This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

on a conjecture on permutation rational functions over finite fields

Daniele Bartoli Dipartimento di Matematica e Informatica, Università degli Studi di Perugia, Italy [email protected]  and  Xiang-dong Hou Department of Mathematics and Statistics, University of South Florida, Tampa, FL 33620, USA [email protected]
Abstract.

Let pp be a prime and nn be a positive integer, and consider fb(X)=X+(XpX+b)1𝔽p(X)f_{b}(X)=X+(X^{p}-X+b)^{-1}\in\mathbb{F}_{p}(X), where b𝔽pnb\in\mathbb{F}_{p^{n}} is such that Trpn/p(b)0\text{Tr}_{p^{n}/p}(b)\neq 0. It is known that (i) fbf_{b} permutes 𝔽pn\mathbb{F}_{p^{n}} for p=2,3p=2,3 and all n1n\geq 1; (ii) for p>3p>3 and n=2n=2, fbf_{b} permutes 𝔽p2\mathbb{F}_{p^{2}} if and only if Trp2/p(b)=±1\text{Tr}_{p^{2}/p}(b)=\pm 1; and (iii) for p>3p>3 and n5n\geq 5, fbf_{b} does not permute 𝔽pn\mathbb{F}_{p^{n}}. It has been conjectured that for p>3p>3 and n=3,4n=3,4, fbf_{b} does not permute 𝔽pn\mathbb{F}_{p^{n}}. We prove this conjecture for sufficiently large pp.

Key words and phrases:
finite field, Lang-Weil bound, permutation, rational function
2010 Mathematics Subject Classification:
11R58, 11T06, 11T55, 14H05

1. Background

Let 𝔽q\mathbb{F}_{q} denote the finite field with qq elements. Polynomials over 𝔽q\mathbb{F}_{q} that permute 𝔽q\mathbb{F}_{q}, called permutation polynomials (PPs) of 𝔽q\mathbb{F}_{q}, have been extensively studied in the theory and applications of finite fields. Recently, permutation rational functions (PRs) of finite fields also attracted considerable attention. There are a number of reasons for studying PRs. Certain types of PPs of high degree can be reduced to PRs of low degree; this approach has allowed people to solve numerous questions about PPs [1, 2, 5, 6, 7, 9, 11, 12, 13, 14, 16]. Oftentimes, PRs reveal phenomena that are not present in PPs; understanding these phenomena requires methods that are different from those in traditional approaches to PPs.

This paper concerns a conjecture on PRs of the type

fb(X)=X+1XpX+b𝔽p(X)f_{b}(X)=X+\frac{1}{X^{p}-X+b}\in\mathbb{F}_{p}(X)

of 𝔽pn\mathbb{F}_{p^{n}}, where pp is a prime, nn is a positive integer, and b𝔽pnb\in\mathbb{F}_{p^{n}} is such that Trpn/p(b)0\text{Tr}_{p^{n}/p}(b)\neq 0. In [15], Yuan et al. proved that for p=2,3p=2,3 and all n1n\geq 1, fbf_{b} is a PR of 𝔽pn\mathbb{F}_{p^{n}}. Recently, it was shown in [8] that for p>3p>3 and n5n\geq 5, fbf_{b} is not a PR of 𝔽pn\mathbb{F}_{p^{n}}, and for p>3p>3 and n=2n=2, fbf_{b} is a PR of 𝔽p2\mathbb{F}_{p^{2}} if and only if Trp2/p(b)=±1\text{Tr}_{p^{2}/p}(b)=\pm 1. Based on computer search, it was conjectured in [8] that for p>3p>3 and n=3,4n=3,4, fbf_{b} is not a PR of 𝔽pn\mathbb{F}_{p^{n}}. We will prove this conjecture for sufficiently large pp. Our approach relies on the Lang-Weil bound on the number of zeros of absolutely irreducible polynomials over finite fields. The main technical ingredient of our proof is a claim that that a certain polynomial of degree 18 in 𝔽p[Y1,Y2,Y3]\mathbb{F}_{p}[Y_{1},Y_{2},Y_{3}] has a cyclic absolutely irreducible factor in 𝔽p[Y1,Y2,Y3]\mathbb{F}_{p}[Y_{1},Y_{2},Y_{3}] and a claim that a certain polynomial of degree 46 in 𝔽p[Y1,Y2,Y3,Y4]\mathbb{F}_{p}[Y_{1},Y_{2},Y_{3},Y_{4}] has a cyclic absolutely irreducible factor in 𝔽p[Y1,Y2,Y3,Y4]\mathbb{F}_{p}[Y_{1},Y_{2},Y_{3},Y_{4}].

