This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

On a twisted Jacquet module of GL(2n)\operatorname{GL}(2n) over a finite field

Kumar Balasubramanian Kumar Balasubramanian
Department of Mathematics
IISER Bhopal
Bhopal, Madhya Pradesh 462066, India
[email protected]
Abhishek Dangodara Abhishek Dangodara
Department of Mathematics
IISER Bhopal
Bhopal, Madhya Pradesh 462066, India
[email protected]
 and  Himanshi Khurana Himanshi Khurana
Department of Mathematics
IISER Bhopal
Bhopal, Madhya Pradesh 462066, India
[email protected]
Abstract.

Let FF be a finite field and G=GL(2n,F)G=\operatorname{GL}(2n,F). In this paper, we explicitly describe a certain twisted Jacquet module of an irreducible cuspidal representation of GG.

Key words and phrases:
Cuspidal representations, Twisted Jacquet module
1991 Mathematics Subject Classification:
Primary: 20G40
* indicates corresponding author
Research of Kumar Balasubramanian is supported by the SERB grant: MTR/2019/000358.

1. Introduction

Let FF be a finite field and G=GL(n,F)G=\operatorname{GL}(n,F). Let PP be a parabolic subgroup of GG with Levi decomposition P=MNP=MN. Let π\pi be any irreducible finite dimensional complex representation of GG and ψ\psi be an irreducible representation of NN. Let πN,ψ\pi_{N,\psi} be the sum of all irreducible representations of NN inside π\pi, on which π\pi acts via the character ψ\psi. It is easy to see that πN,ψ\pi_{N,\psi} is a representation of the subgroup MψM_{\psi} of MM, consisting of those elements in MM which leave the isomorphism class of ψ\psi invariant under the inner conjugation action of MM on NN. The space πN,ψ\pi_{N,\psi} is called the twisted Jacquet module of the representation π\pi. It is an interesting question to understand for which irreducible representations π\pi, the twisted Jacquet module πN,ψ\pi_{N,\psi} is non-zero and to understand its structure as a module for MψM_{\psi}.

In [2],[1], inspired by the work of Prasad in [6], we studied the structure of a certain twisted Jacquet module of a cuspidal representation of GL(4,F)\operatorname{GL}(4,F) and GL(6,F)\operatorname{GL}(6,F). Based on our calculations, we had conjectured the structure of the module for GL(2n,F)\operatorname{GL}(2n,F) (see Section 1 in [1]). For a more detailed introduction and the motivation to study the problem, we refer the reader to Section 1 in [2].

Before we state our result, we set up some notation. Let FF be a finite field and FnF_{n} be the unique field extension of FF of degree nn. Let G=GL(2n,F)G=\operatorname{GL}(2n,F) and P=MNP=MN be the standard maximal parabolic subgroup of GG corresponding to the partition (n,n)(n,n). We have, MGL(n,F)×GL(n,F)M\simeq\operatorname{GL}(n,F)\times\operatorname{GL}(n,F) and NM(n,F)N\simeq\operatorname{M}(n,F). We let π=πθ\pi=\pi_{\theta} to be an irreducible cuspidal representation of GG associated to the regular character θ\theta. Let ψ\psi be any character of NM(n,F)N\simeq\operatorname{M}(n,F) and ψ0\psi_{0} be a fixed non-trivial character of FF. We let

Ai=[Ii000]M(n,F).A_{i}=\begin{bmatrix}I_{i}&0\\ 0&0\end{bmatrix}\in\operatorname{M}(n,F).

Let ψA:N×\psi_{A}:N\to\mathbb{C}^{\times} be the character given by

ψA([1X01])=ψ0(Tr(AX)).\psi_{A}\left(\begin{bmatrix}1&X\\ 0&1\end{bmatrix}\right)=\psi_{0}(\operatorname{Tr}(AX)).

Let HA=M1×M2H_{A}=M_{1}\times M_{2} where M1M_{1} is the Mirabolic subgroup of GL(n,F)\operatorname{GL}(n,F) and M2=w0M1Tw01M_{2}=w_{0}{M_{1}}^{T}{w_{0}}^{-1} where

w0=[01\adots10]w_{0}=\begin{bmatrix}0&\ldots&1\\ \vdots&\adots&\vdots\\ 1&\ldots&0\end{bmatrix}

Let UU be the subgroup of unipotent matrices in GL(2n,F)\operatorname{GL}(2n,F) and UA=UHAU_{A}=U\cap H_{A}. Then, we get UAU1×U2U_{A}\simeq U_{1}\times U_{2} where U1U_{1} and U2U_{2} are the upper triangular unipotent subgroups of GL(n,F)\operatorname{GL}(n,F). For k=1,2k=1,2, let μk:Uk×\mu_{k}:U_{k}\to\mathbb{C}^{\times} be the non-degenerate character of UkU_{k} given by

μk([1x12x13x1,n1x23x2,n1x(n1),n1])=ψ0(x12+x23++x(n1),n).\mu_{k}\left(\begin{bmatrix}1&x_{12}&x_{13}&\ldots&x_{1,n}\\ &1&x_{23}&\ldots&x_{2,n}\\ &&1&\ddots&\vdots\\ &&&\ddots&x_{(n-1),n}\\ &&&&1\end{bmatrix}\right)=\psi_{0}(x_{12}+x_{23}+\cdots+x_{(n-1),n}).

Let μ:UA×\mu:U_{A}\rightarrow\mathbb{C}^{\times} be the character of UAU_{A} given by

μ(u)=μ1(u1)μ2(u2)\mu(u)=\mu_{1}(u_{1})\mu_{2}(u_{2})

where u=[u100u2]UAu=\begin{bmatrix}u_{1}&0\\ 0&u_{2}\end{bmatrix}\in U_{A}.

Theorem 1.1.

Let θ\theta be a regular character of Fn×F_{n}^{\times} and π=πθ\pi=\pi_{\theta} be an irreducible cuspidal representation of GG. Then

πN,ψAθ|F×indUAHAμ\pi_{N,\psi_{A}}\simeq\theta|_{F^{\times}}\otimes\operatorname{ind}_{U_{A}}^{H_{A}}\mu

as MψAM_{\psi_{A}} modules.

2. Preliminaries

In this section, we mention some preliminary results that we need in our paper.

2.1. Character of a Cuspidal Representation

Let FF be the finite field of order qq and G=GL(m,F)G=\operatorname{GL}(m,F). Let FmF_{m} be the unique field extension of FF of degree mm. A character θ\theta of Fm×F^{\times}_{m} is called a “regular” character, if under the action of the Galois group of FmF_{m} over FF, θ\theta gives rise to mm distinct characters of Fm×F^{\times}_{m}. It is a well known fact that the cuspidal representations of GL(m,F)\operatorname{GL}(m,F) are parametrized by the regular characters of Fm×F_{m}^{\times}. To avoid introducing more notation, we mention below only the relevant statements on computing the character values that we have used. We refer the reader to Section 6 in [4] for more precise statements on computing character values.

Theorem 2.1.

Let θ\theta be a regular character of Fm×F^{\times}_{m}. Let π=πθ\pi=\pi_{\theta} be an irreducible cuspidal representation of GL(m,F)\operatorname{GL}(m,F) associated to θ\theta. Let Θθ\Theta_{\theta} be its character. If gGL(m,F)g\in\operatorname{GL}(m,F) is such that the characteristic polynomial of gg is not a power of a polynomial irreducible over FF. Then, we have

Θθ(g)=0.\Theta_{\theta}(g)=0.
Theorem 2.2.

Let θ\theta be a regular character of Fm×F^{\times}_{m}. Let π=πθ\pi=\pi_{\theta} be an irreducible cuspidal representation of GL(m,F)\operatorname{GL}(m,F) associated to θ\theta. Let Θθ\Theta_{\theta} be its character. Suppose that g=s.ug=s.u is the Jordan decomposition of an element gg in GL(m,F)\operatorname{GL}(m,F). If Θθ(g)0\Theta_{\theta}(g)\neq 0, then the semisimple element ss must come from Fm×F_{m}^{\times}. Suppose that ss comes from Fm×F_{m}^{\times}. Let zz be an eigenvalue of ss in FmF_{m} and let tt be the dimension of the kernel of gzg-z over FmF_{m}. Then

Θθ(g)=(1)m1[α=0d1θ(zqα)](1qd)(1(qd)2)(1(qd)t1).\Theta_{\theta}(g)=(-1)^{m-1}\bigg{[}\sum_{\alpha=0}^{d-1}\theta(z^{q^{\alpha}})\bigg{]}(1-q^{d})(1-(q^{d})^{2})\cdots(1-(q^{d})^{t-1}).

where qdq^{d} is the cardinality of the field generated by zz over FF, and the summation is over the distinct Galois conjugates of zz.

