2.

Ostrover’s Calabi quasi-morphism satisfies the assumption in Theorem 7.2. Hence Theorem 7.2 implies the corollary. ∎

Remark 7.4.

As an application of Theorem 7.1, one can prove Corollary 2.1 (2) by constructing explicitly a foliated HH-bundle with arbitrary large characteristic number. Indeed, for any N=π1(H)N\in\mathbb{Z}=\pi_{1}(H), there exist 2k2k elements g~1,,g~2k\tilde{g}_{1},\dots,\tilde{g}_{2k} of H~\widetilde{H} such that the equality N=[g~1,g~2][g~2k1,g~2k]N=[\tilde{g}_{1},\tilde{g}_{2}]\dots[\tilde{g}_{2k-1},\tilde{g}_{2k}] since H~\widetilde{H} is uniformly perfect. Note that the number kk does not depend on NN. We set gj=p(g~j)Hg_{j}=p(\tilde{g}_{j})\in H for any jj, where p:H~Hp\colon\widetilde{H}\to H is the universal covering. Let Σk\Sigma_{k} be a closed surface of genus kk and ajπ1(Σk)a_{j}\in\pi_{1}(\Sigma_{k}) the canonical generator with the relation

[a1,a2][a2k1,a2k]=1.[a_{1},a_{2}]\dots[a_{2k-1},a_{2k}]=1.

Let φ:π1(Σk)Cont0(S3,ξ)\varphi\colon\pi_{1}(\Sigma_{k})\to\mathop{\mathrm{Cont}}\nolimits_{0}(S^{3},\xi) be a homomorphism defined by φ(aj)=gj\varphi(a_{j})=g_{j} for any jj. Then, the characteristic number of the foliated HH-bundle with the holonomy homomorphism φ\varphi is equal to NN (this computation of the characteristic number is known as Milnor’s algorithm [Mil58]).

8. Non-extendability of homomorphisms on π1(G)\pi_{1}(G) to homogeneous quasi-morphisms on G~\tilde{G}

In Section 2.1, we use the homogeneous quasi-morphisms on the universal covering G~\tilde{G} to show the (un)boundedness of characteristic classes. In this section, on the contrary, we use the (un)boundedness of characteristic classes to study the extension problem of homomorphism on π1(G)\pi_{1}(G) to G~\tilde{G}. The extension problem of homomorphisms and homogeneous quasi-morphisms have been studied by some researchers (for example, see [Ish14], [Sht16], [KK19], [KKMM20], [KKMM21], [Mar22]).

Let T=S1×S1T=S^{1}\times S^{1} be the two-dimensional torus and Homeo0(T)\mathop{\mathrm{Homeo}}\nolimits_{0}(T) the identity component of the homeomorphism group of TT with respect to the compact-open topology. In [Ham65], it was shown that the fundamental group π1(Homeo0(T))\pi_{1}(\mathop{\mathrm{Homeo}}\nolimits_{0}(T)) is isomorphic to ×\mathbb{Z}\times\mathbb{Z}.

Corollary 8.1.

Any non-trivial homomorphism in Hom(π1(Homeo0(T)),)\mathop{\mathrm{Hom}}\nolimits(\pi_{1}(\mathop{\mathrm{Homeo}}\nolimits_{0}(T)),\mathbb{R}) cannot be extended to Homeo~0(T)\widetilde{\mathop{\mathrm{Homeo}}\nolimits}_{0}(T) as a homogeneous quasi-morphism.

Proof.

It is enough to show that the equality

Q(Homeo~0(T))=πQ(Homeo0(T))Q(\widetilde{\mathop{\mathrm{Homeo}}\nolimits}_{0}(T))=\pi^{*}Q(\mathop{\mathrm{Homeo}}\nolimits_{0}(T))

holds, where π:Homeo~0(T)Homeo0(T)\pi\colon\widetilde{\mathop{\mathrm{Homeo}}\nolimits}_{0}(T)\to\mathop{\mathrm{Homeo}}\nolimits_{0}(T) is the universal covering. Because the universal covering Homeo~0(T)\widetilde{\mathop{\mathrm{Homeo}}\nolimits}_{0}(T) is perfect [KR11], we have

