This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

\newaliascnt

proposition@alttheorem \newaliascntlemma@alttheorem \newaliascntcorollary@alttheorem \newaliascntquestion@alttheorem \newaliascntdefinition@alttheorem \newaliascntremark@alttheorem \newaliascntconstruction@alttheorem

On an infinite family of generalized PBIBDs

Daniel Kalmanovich Einstein Institute of Mathematics
The Hebrew University of Jerusalem
[email protected]
(Date: August 13, 2015)
Abstract.

We consider a generalization of the notion of partially balanced incomplete block designs (PBIBDs), by relaxing the requirement that the underlying association scheme be commutative. An infinite family of such generalizations is constructed, one for each prime power qq congruent to 11 modulo 44.

1. Introduction and Preliminaries

Combinatorial designs are fascinating objects which have been studied for centuries, and have origins in diverse areas (cf. the introduction of [5] for a brief historical account). This paper focuses on a particular kind of combinatorial design, originating in the theory of the design of experiments, called partially balanced incomplete block design (PBIBD). Formally introduced by Bose and Nair in [2], a PBIBD is a certain incidence structure together with an underlying symmetric association scheme111There are longstanding terminology disagreements in this area. In this paper association scheme means homogeneous coherent configuration. which provides many regularity properties to the whole structure. We refer to Bailey’s book [1] which gives a statistician-friendly account of association schemes and their use in the design of experiments.

Association schemes arose naturally in algebraic combinatorics, independent of any applications to statistics, in works pertaining to permutation groups and, independently, to the graph isomorphism problem. We refer to Cameron’s survey [4] for a brief overview of the permutation groups aspect, and the celebrated monograph [3] for the many graph theoretic aspects of association schemes.

Natural generalizations of the notion of a PBIBD were suggested and studied over the years. Among these, notions that take a more general underlying structure by relaxing the various requirements in the definition of an association scheme were introduced and studied in [9] and in [10]. In [7], Nair suggested a generalization of PBIBDs to incidence structures with underlying association schemes which are not necessarily commutative.

In this paper we present a construction of an infinite family of such generalizations of PBIBDs, one for each prime power qq congruent to 11 modulo 44. This construction stemmed from the analysis of designs constructed by Nevo in [8].

We assume that the reader is familiar with basics of association scheme theory, but for notational purposes we recall the definitions of an association scheme and a PBIBD\mathrm{PBIBD}.

Definition \thedefinition@alt.

An association scheme with mm associate classes is a finite set XX together with m+1m+1 binary relations RiX2R_{i}\subseteq X^{2}, 0im0\leq i\leq m, such that:

  • R0={(x,x)|xX}R_{0}=\left\{(x,x)\ \middle|\ x\in X\right\},

  • for each relation RiR_{i}, the inverse relation Ri1={(y,x)|(x,y)Ri}R_{i}^{-1}=\left\{(y,x)\ \middle|\ (x,y)\in R_{i}\right\} is also an associate class,

  • i=0dRi=X2\bigcup\limits_{i=0}^{d}R_{i}=X^{2}, and RiRj=R_{i}\cap R_{j}=\emptyset whenever iji\neq j,

  • for any pair (x,z)Rk(x,z)\in R_{k}, the number of elements yXy\in X such that (x,y)Ri(x,y)\in R_{i} and (y,z)Rj(y,z)\in R_{j} depends only on i,j,ki,j,k. This number is denoted by pijkp_{ij}^{k}.

The numbers in the last item above are called the intersection numbers of the association scheme. We will also use the term ii-associates when referring to a pair (x,y)Ri(x,y)\in R_{i}.

A symmetric association scheme is one in which all the binary relations are symmetric.

Definition \thedefinition@alt.

A partially balanced incomplete block design with mm associate classes denoted PBIBD(m)\mathrm{PBIBD}(m) is a block design D=(P,B)D=(P,B) with |P|=v|P|=v points, |B|=b|B|=b blocks, where each block has size kk, each point lies on rr blocks, and such that there is a symmetric association scheme defined on PP where, if (x,y)(x,y) are jj-th associates then they occur together in precisely λj\lambda_{j} blocks for 1jm1\leq j\leq m. The numbers v,b,r,k,λj(1jm)v,b,r,k,\lambda_{j}(1\leq j\leq m) are called the parameters of the PBIBD(m)\mathrm{PBIBD}(m).

Our definition of a generalized PBIBD is verbatim section 1 dropping the word symmetric. It follows that if RjR_{j} is the inverse relation of RiR_{i} then λj=λi\lambda_{j}=\lambda_{i}.

A special feature of our family of GPBIBD\mathrm{GPBIBD}s is that the number of non-vanishing values of the λj\lambda_{j}s is constant: we have just the value 55 when q=5αq=5^{\alpha}, and the values 44 and 11 when qq is not a power of 55. Moreover, there is exactly one class for each non-zero value.

2. The construction

Let q=pαq=p^{\alpha} be a prime power congruent to 11 modulo 44, and consider the vector space V=𝔽q2V={{\mathbbm{F}}_{q}}^{2}, where 𝔽q{\mathbbm{F}}_{q} denotes the finite field with qq elements. Let ω\omega be a generator of 𝔽q×{{\mathbbm{F}}_{q}}^{\times}, and denote i=ωq14i=\omega^{\frac{q-1}{4}}. Our set of points is P=V{0}/iP={\raisebox{1.99997pt}{$V\setminus\{0\}$}\left/\raisebox{-1.99997pt}{$\langle i\rangle$}\right.}, that is, we identify the four vectors π\pi, π-\pi, iπi\pi and iπ-i\pi, for all non-zero vectors πV\pi\in V, to obtain the set PP of q214\frac{q^{2}-1}{4} points. Let G=PSL(2,q)G=\operatorname{PSL}(2,q), the quotient group of the matrix group SL(2,q)={(abcd)|adbc=1}\operatorname{SL}(2,q)=\left\{\scriptsize\begin{pmatrix}a&b\\ c&d\end{pmatrix}\ \middle|\ ad-bc=1\right\} by its center Z(SL(2,q))={(1001),(1001)}Z(\operatorname{SL}(2,q))=\left\{\scriptsize\begin{pmatrix}1&0\\ 0&1\end{pmatrix},\scriptsize\begin{pmatrix}-1&0\\ 0&-1\end{pmatrix}\right\}. Each element of GG is a set of 22 matrices, and consider the natural action of GG on PP via multiplication (of representatives):

(abcd)(xy)=(ax+bycx+dy),\scriptsize\begin{pmatrix}a&b\\ c&d\end{pmatrix}\cdot\scriptsize\begin{pmatrix}x\\ y\end{pmatrix}=\scriptsize\begin{pmatrix}ax+by\\ cx+dy\end{pmatrix},

here (abcd)\scriptsize\begin{pmatrix}a&b\\ c&d\end{pmatrix} is a representative of the element {(abcd),(abcd)}G\left\{\scriptsize\begin{pmatrix}a&b\\ c&d\end{pmatrix},\scriptsize\begin{pmatrix}-a&-b\\ -c&-d\end{pmatrix}\right\}\in G, and (xy)\scriptsize\begin{pmatrix}x\\ y\end{pmatrix} is a representative of the element {(xy),(xy),(ixiy),(ixiy)}P\left\{\scriptsize\begin{pmatrix}x\\ y\end{pmatrix},\scriptsize\begin{pmatrix}-x\\ -y\end{pmatrix},\scriptsize\begin{pmatrix}ix\\ iy\end{pmatrix},\scriptsize\begin{pmatrix}-ix\\ -iy\end{pmatrix}\right\}\in P. Define