See Theorem 2 in [6] for this version.

2.2. Kirillov Representation

Let FF be a finite field with qq elements and G=GL(n,F)G=\operatorname{GL}(n,F). Let PnP_{n} be the Mirabolic subgroup of GG and let UU be the subgroup of unipotent matrices of GG. In this section, we recall the Kirillov representation of the Mirabolic subgroup PnP_{n} of GG. Let ψ0\psi_{0} be a non-trivial character of FF and let ψ:U×\psi:U\to\mathbb{C}^{\times} be the non-degenerate character of UU given by

ψ([1x12x13x1,n1x23x2,n1x(n1),n1])=ψ0(x12+x23++x(n1),n).\psi\left(\begin{bmatrix}1&x_{12}&x_{13}&\cdots&x_{1,n}\\ &1&x_{23}&\cdots&x_{2,n}\\ &&1&\cdots&\vdots\\ &&&\ddots&x_{(n-1),n}\\ &&&&1\end{bmatrix}\right)=\psi_{0}(x_{12}+x_{23}+\cdots+x_{(n-1),n}).

Then, 𝒦=indUPnψ\mathcal{K}=\operatorname{ind}_{U}^{P_{n}}\psi is called the Kirillov representation of PnP_{n}.

Theorem 2.3.

𝒦=indUPnψ\mathcal{K}=\operatorname{ind}_{U}^{P_{n}}\psi is an irreducible representation of PnP_{n}.

We refer the reader to Theorem 5.15.1 in [3] for a proof.

2.3. Multiplicity one Theorem for GL(n,F)\operatorname{GL}(n,F) over a finite field FF

We continue with the notation of section 2.2.

Theorem 2.4.

Let 𝒢=indUG(ψ)\mathcal{G}=\operatorname{ind}_{U}^{G}(\psi). The representation 𝒢\mathcal{G} of GG is multiplicity free.

We refer to Theorem 6.16.1 in [3] for a proof.

2.4. Twisted Jacquet Module

In this section, we recall the character and the dimension formula of the twisted Jacquet module of a representation π\pi.

Let G=GL(k,F)G=\operatorname{GL}(k,F) and P=MNP=MN be a parabolic subgroup of GG. Let ψ\psi be a character of NN. For mMm\in M, let ψm\psi^{m} be the character of NN defined by ψm(n)=ψ(mnm1)\psi^{m}(n)=\psi(mnm^{-1}). Let

V(N,ψ)=Span{π(n)vψ(n)vnN,vV}V(N,\psi)=\operatorname{Span}_{\mathbb{C}}\{\pi(n)v-\psi(n)v\mid n\in N,v\in V\}

and

Mψ={mMψm(n)=ψ(n),nN}.M_{\psi}=\{m\in M\mid{\psi}^{m}(n)=\psi(n),\forall n\in N\}.

Clearly, MψM_{\psi} is a subgroup of MM and it is easy to see that V(N,ψ)V(N,\psi) is an MψM_{\psi}-invariant subspace of VV. Hence, we get a representation (πN,ψ,V/V(N,ψ))(\pi_{N,\psi},V/V(N,\psi)) of MψM_{\psi}. We call (πN,ψ,V/V(N,ψ))(\pi_{N,\psi},V/V(N,\psi)) the twisted Jacquet module of π\pi with respect to ψ\psi. We write ΘN,ψ\Theta_{N,\psi} for the character of πN,ψ\pi_{N,\psi}.

Proposition 2.5.

Let (π,V)(\pi,V) be a representation of GL(k,F)\operatorname{GL}(k,F) and Θπ\Theta_{\pi} be the character of π\pi. We have

ΘN,ψ(m)=1|N|nNΘπ(mn)ψ(n)¯.\Theta_{N,\psi}(m)=\frac{1}{|N|}\sum_{n\in N}\Theta_{\pi}(mn)\overline{\psi(n)}.

We refer the reader to Proposition 2.3 in [2] for a proof.

Remark 2.6.

Taking m=1m=1, we get the dimension of πN,ψ\pi_{N,\psi}. To be precise, we have

dim(πN,ψ)=1|N|nNΘπ(n)ψ(n)¯.\dim_{\mathbb{C}}(\pi_{N,\psi})=\frac{1}{|N|}\sum_{n\in N}\Theta_{\pi}(n)\overline{\psi(n)}.

2.5. qq-Hypergeometric Identity

In this section, we record a certain qq-identity from [5] which we use in calculating the dimension of the twisted Jacquet module. Before we state it, we set up some notation. Let M(n,m,r,q)\operatorname{M}(n,m,r,q) be the set of all n×mn\times m matrices of rank rr over the finite field FF of order qq and (a;q)n(a;q)_{n} be the qq-Pochhammer symbol defined by

(a;q)n=i=0n1(1aqi).(a;q)_{n}=\prod_{i=0}^{n-1}(1-aq^{i}).
Proposition 2.7.

Let aa be an integer greater than or equal to 2n2n. Then

r0M(n,n,r,q)(q;q)ar=qn2(q;q)an2(q;q)a2n.\sum_{r\geq 0}\operatorname{M}(n,n,r,q)(q;q)_{a-r}=q^{n^{2}}\frac{(q;q)^{2}_{a-n}}{(q;q)_{a-2n}}.

We refer the reader to Lemma 2.1 in [5] for a proof of the above proposition in a more general set up.

3. Dimension of the Twisted Jacquet Module

Let π=πθ\pi=\pi_{\theta} be an irreducible cuspidal representation of GG corresponding to the regular character θ\theta of F2n×F_{2n}^{\times} and Θθ\Theta_{\theta} be its character. In this section, we calculate the dimension of πN,ψA\pi_{N,\psi_{A}}, where

A=[100000000].A=\begin{bmatrix}1&0&\ldots&0\\ 0&0&\ldots&0\\ \vdots&\vdots&\ddots&\vdots\\ 0&0&\ldots&0\end{bmatrix}.

Throughout, we write M(n,m,r,q)\operatorname{M}(n,m,r,q) denote the set of n×mn\times m matrices of rank rr over the finite field FF of cardinality qq. For αF\alpha\in F and 0rn0\leq r\leq n, consider the subset Yn,rαY_{n,r}^{\alpha} of M(n,F)\operatorname{M}(n,F) given by

Yn,rα={XM(n,F)Rank(X)=r,Tr(AX)=α}.Y_{n,r}^{\alpha}=\{X\in\operatorname{M}(n,F)\mid\operatorname{Rank}(X)=r,\operatorname{Tr}(AX)=\alpha\}.
Lemma 3.1.

We have

|M(n,n,r,q)|=qr|M(n,n1,r,q)|+(qnqr1)|M(n,n1,r1,q)|.|\operatorname{M}(n,n,r,q)|=q^{r}|\operatorname{M}(n,n-1,r,q)|+(q^{n}-q^{r-1})|\operatorname{M}(n,n-1,r-1,q)|.
Proof.

Let S=qr|M(n,n1,r,q)|+(qnqr1)|M(n,n1,r1,q)|S=q^{r}|\operatorname{M}(n,n-1,r,q)|+(q^{n}-q^{r-1})|\operatorname{M}(n,n-1,r-1,q)|. It is well known that

|M(n,m,r,q)|=j=0r1(qnqj)(qmqj)(qrqj).|\operatorname{M}(n,m,r,q)|=\prod_{j=0}^{r-1}\frac{(q^{n}-q^{j})(q^{m}-q^{j})}{(q^{r}-q^{j})}.

