This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

11footnotetext: Zhen Guo is the corresponding author.
    Keywords: Divisor function; exponential sum; double large sieve.
    MR(2020) Subject Classification: 11L07, 11L20, 11N37.

On a sum of the error term of the Dirichlet divisor function over primes

Zhen Guo  &  Xin Li Department of Mathematics, China University of Mining and Technology, Beijing, 100083, People’s Republic of China [email protected] Department of Mathematics, China University of Mining and Technology, Beijing, 100083, People’s Republic of China [email protected]
Abstract.

Let d(n)d(n) be the Dirichlet divisor function and Δ(x)\Delta(x) denote the error term of the sum nxd(n)\sum_{n\leqslant x}d(n) for a large real variable xx. In this paper we focus on the sum pxΔ2(p)\sum_{p\leqslant x}\Delta^{2}(p), where pp runs over primes. We prove that there exists an asymptotic formula.

1. Introduction and Main Result

Let d(n)d(n) be the Dirichlet divisor function and Δ(x)\Delta(x) denote the error term of the sum nxd(n)\sum_{n\leqslant x}d(n) for a large real variable xx. It was first proved by Dirichlet that Δ(x)=O(x1/2)\Delta(x)=O(x^{1/2}). Over the years the exponent 1/21/2 was improved by many authors[7, 13, 19, 20]. Until now the best result

Δ(x)x131/416(logx)26497/8320\Delta(x)\ll x^{131/416}(\log x)^{26497/8320} (1.1)

was given by Huxley[8].

It is conjectured that Δ(x)x1/4+ε\Delta(x)\ll x^{1/4+\varepsilon}, which is supported by the classical mean square result

1TΔ2(x)𝑑x=𝒞6π2T3/2+O(T5/4+ε)\int_{1}^{T}\Delta^{2}(x)dx=\frac{\mathcal{C}}{6\pi^{2}}T^{3/2}+O(T^{5/4+\varepsilon}) (1.2)

for a large real number TT, and where

𝒞=n=1d2(n)n3/2\mathcal{C}=\sum_{n=1}^{\infty}\frac{d^{2}(n)}{n^{3/2}}

is a constant. It was proved by Cramér[1] in 1922. The result was improved by Tong[17] in 1956, Preissmann[15] in 1988, and Lau and Tsang[14] in 2009.

Also, the discrete mean values

𝒟2(x):=nxΔ2(n)\mathcal{D}_{2}(x):=\sum_{n\leqslant x}\Delta^{2}(n)

have been investigated by various authors. Define the continuous mean values

𝒞2(x):=1xΔ2(t)𝑑t.\mathcal{C}_{2}(x):=\int_{1}^{x}\Delta^{2}(t)dt.

Many authors found that the discrete and the continuous mean value formulas are connected deeply with each other and studied the difference between 𝒟2(x)\mathcal{D}_{2}(x) and 𝒞2(x)\mathcal{C}_{2}(x). Hardy[4] studied the difference between 𝒟2(x)\mathcal{D}_{2}(x) and 𝒞2(x)\mathcal{C}_{2}(x) and derived that 𝒟2(x)=O(x3/2+ε)\mathcal{D}_{2}(x)=O(x^{3/2+\varepsilon}). These differences were also studied by Furuya [3], he gave the asymptotic formula

𝒟2(x)=𝒞2(x)+16xlog2x+8γ112xlogx+8γ22γ+112x+{OΩ±}(x3/4logx).\mathcal{D}_{2}(x)=\mathcal{C}_{2}(x)+\frac{1}{6}x\log^{2}x+\frac{8\gamma-1}{12}x\log x+\frac{8\gamma^{2}-2\gamma+1}{12}x+\left\{\begin{array}[]{lr}O\\ \Omega_{\pm}\end{array}\right\}(x^{3/4}\log x).

In this paper, as an analogue of the discrete mean values, we consider a sum of Δ2()\Delta^{2}(\cdot) over a subset of N\mathbb{N}. More precisely over primes, namely pxΔ2(p)\sum_{p\leqslant x}\Delta^{2}(p), where pp runs over primes and xx is a large real variable. And the result is stated as follows:

Theorem.

Let pp be prime and x2x\geq 2 is a large real number, then

pxΔ2(p)=𝒞4π2pxp1/2+O(x23/16+ε)\sum_{p\leqslant x}\Delta^{2}(p)=\frac{\mathcal{C}}{4\pi^{2}}\sum_{p\leqslant x}p^{1/2}+O(x^{23/16+\varepsilon}) (1.3)

holds for any ε>0\varepsilon>0, where 𝒞\mathcal{C} is defined in (1.2).

2. Priliminary

2.1. Notations

Throught this paper, ε\varepsilon denotes a sufficiently small positive number, not necessarily the same at each occurrence. Let pp always denote a prime number. As usual, d(n)d(n) Λ(n)\Lambda(n) and μ(n)\mu(n) denote the Dirichlet divisor function, the von Mangoldt function and the Möbius function, respectively, C\mathbb{C} denotes the set of complex numbers, R\mathbb{R} denotes the set of real numbers, and N\mathbb{N} denotes the set of natural numbers. We write 𝐞(t):=exp(2πit)\mathbf{e}(t):=exp(2\pi it) . The notation mMm\sim M means M<m2MM<m\leqslant 2M, f(x)g(x)f(x)\ll g(x) means f(x)=O(g(x))f(x)=O(g(x)); f(x)g(x)f(x)\asymp g(x) means f(x)g(x)f(x)f(x)\ll g(x)\ll f(x). gcd(m1,,mj)\gcd(m_{1},\cdots,m_{j}) denotes the greatest common divisor of m1,,mjm_{1},\cdots,m_{j} N\in\mathbb{N}(j=2,3,j=2,3,\cdots).

2.2. Auxiliary Lemmas


We need the following lemmas.

Lemma 2.1.

For real numbers NN and xx satisfying 1Nx1\ll N\ll x, we have

Δ(x)=δ1(x,N)+δ2(x,N),\Delta(x)=\delta_{1}(x,N)+\delta_{2}(x,N),

where

δ1(x,N)=x1/42πnNd(n)n3/4cos(4πnxπ4),\delta_{1}(x,N)=\frac{x^{1/4}}{\sqrt{2}\pi}\sum_{n\leqslant N}\frac{d(n)}{n^{3/4}}\cos\left(4\pi\sqrt{nx}-\frac{\pi}{4}\right),

and δ2(x,N)\delta_{2}(x,N) satisfies:

(i) δ2(x,N)x1/2N1/2\delta_{2}(x,N)\ll x^{1/2}N^{-1/2}.

(ii) For any fixed real number T2T\geqslant 2, we have

T2Tδ2(x,N)𝑑xT3/2log3TN1/2+Tlog4T.\int_{T}^{2T}\delta_{2}(x,N)dx\ll\frac{T^{3/2}\log^{3}T}{N^{1/2}}+T\log^{4}T.
Proof.

See, for example, the following references: Lau and Tsang[14], Tsang[18], Zhai[21]. ∎

Lemma 2.2.

Let z1z\geqslant 1 be a real number and k1k\geq 1 be an integer. Then for any n2zkn\leqslant 2z^{k}, there holds

Λ(n)=j=1k(1)j1(kj)n1n2n2j=nnj+1,,n2jz(logn1)μ(nj+1)μ(n2j).\Lambda(n)=\sum_{j=1}^{k}(-1)^{j-1}\binom{k}{j}\mathop{\sum\cdots\sum}_{\begin{subarray}{c}n_{1}n_{2}\cdots n_{2j}=n\\ n_{j+1},\cdots,n_{2j}\leqslant z\end{subarray}}(\log n_{1})\mu(n_{j+1})\cdots\mu(n_{2j}). (2.1)
Proof.

See the argument on pp.1366-1367 of Heath-Brown[5]. ∎

Lemma 2.3.

Let 𝒳:={xr}\mathscr{X}:=\{x_{r}\}, 𝒴:={ys}\mathscr{Y}:=\{y_{s}\} be two finite sequence of real numbers with

|xr|X,|ys|Y,|x_{r}|\leqslant X,\qquad|y_{s}|\leqslant Y,

and φr,ψsC\varphi_{r},\psi_{s}\in\mathbb{C}. Defining the bilinear forms

φψ(𝒳,𝒴)=rRsSφrψs𝐞(xrys),{\mathscr{B}}_{\varphi\psi}(\mathscr{X},\mathscr{Y})=\sum_{r\sim R}\sum_{s\sim S}\varphi_{r}\psi_{s}\mathbf{e}(x_{r}y_{s}),

then we have

|φψ(𝒳,𝒴)|220(1+XY)φ(𝒳,Y)ψ(𝒴,X),|\mathscr{B}_{\varphi\psi}(\mathscr{X},\mathscr{Y})|^{2}\leqslant 20(1+XY)\mathscr{B}_{\varphi}(\mathscr{X},Y)\mathscr{B}_{\psi}(\mathscr{Y},X),

with

φ(𝒳,Y)=|xr1xr2|Y1|φr1φr2|\mathscr{B}_{\varphi}(\mathscr{X},Y)=\sum_{|x_{r_{1}}-x_{r_{2}}|\leqslant Y^{-1}}|\varphi_{r_{1}}\varphi_{r_{2}}|

and ψ(𝒴,X)\mathscr{B}_{\psi}(\mathscr{Y},X) defined similarly.

Proof.

See Proposition 1 of Fouvry and Iwaniec[2]. ∎

Lemma 2.4.

Let {ai}\{a_{i}\} and {bi}\{b_{i}\} be two finite sequences of real numbers and let δ>0\delta>0 be a real number. Then we have

#{(r,s):|arbs|δ}3(#{(r,r):|arar|δ})1/2(#{(s,s):|bsbs|δ})1/2\#\{(r,s):|a_{r}-b_{s}|\leqslant\delta\}\leqslant 3(\#\{(r,r^{\prime}):|a_{r}-a_{r^{\prime}}|\leqslant\delta\})^{1/2}(\#\{(s,s^{\prime}):|b_{s}-b_{s^{\prime}}|\leqslant\delta\})^{1/2}
Proof.