Q(Homeo~0(T))/πQ(Homeo0(T))=Im(cG)Im(Bι)Q(\widetilde{\mathop{\mathrm{Homeo}}\nolimits}_{0}(T))/\pi^{*}Q(\mathop{\mathrm{Homeo}}\nolimits_{0}(T))=\mathrm{Im}(c_{G})\cap\mathrm{Im}(B\iota^{*})

by Corollary 1.2. Because any non-zero classes in Im(Bι)\mathrm{Im}(B\iota^{*}) are unbounded [MR18], we have Q(Homeo~0(T))/πQ(Homeo0(T))=0Q(\widetilde{\mathop{\mathrm{Homeo}}\nolimits}_{0}(T))/\pi^{*}Q(\mathop{\mathrm{Homeo}}\nolimits_{0}(T))=0, and the corollary holds. ∎

Acknowledgments

The authors would like to thank Mitsuaki Kimura, Kevin Li, Yoshifumi Matsuda, Takahiro Matsushita, Masato Mimura, Yoshihiko Mitsumatsu and Kaoru Ono for some comments.

The first author is supported in part by JSPS KAKENHI Grant Number JP18J00765 and 21K13790. The second author is supported by JSPS KAKENHI Grant Number JP21J11199.

Appendix A Examples of (contact) Hamiltonian fibrations

Recall that Gλ=Ham(S2×S2,ωλ)G_{\lambda}=\mathop{\mathrm{Ham}}\nolimits(S^{2}\times S^{2},\omega_{\lambda}), H=Cont0(S3,ξ)H=\mathop{\mathrm{Cont}}\nolimits_{0}(S^{3},\xi), and the cohomology classes

𝔬GλH2(BGλ;) and 𝔬HH2(BH;)\mathfrak{o}_{G_{\lambda}}\in H^{2}(BG_{\lambda};\mathbb{Z})\ \text{ and }\ \mathfrak{o}_{H}\in H^{2}(BH;\mathbb{Z})

are the primary obstruction classes. Our main concern in this paper (e.g., Corollary 2.1) was the classes Bι(𝔬Gλ)H2(BGλδ;)B\iota^{*}(\mathfrak{o}_{G_{\lambda}})_{\mathbb{R}}\in H^{2}(BG_{\lambda}^{\delta};\mathbb{R}) and Bι(𝔬H)H2(BHδ;)B\iota^{*}(\mathfrak{o}_{H})_{\mathbb{R}}\in H^{2}(BH^{\delta};\mathbb{R}). In this appendix, we rather use the classes 𝔬Gλ\mathfrak{o}_{G_{\lambda}} and 𝔬H\mathfrak{o}_{H} to study (not necessarily foliated) Hamiltonian fibrations and contact Hamiltonian fibrations.

We bigin with the following genaral proposition.

Proposition A.1.

Let GG and KK be topological groups and i:GKi\colon G\to K be a continuous homomorphism. Assume that the universal covering G~\tilde{G} is perfect. If there exists a non-trivial element g~\tilde{g} of π1(G)\pi_{1}(G) satisfying i(g~)=0π1(K)i_{*}(\tilde{g})=0\in\pi_{1}(K), then there exists a non-trivial principal GG-bundle EE over Σh\Sigma_{h} such that the bundle EE is trivial as a principal KK-bundle.

Proof.

By the perfectness of G~\tilde{G}, we can take g~jG~\tilde{g}_{j}\in\tilde{G} (j=1,,2hj=1,\ldots,2h) such that g~=[g~1,g~2][g~2h1,g~2h]\tilde{g}=[\tilde{g}_{1},\tilde{g}_{2}]\cdots[\tilde{g}_{2h-1},\tilde{g}_{2h}]. Let us define a homomorphism ρ:π1(Σh)G\rho\colon\pi_{1}(\Sigma_{h})\to G by setting

(A.1) ρ(aj)=π(g~j)\displaystyle\rho(a_{j})=\pi(\tilde{g}_{j})

for any jj, where π:G~G\pi\colon\tilde{G}\to G is the universal covering. Then the principal GG-bundle GEρΣhG\to E_{\rho}\to\Sigma_{h} associated to the holonomy homomorphism ρ\rho is non-trivial (see [Mil58]). We show the principal KK-bundle EiρE_{i\circ\rho} is trivial. By the assumption of g~\tilde{g}, we have

0=i(g~)=[i(g~1),i(g~2)][i(g~2h1),i(g~2h)].0=i_{*}(\tilde{g})=[i_{*}(\tilde{g}_{1}),i_{*}(\tilde{g}_{2})]\cdots[i_{*}(\tilde{g}_{2h-1}),i_{*}(\tilde{g}_{2h})].