Thus, we have

S\displaystyle S =qrj=0r1(qnqj)(qn1qj)(qrqj)+(qnqr1)j=0r2(qnqj)(qn1qj)(qr1qj)\displaystyle=q^{r}\prod_{j=0}^{r-1}\frac{(q^{n}-q^{j})(q^{n-1}-q^{j})}{(q^{r}-q^{j})}+(q^{n}-q^{r-1})\prod_{j=0}^{r-2}\frac{(q^{n}-q^{j})(q^{n-1}-q^{j})}{(q^{r-1}-q^{j})}
=j=0r1(qnqj)(qnqj+1)(qrqj)+(qnqr1)j=0r2(qnqj)(qnqj+1)(qrqj+1)\displaystyle=\prod_{j=0}^{r-1}\frac{(q^{n}-q^{j})(q^{n}-q^{j+1})}{(q^{r}-q^{j})}+(q^{n}-q^{r-1})\prod_{j=0}^{r-2}\frac{(q^{n}-q^{j})(q^{n}-q^{j+1})}{(q^{r}-q^{j+1})}
=qnqrqn1|M(n,n,r,q)|+(qnqr1)(qr1)(qnqr1)(qn1)|M(n,n,r,q)|\displaystyle=\frac{q^{n}-q^{r}}{q^{n}-1}|\operatorname{M}(n,n,r,q)|+\frac{(q^{n}-q^{r-1})(q^{r}-1)}{(q^{n}-q^{r-1})(q^{n}-1)}|\operatorname{M}(n,n,r,q)|
=|M(n,n,r,q)|.\displaystyle=|\operatorname{M}(n,n,r,q)|.

Lemma 3.2.

Let r{1,2,3,,n}r\in\{1,2,3,\dots,n\} and α,βF×\alpha,\beta\in F^{\times}. Then we have

|Yn,rα|=|Yn,rβ|.|Y_{n,r}^{\alpha}|=|Y_{n,r}^{\beta}|.
Proof.

Consider the map ϕ:Yn,rαYn,rβ\phi:Y_{n,r}^{\alpha}\to Y_{n,r}^{\beta} given by

ϕ(X)=α1βX.\phi(X)=\alpha^{-1}\beta X.

Suppose that ϕ(X)=ϕ(Y)\phi(X)=\phi(Y). Since α1β0\alpha^{-1}\beta\neq 0, it follows that ϕ\phi is injective. For YYn,rβY\in Y_{n,r}^{\beta}, let X=αβ1YX=\alpha\beta^{-1}Y. Clearly, we have Tr(AX)=α\operatorname{Tr}(AX)=\alpha and Rank(X)=Rank(Y)=r\operatorname{Rank}(X)=\operatorname{Rank}(Y)=r. Thus ϕ\phi is surjective and hence the result. ∎

Lemma 3.3.
|Yn,r0|=q1|M(n,n,r,q)|+(qrqr1)|M(n1,n1,r,q)|+(qr2qr1)|M(n1,n1,r1,q)|.|Y^{0}_{n,r}|=q^{-1}|\operatorname{M}(n,n,r,q)|+(q^{r}-q^{r-1})|\operatorname{M}(n-1,n-1,r,q)|+(q^{r-2}-q^{r-1})|\operatorname{M}(n-1,n-1,r-1,q)|.
Proof.

Let 𝔅={e1,e2,,en}\mathfrak{B}=\{e_{1},e_{2},\ldots,e_{n}\} be a basis of FnF^{n} over FF and XYn,r0X\in Y_{n,r}^{0}. Then,

[X]𝔅=[0wvY][X]_{\mathfrak{B}}=\begin{bmatrix}0&w\\ v&Y\end{bmatrix}

where ww is an 1×(n1)1\times(n-1) row vector, vv is an (n1)×1(n-1)\times 1 column vector and YY is an (n1)×(n1)(n-1)\times(n-1) block matrix. We also write

[wY]=[v1v2vn1]\begin{bmatrix}w\\ Y\end{bmatrix}=\begin{bmatrix}v_{1}&v_{2}&\cdots&v_{n-1}\end{bmatrix}

where viv_{i} is an n×1n\times 1 column vector for 1in11\leq i\leq n-1.

Let VV be the n1n-1 dimensional hyperplane spanned by the vectors {e2,e3,,en}\{e_{2},e_{3},\dots,e_{n}\}. It is easy to see that [0v]V\begin{bmatrix}0\\ v\end{bmatrix}\in V. We let WW be the space spanned by the vectors {v1,v2,,vn1}\{v_{1},v_{2},\dots,v_{n-1}\}. Since XYn,r0X\in Y_{n,r}^{0}, the rank of the n×(n1)n\times(n-1) matrix

[wY]=[v1v2vn1]\begin{bmatrix}w\\ Y\end{bmatrix}=\begin{bmatrix}v_{1}&v_{2}&\cdots&v_{n-1}\end{bmatrix}

has only two possibilities, either rr or r1r-1. We consider both these cases separately.

  1. Case 1)

    Suppose that

    Rank([wY])=Rank([v1v2vn1])=r.\operatorname{Rank}\left(\begin{bmatrix}w\\ Y\end{bmatrix}\right)=\operatorname{Rank}(\begin{bmatrix}v_{1}&v_{2}&\cdots&v_{n-1}\end{bmatrix})=r.

    Then dimW=r\dim W=r. It follows that, [0v]W\begin{bmatrix}0\\ v\end{bmatrix}\in W and hence [0v]VW\begin{bmatrix}0\\ v\end{bmatrix}\in V\cap W. Therefore, the number of choices for [v1v2vn1]\begin{bmatrix}v_{1}&v_{2}&\cdots&v_{n-1}\end{bmatrix} is |M(n,n1,r,q)||\operatorname{M}(n,n-1,r,q)|.

  2. a)

    If w=0w=0, then

    WV.W\subseteq V.

    Hence, VW=WV\cap W=W and dim(VW)=dimW=r.\dim(V\cap W)=\dim W=r. Since [0v]VW\begin{bmatrix}0\\ v\end{bmatrix}\in V\cap W, the number of possibilities of [0v]\begin{bmatrix}0\\ v\end{bmatrix} will be qrq^{r}. Also, the total number of matrices [wY]\begin{bmatrix}w\\ Y\end{bmatrix} with rank rr and w=0w=0 is |M(n1,n1,r,q)||\operatorname{M}(n-1,n-1,r,q)|.

  3. b)

    If w0w\neq 0, we have WVW\not\subseteq V. Therefore,

    dim(WV)\displaystyle\dim(W\cap V) =dimV+dimWdim(V+W)\displaystyle=\dim V+\dim W-\dim(V+W)
    =n1+rn=r1.\displaystyle=n-1+r-n=r-1.

    Since [0v]VW\begin{bmatrix}0\\ v\end{bmatrix}\in V\cap W, the number of possibilities of [0v]\begin{bmatrix}0\\ v\end{bmatrix} will be qr1q^{r-1}. The number of matrices [wY]\begin{bmatrix}w\\ Y\end{bmatrix} with rank rr and w0w\neq 0, is

    |M(n,n1,r,q)||M(n1,n1,r,q)|.|\operatorname{M}(n,n-1,r,q)|-|\operatorname{M}(n-1,n-1,r,q)|.
  1. Case 2)

    Suppose that

    Rank([wY])=Rank([v1v2vn1])=r1.\operatorname{Rank}\left(\begin{bmatrix}w\\ Y\end{bmatrix}\right)=\operatorname{Rank}(\begin{bmatrix}v_{1}&v_{2}&\cdots&v_{n-1}\end{bmatrix})=r-1.

    Then dimW=r1\dim W=r-1. Therefore, vWv\not\in W and hence [0v]V\W\begin{bmatrix}0\\ v\end{bmatrix}\in V\backslash W. Also,we have that the total number of matrices [wY]\begin{bmatrix}w\\ Y\end{bmatrix} with rank r1r-1 is |M(n,n1,r1,q)|.|\operatorname{M}(n,n-1,r-1,q)|.

  2. a)

    If w=0w=0, then WVW\subseteq V. Therefore, VW=WV\cap W=W and dim(VW)=dimW=r1\dim(V\cap W)=\dim W=r-1. Since [0v]V\W\begin{bmatrix}0\\ v\end{bmatrix}\in V\backslash W, the number of possibilities of [0v]\begin{bmatrix}0\\ v\end{bmatrix} will be qn1qr1q^{n-1}-q^{r-1}. Furthermore, The total number of matrices [wY]\begin{bmatrix}w\\ Y\end{bmatrix} with rank r1r-1 and w=0w=0 is |M(n1,n1,r1,q)||\operatorname{M}(n-1,n-1,r-1,q)|.

