This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

On a limit behaviour of a random walk penalised in the lower half-plane

A. Pilipenko Institute of Mathematics, National Academy of Sciences of Ukraine, 3 Tereshchenkivska str., 01601, Kyiv, Ukraine; National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine [email protected]  and  Ben Povar National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Department of Physics and Mathematics, 03056, Kyiv, Ukraine, 37, Peremohy ave. [email protected]
Abstract.

We consider a random walk S~\tilde{S} which has different increment distributions in positive and negative half-planes. In the upper half-plane the increments are mean-zero i.i.d. with finite variance. In the lower half-plane we consider two cases: increments are positive i.i.d. random variables with either a slowly varying tail or with a finite expectation. For the distributions with a slowly varying tails, we show that {1nS~(nt)}\{\frac{1}{\sqrt{n}}\tilde{S}(nt)\} has no weak limit in 𝒟[0,1]\mathcal{D}[0,1]; alternatively, the weak limit is a reflected Brownian motion.

Key words and phrases:
Invariance principle, Reflected Brownian motion
2000 Mathematics Subject Classification:
60F17; 60G50
A.Pilipenko was partially supported by the Alexander von Humboldt Foundation within the Research Group Linkage Programme Singular diffusions: analytic and stochastic approaches, the DFG Project Stochastic Dynamics with Interfaces (PA 2123/7-1), and the National Research Foundation of Ukraine (project 2020.02/0014 “Asymptotic regimes of perturbed random walks: on the edge of modern and classical probability”).

1. Introduction and main results

Let random variables {ξn}n1\{\xi_{n}\}_{n\geq 1} be i.i.d. with a generic copy ξ\xi and 𝔼ξ=0,𝔼ξ2=σ2{\mathbb{E}}\xi=0,\ {\mathbb{E}}\xi^{2}=\sigma^{2}; {ηn}n1\{\eta_{n}\}_{n\geq 1} are positive i.i.d., independent from the previous ones and with a generic copy η\eta. We consider a random walk S~\tilde{S}:

(1) S~(0)=0,S~(n+1)={S~(n)+ξn+1ifS~(n)>0,S~(n)+ηn+1ifS~(n)0.\tilde{S}(0)=0,\ \tilde{S}(n+1)=\begin{cases}\tilde{S}(n)+\xi_{n+1}\ \text{if}\ \tilde{S}(n)>0,\\ \tilde{S}(n)+\eta_{n+1}\ \text{if}\ \tilde{S}(n)\leq 0.\end{cases}
Refer to caption
Figure 1. Sample path of S~\tilde{S} (up to interpolation). Red vertical lines show when the jump is distributed as η\eta.

If S~(n)(0,)\tilde{S}(n)\in(0,\infty), then the random walk has increments distributed as ξ\xi and on (,0](-\infty,0] as η\eta. Jumps {ηn}\{\eta_{n}\} pushes the random walk up from the negative half-plane. This can be interpreted as some non-immediate reflection to the positive half-plane. Similar approach for stochastic differential equations is called the penalization method and leads to a reflected diffusion if penalizations below zero are big enough, see for example [Men83] or [Pil14, §1.4].

An interpretation of this model comes from the evaporation of gas from liquid in physics, for example, a model of ballistic evaporation [JLF14]. The usual form of speed distribution of a particle in a medium is Maxwell distribution. But in case when there is a medium change (a particle bounces off liquid) several papers have indicated that super- or sub-Maxwell distributions could apply [JLF14], [HKF16], [KS16].

Another interpretation is the following. Consider an online shop with a warehouse. Assume that the warehouse is replenished every day (e.g. under a long-term contract) and also that the expectation of supply equals the expectation of demand. So, the increments of the number of goods in the warehouse are mean-zero random variables {ξk}\{\xi_{k}\} if the warehouse is non-empty. In case when the virtual amount of goods in stock is negative, i.e., the warehouse is empty and we have unsatisfied orders, the shop seeks to refill the warehouse by buying batches of goods until it has a positive balance. In our model this refilling corresponds to the sequence {ηk}\{\eta_{k}\}. If we consider a regular shop or a traditional queueing model, then the unsatisfied orders would be discarded and the walk couldn’t overjump a zero-level. While the shortage is not overcome (which may take some time), the shop does not sell any goods.