See the argument of P266-267 in Zhai[22]. ∎

Lemma 2.5.

Let α0,1\alpha\neq 0,1 be a fixed real integer. For any integer M2M\geqslant 2 and any real number δ>0\delta>0, we define 𝒩(M,δ)\mathcal{N}(M,\delta) as being the number of quadruplets

m¯=(m1,m2,m3,m4){M+1,M+2,,2M}4\underline{m}=(m_{1},m_{2},m_{3},m_{4})\in\{M+1,M+2,\cdots,2M\}^{4}

which satisfy the inequality

|m1α+m2αm3αm4α|δMα,|{m_{1}}^{\alpha}+{m_{2}}^{\alpha}-{m_{3}}^{\alpha}-{m_{4}}^{\alpha}|\leqslant\delta M^{\alpha},

then we have

𝒩(M,δ)M2+ε+δM4+ε,\mathcal{N}(M,\delta)\ll M^{2+\varepsilon}+\delta M^{4+\varepsilon},

where the implied constant depends only on ε\varepsilon.

Proof.

See the argument on Theorem 2 of Robert and Sargos[16]. ∎

Lemma 2.6.

Let NN be a given large integer, XX be a real number and 𝐍\mathbf{N} denote the set {N+1,,2N}\{N+1,\cdots,2N\}. Suppose

v(𝐍,X)=|{n1,n2𝐍;|n1n2|(2X)1}|,v(\mathbf{N},X)=|\{n_{1},n_{2}\in\mathbf{N};|\sqrt{n_{1}}-\sqrt{n_{2}}|\leqslant(2X)^{-1}\}|,

then we have

v(𝐍,X)(1+22NX1)|𝐍|.v(\mathbf{N},X)\leqslant(1+2\sqrt{2N}X^{-1})|\mathbf{N}|.
Proof.

See Lemma 2 of Iwaniec and Sárközy[11]. ∎

Lemma 2.7.

Let a,ba,b are fixed real numbers and a<ba<b. Suppose f(x)f(x) is a real function with |f(x)|1θ|f^{\prime}(x)|\leqslant 1-\theta and f′′(x)0f^{\prime\prime}(x)\neq 0 on [a,b][a,b]. We then have

a<nb𝐞(f(n))=ab𝐞(f(x))𝑑x+O(θ1).\sum_{a<n\leqslant b}\mathbf{e}(f(n))=\int_{a}^{b}\mathbf{e}(f(x))dx+O(\theta^{-1}).
Proof.

See Lemma 8.8 of Iwaniec and Kowalski[10]. ∎

Lemma 2.8.

Let F(x)F(x) be a real differentiable function such that F(x)F^{\prime}(x) is monotonic and |F(x)|m>0|F^{\prime}(x)|\geqslant m>0 for axba\leqslant x\leqslant b. Then

|abeiF(x)𝑑x|4m1.\left|\int_{a}^{b}e^{iF(x)}dx\right|\leqslant 4m^{-1}.
Proof.

See Lemma 2.1 of Ivić[9]. ∎

Lemma 2.9.

Suppose that f(x):[a,b]Rf(x):[a,b]\rightarrow\mathbb{R} has continuous derivatives of arbitrary order on [a,b][a,b], where 1a<b2a1\leqslant a<b\leqslant 2a. Suppose further that we have

|f′′(x)|λ2,x[a,b].|f^{\prime\prime}(x)|\asymp\lambda_{2},\qquad x\in[a,b].

Then

a<nb𝐞(f(n))aλ21/2+λ21/2.\sum_{a<n\leqslant b}\mathbf{e}(f(n))\ll a{\lambda_{2}}^{1/2}+{\lambda_{2}}^{-1/2}. (2.2)
Proof.

See Corollary 8.13 of Iwaniec and Kowalski[10], or Theorem 5 of Chapter 1 in Karatsuba[12]. ∎

Lemma 2.10.

Let TT be a large real number and HH be a real number such that 1HT1\leqslant H\leqslant T. We have

T2TmaxhH(Δ(t+h)Δ(t))2dtHTlog5T.\displaystyle\int_{T}^{2T}\max_{h\leqslant H}(\Delta(t+h)-\Delta(t))^{2}dt\ll HT\log^{5}T.
Proof.

See Heath-Brown and Tsang[6]. ∎

Lemma 2.11.

Suppose N1,N21N_{1},N_{2}\geqslant 1 are given real numbers, α,β\alpha,\beta are real numbers such that 0<α,β10<\alpha,\beta\leqslant 1. Define

T(N1,N2,α,β)=n1N1,n2N2n1n21|n1αn2α|β.T(N_{1},N_{2},\alpha,\beta)=\sum_{\begin{subarray}{c}n_{1}\sim N_{1},n_{2}\sim N_{2}\\ n_{1}\neq n_{2}\end{subarray}}\frac{1}{|{n_{1}}^{\alpha}-{n_{2}}^{\alpha}|^{\beta}}.

Then we have

T(N1,N2,α,β)(N1N2)1αβ/2logN1logN2.T(N_{1},N_{2},\alpha,\beta)\ll(N_{1}N_{2})^{1-\alpha\beta/2}\log N_{1}\log N_{2}.
Proof.

We divide the sum into

n1N1n2N2(|n1αn2α|)β=1+2,\displaystyle\sum_{\begin{subarray}{c}n_{1}\sim N_{1}\\ n_{2}\sim N_{2}\end{subarray}}(|{n_{1}}^{\alpha}-{n_{2}}^{\alpha}|)^{-\beta}={\sum}_{1}+{\sum}_{2},

where

1\displaystyle{\sum}_{1} =n1N1,n2N2|n1αn2α|(n1n2)α/2100(|n1αn2α|)β,\displaystyle=\sum_{\begin{subarray}{c}n_{1}\sim N_{1},n_{2}\sim N_{2}\\ |{n_{1}}^{\alpha}-{n_{2}}^{\alpha}|\leqslant\frac{(n_{1}n_{2})^{\alpha/2}}{100}\end{subarray}}(|{n_{1}}^{\alpha}-{n_{2}}^{\alpha}|)^{-\beta},
2\displaystyle{\sum}_{2} =n1N1,n2N2|n1αn2α|(n1n2)α/2100(|n1αn2α|)β.\displaystyle=\sum_{\begin{subarray}{c}n_{1}\sim N_{1},n_{2}\sim N_{2}\\ |{n_{1}}^{\alpha}-{n_{2}}^{\alpha}|\geqslant\frac{(n_{1}n_{2})^{\alpha/2}}{100}\end{subarray}}(|{n_{1}}^{\alpha}-{n_{2}}^{\alpha}|)^{-\beta}.

Since |n1αn2α|(n1n2)α/2100|{n_{1}}^{\alpha}-{n_{2}}^{\alpha}|\leqslant\frac{(n_{1}n_{2})^{\alpha/2}}{100}, we have n1n2n_{1}\asymp n_{2} in 1{\sum}_{1}. By the Lagrange mean value Theorem we have

1\displaystyle{\sum}_{1} n1N1,n2N2n1n2,n1n21n1(α1)β|n1n2|β\displaystyle\ll\sum_{\begin{subarray}{c}n_{1}\sim N_{1},n_{2}\sim N_{2}\\ n_{1}\asymp n_{2},n_{1}\neq n_{2}\end{subarray}}\frac{1}{{n_{1}}^{(\alpha-1)\beta}|n_{1}-n_{2}|^{\beta}}
n1N11n1(α1)βn2N2n1n2n1n21|n1n2|β,\displaystyle\ll\sum_{n_{1}\sim N_{1}}\frac{1}{{n_{1}}^{(\alpha-1)\beta}}\sum_{\begin{subarray}{c}n_{2}\sim N_{2}\\ n_{1}\asymp n_{2}\\ n_{1}\neq n_{2}\end{subarray}}\frac{1}{|n_{1}-n_{2}|^{\beta}},

let |n1n2|=t|n_{1}-n_{2}|=t in the latter sum, we have

1\displaystyle{\sum}_{1} n1N11n1(α1)βtn1tβ\displaystyle\ll\sum_{n_{1}\sim N_{1}}\frac{1}{{n_{1}}^{(\alpha-1)\beta}}\sum_{t\leqslant n_{1}}t^{-\beta}
n1N11n1αβ1logN1\displaystyle\ll\sum_{n_{1}\sim N_{1}}\frac{1}{{n_{1}}^{\alpha\beta-1}}\log{N_{1}}
N12αβlogN1.\displaystyle\ll{N_{1}}^{2-\alpha\beta}\log{N_{1}}.

Similarly we have 1N22αβlogN2{\sum}_{1}\ll{N_{2}}^{2-\alpha\beta}\log{N_{2}}, thus

1(N1N2)1αβ/2logN1logN2.{\sum}_{1}\ll(N_{1}N_{2})^{1-\alpha\beta/2}\log{N_{1}}\log{N_{2}}. (2.3)

For 2{\sum}_{2},

2n1N1,n2N21(n1n2)αβ/2(N1N2)1αβ/2.{\sum}_{2}\ll\sum_{n_{1}\sim N_{1},n_{2}\sim N_{2}}\frac{1}{(n_{1}n_{2})^{\alpha\beta/2}}\ll(N_{1}N_{2})^{1-\alpha\beta/2}. (2.4)

Thus we finish the proof by (2.3) and (2.4). ∎

We state a multiple exponential sums of the following form:

m1M1m2M2m1m2d(m1)d(m2)hHLHLxξhη𝐞(2(m1m2)h1/21/2),\mathop{\sum_{m_{1}\sim M_{1}}\sum_{m_{2}\sim M_{2}}}_{\begin{subarray}{c}m_{1}\neq m_{2}\end{subarray}}d(m_{1})d(m_{2})\mathop{\sum_{h\sim H}\sum_{\ell\sim L}}_{\begin{subarray}{c}HL\asymp x\end{subarray}}\xi_{h}\eta_{\ell}\mathbf{e}\left(2(\sqrt{m_{1}}-\sqrt{m_{2}})h^{1/2}{\ell}^{1/2}\right), (2.5)

with ξh,ηC,|ξh|xε,|η|xε\xi_{h},\eta_{\ell}\in\mathbb{C},|\xi_{h}|\ll x^{\varepsilon},|\eta_{\ell}|\ll x^{\varepsilon} and M1,M2,H,L,xM_{1},M_{2},H,L,x are given real numbers, such that 1M1,M2x1\ll M_{1},M_{2}\ll x. It is called a ”Type I” sum, denoted by SIS_{I}, if η=1\eta_{\ell}=1 or η=log\eta_{\ell}=\log\ell; otherwise it is called a ”Type II” sum, denoted by SIIS_{II}.

