This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

On a generalized Kuramoto model with relativistic effects and emergent dynamics

Chan Ho Min
Department of Financial engineering
Ajou University, Suwon 16499, Republic of Korea
[email protected]
Hyunjin Ahn
Department of Mathematical Sciences
Seoul National University, Seoul 08826, Republic of Korea
[email protected]
Seung-Yeal Ha
Department of Mathematical Sciences and Research Institute of Mathematics
Seoul National University, Seoul 08826 and
Korea Institute for Advanced Study, Hoegiro 85, Seoul, 02455, Republic of Korea
[email protected]
 and  Myeongju Kang
Department of Mathematical Sciences and Research Institute of Mathematics
Seoul National University, Seoul 08826, Republic of Korea and
[email protected]
Abstract.

We propose a generalized Kuramoto model with relativistic effects and investigate emergent asymptotic behaviors. The proposed generalized Kuramoto model incorporates relativistic Kuramoto(RK) type models which can be derived from the relativistic Cucker-Smale (RCS) on the unit sphere under suitable approximations. We present several sufficient frameworks leading to complete synchronization in terms of initial data and system parameters. For the relativistic Kuramoto model, we show that it can be reduced to the Kuramoto model in any finite time interval in a non-relativistic limit. We also provide several numerical examples for two approximations of the relativistic Kuramoto model, and compare them with analytical results.

Key words and phrases:
complete phase-locking, complete synchronization, the relativistic Kuramoto model, non-relativistic limit, order parameters, phase-locked state
2010 Mathematics Subject Classification:
34D06, 70F10, 70G60, 92D25
Acknowledgment: The work of C. Min was supported by the new faculty research fund of Ajou University, the work of S.-Y. Ha is partially supported by National Research Foundation of Korea Grant NRF-2020R1A2C3A01003881), and the work of M. Kang was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIP)(2016K2A9A2A13003815)

1. Introduction

Collective phenomena are ubiquitous in nature and human societies, e.g., aggregation of bacteria [30], flocking of birds [11, 18, 29], synchronization of pacemaker cells and fireflies [4, 5, 6, 7, 10, 24, 26, 27], swarming of fish [14, 12, 13], etc. For a brief introduction on the subject, we refer to review papers and books [1, 27, 28, 32, 33]. To begin with, we consider the nonrelativistic Kuramoto model. Let θi=θi(t)\theta_{i}=\theta_{i}(t) be the phase of the ii-th Kuramoto oscillator whose dynamics is governed by the system of first-order ordinary differential equations:

(1.1) θ˙i=νi+κNj=1Nsin(θjθi),i=1,,N,{\dot{\theta}}_{i}=\nu_{i}+\frac{\kappa}{N}\sum_{j=1}^{N}\sin(\theta_{j}-\theta_{i}),\quad\forall~{}i=1,\cdots,N,

where νi\nu_{i} and κ\kappa are natural frequency of the ii-th oscillator and nonnegative coupling strength, respectively. The emergent dynamics of (1.1) has been extensively studied in literature from various viewpoints, to name a few, complete synchronization [6, 9, 10, 15, 20], critical coupling strength [17], uniform mean field limit [21, 25], gradient flow formulation [31], thermodynamic Kuramoto model [23], kinetic Kuramoto model [4, 5, 8] etc.

Next, we present a generalized phase-coupled model generalizing the Kuramoto model (1.1). Let FF be an odd and continuously differentiable monotone increasing in the interval (L,L)(-L,L):

(1.2) F(ω)>0,F(ω)=F(ω),ω(L,L).F^{\prime}(\omega)>0,\quad F(-\omega)=-F(\omega),\quad\forall~{}\omega\in(-L,L).

Then, the generalized Kuramoto model to be discussed in this paper reads as follows.

(1.3) F(θ˙i)=νi+κNj=1Nsin(θjθi),i=1,,N.F\big{(}\dot{\theta}_{i}\big{)}=\nu_{i}+\frac{\kappa}{N}\sum_{j=1}^{N}\sin(\theta_{j}-\theta_{i}),\quad\forall~{}i=1,\cdots,N.

Of course, for the well-definedness of θ˙i\dot{\theta}_{i}, the R.H.S. of (1.3) must be in the range of FF. Note that the choice F(ω)=ωF(\omega)=\omega with L=L=\infty satisfies the relations (1.2) and system (1.3) reduces to the Kuramoto model (1.1), whereas the choice

Γ(ω):=11|ω|2c2,L=c,F(ω)=ωΓ(ω)(1+Γ(ω)c2)\Gamma(\omega):=\frac{1}{\sqrt{1-\frac{|\omega|^{2}}{c^{2}}}},\quad L=c,\quad F(\omega)=\omega\Gamma(\omega)\bigg{(}1+\frac{\Gamma(\omega)}{c^{2}}\bigg{)}

appears in the modeling of [2] which can be derived from the relativistic Cucker-Smale model [22] (see Section 3) and it satisfy the relations (1.2). Here cc is the speed of light. The non-local modeling for F(θ˙i)F({\dot{\theta}}_{i}) also appears in the fractional Kuramoto model [19] which is out of our scope. In this paper, we are interested in the following two questions.

  • (Q1): Under what conditions on system parameters and initial data, does the generalized Kuramoto model (1.3) exhibit asymptotic synchronization?

  • (Q2): For the relativistic Kuramoto model

    (1.4) θ˙iΓi(1+Γic2)=νi+κNj=1Nsin(θjθi),t>0,i=1,,N,\displaystyle\begin{aligned} &\dot{\theta}_{i}\Gamma_{i}\bigg{(}1+\frac{\Gamma_{i}}{c^{2}}\bigg{)}=\nu_{i}+\frac{\kappa}{N}\sum_{j=1}^{N}\sin(\theta_{j}-\theta_{i}),\quad\forall~{}t>0,\quad\forall~{}i=1,\cdots,N,\end{aligned}

    does system (1.4) converge to the Kuramoto model (1.1) as cc\to\infty?

The purpose of this paper tries to answer the above two questions. More precisely, our main results can be summarized as follows. First, we provide sufficient frameworks leading to the complete synchronization (see Definition 2.1) in relation with (Q1). For an identical ensemble with the same natural frequency, phase dynamics is governed by the following system:

{F(θ˙i)=ν+κNj=1Nsin(θjθi),t>0,θi(0)=θiin,i=1,,N.\begin{cases}\displaystyle F\big{(}\dot{\theta}_{i}\big{)}=\nu+\frac{\kappa}{N}\sum_{j=1}^{N}\sin(\theta_{j}-\theta_{i}),\quad\forall~{}t>0,\\ \displaystyle\theta_{i}(0)=\theta_{i}^{in},\quad\forall~{}i=1,\cdots,N.\end{cases}

Our first set of main result deals with complete synchronization. Consider a homogeneous ensemble whose dynamics is governed by the following system:

(1.5) F(θ˙i)=ν+κNj=1Nsin(θjθi),i=1,,N.F\big{(}\dot{\theta}_{i}\big{)}=\nu+\frac{\kappa}{N}\sum_{j=1}^{N}\sin(\theta_{j}-\theta_{i}),\quad\forall~{}i=1,\cdots,N.

If the initial data and coupling strength satisfy

𝒟(Θin)<πandκ>0,{\mathcal{D}}(\Theta^{in})<\pi\quad\mbox{and}\quad\kappa>0,

one has an exponential synchronization: there exists a positive constant Λ=Λ(Θin,ν,κ,(F1))\Lambda=\Lambda(\Theta^{in},\nu,\kappa,(F^{-1})^{\prime}) such that

𝒟(Θ(t))eΛt𝒟(Θin),t>0.{\mathcal{D}}(\Theta(t))\leq e^{-\Lambda t}{\mathcal{D}}(\Theta^{in}),\quad\forall~{}t>0.

For details, see Theorem 4.1. As another setting, we assume that initial data and coupling strength satisfy

R(0)=|1Ni=1Neiθiin|>0andκ>0,\displaystyle R(0)=\bigg{|}\frac{1}{N}\sum_{i=1}^{N}e^{\mathrm{i}\theta_{i}^{in}}\bigg{|}>0\quad\mbox{and}\quad\kappa>0,

Then, the phase configuration tends to either completely synchronized state or bi-cluster state:

limt(θi(t)θj(t))=0modπ,i,j=1,,N.\displaystyle\lim_{t\to\infty}(\theta_{i}(t)-\theta_{j}(t))=0\mod~{}\pi,\quad\forall~{}i,j=1,\cdots,N.

For details, see Theorem 4.2. On the other hand, for a heterogeneous ensemble, if initial configuration, natural frequency, and coupling strength satisfy

κ>𝒟(Ω)>0,𝒟(Θin)<πθ,θ:=sin1(𝒟(ν)κ)(0,π2).\displaystyle\kappa>{\mathcal{D}}(\Omega)>0,\quad{\mathcal{D}}(\Theta^{in})<\pi-\theta_{*},\quad\theta_{*}:=\sin^{-1}\bigg{(}\frac{{\mathcal{D}}(\nu)}{\kappa}\bigg{)}\in\bigg{(}0,\frac{\pi}{2}\bigg{)}.

Then, asymptotic complete synchronization emerges (see Theorem 4.3):

limt|θ˙i(t)θ˙j(t)|=0.\displaystyle\lim_{t\to\infty}\big{|}\dot{\theta}_{i}(t)-\dot{\theta}_{j}(t)\big{|}=0.

Second, our last result is concerned with the non-relativistic limit of (1.4). More precisely, let Θc=(θ1c,,θNc)\Theta^{c}=(\theta_{1}^{c},\cdots,\theta_{N}^{c}) and Θ=(θ1,,θN)\Theta^{\infty}=(\theta_{1}^{\infty},\cdots,\theta_{N}^{\infty}) be solutions to (1.4) and (1.1) with the same initial data, respectively. We set

ΘcΘ1:=i=1N|θicθi|.\|\Theta^{c}-\Theta^{\infty}\|_{1}:=\sum_{i=1}^{N}|\theta^{c}_{i}-\theta^{\infty}_{i}|.

Then, one can derive a non-relativistic limit (see Theorem 5.1):

limcsup0tTΘc(t)Θ(t)1=0.\lim_{c\to\infty}\sup_{0\leq t\leq T}\|\Theta^{c}(t)-\Theta^{\infty}(t)\|_{1}=0.

The rest of paper is organized as follows. In Section 2, we briefly review the (non-relativistic) Kuramoto model and its emergent dynamics. In Section 3, we introduce the relativistic Kuramoto model, basic structural properties and a gradient flow formulation and related convergence results. In Section 4, we study emergent properties of the relativistic Kuramoto model for homogenous and heterogeneous ensembles. In Section 5, we study a non-relativistic limit from the relativistic model to the Kuramoto model, as the speed of light tends to infinity, and we present several numerical simulations for the non-relativistic and relativistic Kuramoto models and compare them with analytical results. Finally, Section 6 is devoted to a brief summary of our main results and some remaining issues to be explored in a future work.

Gallery of notation: Throughout the paper, we will use the following simplified notation:

𝒩:={1,,N},Θ:=(θ1,,θN),Θ˙:=(θ˙1,,θ˙N),Ω:=(ν1,,νN).\displaystyle{\mathcal{N}}:=\{1,\cdots,N\},\quad\Theta:=(\theta_{1},\cdots,\theta_{N}),\quad\dot{\Theta}:=({\dot{\theta}}_{1},\cdots,{\dot{\theta}}_{N}),\quad\Omega:=(\nu_{1},\cdots,\nu_{N}).

We set phase and natural frequency diameters as

𝒟(Θ):=max1i,jN|θiθj|,𝒟(Ω):=max1i,jN|νiνj|.{\mathcal{D}}(\Theta):=\max_{1\leq i,j\leq N}|\theta_{i}-\theta_{j}|,\quad{\mathcal{D}}(\Omega):=\max_{1\leq i,j\leq N}|\nu_{i}-\nu_{j}|.

2. Preliminaries

In this section, we first recall the nonrelativistic Kuramoto model and review the state-of-the-art on the emergent dynamics, and then we introduce the relativistic Kuramoto model and study its basic properties.

2.1. The Kuramoto model

Let zi=eiθi𝕊1z_{i}=e^{{\mathrm{i}}\theta_{i}}\in\mathbb{S}^{1} be the position of the ii-th rotor, and let θi\theta_{i} and θ˙i{\dot{\theta}}_{i} denote the phase and frequency of the ii-th oscillator, respectively. Then, the phase dynamics is governed by the following Cauchy problem:

(2.1) {θ˙i=νi+κNj=1Nsin(θjθi),t>0,θi(0)=θiin,i=1,,N.\begin{cases}\displaystyle\dot{\theta}_{i}=\nu_{i}+\frac{\kappa}{N}\sum_{j=1}^{N}\sin(\theta_{j}-\theta_{i}),\quad\forall~{}t>0,\\ \theta_{i}(0)=\theta_{i}^{in},\quad\quad\forall~{}i=1,\cdots,N.\end{cases}

In the sequel, we introduce a minimum material to be used crucially. First, we recall several concepts in relation with collective dynamics.

Definition 2.1.

[20] Let Θ=(θ1,,θN)\Theta=(\theta_{1},\cdots,\theta_{N}) be a Kuramoto phase vector whose dynamics is governed by (2.1).

  1. (1)

    Θ=Θ(t)\Theta=\Theta(t) is a phase-locked state of (2.1), if all relative phase differences are constant:

    θi(t)θj(t)=θiinθjin,t0,i,j=1,,N.\theta_{i}(t)-\theta_{j}(t)=\theta_{i}^{in}-\theta_{j}^{in},~{}~{}\forall~{}t\geq 0,~{}~{}\forall~{}i,j=1,\cdots,N.
  2. (2)

    Θ=Θ(t)\Theta=\Theta(t) exhibits (asymptotic) complete phase-locking, if the relative phase differences converge as tt\to\infty:

    limt(θi(t)θj(t)),i,j=1,,N.\exists\lim_{t\to\infty}(\theta_{i}(t)-\theta_{j}(t)),\quad\forall~{}i,j=1,\cdots,N.
  3. (3)

    Θ=Θ(t)\Theta=\Theta(t) exhibits complete synchronization, if the relative frequency differences converge to zero as tt\to\infty:

    limt|θ˙i(t)θ˙j(t)|=0,i,j=1,,N.\lim_{t\to\infty}|{\dot{\theta}}_{i}(t)-{\dot{\theta}}_{j}(t)|=0,\quad\forall~{}i,j=1,\cdots,N.

In what follows, we briefly review an order parameter and a gradient flow formulation of (2.1)1\eqref{Ku}_{1}.

2.1.1. Order parameter

Let Θ=Θ(t)\Theta=\Theta(t) be an NN-phase vector whose time evolution is governed by (2.1). Then, we define real order parameters R(Θ)R(\Theta) and ϕ(Θ)\phi(\Theta) by the following relation:

R(Θ)eiϕ(Θ):=1Nj=1Neiθj.R(\Theta)e^{\mathrm{i}\phi(\Theta)}:=\frac{1}{N}\sum_{j=1}^{N}e^{\mathrm{i}\theta_{j}}.