Our goal is to analyse the limit of the scaled sequence of the processes {1nS~(nt),t[0,1]}n1\Big{\{}\frac{1}{\sqrt{n}}\tilde{S}(nt),\ t\in[0,1]\Big{\}}_{n\geq 1} as nn\to\infty. Depending on the distribution of η\eta we want to distinguish two cases:

  1. (1)

    η\eta has a finite expectation:

    𝔼η<.{\mathbb{E}}\eta<\infty.
  2. (2)

    the distribution of η\eta has a slowly varying tail

    (η>x)l(x),lR0,{\mathbb{P}}(\eta>x)\sim l(x),\ l\in R_{0},

    where R0R_{0} a set of slowly varying functions (check definition 1.4.2 in [BGT87]).

Remark 1.

Another interesting case is when the tail of η\eta is regularly varying, i.e., η\eta belongs to the domain of attraction of an α\alpha-stable distribution. This case was studied in [PP14] with the restriction on ξ\xi to be in \mathbb{Z} and greater than or equal to 1-1. We conjecture that the limit process should be the same as in [PP14], although we postpone the proof for the future paper.

For the case Eη<\mathrm{E}\eta<\infty we assume that S~\tilde{S} is linearly interpolated for t0t\geq 0:

S~(t)=S~(t)+(tt)S~(t).\tilde{S}(t)=\tilde{S}(\left\lfloor t\right\rfloor)+(t-\left\lfloor t\right\rfloor)\tilde{S}(\left\lceil t\right\rceil).
Theorem 1.

A sequence of processes

(S~(nt)n,t[0,1])n1\Big{(}\frac{\tilde{S}(nt)}{\sqrt{n}},\ t\in[0,1]\Big{)}_{n\geq 1}

converges weakly in C[0,1]\mathrm{C}[0,1] to a reflected Brownian motion:

Wreflected(t):=W(t)minstW(s).W_{\text{reflected}}(t):=W(t)-\min_{s\leq t}W(s).
Remark 2.

It is well-known that WreflectedW_{\text{reflected}} has the same distribution as the absolute value of a Brownian motion |W||W|, see for example Theorem 1.3.2 in [Pil14].

For the second case we assume S~\tilde{S} has a flat-right interpolation for t0t\geq 0:

S~(t)=S~(t).\tilde{S}(t)=\tilde{S}(\left\lfloor t\right\rfloor).
Theorem 2.

For a sequence of processes

(S~(nt)n,t[0,1])n1\Big{(}\frac{\tilde{S}(nt)}{\sqrt{n}},\ t\in[0,1]\Big{)}_{n\geq 1}

there is no weak limit in 𝒟[0,1]\mathcal{D}[0,1]. Moreover for any t>0t>0

(2) maxstS~(ns)n,n.\max_{s\leq t}\frac{\tilde{S}(ns)}{\sqrt{n}}\stackrel{{\scriptstyle{\mathbb{P}}}}{{\to}}\infty,\ n\to\infty.

Our results show that intuitively understandable things happen: when η\eta has an expectation, the process behaves like a Brownian motion with a reflection; otherwise when η\eta has a slowly varying tail, the process blows up at the beginning.

Note that model (1) is equivalent (up to recounting of ξi\xi_{i} and ηi\eta_{i}) to the following

(3) S~(0)=0,S~(n)=i=1nT(n)ξi+i=1T(n)ηi,n1,\tilde{S}(0)=0,\ \tilde{S}(n)=\sum_{i=1}^{n-T(n)}\xi_{i}+\sum_{i=1}^{T(n)}\eta_{i},\ n\geq 1,

where T(n)T(n) is the number of visits to (,0](-\infty,0] before the time nn:

(4) T(n)=#{k<n:S~(k)0},n1.T(n)=\#\{k<n:\tilde{S}(k)\leq 0\},\ n\geq 1.