T={(10),(01),(11),(1+i1),(i1),(11i)},T=\left\{\scriptsize\begin{pmatrix}1\\ 0\end{pmatrix},\scriptsize\begin{pmatrix}0\\ 1\end{pmatrix},\scriptsize\begin{pmatrix}1\\ 1\end{pmatrix},\scriptsize\begin{pmatrix}1+i\\ 1\end{pmatrix},\scriptsize\begin{pmatrix}i\\ 1\end{pmatrix},\scriptsize\begin{pmatrix}1\\ 1-i\end{pmatrix}\right\},

and denote B=TGB=T^{G}, the orbit of TT under the natural action of GG (the induced action on 66-sets). We have thus defined an incidence structure D=(P,B)D=(P,B) on which GG acts transitively both on the points and on the blocks. In fact, if we analyse the action of GG on pairs of points PP we can give a geometric interpretation to the basic block TT, and thus to all blocks of BB. Consider the points of TT as the vertices of a regular octahedron, with edges as depicted in the following figure:

(01)\binom{0}{1}(1i1)\binom{1}{i-1}(i1)\binom{i}{1}(11)\binom{1}{1}(10)\binom{1}{0}(i+11)\binom{i+1}{1}
Figure 1. The basic octahedron TT

With this description at hand we will freely switch between the terms block and octahedron when we refer to elements of BB. Also, we will use the terms edges and diagonals for pairs of points of DD which form an edge in an octahedron, and pairs of points of DD which form a diagonal in an octahedron (a pair of antipodal points), respectively. Of course, any other pair of points do not lie in a block together.

Lemma \thelemma@alt.
  1. (1)

    GG acts transitively on the edges of DD.

  2. (2)

    GG acts transitively on the diagonals of DD.

Let us denote by 𝒮{\mathcal{S}} the Schurian association scheme of the action of GG on PP. Then we have

Corollary \thecorollary@alt.

The block design D=(P,B)D=(P,B) is a GPBIBD\mathrm{GPBIBD} with underlying association scheme 𝒮{\mathcal{S}}.

Lemma \thelemma@alt.

The stabilizer GπG_{\pi} of a point πP\pi\in P in GG is isomorphic to CpαC2{C_{p}}^{\alpha}\rtimes C_{2}, where q=pαq=p^{\alpha}.

Proof.

Since GG acts transitively on PP it suffices to consider the stabilizer G(10)G_{\binom{1}{0}} of (10)\scriptsize\begin{pmatrix}1\\ 0\end{pmatrix}. So let (abcd)G(10)\scriptsize\begin{pmatrix}a&b\\ c&d\end{pmatrix}\in G_{\binom{1}{0}}, that is

(abcd)(10)=(10).\scriptsize\begin{pmatrix}a&b\\ c&d\end{pmatrix}\cdot\scriptsize\begin{pmatrix}1\\ 0\end{pmatrix}=\scriptsize\begin{pmatrix}1\\ 0\end{pmatrix}.

It follows that a=1a=1 or ii, and c=0c=0, thus

(abcd)=(1b0d)or(ib0d)\scriptsize\begin{pmatrix}a&b\\ c&d\end{pmatrix}=\scriptsize\begin{pmatrix}1&b\\ 0&d\end{pmatrix}\quad\text{or}\quad\scriptsize\begin{pmatrix}i&b\\ 0&d\end{pmatrix}

the determinant =1=1 condition implies that d=1d=1 in the first case, and d=id=-i in the second case, so we have

(abcd)=(1b01)or(ib0i).\scriptsize\begin{pmatrix}a&b\\ c&d\end{pmatrix}=\scriptsize\begin{pmatrix}1&b\\ 0&1\end{pmatrix}\quad\text{or}\quad\scriptsize\begin{pmatrix}i&b\\ 0&-i\end{pmatrix}.

Therefore

G(10)={(ux0u1)|u{1,i},x𝔽q}.G_{\binom{1}{0}}=\left\{\scriptsize\begin{pmatrix}u&x\\ 0&u^{-1}\end{pmatrix}\ \middle|\ u\in\{1,i\},x\in{\mathbbm{F}}_{q}\right\}.

The cases q=5αq=5^{\alpha} and q=pαq=p^{\alpha}, p5p\neq 5 are different in an essential way, so we analyse them separately. The reason for the difference between the case of characteristic 55 and other characteristics is the fact that in the case of characteristic 55, the subgroup {1,1,i,i}\{1,-1,i,-i\} forms the multiplicative group of the prime subfield 𝔽5{\mathbbm{F}}_{5} (and not just a subgroup of the multiplicative group of the field). A manifestation of this fact that will be useful for our purposes later is formulated in the following lemma.

Lemma \thelemma@alt.

1+i=i1+i=-i if and only if q=5αq=5^{\alpha}.

Proof.
1+i=i2i=12i=i2i=21+i=-i\qquad\Longleftrightarrow\qquad 2i=-1\qquad\Longleftrightarrow\qquad 2i=i^{2}\qquad\Longleftrightarrow\qquad i=2

so we have 1=i2=22=4-1=i^{2}=2^{2}=4, that is, 𝔽q{\mathbbm{F}}_{q} is a field of characteristic 55. ∎

The case p5p\neq 5

In this case the stabilizer GTG_{T} of the basic block TT in GG is a group of rotations of the regular octahedron. It is in fact half of the full group of rotations of the regular octahedron. There are two types of rotations of a regular octahedron:

  1. (a)

    rotation about the axis defined by a pair of antipodal points, and

  2. (b)

    rotation about the axis formed by connecting the centers of a pair of opposite faces.

In the full group of rotations of the octahedron, the rotations of type (a) are of order 44, and the rotations of type (b) are of order 33 thus producing a group of order 2424. In our group GTG_{T} we take the square of rotations of type (a) and all rotations of type (b), obtaining a group of order 1212. In this description GT=g,fG_{T}=\langle g,f\rangle where

  • g=(i1+i0i)g=\scriptsize\begin{pmatrix}-i&-1+i\\ 0&i\end{pmatrix} is the 180180^{\circ} rotation around the axis defined by the antipodal points (10)\scriptsize\begin{pmatrix}1\\ 0\end{pmatrix} and (11i)\scriptsize\begin{pmatrix}1\\ 1-i\end{pmatrix}, and

  • f=(i1i1i)f=\scriptsize\begin{pmatrix}i&1\\ i&1-i\end{pmatrix} is the rotation around the axis formed by connecting the centers of the opposite faces {(11),(1+i1),(10)}\left\{\scriptsize\begin{pmatrix}1\\ 1\end{pmatrix},\scriptsize\begin{pmatrix}1+i\\ 1\end{pmatrix},\scriptsize\begin{pmatrix}1\\ 0\end{pmatrix}\right\} and {(01),(11i),(i1)}\left\{\scriptsize\begin{pmatrix}0\\ 1\end{pmatrix},\scriptsize\begin{pmatrix}1\\ 1-i\end{pmatrix},\scriptsize\begin{pmatrix}i\\ 1\end{pmatrix}\right\}.

Lemma \thelemma@alt.

The stabilizer GβG_{\beta} of a block βB\beta\in B in GG is isomorphic to the alternating group A4A_{4}.

Proof.