This implicit relation yields

(2.2) R2=Reiϕ(Θ)Reiϕ(Θ)¯=1N2j,k=1Nei(θjθk)=1N2(j,k=1Ncos(θjθk)+ij,k=1Nsin(θjθk))=1N2j,k=1Ncos(θjθk).\displaystyle\begin{aligned} R^{2}&=Re^{\mathrm{i}\phi(\Theta)}\overline{Re^{\mathrm{i}\phi(\Theta)}}=\frac{1}{N^{2}}\sum_{j,k=1}^{N}e^{\mathrm{i}(\theta_{j}-\theta_{k})}\\ &=\frac{1}{N^{2}}\Big{(}\sum_{j,k=1}^{N}\cos(\theta_{j}-\theta_{k})+{\mathrm{i}}\sum_{j,k=1}^{N}\sin(\theta_{j}-\theta_{k})\Big{)}=\frac{1}{N^{2}}\sum_{j,k=1}^{N}\cos(\theta_{j}-\theta_{k}).\end{aligned}

Note that the amplitude order parameter R(Θ)[0,1]R(\Theta)\in[0,1] is well-defined for all t0t\geq 0, and it is invariant under uniform rotation. It measures overall “phase coherence” of the ensemble Θ\Theta. For example, R(Θ)=1R(\Theta)=1 corresponds to the state in which all phases are the same, i.e., complete phase synchronization:

R(Θ)=1Θ=(α,,α)mod2π,for some α,R(\Theta)=1\iff\Theta=(\alpha,\cdots,\alpha)\mod 2\pi,\quad\mbox{for some }~{}\alpha\in\mathbb{R},

whereas R(Θ)=0R(\Theta)=0 corresponds to an incoherent state in which oscillators behave independently. On the other hand, ϕ(Θ)\phi(\Theta) is well defined modulo 2π2\pi if R(Θ)>0R(\Theta)>0, but it is meaningless when R(Θ)=0R(\Theta)=0. If we suppose R(Θ(t))>0R(\Theta(t))>0 for all tt in some time interval \mathcal{I}, then it is possible to choose a branch of ϕ(Θ(t))\phi(\Theta(t)) smoothly on \mathcal{I}. As long as there is no confusion, we sometimes suppress Θ\Theta-dependence on RR and ϕ\phi:

R(t):=R(Θ(t)),ϕ(t):=ϕ(Θ(t)),t.R(t):=R(\Theta(t)),\quad\phi(t):=\phi(\Theta(t)),\quad\forall~{}t\in\mathcal{I}.

2.1.2. A gradient flow formulation

Next, we present another alternative formulation of the Kuramoto model as a gradient flow [31] with the analytical potential VV on N\mathbb{R}^{N}:

(2.3) Θ˙=ΘV(Θ),V[Θ]:=k=1Nνkθk+κ2Nk,l=1N(1cos(θkθl)).\displaystyle\begin{aligned} &{\dot{\Theta}}=-\nabla_{\Theta}V(\Theta),\\ &V[\Theta]:=-\sum_{k=1}^{N}\nu_{k}\theta_{k}+\frac{\kappa}{2N}\sum_{k,l=1}^{N}\big{(}1-\cos(\theta_{k}-\theta_{l})\big{)}.\end{aligned}

Note that the double sum in (2.3)2\eqref{Ku-grad}_{2} can be simplified using (2.2):

(2.4) κ2Nk,l=1N(1cos(θkθl))=κN2(1R2).\frac{\kappa}{2N}\sum_{k,l=1}^{N}\big{(}1-\cos(\theta_{k}-\theta_{l})\big{)}=\frac{\kappa N}{2}(1-R^{2}).

Then, it follows from (2.3) and (2.4) that

V[Θ]=ΩΘ+κN2(1R2),V[\Theta]=-\Omega\cdot\Theta+\frac{\kappa N}{2}(1-R^{2}),

where \cdot is the usual inner product in N\mathbb{R}^{N}. The Kuramoto model (2.3) has the following property regarding asymptotic dynamics.

Proposition 2.1.

[20] Let Θ=Θ(t)\Theta=\Theta(t) be a uniformly bounded global solution to (2.3) in N\mathbb{R}^{N}:

i=1Nνi=0andsup0t<Θ(t)<.\sum_{i=1}^{N}\nu_{i}=0\quad\mbox{and}\quad\sup_{0\leq t<\infty}\|\Theta(t)\|_{\infty}<\infty.

Then, the phase vector Θ(t)\Theta(t) and the frequency vector Θ˙(t)\dot{\Theta}(t) converge to a phase locked state and the zero vector, respectively, as tt\to\infty, i.e., there exists a phase locked state Θ\Theta^{\infty} such that

limtΘ(t)Θ=0andlimtΘ˙(t)=0.\lim_{t\to\infty}\|\Theta(t)-\Theta^{\infty}\|_{\infty}=0\quad\mbox{and}\quad\lim_{t\to\infty}\|{\dot{\Theta}}(t)\|_{\infty}=0.

2.2. Previous results

In this subsection, we briefly review previous results on the emergence of asymptotic phase-locking which is closely related with main results in this paper.

Theorem 2.1.

[9, 16] Suppose that natural frequencies, the coupling strength and initial data Θin\Theta^{in} satisfy

i=1Nνi=0,κ>𝒟(Ω),𝒟(Θin)<πarcsin(𝒟(Ω)κ),\sum_{i=1}^{N}\nu_{i}=0,\quad\kappa>\mathcal{D}(\Omega),\quad\mathcal{D}(\Theta^{in})<\pi-{{\arcsin\left(\frac{\mathcal{D}(\Omega)}{\kappa}\right)}},

and let Θ=Θ(t)\Theta=\Theta(t) be a solution to (2.1). Then, the following assertions hold:

  1. (1)

    The phase diameter is bounded: there exists a finite time T>0T>0 such that

    D(Θ(t))arcsin(𝒟(Ω)κ),tT.D(\Theta(t))\leq\arcsin\left(\frac{\mathcal{D}(\Omega)}{\kappa}\right),\quad\forall~{}t\geq T.
  2. (2)

    The phase vector Θ(t)\Theta(t) approaches a phase-locked state Θ\Theta^{\infty} with a exponential rate: there exist positive constants C0(T)C_{0}(T) and Λ=𝒪(κ)\Lambda={\mathcal{O}}(\kappa) such that

    𝒟(Θ˙(t))C0exp(Λt),t0.\mathcal{D}({\dot{\Theta}}(t))\leq C_{0}\exp(-\Lambda t),\quad\forall~{}t\geq 0.
  3. (3)

    The emergent phase-locked state Θ\Theta^{\infty} is unique up to U(1)U(1)-symmetry, and is ordered according to the ordering of their natural frequencies: there are constants UU and LL such that for any indices i,ji,j with νiνj\nu_{i}\geq\nu_{j},

    sin1(νiνjκU)θiθjsin1(νiνjκL).\sin^{-1}\left(\frac{\nu_{i}-\nu_{j}}{\kappa U}\right)\leq\theta_{i}^{\infty}-\theta_{j}^{\infty}\leq\sin^{-1}\left(\frac{\nu_{i}-\nu_{j}}{\kappa L}\right).
Remark 2.1.

Asymptotic phase-locking for generic initial data was first obtained by Ha et al. [20] in a sufficiently large coupling regime. An important piece of the argument of [20] is that some statements of Theorem 2.1 can be extended to the case where we have only a majority, not the totality, of the population lying on a small arc.

Theorem 2.2.

[20] Suppose the initial configuration Θin\Theta^{in} and coupling strength satisfy

Rin>0 and θiinθjinmod2π,ij,κ𝒟(Ω),R^{in}>0~{}\mbox{ and }~{}\theta_{i}^{in}\not\equiv\theta_{j}^{in}\mod 2\pi,\quad\forall~{}i\neq j,\quad\kappa\gg{\mathcal{D}}(\Omega),

and let Θ(t)\Theta(t) be a solution to (2.1) with the initial data Θin\Theta^{in}. Then, there exists a phase-locked state Θ\Theta^{\infty} such that

limtΘ(t)Θ=0.\lim_{t\to\infty}\|\Theta(t)-\Theta^{\infty}\|_{\infty}=0.

3. A gradient flow formulation

In this section, we first show that the relativistic Cucker-Smale(RCS) model presented in [2] falls down to a relativistic Kuramoto model (1.4), and then we introduce a gradient-like flow framework for later usage.

3.1. From the RCS model to the RK model

In this subsection, we briefly review the derivation of the RK model from the RCS model on the unit circle 𝕊1\mathbb{S}^{1}. First, we consider the RCS model on 𝕊d\mathbb{S}^{d}:

(3.1) {𝒙˙i=𝒗i,t>0,i=1,,N,(˙𝒗i+𝒗i2𝒙i)(Γi(1+Γic2))+𝒗iddt(Γi(1+Γic2))=κNj=1Nψ(𝒙i,𝒙j)(𝒗j𝒗i𝒙i,𝒗j(1+𝒙i,𝒙j)(𝒙i+𝒙j)),(𝒙i(0),𝒗i(0))=(𝒙iin,𝒗iin)𝕋𝕊dd+1×d+1,\begin{cases}\displaystyle\dot{\mbox{\boldmath$x$}}_{i}=\mbox{\boldmath$v$}_{i},\quad\forall~{}t>0,\quad\forall~{}i=1,\cdots,N,\vspace{.2cm}\\ \displaystyle(\dot{}\mbox{\boldmath$v$}_{i}+\|\mbox{\boldmath$v$}_{i}\|^{2}\mbox{\boldmath$x$}_{i})\bigg{(}\Gamma_{i}\bigg{(}1+\frac{\Gamma_{i}}{c^{2}}\bigg{)}\bigg{)}+\mbox{\boldmath$v$}_{i}\frac{d}{dt}\bigg{(}\Gamma_{i}\bigg{(}1+\frac{\Gamma_{i}}{c^{2}}\bigg{)}\bigg{)}\vspace{.2cm}\\ \hskip 28.45274pt=\displaystyle\frac{\kappa}{N}\sum_{j=1}^{N}\psi(\mbox{\boldmath$x$}_{i},\mbox{\boldmath$x$}_{j})\left({\mbox{\boldmath$v$}_{j}}-\mbox{\boldmath$v$}_{i}-\frac{\langle\mbox{\boldmath$x$}_{i},\mbox{\boldmath$v$}_{j}\rangle}{(1+\langle\mbox{\boldmath$x$}_{i},\mbox{\boldmath$x$}_{j}\rangle)}(\mbox{\boldmath$x$}_{i}+\mbox{\boldmath$x$}_{j})\right),\vspace{.2cm}\\ \displaystyle(\mbox{\boldmath$x$}_{i}(0),\mbox{\boldmath$v$}_{i}(0))=(\mbox{\boldmath$x$}_{i}^{in},\mbox{\boldmath$v$}_{i}^{in})\in\mathbb{T}\mathbb{S}^{d}\subset\mathbb{R}^{d+1}\times\mathbb{R}^{d+1},\end{cases}

where ψ\psi is communicate weight function, and Γi\Gamma_{i} is the Lorentz factor defined by

Γi:=11𝒗i2c2,i=1,,N.\Gamma_{i}:=\frac{1}{\sqrt{1-\frac{\|\mbox{\boldmath$v$}_{i}\|^{2}}{c^{2}}}},\quad\forall~{}i=1,\cdots,N.

Since system (3.1) is reduced from the Riemannian Cucker-Smale model, one has

(𝒙i,𝒗i)𝕋𝕊d,t0,i=1,,N.\displaystyle(\mbox{\boldmath$x$}_{i},\mbox{\boldmath$v$}_{i})\in\mathbb{T}\mathbb{S}^{d},\quad\forall~{}t\geq 0,\quad\forall~{}i=1,\cdots,N.

For the derivation of the relativistic Kuramoto model, we choose angle as communication weight function:

(3.2) ψ(𝒙i,𝒙j)=𝒙i,𝒙j,i,j=1,,N.\displaystyle\psi(\mbox{\boldmath$x$}_{i},\mbox{\boldmath$x$}_{j})=\langle\mbox{\boldmath$x$}_{i},\mbox{\boldmath$x$}_{j}\rangle,\quad\forall~{}i,j=1,\cdots,N.

Consider 𝕊1\mathbb{S}^{1} embedded in 2\mathbb{R}^{2}, and we set

(3.3) d=1,𝒙i:=(cosθi,sinθi),t0,i=1,,N.\displaystyle d=1,\quad\mbox{\boldmath$x$}_{i}:=(\cos\theta_{i},\sin\theta_{i}),\quad\forall~{}t\geq 0,\quad\forall~{}i=1,\cdots,N.

This implies

(3.4) 𝒗i=(sinθi,cosθi)θ˙i,Γi=11|θ˙i|2c2,𝒗˙i=(cosθi,sinθi)θ˙i2+(sinθi,cosθi)θ¨i,t>0,i=1,,N.\displaystyle\begin{aligned} &{\mbox{\boldmath$v$}}_{i}=(-\sin\theta_{i},\cos\theta_{i})\dot{\theta}_{i},\quad\Gamma_{i}=\frac{1}{\sqrt{1-\frac{|{\dot{\theta}}_{i}|^{2}}{c^{2}}}},\\ &\dot{\mbox{\boldmath$v$}}_{i}=-(\cos\theta_{i},\sin\theta_{i})\dot{\theta}_{i}^{2}+(-\sin\theta_{i},\cos\theta_{i})\ddot{\theta}_{i},\quad\forall~{}t>0,\quad\forall~{}i=1,\cdots,N.\end{aligned}

We substitute (3.2), (3.3), and (3.4) into (3.1)2 to obtain

(3.5) (LHS)=(sinθi,cosθi)[θ¨iΓi(1+Γic2)+θ˙iddt(Γi(1+Γic2))],(RHS)=(sinθi,cosθi)κNj=1Ncos(θjθi)(θ˙jθ˙i),\displaystyle\begin{aligned} \mbox{(LHS)}&=(-\sin\theta_{i},\cos\theta_{i})\bigg{[}\ddot{\theta}_{i}\Gamma_{i}\bigg{(}1+\frac{\Gamma_{i}}{c^{2}}\bigg{)}+\dot{\theta}_{i}\frac{d}{dt}\bigg{(}\Gamma_{i}\bigg{(}1+\frac{\Gamma_{i}}{c^{2}}\bigg{)}\bigg{)}\bigg{]},\\ \mbox{(RHS)}&=(-\sin\theta_{i},\cos\theta_{i})\frac{\kappa}{N}\sum_{j=1}^{N}\cos(\theta_{j}-\theta_{i})\left(\dot{\theta}_{j}-\dot{\theta}_{i}\right),\end{aligned}

where we used relation:

𝒗j𝒙i,𝒗j(1+𝒙i,𝒙j)(𝒙i+𝒙j)\displaystyle\mbox{\boldmath$v$}_{j}-\frac{\langle\mbox{\boldmath$x$}_{i},\mbox{\boldmath$v$}_{j}\rangle}{(1+\langle\mbox{\boldmath$x$}_{i},\mbox{\boldmath$x$}_{j}\rangle)}(\mbox{\boldmath$x$}_{i}+\mbox{\boldmath$x$}_{j})
=(sinθj,cosθj)θ˙jθ˙jsin(θiθj)1+cos(θjθi)(cosθi+cosθj,sinθi+sinθj)\displaystyle\hskip 14.22636pt=(-\sin\theta_{j},\cos\theta_{j})\dot{\theta}_{j}-\frac{\dot{\theta}_{j}\sin(\theta_{i}-\theta_{j})}{1+\cos(\theta_{j}-\theta_{i})}(\cos\theta_{i}+\cos\theta_{j},\sin\theta_{i}+\sin\theta_{j})
=(sinθi,cosθi)θ˙j.\displaystyle\hskip 14.22636pt=(-\sin\theta_{i},\cos\theta_{i})\dot{\theta}_{j}.