We work only with this representation in the paper further.

Denote

(5) Sξ(n)=i=1nξi,Sη(n)=i=1nηi.S_{\xi}(n)=\sum_{i=1}^{n}\xi_{i},\ S_{\eta}(n)=\sum_{i=1}^{n}\eta_{i}.

So

(6) S~(n)=Sξ(nT(n))+Sη(T(n)).\tilde{S}(n)=S_{\xi}(n-T(n))+S_{\eta}(T(n)).

We set by definition Sξ(t):=Sξ(t),Sη(t):=Sη(t),T(t):=T(t)S_{\xi}(t):=S_{\xi}(\left\lfloor t\right\rfloor),\ S_{\eta}(t):=S_{\eta}(\left\lfloor t\right\rfloor),T(t):=T(\left\lfloor t\right\rfloor) for all t0.t\geq 0.

Although the cases we discuss are very different, we tried to pick out common traits in Section 2.

In Section 3 we prove Theorem 1. We aim to show that 1nSη(T(nt))\frac{1}{\sqrt{n}}S_{\eta}(T(nt)) converges to minstW(s)-\min_{s\leq t}W(s) and do so by showing that the latter lies neatly between 1nSη(T(nt)1)\frac{1}{\sqrt{n}}S_{\eta}(T(nt)-1) and 1nSη(T(nt))+1nmaxint|ξi|\frac{1}{\sqrt{n}}S_{\eta}(T(nt))+\frac{1}{\sqrt{n}}\max_{i\leq nt}|\xi_{i}|.

The proof of the second case can be found in Section 4 and is based on the observation that the overshoots above level nn of the random walk SηS_{\eta} are much larger than nn. This is a known property, proved by Rogozin, see for example Theorem 8.8.2 in [BGT87]. Thus we need to show that this overshoot happens before T(n)T(n) because only in this way it could affect S~\tilde{S}.

2. Proof: shared part

Let mm be a (sign flipped) running minimum of SξS_{\xi}:

(7) m(n)=minknSξ(k).m(n)=-\min_{k\leq n}S_{\xi}(k).
Lemma 1.

For each n1n\geq 1

(8) Sη(T(n)1)m(nT(n))<Sη(T(n))+maxin|ξi|S_{\eta}(T(n)-1)\leq m(n-T(n))<S_{\eta}(T(n))+\max_{i\leq n}|\xi_{i}|
Proof.

The left inequality is trivial when T(n)=1T(n)=1. Assume that T(n)>1T(n)>1 and that for some n1n\geq 1

(9) Sη(T(n)1)>m(nT(n)).S_{\eta}(T(n)-1)>m(n-T(n)).

Take k<nk<n, such that T(n)=T(k+1)T(n)=T(k+1) and T(k)+1=T(n)T(k)+1=T(n). This is always possible since T(n)>1T(n)>1. Thus

S~(k)=Sξ(kT(k))+Sη(T(k))>m(kT(k))+Sη(T(n)1).\tilde{S}(k)=S_{\xi}(k-T(k))+S_{\eta}(T(k))>-m(k-T(k))+S_{\eta}(T(n)-1).

From (9) we infer that S~(k)>0\tilde{S}(k)>0. Therefore T(k)=T(k+1)T(k)=T(k+1) which contradicts with our choice of kk.

As for the right hand side inequality, observe that S~\tilde{S} jumps downwards at k1k\geq 1 only when S~(k1)>0\tilde{S}(k-1)>0 and Sξ(kT(k))S_{\xi}(k-T(k)) jumps downwards. Thus for every k1k\geq 1

maxikT(k)|ξi|S~(k)S~(k1)<S~(k)=Sξ(kT(k))+Sη(T(k)).-\max_{i\leq k-T(k)}|\xi_{i}|\leq\tilde{S}(k)-\tilde{S}(k-1)<\tilde{S}(k)=S_{\xi}(k-T(k))+S_{\eta}(T(k)).