Throughout the paper, 𝔽¯q\overline{\mathbb{F}}_{q} denotes the algebraic closure of 𝔽q\mathbb{F}_{q}. For f𝔽q[X1,,Xn]f\in\mathbb{F}_{q}[X_{1},\dots,X_{n}], define

V𝔽qn(f)={(x1,,xn)𝔽qn:f(x1,,xn)=0}.V_{\mathbb{F}_{q}^{n}}(f)=\{(x_{1},\dots,x_{n})\in\mathbb{F}_{q}^{n}:f(x_{1},\dots,x_{n})=0\}.

ff is said to be absolutely irreducible if it is irreducible in 𝔽¯p[X1,,Xn]\overline{\mathbb{F}}_{p}[X_{1},\dots,X_{n}]. The resultant of two polynomials f(X)f(X) and g(X)g(X) in XX is denoted by Res(f,g;X)\text{Res}(f,g;X).

2. Cyclic Shift and the Forbenius

For σAut(𝔽q)\sigma\in\text{Aut}(\mathbb{F}_{q}) and f𝔽q[X1,,Xn]f\in\mathbb{F}_{q}[X_{1},\dots,X_{n}], let σ(f)\sigma(f) denote the resulting polynomial by applying σ\sigma to the coefficients of ff; this defines an action of Aut(𝔽q)\text{Aut}(\mathbb{F}_{q}) on 𝔽q[X1,,Xn]\mathbb{F}_{q}[X_{1},\dots,X_{n}]. Let ρ\rho be the cyclic shift on the indeterminates X1,,XnX_{1},\dots,X_{n}: ρ(X1,,Xn)=(X2,,X3,,Xn,X1)\rho(X_{1},\dots,X_{n})=(X_{2},,X_{3},\dots,X_{n},X_{1}). For f𝔽q[X1,,Xn]f\in\mathbb{F}_{q}[X_{1},\dots,X_{n}] and ρiρ\rho^{i}\in\langle\rho\rangle, let fρi=f(ρi(X1,,Xn))f^{\rho^{i}}=f(\rho^{i}(X_{1},\dots,X_{n})); this gives an action of ρ\langle\rho\rangle on 𝔽q[X1,,Xn]\mathbb{F}_{q}[X_{1},\dots,X_{n}]. A polynomial f𝔽q[X1,,˙Xn]f\in\mathbb{F}_{q}[X_{1},\dot{,}X_{n}] is called cyclic if fρ=ff^{\rho}=f and is called pseudo-cyclic if fρ=cff^{\rho}=cf for some nnth unity in 𝔽q\mathbb{F}_{q}.