First, since GG acts transitively on the block set BB it is enough to consider GTG_{T}, the stabilizer of the basic block TT. In fact, we will explicitly write representatives for the elements of GTG_{T}. We will first show that |GT|=12|G_{T}|=12, and then one can verify that

{(1001),(0ii1),(1ii0),(i01ii),(1+i1ii),(1110),(11i1i1),(1ii1i),(i1i1i),(i1+i0i),(0111),(ii11i)}\left\{{\scriptsize\begin{aligned} &\begin{pmatrix}1&0\\ 0&1\\ \end{pmatrix},\begin{pmatrix}0&-i\\ -i&-1\\ \end{pmatrix},\begin{pmatrix}-1&i\\ i&0\\ \end{pmatrix},\begin{pmatrix}-i&0\\ -1-i&i\\ \end{pmatrix},\begin{pmatrix}-1+i&1\\ i&-i\\ \end{pmatrix},\begin{pmatrix}1&-1\\ 1&0\\ \end{pmatrix},\\ &\begin{pmatrix}1&-1-i\\ 1-i&-1\\ \end{pmatrix},\begin{pmatrix}-1-i&i\\ -1&i\\ \end{pmatrix},\begin{pmatrix}i&1\\ i&1-i\\ \end{pmatrix},\begin{pmatrix}-i&-1+i\\ 0&i\\ \end{pmatrix},\begin{pmatrix}0&1\\ -1&1\\ \end{pmatrix},\begin{pmatrix}i&-i\\ 1&-1-i\\ \end{pmatrix}\end{aligned}}\right\}

is a set of 1212 representatives of distinct elements of GTG_{T}. We use the orbit-stabilizer theorem:

|GT|=|GT(10)||(10)GT|.\left|G_{T}\right|=\left|{G_{T}}_{\binom{1}{0}}\right|\cdot\left|\scriptsize\begin{pmatrix}1\\ 0\end{pmatrix}^{G_{T}}\right|.

One can check directly that the elements in the above list leave TT fixed, and that there are elements in that list that take (10)\scriptsize\begin{pmatrix}1\\ 0\end{pmatrix} to each of the points in TT, so |(10)GT|=6\left|\scriptsize\begin{pmatrix}1\\ 0\end{pmatrix}^{G_{T}}\right|=6. To compute GT(10)=GTG(10){G_{T}}_{\binom{1}{0}}=G_{T}\cap G_{\binom{1}{0}} we recall that by section 2

G(10)={(ux0u1)|u{1,i},x𝔽q},G_{\binom{1}{0}}=\left\{\scriptsize\begin{pmatrix}u&x\\ 0&u^{-1}\end{pmatrix}\ \middle|\ u\in\{1,i\},x\in{\mathbbm{F}}_{q}\right\},

now it is enough to show that the only elements in G(10)G_{\binom{1}{0}} that fix TT are (1001)\scriptsize\begin{pmatrix}1&0\\ 0&1\end{pmatrix} and (i1i0i)\scriptsize\begin{pmatrix}i&1-i\\ 0&-i\end{pmatrix}. So let (ux0u1)\scriptsize\begin{pmatrix}u&x\\ 0&u^{-1}\end{pmatrix} be an element that stabilizes TT, since p5p\neq 5 it follows from section 2 that (ux0u1)(01)=(xu1)\scriptsize\begin{pmatrix}u&x\\ 0&u^{-1}\end{pmatrix}\cdot\scriptsize\begin{pmatrix}0\\ 1\end{pmatrix}=\scriptsize\begin{pmatrix}x\\ u^{-1}\end{pmatrix} is either (01)\scriptsize\begin{pmatrix}0\\ 1\end{pmatrix}, (i1)\scriptsize\begin{pmatrix}i\\ 1\end{pmatrix}, (11)\scriptsize\begin{pmatrix}1\\ 1\end{pmatrix} or (1+i1)\scriptsize\begin{pmatrix}1+i\\ 1\end{pmatrix}. Each of the above four cases gives 22 options for (ux0u1)\scriptsize\begin{pmatrix}u&x\\ 0&u^{-1}\end{pmatrix}, and out of these eight options the only elements that indeed fix TT are (1001)\scriptsize\begin{pmatrix}1&0\\ 0&1\end{pmatrix} and (i1i0i)\scriptsize\begin{pmatrix}i&1-i\\ 0&-i\end{pmatrix}, so |GT(10)|=2\left|{G_{T}}_{\binom{1}{0}}\right|=2 and |GT|=26=12\left|G_{T}\right|=2\cdot 6=12. The isomorphism GTA4G_{T}\cong A_{4} can now be deduced by noticing that GTG_{T} has no element of order 66, and the only non-abelian group of order 1212 which has no elements of order 66 is the alternating group A4A_{4}. ∎

Lemma \thelemma@alt.
  1. (a)

    The group GG acts transitively on the edges of DD.

  2. (b)

    Every edge of DD is contained in 44 ocathedra.

Proof.
  1. (a)

    Since GG acts transitively on the octahedra, it suffices to show that GTG_{T} acts transitively on the 1212 edges of TT. This will follow from the orbit-stabilizer theorem once we show that stabilizer GTe{G_{T}}_{e} of the edge e={(10),(01)}e=\left\{\scriptsize\begin{pmatrix}1\\ 0\end{pmatrix},\scriptsize\begin{pmatrix}0\\ 1\end{pmatrix}\right\} (in GTG_{T}) is trivial. So let gGTeg\in{G_{T}}_{e}, first we will show that gg must fix both vertices (10)\scriptsize\begin{pmatrix}1\\ 0\end{pmatrix} and (01)\scriptsize\begin{pmatrix}0\\ 1\end{pmatrix}. Write g=(abcd)g=\scriptsize\begin{pmatrix}a&b\\ c&d\end{pmatrix}, and assume that

    (abcd)(10)=(01)and(abcd)(01)=(10)\scriptsize\begin{pmatrix}a&b\\ c&d\end{pmatrix}\cdot\scriptsize\begin{pmatrix}1\\ 0\end{pmatrix}=\scriptsize\begin{pmatrix}0\\ 1\end{pmatrix}\quad\text{and}\quad\scriptsize\begin{pmatrix}a&b\\ c&d\end{pmatrix}\cdot\scriptsize\begin{pmatrix}0\\ 1\end{pmatrix}=\scriptsize\begin{pmatrix}1\\ 0\end{pmatrix}

    then from the first equality it follows that a=0a=0 and c=1,i,1c=1,i,-1 or i-i, from the second equality if follows that d=0d=0 and b=1,i,1b=1,i,-1 or i-i, and by the determinant =1=1 condition we have

    (abcd)=(0110)or(abcd)=(0ii0).\scriptsize\begin{pmatrix}a&b\\ c&d\end{pmatrix}=\scriptsize\begin{pmatrix}0&-1\\ 1&0\end{pmatrix}\quad\text{or}\quad\scriptsize\begin{pmatrix}a&b\\ c&d\end{pmatrix}=\scriptsize\begin{pmatrix}0&i\\ i&0\end{pmatrix}.

    Both elements above are not in GTG_{T}, thus gg must fix each of the vertices of ee. It follows that gGT(10)g\in{G_{T}}_{\binom{1}{0}}, thus g=(1001)g=\scriptsize\begin{pmatrix}1&0\\ 0&1\end{pmatrix} or g=(i1+i0i)g=\scriptsize\begin{pmatrix}-i&-1+i\\ 0&i\end{pmatrix}, but (i1+i0i)\scriptsize\begin{pmatrix}-i&-1+i\\ 0&i\end{pmatrix} does not fix (01)\scriptsize\begin{pmatrix}0\\ 1\end{pmatrix} so we must have g=(1001)g=\scriptsize\begin{pmatrix}1&0\\ 0&1\end{pmatrix} and so GTe{G_{T}}_{e} is trivial.

  2. (b)

    From the calculation in the proof of (a)(a) it follows that

    Ge=(0110),(0ii0)G_{e}=\left\langle\scriptsize\begin{pmatrix}0&-1\\ 1&0\end{pmatrix},\scriptsize\begin{pmatrix}0&i\\ i&0\end{pmatrix}\right\rangle

    thus |Ge|=4\left|G_{e}\right|=4. Using the orbit-stabilizer theorem we can now compute the total number of edges of DD, that is, the size of the orbit of ee under the action of GG:

    |eG|=|G||Ge|=q(q21)24=q(q21)8.\left|e^{G}\right|=\frac{\left|G\right|}{\left|G_{e}\right|}=\frac{\frac{q(q^{2}-1)}{2}}{4}=\frac{q(q^{2}-1)}{8}.