Let us define iρ~:π1(Σh)K~\widetilde{i\circ\rho}\colon\pi_{1}(\Sigma_{h})\to\widetilde{K} by

iρ~(aj)=i(g~j),\widetilde{i\circ\rho}(a_{j})=i_{*}(\tilde{g}_{j}),

then this map iρ~\widetilde{i\circ\rho} is a homomorphism satisfying π(iρ~)=iρ\pi\circ(\widetilde{i\circ\rho})=i\circ\rho, where π:K~K\pi\colon\widetilde{K}\to K is the universal covering. Thus the classifying map B(iρ):Bπ1(Σh)BGBKB(i\circ\rho)\colon B\pi_{1}(\Sigma_{h})\to BG\to BK factors into

B(iρ)=BπB(iρ~):ΣhBπ1(Σh)BK~BK.B(i\circ\rho)=B\pi\circ B(\widetilde{i\circ\rho})\colon\Sigma_{h}\simeq B\pi_{1}(\Sigma_{h})\to B\widetilde{K}\to BK.

Since the fundamental group and second homotopy group of the classifying space BK~B\widetilde{K} are trivial, the map

B(iρ~):ΣhBK~B(\widetilde{i\circ\rho})\colon\Sigma_{h}\to B\widetilde{K}

is null-homotopic and so is the classifying map B(iρ)B(i\circ\rho) of the bundle EiρE_{i\circ\rho}. Thus the bundle EiρE_{i\circ\rho} is a trivial bundle. ∎

A.1. Contact Hamiltonian fibrations

Let MM be a manifold with a contact structure ξ\xi. Let Cont0(M,ξ)\mathop{\mathrm{Cont}}\nolimits_{0}(M,\xi) be a contact Hamiltonian diffeomorphism group, that is, the identity component of the group

Cont(M,ξ)={gDiff(M)gξ=ξ}\mathop{\mathrm{Cont}}\nolimits(M,\xi)=\{g\in\mathrm{Diff}(M)\mid g^{*}\xi=\xi\}

with the CC^{\infty}-topology. A fiber bundle MEBM\to E\to B is called a contact Hamiltonian fibration if the structure group is reduced to the contact Hamiltonian diffeomorphism group.

The orientation preserving diffeomorphism group Diff+(S3)\mathrm{Diff}_{+}(S^{3}) of the 33-sphere is homotopy equivalent to SO(4)SO(4) ([Hat83]). Hence the fundamental group π1(Diff+(S3))\pi_{1}(\mathrm{Diff}_{+}(S^{3})) is isomorphic to /2\mathbb{Z}/2\mathbb{Z}. Let ξ\xi be the standard contact structure on the 33-sphere. The fundamental group of Cont0(S3,ξ)\mathop{\mathrm{Cont}}\nolimits_{0}(S^{3},\xi) is isomorphic to \mathbb{Z} ([Eli92], [CS16]). Let i:Cont0(S3,ξ)Diff+(S3)i\colon\mathop{\mathrm{Cont}}\nolimits_{0}(S^{3},\xi)\hookrightarrow\mathrm{Diff}_{+}(S^{3}) be the inclusion, then the induced map

i:π1(Cont0(S3,ξ))π1(Diff+(S3))/2i_{*}\colon\pi_{1}(\mathop{\mathrm{Cont}}\nolimits_{0}(S^{3},\xi))\cong\mathbb{Z}\to\pi_{1}(\mathrm{Diff}_{+}(S^{3}))\cong\mathbb{Z}/2\mathbb{Z}

is surjective ([CS16]). Let g~π1(Cont0(S3,ξ))\tilde{g}\in\pi_{1}(\mathop{\mathrm{Cont}}\nolimits_{0}(S^{3},\xi)) be a non-zero even number in π1(Cont0(S3,ξ))\mathbb{Z}\cong\pi_{1}(\mathop{\mathrm{Cont}}\nolimits_{0}(S^{3},\xi)), then we have i(g~)=0π1(Diff+(S3))/2i_{*}(\tilde{g})=0\in\pi_{1}(\mathrm{Diff}_{+}(S^{3}))\cong\mathbb{Z}/2\mathbb{Z}. By the perfectness of Cont~0(S3,ξ)\widetilde{\mathop{\mathrm{Cont}}\nolimits}_{0}(S^{3},\xi) ([Ryb10]) and Proposition A.1, there is a non-trivial principal Cont0(S3,ξ)\mathop{\mathrm{Cont}}\nolimits_{0}(S^{3},\xi)-bundle over a closed surface that is trivial as a principal Diff+(S3)\mathrm{Diff}_{+}(S^{3})-bundle. In other words, there is a sphere bundle that is non-trivial as a contact Hamiltonian fibration but trivial as an oriented sphere bundle.