For z𝔽qnz\in\mathbb{F}_{q^{n}}, z,zq,,zqn1z,z^{q},\dots,z^{q^{n-1}} form a normal basis of 𝔽qn\mathbb{F}_{q^{n}} over 𝔽q\mathbb{F}_{q} if and only if the Moore matrix of zz,

M(z)=[zzqzqn1zqzq2zzqn1zzqn2],M(z)=\left[\begin{matrix}z&z^{q}&\cdots&z^{q^{n-1}}\cr z^{q}&z^{q^{2}}&\cdots&z\cr\vdots&\vdots&&\vdots\cr z^{q^{n-1}}&z&\cdots&z^{q^{n-2}}\end{matrix}\right],

is invertible. An n×nn\times n matrix AA over 𝔽qn\mathbb{F}_{q^{n}} is of the form M(z)M(z) for some z𝔽qnz\in\mathbb{F}_{q^{n}} if and only if σ(A)=CA=AC1\sigma(A)=CA=AC^{-1}, where σ()=()q\sigma(\ )=(\ )^{q} is the Frobenius map of 𝔽qn/𝔽q\mathbb{F}_{q^{n}}/\mathbb{F}_{q}, σ(A)\sigma(A) is the result of entry-wise action of σ\sigma on AA, and

C=[0100001000011000].C=\left[\begin{matrix}0&1&0&\cdots&0\cr 0&0&1&\cdots&0\cr\vdots&\vdots&\vdots&\ddots&\vdots\cr 0&0&0&\cdots&1\cr 1&0&0&\cdots&0\end{matrix}\right].

From this, it is easy to see that if M(z)M(z) is invertible, then M(z)1=M(w)M(z)^{-1}=M(w) for some w𝔽qnw\in\mathbb{F}_{q^{n}}.

Lemma 2.1.

Let z𝔽qnz\in\mathbb{F}_{q^{n}} be such that detM(z)0\det M(z)\neq 0. Let f𝔽¯q[X1,,Xn]f\in\overline{\mathbb{F}}_{q}[X_{1},\dots,X_{n}] and g=f((X1,,Xn)M(z))g=f((X_{1},\dots,X_{n})M(z)). Then

  • (i)

    ff is cyclic if and only if gg is cyclic;

  • (ii)

    f𝔽q[X1,,Xn]f\in\mathbb{F}_{q}[X_{1},\dots,X_{n}] and is cyclic if and only if g𝔽q[X1,,Xn]g\in\mathbb{F}_{q}[X_{1},\dots,X_{n}] and is cyclic.

Proof.

Since f=g((X1,,Xn)M(w))f=g((X_{1},\dots,X_{n})M(w)), where M(w)=M(z)1M(w)=M(z)^{-1}, we only have to prove the “only if” part in both (i) and (ii).

(i) (\Rightarrow) We have

g((X1,,Xn)C)\displaystyle g((X_{1},\dots,X_{n})C)\, =f((X1,,Xn)CM(z))\displaystyle=f((X_{1},\dots,X_{n})CM(z))
=f((X1,,Xn)M(z)C1)\displaystyle=f((X_{1},\dots,X_{n})M(z)C^{-1})
=f((X1,,Xn)M(z))(since f is cyclic)\displaystyle=f((X_{1},\dots,X_{n})M(z))\kern 50.00008pt\text{(since $f$ is cyclic)}
=g.\displaystyle=g.

(ii) (\Rightarrow) We have

σ(g)\displaystyle\sigma(g)\, =σ(f((X1,,Xn)M(z)))\displaystyle=\sigma(f((X_{1},\dots,X_{n})M(z)))
=f((X1,,Xn)σ(M(z)))(since f𝔽q[X1,,Xn])\displaystyle=f((X_{1},\dots,X_{n})\sigma(M(z)))\kern 50.00008pt\text{(since $f\in\mathbb{F}_{q}[X_{1},\dots,X_{n}]$)}
=f((X1,,Xn)M(z)C1)\displaystyle=f((X_{1},\dots,X_{n})M(z)C^{-1})
=g.\displaystyle=g.

3. The Case n=3n=3

For n=3n=3, we have the following theorem.

Theorem 3.1.

Let p1734097p\geq 1734097 be a prime and b𝔽p3b\in\mathbb{F}_{p^{3}} be such that Trp3/p(b)0\text{\rm Tr}_{p^{3}/p}(b)\neq 0. Then fbf_{b} is not a PR of 𝔽p3\mathbb{F}_{p^{3}}. (Note: 17340971734097 is the 130492130492th prime.)