    Let EE denote the set of edges of DD. Now we apply a standard double-counting argument, we count the size of the set

    S={(ϵ,β)|ϵE,βB,ϵ is an edge of β}S=\left\{(\epsilon,\beta)\ \middle|\ \epsilon\in E,\beta\in B,\epsilon\text{ is an edge of }\beta\right\}

    in two ways:

    • |S|=12|B|\left|S\right|=12\cdot\left|B\right| because every block has 1212 edges, and

    • |S|=|E|x\left|S\right|=\left|E\right|\cdot x, where xx is the number of blocks that contain a given edge.

    Therefore, we have

    x=12|B||E|=12q(q21)24q(q21)8=4.x=\frac{12\cdot\left|B\right|}{\left|E\right|}=\frac{12\cdot\frac{q(q^{2}-1)}{24}}{\frac{q(q^{2}-1)}{8}}=4.

Lemma \thelemma@alt.
  1. (a)

    The group GG acts transitively on the diagonals of DD.

  2. (b)

    Every diagonal of DD is contained in 11 ocathedron.

Proof.
  1. (a)

    As in the previous proofs, since GG acts transitively on the octahedra, it suffices to show that GTG_{T} acts transitively on the 33 diagonals of TT. To see that, it is enough to consider just the rotation ff:

    {(10),(11i)}𝑓{(11),(i1)}𝑓{(1+i1),(01)}.\left\{\scriptsize\begin{pmatrix}1\\ 0\end{pmatrix},\scriptsize\begin{pmatrix}1\\ 1-i\end{pmatrix}\right\}\overset{f}{\mapsto}\left\{\scriptsize\begin{pmatrix}1\\ 1\end{pmatrix},\scriptsize\begin{pmatrix}i\\ 1\end{pmatrix}\right\}\overset{f}{\mapsto}\left\{\scriptsize\begin{pmatrix}1+i\\ 1\end{pmatrix},\scriptsize\begin{pmatrix}0\\ 1\end{pmatrix}\right\}.
  2. (b)

    The following arguments are similar to those given in the proof of The case p5p\neq 5, we will compute the stabilizer GdG_{d} of the diagonal d={(10),(11i)}d=\left\{\scriptsize\begin{pmatrix}1\\ 0\end{pmatrix},\scriptsize\begin{pmatrix}1\\ 1-i\end{pmatrix}\right\} in order to obtain the total number of diagonals in DD via the orbit-stabilizer theorem, and then use a double-counting argument to compute the number of octahedra that contain a given diagonal. So let g=(abcd)Gdg=\scriptsize\begin{pmatrix}a&b\\ c&d\end{pmatrix}\in G_{d}, then we have either

    (I)(abcd)(10)=(10)and(abcd)(11i)=(11i)(I)\quad\scriptsize\begin{pmatrix}a&b\\ c&d\end{pmatrix}\cdot\scriptsize\begin{pmatrix}1\\ 0\end{pmatrix}=\scriptsize\begin{pmatrix}1\\ 0\end{pmatrix}\quad\text{and}\quad\scriptsize\begin{pmatrix}a&b\\ c&d\end{pmatrix}\cdot\scriptsize\begin{pmatrix}1\\ 1-i\end{pmatrix}=\scriptsize\begin{pmatrix}1\\ 1-i\end{pmatrix}

    or

    (II)(abcd)(10)=(11i)and(abcd)(11i)=(10).(II)\quad\scriptsize\begin{pmatrix}a&b\\ c&d\end{pmatrix}\cdot\scriptsize\begin{pmatrix}1\\ 0\end{pmatrix}=\scriptsize\begin{pmatrix}1\\ 1-i\end{pmatrix}\quad\text{and}\quad\scriptsize\begin{pmatrix}a&b\\ c&d\end{pmatrix}\cdot\scriptsize\begin{pmatrix}1\\ 1-i\end{pmatrix}=\scriptsize\begin{pmatrix}1\\ 0\end{pmatrix}.

    In case (I)(I), the first equality implies a=1a=1 or ii, and c=0c=0, thus (abcd)=(1b01)\scriptsize\begin{pmatrix}a&b\\ c&d\end{pmatrix}=\scriptsize\begin{pmatrix}1&b\\ 0&1\end{pmatrix} or (abcd)=(ib0i)\scriptsize\begin{pmatrix}a&b\\ c&d\end{pmatrix}=\scriptsize\begin{pmatrix}i&b\\ 0&-i\end{pmatrix}, plugging this into the second equation we get b=0b=0 in the first case and b=1ib=1-i in the second case, so

    (abcd)=(1001) or (abcd)=(i1i0i).\scriptsize\begin{pmatrix}a&b\\ c&d\end{pmatrix}=\scriptsize\begin{pmatrix}1&0\\ 0&1\end{pmatrix}\text{ or }\scriptsize\begin{pmatrix}a&b\\ c&d\end{pmatrix}=\scriptsize\begin{pmatrix}i&1-i\\ 0&-i\end{pmatrix}.

    In case (II)(II), the first equality implies a=1a=1 or ii, and c=1ic=1-i or 1+i1+i (respectively), thus (abcd)=(1b1id)\scriptsize\begin{pmatrix}a&b\\ c&d\end{pmatrix}=\scriptsize\begin{pmatrix}1&b\\ 1-i&d\end{pmatrix} or (abcd)=(ib1+id)\scriptsize\begin{pmatrix}a&b\\ c&d\end{pmatrix}=\scriptsize\begin{pmatrix}i&b\\ 1+i&d\end{pmatrix}, plugging this into the second equation we get d=1d=-1 in the first case, and d=id=-i in the second, so (abcd)=(1b1i1)\scriptsize\begin{pmatrix}a&b\\ c&d\end{pmatrix}=\scriptsize\begin{pmatrix}1&b\\ 1-i&-1\end{pmatrix} or (abcd)=(ib1+ii)\scriptsize\begin{pmatrix}a&b\\ c&d\end{pmatrix}=\scriptsize\begin{pmatrix}i&b\\ 1+i&-i\end{pmatrix}, now the determinant =1=1 condition determines bb and we get

    (abcd)=(11i1i1) or (abcd)=(i01+ii).\scriptsize\begin{pmatrix}a&b\\ c&d\end{pmatrix}=\scriptsize\begin{pmatrix}1&-1-i\\ 1-i&-1\end{pmatrix}\text{ or }\scriptsize\begin{pmatrix}a&b\\ c&d\end{pmatrix}=\scriptsize\begin{pmatrix}i&0\\ 1+i&-i\end{pmatrix}.

    It is now easy to check that the four representative matrices we found form a group, thus |Gd|=4\left|G_{d}\right|=4. Again, the orbit-stabilizer theorem allows us to compute the total number of diagonals of DD, that is, the size of the orbit of dd under the action of GG:

    |dG|=|G||Gd|=q(q21)24=q(q21)8.\left|d^{G}\right|=\frac{\left|G\right|}{\left|G_{d}\right|}=\frac{\frac{q(q^{2}-1)}{2}}{4}=\frac{q(q^{2}-1)}{8}.

    Let Δ\Delta denote the set of diagonals of DD. Yet again we apply a double-counting argument, we count the size of the set

    S={(δ,β)|δΔ,βB,δ is a diagonal of β}S=\left\{(\delta,\beta)\ \middle|\ \delta\in\Delta,\beta\in B,\delta\text{ is a diagonal of }\beta\right\}

    in two ways:

    • |S|=3|B|\left|S\right|=3\cdot\left|B\right| because every block has 33 diagonals, and

    • |S|=|Δ|x\left|S\right|=\left|\Delta\right|\cdot x, where xx is the number of blocks that contain a given diagonal.