Lemma 2.12.

Suppose that ξh1\xi_{h}\ll 1, η=1\eta_{\ell}=1 or η=log\eta_{\ell}=\log\ell, HLxHL\asymp x. Then if Hx1/4H\ll x^{1/4}, there holds

xεSIx1/2M15/4M2+x3/4(M1M2)7/8.x^{-\varepsilon}S_{I}\ll x^{1/2}{M_{1}}^{5/4}M_{2}+x^{3/4}(M_{1}M_{2})^{7/8}.
Proof.

Set f()=2(m11/2m21/2)(h)1/2f(\ell)=2({m_{1}}^{1/2}-{m_{2}}^{1/2})(h\ell)^{1/2}. It is easy to see that

f′′()=123/2h1/2(m1m2)|m1m2|L3/2H1/2.f^{{}^{\prime\prime}}(\ell)=-\frac{1}{2}\ell^{-3/2}h^{1/2}(\sqrt{m_{1}}-\sqrt{m_{2}})\asymp|\sqrt{m_{1}}-\sqrt{m_{2}}|L^{-3/2}H^{1/2}.

If Hx1/4H\ll x^{1/4}, then by Lemma 2.9, we deduce that

xεSI\displaystyle x^{-\varepsilon}S_{I} m1M1m2M2m1m2hH|L𝐞(f())|\displaystyle\ll\mathop{\sum_{m_{1}\sim M_{1}}\sum_{m_{2}\sim M_{2}}}_{\begin{subarray}{c}m_{1}\neq m_{2}\end{subarray}}\sum_{h\sim H}\left|\sum_{\ell\sim L}\mathbf{e}(f(\ell))\right|
m1M1m2M2m1m2hH(L(L3/2H1/2|m1m2|)1/2+(L3/2H1/2|m1m2|)1/2)\displaystyle\ll\mathop{\sum_{m_{1}\sim M_{1}}\sum_{m_{2}\sim M_{2}}}_{\begin{subarray}{c}m_{1}\neq m_{2}\end{subarray}}\sum_{h\sim H}\left(L(L^{-3/2}H^{1/2}|\sqrt{m_{1}}-\sqrt{m_{2}}|)^{1/2}+(L^{-3/2}H^{1/2}|\sqrt{m_{1}}-\sqrt{m_{2}}|)^{-1/2}\right)
x1/4HM15/4M2+x3/4m1M1m2M2m1m2|m1m2|1/2,\displaystyle\ll x^{1/4}H{M_{1}}^{5/4}M_{2}+x^{3/4}\mathop{\sum_{m_{1}\sim M_{1}}\sum_{m_{2}\sim M_{2}}}_{\begin{subarray}{c}m_{1}\neq m_{2}\end{subarray}}|\sqrt{m_{1}}-\sqrt{m_{2}}|^{-1/2},

taking n1=m1,n2=m2n_{1}=m_{1},n_{2}=m_{2}, α=β=1/2\alpha=\beta=1/2 in Lemma 2.11 we have

xεSI\displaystyle x^{-\varepsilon}S_{I} x1/4HM15/4M2+x3/4(M1M2)7/8\displaystyle\ll x^{1/4}H{M_{1}}^{5/4}M_{2}+x^{3/4}(M_{1}M_{2})^{7/8}
x1/2M15/4M2+x3/4(M1M2)7/8.\displaystyle\ll x^{1/2}{M_{1}}^{5/4}M_{2}+x^{3/4}(M_{1}M_{2})^{7/8}.

In order to separate the dependence from the range of summation we appeal to the following formula

Lemma 2.13.

Let 0<VU<νU<λV0<V\leqslant U<\nu U<\lambda V and let ava_{v} be complex numbers with |av|1|a_{v}|\leqslant 1. We then have

U<u<νUau=12πVV(V<v<λVavvit)Uit(νit1)t1𝑑t+O(log(2+V)),\sum_{U<u<\nu U}a_{u}=\frac{1}{2\pi}\int_{-V}^{V}\left(\sum_{V<v<\lambda V}a_{v}v^{-it}\right)U^{it}(\nu^{it}-1)t^{-1}dt+O(\log(2+V)),

where the constant implied in OO depends on λ\lambda only.

Proof.

See Lemma 6 of Fouvry and Iwaniec[2]. ∎

Lemma 2.14.

Suppose |ξh|xε,|η|xε|\xi_{h}|\ll x^{\varepsilon},|\eta_{\ell}|\ll x^{\varepsilon} with hHh\sim H, L\ell\sim L, HLxHL\asymp x. Then for x1/4Hx1/2x^{1/4}\ll H\ll{x^{1/2}}, there holds

xεSII\displaystyle x^{-\varepsilon}S_{II} x3/4M19/8M27/8+x7/8M1M23/4+x13/16M119/16M23/4+x15/16(M1M2)3/4\displaystyle\ll x^{3/4}{M_{1}}^{9/8}{M_{2}}^{7/8}+x^{7/8}M_{1}{M_{2}}^{3/4}+x^{13/16}{M_{1}}^{19/16}{M_{2}}^{3/4}+x^{15/16}(M_{1}M_{2})^{3/4}
+x1/2M1M2.\displaystyle+x^{1/2}M_{1}M_{2}.
Proof.

Applying Lemma 2.13 we obtain

SII|SII|+M1M2Hlogx,S_{II}\ll|{S_{II}}^{*}|+M_{1}M_{2}H\log x, (2.6)

where

SII=m1M1m2M2m1m2d(m1)d(m2)hHξhLη𝐞(2(m1m2)h1/21/2){S_{II}}^{*}=\mathop{\sum_{m_{1}\sim M_{1}}\sum_{m_{2}\sim M_{2}}}_{\begin{subarray}{c}m_{1}\neq m_{2}\end{subarray}}d(m_{1})d(m_{2})\sum_{h\sim H}{\xi_{h}}^{*}\sum_{\ell\sim L}{\eta_{\ell}}^{*}\mathbf{e}\left(2(\sqrt{m_{1}}-\sqrt{m_{2}})h^{1/2}{\ell}^{1/2}\right)

with |ξh|,|η|xε|{\xi_{h}}^{*}|,|{\eta_{\ell}}^{*}|\ll x^{\varepsilon}.

Applying Lemma 2.3 with 𝒳=2(m11/2m21/2)h1/2\mathscr{X}=2({m_{1}}^{1/2}-{m_{2}}^{1/2})h^{1/2}, 𝒴=1/2\mathscr{Y}=\ell^{1/2}, we obtain

SIIM11/4x1/4(SaSb)1/2,{S_{II}}^{*}\ll{M_{1}}^{1/4}x^{1/4}(S_{a}S_{b})^{1/2}, (2.7)

where

Sa=\displaystyle S_{a}= |(m11/2m21/2)h1/2(m1~1/2m2~1/2)h~1/2|L1/2d(m1)d(m2)d(m1~)d(m2~)ξhξh~,\displaystyle\sum_{|({m_{1}}^{1/2}-{m_{2}}^{1/2}){h}^{1/2}-({\tilde{m_{1}}}^{1/2}-{\tilde{m_{2}}}^{1/2}){\tilde{h}}^{1/2}|\leqslant L^{{-1/2}}}d(m_{1})d(m_{2})d(\tilde{m_{1}})d(\tilde{m_{2}}){\xi_{h}}^{*}{\xi_{\tilde{h}}}^{*},
Sb=\displaystyle S_{b}= |1/2~1/2|M11/2H1/2ηη~.\displaystyle\sum_{|\ell^{1/2}-{\tilde{\ell}}^{1/2}|\leqslant{M_{1}}^{-1/2}H^{-1/2}}{\eta_{\ell}}^{*}{\eta_{\tilde{\ell}}}^{*}.

By (3.2) with Δ=L1/2\Delta=L^{-1/2}, we easily obtain

xεSa\displaystyle x^{-\varepsilon}S_{a} (M1,M2,H,L1/2)\displaystyle\ll\mathscr{B}(M_{1},M_{2},H,L^{-1/2}) (2.8)
(M1M2)3/2H3/2+M115/8M23/2x1/8H3/2+(M1M2)7/4x1/2H2.\displaystyle\ll(M_{1}M_{2})^{3/2}H^{3/2}+{M_{1}}^{15/8}{M_{2}}^{3/2}x^{-1/8}H^{3/2}+(M_{1}M_{2})^{7/4}x^{-1/2}H^{2}.

For SbS_{b}, using Lemma 2.6 we have

xεSb\displaystyle x^{-\varepsilon}S_{b} |1/2~1/2|M11/2H1/21\displaystyle\ll\sum_{|\ell^{1/2}-{\tilde{\ell}}^{1/2}|\leqslant{M_{1}}^{-1/2}H^{-1/2}}1 (2.9)
xH1+M11/2H2x3/2.\displaystyle\ll xH^{-1}+{M_{1}}^{-1/2}H^{-2}x^{3/2}.