Proof.

We have

fb(X+Y)fb(X)=Y(Z(X)2+(YpY)Z(X)+1Yp1)Z(X)Z(X+Y),f_{b}(X+Y)-f_{b}(X)=\frac{Y(Z(X)^{2}+(Y^{p}-Y)Z(X)+1-Y^{p-1})}{Z(X)Z(X+Y)},

where

Z(X)=XpX+b.Z(X)=X^{p}-X+b.

Let

F(X,Y)=Z(X)2+(YpY)Z(X)+1Yp1𝔽p3[X,Y].F(X,Y)=Z(X)^{2}+(Y^{p}-Y)Z(X)+1-Y^{p-1}\in\mathbb{F}_{p^{3}}[X,Y].

It suffices to show that there exists (x,y)𝔽p32(x,y)\in\mathbb{F}_{p^{3}}^{2} with y0y\neq 0 such that F(x,y)=0F(x,y)=0, i.e., such that

(3.1) z2+(ypy)z+1yp1=0,z^{2}+(y^{p}-y)z+1-y^{p-1}=0,

where z=xpx+bz=x^{p}-x+b. The solution of (3.1) for zz is

(3.2) z=12((ypy)+Δ),z=\frac{1}{2}(-(y^{p}-y)+\Delta),

where

(3.3) Δ2\displaystyle\Delta^{2}\, =(ypy)24(1yp1)\displaystyle=(y^{p}-y)^{2}-4(1-y^{p-1})
(3.4) =(yp11)(y2(yp11)+4)\displaystyle=(y^{p-1}-1)(y^{2}(y^{p-1}-1)+4)
=y2p+y22y1+p+4yp14.\displaystyle=y^{2p}+y^{2}-2y^{1+p}+4y^{p-1}-4.

Therefore, it suffices to show that there exist Δ,y𝔽p3\Delta,y\in\mathbb{F}_{p^{3}}, with y0y\neq 0 and Trp3/p(Δ)=2Trp3/p(b)=:t\text{Tr}_{p^{3}/p}(\Delta)=2\text{Tr}_{p^{3}/p}(b)=:t, satisfying

(3.5) Δ2=y2p+y22y1+p+4yp14.\Delta^{2}=y^{2p}+y^{2}-2y^{1+p}+4y^{p-1}-4.

Assume for the time being that we already have Δ,y𝔽p3\Delta,y\in\mathbb{F}_{p^{3}}, with y0y\neq 0 and Trp3/p(Δ)=t\text{Tr}_{p^{3}/p}(\Delta)=t, that satisfy (3.5). Let y=y1,y2=yp,y3=yp2y=y_{1},y_{2}=y^{p},y_{3}=y^{p^{2}} and Δ1=Δ,Δ2=Δp,Δ3=Δp2\Delta_{1}=\Delta,\Delta_{2}=\Delta^{p},\Delta_{3}=\Delta^{p^{2}}. Then we have

(3.6) Δ12=y12+y222y1y2+4y2y14,\displaystyle\Delta_{1}^{2}=y_{1}^{2}+y_{2}^{2}-2y_{1}y_{2}+4\frac{y_{2}}{y_{1}}-4,
(3.7) Δ22=y22+y322y2y3+4y3y24,\displaystyle\Delta_{2}^{2}=y_{2}^{2}+y_{3}^{2}-2y_{2}y_{3}+4\frac{y_{3}}{y_{2}}-4,
(3.8) Δ32=y32+y122y3y1+4y1y34,\displaystyle\Delta_{3}^{2}=y_{3}^{2}+y_{1}^{2}-2y_{3}y_{1}+4\frac{y_{1}}{y_{3}}-4,
(3.9) Δ1+Δ2+Δ3=t.\displaystyle\Delta_{1}+\Delta_{2}+\Delta_{3}=t.