For a contact Hamiltonian fibration S3EΣhS^{3}\to E\to\Sigma_{h}, let 𝔬(E)H2(Σh;)\mathfrak{o}(E)\in H^{2}(\Sigma_{h};\mathbb{Z}) be the obstruction class. Let χ(E)\chi(E)\in\mathbb{Z} denote the characteristic number

χ(E)=𝔬(E),[Σh].\chi(E)=\langle\mathfrak{o}(E),[\Sigma_{h}]\rangle.
Proposition A.2.

Let S3EΣhS^{3}\to E\to\Sigma_{h} be a foliated contact Hamiltonian fibration. If the characteristic number χ(E)\chi(E)\in\mathbb{Z} is even, the bundle EE is trivial as an oriented sphere bundle. If χ(E)\chi(E) is odd, the bundle EE is non-trivial as an oriented sphere bundle.

Proof.

Let ρ:π1(Σh)Cont0(S3,ξ)\rho\colon\pi_{1}(\Sigma_{h})\to\mathop{\mathrm{Cont}}\nolimits_{0}(S^{3},\xi) be a holonomy homomorphism of EE. Set gj=ψ(aj)g_{j}=\psi(a_{j}) and take lifts g~jCont~0(S3,ξ)\tilde{g}_{j}\in\widetilde{\mathop{\mathrm{Cont}}\nolimits}_{0}(S^{3},\xi) of gjg_{j}’s, where ajπ1(Σh)a_{j}\in\pi_{1}(\Sigma_{h}) are the generators. Set g~=[g~1,g~2][g~2h1,g~2h]\tilde{g}=[\tilde{g}_{1},\tilde{g}_{2}]\cdots[\tilde{g}_{2h-1},\tilde{g}_{2h}]. Then, by the algorithm ([Mil58]) for computing the characteristic number of foliated bundles, we have

χ(E)=[g~1,g~2][g~2g1,g~2g]=g~π1(Cont0(S3,ξ)).\chi(E)=[\tilde{g}_{1},\tilde{g}_{2}]\cdots[\tilde{g}_{2g-1},\tilde{g}_{2g}]=\tilde{g}\in\mathbb{Z}\cong\pi_{1}(\mathop{\mathrm{Cont}}\nolimits_{0}(S^{3},\xi)).

If χ(E)\chi(E) is even, we have i(g~)=0π1(Diff+(S3))/2i_{*}(\tilde{g})=0\in\pi_{1}(\mathrm{Diff}_{+}(S^{3}))\cong\mathbb{Z}/2\mathbb{Z}. Thus, the bundle EE is trivial as an oriented sphere bundle by the same arguments in Proposition A.1. If χ(E)\chi(E) is odd, we have i(g~)=1π1(Diff+(S3))/2i_{*}(\tilde{g})=1\in\pi_{1}(\mathrm{Diff}_{+}(S^{3}))\cong\mathbb{Z}/2\mathbb{Z}. Since the characteristic number of EE is non-zero, the bundle EE is non-trivial as an oriented sphere bundle. ∎

A.2. Hamiltonian fibrations

Let MM be a manifold with a symplectic form ω\omega. A fiber bundle MEBM\to E\to B is called a Hamiltonian fibration if the structure group is reduced to the Hamiltonian diffeomorphism group Ham(M,ω)\mathop{\mathrm{Ham}}\nolimits(M,\omega).

Let us consider the 44-manifold S2×S2S^{2}\times S^{2}.

By Propositions A.1 and 3.2, we obtain the following:

Proposition A.3.

There exists a positive integer h0h_{0} and a non-trivial Hamiltonian fibration p0:E0Σh0p_{0}\colon E_{0}\to\Sigma_{h_{0}} over a closed surface.