It follows from (3.5) that

κNj=1Ncos(θjθi)(θ˙jθ˙i)\displaystyle\frac{\kappa}{N}\sum_{j=1}^{N}\cos(\theta_{j}-\theta_{i})\left(\dot{\theta}_{j}-\dot{\theta}_{i}\right)
=θ¨iΓi(1+Γic2)+θ˙iddt(Γi(1+Γic2))=ddt(θ˙iΓi(1+Γic2)).\displaystyle\hskip 14.22636pt=\ddot{\theta}_{i}\Gamma_{i}\bigg{(}1+\frac{\Gamma_{i}}{c^{2}}\bigg{)}+\dot{\theta}_{i}\frac{d}{dt}\bigg{(}\Gamma_{i}\bigg{(}1+\frac{\Gamma_{i}}{c^{2}}\bigg{)}\bigg{)}=\frac{d}{dt}\bigg{(}\dot{\theta}_{i}\Gamma_{i}\bigg{(}1+\frac{\Gamma_{i}}{c^{2}}\bigg{)}\bigg{)}.

This yields

θ˙i(t)Γi(t)(1+Γi(t)c2)\displaystyle\dot{\theta}_{i}(t)\Gamma_{i}(t)\bigg{(}1+\frac{\Gamma_{i}(t)}{c^{2}}\bigg{)}
=θ˙i(0)Γi(0)(1+Γi(0)c2)+κNj=1N0tcos(θj(s)θi(s))(θ˙j(s)θ˙i(s))𝑑s\displaystyle\hskip 5.69046pt=\dot{\theta}_{i}(0)\Gamma_{i}(0)\bigg{(}1+\frac{\Gamma_{i}(0)}{c^{2}}\bigg{)}+\frac{\kappa}{N}\sum_{j=1}^{N}\int_{0}^{t}\cos(\theta_{j}(s)-\theta_{i}(s))\left(\dot{\theta}_{j}(s)-\dot{\theta}_{i}(s)\right)ds
=θ˙i(0)Γi(0)(1+Γi(0)c2)κNj=1Nsin(θj(0)θi(0))+κNj=1Nsin(θj(t)θi(t)).\displaystyle\hskip 5.69046pt=\dot{\theta}_{i}(0)\Gamma_{i}(0)\bigg{(}1+\frac{\Gamma_{i}(0)}{c^{2}}\bigg{)}-\frac{\kappa}{N}\sum_{j=1}^{N}\sin(\theta_{j}(0)-\theta_{i}(0))+\frac{\kappa}{N}\sum_{j=1}^{N}\sin(\theta_{j}(t)-\theta_{i}(t)).

Then, we can introduce natural frequencies depending on initial data:

νi:=θ˙i(0)Γi(0)(1+Γi(0)c2)κNj=1Nsin(θj(0)θi(0)),i=1,,N\displaystyle\nu_{i}:=\dot{\theta}_{i}(0)\Gamma_{i}(0)\bigg{(}1+\frac{\Gamma_{i}(0)}{c^{2}}\bigg{)}-\frac{\kappa}{N}\sum_{j=1}^{N}\sin(\theta_{j}(0)-\theta_{i}(0)),\quad\forall~{}i=1,\cdots,N

and we obtain the Kuramoto type model:

(3.6) θ˙iΓi(1+Γic2)=νi+κNj=1Nsin(θjθi),t0,i=1,,N.\displaystyle\begin{aligned} &\dot{\theta}_{i}\Gamma_{i}\bigg{(}1+\frac{\Gamma_{i}}{c^{2}}\bigg{)}=\nu_{i}+\frac{\kappa}{N}\sum_{j=1}^{N}\sin(\theta_{j}-\theta_{i}),\quad\forall~{}t\geq 0,\quad\forall~{}i=1,\cdots,N.\end{aligned}

Note that the well-definedness of (3.6) can be followed from the fact that

(3.7) xcxc2x2(1+1cc2x2)\displaystyle x~{}\mapsto~{}\frac{cx}{\sqrt{c^{2}-x^{2}}}\bigg{(}1+\frac{1}{c\sqrt{c^{2}-x^{2}}}\bigg{)}

is monotone increasing odd function on (c,c)(-c,c) whose image is \mathbb{R}. From now on, we call this system (3.6) as the relativistic Kuramoto model. In what follows, we consider two approximations of the L.H.S. of (3.7) in a low velocity regime as follows.

\bullet (The first approximation): Suppose that |θ˙i|\big{|}\dot{\theta}_{i}\big{|}’s are sufficiently small compared to the speed of light cc:

|θ˙i|c,i=1,,N|{\dot{\theta}}_{i}|\ll c,\quad\forall~{}i=1,\cdots,N

so that L.H.S. of (3.6) can be approximated as

(3.8) θ˙iΓi(1+Γic2)θ˙iΓi=θ˙i1|θ˙i|2c2=:F(θ˙i),\displaystyle\dot{\theta}_{i}\Gamma_{i}\bigg{(}1+\frac{\Gamma_{i}}{c^{2}}\bigg{)}\approx\dot{\theta}_{i}\Gamma_{i}=\frac{\dot{\theta}_{i}}{\sqrt{1-\frac{|{\dot{\theta}}_{i}|^{2}}{c^{2}}}}=:F_{\ell}({\dot{\theta}}_{i}),

which is the proper velocity of the ii-th oscillator. Note that F(x)=x1x2c2F_{\ell}(x)=\frac{x}{\sqrt{1-\frac{x^{2}}{c^{2}}}} is also odd and monotonically increasing on (c,c)(-c,c) just like (3.7). Hence, our first approximated system for (3.6) becomes

(3.9) F(θ˙i)=νi+κNj=1Nsin(θjθi),F_{\ell}({\dot{\theta}}_{i})=\nu_{i}+\frac{\kappa}{N}\sum_{j=1}^{N}\sin(\theta_{j}-\theta_{i}),

where F𝒞1(c,c;)F_{\ell}\in{\mathcal{C}}^{1}(-c,c~{};\mathbb{R}) is monotone increasing odd function whose image is \mathbb{R}.

\bullet (The second approximation): Next, we consider the second approximation of (3.6). Let ϕi\phi_{i} be the rapidity of the ii-th oscillator:

ϕi:=tanh1(θ˙ic),t0.\displaystyle\phi_{i}:=\tanh^{-1}\bigg{(}\frac{\dot{\theta}_{i}}{c}\bigg{)},\quad\forall~{}t\geq 0.

Then, the L.H.S. of (3.6) can be further approximated as follows:

θ˙iΓi(1+Γic2)\displaystyle\dot{\theta}_{i}\Gamma_{i}\bigg{(}1+\frac{\Gamma_{i}}{c^{2}}\bigg{)} θ˙iΓi=θ˙i1(θ˙i2c)2=ctanhϕi1tanh2ϕi=csinhϕi\displaystyle\approx\dot{\theta}_{i}\Gamma_{i}=\frac{\dot{\theta}_{i}}{\sqrt{1-\Big{(}\frac{\dot{\theta}_{i}^{2}}{c}\Big{)}^{2}}}=\frac{c\tanh\phi_{i}}{\sqrt{1-\tanh^{2}\phi_{i}}}=c\sinh\phi_{i}
cϕi=ctanh1(θ˙ic)=:Fr(θ˙i).\displaystyle\approx c\phi_{i}=c\tanh^{-1}\bigg{(}\frac{\dot{\theta}_{i}}{c}\bigg{)}=:F_{r}({\dot{\theta}}_{i}).

Note that Fr(x)=ctanh1(x/c)F_{r}(x)=c\tanh^{-1}(x/c) is also odd and monotonically increasing on (c,c)(-c,c). Thus, the second approximation of (3.6) becomes,

(3.10) Fr(θ˙i)=νi+κNj=1Nsin(θjθi),t0,i=1,,N,\displaystyle F_{r}\big{(}\dot{\theta}_{i}\big{)}=\nu_{i}+\frac{\kappa}{N}\sum_{j=1}^{N}\sin(\theta_{j}-\theta_{i}),\quad\forall~{}t\geq 0,\quad\forall~{}i=1,\cdots,N,

where Fr𝒞1(c,c;)F_{r}\in{\mathcal{C}}^{1}(-c,c~{};\mathbb{R}) is monotone increasing odd function whose image is \mathbb{R}.

Finally, we present an energy estimate and close this subsection. Recall that

(3.11) F(θ˙i)=νi+κNj=1Nsin(θjθi),i=1,,N,F\big{(}\dot{\theta}_{i}\big{)}=\nu_{i}+\frac{\kappa}{N}\sum_{j=1}^{N}\sin(\theta_{j}-\theta_{i}),\quad\forall~{}i=1,\cdots,N,

where FF satisfies the structural conditions (1.2). Then, we define an energy functional F{\mathcal{E}}_{F}:

(3.12) F(t):=i=1N1γi(t)L2x3(x)𝑑x,t0,{\mathcal{E}}_{F}(t):=\sum_{i=1}^{N}\int_{1}^{\gamma_{i}(t)}\frac{L^{2}}{x^{3}}{\mathcal{F}}(x)dx,\quad\forall~{}t\geq 0,

where γi\gamma_{i} and {\mathcal{F}} are defined by

(3.13) γi(t):=11θ˙i(t)2L2,(x):=F(L11x2).\gamma_{i}(t):=\frac{1}{\sqrt{1-\frac{\dot{\theta}_{i}(t)^{2}}{L^{2}}}},\quad{\mathcal{F}}(x):=F^{\prime}\bigg{(}L\sqrt{1-\frac{1}{x^{2}}}\bigg{)}.

Since the integrand of (3.12) is nonnegative and γi1\gamma_{i}\geq 1, F{\mathcal{E}}_{F} is also nonnegative. Next, we show that F{\mathcal{E}}_{F} satisfies a dissipative estimate.

Proposition 3.1.

Let θi\theta_{i} be a global smooth solution to (3.11). Then, we have

dFdt=κ2Ni,j=1Ncos(θjθi)(θ˙iθ˙j)2,t>0.\frac{d{\mathcal{E}}_{F}}{dt}=-\frac{\kappa}{2N}\sum_{i,j=1}^{N}\cos(\theta_{j}-\theta_{i})\big{(}\dot{\theta}_{i}-\dot{\theta}_{j}\big{)}^{2},\quad\forall~{}t>0.
Proof.

We differentiate (3.11), multiply θ˙i\dot{\theta}_{i}, and sum the resulting relation with respect to ii to obtain

(3.14) i=1NF(θ˙i)θ˙iθ¨i=κNi,j=1Ncos(θjθi)(θ˙jθ˙i)θ˙i=κ2Ni,j=1Ncos(θiθj)(θ˙iθ˙j)2.\displaystyle\begin{aligned} &\sum_{i=1}^{N}F^{\prime}\big{(}\dot{\theta}_{i}\big{)}\dot{\theta}_{i}\ddot{\theta}_{i}=\frac{\kappa}{N}\sum_{i,j=1}^{N}\cos(\theta_{j}-\theta_{i})\big{(}\dot{\theta}_{j}-\dot{\theta}_{i}\big{)}\dot{\theta}_{i}=-\frac{\kappa}{2N}\sum_{i,j=1}^{N}\cos(\theta_{i}-\theta_{j})\big{(}\dot{\theta}_{i}-\dot{\theta}_{j}\big{)}^{2}.\end{aligned}

Now, we claim:

i=1nF(θ˙i)θ˙iθ¨i=dFdt.\sum_{i=1}^{n}F^{\prime}\big{(}\dot{\theta}_{i}\big{)}\dot{\theta}_{i}\ddot{\theta}_{i}=\frac{d{\mathcal{E}}_{F}}{dt}.

It follows from (3.13) and F(ω)=F(ω)F^{\prime}(-\omega)=F^{\prime}(\omega) that

(3.15) (γi)=F(L11γi2)=F(|θ˙i|)=F(θ˙i),γ˙i=(1θ˙i2L2)32θ˙iθ¨iL2=γi3θ˙iθ¨iL2.\displaystyle\begin{aligned} &{\mathcal{F}}(\gamma_{i})=F^{\prime}\bigg{(}L\sqrt{1-\frac{1}{\gamma_{i}^{2}}}\bigg{)}=F^{\prime}\big{(}\big{|}\dot{\theta}_{i}\big{|}\big{)}=F^{\prime}\big{(}\dot{\theta}_{i}\big{)},\quad\dot{\gamma}_{i}=\bigg{(}1-\frac{{\dot{\theta}}_{i}^{2}}{L^{2}}\bigg{)}^{-\frac{3}{2}}\frac{\dot{\theta}_{i}\ddot{\theta}_{i}}{L^{2}}=\gamma_{i}^{3}\frac{\dot{\theta}_{i}\ddot{\theta}_{i}}{L^{2}}.\end{aligned}

Then, we use relations (LABEL:C-16) to see

(3.16) i=1NF(θ˙i)θ˙iθ¨i=i=1NL2(γi)γi3γ˙i=dFdt.\sum_{i=1}^{N}F^{\prime}\big{(}\dot{\theta}_{i}\big{)}\dot{\theta}_{i}\ddot{\theta}_{i}=\sum_{i=1}^{N}\frac{L^{2}\mathcal{F}(\gamma_{i})}{\gamma_{i}^{3}}\dot{\gamma}_{i}=\frac{d{\mathcal{E}}_{F}}{dt}.

Finally, we combine (LABEL:C-15) and (3.16) to find the desired result. ∎

3.2. A gradient-like flow framework

In this subsection, we present a gradient-like flow framework which will be used for (1.5) in Section 4. We first introduce a useful lemma.

Lemma 3.1.

(Barbalat’s lemma [3]) Let f:[0,)f:[0,\infty)\to\mathbb{R} be a continuous function. The the following assertions hold.

  1. (1)

    If ff is uniformly continuous and satisfies 0f(t)𝑑t<\int_{0}^{\infty}f(t)dt<\infty, then one has

    limtf(t)=0.\lim_{t\to\infty}f(t)=0.
  2. (2)

    If ff satisfies limtf(t)=α\lim_{t\to\infty}f(t)=\alpha\in\mathbb{R} and ff^{\prime} is uniformly continuous, then one has

    limtf(t)=0.\lim_{t\to\infty}f^{\prime}(t)=0.

Let φ\varphi be a monotonically increasing odd function. Then for such φ\varphi, we define a vector-valued function on N\mathbb{R}^{N}:

Φ(x1,,xN)=(φ(x1),,φ(xN)).\Phi(x_{1},\cdots,x_{N})=(\varphi(x_{1}),\cdots,\varphi(x_{N})).

Now we consider an autonomous system:

(3.17) {X˙=Φ(XV(X)+α𝟏),t>0,α,𝟏=(1,,1)N,\begin{cases}\displaystyle\dot{X}=\Phi\Big{(}-\nabla_{X}V(X)+\alpha\mathbf{1}\Big{)},\quad\forall~{}t>0,\\ \displaystyle\alpha\in\mathbb{R},\quad\mathbf{1}=(1,\cdots,1)\in\mathbb{R}^{N},\end{cases}

where VV is a real-valued 𝒞1{\mathcal{C}}^{1} potential function such that

(3.18) 𝟏XV=0.\mathbf{1}\cdot\nabla_{X}V=0.
Lemma 3.2.

Let X=X(t)NX=X(t)\in\mathbb{R}^{N} be a solution to (3.17)-(3.18). Then, the following three assertions hold:

  1. (1)

    V(X(t))V(X(t)) is monotonically decreasing in tt.