From (3.9) we can express Δ1\Delta_{1} in terms of Δ12\Delta_{1}^{2}, Δ22\Delta_{2}^{2}, Δ32\Delta_{3}^{2} and tt through the following calculation:

(3.10) (tΔ1)2=(Δ2+Δ3)2,\displaystyle(t-\Delta_{1})^{2}=(\Delta_{2}+\Delta_{3})^{2},
(3.11) t2+Δ12Δ22Δ322tΔ1=2Δ2Δ3,\displaystyle t^{2}+\Delta_{1}^{2}-\Delta_{2}^{2}-\Delta_{3}^{2}-2t\Delta_{1}=2\Delta_{2}\Delta_{3},
(3.12) (t2+Δ12Δ22Δ32)2+4t2Δ124tΔ1(t2+Δ12Δ22Δ32)=4Δ22Δ32,\displaystyle(t^{2}+\Delta_{1}^{2}-\Delta_{2}^{2}-\Delta_{3}^{2})^{2}+4t^{2}\Delta_{1}^{2}-4t\Delta_{1}(t^{2}+\Delta_{1}^{2}-\Delta_{2}^{2}-\Delta_{3}^{2})=4\Delta_{2}^{2}\Delta_{3}^{2},
(3.13) Δ1=(t2+Δ12Δ22Δ32)2+4t2Δ124Δ22Δ324t(t2+Δ12Δ22Δ32),\displaystyle\Delta_{1}=\frac{(t^{2}+\Delta_{1}^{2}-\Delta_{2}^{2}-\Delta_{3}^{2})^{2}+4t^{2}\Delta_{1}^{2}-4\Delta_{2}^{2}\Delta_{3}^{2}}{4t(t^{2}+\Delta_{1}^{2}-\Delta_{2}^{2}-\Delta_{3}^{2})},

provided the denominator is nonzero. Using (3.6) – (3.8), we can write (3.13) as

(3.14) Δ1=P(y1,y2,y3)4ty1y2y3Q(y1,y2,y3),\Delta_{1}=\frac{P(y_{1},y_{2},y_{3})}{4ty_{1}y_{2}y_{3}Q(y_{1},y_{2},y_{3})},

where

(3.15) P(Y1,Y2,Y3)=16Y14Y22+32Y13Y22Y316Y1Y23Y34,P(Y_{1},Y_{2},Y_{3})=16Y_{1}^{4}Y_{2}^{2}+32Y_{1}^{3}Y_{2}^{2}Y_{3}-\cdots-16Y_{1}Y_{2}^{3}Y_{3}^{4},
(3.16) Q(Y1,Y2,Y3)=4Y12Y2+4Y1Y2Y3+2Y1Y2Y33.Q(Y_{1},Y_{2},Y_{3})=-4Y_{1}^{2}Y_{2}+4Y_{1}Y_{2}Y_{3}+\cdots-2Y_{1}Y_{2}Y_{3}^{3}.

It follows that

(3.17) Δ2=P(y2,y3,y1)4ty1y2y3Q(y2,y3,y1),\displaystyle\Delta_{2}=\frac{P(y_{2},y_{3},y_{1})}{4ty_{1}y_{2}y_{3}Q(y_{2},y_{3},y_{1})},
(3.18) Δ3=P(y3,y1,y2)4ty1y2y3Q(y3,y1,y2).\displaystyle\Delta_{3}=\frac{P(y_{3},y_{1},y_{2})}{4ty_{1}y_{2}y_{3}Q(y_{3},y_{1},y_{2})}.