    Therefore, we have

    x=3|B||Δ|=3q(q21)24q(q21)8=1.x=\frac{3\cdot\left|B\right|}{\left|\Delta\right|}=\frac{3\cdot\frac{q(q^{2}-1)}{24}}{\frac{q(q^{2}-1)}{8}}=1.

Theorem 1.

The block design DD is a GPBIBD(m)\mathrm{GPBIBD}(m) with parameters

v=q214,b=q(q21)24,k=6,r=q,λ1=4,λ2=1,λ3==λm=0.v=\frac{q^{2}-1}{4},\quad b=\frac{q(q^{2}-1)}{24},\quad k=6,\quad r=q,\quad\lambda_{1}=4,\quad\lambda_{2}=1,\quad\lambda_{3}=\dots=\lambda_{m}=0.

The underlying association scheme is the Schurian scheme 𝒮(G,P){\mathcal{S}}(G,P) of (G,P)(G,P), and the number of associate classes is

m=q32.m=\frac{q-3}{2}.
Proof.

The number of points is clear from the construction. The number of blocks can be calculated by using the orbit-stabilizer theorem and the fact that, by The case p5p\neq 5, |GT|=12\left|G_{T}\right|=12:

b=|B|=|TG|=|G||GT|=q(q21)212=q(q21)24.b=\left|B\right|=\left|T^{G}\right|=\frac{\left|G\right|}{\left|G_{T}\right|}=\frac{\frac{q(q^{2}-1)}{2}}{12}=\frac{q(q^{2}-1)}{24}.

The fact that each block has size k=6k=6 follows from the fact that the basic block TT has size 66, and that the set of blocks is the orbit TGT^{G} of TT under the action of GG. To prove that each point lies on r=qr=q blocks it suffices to show that (10)\scriptsize\begin{pmatrix}1\\ 0\end{pmatrix} lies on qq blocks, because GG acts transitively on PP. For that purpose we will show that |TG(10)|=q\left|T^{G_{\binom{1}{0}}}\right|=q. Again, the orbit-stabilizer theorem applied to G(10)G_{\binom{1}{0}} will do the job:

2q=|G(10)|=|G(10)T||TG(10)|=2|TG(10)|,2q=\left|G_{\binom{1}{0}}\right|=\left|{G_{\binom{1}{0}}}_{T}\right|\cdot\left|T^{G_{\binom{1}{0}}}\right|=2\cdot\left|T^{G_{\binom{1}{0}}}\right|,

thus |TG(10)|=q\left|T^{G_{\binom{1}{0}}}\right|=q. A pair of points of PP is either an edge of DD, a diagonal of DD or neither (that is a pair that does not lie in a block together), it follows from The case p5p\neq 5 that an edge lies on λ1=4\lambda_{1}=4 blocks, from The case p5p\neq 5 that a diagonal lies on λ2=1\lambda_{2}=1 block, and any other pair lies on λj=0\lambda_{j}=0 (3jm3\leq j\leq m) blocks. Next, the fact that the Schurian scheme of the action (G,P)(G,P) is the underlying association scheme follows from the fact that GG acts transitively on the edges of DD (proved in The case p5p\neq 5), and on the diagonals of DD (proved in The case p5p\neq 5).

Finally, we compute the number of associate classes, that is, the number of classes of 𝒮(G,P){\mathcal{S}}(G,P), or in other words, the rank of the transitive permutation group (G,P)(G,P) minus 11. The rank of a transitive permutation group is equal to number of orbits of the stabilizer of a point, so we compute the number of orbits of (G(10),P)\left(G_{\binom{1}{0}},P\right). Recall that

G(10)={(ux0u1)|u{1,i},x𝔽q},G_{\binom{1}{0}}=\left\{\scriptsize\begin{pmatrix}u&x\\ 0&u^{-1}\end{pmatrix}\ \middle|\ u\in\{1,i\},x\in{\mathbbm{F}}_{q}\right\},

so for each point of the form (a0)P\scriptsize\begin{pmatrix}a\\ 0\end{pmatrix}\in P we have (a0)G(10)={(a0)}\scriptsize\begin{pmatrix}a\\ 0\end{pmatrix}^{G_{\binom{1}{0}}}=\left\{\scriptsize\begin{pmatrix}a\\ 0\end{pmatrix}\right\}, these are q14\frac{q-1}{4} orbits. For points of the form (ab)P\scriptsize\begin{pmatrix}a\\ b\end{pmatrix}\in P, with b0b\neq 0, we have

(ab)G(10)={(yb)|y𝔽q},\scriptsize\begin{pmatrix}a\\ b\end{pmatrix}^{G_{\binom{1}{0}}}=\left\{\scriptsize\begin{pmatrix}y\\ b\end{pmatrix}\ \middle|\ y\in{\mathbbm{F}}_{q}\right\},

because (1yab01)\scriptsize\begin{pmatrix}1&\frac{y-a}{b}\\ 0&1\end{pmatrix} takes (ab)\scriptsize\begin{pmatrix}a\\ b\end{pmatrix} to (yb)\scriptsize\begin{pmatrix}y\\ b\end{pmatrix}, so we get q14\frac{q-1}{4} more orbits. Altogether we counted the q12\frac{q-1}{2} orbits of G(10)G_{\binom{1}{0}}, thus the number of associate classes is m=q32m=\frac{q-3}{2}. ∎

The case p=5p=5

Let q=5αq=5^{\alpha}. In this case the basic block TT is in fact just the projective line over 𝔽5{\mathbbm{F}}_{5}, and we have

Lemma \thelemma@alt.

The stabilizer GβG_{\beta} of a block βB\beta\in B in GG is isomorphic to PSL(2,5)\operatorname{PSL}(2,5).

Proof.

As before, by the transitive action of GG on BB it is enough to consider GTG_{T}. By section 2, since q=5αq=5^{\alpha}, we have that 1+i=i1+i=-i. It follows that 1i=11-i=-1 and thus we have

T={(10),(01),(11),(i1),(i1),(11)},T=\left\{\scriptsize\begin{pmatrix}1\\ 0\end{pmatrix},\scriptsize\begin{pmatrix}0\\ 1\end{pmatrix},\scriptsize\begin{pmatrix}1\\ 1\end{pmatrix},\scriptsize\begin{pmatrix}-i\\ 1\end{pmatrix},\scriptsize\begin{pmatrix}i\\ 1\end{pmatrix},\scriptsize\begin{pmatrix}-1\\ 1\end{pmatrix}\right\},

that is, TT is the projective line over 𝔽5{\mathbbm{F}}_{5}, and it follows that subgroup of PSL(2,q)\operatorname{PSL}(2,q) that fixes the projective line over 𝔽5{\mathbbm{F}}_{5} is PSL(2,5)\operatorname{PSL}(2,5). ∎

Corollary \thecorollary@alt.

GG acts transitively on pairs of points that lie together in a block.

We will refer to pairs of points that lie together on a block adjacent points, and correspondingly to pairs of points that do not lie together on a block as non-adjacent points.

Theorem 2.

The block design DD is a GPBIBD(m)\mathrm{GPBIBD}(m) with parameters

v=q214,b=q(q21)120,k=6,r=q5=5α1,λ1=1,λ2==λm=0.v=\frac{q^{2}-1}{4},\quad b=\frac{q(q^{2}-1)}{120},\quad k=6,\quad r=\frac{q}{5}=5^{\alpha-1},\quad\lambda_{1}=1,\quad\lambda_{2}=\dots=\lambda_{m}=0.