Hence

Sη(T(k))+maxikT(k)|ξi|Sξ(kT(k)).S_{\eta}(T(k))+\max_{i\leq k-T(k)}|\xi_{i}|\geq-S_{\xi}(k-T(k)).

Taking maximum over knk\leq n of both sides of the last inequality we get

Sη(T(n))+maxin|ξi|minknSξ(kT(k))=minknT(n)Sξ(k)=m(nT(n)).S_{\eta}(T(n))+\max_{i\leq n}|\xi_{i}|\geq-\min_{k\leq n}S_{\xi}(k-T(k))=-\min_{k\leq n-T(n)}S_{\xi}(k)=m(n-T(n)).

By the Donsker theorem

1nSξ(n)wW(),n,\frac{1}{\sqrt{n}}S_{\xi}(n\cdot)\stackrel{{\scriptstyle w}}{{\to}}W(\cdot),\ n\to\infty,

meaning a weak convergence in C[0,1]\mathrm{C}[0,1]. By the Skorokhod Representation theorem (Theorem 6.7 in [Bil99]) we can construct a probability space which supports random elements S^ξ(n)\hat{S}_{\xi}^{(n)} and W^\hat{W} such that

S^ξ(n)=dSξ,W^=dW,n1\hat{S}_{\xi}^{(n)}\stackrel{{\scriptstyle d}}{{=}}S_{\xi},\ \hat{W}\stackrel{{\scriptstyle d}}{{=}}W,\ n\geq 1

and the uniform convergence holds

(10) 1nS^ξ(n)(nt)W^(t)asna.s.\frac{1}{\sqrt{n}}\hat{S}_{\xi}^{(n)}(nt)\rightrightarrows\hat{W}(t)\ \text{as}\ n\to\infty\ \text{a.s.}

for t[0,1]t\in[0,1].

To emphasize that we work on this new space we will write a hat^\hat{\text{hat}} whenever we use random variables dependent on S^ξ(n)\hat{S}_{\xi}^{(n)}. Without loss of generality we may assume that this new probability space is reach enough and contains a copy of the sequence {ηk}k1\{\eta_{k}\}_{k\geq 1}. We leave the same notation and assume that the original sequence {ηk}k1\{\eta_{k}\}_{k\geq 1} belongs to this probability space. Using sequences {S^ξ(n)(k)}\{\hat{S}_{\xi}^{(n)}(k)\} and {Sη(k)}\{S_{\eta}(k)\} we construct copies {T^(n)(k)},{S~^(n)(k)},{m^(n)(k)}\{\hat{T}^{(n)}(k)\},\ \{\hat{\tilde{S}}^{(n)}(k)\},\ \{\hat{m}^{(n)}(k)\} of {T(k)},{S~(k)},{m(k)}\{T(k)\},\ \{{\tilde{S}}(k)\},\{m(k)\} similarly to formulas (4), (7), (6). Note that in this constructions sequences {S^ξ(n)(k)}\{\hat{S}_{\xi}^{(n)}(k)\} depend on nn but {Sη(k)}\{S_{\eta}(k)\} does not. Often we will leave out indexing by nn, that is S^ξ(n)\hat{S}_{\xi}^{(n)} becomes S^ξ\hat{S}_{\xi}.

It follows from inequality (8) that

(11) Sη(T^(nt)1)m^(nt)a.s.S_{\eta}(\hat{T}(nt)-1)\leq\hat{m}(nt)\ \text{a.s.}

for all t0t\geq 0.