We can also prove that the Hamiltonian fibration p0:E0Σh0p_{0}\colon E_{0}\to\Sigma_{h_{0}} in Proposition A.3 is stably non-trivial in the following sense.

Proposition A.4.

Let (N,ωN)(N,\omega_{N}) be a closed symplectic manifold and p:ϵN=Σh0×NΣh0p\colon\epsilon_{N}=\Sigma_{h_{0}}\times N\to\Sigma_{h_{0}} the trivial NN-bundle. Then, the Whitney sum

E0ϵNΣh0E_{0}\oplus\epsilon_{N}\to\Sigma_{h_{0}}

is non-trivial as a Hamiltonian fibration.

To prove Proposition A.4, we use the following theorem essentially proved by Entov and Polterovich.

Theorem A.5 (Theorem 5.1 of [EP09]).

Let (N,ωN)(N,\omega_{N}) be a closed symplectic manifold. For λ1\lambda\geq 1, let ωλ,N\omega_{\lambda,N} denote the symplectic form pr1ωλ+pr2ωN\mathrm{pr}_{1}^{\ast}\omega_{\lambda}+\mathrm{pr}_{2}^{\ast}\omega_{N} where pr1:S2×S2×NS2×S2\mathrm{pr}_{1}\colon S^{2}\times S^{2}\times N\to S^{2}\times S^{2}, pr2:S2×S2×NN\mathrm{pr}_{2}\colon S^{2}\times S^{2}\times N\to N are the first, second projection, respectively. Then, there exists a function μλ,N:Ham~(S2×S2×N,ωλ,N)\mu^{\lambda,N}\colon\mathop{\widetilde{\mathrm{Ham}}}\nolimits(S^{2}\times S^{2}\times N,\omega_{\lambda,N})\to\mathbb{R} such that

μλ,N(ϕ~N)=μλ(ϕ~)\mu^{\lambda,N}(\tilde{\phi}_{N})=\mu^{\lambda}(\tilde{\phi})

for every ϕ~Ham~(S2×S2,ωλ,N)\tilde{\phi}\in\mathop{\widetilde{\mathrm{Ham}}}\nolimits(S^{2}\times S^{2},\omega_{\lambda,N}).

Here, ϕ~N\tilde{\phi}_{N} is the element of Ham~(S2×S2×N,ωλ,N)\mathop{\widetilde{\mathrm{Ham}}}\nolimits(S^{2}\times S^{2}\times N,\omega_{\lambda,N}) represented by the path {ϕNt}t[0,1]\{\phi_{N}^{t}\}_{t\in[0,1]} defined by ϕNt(x,y)=(ϕt(x),y)\phi_{N}^{t}(x,y)=\left(\phi^{t}(x),y\right) where {ϕt}t[0,1]\{\phi^{t}\}_{t\in[0,1]} is a path in Ham(S2×S2,ωλ)\mathop{\mathrm{Ham}}\nolimits(S^{2}\times S^{2},\omega_{\lambda}) representing ϕ~\tilde{\phi}.

Remark A.6.

The function μλ,N\mu^{\lambda,N} satisfy the conditions of “partial Calabi quasi-morphism” ([Ent14, Theorem 3.2]). However, the authors do not know whether the restriction of μλ,N\mu^{\lambda,N} to the fundamental group is homomorphism or not.

Proof of Proposition A.4.

Let g~={g~t}t[0,1]\tilde{g}=\{\tilde{g}^{t}\}_{t\in[0,1]} be a path in Ham(S2×S2,ωλ)\mathop{\mathrm{Ham}}\nolimits(S^{2}\times S^{2},\omega_{\lambda}) corresponding to the bundle E0E_{0}. Define a loop g~N={g~Nt}t[0,1]\tilde{g}_{N}=\{\tilde{g}_{N}^{t}\}_{t\in[0,1]} in Ham(S2×S2×N,ωλ,N)\mathop{\mathrm{Ham}}\nolimits(S^{2}\times S^{2}\times N,\omega_{\lambda,N}) by g~Nt(x,y)=(gt(x),y)\tilde{g}_{N}^{t}(x,y)=\left(g^{t}(x),y\right). Then, by Theorem A.5 and Proposition 3.2, we have that μλ,N(g~N)=μλ(g~)0\mu^{\lambda,N}(\tilde{g}_{N})=\mu^{\lambda}(\tilde{g})\neq 0, in particular, g~N\tilde{g}_{N} is a non-trivial element of π1(Ham(S2×S2×N,ωλ,N))\pi_{1}\left(\mathop{\mathrm{Ham}}\nolimits(S^{2}\times S^{2}\times N,\omega_{\lambda,N})\right). By Proposition A.1, the proposition follows. ∎