The underlying association scheme is the Schurian scheme 𝒮(G,P){\mathcal{S}}(G,P) of (G,P)(G,P), and the number of associate classes is

m=q32.m=\frac{q-3}{2}.
Proof.

The number of points is clear from the construction. The number of blocks can be calculated by using the orbit-stabilizer theorem and the fact that, by The case p=5p=5, |GT|=60\left|G_{T}\right|=60:

b=|B|=|TG|=|G||GT|=q(q21)260=q(q21)120.b=\left|B\right|=\left|T^{G}\right|=\frac{\left|G\right|}{\left|G_{T}\right|}=\frac{\frac{q(q^{2}-1)}{2}}{60}=\frac{q(q^{2}-1)}{120}.

The fact that each block has size k=6k=6 follows from the fact that the basic block TT has size 66, and that the set of blocks is the orbit TGT^{G} of TT under the action of GG. To prove that each point lies on r=q5=5α1r=\frac{q}{5}=5^{\alpha-1} blocks it suffices to show that (10)\scriptsize\begin{pmatrix}1\\ 0\end{pmatrix} lies on 5α15^{\alpha-1} blocks, because GG acts transitively on PP. For that purpose we will show that |TG(10)|=5α1\left|T^{G_{\binom{1}{0}}}\right|=5^{\alpha-1}. Again, the orbit-stabilizer theorem applied to G(10)G_{\binom{1}{0}} will do the job:

2q=|G(10)|=|G(10)T||TG(10)|.2q=\left|G_{\binom{1}{0}}\right|=\left|{G_{\binom{1}{0}}}_{T}\right|\cdot\left|T^{G_{\binom{1}{0}}}\right|.

By The case p=5p=5 we have

G(10)T=GTG(10)=PSL(2,5)G(10),{G_{\binom{1}{0}}}_{T}=G_{T}\cap G_{\binom{1}{0}}=\operatorname{PSL}(2,5)\cap G_{\binom{1}{0}},

that is, G(10)T={(ux0u1)|u{1,i},x𝔽5}{G_{\binom{1}{0}}}_{T}=\left\{\scriptsize\begin{pmatrix}u&x\\ 0&u^{-1}\end{pmatrix}\ \middle|\ u\in\{1,i\},x\in{\mathbbm{F}}_{5}\right\} and |G(10)T|=10\left|{G_{\binom{1}{0}}}_{T}\right|=10, thus 2q=10|TG(10)|2q=10\cdot\left|T^{G_{\binom{1}{0}}}\right| and therefore |TG(10)|=2q10=25α25=5α1\left|T^{G_{\binom{1}{0}}}\right|=\frac{2q}{10}=\frac{2\cdot 5^{\alpha}}{2\cdot 5}=5^{\alpha-1}. The number of pairs of adjacent points is

(62)|B|=15q(q21)120=q(q21)8.\binom{6}{2}\cdot\left|B\right|=15\cdot\frac{q(q^{2}-1)}{120}=\frac{q(q^{2}-1)}{8}.

To show that each pair of adjacent points determines a unique block it is enough to show that the stabilizer of a pair of adjacent points stabilizes that whole block. So by The case p=5p=5 we may assume that e={(10),(01)}e=\left\{\scriptsize\begin{pmatrix}1\\ 0\end{pmatrix},\scriptsize\begin{pmatrix}0\\ 1\end{pmatrix}\right\} is our pair of adjacent points on the block TT. We need to show that GeGTG_{e}\leq G_{T}. Recall that the calculation in The case p5p\neq 5 showed that

Ge=(0110),(0ii0),G_{e}=\left\langle\scriptsize\begin{pmatrix}0&-1\\ 1&0\end{pmatrix},\scriptsize\begin{pmatrix}0&i\\ i&0\end{pmatrix}\right\rangle,

in this case, clearly GePSL(2,5)=GTG_{e}\leq\operatorname{PSL}(2,5)=G_{T}. Finally, the fact that the Schurian scheme of the action (G,P)(G,P) is the underlying association scheme follows from the fact that GG acts transitively on the pairs of adjacent points DD (stated in The case p=5p=5), the computation of the number of associate classes is identical to that given in Theorem 1. ∎

At this point it seems interesting to ask:

Question \thequestion@alt.

Can we find an underlying association scheme for DD with less vanishing classes?

The following two sections deal with this question. In section 3 we find the largest (in a certain natural sense) group acting on DD producing an underlying Schurian association scheme with less vanishing classes. In section 4 we compute the underlying association scheme with the smallest possible number of vanishing classes for all GPBIBD\mathrm{GPBIBD}s with q169q\leq 169, and propose a general conjecture about the minimal association schemes.

3. A smaller rank underlying association scheme

In this section we prove that in fact we have a larger group acting on DD. Let ϕ\phi be the Frobenius automorphism of 𝔽q{\mathbbm{F}}_{q}, that is, the map that takes each element a𝔽qa\in{\mathbbm{F}}_{q} to its pp-th power ap𝔽qa^{p}\in{\mathbbm{F}}_{q}. We denote by F=ϕF=\langle\phi\rangle the automorphism group Aut(𝔽q)\operatorname{Aut}({\mathbbm{F}}_{q}). The projective special semilinear group, commonly denoted by PΣL(2,q)\operatorname{P\Sigma L}(2,q), is the semidirect product PSL(2,q)F\operatorname{PSL}(2,q)\rtimes F, where the cyclic group FF is acting on PSL(2,q)\operatorname{PSL}(2,q) in the natural way:

(abcd)ϕ=(apbpcpdp).\scriptsize\begin{pmatrix}a&b\\ c&d\end{pmatrix}^{\phi}=\scriptsize\begin{pmatrix}a^{p}&b^{p}\\ c^{p}&d^{p}\end{pmatrix}.
Theorem 3.

The largest automorphism group 𝒢{\mathcal{G}} of DD that preserves the octahedral structure is isomorphic to PΣL(2,q)×C2\operatorname{P\Sigma L}(2,q)\times C_{2}.

Proof.

Clearly PΣL(2,q)\operatorname{P\Sigma L}(2,q) acts on DD. The additional involution C2=σC_{2}=\langle\sigma\rangle is the missing 9090^{\circ} rotation about the axis formed by two antipodal vertices of the octahedron. ∎

Computing the number of orbits of FF on PP

We use Burnside’s lemma and standard Galois cohomology tools to compute the number of orbits P/F{\raisebox{1.99997pt}{$P$}\left/\raisebox{-1.99997pt}{$F$}\right.} of FF on P=𝔽q×/μ4P={\raisebox{1.99997pt}{${{\mathbbm{F}}_{q}}^{\times}$}\left/\raisebox{-1.99997pt}{$\mu_{4}$}\right.} and q=pnq=p^{n}. As usual we denote by PgP^{g} the fixed points of PP under the action of gg. Burnside’s lemma establishes that

|P/F|=1|F|gF|Pg|.\left|{\raisebox{1.99997pt}{$P$}\left/\raisebox{-1.99997pt}{$F$}\right.}\right|=\frac{1}{|F|}\sum_{g\in F}\left|P^{g}\right|.