Divide both sides by n\sqrt{n}. By (10) we have

(12) ε1>0n1n>n11nSη(T^(nt)1)minstW^(s)+ε1a.s.\forall\varepsilon_{1}>0\ \exists n_{1}\ \forall n>n_{1}\quad\frac{1}{\sqrt{n}}S_{\eta}(\hat{T}(nt)-1)\leq-\min_{s\leq t}\hat{W}(s)+\varepsilon_{1}\ \text{a.s.}

Note that limkT^(k)=+\lim_{k\to\infty}\hat{T}(k)=+\infty a.s. because lim infkSξ(k)=\liminf_{k\to\infty}S_{\xi}(k)=-\infty a.s. Thus

(13) ε1>0n1n>n1T^(nt)1nT^(nt)1Sη(T^(nt)1)(minstW^(s)+ε1)a.s.\forall\varepsilon_{1}>0\ \exists n^{\prime}_{1}\ \forall n>n^{\prime}_{1}\quad\frac{\hat{T}(nt)-1}{\sqrt{n}}\leq\frac{\hat{T}(nt)-1}{S_{\eta}(\hat{T}(nt)-1)}(-\min_{s\leq t}\hat{W}(s)+\varepsilon_{1})\ \text{a.s.}

The strong law of the large numbers for SηS_{\eta} implies

(14) lim supnT^(nt)nminstW^(s)𝔼ηa.s.\limsup_{n\to\infty}\frac{\hat{T}(nt)}{\sqrt{n}}\leq\frac{-\min_{s\leq t}\hat{W}(s)}{{\mathbb{E}}\eta}\ \text{a.s.}

When 𝔼η={\mathbb{E}}\eta=\infty, the right hand side is 0.

Corollary 1.
sup0t1T(nt)n0,n.\sup_{0\leq t\leq 1}\frac{T(nt)}{n}\stackrel{{\scriptstyle{\mathbb{P}}}}{{\to}}0,\ n\to\infty.
Proof.

Since T^\hat{T} is non-decreasing we have

sup0t1T^(nt)nT^(n)n.\sup_{0\leq t\leq 1}\frac{\hat{T}(nt)}{n}\leq\frac{\hat{T}(n)}{n}.

Recall that T^=dT\hat{T}\stackrel{{\scriptstyle d}}{{=}}T, hence the corollary follows from (14). ∎

Lemma 2.

The uniform convergence on [0,1][0,1] holds as nn\to\infty

m^(ntT^(nt))nminstW^(t)a.s.\frac{\hat{m}(nt-\hat{T}(nt))}{\sqrt{n}}\rightrightarrows-\min_{s\leq t}\hat{W}(t)\ \text{a.s.}
Proof.

Equations (10) and (14) yield the uniform convergences on [0,1][0,1]

1nm^(nt)=1nm^(n)(nt)minstW^(t),n,\frac{1}{\sqrt{n}}\hat{m}(nt)=\frac{1}{\sqrt{n}}\hat{m}^{(n)}(nt)\rightrightarrows-\min_{s\leq t}\hat{W}(t),\ \ n\to\infty,

and

tT^(nt)n=tT^(n)(nt)nt,n,t-\frac{\hat{T}(nt)}{n}=t-\frac{\hat{T}^{(n)}(nt)}{n}\rightrightarrows t,\ \ n\to\infty,

with probability 1.

Since tT^(nt)n[0,1]t-\frac{\hat{T}(nt)}{n}\in[0,1] and the limit functions are continuous, their compositions a.s. uniformly converge to the composition of limits. ∎

Remark 3.

In Lemma 2 we may use both linear and piecewise constant approximation of the corresponding processes.

3. Proof of Theorem 1

It suffices to prove uniform convergence over t[0,1]t\in[0,1] as nn\to\infty

(15) 1nSη(T^(nt))minstW^(s)a.s.\frac{1}{\sqrt{n}}S_{\eta}(\hat{T}(nt))\rightrightarrows-\min_{s\leq t}\hat{W}(s)\ \text{a.s.}

The other part of the statement of Theorem 1 is provided by (10).