  3. b)

    If w0w\neq 0, then WVW\not\subseteq V. Therefore,

    dim(WV)\displaystyle\dim(W\cap V) =dimV+dimWdim(V+W)\displaystyle=\dim V+\dim W-\dim(V+W)
    =n1+r1n=r2.\displaystyle=n-1+r-1-n=r-2.

    Since vV\Wv\in V\backslash W, the number of possibilities of [0v]\begin{bmatrix}0\\ v\end{bmatrix} will be qn1qr2q^{n-1}-q^{r-2}. The total number of matrices in this case will be |M(n,n1,r1,q)||M(n1,n1,r1,q)||\operatorname{M}(n,n-1,r-1,q)|-|\operatorname{M}(n-1,n-1,r-1,q)|.

Using Lemma 3.1, and the above computations, we have

|Yn,r0|\displaystyle|Y^{0}_{n,r}| =qr|M(n1,n1,r,q)|+qr1(|M(n,n1,r,q)||M(n1,n1,r,q)|)\displaystyle=q^{r}|\operatorname{M}(n-1,n-1,r,q)|+q^{r-1}(|\operatorname{M}(n,n-1,r,q)|-|\operatorname{M}(n-1,n-1,r,q)|)
+(qn1qr1)|M(n1,n1,r1,q)|\displaystyle+(q^{n-1}-q^{r-1})|\operatorname{M}(n-1,n-1,r-1,q)|
+(qn1qr2)(|M(n,n1,r1,q)||M(n1,n1,r1,q)|)\displaystyle+(q^{n-1}-q^{r-2})(|\operatorname{M}(n,n-1,r-1,q)|-|\operatorname{M}(n-1,n-1,r-1,q)|)
=qr1|M(n,n1,r,q)|+(qn1qr2)|M(n,n1,r1,q)|\displaystyle=q^{r-1}|\operatorname{M}(n,n-1,r,q)|+(q^{n-1}-q^{r-2})|\operatorname{M}(n,n-1,r-1,q)|
+(qrqr1)|M(n1,n1,r,q)|\displaystyle+(q^{r}-q^{r-1})|\operatorname{M}(n-1,n-1,r,q)|
+(qn1qr1qn1+qr2)|M(n1,n1,r1,q)|\displaystyle+(q^{n-1}-q^{r-1}-q^{n-1}+q^{r-2})|\operatorname{M}(n-1,n-1,r-1,q)|
=qr1|M(n,n1,r,q)|+(qn1qr2)|M(n,n1,r1,q)|\displaystyle=q^{r-1}|\operatorname{M}(n,n-1,r,q)|+(q^{n-1}-q^{r-2})|\operatorname{M}(n,n-1,r-1,q)|
+(qrqr1)|M(n1,n1,r,q)|+(qr2qr1)|M(n1,n1,r1,q)|\displaystyle+(q^{r}-q^{r-1})|\operatorname{M}(n-1,n-1,r,q)|+(q^{r-2}-q^{r-1})|\operatorname{M}(n-1,n-1,r-1,q)|
=q1|M(n,n,r,q)|+(qrqr1)|M(n1,n1,r,q)|\displaystyle=q^{-1}|\operatorname{M}(n,n,r,q)|+(q^{r}-q^{r-1})|\operatorname{M}(n-1,n-1,r,q)|
+(qr2qr1)|M(n1,n1,r1,q)|.\displaystyle+(q^{r-2}-q^{r-1})|\operatorname{M}(n-1,n-1,r-1,q)|.

Lemma 3.4.

We have

|Yn,r1|=q1|M(n,n,r,q)|qr1|M(n1,n1,r,q)|+qr2|M(n1,n1,r1,q)|.|Y^{1}_{n,r}|=q^{-1}|\operatorname{M}(n,n,r,q)|-q^{r-1}|\operatorname{M}(n-1,n-1,r,q)|+q^{r-2}|\operatorname{M}(n-1,n-1,r-1,q)|.
Proof.

Using Lemma 3.2, we have

|Yn,r0|+(q1)|Yn,r1|=|M(n,n,r,q)|.|Y^{0}_{n,r}|+(q-1)|Y^{1}_{n,r}|=|\operatorname{M}(n,n,r,q)|.

Thus we get,

|Yn,r1|\displaystyle|Y^{1}_{n,r}| =M(n,n,r,q)||Yn,r0|q1\displaystyle=\frac{\operatorname{M}(n,n,r,q)|-|Y^{0}_{n,r}|}{q-1}
=M(n,n,r,q)|q1|M(n,n,r,q)|q1\displaystyle=\frac{\operatorname{M}(n,n,r,q)|-q^{-1}|\operatorname{M}(n,n,r,q)|}{q-1}
(qrqr1)|M(n1,n1,r,q)|+(qr2qr1)|M(n1,n1,r1,q)|q1\displaystyle-\frac{(q^{r}-q^{r-1})|\operatorname{M}(n-1,n-1,r,q)|+(q^{r-2}-q^{r-1})|\operatorname{M}(n-1,n-1,r-1,q)|}{q-1}
=q1|M(n,n,r,q)|qr1|M(n1,n1,r,q)|+qr2|M(n1,n1,r1,q)|.\displaystyle=q^{-1}|\operatorname{M}(n,n,r,q)|-q^{r-1}|\operatorname{M}(n-1,n-1,r,q)|+q^{r-2}|\operatorname{M}(n-1,n-1,r-1,q)|.

Lemma 3.5.

We have

|Yn,r0||Yn,r1|=qr|M(n1,n1,r,q)|qr1|M(n1,n1,r1,q)|.|Y^{0}_{n,r}|-|Y^{1}_{n,r}|=q^{r}|\operatorname{M}(n-1,n-1,r,q)|-q^{r-1}|\operatorname{M}(n-1,n-1,r-1,q)|.
Proof.

Follows from Lemma 3.3 and Lemma 3.4. ∎

Lemma 3.6.

Let r{0,1,2,,n}r\in\{0,1,2,\dots,n\} and XM(n,n,r,q)X\in\mathrm{M}(n,n,r,q). We have

Θθ([1X01])={(1)(q;q)2n1, if r=0(1)(q;q)2n2, if r=1(1)(q;q)n1, if r=n\Theta_{\theta}\left(\left[\begin{array}[]{cc}1&X\\ 0&1\end{array}\right]\right)=\begin{cases}(-1)(q;q)_{2n-1},&\text{ if }r=0\\ (-1)(q;q)_{2n-2},&\text{ if }r=1\\ \quad\vdots\\ (-1)(q;q)_{n-1},&\text{ if }r=n\end{cases}
Proof.

The proof follows from Theorem 2.2 above and rewriting the character values using the qq-Pochhammer symbol. ∎

Theorem 3.7.

Let θ\theta be a regular character of F2n×F_{2n}^{\times} and π=πθ\pi=\pi_{\theta} be an irreducible cuspidal representation of GL(2n,F)\operatorname{GL}(2n,F). We have

dim(πN,ψA)=(q1)2(q21)2(qn11)2=(q;q)n12.\dim_{\mathbb{C}}(\pi_{N,\psi_{A}})=(q-1)^{2}(q^{2}-1)^{2}\cdots(q^{n-1}-1)^{2}=(q;q)^{2}_{n-1}.
Proof.

It is easy to see that the dimension of πN,ψA\pi_{N,\psi_{A}} is given by

dim(πN,ψA)=1qn2XM(n,F)Θθ([1X01])ψ0(Tr(AX))¯.\dim_{\mathbb{C}}(\pi_{N,\psi_{A}})=\frac{1}{q^{n^{2}}}\sum_{X\in\operatorname{M}(n,F)}\Theta_{\theta}\left(\begin{bmatrix}1&X\\ 0&1\end{bmatrix}\right)\overline{\psi_{0}(\operatorname{Tr}(AX))}.