Thus combining (2.6), (2.7), (2.8), (2.9) and the condition x1/4Hx1/2x^{1/4}\ll H\ll x^{1/2} we conclude that

xεSII\displaystyle x^{-\varepsilon}{S_{II}}^{*} x1/2H1/2M19/8M27/8+x3/4H1/4M1M23/4+H1/4x11/16M119/16M23/4\displaystyle\ll x^{1/2}H^{1/2}{M_{1}}^{9/8}{M_{2}}^{7/8}+x^{3/4}H^{1/4}M_{1}{M_{2}}^{3/4}+H^{1/4}x^{11/16}{M_{1}}^{19/16}{M_{2}}^{3/4} (2.10)
+x3/4(M1M2)7/8+xH1/4(M1M2)3/4+x15/16H1/4M115/16M23/4+x1/2M1M2\displaystyle+x^{3/4}(M_{1}M_{2})^{7/8}+xH^{-1/4}(M_{1}M_{2})^{3/4}+x^{15/16}H^{-1/4}{M_{1}}^{15/16}{M_{2}}^{3/4}+x^{1/2}M_{1}M_{2}
x3/4M19/8M27/8+x7/8M1M23/4+x13/16M119/16M23/4+x15/16(M1M2)3/4\displaystyle\ll x^{3/4}{M_{1}}^{9/8}{M_{2}}^{7/8}+x^{7/8}M_{1}{M_{2}}^{3/4}+x^{13/16}{M_{1}}^{19/16}{M_{2}}^{3/4}+x^{15/16}(M_{1}M_{2})^{3/4}
+x1/2M1M2.\displaystyle+x^{1/2}M_{1}M_{2}.

3. The spacing problem

Let M1,M21M_{1},M_{2}\geqslant 1, H1H\geqslant 1. In this section Δ\Delta is a small real positive number. In this section we investigate the distributions of real numbers of type

t(h,m1,m2)=(m1αm2α)hβt(h,m_{1},m_{2})=({m_{1}}^{\alpha}-{m_{2}}^{\alpha})h^{\beta}

with 0<α,β<10<\alpha,\beta<1, m1M1m_{1}\sim M_{1}, m2M2m_{2}\sim M_{2}, m1m2m_{1}\neq m_{2}, hHh\sim H.

Let (M1,M2,H,Δ)\mathscr{B}(M_{1},M_{2},H,\Delta) denote the number of sixturplets (m1,m1~,m2,m2~,h,h~)(m_{1},\tilde{m_{1}},m_{2},\tilde{m_{2}},h,\tilde{h}) with m1,m1~M1m_{1},\tilde{m_{1}}\sim M_{1}, m2,m2~M2m_{2},\tilde{m_{2}}\sim M_{2}, h,h~Hh,\tilde{h}\sim H satisfying

|t(h,m1,m2)t(h~,m1~,m2~)|Δ|t(h,m_{1},m_{2})-t(\tilde{h},\tilde{m_{1}},\tilde{m_{2}})|\leqslant\Delta (3.1)

Our aim is to prove the following:

Proposition 3.1.

We have

(M1,M2,H,Δ)\displaystyle\mathscr{B}(M_{1},M_{2},H,\Delta) (3.2)
(M1M2)3/2+εH3/2+M12α/4+εM23/2+εΔ1/4H3/2β/4+(M1M2)2α/2+εH2βΔ.\displaystyle\ll(M_{1}M_{2})^{3/2+\varepsilon}H^{3/2}+{M_{1}}^{2-\alpha/4+\varepsilon}{M_{2}}^{3/2+\varepsilon}\Delta^{1/4}H^{3/2-\beta/4}+(M_{1}M_{2})^{2-\alpha/2+\varepsilon}H^{2-\beta}\Delta.
Proof.

Suppose m1,m2,m1~,m2~m_{1},m_{2},\tilde{m_{1}},\tilde{m_{2}} are fixed, without loss of generality we assume that m1>m2m_{1}>m_{2} and m1~>m2~\tilde{m_{1}}>\tilde{m_{2}}. We denote the number of solutions of

|(m1αm2αm1~αm2~α)(hh~)β|Δ|m1~αm2~α|Hβ\left|\left(\frac{{m_{1}}^{\alpha}-{m_{2}}^{\alpha}}{{\tilde{m_{1}}}^{\alpha}-{\tilde{m_{2}}}^{\alpha}}\right)-\left(\frac{h}{\tilde{h}}\right)^{\beta}\right|\leq\frac{\Delta}{|{\tilde{m_{1}}}^{\alpha}-{\tilde{m_{2}}}^{\alpha}|H^{\beta}} (3.3)

by (m1,m2,m1~,m2~,H,Δ)\mathscr{B}(m_{1},m_{2},\tilde{m_{1}},\tilde{m_{2}},H,\Delta). Let (m1,m2,m1~,m2~,H,Δ,μ)\mathscr{B}(m_{1},m_{2},\tilde{m_{1}},\tilde{m_{2}},H,\Delta,\mu) be the number of solutions of h,h~h,\tilde{h} to (3.3) which additionally satisfying gcd(h,h~)=μ\gcd(h,\tilde{h})=\mu.

We divide the solutions of hh, h~\tilde{h} into classes each one having fixed values gcd(h,h~)=μ\gcd(h,\tilde{h})=\mu, the points (hh~)\left(\frac{h}{\tilde{h}}\right) are spaced by c(β)H2μ2c(\beta)H^{2}\mu^{-2}, where c(β)c(\beta) is a constant. Then

(m1,m2,m1~,m2~,H,Δ,μ)1+Δ(|m1~αm2~α|Hβ)1H2μ2\mathscr{B}(m_{1},m_{2},\tilde{m_{1}},\tilde{m_{2}},H,\Delta,\mu)\ll 1+\Delta(|{\tilde{m_{1}}}^{\alpha}-{\tilde{m_{2}}}^{\alpha}|H^{\beta})^{-1}H^{2}\mu^{-2}

Let (M1,M2,H,Δ,μ)\mathscr{B}(M_{1},M_{2},H,\Delta,\mu) be the number of solutions to (3.1) which additionally satisfying gcd(h,h~)=μ\gcd(h,\tilde{h})=\mu. Summing over m1m_{1}, m2m_{2}, m1~\tilde{m_{1}}, m2~\tilde{m_{2}} we have

(M1,M2,H,Δ,μ)\displaystyle\mathscr{B}(M_{1},M_{2},H,\Delta,\mu) m1,m1~M1m2,m2~M2(m1,m2,m1~,m2~,H,Δ,μ)\displaystyle\ll\sum_{\begin{subarray}{c}m_{1},\tilde{m_{1}}\sim M_{1}\\ m_{2},\tilde{m_{2}}\sim M_{2}\end{subarray}}\mathscr{B}(m_{1},m_{2},\tilde{m_{1}},\tilde{m_{2}},H,\Delta,\mu)
m1,m1~M1m2,m2~M2(1+Δ(|m1~αm2~α|)1H2βμ2)\displaystyle\ll\sum_{\begin{subarray}{c}m_{1},\tilde{m_{1}}\sim M_{1}\\ m_{2},\tilde{m_{2}}\sim M_{2}\end{subarray}}(1+\Delta(|{\tilde{m_{1}}}^{\alpha}-{\tilde{m_{2}}}^{\alpha}|)^{-1}H^{2-\beta}\mu^{-2})
M12M22+ΔM1M2H2βμ2m1~M1m2~M2(|m1~αm2~α|)1.\displaystyle\ll{M_{1}}^{2}{M_{2}}^{2}+\Delta M_{1}M_{2}H^{2-\beta}\mu^{-2}\sum_{\begin{subarray}{c}\tilde{m_{1}}\sim M_{1}\\ \tilde{m_{2}}\sim M_{2}\end{subarray}}(|{\tilde{m_{1}}}^{\alpha}-{\tilde{m_{2}}}^{\alpha}|)^{-1}.

Using Lemma 2.11 we conclude that

(M1,M2,H,Δ,μ)M12M22+Δ(M1M2)2α/2H2βμ2logM1logM2.\displaystyle\mathscr{B}(M_{1},M_{2},H,\Delta,\mu)\ll{M_{1}}^{2}{M_{2}}^{2}+\Delta(M_{1}M_{2})^{2-\alpha/2}H^{2-\beta}\mu^{-2}\log{M_{1}}\log{M_{2}}.

Summing over μ\mu we have

(M1,M2,H,Δ)HM12M22+Δ(M1M2)2α/2H2βlogM1logM2.\displaystyle\mathscr{B}(M_{1},M_{2},H,\Delta)\ll H{M_{1}}^{2}{M_{2}}^{2}+\Delta(M_{1}M_{2})^{2-\alpha/2}H^{2-\beta}\log{M_{1}}\log{M_{2}}. (3.4)

On the other hand, for fixed hh, h~\tilde{h}, we denote the number of solutions of m1,m1~,m2,m2~m_{1},\tilde{m_{1}},m_{2},\tilde{m_{2}} to

|(hh~)β(m1αm2α)m1~α+m2~α|ΔHβ\left|\left(\frac{h}{\tilde{h}}\right)^{\beta}({m_{1}}^{\alpha}-{m_{2}}^{\alpha})-{\tilde{m_{1}}}^{\alpha}+{\tilde{m_{2}}}^{\alpha}\right|\leq\frac{\Delta}{H^{\beta}} (3.5)

by (M1,M2,h,h~,H,Δ)\mathscr{B}(M_{1},M_{2},h,\tilde{h},H,\Delta). Then we can obtain that (M1,M2,H,Δ)\mathscr{B}(M_{1},M_{2},H,\Delta) is bounded by

h,h~H(M1,M2,h,h~,H,Δ).\sum_{h,\tilde{h}\sim H}\mathscr{B}(M_{1},M_{2},h,\tilde{h},H,\Delta).