From Lemma 1 and Lemma 2 we infer that

(16) lim supn1nSη(T^(nt)1)minstW^(s)a.s.\displaystyle\limsup_{n\to\infty}\frac{1}{\sqrt{n}}S_{\eta}(\hat{T}(nt)-1)\leq-\min_{s\leq t}\hat{W}(s)\ \text{a.s.}
(17) lim infn(1nSη(T^(nt))+maxin|ξ^i|n)minstW^(s)a.s.\displaystyle\liminf_{n\to\infty}\Bigg{(}\frac{1}{\sqrt{n}}S_{\eta}(\hat{T}(nt))+\frac{\max_{i\leq n}|\hat{\xi}_{i}|}{\sqrt{n}}\Bigg{)}\geq-\min_{s\leq t}\hat{W}(s)\ \text{a.s.}

To prove (15) it suffices to show

(18) maxin|ξ^i|n0,n.\frac{\max_{i\leq n}|\hat{\xi}_{i}|}{\sqrt{n}}\stackrel{{\scriptstyle{\mathbb{P}}}}{{\to}}0,\ n\to\infty.

and

(19) 1n|Sη(T^(nt))Sη(T^(nt)1)|=1nηT^(nt)0,n,\frac{1}{\sqrt{n}}|S_{\eta}(\hat{T}(nt))-S_{\eta}(\hat{T}(nt)-1)|=\frac{1}{\sqrt{n}}\eta_{\hat{T}(nt)}\stackrel{{\scriptstyle{\mathbb{P}}}}{{\to}}0,\ n\to\infty,

Observe that for a given δ>0\delta>0 due to (14) it is always possible to choose K>0K>0 such that

(T^(n)Kn)>1δ.{\mathbb{P}}(\hat{T}(n)\leq K\sqrt{n})>1-\delta.

Hence both (18) and (19) follow from Theorem 6.2.1 in [Gut13].

4. Proof of Theorem 2

It suffices to prove (2). Set

Nη(x)=inf{k:Sη(k)>x},x0.N_{\eta}(x)=\inf\{k:S_{\eta}(k)>x\},\ x\geq 0.

Let c>0c>0, K>0K>0, 0<ε<K0<\varepsilon<K and 0<t10<t\leq 1 be arbitrary real numbers, then

(20) {maxintS~(i)nc}={maxint(Sξ(iT(i))+Sη(T(i)))cn}{mininSξ(i)Kn}{Sη(T(nt))>(K+c)n}={mininSξ(i)Kn}{Nη((K+c)n)T(nt)}{mininSξ(i)Kn}{Nη(εn)T(nt)}{ηNη(εn)>(K+c)n}.\displaystyle\begin{split}\Big{\{}\max_{i\leq nt}\frac{\tilde{S}(i)}{\sqrt{n}}\geq c\Big{\}}&=\Big{\{}\max_{i\leq nt}\Big{(}S_{\xi}(i-T(i))+S_{\eta}(T(i))\Big{)}\geq c\sqrt{n}\Big{\}}\\ &\supset\Big{\{}\min_{i\leq n}S_{\xi}(i)\geq-K\sqrt{n}\Big{\}}\cap\Big{\{}S_{\eta}(T(nt))>(K+c)\sqrt{n}\Big{\}}\\ &=\Big{\{}\min_{i\leq n}S_{\xi}(i)\geq-K\sqrt{n}\Big{\}}\cap\Big{\{}N_{\eta}((K+c)\sqrt{n})\leq T(nt)\Big{\}}\\ &\supset\Big{\{}\min_{i\leq n}S_{\xi}(i)\geq-K\sqrt{n}\Big{\}}\cap\Big{\{}N_{\eta}(\varepsilon\sqrt{n})\leq T(nt)\Big{\}}\\ &\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\cap\Big{\{}\eta_{N_{\eta}(\varepsilon\sqrt{n})}>(K+c)\sqrt{n}\Big{\}}.\end{split}

For the second inclusion observe that if

ηNη(εn)>(K+c)n,\eta_{N_{\eta}(\varepsilon\sqrt{n})}>(K+c)\sqrt{n},

then automatically

Nη((K+c)n)=Nη(εn).N_{\eta}((K+c)\sqrt{n})=N_{\eta}(\varepsilon\sqrt{n}).
Lemma 3.