Clearly, we have M(n,F)=r=0n(αFYn,rα)\displaystyle\operatorname{M}(n,F)=\bigcup_{r=0}^{n}\left(\bigcup_{\alpha\in F}Y^{\alpha}_{n,r}\right). Using this, we see that

dim(πN,ψA)\displaystyle\dim_{\mathbb{C}}(\pi_{N,\psi_{A}}) =1qn2r=0nXYn,rααFΘθ([1X01])ψ0(α)¯\displaystyle=\frac{1}{q^{n^{2}}}\sum_{r=0}^{n}\sum_{\begin{subarray}{c}X\in Y^{\alpha}_{n,r}\\ \alpha\in F\end{subarray}}\Theta_{\theta}\left(\begin{bmatrix}1&X\\ 0&1\end{bmatrix}\right)\overline{\psi_{0}(\alpha)}
=1qn2r=0n(1)(q;q)2n1r(|Yn,r0||Yn,r1|)\displaystyle=\frac{1}{q^{n^{2}}}\sum_{r=0}^{n}(-1)(q;q)_{2n-1-r}\left(|Y^{0}_{n,r}|-|Y^{1}_{n,r}|\right)
=1qn2[(q;q)2n1q0|M(n1,n1,0,q)|\displaystyle=-\frac{1}{q^{n^{2}}}\big{[}(q;q)_{2n-1}q^{0}\left|\operatorname{M}(n-1,n-1,0,q)\right|
+r=1n(q;q)2n1r(qr|M(n1,n1,r,q)|qr1|M(n1,n1,r1,q)|)]\displaystyle+\sum_{r=1}^{n}(q;q)_{2n-1-r}(q^{r}\left|\operatorname{M}(n-1,n-1,r,q)\right|-q^{r-1}\left|\operatorname{M}(n-1,n-1,r-1,q)\right|)\big{]}
=1qn2r=0n1qr((q;q)2n1r(q;q)2n2r)|M(n1,n1,r,q)|\displaystyle=-\frac{1}{q^{n^{2}}}\sum_{r=0}^{n-1}q^{r}\left((q;q)_{2n-1-r}-(q;q)_{2n-2-r}\right)\left|\operatorname{M}(n-1,n-1,r,q)\right|
=1qn2r=0n1q2n1|M(n1,n1,r,q)|(q;q)2n2r\displaystyle=\frac{1}{q^{n^{2}}}\sum_{r=0}^{n-1}q^{2n-1}\left|\operatorname{M}(n-1,n-1,r,q)\right|(q;q)_{2n-2-r}
=1q(n1)2r=0n1|M(n1,n1,r,q)|(q;q)2n2r\displaystyle=\frac{1}{q^{(n-1)^{2}}}\sum_{r=0}^{n-1}\left|\operatorname{M}(n-1,n-1,r,q)\right|(q;q)_{2n-2-r}
=(q;q)n12.\displaystyle=(q;q)_{n-1}^{2}.

Remark 3.8.

Suppose that B=Aw0B=Aw_{0}. It is easy to see that ΘN,ψA([m100m2])=ΘN,ψB([w0m1w000m2])\Theta_{N,\psi_{A}}\left(\begin{bmatrix}m_{1}&0\\ 0&m_{2}\end{bmatrix}\right)=\Theta_{N,\psi_{B}}\left(\begin{bmatrix}w_{0}m_{1}w_{0}&0\\ 0&m_{2}\end{bmatrix}\right). Thus we have that dim(πN,ψA)=dim(πN,ψB)\dim_{\mathbb{C}}(\pi_{N,\psi_{A}})=\dim_{\mathbb{C}}(\pi_{N,\psi_{B}}).

4. Main Theorem

In this section, we prove the main result of this paper. Before we continue, we set up some notation and record a few preliminary results that we need. Let G=GL(2n,F)G=\operatorname{GL}(2n,F) and PP be the maximal parabolic subgroup of GG with Levi decomposition P=MNP=MN, where MGL(n,F)×GL(n,F)M\simeq\operatorname{GL}(n,F)\times\operatorname{GL}(n,F) and NM(n,F)N\simeq\operatorname{M}(n,F). We write FnF_{n} for the unique field extension of FF of degree nn. Let ψ0\psi_{0} be a fixed non-trivial additive character of FF. Let

A=[001000000].A=\begin{bmatrix}0&\ldots&0&1\\ 0&\ldots&0&0\\ \vdots&\ddots&\vdots&\vdots\\ 0&\ldots&0&0\end{bmatrix}.

Let ψA:N×\psi_{A}:N\rightarrow\mathbb{C}^{\times} be the character of NN given by

ψA([1X01])=ψ0(Tr(AX)).\psi_{A}\left(\begin{bmatrix}1&X\\ 0&1\end{bmatrix}\right)=\psi_{0}(\operatorname{Tr}(AX)).

Let HA=M1×M2H_{A}=M_{1}\times M_{2} where M1M_{1} is the Mirabolic subgroup of GL(n,F)\operatorname{GL}(n,F) and M2=w0M1w01M_{2}={w_{0}}{M_{1}}^{\top}{w_{0}}^{-1}. Let UU be the subgroup of unipotent matrices in GL(2n,F)\operatorname{GL}(2n,F). Let UA=HAUU_{A}=H_{A}\cap U. Clearly, we have UAU1×U2U_{A}\simeq U_{1}\times U_{2} where U1U_{1} and U2U_{2} are the upper triangular unipotent subgroups of GL(n,F)\operatorname{GL}(n,F). For k=1,2k=1,2, let μk:Uk×\mu_{k}:U_{k}\rightarrow\mathbb{C}^{\times} be the non-degenerate character of UkU_{k} given by

μk([1x12x13x1n1x23x2n1xn1,n1])=ψ0(x12+x23++xn1,n).\mu_{k}\left(\begin{bmatrix}1&x_{12}&x_{13}&\ldots&x_{1n}\\ &1&x_{23}&\ldots&x_{2n}\\ &&1&\ddots&\vdots\\ &&&\ddots&x_{n-1,n}\\ &&&&1\end{bmatrix}\right)=\psi_{0}(x_{12}+x_{23}+\cdots+x_{n-1,n}).

Let μ:UA×\mu:U_{A}\rightarrow\mathbb{C}^{\times} be the character of UAU_{A} given by

μ(u)=μ1(u1)μ2(u2)\mu(u)=\mu_{1}(u_{1})\mu_{2}(u_{2})

where u=[u1u2]u=\begin{bmatrix}u_{1}&\\ &u_{2}\end{bmatrix}.

Lemma 4.1.

Let MψA={mMψAm(n)=ψA(n),nN}M_{\psi_{A}}=\{m\in M\mid\psi^{m}_{A}(n)=\psi_{A}(n),\forall n\in N\}. Then we have

MψA={[Cx0aay0D]|aF×,C,DGL(n1,F),x,yFn1}.M_{\psi_{A}}=\left\{\begin{bmatrix}C&x&&\\ 0&a&&\\ &&a&y\\ &&0&D\end{bmatrix}\,\middle|\,a\in F^{\times},C,D\in\operatorname{GL}(n-1,F),x,y\in F^{n-1}\right\}.
Proof.

Let g=[g1g2]Mg=\begin{bmatrix}g_{1}&\\ &g_{2}\end{bmatrix}\in M. Then gMψAg\in M_{\psi_{A}} if and only if Ag1=g2AAg_{1}=g_{2}A. It follows that gMψAg\in M_{\psi_{A}} if and only if g1=[Cx0a]g_{1}=\begin{bmatrix}C&x\\ 0&a\end{bmatrix} and g2=[ay0D]g_{2}=\begin{bmatrix}a&y\\ 0&D\end{bmatrix}. ∎

Lemma 4.2.

Let ZZ be the center of G=GL(2n,F)G=\operatorname{GL}(2n,F). Let HAH_{A} be a subgroup of GG as above. Then,

MψAZ×HA.M_{\psi_{A}}\simeq Z\times H_{A}.
Proof.

Trivial. ∎

Lemma 4.3.

Let ρ1=indU1M1μ1\rho_{1}=\operatorname{ind}_{U_{1}}^{M_{1}}\mu_{1} and ρ2=indU2M2μ2\rho_{2}=\operatorname{ind}_{U_{2}}^{M_{2}}\mu_{2}. Consider the representation (ρ,V)(\rho,V) of MψAM_{\psi_{A}} given by

ρ=θ|F×indUAHAμ=θ|F×(ρ1ρ2).\rho=\theta|_{F^{\times}}\otimes\operatorname{ind}_{U_{A}}^{H_{A}}\mu=\theta|_{F^{\times}}\otimes(\rho_{1}\otimes\rho_{2}).

Then (ρ,V)(\rho,V) is an irreducible representation of MψAM_{\psi_{A}}.

Proof.

Since ρ1\rho_{1} is the Kirillov representation of the Mirabolic subgroup M1M_{1} of GL(n,F)\operatorname{GL}(n,F), we have that ρ1\rho_{1} is irreducible (see Theorem 2.3). In a similar way, we can see that ρ2\rho_{2} is also irreducible. Hence the result. ∎

Lemma 4.4.