Applying Lemma 2.4 to the sequences {ar}={(h/h~)βm1αm1~α}\{a_{r}\}=\{(h/\tilde{h})^{\beta}{m_{1}}^{\alpha}-{\tilde{m_{1}}}^{\alpha}\} and {bs}={(h/h~)βm2αm2~α}\{b_{s}\}=\{(h/\tilde{h})^{\beta}{m_{2}}^{\alpha}-{\tilde{m_{2}}}^{\alpha}\}, we get

(M1,M2,h,h~,H,Δ)\displaystyle\mathscr{B}(M_{1},M_{2},h,\tilde{h},H,\Delta)
3(#{(m1,m1~,m1,m1~):|(hh~)βm1αm1~α(hh~)βm1α+m1~|αΔHβ})1/2\displaystyle\qquad\leqslant 3\left(\#\left\{(m_{1},\tilde{m_{1}},{m_{1}}^{\prime},{\tilde{m_{1}}^{\prime}}):\left|\left(\frac{h}{\tilde{h}}\right)^{\beta}{m_{1}}^{\alpha}-{\tilde{m_{1}}}^{\alpha}-\left(\frac{h}{\tilde{h}}\right)^{\beta}{{m_{1}}^{\prime}}^{\alpha}+{\tilde{m_{1}}{{}^{\prime}}}^{\alpha}\right|\leqslant\frac{\Delta}{H^{\beta}}\right\}\right)^{1/2}
×(#{(m2,m2~,m2,m2~):|(hh~)βm2αm2~α(hh~)βm2α+m2~|αΔHβ})1/2.\displaystyle\qquad\times\left(\#\left\{(m_{2},\tilde{m_{2}},{m_{2}}^{\prime},{\tilde{m_{2}}^{\prime}}):\left|\left(\frac{h}{\tilde{h}}\right)^{\beta}{m_{2}}^{\alpha}-{\tilde{m_{2}}}^{\alpha}-\left(\frac{h}{\tilde{h}}\right)^{\beta}{{m_{2}}^{\prime}}^{\alpha}+{\tilde{m_{2}}{{}^{\prime}}}^{\alpha}\right|\leqslant\frac{\Delta}{H^{\beta}}\right\}\right)^{1/2}.

Applying Lemma 2.4 again to the sequences {ar1}={(h/h~)β(m1αm1)α}\{a_{r_{1}}\}=\{(h/\tilde{h})^{\beta}({m_{1}}^{\alpha}-{{m_{1}}{{}^{\prime}}^{\alpha}})\}, {bs1}={m1~αm1~}α\{b_{s_{1}}\}=\{{\tilde{m_{1}}}^{\alpha}-{\tilde{m_{1}}{{}^{\prime}}}^{\alpha}\}, and {ar2}={(h/h~)β(m2αm2)α}\{a_{r_{2}}\}=\{(h/\tilde{h})^{\beta}({m_{2}}^{\alpha}-{{m_{2}}{{}^{\prime}}^{\alpha}})\}, {bs2}={m2~αm2~}α\{b_{s_{2}}\}=\{{\tilde{m_{2}}}^{\alpha}-{\tilde{m_{2}}{{}^{\prime}}}^{\alpha}\}, respectively, we get

(M1,M2,h,h~,H,Δ)𝒩(M1,ΔHβM1α)1/2𝒩(M2,ΔHβM2α)1/2,\displaystyle\mathscr{B}(M_{1},M_{2},h,\tilde{h},H,\Delta)\ll\mathcal{N}\left(M_{1},\frac{\Delta}{H^{\beta}{M_{1}}^{\alpha}}\right)^{1/2}\mathcal{N}\left(M_{2},\frac{\Delta}{H^{\beta}{M_{2}}^{\alpha}}\right)^{1/2},

where 𝒩\mathcal{N} is defined in Lemma 2.5. Summing over hh and h~\tilde{h} we have

(M1,M2,H,Δ)\displaystyle\mathscr{B}(M_{1},M_{2},H,\Delta) h,h~H(M1,M2,h,h~,H,Δ)\displaystyle\ll\sum_{h,\tilde{h}\sim H}\mathscr{B}(M_{1},M_{2},h,\tilde{h},H,\Delta) (3.6)
(HM11+ε+M12α/2+εΔ1/2H1β/2)(HM21+ε+M22α/2+εΔ1/2H1β/2)\displaystyle\ll(H{M_{1}}^{1+\varepsilon}+{M_{1}}^{2-\alpha/2+\varepsilon}\Delta^{1/2}H^{1-\beta/2})(H{M_{2}}^{1+\varepsilon}+{M_{2}}^{2-\alpha/2+\varepsilon}\Delta^{1/2}H^{1-\beta/2})

Above all, combining (3.4) and (3.6) we get

(M1,M2,H,Δ)\displaystyle\mathscr{B}(M_{1},M_{2},H,\Delta)
\displaystyle\ll min(M12M22+Δ(M1M2)2α/2H2βlogM1logM2,\displaystyle\min({M_{1}}^{2}{M_{2}}^{2}+\Delta(M_{1}M_{2})^{2-\alpha/2}H^{2-\beta}\log{M_{1}}\log{M_{2}},
(HM11+ε+M12α/2+εΔ1/2H1β/2)(HM21+ε+M22α/2+εΔ1/2H1β/2))\displaystyle(H{M_{1}}^{1+\varepsilon}+{M_{1}}^{2-\alpha/2+\varepsilon}\Delta^{1/2}H^{1-\beta/2})(H{M_{2}}^{1+\varepsilon}+{M_{2}}^{2-\alpha/2+\varepsilon}\Delta^{1/2}H^{1-\beta/2}))
\displaystyle\ll min(HM12M22,H2(M1M2)1+ε+M12α/2+εM21+εΔ1/2H2β/2)+Δ(M1M2)2α/2+εH2β\displaystyle\min(H{M_{1}}^{2}{M_{2}}^{2},H^{2}(M_{1}M_{2})^{1+\varepsilon}+{M_{1}}^{2-\alpha/2+\varepsilon}{M_{2}}^{1+\varepsilon}\Delta^{1/2}H^{2-\beta/2})+\Delta(M_{1}M_{2})^{2-\alpha/2+\varepsilon}H^{2-\beta}
\displaystyle\ll (M1M2)3/2+εH3/2+M12α/4+εM23/2+εΔ1/4H3/2β/4+(M1M2)2α/2+εH2βΔ,\displaystyle(M_{1}M_{2})^{3/2+\varepsilon}H^{3/2}+{M_{1}}^{2-\alpha/4+\varepsilon}{M_{2}}^{3/2+\varepsilon}\Delta^{1/4}H^{3/2-\beta/4}+(M_{1}M_{2})^{2-\alpha/2+\varepsilon}H^{2-\beta}\Delta,

where we use min(a,b)(ab)1/2\min(a,b)\ll(ab)^{1/2}. ∎

4. Proof of the Theorem

We are first going to estimate x<p2xΔ2(p)\sum_{x<p\leqslant 2x}\Delta^{2}(p). Using notations in Lemma 2.1, let MM be a real number such that 1Mx1\ll M\ll x, one has

x<p2xΔ2(p)=x<p2x(δ1(p,M)2+2δ1(p,M)δ2(p,M)+δ2(p,M)2),\displaystyle\sum_{x<p\leqslant 2x}\Delta^{2}(p)=\sum_{x<p\leqslant 2x}(\delta_{1}(p,M)^{2}+2\delta_{1}(p,M)\delta_{2}(p,M)+\delta_{2}(p,M)^{2}), (4.1)

denoted by S11,S12,S22S_{11},S_{12},S_{22}, respectively.

For S22S_{22}, one has

S22\displaystyle S_{22} =x<p2xp1pδ2(p,M)2𝑑t\displaystyle=\sum_{x<p\leqslant 2x}\int_{p-1}^{p}\delta_{2}(p,M)^{2}dt
=x<p2x[p1pδ2(t,M)2𝑑tp1p(δ2(t,M)2δ2(p,M)2)𝑑t]\displaystyle=\sum_{x<p\leqslant 2x}\left[\int_{p-1}^{p}\delta_{2}(t,M)^{2}dt-\int_{p-1}^{p}(\delta_{2}(t,M)^{2}-\delta_{2}(p,M)^{2})dt\right]
x2xδ2(t,M)2𝑑t+x<p2xp1p(δ2(t,M)2δ2(p,M)2)𝑑t\displaystyle\leqslant\int_{x}^{2x}\delta_{2}(t,M)^{2}dt+\sum_{x<p\leqslant 2x}\int_{p-1}^{p}(\delta_{2}(t,M)^{2}-\delta_{2}(p,M)^{2})dt
x3/2log3xM1/2+xlog4x+x<p2xp1p(δ2(t,M)2δ2(p,M)2)𝑑t.\displaystyle\ll\frac{x^{3/2}\log^{3}x}{{M}^{1/2}}+x\log^{4}x+\sum_{x<p\leqslant 2x}\int_{p-1}^{p}(\delta_{2}(t,M)^{2}-\delta_{2}(p,M)^{2})dt.

The latter term can be transformed into E1E2E_{1}-E_{2}, where

E1\displaystyle E_{1} =x<p2xp1p(δ2(t,M)+δ2(p,M))(Δ(t)Δ(p))𝑑t,\displaystyle=\sum_{x<p\leqslant 2x}\int_{p-1}^{p}(\delta_{2}(t,M)+\delta_{2}(p,M))(\Delta(t)-\Delta(p))dt,
E2\displaystyle E_{2} =x<p2xp1p(δ2(t,M)+δ2(p,M))(δ1(t,M)δ1(p,M))𝑑t.\displaystyle=\sum_{x<p\leqslant 2x}\int_{p-1}^{p}(\delta_{2}(t,M)+\delta_{2}(p,M))(\delta_{1}(t,M)-\delta_{1}(p,M))dt.

For E2E_{2}, by the expression of δ1\delta_{1} and Lagrange’s mean value theorem we obtain δ1(t,M)δ1(p,M)t1/4M3/4\delta_{1}(t,M)-\delta_{1}(p,M)\ll t^{-1/4}{M}^{3/4}, and by Lemma 2.1 we have δ2(t,M)+δ2(p,M)t1/2+εM1/2\delta_{2}(t,M)+\delta_{2}(p,M)\ll t^{1/2+\varepsilon}{M}^{-1/2}, thus

E2x2xt1/4+εM1/4𝑑tx5/4+εM1/4.E_{2}\ll\int_{x}^{2x}t^{1/4+\varepsilon}{M}^{1/4}dt\ll x^{5/4+\varepsilon}{M}^{1/4}.