Let j,l,a>0j,l,a>0 be real numbers such that j+l<nj+l<n, then

{minijSξ(i)a}{T(n)<l}{Nη(a)T(j+l)}.\Big{\{}\min_{i\leq j}S_{\xi}(i)\leq-a\Big{\}}\cap\Big{\{}T(n)<l\Big{\}}\subset\Big{\{}N_{\eta}(a)\leq T(j+l)\Big{\}}.
Proof.

Suppose minijSξ(i)=Aa\min_{i\leq j}S_{\xi}(i)=-A\leq-a and it is firstly attained at i=iji=i^{*}\leq j. Denote by uu the smallest solution of

uT(u)=i.u-T(u)=i^{*}.

Let kk be such that

S~(u)S~(u+1)S~(u+k1)0<S~(u+k),\tilde{S}(u)\leq\tilde{S}(u+1)\leq\dots\leq\tilde{S}(u+k-1)\leq 0<\tilde{S}(u+k),

meaning that S~\tilde{S} needs kk jumps to become positive. Observe that T(u)+k=T(u+k)T(u)+k=T(u+k).

Assume T(n)<lT(n)<l. Then k<lk<l. Thus

u+k<j+l<n.u+k<j+l<n.

As kk is such that S~(u+k)>0\tilde{S}(u+k)>0, then from definition of S~\tilde{S} we deduce that Sη(T(u+k))>AS_{\eta}(T(u+k))>A and so

Nη(a)Nη(A)T(u+k)=T(i+T(u)+k)=T(i+T(u+k))T(j+l).N_{\eta}(a)\leq N_{\eta}(A)\leq T(u+k)=T(i^{*}+T(u)+k)=T(i^{*}+T(u+k))\leq T(j+l).

Apply Lemma 3 with j=l=nt2j=l=\frac{nt}{2} and a=εna=\varepsilon\sqrt{n} to further inclusion (20)

(21) {maxintS~(i)nc}{mininSξ(i)Kn}{Nη(εn)T(nt)}{ηNη(εn)>(K+c)n}{mininSξ(i)Kn}{minint/2Sξ(i)εn}{T(n)<nt2}{ηNη(εn)>(K+c)n}.\begin{split}&\Big{\{}\max_{i\leq nt}\frac{\tilde{S}(i)}{\sqrt{n}}\geq c\Big{\}}\\ \supset\Big{\{}\min_{i\leq n}S_{\xi}(i)\geq-K\sqrt{n}\Big{\}}&\cap\Big{\{}N_{\eta}(\varepsilon\sqrt{n})\geq T(nt)\Big{\}}\cap\Big{\{}\eta_{N_{\eta}(\varepsilon\sqrt{n})}>(K+c)\sqrt{n}\Big{\}}\\ \supset\Big{\{}\min_{i\leq n}S_{\xi}(i)\geq-K\sqrt{n}\Big{\}}&\cap\Big{\{}\min_{i\leq nt/2}S_{\xi}(i)\leq-\varepsilon\sqrt{n}\Big{\}}\cap\Big{\{}T(n)<\frac{nt}{2}\Big{\}}\\ &\cap\Big{\{}\eta_{N_{\eta}(\varepsilon\sqrt{n})}>(K+c)\sqrt{n}\Big{\}}.\\ \end{split}

Hence

(22) \mathbbP(maxintS~(i)nc)\mathbbP(r.h.s. of (LABEL:broader_road))=1\mathbbP(complement to the r.h.s. of (LABEL:broader_road))1\mathbbP(mininSξ(i)Kn)\mathbbP(minint/2Sξ(i)εn)\mathbbP(T(n)>nt2)\mathbbP(ηNη(εn)<(K+c)n).\displaystyle\begin{split}\mathbbP\Big{(}\max_{i\leq nt}\frac{\tilde{S}(i)}{\sqrt{n}}\geq c\Big{)}&\geq\mathbbP\Big{(}\text{r.h.s. of \eqref{broader_road}}\Big{)}\\ &=1-\mathbbP\Big{(}\text{complement to the r.h.s. of \eqref{broader_road}}\Big{)}\\ &\geq 1-\mathbbP\Big{(}\min_{i\leq n}S_{\xi}(i)\leq-K\sqrt{n}\Big{)}-\mathbbP\Big{(}\min_{i\leq nt/2}S_{\xi}(i)\geq-\varepsilon\sqrt{n}\Big{)}\\ &-\mathbbP\Big{(}T(n)>\frac{nt}{2}\Big{)}-\mathbbP\Big{(}\eta_{N_{\eta}(\varepsilon\sqrt{n})}<(K+c)\sqrt{n}\Big{)}.\end{split}