Using (3.14), equation (3.6) becomes

(3.19) G(y1,y2,y3)16t2y12y22y32Q(y1,y2,y3)2=0,\frac{G(y_{1},y_{2},y_{3})}{16t^{2}y_{1}^{2}y_{2}^{2}y_{3}^{2}Q(y_{1},y_{2},y_{3})^{2}}=0,

and using (3.14), (3.17) and (3.18), equation (3.9) becomes

(3.20) G(y1,y2,y3)4ty1y2y3Q(y1,y2,y3)Q(y2,y3,y1)Q(y3,y1,y2)=0,\frac{G(y_{1},y_{2},y_{3})}{4ty_{1}y_{2}y_{3}Q(y_{1},y_{2},y_{3})Q(y_{2},y_{3},y_{1})Q(y_{3},y_{1},y_{2})}=0,

where G(Y1,Y2,Y3)𝔽p[Y1,Y2,Y3]G(Y_{1},Y_{2},Y_{3})\in\mathbb{F}_{p}[Y_{1},Y_{2},Y_{3}] is a cyclic polynomial of degree 18. More precisely,

(3.21) G=g18+g16+g14+g12,G=g_{18}+g_{16}+g_{14}+g_{12},

where gi𝔽p[Y1,Y2,Y3]g_{i}\in\mathbb{F}_{p}[Y_{1},Y_{2},Y_{3}] is homogeneous of degree ii:

(3.22) g18=64t2Y14Y24Y34(Y1Y2)2(Y2Y3)2(Y3Y1)2,\displaystyle g_{18}=-64t^{2}Y_{1}^{4}Y_{2}^{4}Y_{3}^{4}(Y_{1}-Y_{2})^{2}(Y_{2}-Y_{3})^{2}(Y_{3}-Y_{1})^{2},
(3.23) g16=16Y12Y22Y32(16Y16Y2432Y15Y25++16Y24Y36),\displaystyle g_{16}=16Y_{1}^{2}Y_{2}^{2}Y_{3}^{2}(16Y_{1}^{6}Y_{2}^{4}-32Y_{1}^{5}Y_{2}^{5}+\cdots+16Y_{2}^{4}Y_{3}^{6}),
(3.24) g14=8Y1Y2Y3(64Y17Y2464Y16Y2564Y12Y22Y37),\displaystyle g_{14}=8Y_{1}Y_{2}Y_{3}(64Y_{1}^{7}Y_{2}^{4}-64Y_{1}^{6}Y_{2}^{5}-\cdots-64Y_{1}^{2}Y_{2}^{2}Y_{3}^{7}),
(3.25) g12=256Y18Y24+1024Y17Y24Y3+256Y14Y38.\displaystyle g_{12}=256Y_{1}^{8}Y_{2}^{4}+1024Y_{1}^{7}Y_{2}^{4}Y_{3}-\cdots+256Y_{1}^{4}Y_{3}^{8}.

We will show that there exists y𝔽p3y\in\mathbb{F}_{p^{3}} such that G(y,yp,yp2)=0G(y,y^{p},y^{p^{2}})=0 but Q(y,yp,yp2)0Q(y,y^{p},y^{p^{2}})\neq 0. Once this is done, the proof of the theorem is completed as follows: Clearly, y0y\neq 0. Let y1=y,y2=yp,y3=yp2y_{1}=y,y_{2}=y^{p},y_{3}=y^{p^{2}} and let Δ1,Δ2,Δ3\Delta_{1},\Delta_{2},\Delta_{3} be given by (3.14), (3.17) and (3.18). Then (3.6) and (3.9) hold. Let Δ=Δ1\Delta=\Delta_{1}. By (3.9), Trp3/p(Δ)=t\text{Tr}_{p^{3}/p}(\Delta)=t; by (3.6), Δ\Delta and yy satisfy (3.5).

Choose z𝔽p3z\in\mathbb{F}_{p^{3}} such that M(z)M(z) is invertible and let

G1=G((Y1,Y2,Y3)M(z)).G_{1}=G((Y_{1},Y_{2},Y_{3})M(z)).