Let PψA=MψANP_{\psi_{A}}=M_{\psi_{A}}N. Consider the map ρ~:PψAGL(V)\tilde{\rho}:P_{\psi_{A}}\to\operatorname{GL}(V) given by

ρ~(p)=ρ~(mn)=ψA(mnm1)ρ(m),\tilde{\rho}(p)=\tilde{\rho}(mn)=\psi_{A}(mn{m}^{-1})\rho(m),

where mMψA,nNm\in M_{\psi_{A}},n\in N. Then (ρ~,V)(\tilde{\rho},V) is a representation of PψAP_{\psi_{A}}.

Proof.

Let p1=m1n1,p2=m2n2PψAp_{1}=m_{1}n_{1},p_{2}=m_{2}n_{2}\in P_{\psi_{A}}. Then, we have

ρ~(p1p2)\displaystyle\tilde{\rho}(p_{1}p_{2}) =ρ~(m1n1m2n2)\displaystyle=\tilde{\rho}(m_{1}n_{1}m_{2}n_{2})
=ρ~(m1m2(m21n1m2)n2)\displaystyle=\tilde{\rho}(m_{1}m_{2}({m_{2}}^{-1}n_{1}m_{2})n_{2})
=ψA(m1m2(m21n1m2n2)m21m11)ρ(m1m2)\displaystyle=\psi_{A}(m_{1}m_{2}({m_{2}}^{-1}n_{1}m_{2}n_{2}){m_{2}}^{-1}{m_{1}}^{-1})\rho(m_{1}m_{2})
=ψA(n1(m2n2m21))ρ(m1m2)\displaystyle=\psi_{A}(n_{1}(m_{2}n_{2}{m_{2}}^{-1}))\rho(m_{1}m_{2})
=ψA(n1)ψA(m2n2m21)ρ(m1)ρ(m2)\displaystyle=\psi_{A}(n_{1})\psi_{A}(m_{2}n_{2}{m_{2}}^{-1})\rho(m_{1})\rho(m_{2})
=ψA(m1n1m11)ρ(m1)ψA(m2n2m21)ρ(m2)\displaystyle=\psi_{A}(m_{1}{n_{1}}{m_{1}}^{-1})\rho(m_{1})\psi_{A}(m_{2}n_{2}{m_{2}}^{-1})\rho(m_{2})
=ρ~(p1)ρ~(p2).\displaystyle=\tilde{\rho}(p_{1})\tilde{\rho}(p_{2}).

Lemma 4.5.

Let (ρ~,V)(\tilde{\rho},V) be the representation of PψAP_{\psi_{A}} given by

ρ~(p)=ρ~(mn)=ψA(mnm1)ρ(m),\tilde{\rho}(p)=\tilde{\rho}(mn)=\psi_{A}(mn{m}^{-1})\rho(m),

where mMψA,nNm\in M_{\psi_{A}},n\in N. Then, (ρ~,V)(\tilde{\rho},V) is irreducible.

Proof.

Let WW be a non-trivial PψAP_{\psi_{A}}-invariant subspace of VV. For wW,pPψAw\in W,p\in P_{\psi_{A}}, we have

ρ~(p)w=ψA(mnm1)ρ(m)wW.\tilde{\rho}(p)w=\psi_{A}(mnm^{-1})\rho(m)w\in W.

Therefore ρ(m)wW\rho(m)w\in W, for all mMψAm\in M_{\psi_{A}}, wWw\in W. Since ρ\rho is irreducible (see Lemma 4.3), the result follows. ∎

Lemma 4.6.

Consider the representation ρ~\tilde{\rho} of PψAP_{\psi_{A}}. We have

ρ~|U=ψAρ|UA.\tilde{\rho}|_{U}=\psi_{A}\otimes\rho|_{U_{A}}.
Proof.

Clearly we have U=UANU=U_{A}N. Hence for u=xnUu=xn\in U, we have

ρ~(u)=ψA(xnx1)ρ(x)=ψA(n)ρ(x).\tilde{\rho}(u)=\psi_{A}(xn{x}^{-1})\rho(x)=\psi_{A}(n)\rho(x).

Lemma 4.7.

Let ρ=θ|F×indUAHAμ\rho=\theta|_{F^{\times}}\otimes\operatorname{ind}_{U_{A}}^{H_{A}}\mu be the representation of MψAM_{\psi_{A}} and ρ~\tilde{\rho} be the corresponding representation of PψAP_{\psi_{A}}. For any zZz\in Z, we have

ωρ~(z)=ωρ(z)=θ(z).\omega_{\tilde{\rho}}(z)=\omega_{\rho}(z)=\theta(z).
Proof.

For zZz\in Z, we have

χρ~(z)\displaystyle\chi_{\tilde{\rho}}(z) =Tr(ρ~(z))\displaystyle=\operatorname{Tr}(\tilde{\rho}(z))
=ωρ~(z)deg(ρ)\displaystyle=\omega_{\tilde{\rho}}(z)\deg(\rho)
=Tr(ρ(z))\displaystyle=\operatorname{Tr}(\rho(z))
=ωρ(z)deg(ρ)\displaystyle=\omega_{\rho}(z)\deg(\rho)
=Tr(θ|F×(z)indUAHAμ(1))\displaystyle=\operatorname{Tr}(\theta|_{F^{\times}}(z)\otimes\operatorname{ind}_{U_{A}}^{H_{A}}\mu(1))
=θ(z)deg(ρ)\displaystyle=\theta(z)\deg(\rho)

It follows that ωρ~(z)=ωρ(z)=θ(z)\omega_{\tilde{\rho}}(z)=\omega_{\rho}(z)=\theta(z). ∎

Lemma 4.8.

Let χ:F××\chi:F^{\times}\to\mathbb{C}^{\times} be a character of F×F^{\times}. Consider the representation (ρ~,V)(\tilde{\rho},V) of PψAP_{\psi_{A}} defined above. Let σχ:PψAGL(V)\sigma_{\chi}:P_{\psi_{A}}\to\operatorname{GL}(V) be the map

σχ(p)=σχ(zhn)=χ(z)ρ~(hn),\sigma_{\chi}(p)=\sigma_{\chi}(zhn)=\chi(z)\tilde{\rho}(hn),

where zZ,hHA,nNz\in Z,h\in H_{A},n\in N. Then σχ\sigma_{\chi} is an irreducible representation of PψAP_{\psi_{A}}.

Proof.

It is easy to see that σχ\sigma_{\chi} is a representation of PψAP_{\psi_{A}}. Let WW be a non-trivial subspace of VV invariant under PψAP_{\psi_{A}} and let w0Ww\neq 0\in W. We have

σχ(zhn)w=χ(z)ρ~(hn)wW.\sigma_{\chi}(zhn)w=\chi(z)\tilde{\rho}(hn)w\in W.

Therefore,

ρ~(zhn)w=ρ~(z)ρ~(hn)w=ωρ~(z)ρ~(hn)wW.\tilde{\rho}(zhn)w=\tilde{\rho}(z)\tilde{\rho}(hn)w=\omega_{\tilde{\rho}}(z)\tilde{\rho}(hn)w\in W.

Since ρ~\tilde{\rho} is irreducible, it follows that V=WV=W and hence the result. ∎

Lemma 4.9.

Let χ1,χ2F×^\chi_{1},\chi_{2}\in\widehat{F^{\times}} such that χ1χ2\chi_{1}\neq\chi_{2}. Then,

σχ1≄σχ2.\sigma_{\chi_{1}}\not\simeq\sigma_{\chi_{2}}.
Proof.

Let z0Zz_{0}\in Z such that χ1(z0)χ2(z0)\chi_{1}(z_{0})\neq\chi_{2}(z_{0}). Let χσχ1\chi_{\sigma_{\chi_{1}}}, χσχ2\chi_{\sigma_{\chi_{2}}} be the characters of σχ1\sigma_{\chi_{1}} and σχ2\sigma_{\chi_{2}}. Suppose that σχ1σχ2\sigma_{\chi_{1}}\simeq\sigma_{\chi_{2}}. We have

χσχ1(z0)\displaystyle\chi_{\sigma_{\chi_{1}}}(z_{0}) =Tr(σχ1(z0))\displaystyle=\operatorname{Tr}(\sigma_{\chi_{1}}(z_{0}))
=χ1(z0)deg(ρ)\displaystyle=\chi_{1}(z_{0})\deg(\rho)
=χσχ2(z0)\displaystyle=\chi_{\sigma_{\chi_{2}}}(z_{0})
=Tr(σχ2(z0))\displaystyle=\operatorname{Tr}(\sigma_{\chi_{2}}(z_{0}))
=χ2(z0)deg(ρ).\displaystyle=\chi_{2}(z_{0})\deg(\rho).