  2. (2)

    Suppose V(X(t))V(X(t)) is bounded below. Then there exists VV^{\infty}\in\mathbb{R} such that

    limtV(X(t))=V.\lim_{t\to\infty}V(X(t))=V^{\infty}.
  3. (3)

    Suppose ddtV(X(t))\frac{d}{dt}V(X(t)) is uniformly continuous. Then we have, for all i,j=1,,Ni,j=1,\cdots,N,

    limt(vi(t)vj(t))[φ(vi(t)α)φ(vj(t)α)]=0,\lim_{t\to\infty}(v_{i}(t)-v_{j}(t))\big{[}\varphi(v_{i}(t)-\alpha)-\varphi(v_{j}(t)-\alpha)\big{]}=0,

    where XV(X(t))=(v1(t),,vn(t))\nabla_{X}V(X(t))=(v_{1}(t),\cdots,v_{n}(t)).

Proof.

(i) We set

vi:=Vxi,i=1,,N.v_{i}:=\frac{\partial V}{\partial x_{i}},\quad\forall~{}i=1,\cdots,N.

Then, it follows from (3.18) that

(3.19) j=1Nvj=0.\sum_{j=1}^{N}v_{j}=0.

Now we use (3.17) and (3.19) to find

(3.20) ddtV(X)=XV(X)X˙=XV(X)Φ(XV(X)+α𝟏)=i=1Nviφ(vi+α)=i=1N(viα)φ(vi+α)+αi=1Nφ(vi+α)=i=1N(viα)φ(viα)+1Nj=1N(vjα)i=1Nφ(viα)=12Ni,j=1N(vivj)(φ(viα)φ(vjα))0,\displaystyle\begin{aligned} \frac{d}{dt}V(X)&=\nabla_{X}V(X)\cdot{\dot{X}}=\nabla_{X}V(X)\cdot\Phi\Big{(}-\nabla_{X}V(X)+\alpha\mathbf{1}\Big{)}\\ &=\sum_{i=1}^{N}v_{i}\varphi(-v_{i}+\alpha)=\sum_{i=1}^{N}(v_{i}-\alpha)\varphi(-v_{i}+\alpha)+\alpha\sum_{i=1}^{N}\varphi(-v_{i}+\alpha)\\ &=-\sum_{i=1}^{N}(v_{i}-\alpha)\varphi(v_{i}-\alpha)+\frac{1}{N}\sum_{j=1}^{N}(v_{j}-\alpha)\sum_{i=1}^{N}\varphi(v_{i}-\alpha)\\ &=-\frac{1}{2N}\sum_{i,j=1}^{N}(v_{i}-v_{j})\Big{(}\varphi(v_{i}-\alpha)-\varphi(v_{j}-\alpha)\Big{)}\leq 0,\end{aligned}

which yields our first desired result.

(ii) Since V(X)V(X) is nonincreasing and bounded below, there exists VV^{\infty} such that

V=limtV(X(t)).V^{\infty}=\lim_{t\to\infty}V(X(t)).

(iii) Suppose ddtV(X(t))\frac{d}{dt}V(X(t)) is uniformly continuous. Then, we apply Lemma 3.1 to get

limtddtV(X(t))=0.\displaystyle\lim_{t\to\infty}\frac{d}{dt}V(X(t))=0.

Note that since φ\varphi is monotonically increasing, we have

(vi(t)vj(t))[φ(vi(t)α)φ(vj(t)α)]0,i,j=1,,N.\displaystyle(v_{i}(t)-v_{j}(t))[\varphi(v_{i}(t)-\alpha)-\varphi(v_{j}(t)-\alpha)]\geq 0,\quad\forall~{}i,j=1,\cdots,N.

This and (3.20) imply the desired estimate:

limt(vi(t)vj(t))[φ(vi(t)α)φ(vj(t)α)]=0,i,j=1,,N.\displaystyle\lim_{t\to\infty}(v_{i}(t)-v_{j}(t))[\varphi(v_{i}(t)-\alpha)-\varphi(v_{j}(t)-\alpha)]=0,\quad\forall~{}i,j=1,\cdots,N.

4. Emergent collective dynamics

In this section, we study emergent properties for the following Cauchy problem:

{F(θ˙i)=νi+κNj=1Nsin(θjθi),t>0,θi(0)=θiin,i=1,,N,\displaystyle\begin{cases}\displaystyle F\big{(}\dot{\theta}_{i}\big{)}=\nu_{i}+\frac{\kappa}{N}\sum_{j=1}^{N}\sin(\theta_{j}-\theta_{i}),\quad\forall~{}t>0,\\ \displaystyle\theta_{i}(0)=\theta_{i}^{in},\quad\forall~{}i=1,\cdots,N,\end{cases}

where νi\nu_{i} is natural frequency, κ\kappa is coupling strength, and F𝒞1(c,c;)F\in{\mathcal{C}}^{1}(-c,c~{};\mathbb{R}) satisfies the structural conditions (1.2) with image \mathbb{R}. Then, one can define G:=F1:(c,c)G:=F^{-1}:\mathbb{R}\longrightarrow(-c,c), which is also monotonically increasing odd function, and system (3.1)1 can also be written as

θ˙i=G(νi+κNj=1Nsin(θjθi)).\displaystyle\dot{\theta}_{i}=G\bigg{(}\nu_{i}+\frac{\kappa}{N}\sum_{j=1}^{N}\sin(\theta_{j}-\theta_{i})\bigg{)}.

Since FF^{\prime} is strictly positive, GG is also continuously differentiable.

4.1. A homogeneous ensemble

Consider a homogeneous RK ensemble consisting of identical oscillators with the same natural frequency:

νi=ν,i=1,,N.\displaystyle\nu_{i}=\nu,\quad\forall~{}i=1,\cdots,N.

Then, the dynamics of the homogeneous ensemble Θ=(θ1,,θn)\Theta=(\theta_{1},\cdots,\theta_{n}) is governed by

{F(θ˙i)=ν+κNj=1Nsin(θjθi),t>0,θi(0)=θiin,i=1,,N,\displaystyle\begin{cases}\displaystyle F\big{(}\dot{\theta}_{i}\big{)}=\nu+\frac{\kappa}{N}\sum_{j=1}^{N}\sin(\theta_{j}-\theta_{i}),\quad\forall~{}t>0,\\ \displaystyle\theta_{i}(0)=\theta_{i}^{in},\quad\forall~{}i=1,\cdots,N,\end{cases}

or equivalently

(4.1) {θ˙i=G(ν+κNj=1Nsin(θjθi)),t>0,θi(0)=θiin,i=1,,N.\displaystyle\begin{cases}\displaystyle\dot{\theta}_{i}=G\bigg{(}\nu+\frac{\kappa}{N}\sum_{j=1}^{N}\sin(\theta_{j}-\theta_{i})\bigg{)},\quad\forall~{}t>0,\\ \displaystyle\theta_{i}(0)=\theta_{i}^{in},\quad\forall~{}i=1,\cdots,N.\end{cases}

4.1.1. A differential inequatlity approach

Our first result is concerned with the exponential synchronization of a homogeneous Kuramoto ensemble to the one-point cluster configuration following two steps:

  • Step A (Half circle configuration is an invariant set): by continuity argument and structural conditions of GG and sinusoidal interactions, one has

    𝒟(Θin)<π𝒟(Θ(t))𝒟(Θin).{\mathcal{D}}(\Theta^{in})<\pi\quad\Longrightarrow\quad{\mathcal{D}}(\Theta(t))\leq{\mathcal{D}}(\Theta^{in}).
  • Step B (Derivation of exponential synchronization): we derive a Gronwall’s inequality for the phase diameter 𝒟(Θ){\mathcal{D}}(\Theta):

    ddt𝒟(Θ)κsin(𝒟(Θin))𝒟(Θin)(minνκων+κG(ω))𝒟(Θ),t>0.\frac{d}{dt}{\mathcal{D}}(\Theta)\leq-\frac{\kappa\sin({\mathcal{D}}(\Theta^{in}))}{{\mathcal{D}}(\Theta^{in})}\Big{(}\min_{\nu-\kappa\leq\omega\leq\nu+\kappa}G^{\prime}(\omega)\Big{)}{\mathcal{D}}(\Theta),\quad\forall~{}t>0.

    This yields exponential convergence of 𝒟(Θ){\mathcal{D}}(\Theta) toward zero.

Lemma 4.1.

Suppose initial data and coupling strength satisfy

𝒟(Θin)<πandκ>0,{\mathcal{D}}(\Theta^{in})<\pi\quad\mbox{and}\quad\kappa>0,

and let Θ=Θ(t)\Theta=\Theta(t) be a global smooth solution to (4.1). Then, one has

𝒟(Θ(t))𝒟(Θin),t>0.\displaystyle{\mathcal{D}}(\Theta(t))\leq{\mathcal{D}}(\Theta^{in}),\quad\forall~{}t>0.
Proof.

For a proof, we use continuous induction and we study the evolution of the diameter 𝒟(Θ){\mathcal{D}}(\Theta). For this, we define a set 𝒯{\mathcal{T}} and its supremum TT^{*}:

𝒯:={T(0,]:𝒟(Θ(t))<π,t[0,T)},T:=sup𝒯.\displaystyle{\mathcal{T}}:=\{T\in(0,\infty]~{}:~{}{\mathcal{D}}(\Theta(t))<\pi,\quad\forall~{}t\in[0,T)\},\quad T^{*}:=\sup{\mathcal{T}}.

By the assumption on 𝒟(Θin){\mathcal{D}}(\Theta^{in}) and the continuity of phase diameter, there exists δ>0\delta>0 such that

𝒟(Θ(t))<π,t[0,δ).{\mathcal{D}}(\Theta(t))<\pi,\quad\forall~{}t\in[0,\delta).

Hence, the set 𝒯{\mathcal{T}} is nonempty. Now, we claim:

T=.T^{*}=\infty.

Suppose not, i.e., T<T^{*}<\infty and one has

𝒟(Θ(t))<π,t[0,T).{\mathcal{D}}(\Theta(t))<\pi,\quad\forall~{}t\in[0,T^{*}).

Next, we introduce time-dependent extremal indices MM and mm such that

θM=max1iNθiandθm=min1iNθi.\displaystyle\theta_{M}=\max_{1\leq i\leq N}\theta_{i}\quad\mbox{and}\quad\theta_{m}=\min_{1\leq i\leq N}\theta_{i}.

For t(0,T)t\in(0,T^{*}), we use (4.1) to find

(4.2) ddt𝒟(Θ)=θ˙Mθ˙m=G(ν+κNj=1Nsin(θjθM))G(ν+κNj=1Nsin(θjθm))(minνκων+κG(ω))κNj=1N(sin(θMθj)+sin(θjθm))<(minνκων+κG(ω))κNj=1Nsin(θMθm)=κ(minνκων+κG(ω))sin(𝒟(Θ)),\displaystyle\begin{aligned} \frac{d}{dt}{\mathcal{D}}(\Theta)&=\dot{\theta}_{M}-\dot{\theta}_{m}\\ &=G\bigg{(}\nu+\frac{\kappa}{N}\sum_{j=1}^{N}\sin(\theta_{j}-\theta_{M})\bigg{)}-G\bigg{(}\nu+\frac{\kappa}{N}\sum_{j=1}^{N}\sin(\theta_{j}-\theta_{m})\bigg{)}\\ &\leq-\Big{(}\min_{\nu-\kappa\leq\omega\leq\nu+\kappa}G^{\prime}(\omega)\Big{)}\frac{\kappa}{N}\sum_{j=1}^{N}(\sin(\theta_{M}-\theta_{j})+\sin(\theta_{j}-\theta_{m}))\\ &<-\Big{(}\min_{\nu-\kappa\leq\omega\leq\nu+\kappa}G^{\prime}(\omega)\Big{)}\frac{\kappa}{N}\sum_{j=1}^{N}\sin(\theta_{M}-\theta_{m})\\ &=-\kappa\Big{(}\min_{\nu-\kappa\leq\omega\leq\nu+\kappa}G^{\prime}(\omega)\Big{)}\sin({\mathcal{D}}(\Theta)),\end{aligned}

where we used the fact that

sinx+siny>sin(x+y),x,y(0,π).\displaystyle\sin x+\sin y>\sin(x+y),\quad\forall~{}x,y\in(0,\pi).

Then in (4.2), we use 𝒟(Θ)(0,π){\mathcal{D}}(\Theta)\in(0,\pi) and G0G^{\prime}\geq 0 to see that

ddt𝒟(Θ)0,t(0,T).\frac{d}{dt}{\mathcal{D}}(\Theta)\leq 0,\quad\forall~{}t\in(0,T^{*}).

This yields

𝒟(Θ(t))𝒟(Θin)<π,t(0,T).{\mathcal{D}}(\Theta(t))\leq{\mathcal{D}}(\Theta^{in})<\pi,\quad\forall~{}t\in(0,T^{*}).

Therefore, there exists a positive constant δ\delta^{\prime} such that

𝒟(Θ(t))<π,t[0,T+δ),{\mathcal{D}}(\Theta(t))<\pi,\quad\forall~{}t\in[0,T^{*}+\delta^{\prime}),

which contradicts to the definition of TT^{*}. Hence T=T^{*}=\infty and we have

𝒟(Θ(t))𝒟(Θin),t[0,).\displaystyle{\mathcal{D}}(\Theta(t))\leq{\mathcal{D}}(\Theta^{in}),\quad\forall~{}t\in[0,\infty).

Now, we are ready to present an exponential synchronization for restricted initial data lying in a half circle.

Theorem 4.1.

Suppose that initial data and coupling strength satisfy

𝒟(Θin)<πandκ>0,{\mathcal{D}}(\Theta^{in})<\pi\quad\mbox{and}\quad\kappa>0,

and let Θ=Θ(t)\Theta=\Theta(t) be a global smooth solution to (4.1). Then, complete synchronization occurs exponentially fast, i.e., there exists a positive constant Λ=Λ(Θin,ν,κ,G)\Lambda=\Lambda(\Theta^{in},\nu,\kappa,G^{\prime}) such that

𝒟(Θ(t))eΛt𝒟(Θin),t>0.{\mathcal{D}}(\Theta(t))\leq e^{-\Lambda t}{\mathcal{D}}(\Theta^{in}),\quad\forall~{}t>0.
Proof.

We use (4.2) and

sinxsin(𝒟(Θin))𝒟(Θin)x,x[0,𝒟(Θin)]\sin x\leq\frac{\sin({\mathcal{D}}(\Theta^{in}))}{{\mathcal{D}}(\Theta^{in})}x,\quad\forall~{}x\in[0,{\mathcal{D}}(\Theta^{in})]

to obtain

ddt𝒟(Θ)\displaystyle\frac{d}{dt}{\mathcal{D}}(\Theta) κ(minνκων+κG(ω))sin(𝒟(Θ))\displaystyle\leq-\kappa\Big{(}\min_{\nu-\kappa\leq\omega\leq\nu+\kappa}G^{\prime}(\omega)\Big{)}\sin({\mathcal{D}}(\Theta))
κsin(𝒟(Θin))𝒟(Θin)(minνκων+κG(ω))𝒟(Θ),t>0.\displaystyle\leq-\frac{\kappa\sin({\mathcal{D}}(\Theta^{in}))}{{\mathcal{D}}(\Theta^{in})}\Big{(}\min_{\nu-\kappa\leq\omega\leq\nu+\kappa}G^{\prime}(\omega)\Big{)}{\mathcal{D}}(\Theta),\quad\forall~{}t>0.