For each divisor dd of nn we have a subfield 𝔽pd{\mathbbm{F}}_{p^{d}} of 𝔽pn{\mathbbm{F}}_{p^{n}}, the elements of 𝔽pd{\mathbbm{F}}_{p^{d}} are precisely the fixed points of ϕd\phi^{d}. Moreover, if kk is a multiple of dd that does not divide nn then the fixed points of ϕk\phi^{k} are again the elements of 𝔽pd{\mathbbm{F}}_{p^{d}}, thus we can rewrite the above sum as follows:

|P/F|=1|F|gF|Pg|=1|F|d|nφ(nd)|Pϕd|\left|{\raisebox{1.99997pt}{$P$}\left/\raisebox{-1.99997pt}{$F$}\right.}\right|=\frac{1}{|F|}\sum_{g\in F}\left|P^{g}\right|=\frac{1}{|F|}\sum_{d|n}\varphi\left(\frac{n}{d}\right)\left|P^{\phi^{d}}\right|

where φ\varphi is Euler totient function. To compute |Pϕd|\left|P^{\phi^{d}}\right| we use Galois cohomology. For clearer notation we denote K:=ϕdK:=\phi^{d}. The short exact sequence

1μ4𝔽q×𝔽q×/μ411\longrightarrow\mu_{4}\longrightarrow{{\mathbbm{F}}_{q}}^{\times}\longrightarrow{\raisebox{1.99997pt}{${{\mathbbm{F}}_{q}}^{\times}$}\left/\raisebox{-1.99997pt}{$\mu_{4}$}\right.}\longrightarrow 1

provides a long exact sequence in group cohomology

1μ4K(𝔽q×)K(𝔽q×/μ4)KH1(K,μ4)H1(K,𝔽q×)1\longrightarrow{\mu_{4}}^{K}\longrightarrow\left({{\mathbbm{F}}_{q}}^{\times}\right)^{K}\longrightarrow\left({\raisebox{1.99997pt}{${{\mathbbm{F}}_{q}}^{\times}$}\left/\raisebox{-1.99997pt}{$\mu_{4}$}\right.}\right)^{K}\longrightarrow H^{1}(K,\mu_{4})\longrightarrow H^{1}(K,{{\mathbbm{F}}_{q}}^{\times})\longrightarrow\dots

By Hilbert’s Theorem 90 we have

H1(K,𝔽q×)=1H^{1}(K,{{\mathbbm{F}}_{q}}^{\times})=1

so we get the following exact sequence

1μ4K(𝔽q×)K(𝔽q×/μ4)KH1(K,μ4)11\longrightarrow{\mu_{4}}^{K}\longrightarrow\left({{\mathbbm{F}}_{q}}^{\times}\right)^{K}\longrightarrow\left({\raisebox{1.99997pt}{${{\mathbbm{F}}_{q}}^{\times}$}\left/\raisebox{-1.99997pt}{$\mu_{4}$}\right.}\right)^{K}\longrightarrow H^{1}(K,\mu_{4})\longrightarrow 1

and we are interested in

|(𝔽q×/μ4)K|=|H1(K,μ4)||(𝔽q×)K||μ4K|.\left|\left({\raisebox{1.99997pt}{${{\mathbbm{F}}_{q}}^{\times}$}\left/\raisebox{-1.99997pt}{$\mu_{4}$}\right.}\right)^{K}\right|=\frac{\left|H^{1}(K,\mu_{4})\right|\cdot\left|\left({{\mathbbm{F}}_{q}}^{\times}\right)^{K}\right|}{\left|{\mu_{4}}^{K}\right|}.

Clearly, we have |(𝔽q×)K|=pd1\left|\left({{\mathbbm{F}}_{q}}^{\times}\right)^{K}\right|=p^{d}-1. We deal with cases p1(mod4)p\equiv 1\pmod{4} and p3(mod4)p\equiv 3\pmod{4} separately.

The case p1(mod4)p\equiv 1\pmod{4}

In this case μ4\mu_{4} is already contained in 𝔽p{\mathbbm{F}}_{p} and thus is fixed by KK so |μ4K|=4\left|{\mu_{4}}^{K}\right|=4 and we have

|(𝔽q×/μ4)K|=|H1(K,μ4)|pd14.\left|\left({\raisebox{1.99997pt}{${{\mathbbm{F}}_{q}}^{\times}$}\left/\raisebox{-1.99997pt}{$\mu_{4}$}\right.}\right)^{K}\right|=\left|H^{1}(K,\mu_{4})\right|\cdot\frac{p^{d}-1}{4}.

Now, since μ4\mu_{4} is a trivial KK-module we have

H1(K,μ4)=Hom(K,μ4){C4|K|0(mod4)C2|K|2(mod4)1otherwiseH^{1}(K,\mu_{4})=\operatorname{Hom}(K,\mu_{4})\cong\begin{cases}C_{4}&|K|\equiv 0\pmod{4}\\ C_{2}&|K|\equiv 2\pmod{4}\\ 1&\text{otherwise}\end{cases}

so if we denote h(d):=|H1(K,μ4)|h(d):=|H^{1}(K,\mu_{4})| (this number depends on the residue of nd\frac{n}{d} modulo 44) we have

|P/F|=1|F|d|nφ(nd)h(d)pd14.\left|{\raisebox{1.99997pt}{$P$}\left/\raisebox{-1.99997pt}{$F$}\right.}\right|=\frac{1}{\left|F\right|}\sum_{d|n}\varphi\left(\frac{n}{d}\right)\cdot h(d)\cdot\frac{p^{d}-1}{4}.

The case p3(mod4)p\equiv 3\pmod{4}

In this case μ4\mu_{4} is contained in 𝔽p2{\mathbbm{F}}_{p^{2}} but not in 𝔽P{\mathbbm{F}}_{P} so for every odd power of ϕ\phi there are just 22 fixed points, and for every even power of ϕ\phi there are 44 fixed points, that is:

|μ4K|={2d odd4d even.\left|{\mu_{4}}^{K}\right|=\begin{cases}2&d\text{ odd}\\ 4&d\text{ even}\end{cases}.

The computation of |H1(K,μ4)|\left|H^{1}(K,\mu_{4})\right| in this case is a bit more involved. If nd\frac{n}{d} is even then μ4\mu_{4} is again a trivial KK-module and we have

H1(K,μ4)=Hom(K,μ4){C4|K|0(mod4)C2|K|2(mod4).H^{1}(K,\mu_{4})=\operatorname{Hom}(K,\mu_{4})\cong\begin{cases}C_{4}&|K|\equiv 0\pmod{4}\\ C_{2}&|K|\equiv 2\pmod{4}\\ \end{cases}.

For dd odd, μ4\mu_{4} is no longer a trivial KK-module. There are two cyclic groups here, and an action of one of them on the other, considered as a module, so we will use additive notation for μ4\mu_{4} (that is, the group of integers modulo 44), and write ama\cdot m to denote the action of aa on mm, where aKa\in K and mμ4m\in\mu_{4}, the operation in KK will be denoted simply abab for a,bKa,b\in K. Fix a generator α\alpha of KK, the the action of KK on μ4\mu_{4} is

α0=0,α1=3,α2=2,α3=1.\alpha\cdot 0=0,\quad\alpha\cdot 1=3,\quad\alpha\cdot 2=2,\quad\alpha\cdot 3=1.

The 11-cocycles Z1(K,μ4)Z^{1}(K,\mu_{4}) are thus the functions f:Kμ4f:K\longrightarrow\mu_{4} satisfying

f(ab)=f(a)+af(b)f(ab)=f(a)+a\cdot f(b)

and the 11-coboundaries B1(K,μ4)B^{1}(K,\mu_{4}) are those satisfying

f(a)=ammfor somemμ4.f(a)=a\cdot m-m\qquad\text{for some}\quad m\in\mu_{4}.

A 11-cocycle is determined by its value on α\alpha. So let fB1(K,μ4)f\in B^{1}(K,\mu_{4}), one can verify that out of the 44 options (one option for each mμ4m\in\mu_{4}) there are just 22 elements in B1(K,μ4)B^{1}(K,\mu_{4}), explicitly, these are the functions

f(α)=α00andf(α)=α11.f(\alpha)=\alpha\cdot 0-0\quad\text{and}\quad f(\alpha)=\alpha\cdot 1-1.