For E1E_{1}, one has

E1\displaystyle E_{1} x2xt1/2M1/2max0<v1|Δ(t)Δ(t+v)|dt\displaystyle\ll\int_{x}^{2x}t^{1/2}{M}^{-1/2}\max_{0<v\leqslant 1}|\Delta(t)-\Delta(t+v)|dt
x1/2+εM1/2x2xmax0<v1|Δ(t)Δ(t+v)|dt\displaystyle\ll\frac{x^{1/2+\varepsilon}}{{M}^{1/2}}\int_{x}^{2x}\max_{0<v\leqslant 1}|\Delta(t)-\Delta(t+v)|dt
x3/2+εM1/2,\displaystyle\ll x^{3/2+\varepsilon}{M}^{-1/2},

where we use Lemma 2.10. Thus we conclude that

S22x3/2+εM1/2+x5/4+εM1/4.S_{22}\ll x^{3/2+\varepsilon}M^{-1/2}+x^{5/4+\varepsilon}{M}^{1/4}. (4.2)

Next we turn to evaluate S11S_{11}. Using cosαcosβ=12(cos(αβ)+cos(α+β))\cos{\alpha}\cos{\beta}=\frac{1}{2}(\cos(\alpha-\beta)+\cos(\alpha+\beta)) we have

x<p2xδ1(p,M)2\displaystyle\sum_{x<p\leqslant 2x}\delta_{1}(p,M)^{2} (4.3)
=\displaystyle= x<p2xp1/22π2m1,m2Md(m1)d(m2)(m1m2)3/4cos(4πm1pπ4)cos(4πm2pπ4)\displaystyle\sum_{x<p\leqslant 2x}\frac{p^{1/2}}{2\pi^{2}}\sum_{m_{1},m_{2}\leqslant M}\frac{d(m_{1})d(m_{2})}{(m_{1}m_{2})^{3/4}}\cos\left(4\pi\sqrt{m_{1}p}-\frac{\pi}{4}\right)\cos\left(4\pi\sqrt{m_{2}p}-\frac{\pi}{4}\right)
=\displaystyle= 14π2x<p2xp1/2m1,m2Md(m1)d(m2)(m1m2)3/4(cos(4π(m1m2)p)+sin(4π(m1+m2)p))\displaystyle\frac{1}{4\pi^{2}}\sum_{x<p\leqslant 2x}p^{1/2}\sum_{m_{1},m_{2}\leqslant M}\frac{d(m_{1})d(m_{2})}{(m_{1}m_{2})^{3/4}}\left(\cos\left(4\pi(\sqrt{m_{1}}-\sqrt{m_{2}})\sqrt{p}\right)+\sin\left(4\pi(\sqrt{m_{1}}+\sqrt{m_{2}})\sqrt{p}\right)\right)
:=\displaystyle:= 14π2x<p2xp1/2mMd2(m)m3/2+R1+R2,\displaystyle\frac{1}{4\pi^{2}}\sum_{x<p\leqslant 2x}p^{1/2}\sum_{m\leqslant M}\frac{d^{2}(m)}{m^{3/2}}+R_{1}+R_{2},

where

R1\displaystyle R_{1} =14π2m1,m2Mm1m2d(m1)d(m2)(m1m2)3/4x<p2xp1/2cos(4π(m1m2)p),\displaystyle=\frac{1}{4\pi^{2}}\sum_{\begin{subarray}{c}m_{1},m_{2}\leqslant M\\ m_{1}\neq m_{2}\end{subarray}}\frac{d(m_{1})d(m_{2})}{(m_{1}m_{2})^{3/4}}\sum_{x<p\leqslant 2x}p^{1/2}\cos\left(4\pi(\sqrt{m_{1}}-\sqrt{m_{2}})\sqrt{p}\right),
R2\displaystyle R_{2} =14π2m1,m2Md(m1)d(m2)(m1m2)3/4x<p2xp1/2sin(4π(m1+m2)p).\displaystyle=\frac{1}{4\pi^{2}}\sum_{m_{1},m_{2}\leqslant M}\frac{d(m_{1})d(m_{2})}{(m_{1}m_{2})^{3/4}}\sum_{x<p\leqslant 2x}p^{1/2}\sin\left(4\pi(\sqrt{m_{1}}+\sqrt{m_{2}})\sqrt{p}\right).

4.1. Estimate of R1R_{1}


One can see R1R_{1} can be written as linear combination of O(log2M)O(\log^{2}{M}) sums of the form

14π2m1M1,m2M2m1m2d(m1)d(m2)(m1m2)3/4x<p2xp1/2cos(4π(m1m2)p)\displaystyle\frac{1}{4\pi^{2}}\sum_{\begin{subarray}{c}m_{1}\sim M_{1},m_{2}\sim M_{2}\\ m_{1}\neq m_{2}\end{subarray}}\frac{d(m_{1})d(m_{2})}{(m_{1}m_{2})^{3/4}}\sum_{x<p\leqslant 2x}p^{1/2}\cos\left(4\pi(\sqrt{m_{1}}-\sqrt{m_{2}})\sqrt{p}\right)
=\displaystyle= 18π2m1M1,m2M2m1m2d(m1)d(m2)(m1m2)3/4x<p2xp1/2(𝐞(2(m1m2)p)+𝐞(2(m2m1)p)),\displaystyle\frac{1}{8\pi^{2}}\sum_{\begin{subarray}{c}m_{1}\sim M_{1},m_{2}\sim M_{2}\\ m_{1}\neq m_{2}\end{subarray}}\frac{d(m_{1})d(m_{2})}{(m_{1}m_{2})^{3/4}}\sum_{x<p\leqslant 2x}p^{1/2}(\mathbf{e}(2(\sqrt{m_{1}}-\sqrt{m_{2}})\sqrt{p})+\mathbf{e}(2(\sqrt{m_{2}}-\sqrt{m_{1}})\sqrt{p})),

by using cos2πα=(𝐞(α)+𝐞(α))/2\cos 2\pi\alpha=(\mathbf{e}(\alpha)+\mathbf{e}(-\alpha))/2, and where 1M1,M2M1\leqslant M_{1},M_{2}\leqslant M. Since m1,m2m_{1},m_{2} are symmetric in the above sum, we are just going to estimate

𝒮1=18π2m1M1,m2M2m1m2d(m1)d(m2)(m1m2)3/4x<p2xp1/2𝐞(2(m1m2)p).\mathcal{S}_{1}=\frac{1}{8\pi^{2}}\sum_{\begin{subarray}{c}m_{1}\sim M_{1},m_{2}\sim M_{2}\\ m_{1}\neq m_{2}\end{subarray}}\frac{d(m_{1})d(m_{2})}{(m_{1}m_{2})^{3/4}}\sum_{x<p\leqslant 2x}p^{1/2}\>\mathbf{e}(2(\sqrt{m_{1}}-\sqrt{m_{2}})\sqrt{p}).

Trivially we have

𝒮1x1/2(M1M2)3/4|𝒮1|,\mathcal{S}_{1}\ll\frac{x^{1/2}}{(M_{1}M_{2})^{3/4}}|{\mathcal{S}_{1}}^{*}|, (4.4)

where

𝒮1=m1M1,m2M2m1m2d(m1)d(m2)x<p2x𝐞(2(m1m2)p).{\mathcal{S}_{1}}^{*}=\sum_{\begin{subarray}{c}m_{1}\sim M_{1},m_{2}\sim M_{2}\\ m_{1}\neq m_{2}\end{subarray}}d(m_{1})d(m_{2})\sum_{x<p\leqslant 2x}\>\mathbf{e}(2(\sqrt{m_{1}}-\sqrt{m_{2}})\sqrt{p}).

It follows from partial summation that

𝒮1\displaystyle{\mathcal{S}_{1}}^{*} =m1M1,m2M2m1m2d(m1)d(m2)x2xd𝒜(u)logu\displaystyle=\sum_{\begin{subarray}{c}m_{1}\sim M_{1},m_{2}\sim M_{2}\\ m_{1}\neq m_{2}\end{subarray}}d(m_{1})d(m_{2})\int_{x}^{2x}\frac{d\mathcal{A}(u)}{\log u} (4.5)
=m1M1,m2M2m1m2d(m1)d(m2)(𝒜(u)logu|x2xx2x𝒜(u)ulog2u𝑑u),\displaystyle=\sum_{\begin{subarray}{c}m_{1}\sim M_{1},m_{2}\sim M_{2}\\ m_{1}\neq m_{2}\end{subarray}}d(m_{1})d(m_{2})\left(\frac{\mathcal{A}(u)}{\log u}\bigg{|}_{x}^{2x}-\int_{x}^{2x}\frac{\mathcal{A}(u)}{u\log^{2}u}du\right),

where

𝒜(u)=pulogp𝐞(2(m1m2)p).\mathcal{A}(u)=\sum_{p\leqslant u}\log p\>\mathbf{e}(2(\sqrt{m_{1}}-\sqrt{m_{2}})\sqrt{p}).

Moreover, we easily obtain

𝒜(u)=nuΛ(n)𝐞(2(m1m2)n)+O(u1/2).\mathcal{A}(u)=\sum_{n\leqslant u}\Lambda(n)\>\mathbf{e}(2(\sqrt{m_{1}}-\sqrt{m_{2}})\sqrt{n})+O(u^{1/2}).