Then, Grönwall’s lemma yields the desired estimate:

𝒟(Θ(t))eΛt𝒟(Θin),Λ:=κsin(𝒟(Θin))𝒟(Θin)(minνκων+κG(ω))>0,\displaystyle{\mathcal{D}}(\Theta(t))\leq e^{-\Lambda t}{\mathcal{D}}(\Theta^{in}),\quad\Lambda:=\frac{\kappa\sin({\mathcal{D}}(\Theta^{in}))}{{\mathcal{D}}(\Theta^{in})}\Big{(}\min_{\nu-\kappa\leq\omega\leq\nu+\kappa}G^{\prime}(\omega)\Big{)}>0,

4.1.2. A gradient flow approach

In this part, we extend a formation of complete synchronization for generic initial data using a gradient-like formation of (4.1). Motivated by the gradient flow formulation of the Kuramoto model, the potential function VV can be written as

V(Θ):=κ2Ni,j=1Ncos(θiθj)V(\Theta):=-\frac{\kappa}{2N}\sum_{i,j=1}^{N}\cos(\theta_{i}-\theta_{j})

and for all i=1,,Ni=1,\cdots,N,

θ˙i=G(ν+κNj=1Nsin(θjθi))θ˙i=G(νVθi).\displaystyle\dot{\theta}_{i}=G\bigg{(}\nu+\frac{\kappa}{N}\sum_{j=1}^{N}\sin(\theta_{j}-\theta_{i})\bigg{)}\Longleftrightarrow\dot{\theta}_{i}=G\bigg{(}\nu-\frac{\partial V}{\partial\theta_{i}}\bigg{)}.

In order to use Lemma 3.2, we set

(4.3) X(t):=Θ(t),α:=ν,φ:=G,V(Θ):=κ2Ni,j=1Ncos(θiθj).\displaystyle\begin{aligned} &X(t):=\Theta(t),\quad\alpha:=\nu,\quad\varphi:=G,\quad V(\Theta):=-\frac{\kappa}{2N}\sum_{i,j=1}^{N}\cos(\theta_{i}-\theta_{j}).\end{aligned}

As an application of Lemma 3.2, one has the following complete synchronization.

Lemma 4.2.

Let Θ=Θ(t)\Theta=\Theta(t) be a global smooth solution to (4.1). Then, we have, for all t>0t>0 and i=1,,Ni=1,\cdots,N,

ddti,j=1Ncos(θiθj)0,limtj=1nsin(θiθj)=0.\frac{d}{dt}\sum_{i,j=1}^{N}\cos(\theta_{i}-\theta_{j})\geq 0,\quad\lim_{t\to\infty}\sum_{j=1}^{n}\sin(\theta_{i}-\theta_{j})=0.
Proof.

(i) (First relation): By the setting (4.3), in order to use (3.2), it sufficies to check

i=1NVθi=κNi,j=1Nsin(θiθj)=0.\sum_{i=1}^{N}\frac{\partial V}{\partial\theta_{i}}=\frac{\kappa}{N}\sum_{i,j=1}^{N}\sin(\theta_{i}-\theta_{j})=0.

We apply Lemma 3.2 (1) to see

(4.4) ddtV(Θ(t))=κ2Nddti,j=1Ncos(θiθj)0,\frac{d}{dt}V(\Theta(t))=-\frac{\kappa}{2N}\frac{d}{dt}\sum_{i,j=1}^{N}\cos(\theta_{i}-\theta_{j})\leq 0,

which yields the first desired result.

(ii) (Second relation): Note that θ˙i{\dot{\theta}}_{i} and V(Θ(t))V(\Theta(t)) have uniform-in-time lower bound:

(4.5) sup0t<|θ˙i(t)|max{G(νκ),G(ν+κ)},sup0t<{|V(Θ(t))|,|ddtV(Θ(t))|}κN2.\displaystyle\begin{aligned} &\sup_{0\leq t<\infty}|{\dot{\theta}}_{i}(t)|\leq\max\Big{\{}G(\nu-\kappa),~{}G(\nu+\kappa)\Big{\}},\\ &\sup_{0\leq t<\infty}\Big{\{}|V(\Theta(t))|,~{}\Big{|}\frac{d}{dt}V(\Theta(t))\Big{|}\Big{\}}\leq\frac{\kappa N}{2}.\end{aligned}

We differentiate (4.1) with respect to tt to get

θ¨i=G(κNj=1Nsin(θjθi))(κNj=1Ncos(θjθi)(θ˙jθ˙i)).{\ddot{\theta}}_{i}=G^{\prime}\bigg{(}\frac{\kappa}{N}\sum_{j=1}^{N}\sin(\theta_{j}-\theta_{i})\bigg{)}\cdot\Big{(}\frac{\kappa}{N}\sum_{j=1}^{N}\cos(\theta_{j}-\theta_{i})({\dot{\theta}}_{j}-{\dot{\theta}}_{i})\Big{)}.

This yields

(4.6) sup0t<|θ¨i(t)|κ(maxκωκG(ω))max{G(κ),G(κ)}.\sup_{0\leq t<\infty}|{\ddot{\theta}}_{i}(t)|\leq\kappa\Big{(}\max_{-\kappa\leq\omega\leq\kappa}G^{\prime}(\omega)\Big{)}\cdot\max\Big{\{}G(\kappa),~{}G(-\kappa)\Big{\}}.

On the other hand, it follows from (4.4) that

(4.7) d2dt2V(Θ(t))=κ2Ni,j=1N[cos(θiθj)(θ˙iθ˙j)2+sin(θiθj)(θ¨iθ¨j)].\displaystyle\begin{aligned} &\frac{d^{2}}{dt^{2}}V(\Theta(t))=\frac{\kappa}{2N}\sum_{i,j=1}^{N}\Big{[}\cos(\theta_{i}-\theta_{j})(\dot{\theta}_{i}-\dot{\theta}_{j})^{2}+\sin(\theta_{i}-\theta_{j})(\ddot{\theta}_{i}-\ddot{\theta}_{j})\Big{]}.\end{aligned}

In (4.7), since θ˙i\dot{\theta}_{i} and θ¨i\ddot{\theta}_{i} are uniformly bounded by (LABEL:D-5-4) and (4.6), we have

sup0t<|d2dt2V(Θ(t))|<.\sup_{0\leq t<\infty}\Big{|}\frac{d^{2}}{dt^{2}}V(\Theta(t))\Big{|}<\infty.

This implies that ddtV(Θ(t))\frac{d}{dt}V(\Theta(t)) is uniformly continuous and then, by Lemma 3.1 and Lemma 3.2, one has

limt(vi(t)vj(t))(G(vi(t)ν)G(vj(t)ν))=0,i,j=1,,N,\displaystyle\lim_{t\to\infty}(v_{i}(t)-v_{j}(t))(G(v_{i}(t)-\nu)-G(v_{j}(t)-\nu))=0,\quad\forall~{}i,j=1,\cdots,N,

where

vi:=κNk=1Nsin(θiθk),i=1,,N.\displaystyle v_{i}:=\frac{\kappa}{N}\sum_{k=1}^{N}\sin(\theta_{i}-\theta_{k}),\quad\forall~{}i=1,\cdots,N.

On the other hand, since

|vivj||G(viν)G(vjν)|(minνκxν+κG(x))|vivj|2,\displaystyle|v_{i}-v_{j}|\cdot|G(v_{i}-\nu)-G(v_{j}-\nu)|\geq\bigg{(}\min_{-\nu-\kappa\leq x\leq-\nu+\kappa}G^{\prime}(x)\bigg{)}|v_{i}-v_{j}|^{2},

we obtain

limt|vivj|=0.\displaystyle\lim_{t\to\infty}|v_{i}-v_{j}|=0.

Finally, it follows from i=1Nvi=0\sum_{i=1}^{N}v_{i}=0 that

limtvi=limt1Nj=1N(vivj)=0,\displaystyle\lim_{t\to\infty}v_{i}=\lim_{t\to\infty}\frac{1}{N}\sum_{j=1}^{N}(v_{i}-v_{j})=0,

which yields our desired result. ∎

Next, we analyze the order parameters. For a global solution Θ\Theta to (4.1), we introduce order paramerters (R,ϕ)(R,\phi) by the following relation:

(4.8) Reiϕ=1Nj=1Neiθj.\displaystyle Re^{\mathrm{i}\phi}=\frac{1}{N}\sum_{j=1}^{N}e^{\mathrm{i}\theta_{j}}.

If RR is strictly positive for some time interval {\mathcal{I}}, then ϕ\phi can be defined smoothly on {\mathcal{I}}. Note that

R2\displaystyle R^{2} =1N2(i=1Neiθi)(j=1Neiθj)=1N2i,j=1Nei(θiθj)=1N2i,j=1ncos(θiθj),\displaystyle=\frac{1}{N^{2}}\bigg{(}\sum_{i=1}^{N}e^{\mathrm{i}\theta_{i}}\bigg{)}\bigg{(}\sum_{j=1}^{N}e^{-\mathrm{i}\theta_{j}}\bigg{)}=\frac{1}{N^{2}}\sum_{i,j=1}^{N}e^{\mathrm{i}(\theta_{i}-\theta_{j})}=\frac{1}{N^{2}}\sum_{i,j=1}^{n}\cos(\theta_{i}-\theta_{j}),

and it follows from Lemma 4.2 that RR is monotonically increasing. Hence, if R(0)>0R(0)>0, order parameters are well defined for all t0t\geq 0. Moreover, since R(0,1]R\in(0,1], there exists R>0R^{\infty}>0 such that

limtR(t)=R.\displaystyle\lim_{t\to\infty}R(t)=R^{\infty}.

Furthermore, we divide both sides of (4.8) by eiθie^{\mathrm{i}\theta_{i}} and take imaginary part to obtain

Rsin(ϕθi)=1Nj=1Nsin(θjθi).\displaystyle R\sin(\phi-\theta_{i})=\frac{1}{N}\sum_{j=1}^{N}\sin(\theta_{j}-\theta_{i}).

By Lemma 3.2 (ii), we have

limtsin(ϕθi)=0,i=1,,N.\displaystyle\lim_{t\to\infty}\sin(\phi-\theta_{i})=0,\quad\forall~{}i=1,\cdots,N.

This implies

limtsin(θiθj)=limt(sin(θiϕ)cos(θjϕ)cos(θiϕ)sin(θjϕ))=0.\displaystyle\lim_{t\to\infty}\sin(\theta_{i}-\theta_{j})=\lim_{t\to\infty}\Big{(}\sin(\theta_{i}-\phi)\cos(\theta_{j}-\phi)-\cos(\theta_{i}-\phi)\sin(\theta_{j}-\phi)\Big{)}=0.

We summarize those arguments in the following theorem.

Theorem 4.2.

Suppose that initial data and coupling strength satisfy

R(0)=|1Ni=1Neiθiin|>0,κ>0,\displaystyle R(0)=\bigg{|}\frac{1}{N}\sum_{i=1}^{N}e^{\mathrm{i}\theta_{i}^{in}}\bigg{|}>0,\quad\kappa>0,

and let θi\theta_{i} be a global solution of (4.1). Then, we have

limt(θiθj)=0modπ,i,j=1,,N.\displaystyle\lim_{t\to\infty}(\theta_{i}-\theta_{j})=0\mod~{}\pi,\quad\forall~{}i,j=1,\cdots,N.
Remark 4.1.

Note that Theorem 4.2 guarantees complete synchronization and it guarantees dichotomy: complete synchronization or bipolar state.

4.2. A heterogeneous ensemble

Consider the generalized Kuramoto model with distributed natural frequencies:

(4.9) {θ˙i=G(νi+κNj=1Nsin(θjθi)),t>0,θi(0)=θiin,i=1,,N.\displaystyle\begin{cases}\displaystyle\dot{\theta}_{i}=G\bigg{(}\nu_{i}+\frac{\kappa}{N}\sum_{j=1}^{N}\sin(\theta_{j}-\theta_{i})\bigg{)},\quad\forall~{}t>0,\\ \displaystyle\theta_{i}(0)=\theta_{i}^{in},\quad\forall~{}i=1,\cdots,N.\end{cases}
Lemma 4.3.

Suppose that initial data, natural frequency, and coupling strength satisfy

κ>𝒟(Ω)𝒟(Θin)>0,𝒟(Θin)<πθ,θ:=sin1(𝒟(Ω)κ)(0,π2),\displaystyle\kappa>\frac{{\mathcal{D}}(\Omega)}{{\mathcal{D}}(\Theta^{in})}>0,\quad{\mathcal{D}}(\Theta^{in})<\pi-\theta_{*},\quad\theta_{*}:=\sin^{-1}\bigg{(}\frac{{\mathcal{D}}(\Omega)}{\kappa}\bigg{)}\in\bigg{(}0,~{}\frac{\pi}{2}\bigg{)},

and let Θ\Theta be the global smooth solution to (4.9). Then, there exists t0t_{*}\geq 0 such that, for all ttt\geq t_{*},

D(Θ(t))max{θ,min{D(Θin),πD(Θin)}}π2.\displaystyle D(\Theta(t))\leq\max\{\theta_{*},~{}\min\{D(\Theta^{in}),~{}\pi-D(\Theta^{in})\}\}\leq\frac{\pi}{2}.
Proof.

We use a similar argument in the proof of Lemma 4.1. As in the proof of Lemma 4.1, let MM and mm be time dependent indices such that

θM=max1iNθiandθm=min1iNθi,\displaystyle\theta_{M}=\max_{1\leq i\leq N}\theta_{i}\quad\mbox{and}\quad\theta_{m}=\min_{1\leq i\leq N}\theta_{i},

and furthermore, we define two constants ν\nu_{*} and ν\nu^{*} satisfying

ν:=min1ANνiandν:=max1ANνi.\displaystyle\nu_{*}:=\min_{1\leq A\leq N}\nu_{i}\quad\mbox{and}\quad\nu^{*}:=\max_{1\leq A\leq N}\nu_{i}.

\bullet Case A (𝒟(Θin)θ{\mathcal{D}}(\Theta^{in})\leq\theta_{*}): Suppose that the following set is nonempty and we set its supremum:

𝒯:={t>0:𝒟(Θ(t))>θ},t:=inf𝒯.\displaystyle{\mathcal{T}}:=\{t>0:~{}{\mathcal{D}}(\Theta(t))>\theta_{*}\},\quad t_{*}:=\inf{\mathcal{T}}.

Then, it follows from the definition of tt_{*} that

(4.10) 𝒟(Θ(t))=θandddt|t=t+𝒟(Θ)0.\displaystyle{\mathcal{D}}(\Theta(t_{*}))=\theta_{*}\quad\mbox{and}\quad\frac{d}{dt}\bigg{|}_{t=t_{*}+}{\mathcal{D}}(\Theta)\geq 0.