Let δ>0\delta>0 be an arbitrary small number. We proceed by proving that every negative term in the r.h.s. of the last inequality is greater than δ-\delta for nn big enough.

Choose K>0K>0 and 0<ε<K0<\varepsilon<K so that

\mathbbP(|Nη(0,1)|>K)<δ,\mathbbP(|Nη(0,1)|<ε2t)<δ.\mathbbP\Big{(}|N_{\eta}(0,1)|>K\Big{)}<\delta,\quad\mathbbP\Big{(}|N_{\eta}(0,1)|<\varepsilon\sqrt{\frac{2}{t}}\Big{)}<\delta.

Since

minintSξ(i)n𝑤|Nη(0,t)|,n,-\min_{i\leq nt}\frac{S_{\xi}(i)}{\sqrt{n}}\overset{w}{\to}|N_{\eta}(0,t)|,\ n\to\infty,

we get

lim supn(\mathbbP(mininSξ(i)Kn)+\mathbbP(minint/2Sξ(i)εn))2δ.\limsup_{n\to\infty}\Bigg{(}\mathbbP\Big{(}\min_{i\leq n}S_{\xi}(i)\leq-K\sqrt{n}\Big{)}+\mathbbP\Big{(}\min_{i\leq nt/2}S_{\xi}(i)\leq-\varepsilon\sqrt{n}\Big{)}\Bigg{)}\leq 2\delta.

It follows from Theorem 8.8.2 in [BGT87] that

(23) ηNη(εn)n,n.\frac{\eta_{N_{\eta}(\varepsilon\sqrt{n})}}{\sqrt{n}}\stackrel{{\scriptstyle{\mathbb{P}}}}{{\to}}\infty,\ n\to\infty.

So the last term in the right hand side of (22) converges to 0.

Corollary 1 concludes the proof.

References

  • [BGT87] N. H. Bingham, C. M. Goldie, and J. L. Teugels. Regular variation. Cambridge University Press, Cambridge, 1987.
  • [Bil99] P. Billingsley. Convergence of Probability Measures. Wiley, 1999.
  • [Gut13] A. Gut. Probability: A Graduate Course. Springer New York, 2013.
  • [HKF16] C. Hahn, Z. R. Kann, J. A. Faust, J. L. Skinner, and G. M. Nathanson. Super-Maxwellian helium evaporation from pure and salty water. The Journal of Chemical Physics, 144(4):044707, January 2016.
  • [JLF14] A. M. Johnson, D. K. Lancaster, J. A. Faust, C. Hahn, A. Reznickova, and G. M. Nathanson. Ballistic evaporation and solvation of helium atoms at the surfaces of protic and hydrocarbon liquids. The Journal of Physical Chemistry Letters, 5(21):3914–3918, October 2014.
  • [KS16] Z. R. Kann and J. L. Skinner. Sub- and super-Maxwellian evaporation of simple gases from liquid water. The Journal of Chemical Physics, 144(15):154701, April 2016.
  • [Men83] J. L. Menaldi. Stochastic variational inequality for reflected diffusion. Indiana University mathematics journal, 32(5):733–744, 1983.
  • [Pil14] A. Pilipenko. An introduction to stochastic differential equations with reflection. Potsdam:Universitatsverlag, 09 2014.
  • [PP14] A. Pilipenko and Yu. Prykhodko. Limit behaviour of a simple random walk with non-integrable jump from a barrier. Theory of Stochastic Processes, 19 (35)(1):52–61, 2014.