References

  • [Anj02] Sílvia Anjos, Homotopy type of symplectomorphism groups of S2×S2S^{2}\times S^{2}, Geom. Topol. 6 (2002), 195–218.
  • [Ban78] Augustin Banyaga, Sur la structure du groupe des difféomorphismes qui préservent une forme symplectique, Comment. Math. Helv. 53 (1978), no. 2, 174–227.
  • [Ban97] by same author, The structure of classical diffeomorphism groups, Mathematics and its Applications, vol. 400, Kluwer Academic Publishers Group, Dordrecht, 1997.
  • [Ben91] D. J. Benson, Representations and cohomology, Cambridge Studies in Advanced Mathematics, vol. 2, Cambridge University Press, 1991.
  • [BG92] J. Barge and É. Ghys, Cocycles d’Euler et de Maslov, Math. Ann. 294 (1992), no. 2, 235–265.
  • [Bor13] Matthew Strom Borman, Quasi-states, quasi-morphisms, and the moment map, Int. Math. Res. Not. IMRN (2013), no. 11, 2497–2533.
  • [Bou95] Abdessalam Bouarich, Suites exactes en cohomologie bornée réelle des groupes discrets, C. R. Acad. Sci. Paris Sér. I Math. 320 (1995), no. 11, 1355–1359.
  • [Bra15] Michael Brandenbursky, Bi-invariant metrics and quasi-morphisms on groups of Hamiltonian diffeomorphisms of surfaces, Internat. J. Math. 26 (2015), no. 9, 1550066, 29.
  • [Bro82] Kenneth S. Brown, Cohomology of groups, Graduate Texts in Mathematics, vol. 87, Springer-Verlag, New York-Berlin, 1982.
  • [BZ15] Matthew Strom Borman and Frol Zapolsky, Quasimorphisms on contactomorphism groups and contact rigidity, Geom. Topol. 19 (2015), no. 1, 365–411.
  • [Cal04] Danny Calegari, Circular groups, planar groups, and the Euler class, Proceedings of the Casson Fest, Geom. Topol. Monogr., vol. 7, Geom. Topol. Publ., Coventry, 2004, pp. 431–491.
  • [Cal09] by same author, scl, MSJ Memoirs, vol. 20, Mathematical Society of Japan, Tokyo, 2009.
  • [Cas17] Alexander Caviedes Castro, Calabi quasimorphisms for monotone coadjoint orbits, J. Topol. Anal. 9 (2017), no. 4, 689–706.
  • [CMPSC11] Indira Chatterji, Guido Mislin, Christophe Pittet, and Laurent Saloff-Coste, A geometric criterion for the boundedness of characteristic classes, Math. Ann. 351 (2011), no. 3, 541–569.
  • [CS16] Roger Casals and Oldřich Spáčil, Chern-Weil theory and the group of strict contactomorphisms, J. Topol. Anal. 8 (2016), no. 1, 59–87.
  • [Dup78] Johan L. Dupont, Curvature and characteristic classes, Lecture Notes in Mathematics, Vol. 640, Springer-Verlag, Berlin-New York, 1978.
  • [Eli92] Yakov Eliashberg, Contact 33-manifolds twenty years since J. Martinet’s work, Ann. Inst. Fourier (Grenoble) 42 (1992), no. 1-2, 165–192.
  • [Ent14] Michael Entov, Quasi-morphisms and quasi-states in symplectic topology, Proceedings of the International Congress of Mathematicians—Seoul 2014. Vol. II, Kyung Moon Sa, Seoul, 2014, pp. 1147–1171.
  • [EP03] Michael Entov and Leonid Polterovich, Calabi quasimorphism and quantum homology, Int. Math. Res. Not. (2003), no. 30, 1635–1676.
  • [EP09] by same author, Rigid subsets of symplectic manifolds, Compos. Math. 145 (2009), no. 3, 773–826.
  • [FOOO19] Kenji Fukaya, Yong-Geun Oh, Hiroshi Ohta, and Kaoru Ono, Spectral invariants with bulk, quasi-morphisms and Lagrangian Floer theory, Mem. Amer. Math. Soc. 260 (2019), no. 1254, x+266.
  • [FPR18] Maia Fraser, Leonid Polterovich, and Daniel Rosen, On Sandon-type metrics for contactomorphism groups, Ann. Math. Qué. 42 (2018), no. 2, 191–214.