On the other hand, since

νM+κNj=1Nsin(θj(t)θM(t))(νm+κNj=1Nsin(θj(t)θm(t)))\displaystyle\nu_{M}+\frac{\kappa}{N}\sum_{j=1}^{N}\sin(\theta_{j}(t_{*})-\theta_{M}(t_{*}))-\bigg{(}\nu_{m}+\frac{\kappa}{N}\sum_{j=1}^{N}\sin(\theta_{j}(t_{*})-\theta_{m}(t_{*}))\bigg{)}
𝒟(Ω)κNj=1N[sin(θM(t)θj(t))+sin(θj(t)θm(t))]\displaystyle\hskip 8.5359pt\leq\mathcal{D}(\Omega)-\frac{\kappa}{N}\sum_{j=1}^{N}\Big{[}\sin(\theta_{M}(t_{*})-\theta_{j}(t_{*}))+\sin(\theta_{j}(t_{*})-\theta_{m}(t_{*}))\Big{]}
<𝒟(Ω)κsin(θM(t)θm(t))=𝒟(Ω)κsinθ=0,\displaystyle\hskip 8.5359pt<\mathcal{D}(\Omega)-\kappa\sin(\theta_{M}(t_{*})-\theta_{m}(t_{*}))=\mathcal{D}(\Omega)-\kappa\sin\theta_{*}=0,

one can conclude that at t=t+t=t_{*}+,

ddt𝒟(Θ)=G(νM+κNj=1Nsin(θjθM))G(νm+κNj=1Nsin(θjθm))(minνκων+κG(ω))(𝒟(Ω)κNj=1Nsin(θMθj)+sin(θjθm))<0.\displaystyle\begin{aligned} \frac{d}{dt}{\mathcal{D}}(\Theta)&=G\bigg{(}\nu_{M}+\frac{\kappa}{N}\sum_{j=1}^{N}\sin(\theta_{j}-\theta_{M})\bigg{)}-G\bigg{(}\nu_{m}+\frac{\kappa}{N}\sum_{j=1}^{N}\sin(\theta_{j}-\theta_{m})\bigg{)}\\ &\leq\bigg{(}\min_{\nu_{*}-\kappa\leq\omega\leq\nu^{*}+\kappa}G^{\prime}(\omega)\bigg{)}\bigg{(}{\mathcal{D}}(\Omega)-\frac{\kappa}{N}\sum_{j=1}^{N}\sin(\theta_{M}-\theta_{j})+\sin(\theta_{j}-\theta_{m})\bigg{)}<0.\end{aligned}

This contradicts to (4.10). Therefore, we can conclude that 𝒯{\mathcal{T}} is empty, which is our desired result with t=0t_{*}=0.

\bullet Case B (θ<𝒟(Θin)\theta_{*}<{\mathcal{D}}(\Theta^{in})): It follows from the continuity of θi\theta_{i} that there exists T>0T>0 satisfying

θ<𝒟(Θ(t))<πθ,t[0,T).\displaystyle\theta_{*}<{\mathcal{D}}(\Theta(t))<\pi-\theta_{*},\quad\forall~{}t\in[0,T).

Then, for all t(0,T)t\in(0,T), we have

(4.11) νM+κNj=1Nsin(θjθM)(νm+κNj=1Nsin(θjθm))𝒟(Ω)κNj=1Nsin(θMθj)+sin(θjθm)<𝒟(Ω)κsin((Θ))<𝒟(Ω)κsinθ=0.\displaystyle\begin{aligned} &\nu_{M}+\frac{\kappa}{N}\sum_{j=1}^{N}\sin(\theta_{j}-\theta_{M})-\bigg{(}\nu_{m}+\frac{\kappa}{N}\sum_{j=1}^{N}\sin(\theta_{j}-\theta_{m})\bigg{)}\\ &\hskip 28.45274pt\leq\mathcal{D}(\Omega)-\frac{\kappa}{N}\sum_{j=1}^{N}\sin(\theta_{M}-\theta_{j})+\sin(\theta_{j}-\theta_{m})\\ &\hskip 28.45274pt<\mathcal{D}(\Omega)-\kappa\sin((\Theta))<\mathcal{D}(\Omega)-\kappa\sin\theta_{*}=0.\end{aligned}

This implies that for all t(0,T)t\in(0,T),

(4.12) ddt𝒟(Θ)=G(νM+κNj=1Nsin(θjθM))G(νm+κNj=1Nsin(θjθm))(minνκων+κG(ω))(D(Ω)κNj=1Nsin(θMθj)+sin(θjθm))<0.\displaystyle\begin{aligned} \frac{d}{dt}{\mathcal{D}}(\Theta)&=G\bigg{(}\nu_{M}+\frac{\kappa}{N}\sum_{j=1}^{N}\sin(\theta_{j}-\theta_{M})\bigg{)}-G\bigg{(}\nu_{m}+\frac{\kappa}{N}\sum_{j=1}^{N}\sin(\theta_{j}-\theta_{m})\bigg{)}\\ &\leq\bigg{(}\min_{\nu_{*}-\kappa\leq\omega\leq\nu^{*}+\kappa}G^{\prime}(\omega)\bigg{)}\bigg{(}D(\Omega)-\frac{\kappa}{N}\sum_{j=1}^{N}\sin(\theta_{M}-\theta_{j})+\sin(\theta_{j}-\theta_{m})\bigg{)}<0.\end{aligned}

Since 𝒟(Θ){\mathcal{D}}(\Theta) monotonically decrease on (0,T)(0,T), we can conclude

𝒟(Θ(t))𝒟(Θin)<πθ,t0.\displaystyle{\mathcal{D}}(\Theta(t))\leq{\mathcal{D}}(\Theta^{in})<\pi-\theta_{*},\quad\forall~{}t\geq 0.

\diamond Case B.1 (𝒟(Θin)π/2{\mathcal{D}}(\Theta^{in})\leq\pi/2): Since

max{θ,min{𝒟(Θin),π𝒟(Θin)}}=𝒟(Θin),\displaystyle\max\{\theta_{*},~{}\min\{{\mathcal{D}}(\Theta^{in}),\pi-{\mathcal{D}}(\Theta^{in})\}\}={\mathcal{D}}(\Theta^{in}),

we obtain our desired result with t=0t_{*}=0.

\diamond Case B.2 (𝒟(Θin)>π/2{\mathcal{D}}(\Theta^{in})>\pi/2): Suppose that

𝒟(Θ(t))>π𝒟(Θin)for all t>0.{\mathcal{D}}(\Theta(t))>\pi-{\mathcal{D}}(\Theta^{in})\quad\mbox{for all $t>0$}.

Then, (4.11) and (4.12) imply, for all t>0t>0,

ddt𝒟(Θ)\displaystyle\frac{d}{dt}{\mathcal{D}}(\Theta) <(minνκων+κG(ω))(𝒟(Ω)κsin(𝒟(Θin))\displaystyle<\bigg{(}\min_{\nu_{*}-\kappa\leq\omega\leq\nu^{*}+\kappa}G^{\prime}(\omega)\bigg{)}({\mathcal{D}}(\Omega)-\kappa\sin({\mathcal{D}}(\Theta^{in}))
<(minνκων+κG(ω))(𝒟(Ω)κsinθ)=0.\displaystyle<\bigg{(}\min_{\nu_{*}-\kappa\leq\omega\leq\nu^{*}+\kappa}G^{\prime}(\omega)\bigg{)}({\mathcal{D}}(\Omega)-\kappa\sin\theta_{*})=0.

This yields, for all t>0t>0,

𝒟(Θ(t))𝒟(Θin)<t(minνκων+κG(ω))(𝒟(Ω)κsin(𝒟(Θin))<0.\displaystyle{\mathcal{D}}(\Theta(t))-{\mathcal{D}}(\Theta^{in})<t\bigg{(}\min_{\nu_{*}-\kappa\leq\omega\leq\nu^{*}+\kappa}G^{\prime}(\omega)\bigg{)}({\mathcal{D}}(\Omega)-\kappa\sin({\mathcal{D}}(\Theta^{in}))<0.

Letting tt\to\infty, we observe 𝒟(Θ){\mathcal{D}}(\Theta) diverges to -\infty, which gives a contradiction. So, we obtain the desired result with

t2𝒟(Θin)π(minνκων+κG(ω))(κsin(𝒟(Θin)𝒟(Ω)).\displaystyle t_{*}\geq\frac{2{\mathcal{D}}(\Theta^{in})-\pi}{\displaystyle\bigg{(}\min_{\nu_{*}-\kappa\leq\omega\leq\nu^{*}+\kappa}G^{\prime}(\omega)\bigg{)}(\kappa\sin({\mathcal{D}}(\Theta^{in})-{\mathcal{D}}(\Omega))}.

Now, we combine Proposition 2.1 and Lemma 3.1 to present the result on the emergence of phase locked state.

Theorem 4.3.

(Complete synchronization) Suppose that initial data, natural frequency, and coupling strength satisfy

κ>𝒟(Ω)𝒟(Θin)>0,𝒟(Θin)<πθ,θ:=sin1(𝒟(Ω)κ)(0,π2),\displaystyle\kappa>\frac{{\mathcal{D}}(\Omega)}{{\mathcal{D}}(\Theta^{in})}>0,\quad{\mathcal{D}}(\Theta^{in})<\pi-\theta_{*},\quad\theta_{*}:=\sin^{-1}\bigg{(}\frac{{\mathcal{D}}(\Omega)}{\kappa}\bigg{)}\in\bigg{(}0,\frac{\pi}{2}\bigg{)},

and let θi\theta_{i} be a global smooth solution to (3.1). Then, asymptotic complete-frequency synchronization occurs asymptotically:

limt|θ˙i(t)θ˙j(t)|=0.\displaystyle\lim_{t\to\infty}\big{|}\dot{\theta}_{i}(t)-\dot{\theta}_{j}(t)\big{|}=0.
Proof.

For t0t_{*}\geq 0, we use Lemma 4.3 to see,

when 𝒟(Θin)π/2{\mathcal{D}}(\Theta^{in})\neq\pi/2. However, when 𝒟(Θin)=π/2{\mathcal{D}}(\Theta^{in})=\pi/2, (3.7) and (3.8) imply

ddt|t=0+𝒟(Θ)(minνκων+κG(ω))(𝒟(Ω)κsin(𝒟(Θin)))<0.\displaystyle\frac{d}{dt}\bigg{|}_{t=0+}{\mathcal{D}}(\Theta)\leq\bigg{(}\min_{\nu_{*}-\kappa\leq\omega\leq\nu^{*}+\kappa}G^{\prime}(\omega)\bigg{)}({\mathcal{D}}(\Omega)-\kappa\sin({\mathcal{D}}(\Theta^{in})))<0.

Without loss of generality, one can assume that 𝒟(Θin)π/2{\mathcal{D}}(\Theta^{in})\neq\pi/2. Then, we use (4.2) and Proposition 2.1 to obtain

κ2Ni,j=1nttcos(θj(s)θi(s))(θ˙i(s)θ˙j(s))2𝑑s\displaystyle\frac{\kappa}{2N}\sum_{i,j=1}^{n}\int_{t_{*}}^{t}\cos(\theta_{j}(s)-\theta_{i}(s))\big{(}\dot{\theta}_{i}(s)-\dot{\theta}_{j}(s)\big{)}^{2}ds
F(t)+κ2ni,j=1Nttcos(θj(s)θi(s))(θ˙i(s)θ˙j(s))2𝑑s=F(t)\displaystyle\hskip 5.69046pt\leq{\mathcal{E}}_{F}(t)+\frac{\kappa}{2n}\sum_{i,j=1}^{N}\int_{t_{*}}^{t}\cos(\theta_{j}(s)-\theta_{i}(s))\big{(}\dot{\theta}_{i}(s)-\dot{\theta}_{j}(s)\big{)}^{2}ds={\mathcal{E}}_{F}(t_{*})

This implies

cosθt(θ˙i(s)θ˙j(s))2𝑑stcos(θj(s)θi(s))(θ˙i(s)θ˙j(s))2𝑑s<.\displaystyle\cos\theta^{*}\int_{t_{*}}^{\infty}\big{(}\dot{\theta}_{i}(s)-\dot{\theta}_{j}(s)\big{)}^{2}ds\leq\int_{t_{*}}^{\infty}\cos(\theta_{j}(s)-\theta_{i}(s))\big{(}\dot{\theta}_{i}(s)-\dot{\theta}_{j}(s)\big{)}^{2}ds<\infty.

Now we claim:

the map t(θ˙i(t)θ˙j(t))2~{}t\mapsto\big{(}\dot{\theta}_{i}(t)-\dot{\theta}_{j}(t)\big{)}^{2}~{} is uniformly continuous.

Once this claim is verified, we can apply Lemma 3.1 to obtain the desired result.

Proof of claim: It follows from (3.10) that

|θ˙i|max{|G(min1iNνiκ)|,|G(max1iNνi+κ)|},t0,i=1,,N.\displaystyle\big{|}\dot{\theta}_{i}\big{|}\leq\max\Big{\{}\Big{|}G\Big{(}\min_{1\leq i\leq N}\nu_{i}-\kappa\Big{)}\Big{|},~{}\Big{|}G\Big{(}\max_{1\leq i\leq N}\nu_{i}+\kappa\Big{)}\Big{|}\Big{\}},\quad\forall~{}t\geq 0,\quad\forall~{}i=1,\cdots,N.

We also differentiate (3.10) and take absolute value to obtain

|θ¨i|2κG(0)(max1iN|θ˙i|),t0,i=1,,N.\displaystyle\big{|}\ddot{\theta}_{i}\big{|}\leq 2\kappa G^{\prime}(0)\Big{(}\max_{1\leq i\leq N}\big{|}\dot{\theta}_{i}\big{|}\Big{)},\quad\forall~{}t\geq 0,\quad\forall~{}i=1,\cdots,N.

This uniform boundedness implies

(θ˙i(t)θ˙j(t))2=2(θ˙i(t)θ˙j(t))(θ¨i(t)θ¨j(t))\displaystyle\big{(}\dot{\theta}_{i}(t)-\dot{\theta}_{j}(t)\big{)}^{2}=2\big{(}\dot{\theta}_{i}(t)-\dot{\theta}_{j}(t)\big{)}\big{(}\ddot{\theta}_{i}(t)-\ddot{\theta}_{j}(t)\big{)}

is also uniformly bounded, from which we can conclude our claim. ∎

5. non-relativistic limit of the RK model

In this section, we study a non-relativistic limit from the relativistic Kuramoto model to the non-relativistic Kuramoto model in any finite-time interval, as cc\to\infty. More precisely, we consider the relativistic Kuramoto model: for all t>0t>0 and i=1,,Ni=1,\cdots,N,

(5.1) θ˙iΓi(1+Γic2)=νi+κNj=1Nsin(θjθi),\dot{\theta}_{i}\Gamma_{i}\bigg{(}1+\frac{\Gamma_{i}}{c^{2}}\bigg{)}=\nu_{i}+\frac{\kappa}{N}\sum_{j=1}^{N}\sin(\theta_{j}-\theta_{i}),

and the non-relativistic Kuramoto model:

(5.2) θ˙i=νi+κNj=1Nsin(θjθi),t>0,i=1,,N,\dot{\theta}_{i}=\nu_{i}+\frac{\kappa}{N}\sum_{j=1}^{N}\sin(\theta_{j}-\theta_{i}),\quad\forall~{}t>0,\quad\forall~{}i=1,\cdots,N,

with the same initial data:

(5.3) θi(0)=θiin,i=1,,N.\theta_{i}(0)=\theta^{in}_{i},\quad\forall~{}i=1,\cdots,N.

5.1. A non-relativistic limit

In this subsection, we present a non-relativistic limit from (5.1) to (5.2) in any finite time interval as cc\to\infty. We set

Θc:=(θ1c,,θNc)andΘ:=(θ1,,θN).\Theta^{c}:=(\theta_{1}^{c},\cdots,\theta_{N}^{c})\quad\mbox{and}\quad\Theta^{\infty}:=(\theta_{1}^{\infty},\cdots,\theta_{N}^{\infty}).

Let Θc\Theta^{c} and Θ\Theta^{\infty} be the smooth solutions to (5.1) and (5.2) with the same initial data (5.3), respectively and recall that

(5.4) F(x)=cxc2x2+xc2x2andG=F1.F(x)=\frac{cx}{\sqrt{c^{2}-x^{2}}}+\frac{x}{c^{2}-x^{2}}\quad\mbox{and}\quad G=F^{-1}.