The result follows. ∎

Lemma 4.10.

For χF×^\chi\in\widehat{F^{\times}}, we have

HomPψA(σχ,indUPψAψ)0.\operatorname{Hom}_{P_{\psi_{A}}}(\sigma_{\chi},\operatorname{ind}_{U}^{P_{\psi_{A}}}\psi)\neq 0.
Proof.

Using Fröbenius Reciprocity, we have

HomPψA(σχ,indUPψAψ)=HomU(σχ|U,ψ).\operatorname{Hom}_{P_{\psi_{A}}}(\sigma_{\chi},\operatorname{ind}_{U}^{P_{\psi_{A}}}\psi)=\operatorname{Hom}_{U}(\sigma_{\chi}|_{U},\psi).

Thus it is enough to show that HomU(σχ|U,ψ)0\operatorname{Hom}_{U}(\sigma_{\chi}|_{U},\psi)\neq 0. For uUu\in U, we have

σχ|U(u)=σχ(u)=χ(1)ρ~(u)=ρ~|U(u).\sigma_{\chi}|_{U}(u)=\sigma_{\chi}(u)=\chi(1)\tilde{\rho}(u)=\tilde{\rho}|_{U}(u).

Therefore,

HomU(σχ|U,ψ)\displaystyle\operatorname{Hom}_{U}(\sigma_{\chi}|_{U},\psi) =HomU(ρ~|U,ψ)\displaystyle=\operatorname{Hom}_{U}(\tilde{\rho}|_{U},\psi)
=HomU(ψAρ|UA,ψ)\displaystyle=\operatorname{Hom}_{U}(\psi_{A}\otimes\rho|_{U_{A}},\psi)
=HomU(ψAsUAHA/UAinds1UAsUAUAμs,ψ)\displaystyle=\operatorname{Hom}_{U}\left(\psi_{A}\otimes\bigoplus_{s\in U_{A}\setminus H_{A}/U_{A}}\operatorname{ind}_{s^{-1}U_{A}s\cap U_{A}}^{U_{A}}\mu^{s},\psi\right)
=HomU(ψAμ,ψ)1sUAHA/UAHomU(ψAinds1UAsUAUAμs,ψ)\displaystyle=\operatorname{Hom}_{U}(\psi_{A}\otimes\mu,\psi)\oplus\bigoplus_{1\neq s\in U_{A}\setminus H_{A}/U_{A}}\operatorname{Hom}_{U}\left(\psi_{A}\otimes\operatorname{ind}_{s^{-1}U_{A}s\cap U_{A}}^{U_{A}}\mu^{s},\psi\right)
=HomU(ψ,ψ)1sUAHA/UAHomU(ψAinds1UAsUAUAμs,ψ)\displaystyle=\operatorname{Hom}_{U}(\psi,\psi)\oplus\bigoplus_{1\neq s\in U_{A}\setminus H_{A}/U_{A}}\operatorname{Hom}_{U}\left(\psi_{A}\otimes\operatorname{ind}_{s^{-1}U_{A}s\cap U_{A}}^{U_{A}}\mu^{s},\psi\right)
0.\displaystyle\neq 0.

Lemma 4.11.

Let χF×^\chi\in\widehat{F^{\times}} and σχ\sigma_{\chi} be the irreducible representation of PψAP_{\psi_{A}}. Then

indUPψAψ=χF×^σχ.\operatorname{ind}_{U}^{P_{\psi_{A}}}\psi=\bigoplus_{\chi\in\widehat{F^{\times}}}\sigma_{\chi}.
Proof.

The result clearly follows from a simple application of Lemma 4.9 and Lemma 4.10, and computing the degree of indUPψA(ψ)\operatorname{ind}_{U}^{P_{\psi_{A}}}(\psi). To be precise, suppose that

indUPψA(ψ)=(xF×^dχσχ)dσ\operatorname{ind}_{U}^{P_{\psi_{A}}}(\psi)=(\bigoplus_{x\in\widehat{F^{\times}}}d_{\chi}\sigma_{\chi})\oplus d\sigma

where dχ1,d0d_{\chi}\geq 1,d\geq 0 and σ\sigma is some representation of PψAP_{\psi_{A}}. By degree comparison, we have that

deg(χF×^dχσχ)=χF×^dχdeg(σχ)=χF×^dχdeg(ρ)\deg\big{(}\bigoplus_{\chi\in\widehat{F^{\times}}}d_{\chi}\sigma_{\chi}\big{)}=\sum_{\chi\in\widehat{F^{\times}}}d_{\chi}\deg(\sigma_{\chi})=\sum_{\chi\in\widehat{F^{\times}}}d_{\chi}\deg(\rho)

Clearly

χF×^dχdeg(ρ)(q1)deg(ρ)=deg(indUPψA(ψ)),\sum_{\chi\in\widehat{F^{\times}}}d_{\chi}\deg(\rho)\geq(q-1)\deg(\rho)=\deg(\operatorname{ind}_{U}^{P_{\psi_{A}}}(\psi)),

On the other hand, we have

deg(χF×^dχσχ)+ddeg(σ)=deg(indUPψA(ψ)).\deg(\bigoplus_{\chi\in\widehat{F^{\times}}}d_{\chi}\sigma_{\chi})+d\deg(\sigma)=\deg(\operatorname{ind}_{U}^{P_{\psi_{A}}}(\psi)).

It follows that

d=0,dχ=1,χF×.d=0,d_{\chi}=1,\forall\chi\in F^{\times}.

Hence the result. ∎

Lemma 4.12.

Let m=ahMψAm=ah\in M_{\psi_{A}}, where aZa\in Z and hHAh\in H_{A}. Then,

ΘN,ψA(m)=θ(a)ΘN,ψA(h).\Theta_{N,\psi_{A}}(m)=\theta(a)\Theta_{N,\psi_{A}}(h).
Proof.

We have

ΘN,ψA(m)\displaystyle\Theta_{N,\psi_{A}}(m) =ΘN,ψA(ah)\displaystyle=\Theta_{N,\psi_{A}}(ah)
=1|N|nNΘθ(ahn)ψA(n)¯\displaystyle=\frac{1}{|N|}\sum_{n\in N}\Theta_{\theta}(ahn)\overline{\psi_{A}(n)}
=1|N|nNTr(π(ahn)ψA(n)¯\displaystyle=\frac{1}{|N|}\sum_{n\in N}\operatorname{Tr}(\pi(ahn)\overline{\psi_{A}(n)}
=1|N|nNTr(π(a)π(hn)ψA(n)¯\displaystyle=\frac{1}{|N|}\sum_{n\in N}\operatorname{Tr}(\pi(a)\pi(hn)\overline{\psi_{A}(n)}
=ωπ(a)1|N|nNTr(π(hn)ψA(n)¯\displaystyle=\omega_{\pi}(a)\frac{1}{|N|}\sum_{n\in N}\operatorname{Tr}(\pi(hn)\overline{\psi_{A}(n)}
=ωπ(a)ΘN,ψA(h)\displaystyle=\omega_{\pi}(a)\Theta_{N,\psi_{A}}(h)

where ωπ\omega_{\pi} is the central character of π\pi. Explicitly, we have

Θθ(a)=Tr(π(a))=Tr(ωπ(a))=ωπ(a)dim(π).\Theta_{\theta}(a)=\operatorname{Tr}(\pi(a))=\operatorname{Tr}(\omega_{\pi}(a))=\omega_{\pi}(a)\dim(\pi).

Using Theorem 2.2, it is easy to see that

Θθ(a)=θ(a)dim(π).\Theta_{\theta}(a)=\theta(a)\dim(\pi).

Thus, we have ωπ(a)=θ(a)\omega_{\pi}(a)=\theta(a) and the result follows. ∎

Lemma 4.13.