By a splitting argument we only need to give the upper bound estimate of the following sum

m1M1,m2M2m1m2d(m1)d(m2)nxΛ(n)𝐞(2(m1m2)n).\sum_{\begin{subarray}{c}m_{1}\sim M_{1},m_{2}\sim M_{2}\\ m_{1}\neq m_{2}\end{subarray}}d(m_{1})d(m_{2})\sum_{n\sim x}\Lambda(n)\>\mathbf{e}(2(\sqrt{m_{1}}-\sqrt{m_{2}})\sqrt{n}). (4.6)

After using Heath-Brown’s identity, i.e. Lemma 2.2 with k=3k=3, one can see that (4.6) can be written as linear combination of O(log6x)O(\log^{6}x) sums, each of which is of the form

𝒯:=\displaystyle\mathcal{T}^{*}:= m1M1,m2M2m1m2d(m1)d(m2)n1N1n6N6(logn1)μ(n4)μ(n5)μ(n6)\displaystyle\sum_{\begin{subarray}{c}m_{1}\sim M_{1},m_{2}\sim M_{2}\\ m_{1}\neq m_{2}\end{subarray}}d(m_{1})d(m_{2}){\sum_{n_{1}\sim N_{1}}}\cdots{\sum_{n_{6}\sim N_{6}}}(\log n_{1})\mu(n_{4})\mu(n_{5})\mu(n_{6}) (4.7)
×𝐞(2(m1m2)n1n6),\displaystyle\times\mathbf{e}(2(\sqrt{m_{1}}-\sqrt{m_{2}})\sqrt{n_{1}\cdots n_{6}}),

where N1N6xN_{1}\cdots N_{6}\asymp x; 2Ni(2x)1/32N_{i}\leqslant(2x)^{1/3}, i=4,5,6i=4,5,6 and some nin_{i} may only take value 11. Therefore, it is sufficient for us to estimate for each 𝒯\mathcal{T}^{*} defined as in (4.7). Next, we will consider four cases.

Case 1

If there exists an NjN_{j} such that Njx3/4N_{j}\geqslant x^{3/4}, then we must have j3j\leqslant 3 for the fact that

Njx1/3N_{j}\ll x^{1/3} with j=4,5,6j=4,5,6. Let

h=1i6ijni,=nj,H=1i6ijNi,L=Nj.h=\prod_{\begin{subarray}{c}1\leqslant i\leqslant 6\\ i\neq j\end{subarray}}n_{i},\qquad\ell=n_{j},\qquad H=\prod_{\begin{subarray}{c}1\leqslant i\leqslant 6\\ i\neq j\end{subarray}}N_{i},\qquad L=N_{j}.

In this case, we can see that 𝒯\mathcal{T}^{*} is a sum of ”Type I” satisfying Hx1/4H\ll x^{1/4}. By Lemma 2.12, we have

xε𝒯x1/2M15/4M2+x3/4(M1M2)7/8.x^{-\varepsilon}\cdot\mathcal{T}^{*}\ll x^{1/2}{M_{1}}^{5/4}M_{2}+x^{3/4}(M_{1}M_{2})^{7/8}.

Case 2

If there exists an NjN_{j} such that x1/2Nj<x3/4x^{1/2}\leqslant N_{j}<x^{3/4}, then we take

h=1i6ijni,=nj,H=1i6ijNi,L=Nj.h=\prod_{\begin{subarray}{c}1\leqslant i\leqslant 6\\ i\neq j\end{subarray}}n_{i},\qquad\ell=n_{j},\qquad H=\prod_{\begin{subarray}{c}1\leqslant i\leqslant 6\\ i\neq j\end{subarray}}N_{i},\qquad L=N_{j}.

Thus, 𝒯\mathcal{T}^{*} is a sum of ”Type II” satisfying x1/4Hx1/2x^{1/4}\ll H\ll x^{1/2}. By Lemma 2.14, we have

xε𝒯\displaystyle x^{-\varepsilon}\cdot\mathcal{T}^{*} x3/4M19/8M27/8+x7/8M1M23/4+x13/16M119/16M23/4+x15/16(M1M2)3/4\displaystyle\ll x^{3/4}{M_{1}}^{9/8}{M_{2}}^{7/8}+x^{7/8}M_{1}{M_{2}}^{3/4}+x^{13/16}{M_{1}}^{19/16}{M_{2}}^{3/4}+x^{15/16}(M_{1}M_{2})^{3/4}
+x1/2M1M2.\displaystyle+x^{1/2}M_{1}M_{2}.

Case 3

If there exists an NjN_{j} such that x1/4Nj<x1/2x^{1/4}\leqslant N_{j}<x^{1/2}, then we take

h=nj,=1i6ijni,H=Nj,L=1i6ijNi.h=n_{j},\qquad\ell=\prod_{\begin{subarray}{c}1\leqslant i\leqslant 6\\ i\neq j\end{subarray}}n_{i},\qquad H=N_{j},\qquad L=\prod_{\begin{subarray}{c}1\leqslant i\leqslant 6\\ i\neq j\end{subarray}}N_{i}.

Thus, 𝒯\mathcal{T}^{*} is a sum of ”Type II” satisfying x1/4Hx1/2x^{1/4}\ll H\ll x^{1/2}. By Lemma 2.14, we have

xε𝒯\displaystyle x^{-\varepsilon}\cdot\mathcal{T}^{*} x3/4M19/8M27/8+x7/8M1M23/4+x13/16M119/16M23/4+x15/16(M1M2)3/4\displaystyle\ll x^{3/4}{M_{1}}^{9/8}{M_{2}}^{7/8}+x^{7/8}M_{1}{M_{2}}^{3/4}+x^{13/16}{M_{1}}^{19/16}{M_{2}}^{3/4}+x^{15/16}(M_{1}M_{2})^{3/4}
+x1/2M1M2.\displaystyle+x^{1/2}M_{1}M_{2}.

Case 4

If Nj<x1/4(j=1,2,3,4,5,6)N_{j}<x^{1/4}(j=1,2,3,4,5,6), without loss of generality, we assume that

N1N2N6N_{1}\geqslant N_{2}\geqslant\cdots\geqslant N_{6}. Let rr denote the natural number jj such that

N1N2Nj1<x1/4,N1N2Njx1/4.N_{1}N_{2}\cdots N_{j-1}<x^{1/4},\qquad N_{1}N_{2}\cdots N_{j}\geqslant x^{1/4}.

Since N1<x1/4N_{1}<x^{1/4} and N6<x1/4N_{6}<x^{1/4}, then 2r52\leqslant r\leqslant 5. Thus we have

x1/4N1N2Nr=(N1N2Nr1)Nr<x1/4x1/4=x1/2.x^{1/4}\leqslant N_{1}N_{2}\cdots N_{r}=(N_{1}N_{2}\cdots N_{r-1})\cdot N_{r}<x^{1/4}\cdot x^{1/4}=x^{1/2}.

Let

h=i=1rni,=i=r+16ni,H=i=1rNi,L=i=r+16Ni.h=\prod_{i=1}^{r}n_{i},\qquad\ell=\prod_{i=r+1}^{6}n_{i},\qquad H=\prod_{i=1}^{r}N_{i},\qquad L=\prod_{i=r+1}^{6}N_{i}.

At this time, 𝒯\mathcal{T}^{*} is a sum of ”Type II” satisfying x1/4Hx1/2x^{1/4}\ll H\ll x^{1/2}. By Lemma 2.14, we have

xε𝒯\displaystyle x^{-\varepsilon}\cdot\mathcal{T}^{*} x3/4M19/8M27/8+x7/8M1M23/4+x13/16M119/16M23/4+x15/16(M1M2)3/4\displaystyle\ll x^{3/4}{M_{1}}^{9/8}{M_{2}}^{7/8}+x^{7/8}M_{1}{M_{2}}^{3/4}+x^{13/16}{M_{1}}^{19/16}{M_{2}}^{3/4}+x^{15/16}(M_{1}M_{2})^{3/4}
+x1/2M1M2.\displaystyle+x^{1/2}M_{1}M_{2}.

Combining the above four cases, we derive that

xε𝒯\displaystyle x^{-\varepsilon}\cdot\mathcal{T}^{*} x3/4M19/8M27/8+x7/8M1M23/4+x13/16M119/16M23/4+x15/16(M1M2)3/4\displaystyle\ll x^{3/4}{M_{1}}^{9/8}{M_{2}}^{7/8}+x^{7/8}M_{1}{M_{2}}^{3/4}+x^{13/16}{M_{1}}^{19/16}{M_{2}}^{3/4}+x^{15/16}(M_{1}M_{2})^{3/4}
+x1/2M15/4M2,\displaystyle+x^{1/2}{M_{1}}^{5/4}M_{2},

which combined with (4.4) and (4.5) yields

xε𝒮1\displaystyle x^{-\varepsilon}\mathcal{S}_{1} x5/4M13/8M21/8+x11/8M11/4+x21/16M17/16+x23/16+x11/8M13/16+xM11/2M21/4.\displaystyle\ll x^{5/4}{M_{1}}^{3/8}{M_{2}}^{1/8}+x^{11/8}{M_{1}}^{1/4}+x^{21/16}{M_{1}}^{7/16}+x^{23/16}+x^{11/8}{M_{1}}^{3/16}+x{M_{1}}^{1/2}{M_{2}}^{1/4}.