Then, Θc\Theta^{c} and Θ\Theta^{\infty} satisfy (5.1) and (5.2):

(5.5) {θ˙ic=G(νi+κNj=1Nsin(θjcθic)),θ˙i=νi+κNj=1Nsin(θjθi).\begin{cases}\displaystyle\dot{\theta}^{c}_{i}=G\bigg{(}\nu_{i}+\frac{\kappa}{N}\sum_{j=1}^{N}\sin(\theta^{c}_{j}-\theta^{c}_{i})\bigg{)},\vspace{.1cm}\\ \displaystyle\dot{\theta}^{\infty}_{i}=\nu_{i}+\frac{\kappa}{N}\sum_{j=1}^{N}\sin(\theta^{\infty}_{j}-\theta^{\infty}_{i}).\end{cases}
Lemma 5.1.

Let Θc\Theta^{c} and Θ\Theta^{\infty} be smooth solutions to (5.5) with the same initial data (5.3). Then, there exists a positive constant GG^{\infty} independent of cc such that for all t0t\geq 0,

  1. (i)

    |G(νi+κNj=1Nsin(θjcθic))|G\displaystyle\Big{|}G\Big{(}\nu_{i}+\frac{\kappa}{N}\sum_{j=1}^{N}\sin(\theta^{c}_{j}-\theta^{c}_{i})\Big{)}\Big{|}\leq G^{\infty},

  2. (ii)

    |G(νi+κNj=1Nsin(θjcθic))(νi+κNj=1Nsin(θjcθic))|𝒪(c2)\displaystyle\Big{|}G\Big{(}\nu_{i}+\frac{\kappa}{N}\sum_{j=1}^{N}\sin(\theta^{c}_{j}-\theta^{c}_{i})\Big{)}-\Big{(}\nu_{i}+\frac{\kappa}{N}\sum_{j=1}^{N}\sin(\theta^{c}_{j}-\theta^{c}_{i})\Big{)}\Big{|}\leq\mathcal{O}(c^{-2}),

Proof.

(i) We set

x:=νi+κNj=1Nsin(θjcθic).x:=\nu_{i}+\frac{\kappa}{N}\sum_{j=1}^{N}\sin(\theta^{c}_{j}-\theta^{c}_{i}).

It follows from (5.4) that

cG(|x|)c2G(|x|)2+G(|x|)c2G(|x|)2=|x|.\frac{cG(|x|)}{\sqrt{c^{2}-G(|x|)^{2}}}+\frac{G(|x|)}{c^{2}-G(|x|)^{2}}=|x|.

This and the monotonicity of GG imply

cG(|x|)c2G(x)2|x|,|G(x)|=G(|x|)c|x|c2+|x|2|x|.\displaystyle\frac{cG(|x|)}{\sqrt{c^{2}-G(x)^{2}}}\leq|x|,\quad|G(x)|=G(|x|)\leq\frac{c|x|}{\sqrt{c^{2}+|x|^{2}}}\leq|x|.

This yields

|G(νi+κNj=1Nsin(θjcθic))||νi+κNj=1Nsin(θjcθic)|κ+max1iN|νi|=:G.\displaystyle\bigg{|}G\Big{(}\nu_{i}+\frac{\kappa}{N}\sum_{j=1}^{N}\sin(\theta^{c}_{j}-\theta^{c}_{i})\Big{)}\bigg{|}\leq\bigg{|}\nu_{i}+\frac{\kappa}{N}\sum_{j=1}^{N}\sin(\theta^{c}_{j}-\theta^{c}_{i})\bigg{|}\leq\kappa+\max_{1\leq i\leq N}|\nu_{i}|=:G^{\infty}.

Note that the constant GG^{\infty} is independent on cc.

(ii) Note that

cG(x)c2G(x)2G(x)+G(x)c2G(x)2=xG(x)cG(x)c2G(x)2+G(x)c2G(x)2=x.\displaystyle\frac{cG(x)}{\sqrt{c^{2}-G(x)^{2}}}-G(x)+\frac{G(x)}{c^{2}-G(x)^{2}}=x-G(x)\iff\frac{cG(x)}{\sqrt{c^{2}-G(x)^{2}}}+\frac{G(x)}{c^{2}-G(x)^{2}}=x.

This implies

|G(x)x|\displaystyle|G(x)-x| |cG(x)c2G(x)2G(x)|+|G(x)c2G(x)2|\displaystyle\leq\bigg{|}\frac{cG(x)}{\sqrt{c^{2}-G(x)^{2}}}-G(x)\bigg{|}+\bigg{|}\frac{G(x)}{c^{2}-G(x)^{2}}\bigg{|}
G|cc2(G)21|+|Gc2(G)2|=𝒪(c2),\displaystyle\leq G^{\infty}\bigg{|}\frac{c}{\sqrt{c^{2}-(G^{\infty})^{2}}}-1\bigg{|}+\bigg{|}\frac{G^{\infty}}{c^{2}-(G^{\infty})^{2}}\bigg{|}=\mathcal{O}(c^{-2}),

where we used the relation:

|cc2(G)21|=(G)2(c+c2(G)2)(c2(G)2).\displaystyle\bigg{|}\frac{c}{\sqrt{c^{2}-(G^{\infty})^{2}}}-1\bigg{|}=\frac{(G^{\infty})^{2}}{(c+\sqrt{c^{2}-(G^{\infty})^{2}})(\sqrt{c^{2}-(G^{\infty})^{2}})}.

Hence, we have the desired estimate. ∎

Theorem 5.1.

For T(0,)T\in(0,\infty), let Θc\Theta^{c} and Θ\Theta^{\infty} be two solutions to (5.5) with the same initial data (5.3). Then, one has

limcsup0tTΘc(t)Θ(t)1=0.\lim_{c\to\infty}\sup_{0\leq t\leq T}\|\Theta^{c}(t)-\Theta^{\infty}(t)\|_{1}=0.
Proof.

We split its proof into two steps.

\bullet Step A: We derive the following relation:

(5.6) ddtΘc(t)Θ(t)1𝒪(c2),t>0.\frac{d}{dt}\|\Theta^{c}(t)-\Theta^{\infty}(t)\|_{1}\leq\mathcal{O}(c^{-2}),\quad\forall~{}t>0.

It follows from (5.5) that

(5.7) 12ddt|θicθi|2=|θicθi|ddt|θicθi|=(θicθi)(θ˙icθ˙i)=(θicθi)[G(νi+κNj=1Nsin(θjcθic))(νi+κNj=1Nsin(θjθi))]=(θicθi)[G(νi+κNj=1Nsin(θjcθic))(νi+κNj=1Nsin(θjcθic))+(νi+κNj=1Nsin(θjcθic))(νi+κNj=1Nsin(θjθi))].\displaystyle\begin{aligned} &\frac{1}{2}\frac{d}{dt}|\theta_{i}^{c}-\theta_{i}^{\infty}|^{2}=|\theta_{i}^{c}-\theta_{i}^{\infty}|\frac{d}{dt}|\theta_{i}^{c}-\theta_{i}^{\infty}|=(\theta_{i}^{c}-\theta_{i}^{\infty})(\dot{\theta}_{i}^{c}-\dot{\theta}_{i}^{\infty})\\ &\hskip 5.69046pt=(\theta_{i}^{c}-\theta_{i}^{\infty})\bigg{[}G\Big{(}\nu_{i}+\frac{\kappa}{N}\sum_{j=1}^{N}\sin(\theta^{c}_{j}-\theta^{c}_{i})\Big{)}-\Big{(}\nu_{i}+\frac{\kappa}{N}\sum_{j=1}^{N}\sin(\theta^{\infty}_{j}-\theta^{\infty}_{i})\Big{)}\bigg{]}\\ &\hskip 5.69046pt=(\theta_{i}^{c}-\theta_{i}^{\infty})\bigg{[}G\Big{(}\nu_{i}+\frac{\kappa}{N}\sum_{j=1}^{N}\sin(\theta^{c}_{j}-\theta^{c}_{i})\Big{)}-\Big{(}\nu_{i}+\frac{\kappa}{N}\sum_{j=1}^{N}\sin(\theta^{c}_{j}-\theta^{c}_{i})\Big{)}\\ &\hskip 85.35826pt+\Big{(}\nu_{i}+\frac{\kappa}{N}\sum_{j=1}^{N}\sin(\theta^{c}_{j}-\theta^{c}_{i})\Big{)}-\Big{(}\nu_{i}+\frac{\kappa}{N}\sum_{j=1}^{N}\sin(\theta^{\infty}_{j}-\theta^{\infty}_{i})\Big{)}\bigg{]}.\end{aligned}

Now, we use (LABEL:E-3-2), Lemma 5.1 and mean-value theorem to find

|θicθi|ddt|θicθi|\displaystyle|\theta_{i}^{c}-\theta_{i}^{\infty}|\frac{d}{dt}|\theta_{i}^{c}-\theta_{i}^{\infty}|
|θicθi||G(νi+κNj=1Nsin(θjcθic))(νi+κNj=1Nsin(θjcθic))|\displaystyle\hskip 5.69046pt\leq|\theta_{i}^{c}-\theta_{i}^{\infty}|\cdot\bigg{|}G\bigg{(}\nu_{i}+\frac{\kappa}{N}\sum_{j=1}^{N}\sin(\theta^{c}_{j}-\theta^{c}_{i})\bigg{)}-\bigg{(}\nu_{i}+\frac{\kappa}{N}\sum_{j=1}^{N}\sin(\theta^{c}_{j}-\theta^{c}_{i})\bigg{)}\bigg{|}
+(θicθi)((νi+κNj=1Nsin(θjcθic))(νi+κNj=1Nsin(θjθi)))\displaystyle\hskip 14.22636pt+(\theta_{i}^{c}-\theta_{i}^{\infty})\bigg{(}\bigg{(}\nu_{i}+\frac{\kappa}{N}\sum_{j=1}^{N}\sin(\theta^{c}_{j}-\theta^{c}_{i})\bigg{)}-\bigg{(}\nu_{i}+\frac{\kappa}{N}\sum_{j=1}^{N}\sin(\theta^{\infty}_{j}-\theta^{\infty}_{i})\bigg{)}\bigg{)}
𝒪(c2)|θicθi|+(θicθi)((κNj=1Nsin(θjcθic))(κNj=1Nsin(θjθi)))\displaystyle\hskip 5.69046pt\leq\mathcal{O}(c^{-2})|\theta_{i}^{c}-\theta_{i}^{\infty}|+(\theta_{i}^{c}-\theta_{i}^{\infty})\bigg{(}\bigg{(}\frac{\kappa}{N}\sum_{j=1}^{N}\sin(\theta^{c}_{j}-\theta^{c}_{i})\bigg{)}-\bigg{(}\frac{\kappa}{N}\sum_{j=1}^{N}\sin(\theta^{\infty}_{j}-\theta^{\infty}_{i})\bigg{)}\bigg{)}
=𝒪(c2)|θicθi|+κN(θicθi)j=1Ncos(tij)(θjcθicθj+θi),\displaystyle\hskip 5.69046pt=\mathcal{O}(c^{-2})|\theta_{i}^{c}-\theta_{i}^{\infty}|+\frac{\kappa}{N}(\theta_{i}^{c}-\theta_{i}^{\infty})\sum_{j=1}^{N}\cos(t^{*}_{ij})\left(\theta^{c}_{j}-\theta^{c}_{i}-\theta^{\infty}_{j}+\theta^{\infty}_{i}\right),

where we used tij=tjit^{*}_{ij}=t^{*}_{ji}, the fact that cosine is even, and the relation:

min(θjcθic,θjθi)<tij<max(θjcθic,θjθi).\min(\theta^{c}_{j}-\theta^{c}_{i},\theta^{\infty}_{j}-\theta^{\infty}_{i})<t^{*}_{ij}<\max(\theta^{c}_{j}-\theta^{c}_{i},\theta^{\infty}_{j}-\theta^{\infty}_{i}).

Then, one has

(5.8) ddt|θicθi|𝒪(c2)+κNsgn(θicθi)j=1Ncos(tij)(θjcθicθj+θi).\displaystyle\begin{aligned} &\frac{d}{dt}|\theta_{i}^{c}-\theta_{i}^{\infty}|\leq\mathcal{O}(c^{-2})+\frac{\kappa}{N}\cdot\text{sgn}(\theta_{i}^{c}-\theta_{i}^{\infty})\sum_{j=1}^{N}\cos(t^{*}_{ij})\left(\theta^{c}_{j}-\theta^{c}_{i}-\theta^{\infty}_{j}+\theta^{\infty}_{i}\right).\end{aligned}

We take a sum (5.8) over i=1,,Ni=1,\cdots,N to find the desired estimate:

ddtΘc(t)Θ(t)1𝒪(c2)+κNi,j=1Ncos(tij)sgn(θicθi)(θjcθicθj+θi)=𝒪(c2)+κ2Ni,j=1N[cos(tij)(sgn(θicθi)sgn(θjcθj))(θjcθj(θicθi))]𝒪(c2),\displaystyle\begin{aligned} &\frac{d}{dt}\|\Theta^{c}(t)-\Theta^{\infty}(t)\|_{1}\\ &\hskip 5.69046pt\leq\mathcal{O}(c^{-2})+\frac{\kappa}{N}\sum_{i,j=1}^{N}\cos(t^{*}_{ij})\text{sgn}(\theta_{i}^{c}-\theta_{i}^{\infty})\left(\theta^{c}_{j}-\theta^{c}_{i}-\theta^{\infty}_{j}+\theta^{\infty}_{i}\right)\\ &\hskip 5.69046pt=\mathcal{O}(c^{-2})+\frac{\kappa}{2N}\sum_{i,j=1}^{N}\Big{[}\cos(t^{*}_{ij})\left(\text{sgn}(\theta_{i}^{c}-\theta_{i}^{\infty})-\text{sgn}(\theta_{j}^{c}-\theta_{j}^{\infty})\right)\left(\theta^{c}_{j}-\theta^{\infty}_{j}-(\theta^{c}_{i}-\theta^{\infty}_{i})\right)\Big{]}\\ &\hskip 5.69046pt\leq\mathcal{O}(c^{-2}),\end{aligned}

where we used the standard index interchanging argument and the fact that

(sgn(θicθi)sgn(θjcθj))(θjcθj(θicθi))\left(\text{sgn}(\theta_{i}^{c}-\theta_{i}^{\infty})-\text{sgn}(\theta_{j}^{c}-\theta_{j}^{\infty})\right)\left(\theta^{c}_{j}-\theta^{\infty}_{j}-(\theta^{c}_{i}-\theta^{\infty}_{i})\right)

is non-positive.

\bullet Step B: We integrate (5.6) over [0,T][0,T] using Θc,inΘ,in1=0\|\Theta^{c,in}-\Theta^{\infty,in}\|_{1}=0 to find

sup0tTΘc(t)Θ(t)1𝒪(c2)t𝒪(c2)T.\sup_{0\leq t\leq T}\|\Theta^{c}(t)-\Theta^{\infty}(t)\|_{1}\leq\mathcal{O}(c^{-2})t\leq\mathcal{O}(c^{-2})T.

Letting cc\to\infty, we obtain the desired estimate. ∎

5.2. Numerical simulations

In this subsection, we study the nonlinear response on the emergent dynamics changing the size of cc and a non-relativistic limit (c)(c\to\infty) from the relativistic Kurmoto model to the non-relativistic one.