  • [Fri17] Roberto Frigerio, Bounded cohomology of discrete groups, Mathematical Surveys and Monographs, vol. 227, American Mathematical Society, Providence, RI, 2017.
  • [Gei08] Hansjörg Geiges, An introduction to contact topology, Cambridge Studies in Advanced Mathematics, vol. 109, Cambridge University Press, Cambridge, 2008.
  • [GG04] Jean-Marc Gambaudo and Étienne Ghys, Commutators and diffeomorphisms of surfaces, Ergodic Theory Dynam. Systems 24 (2004), no. 5, 1591–1617.
  • [Ghy01] Étienne Ghys, Groups acting on the circle, Enseign. Math. (2) 47 (2001), no. 3-4, 329–407.
  • [Giv90] A. B. Givental, Nonlinear generalization of the Maslov index, Theory of singularities and its applications, Adv. Soviet Math., vol. 1, Amer. Math. Soc., Providence, RI, 1990, pp. 71–103.
  • [GKT11] Światosł aw Gal, Jarek Kędra, and Aleksy Tralle, On the algebraic independence of Hamiltonian characteristic classes, J. Symplectic Geom. 9 (2011), no. 1, 1–9.
  • [Gro82] Michael Gromov, Volume and bounded cohomology, Inst. Hautes Études Sci. Publ. Math. (1982), no. 56, 5–99 (1983).
  • [Ham65] Mary-Elizabeth Hamstrom, The space of homeomorphisms on a torus, Illinois J. Math. 9 (1965), 59–65.
  • [Hat83] Allen E. Hatcher, A proof of the Smale conjecture, Diff(S3)O(4){\rm Diff}(S^{3})\simeq{\rm O}(4), Ann. of Math. (2) 117 (1983), no. 3, 553–607.
  • [Ish14] Tomohiko Ishida, Quasi-morphisms on the group of area-preserving diffeomorphisms of the 2-disk via braid groups, Proc. Amer. Math. Soc. Ser. B 1 (2014), 43–51.
  • [JK02] Tadeusz Januszkiewicz and Jarek Kędra, Characteristic classes of smooth fibrations, 2002.
  • [KK19] Morimichi Kawasaki and Mitsuaki Kimura, G^\hat{G}-invariant quasimorphisms and symplectic geometry of surfaces, to appear in Israel J. Math, arXiv:1911.10855v2 (2019).
  • [KKMM20] Morimichi Kawasaki, Mitsuaki Kimura, Takahiro Matsushita, and Masato Mimura, Bavard’s duality theorem for mixed commutator length, arXiv:2007.02257v3, to appear in Enseign. Math. (2020).
  • [KKMM21] Morimichi Kawasaki, Mitsuaki Kimura, Takahiro Matsushita, and Masato Mimura, Commuting symplectomorphisms on a surface and the flux homomorphism, preprint, arXiv:2102.12161v1 (2021).
  • [KR11] Agnieszka Kowalik and Tomasz Rybicki, On the homeomorphism groups of manifolds and their universal coverings, Cent. Eur. J. Math. 9 (2011), no. 6, 1217–1231.
  • [Man20] Kathryn Mann, Unboundedness of some higher Euler classes, Algebr. Geom. Topol. 20 (2020), no. 3, 1221–1234.
  • [Mar20] Shuhei Maruyama, The dixmier-douady class, the action homomorphism, and group cocycles on the symplectomorphism group, 2020.
  • [Mar22] by same author, Extensions of quasi-morphisms to the symplectomorphism group of the disk, Topology Appl. 305 (2022), Paper No. 107880.
  • [McD04] Dusa McDuff, Lectures on groups of symplectomorphisms, Rend. Circ. Mat. Palermo (2) Suppl. (2004), no. 72, 43–78.
  • [McD10] by same author, Monodromy in Hamiltonian Floer theory, Comment. Math. Helv. 85 (2010), no. 1, 95–133.
  • [Mil58] John Milnor, On the existence of a connection with curvature zero, Comment. Math. Helv. 32 (1958), 215–223.
  • [MN21] Nicolas Monod and Sam Nariman, On the bounded cohomology of certain homeomorphism groups, preprint, arXiv:2111.04365 (2021).