Let χθF×^\chi\neq\theta\in\widehat{F^{\times}}. Then

HomPψA(π|PψA,σχ)=0.\operatorname{Hom}_{P_{\psi_{A}}}(\pi|_{P_{\psi_{A}}},\sigma_{\chi})=0.
Proof.

It is enough to show that dimHomPψA(π|PψA,σχ)=0\dim_{\mathbb{C}}\operatorname{Hom}_{P_{\psi_{A}}}(\pi|_{P_{\psi_{A}}},\sigma_{\chi})=0. Clearly, we have

dimHomPψA(π|PψA,σχ)\displaystyle\dim_{\mathbb{C}}\operatorname{Hom}_{P_{\psi_{A}}}(\pi|_{P_{\psi_{A}}},\sigma_{\chi}) =χπ|PψA,χσχ\displaystyle=\langle\chi_{\pi|_{P_{\psi_{A}}}},\chi_{\sigma_{\chi}}\rangle
=zhnPψAχπ(zhn)χσχ(zhn)¯\displaystyle=\sum_{zhn\in P_{\psi_{A}}}\chi_{\pi}(zhn)\overline{\chi_{\sigma_{\chi}}(zhn)}
=hnHANzZωπ(z)χπ(hn)χ(z)¯χρ~(hn)¯\displaystyle=\sum_{hn\in H_{A}N}\sum_{z\in Z}\omega_{\pi}(z)\chi_{\pi}(hn)\overline{\chi(z)}\overline{\chi_{\tilde{\rho}}(hn)}
=hnHANzZθ(z)χ(z)¯χπ(hn)χρ~(hn)¯\displaystyle=\sum_{hn\in H_{A}N}\sum_{z\in Z}\theta(z)\overline{\chi(z)}\chi_{\pi}(hn)\overline{\chi_{\tilde{\rho}}(hn)}
=zZθ(z)χ(z)¯hnHANχπ(hn)χρ~(hn)¯\displaystyle=\sum_{z\in Z}\theta(z)\overline{\chi(z)}\sum_{hn\in H_{A}N}\chi_{\pi}(hn)\overline{\chi_{\tilde{\rho}}(hn)}
=θ,χhnHANχπ(hn)χρ~(hn)¯\displaystyle=\langle\theta,\chi\rangle\sum_{hn\in H_{A}N}\chi_{\pi}(hn)\overline{\chi_{\tilde{\rho}}(hn)}
=0\displaystyle=0

It follows that

HomPψA(π|PψA,σχ)=0,χF×^,χθ.\operatorname{Hom}_{P_{\psi_{A}}}(\pi|_{P_{\psi_{A}}},\sigma_{\chi})={0},\forall\chi\in\widehat{F^{\times}},\chi\neq\theta.

Lemma 4.14.

Consider the restriction θ|F×\theta|_{F^{\times}} of the regular character θ\theta. Then

σθ=ρ~\sigma_{\theta}=\tilde{\rho}

as PψAP_{\psi_{A}} representations.

Proof.

Using Lemma 4.7 we have ωρ~(z)=θ(z)\omega_{\tilde{\rho}}(z)=\theta(z). Thus for p=zhnPψAp=zhn\in P_{\psi_{A}}, we have

σθ(zhn)\displaystyle\sigma_{\theta}(zhn) =θ(z)ρ(hn)\displaystyle=\theta(z)\rho(hn)
=ωρ~(z)ρ~(hn)\displaystyle=\omega_{\tilde{\rho}}(z)\tilde{\rho}(hn)
=ρ~(zhn).\displaystyle=\tilde{\rho}(zhn).

4.1. Proof of the Main Theorem

For the sake of completeness, we recall the statement below.

Theorem 4.15.

Let θ\theta be a regular character of F2n×F_{2n}^{\times} and π=πθ\pi=\pi_{\theta} be an irreducible cuspidal representation of GG. Then

πN,ψAθ|F×indUAHAμ\pi_{N,\psi_{A}}\simeq\theta|_{F^{\times}}\otimes\operatorname{ind}_{U_{A}}^{H_{A}}\mu

as MψAM_{\psi_{A}} modules.

Proof.

Using transitivity of induction and Lemma 4.11, we have that

HomG(π,indUGψ)\displaystyle\operatorname{Hom}_{G}(\pi,\operatorname{ind}_{U}^{G}\psi) =HomG(π,indPψAG(indUPψAψ))\displaystyle=\operatorname{Hom}_{G}(\pi,\operatorname{ind}_{P_{\psi_{A}}}^{G}(\operatorname{ind}_{U}^{P_{\psi_{A}}}\psi))
=HomG(π,indPψAG(χF×^σχ))\displaystyle=\operatorname{Hom}_{G}(\pi,\operatorname{ind}_{P_{\psi_{A}}}^{G}(\bigoplus_{\chi\in\widehat{F^{\times}}}\sigma_{\chi}))
=χF×^HomG(π,indPψAGσχ)\displaystyle=\bigoplus_{\chi\in\widehat{F^{\times}}}\operatorname{Hom}_{G}(\pi,\operatorname{ind}_{P_{\psi_{A}}}^{G}\sigma_{\chi})
=χF×^HomPψA(π|PψA,σχ)\displaystyle=\bigoplus_{\chi\in\widehat{F^{\times}}}\operatorname{Hom}_{P_{\psi_{A}}}(\pi|_{P_{\psi_{A}}},\sigma_{\chi})
=HomPψA(π|PψA,σθ)θχF×^HomPψA(π|PψA,σχ)\displaystyle=\operatorname{Hom}_{P_{\psi_{A}}}(\pi|_{P_{\psi_{A}}},\sigma_{\theta})\oplus\bigoplus_{\theta\neq\chi\in\widehat{F^{\times}}}\operatorname{Hom}_{P_{\psi_{A}}}(\pi|_{P_{\psi_{A}}},\sigma_{\chi})
=HomPψA(π|PψA,ρ~)\displaystyle=\operatorname{Hom}_{P_{\psi_{A}}}(\pi|_{P_{\psi_{A}}},\tilde{\rho})

Hence,

HomG(π,indUG(ψ))=HomPψA(π|PψA,ρ~)HomG(π,indPψAGρ~)HomMψA(πN,ψA,ρ).\operatorname{Hom}_{G}(\pi,\operatorname{ind}_{U}^{G}(\psi))=\operatorname{Hom}_{P_{\psi_{A}}}(\pi|_{P_{\psi_{A}}},\tilde{\rho})\simeq\operatorname{Hom}_{G}(\pi,\operatorname{ind}_{P_{\psi_{A}}}^{G}\tilde{\rho})\simeq\operatorname{Hom}_{M_{\psi_{A}}}(\pi_{N,\psi_{A}},\rho).

Using the multiplicity one theorem for GL(n)\operatorname{GL}(n) (give precise statement in preliminaries), we conclude that

dimHomMψA(πN,ψA,ρ)=1\dim_{\mathbb{C}}\operatorname{Hom}_{M_{\psi_{A}}}(\pi_{N,\psi_{A}},\rho)=1

and it follows that

πN,ψAρ\pi_{N,\psi_{A}}\simeq\rho

as MψAM_{\psi_{A}} representations. ∎

Acknowledgements

We thank Professor Dipendra Prasad for suggesting this problem and for some helpful discussions. Research of Kumar Balasubramanian is supported by the SERB grant: MTR/2019/000358.

References

  • [1] Kumar Balasubramanian and Himanshi Khurana, On a twisted jacquet module of gl(6) over a finite field.
  • [2] by same author, A certain twisted Jacquet module of GL(4){\rm GL}(4) over a finite field, J. Pure Appl. Algebra 226 (2022), no. 5, Paper No. 106932, 16. MR 4328653
  • [3] Daniel Bump, Notes on representations of gl (r) over a finite field, 2018.
  • [4] S. I. Gelfand, Representations of the full linear group over a finite field, Mat. Sb. (N.S.) 83 (125) (1970), 15–41. MR 0272916
  • [5] Ofir Gorodetsky and Zahi Hazan, On certain degenerate Whittaker models for cuspidal representations of GLkn(𝔽q){\rm GL}_{k\cdot n}(\mathbb{F}_{q}), Math. Z. 291 (2019), no. 1-2, 609–633. MR 3936084
  • [6] Dipendra Prasad, The space of degenerate Whittaker models for general linear groups over a finite field, Internat. Math. Res. Notices (2000), no. 11, 579–595. MR 1763857