Consider following four Kuramoto type systems:

(5.9) {Kuramoto model (KM):θ˙i=νi+κNj=1Nsin(θjθi),RK model (RKM):θ˙iΓi(1+Γic2)=νi+κNj=1Nsin(θjθi),Approximate RK model I (ARKM-1):θ˙i1|θ˙i|2c2=νi+κNj=1Nsin(θjθi),Approximate RK model II (ARKM-2):ctanh1(θ˙ic)=νi+κNj=1Nsin(θjθi)\begin{cases}\displaystyle\mbox{Kuramoto model (KM)}:~{}{\dot{\theta}}_{i}=\nu_{i}+\frac{\kappa}{N}\sum_{j=1}^{N}\sin(\theta_{j}-\theta_{i}),\\ \displaystyle\mbox{RK model (RKM)}:~{}\dot{\theta}_{i}\Gamma_{i}\bigg{(}1+\frac{\Gamma_{i}}{c^{2}}\bigg{)}=\nu_{i}+\frac{\kappa}{N}\sum_{j=1}^{N}\sin(\theta_{j}-\theta_{i}),\\ \displaystyle\mbox{Approximate RK model I (ARKM-1)}:~{}\frac{\dot{\theta}_{i}}{\sqrt{1-\frac{|{\dot{\theta}}_{i}|^{2}}{c^{2}}}}=\nu_{i}+\frac{\kappa}{N}\sum_{j=1}^{N}\sin(\theta_{j}-\theta_{i}),\\ \displaystyle\mbox{Approximate RK model II (ARKM-2)}:~{}c\tanh^{-1}\bigg{(}\frac{\dot{\theta}_{i}}{c}\bigg{)}=\nu_{i}+\frac{\kappa}{N}\sum_{j=1}^{N}\sin(\theta_{j}-\theta_{i})\end{cases}

subject to the same initial data:

(5.10) θi(0)=θiin,i=1,,N.\theta_{i}(0)=\theta^{in}_{i},\quad\forall~{}i=1,\cdots,N.

For the simplicity of notation, we denote Θ0,Θ1,Θ2\Theta^{0},\Theta^{1},\Theta^{2} and Θ3\Theta^{3} as solutions to the Kuramoto model, the relativistic Kuramoto model, the approximate Kuramoto model I, and the approximate Kuramoto model II with the same initial data (5.10), respectively. All the simulations in what follows, we used the fourth-order Runge-Kutta method.

5.2.1. Formation of phase-locked state

In this part, we compare phase-locked states for four systems in (5.9) issued from the same initial data. For numerical simulations, we choose system parameters as follows:

Δt=0.01,N=10,κ=1,\Delta t=0.01,\quad N=10,\quad\kappa=1,

and we choose initial data and natural frequencies randomly from the following intervals, respectively:

θiin[(πθ)/2,(πθ)/2],θ:=sin1(𝒟(Ω)κ),νi[0.15,0.15],i=1,,N.\displaystyle\theta^{in}_{i}\in[-(\pi-\theta_{*})/2,~{}(\pi-\theta_{*})/2],\quad\theta_{*}:=\sin^{-1}\Big{(}\frac{{\mathcal{D}}(\Omega)}{\kappa}\Big{)},\quad\nu_{i}\in[-0.15,0.15],\quad\forall~{}i=1,\cdots,N.
Refer to caption
Figure 1. Θ0,Θ1,Θ2,Θ3\Theta^{0},\Theta^{1},\Theta^{2},\Theta^{3} for t=0,1,2,3t=0,1,2,3.

In Figure 1, we compare time-evolution of four trajectories corresponding to four different models with the same initial configuration. We plot smooth solutions Θ0,Θ1,Θ2,Θ3\Theta^{0},\Theta^{1},\Theta^{2},\Theta^{3} at time t=0,1,2,3t=0,1,2,3. Note that each flow tends to different phase-locked states exponentially fast, and each model shows different decay rate. The solution of relativistic Kuramoto model Θ1\Theta^{1} decay rate is relatively slow compared to that of other models.

Refer to caption
Refer to caption
Figure 2. time-evolution of log𝒟(Θ1)\log\mathcal{D}({\Theta^{1}}) for c=0.5,1,5,10c=0.5,1,5,10.

In Figure 2, we study the decay rate toward the phase-locked state due to the effect of speed of light cc. The left plot shows the time-evolution of log𝒟(Θ)\log\mathcal{D}(\Theta) in a heterogeneous ensemble, and right plot is for the homogeneous ensemble: νi=0\nu_{i}=0. Each simulation was conducted for c=0.5,1,5,10c=0.5,1,5,10. For the heterogenous case, Θ1\Theta^{1} converges to phase-locked state with 𝒟(Θ1)>0\mathcal{D}(\Theta^{1})>0, so logD(Θ1)\log D(\Theta^{1}) converges to certain value, whereas for the homogeneous case, Θ1\Theta^{1} converges to a single point, so we can observe the exponential decay of 𝒟(Θ1)\mathcal{D}(\Theta^{1}).

The decay rate increases, as cc increases and seems to converge to certain value. Note that the plot when c=5c=5 and c=10c=10 is almost identical so that the convergence of decay rate tends to that of the Kuramoto model, as cc\to\infty.

5.2.2. A non-relativistic limit

In this part, we perform a numerical study on the non-relativistic limit and compare them with analytical results in Theorem 5.1. Again, we choose system parameters as follows:

Δt=0.01,N=10,κ=1,\Delta t=0.01,\quad N=10,\quad\kappa=1,

and natural frequencies and initial data are randomly chosen from the intervals [0.15,0.15][-0.15,0.15] and [(πθ)/2,(πθ)/2][-(\pi-\theta_{*})/2,(\pi-\theta_{*})/2], respectively.

Refer to caption
Refer to caption
Refer to caption
Figure 3. time-evolution of log𝒟(Θ1)\log\mathcal{D}({\Theta^{1}}) for c=0.5,1,5,10c=0.5,1,5,10.

In Figure 3, we study the temporal evolution of Θ0Θ11\|\Theta^{0}-\Theta^{1}\|_{1} over time by changing the speed of light c=0.5,1,5,10,20c=0.5,1,5,10,20 and tries to see whether c2sup0t<TΘ0(t)Θ1(t)c^{2}\sup_{0\leq t<T}\|\Theta^{0}(t)-\Theta^{1}(t)\| is order of 𝒪(T){\mathcal{O}}(T) or not. The first plot of Figure 3 is for the heterogeneous ensemble case, when natural frequencies are non-identical. The second plot is for a homogeneous ensemble case, when all natural frequencies are identical to 0.20.2. The last plot is when every natural frequencies are all zero.

The time-evolution of c2sup0t<Θ0(t)Θ1(t)c^{2}\sup_{0\leq t<\infty}\|\Theta^{0}(t)-\Theta^{1}(t)\| are almost identical for c=5,10,20c=5,10,20. These plots show that the following estimatation holds:

sup0tTΘc(t)Θ(t)1𝒪(c2)T.\sup_{0\leq t\leq T}\|\Theta^{c}(t)-\Theta^{\infty}(t)\|_{1}\leq\mathcal{O}(c^{-2})T.

One can observe that when natural frequencies are heterogeneous and natural frequencies are not equal to zero, the quanitty c2sup0t<Θ0(t)Θ1(t)c^{2}\sup_{0\leq t<\infty}\|\Theta^{0}(t)-\Theta^{1}(t)\| is not bounded. The numerical results suggest that 1\ell^{1} distance seems to increase linearly in time. On the other hand, when all natural frequencies are equal to zero, c2sup0t<Θ0(t)Θ1(t)1c^{2}\sup_{0\leq t<\infty}\|\Theta^{0}(t)-\Theta^{1}(t)\|_{1} seems to converge to certain positive value as tt\to\infty.

Quick observation of θ˙\sum\dot{\theta} suggests this numerical results. For a solution to the Kuramoto model, θiΘ0θi˙\sum_{\theta_{i}\in\Theta^{0}}\dot{\theta_{i}} is always equal to ν\sum\nu where as in general case θiΘ1θi˙\sum_{\theta_{i}\in\Theta^{1}}\dot{\theta_{i}} will not be equal to ν\sum\nu. Hence the phase-locked state will be slowly drift apart by velocity of 1N(θiΘ1θi˙θiΘ0θi˙)\dfrac{1}{N}\big{(}\sum_{\theta_{i}\in\Theta^{1}}\dot{\theta_{i}}-\sum_{\theta_{i}\in\Theta^{0}}\dot{\theta_{i}}\big{)}. But when every natural frequency are equal to zero, every agents in Θ1\Theta^{1} will converge to certain point, and 1NθiΘ1θi˙\dfrac{1}{N}\sum_{\theta_{i}\in\Theta^{1}}\dot{\theta_{i}} will be equal to zero, which can be verified analytically through Lemma 3.1.

6. Conclusion

In this paper, we have proposed a generalized Kuramoto model for phase synchronization and investigated its emergent behaviors. Our proposed model is quite general enough to incorporate the relativistic Kuramoto model derived from the relativistic Cucker-Smale model on the unit sphere. As a first set of results, we provided several sufficient frameworks for the complete synchronization for homogeneous and inhomogeneous ensembles. Our sufficient frameworks are given in terms of some conditions on the initial data and system parameters such as the coupling strength and natural frequencies. Compared to the Kuramoto model, our frameworks are rather restrictive in the sense that the initial data for complete synchronization is not generic, although the proposed model can be written as a gradient-like system. Thus, it would be interesting whether the complete synchronization holds for generic initial data in a large coupling regime. Second, we studied a non-relativistic limit for the relativistic Kuramoto model by analyzing temporal evolution of 1\ell^{1}-discrepancy between the non-relativistic Kuramoto model and the relativistic Kuramoto model issued from the same initial configuration. Our rough bound for such an 1\ell^{1}-discrepancy is the order of size of time-interval ×c2\mbox{size of time-interval }\times c^{-2}. Thus, in a finite-time interval, we show that the 1\ell^{1}-discrepancy decays to zero at the order of c2c^{-2} in a non-relativistic limit cc\to\infty. Again, it would be very interesting to see whether this non-relativistic limit can be made uniformly in time at least for some admissible set of initial data. We leave this interesting problem in a future work.

References

  • [1] Acebron, J. A., Bonilla, L. L., Pérez Vicente, C. J. P., Ritort, F. and Spigler, R.: The Kuramoto model: A simple paradigm for synchronization phenomena. Rev. Mod. Phys. 77 (2005), 137-185.
  • [2] Ahn, H., Ha, S.-Y., Kang, M. and Shim, W.: Emergent behaviors of relativistic flocks on Riemannian manifolds. Submitted.
  • [3] Barbalat, I.: Systémes déquations différentielles doscillations non Linéaires. Rev. Math. Pures Appl. 4 (1959), 267-270.
  • [4] Benedetto, D., Caglioti, E. and Montemagno, U.: Exponential dephasing of oscillators in the kinetic Kuramoto model. J. Stat. Phys. 162 (2016), 813-823.
  • [5] Benedetto, D., Caglioti, E. and Montemagno, U.: On the complete phase synchronization for the Kuramoto model in the mean-field limit. Commun. Math. Sci. 13 (2015), 1775-1786.
  • [6] Bronski, J., Deville, L. and Park, M. J.: Fully synchronous solutions and the synchronization phase transition for the finite-NN Kuramoto model. Chaos 22 (2012), 033133.
  • [7] Buck, J. and Buck, E.: Biology of synchronous flashing of fireflies. Nature 211 (1966), 562-564.
  • [8] Carrillo, J. A., Choi, Y.-P., Ha, S.-Y., Kang, M.-J. and Kim, Y.: Contractivity of transport distances for the kinetic Kuramoto equation. J. Stat. Phys. 156 (2014), 395-415.
  • [9] Choi, Y., Ha, S.-Y., Jung, S. and Kim, Y.: Asymptotic formation and orbital stability of phase-locked states for the Kuramoto model. Phys. D 241 (2012), 735-754.
  • [10] Chopra, N. and Spong, M. W.: On exponential synchronization of Kuramoto oscillators. IEEE Trans. Automatic Control 54 (2009), 353-357.
  • [11] Cucker, F. and Smale, S.: Emergent behavior in flocks. IEEE Trans. Automat. Control 52 (2007), 852-862.
  • [12] Degond, P. and Motsch, S.: Large-scale dynamics of the persistent Turing Walker model of fish behavior. J. Stat. Phys. 131 (2008), 989-1022.
  • [13] Degond, P. and Motsch, S.: Continuum limit of self-driven particles with orientation interaction. Math. Mod. Meth. Appl. Sci. 18 (2008), 1193-1215.
  • [14] Degond, P. and Motsch, S.: Macroscopic limit of self-driven particles with orientation interaction. C.R. Math. Acad. Sci. Paris 345 (2007), 555-560.
  • [15] Dong, J.-G. and Xue, X.: Synchronization analysis of Kuramoto oscillators. Commun. Math. Sci. 11 (2013), 465-480.
  • [16] Dörfler, F. and Bullo, F.: Synchronization in complex networks of phase oscillators: A survey. Automatica 50 (2014), 1539-1564.
  • [17] Dörfler, F. and Bullo, F.: On the critical coupling for Kuramoto oscillators. SIAM. J. Appl. Dyn. Syst. 10 (2011), 1070-1099.
  • [18] Ha, S.-Y. and Jeong, E. and Kang, M.-J.: Emergent behaviour of a generalized Viscek-type flocking model. Nonlinearity 23 (2010), 3139-3156.
  • [19] Ha, S.-Y. and Jung, J.: A hybrid fractional Kuramoto model and its emergent behavior. Preprint.
  • [20] Ha, S.-Y., Kim, H. W. and Ryoo, S. W.: Emergence of phase-locked states for the Kuramoto model in a large coupling regime. Commun. Math. Sci. 14 (2016), 1073-1091.
  • [21] Ha, S.-Y., Kim, J., Park, J. and Zhang, X.: Uniform stability and mean-field limit for the augmented Kuramoto model. Netw. Heterog. Media 13 (2018), 297-322.
  • [22] Ha, S.-Y., Kim, J. and Ruggeri, T.: From the relativistic mixture of gases to the relativistic Cucker-Smale flocking. Arch. Ration. Mech. Anal. 235 (2020), 661-706.
  • [23] Ha, S.-Y., Park, H., Ruggeri, T. and Shim, W.: Emergent behaviors of thermodynamic Kuramoto ensemble on a regular ring lattice. J. Stat. Phys. 181 (2020), 917-943.
  • [24] Kuramoto, Y.: International symposium on mathematical problems in mathematical physics. Lecture Notes Theor. Phys. 30 (1975), 420.
  • [25] Lancellotti, C.: On the Vlasov limit for systems of nonlinearly coupled oscillators without noise. Transport theory and statistical physics. 34 (2005), 523-535.
  • [26] Peskin, C. S.: Mathematical aspects of heart physiology. Courant Institute of Mathematical Sciences, New York, 1975.
  • [27] Pikovsky, A., Rosenblum, M. and Kurths, J.: Synchronization: A universal concept in nonlinear sciences. Cambridge University Press, Cambridge, 2001.
  • [28] Strogatz, S. H.: From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators. Phys. D 143 (2000), 1-20.
  • [29] Toner, J. and Tu, Y.: Flocks, herds, and schools: A quantitative theory of flocking. Phys. Rev. E 58 (1998), 4828-4858.
  • [30] Topaz, C. M. and Bertozzi, A. L.: Swarming patterns in a two-dimensional kinematic model for biological groups. SIAM J. Appl. Math. 65 (2004), 152-174.
  • [31] van Hemmen, J. L. and Wreszinski, W. F.: Lyapunov function for the Kuramoto model of nonlinearly coupled oscillators. J. Stat. Phys. 72 (1993), 145-166.
  • [32] Vicsek, T. and Zefeiris, A.: Collective motion. Phys. Rep. 517 (2012), 71-140.
  • [33] Winfree, A. T.: The geometry of biological time. Springer, New York, 1980.