Consider now Z1(K,μ4)Z^{1}(K,\mu_{4}). Let fZ1(K,μ4)f\in Z^{1}(K,\mu_{4}) then out of the 44 options

f(α)=0,f(α)=1,f(α)=2,f(α)=3,f(\alpha)=0,\quad f(\alpha)=1,\quad f(\alpha)=2,\quad f(\alpha)=3,

it is easy to verify that f(α)=0f(\alpha)=0 and f(α)=2f(\alpha)=2 are both in B1(K,μ4)B^{1}(K,\mu_{4}). Also, f(α)=1f(\alpha)=1 and f(α)=3f(\alpha)=3 are cohomologous (their difference is in B1(K,μ4)B^{1}(K,\mu_{4})), so altogether we get

H1(K,μ4)=Z1(K,μ4)/B1(K,μ4)C2.H^{1}(K,\mu_{4})={\raisebox{1.99997pt}{$Z^{1}(K,\mu_{4})$}\left/\raisebox{-1.99997pt}{$B^{1}(K,\mu_{4})$}\right.}\cong C_{2}.

Denote h(d):=|H1(K,μ4)||μ4K|h(d):=\frac{\left|H^{1}(K,\mu_{4})\right|}{\left|{\mu_{4}}^{K}\right|} summarizing the above we have

h(d)={1d odd; or d even and nd0(mod4)12d even and nd2(mod4)14d even and nd oddh(d)=\begin{cases}1&\text{$d$ odd; or $d$ even and $\frac{n}{d}\equiv 0\pmod{4}$}\\ \frac{1}{2}&\text{$d$ even and $\frac{n}{d}\equiv 2\pmod{4}$}\\ \frac{1}{4}&\text{$d$ even and $\frac{n}{d}$ odd}\end{cases}

and

|P/F|=1|F|d|nφ(nd)h(d)(pd1).\left|{\raisebox{1.99997pt}{$P$}\left/\raisebox{-1.99997pt}{$F$}\right.}\right|=\frac{1}{\left|F\right|}\sum_{d|n}\varphi\left(\frac{n}{d}\right)\cdot h(d)\cdot(p^{d}-1).
Corollary \thecorollary@alt.

DD is a GPBIBD(m)\mathrm{GPBIBD}(m) with m=2|P/F|1m=2\cdot\left|{\raisebox{1.99997pt}{$P$}\left/\raisebox{-1.99997pt}{$F$}\right.}\right|-1 associate classes.

4. The smallest rank underlying association scheme

We have constructed all the GPBIBD\mathrm{GPBIBD}s with q169q\leq 169 on GAP [6], we used the program stabil2 to perform WL-stabilization on the partition of P×PP\times P into λ\lambda-classes (a λ\lambda-class consists of all pairs in P×PP\times P that lie on λ\lambda blocks) in order to obtain an underlying association scheme with the smallest number of classes possible for each incidence structure. It turns out that in a considerable number of cases we in fact obtain an underlying scheme of smaller rank than what is provided by section 3. It follows from Theorem 3 that in those cases the underlying scheme is non-Schurian.

qq Class Number in section 3 Smallest Class Number Parameters (v,b,r,k;λ1,,λm)(v,b,r,k;\lambda_{1},\dots,\lambda_{m}) Remarks
99 33 33 (20,30,6,9;4,1,0)(20,30,6,9;4,1,0)
1313 55 55 (42,91,6,13;4,1,0,0,0)(42,91,6,13;4,1,0,0,0)
1717 77 77 (72,204,6,17;4,1,0,,0)(72,204,6,17;4,1,0,\dots,0)
2525 77 33 (156,130,6,5;1,0,0)(156,130,6,5;1,0,0) Non-Schurian. This is an antipodal distance regular graph of diameter 33, a 66-fold cover of K4K_{4}.
2929 1313 1313 (210,1015,6,29;4,1,0,,0)(210,1015,6,29;4,1,0,\dots,0)
3737 1717 1717 (342,2109,6,37;4,1,0,,0)(342,2109,6,37;4,1,0,\dots,0)
4141 1919 1111 (420,2870,6,41;4,1,0,,0)(420,2870,6,41;4,1,0,\dots,0) Non-Schurian. Non-commutative.
4949 1717 1313 (600,4900,6,49;4,1,0,,0)(600,4900,6,49;4,1,0,\dots,0) Non-Schurian. Non-commutative.
5353 2525 2525 (702,6201,6,53;4,1,0,,0)(702,6201,6,53;4,1,0,\dots,0)
6161 2929 2929 (930,9455,6,61;4,1,0,,0)(930,9455,6,61;4,1,0,\dots,0)
7373 3535 3535 (1332,16206,6,73;4,1,0,,0)(1332,16206,6,73;4,1,0,\dots,0)
8181 1313 55 (1640,22140,6,81;4,1,0,0,0)(1640,22140,6,81;4,1,0,0,0) non-Schurian.
8989 4343 4343 (1980,29370,6,89;4,1,0,,0)(1980,29370,6,89;4,1,0,\dots,0)
9797 4747 4747 (2352,38024,6,97;4,1,0,,0)(2352,38024,6,97;4,1,0,\dots,0)
101101 4949 4949 (2550,42925,6,101;4,1,0,,0)(2550,42925,6,101;4,1,0,\dots,0)
109109 5353 1919 (2970,53955,6,109;4,1,0,,0)(2970,53955,6,109;4,1,0,\dots,0) Non-Schurian. Non-commutative.
113113 5555 1515 (3192,60116,6,113;4,1,0,,0)(3192,60116,6,113;4,1,0,\dots,0) Non-Schurian. Non-commutative.
121121 3939 2121 (3660,73810,6,121;4,1,0,,0)(3660,73810,6,121;4,1,0,\dots,0) non-Schurian.
125125 33 (3906,16275,6,25;1,0,,0)(3906,16275,6,25;1,0,\dots,0) non-Schurian. This is an antipodal distance regular graph of diameter 33, a 3131-fold cover of K4K_{4}.
137137
149149
157157
169169 4747 77 (7140,201110,6,169;4,1,0,,0)(7140,201110,6,169;4,1,0,\dots,0) non-Schurian.

Acknowledgements

I thank Rosemary Bailey and Eran Nevo for helpful comments on earlier versions of this text.

References

  • [1] R. A. Bailey. Association schemes, volume 84 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2004. Designed experiments, algebra and combinatorics.
  • [2] R. C. Bose and K. R. Nair. Partially balanced incomplete block designs. Sankhyā: The Indian Journal of Statistics (1933-1960), 4(3):337–372, 1939.
  • [3] A. E. Brouwer, A. M. Cohen, and A. Neumaier. Distance-regular graphs, volume 18 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-Verlag, Berlin, 1989.
  • [4] Peter J. Cameron. Coherent configurations, association schemes and permutation groups. In Groups, combinatorics & geometry (Durham, 2001), pages 55–71. World Sci. Publ., River Edge, NJ, 2003.
  • [5] Charles J. Colbourn and Jeffrey H. Dinitz, editors. Handbook of combinatorial designs. Discrete Mathematics and its Applications (Boca Raton). Chapman & Hall/CRC, Boca Raton, FL, second edition, 2007.
  • [6] The GAP Group. GAP – Groups, Algorithms, and Programming, Version 4.11.1, 2021.
  • [7] C. Ramankutty Nair. A new class of designs. J. Amer. Statist. Assoc., 59:817–833, 1964.
  • [8] Eran Nevo. Polyhedrons and PBIBDs from hyperbolic manifolds. Geometriae Dedicata, pages 1–8, 2015.
  • [9] B. V. Shah. A generalisation of partially balanced incomplete block designs. Ann. Math. Statist., 30:1041–1050, 1959.
  • [10] Bikas Kumar Sinha. Some aspects of simplicity in the analysis of block designs. J. Statist. Plann. Inference, 6(2):165–172, 1982.