Thus we obtain

xεR1x5/4M13/8M21/8+x11/8M11/4+x21/16M17/16+x23/16+x11/8M13/16+xM11/2M21/4.\displaystyle x^{-\varepsilon}R_{1}\ll x^{5/4}{M_{1}}^{3/8}{M_{2}}^{1/8}+x^{11/8}{M_{1}}^{1/4}+x^{21/16}{M_{1}}^{7/16}+x^{23/16}+x^{11/8}{M_{1}}^{3/16}+x{M_{1}}^{1/2}{M_{2}}^{1/4}. (4.8)

4.2. Estimate of R2R_{2}


By the same argument on R1R_{1}, we derive that

R2x1/2(M1M2)3/4|𝒮2|,R_{2}\ll\frac{x^{1/2}}{(M_{1}M_{2})^{3/4}}|{\mathcal{S}_{2}}^{*}|, (4.9)

where

𝒮2=m1M1,m2M2m1m2d(m1)d(m2)x<n2xΛ(n)𝐞(2(m1+m2)n).{\mathcal{S}_{2}}^{*}=\sum_{\begin{subarray}{c}m_{1}\sim M_{1},m_{2}\sim M_{2}\\ m_{1}\neq m_{2}\end{subarray}}d(m_{1})d(m_{2})\sum_{x<n\leqslant 2x}\Lambda(n)\>\mathbf{e}(2(\sqrt{m_{1}}+\sqrt{m_{2}})\sqrt{n}). (4.10)

Using Lemma 2.7, Lemma 2.8 and the Cauchy-Schwarz’s inequality, one has

x<n2xΛ(n)𝐞(2(m1+m2)n)\displaystyle\sum_{x<n\leqslant 2x}\Lambda(n)\>\mathbf{e}(2(\sqrt{m_{1}}+\sqrt{m_{2}})\sqrt{n})
(x<n2xΛ2(n))1/2(x<n2x𝐞(4(m1+m2)n))1/2\displaystyle\ll\left(\sum_{x<n\leqslant 2x}\Lambda^{2}(n)\right)^{1/2}\left(\sum_{x<n\leqslant 2x}\>\mathbf{e}(4(\sqrt{m_{1}}+\sqrt{m_{2}})\sqrt{n})\right)^{1/2}
x1/2+ε(x2x𝐞(4(m1+m2)t)𝑑t)1/2\displaystyle\ll x^{1/2+\varepsilon}\left(\int_{x}^{2x}\mathbf{e}(4(\sqrt{m_{1}}+\sqrt{m_{2}})\sqrt{t})dt\right)^{1/2}
x3/4+ε(m1m2)1/8,\displaystyle\ll x^{3/4+\varepsilon}(m_{1}m_{2})^{-1/8},

which combined with (4.10) yields

R2\displaystyle R_{2} x5/4+ε(M1M2)3/4m1M1,m2M2m1m2d(m1)d(m2)(m1m2)1/8\displaystyle\ll\frac{x^{5/4+\varepsilon}}{(M_{1}M_{2})^{3/4}}\sum_{\begin{subarray}{c}m_{1}\sim M_{1},m_{2}\sim M_{2}\\ m_{1}\neq m_{2}\end{subarray}}d(m_{1})d(m_{2})(m_{1}m_{2})^{-1/8} (4.11)
x5/4+ε(M1M2)1/8.\displaystyle\ll x^{5/4+\varepsilon}(M_{1}M_{2})^{1/8}.

Above all, since M1,M2M_{1},M_{2} run over 1M1,M2M1\leqslant M_{1},M_{2}\leqslant M, 1Mx1\ll M\ll x, by (4.3), (4.8), (4.11), after eliminating lower order terms, we conclude that

S11\displaystyle S_{11} =14π2x<p2xp1/2(m=1d2(m)m3/2m>Md2(m)m3/2)+O(xε(x5/4M13/8M21/8+x11/8M11/4\displaystyle=\frac{1}{4\pi^{2}}\sum_{x<p\leqslant 2x}p^{1/2}\left(\sum_{m=1}^{\infty}\frac{d^{2}(m)}{m^{3/2}}-\sum_{m>M}\frac{d^{2}(m)}{m^{3/2}}\right)+O(x^{\varepsilon}(x^{5/4}{M_{1}}^{3/8}{M_{2}}^{1/8}+x^{11/8}{M_{1}}^{1/4} (4.12)
+x21/16M17/16+x23/16+x11/8M13/16+xM11/2M21/4))\displaystyle+x^{21/16}{M_{1}}^{7/16}+x^{23/16}+x^{11/8}{M_{1}}^{3/16}+x{M_{1}}^{1/2}{M_{2}}^{1/4}))
=𝒞4π2x<p2xp1/2+O(xε(x3/2M1/2+x5/4M13/8M21/8+x11/8M11/4+x21/16M17/16\displaystyle=\frac{\mathcal{C}}{4\pi^{2}}\sum_{x<p\leqslant 2x}p^{1/2}+O(x^{\varepsilon}(x^{3/2}M^{-1/2}+x^{5/4}{M_{1}}^{3/8}{M_{2}}^{1/8}+x^{11/8}{M_{1}}^{1/4}+x^{21/16}{M_{1}}^{7/16}
+x23/16+x11/8M13/16+xM11/2M21/4)),\displaystyle+x^{23/16}+x^{11/8}{M_{1}}^{3/16}+x{M_{1}}^{1/2}{M_{2}}^{1/4})),
=𝒞4π2x<p2xp1/2+O(xε(x3/2M1/2+x5/4M1/2+x21/16M7/16+x23/16+x11/8M3/16)),\displaystyle=\frac{\mathcal{C}}{4\pi^{2}}\sum_{x<p\leqslant 2x}p^{1/2}+O(x^{\varepsilon}(x^{3/2}M^{-1/2}+x^{5/4}M^{1/2}+x^{21/16}{M}^{7/16}+x^{23/16}+x^{11/8}{M}^{3/16})),

where we use the partial summation and 𝒞\mathcal{C} denotes m=1d2(m)m3/2\sum_{m=1}^{\infty}\frac{d^{2}(m)}{m^{3/2}}.

It remains to estimate S12S_{12}, suppose Mx3/7M\ll x^{3/7}, then by (4.2), (4.12) and the Cauchy-Schwarz’s inequality we have

S12(S11)1/2(S22)1/2x3/2+εM1/4.S_{12}\ll(S_{11})^{1/2}(S_{22})^{1/2}\ll x^{3/2+\varepsilon}M^{-1/4}. (4.13)

Since 1Mx3/71\ll M\ll x^{3/7}, combining (4.1), (4.2), (4.12), (4.13), taking M=x1/4M=x^{1/4}, we obtain

x<p2xΔ2(p)=𝒞4π2x<p2xp1/2+O(x23/16+ε).\sum_{x<p\leqslant 2x}\Delta^{2}(p)=\frac{\mathcal{C}}{4\pi^{2}}\sum_{x<p\leqslant 2x}p^{1/2}+O(x^{23/16+\varepsilon}).

Thus replacing xx by x/2x/2, x/22x/2^{2}, and so on, and adding up all the results, we obtain

pxΔ2(p)\displaystyle\sum_{p\leqslant x}\Delta^{2}(p) =𝒞4π2pxp1/2+O(x23/16+ε).\displaystyle=\frac{\mathcal{C}}{4\pi^{2}}\sum_{p\leqslant x}p^{1/2}+O(x^{23/16+\varepsilon}). (4.14)

Thus we have completed the proof of the Theorem.

Acknowledgement

The authors would like to appreciate the referee for his/her patience in refereeing this paper. This work is supported by the Beijing Natural Science Foundation(Grant No.1242003), and the National Natural Science Foundation of China (Grant No.11971476).

References

  • [1] Harald Cramér. Über zwei Sätze des Herrn G. H. Hardy. Math. Z., 15(1):201–210, 1922.
  • [2] Étienne Fouvry and Henryk Iwaniec. Exponential sums with monomials. J. Number Theory, 33(3):311–333, 1989.
  • [3] Jun Furuya. On the average orders of the error term in the Dirichlet divisor problem. J. Number Theory, 115(1):1–26, 2005.
  • [4] G. H. Hardy. The Average Order of the Arithmetical Functions P(x) and delta(x). Proc. London Math. Soc. (2), 15:192–213, 1916.
  • [5] D. R. Heath-Brown. Prime numbers in short intervals and a generalized Vaughan identity. Canadian J. Math., 34(6):1365–1377, 1982.
  • [6] D. R. Heath-Brown and K. Tsang. Sign changes of E(T)E(T), Δ(x)\Delta(x), and P(x)P(x). J. Number Theory, 49(1):73–83, 1994.
  • [7] M. N. Huxley. Exponential sums and lattice points. II. Proc. London Math. Soc. (3), 66(2):279–301, 1993.
  • [8] M. N. Huxley. Exponential sums and lattice points. III. Proc. London Math. Soc. (3), 87(3):591–609, 2003.
  • [9] Aleksandar Ivić. The Riemann zeta-function. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1985. The theory of the Riemann zeta-function with applications.
  • [10] Henryk Iwaniec and Emmanuel Kowalski. Analytic number theory, volume 53 of American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI, 2004.
  • [11] Henryk Iwaniec and András Sárközy. On a multiplicative hybrid problem. J. Number Theory, 26(1):89–95, 1987.
  • [12] Anatolij A. Karatsuba. Basic analytic number theory. Springer-Verlag, Berlin, russian edition, 1993.
  • [13] G. Kolesnik. On the order of ζ(12+it)\zeta({\frac{1}{2}}+it) and Δ(R)\Delta(R). Pacific J. Math., 98(1):107–122, 1982.
  • [14] Yuk-Kam Lau and Kai-Man Tsang. On the mean square formula of the error term in the Dirichlet divisor problem. Math. Proc. Cambridge Philos. Soc., 146(2):277–287, 2009.
  • [15] Emmanuel Preissmann. Sur la moyenne quadratique du terme de reste du problème du cercle. C. R. Acad. Sci. Paris Sér. I Math., 306(4):151–154, 1988.
  • [16] O. Robert and P. Sargos. Three-dimensional exponential sums with monomials. J. Reine Angew. Math., 591:1–20, 2006.
  • [17] Kwang-Chang Tong. On divisor problems. II, III. Acta Math. Sinica, 6:139–152, 515–541, 1956.
  • [18] Kai Man Tsang. Higher-power moments of Δ(x),E(t)\Delta(x),\;E(t) and P(x)P(x). Proc. London Math. Soc. (3), 65(1):65–84, 1992.
  • [19] J. G. van der Corput. Zum Teilerproblem. Math. Ann., 98(1):697–716, 1928.
  • [20] Georges Voronoï. Sur une fonction transcendante et ses applications à la sommation de quelques séries. Ann. Sci. École Norm. Sup. (3), 21:207–267, 1904.
  • [21] Wenguang Zhai. On higher-power moments of Δ(x)\Delta(x). II. Acta Arith., 114(1):35–54, 2004.
  • [22] Wenguang Zhai. On higher-power moments of Δ(x)\Delta(x). III. Acta Arith., 118(3):263–281, 2005.