  • [MR18] Kathryn Mann and Christian Rosendal, Large-scale geometry of homeomorphism groups, Ergodic Theory Dynam. Systems 38 (2018), no. 7, 2748–2779.
  • [NSW08] Jürgen Neukirch, Alexander Schmidt, and Kay Wingberg, Cohomology of number fields, second ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 323, Springer-Verlag, Berlin, 2008.
  • [Oh05] Yong-Geun Oh, Construction of spectral invariants of Hamiltonian paths on closed symplectic manifolds, The breadth of symplectic and Poisson geometry, Progr. Math., vol. 232, Birkhäuser Boston, Boston, MA, 2005, pp. 525–570.
  • [Ost06] Yaron Ostrover, Calabi quasi-morphisms for some non-monotone symplectic manifolds, Algebr. Geom. Topol. 6 (2006), 405–434.
  • [OT09] Yaron Ostrover and Ilya Tyomkin, On the quantum homology algebra of toric Fano manifolds, Selecta Math. (N.S.) 15 (2009), no. 1, 121–149.
  • [Pon86] L. S. Pontryagin, Selected works vol. 2, topological groups, Translated from the Russian and with a preface by A. Brown. With additional material translated by P. S. V. Naidu., Gordon and Breach Science Publishers, Inc., New York-London-Paris, 1986.
  • [PR14] Leonid Polterovich and Daniel Rosen, Function theory on symplectic manifolds, CRM Monograph Series, vol. 34, American Mathematical Society, Providence, RI, 2014.
  • [Py06a] Pierre Py, Quasi-morphismes de Calabi et graphe de Reeb sur le tore, C. R. Math. Acad. Sci. Paris 343 (2006), no. 5, 323–328.
  • [Py06b] by same author, Quasi-morphismes et invariant de Calabi, Ann. Sci. École Norm. Sup. (4) 39 (2006), no. 1, 177–195.
  • [Rez97] Alexander G. Reznikov, Characteristic classes in symplectic topology, Selecta Math. (N.S.) 3 (1997), no. 4, 601–642, Appendix D by Ludmil Katzarkov.
  • [Ryb10] Tomasz Rybicki, Commutators of contactomorphisms, Adv. Math. 225 (2010), no. 6, 3291–3326.
  • [Sch00] Matthias Schwarz, On the action spectrum for closed symplectically aspherical manifolds, Pacific J. Math. 193 (2000), no. 2, 419–461.
  • [She14] Egor Shelukhin, The action homomorphism, quasimorphisms and moment maps on the space of compatible almost complex structures, Comment. Math. Helv. 89 (2014), no. 1, 69–123.
  • [Sht16] A. I. Shtern, Extension of pseudocharacters from normal subgroups, III, Proc. Jangjeon Math. Soc. 19 (2016), no. 4, 609–614.
  • [Sim07] Gabi Ben Simon, The nonlinear Maslov index and the Calabi homomorphism, Commun. Contemp. Math. 9 (2007), no. 6, 769–780. MR 2372458
  • [SS20] Yasha Savelyev and Egor Shelukhin, K-theoretic invariants of Hamiltonian fibrations, J. Symplectic Geom. 18 (2020), no. 1, 251–289.
  • [Thu72] William Thurston, Noncobordant foliations of S3S^{3}, Bull. Amer. Math. Soc. 78 (1972), 511–514.
  • [Thu74] by same author, Foliations and groups of diffeomorphisms, Bull. Amer. Math. Soc. 80 (1974), 304–307.
  • [Ush11] Michael Usher, Deformed Hamiltonian Floer theory, capacity estimates and Calabi quasimorphisms, Geom. Topol. 15 (2011), no. 3, 1313–1417.
  • [Via18] Renato Vianna, Continuum families of non-displaceable Lagrangian tori in (P1)2m(\mathbb{C}P^{1})^{2m}, J. Symplectic Geom. 16 (2018), no. 3, 857–883.
  • [Whi78] George W. Whitehead, Elements of homotopy theory, Graduate Texts in Mathematics, vol. 61, Springer-Verlag, New York-Berlin, 1978.
  • [Woo71] John W. Wood, Bundles with totally disconnected structure group, Comment. Math. Helv. 46 (1971), 257–273.