By Lemma 3.2 below, GG has a cyclic absolutely irreducible factor d𝔽p[Y1,Y2,Y3]d\in\mathbb{F}_{p}[Y_{1},Y_{2},Y_{3}]. Let d1=d((Y1,Y2,Y3)M(z))d_{1}=d((Y_{1},Y_{2},Y_{3})M(z)). Then dGd\mid G implies that d1G1d_{1}\mid G_{1}, Lemma 2.1 implies that d1𝔽p[Y1,Y2,Y3]d_{1}\in\mathbb{F}_{p}[Y_{1},Y_{2},Y_{3}] and is cyclic, and the absolute irreducibility of dd implies the absolute irreducibility of d1d_{1}. The Lang-Weil bound [10] states that

|V𝔽p3(d1)|=p2+O(p3/2)asp.|V_{\mathbb{F}_{p}^{3}}(d_{1})|=p^{2}+O(p^{3/2})\qquad\text{as}\ p\to\infty.

More precisely, by [4, Theorem 5.2],

(3.26) |V𝔽p3(d1)|p2(181)(182)p3/251813/3p=p2272p3/251813/3p.|V_{\mathbb{F}_{p}^{3}}(d_{1})|\geq p^{2}-(18-1)(18-2)p^{3/2}-5\cdot 18^{13/3}p=p^{2}-272p^{3/2}-5\cdot 18^{13/3}p.

We find that

Res(G,Q;Y3)=216Y114Y28(256Y148t2Y14Y26)2(256Y13++4t2Y12Y27)20.\text{Res}(G,Q;Y_{3})=2^{16}Y_{1}^{14}Y_{2}^{8}(-256Y_{1}^{4}-\cdots-8t^{2}Y_{1}^{4}Y_{2}^{6})^{2}(256Y_{1}^{3}+\cdots+4t^{2}Y_{1}^{2}Y_{2}^{7})^{2}\neq 0.

Hence gcd(G,Q)=1\text{gcd}(G,Q)=1. Let Q1=Q((Y1,Y2,Y3)M(z))Q_{1}=Q((Y_{1},Y_{2},Y_{3})M(z)). It follows that gcd(G1,Q1)=1\text{gcd}(G_{1},Q_{1})=1. By [4, Lemma 2.2],

(3.27) |V𝔽p3(G1)V𝔽p3(Q1)|182p.|V_{\mathbb{F}_{p}^{3}}(G_{1})\cap V_{\mathbb{F}_{p}^{3}}(Q_{1})|\leq 18^{2}p.

Therefore,

|V𝔽p3(G1)V𝔽p3(Q1)|\displaystyle|V_{\mathbb{F}_{p}^{3}}(G_{1})\setminus V_{\mathbb{F}_{p}^{3}}(Q_{1})|\, =|V𝔽p3(G1)||V𝔽p3(G1)V𝔽p3(Q1)|\displaystyle=|V_{\mathbb{F}_{p}^{3}}(G_{1})|-|V_{\mathbb{F}_{p}^{3}}(G_{1})\cap V_{\mathbb{F}_{p}^{3}}(Q_{1})|
|V𝔽p3(d1)|182p\displaystyle\geq|V_{\mathbb{F}_{p}^{3}}(d_{1})|-18^{2}p
p2272p3/2(51813/3+182)p\displaystyle\geq p^{2}-272p^{3/2}-(5\cdot 18^{13/3}+18^{2})p
=p(p272p1/2(51813/3+182))\displaystyle=p(p-272p^{1/2}-(5\cdot 18^{13/3}+18^{2}))
>0\displaystyle>0

since

p1734097>173408114[271+(2722+4(51813/3+182))1/2]2.p\geq 1734097>1734081\approx\frac{1}{4}\bigl{[}271+(272^{2}+4(5\cdot 18^{13/3}+18^{2}))^{1/2}\bigr{]}^{2}.

Let (a1,a2,a3)V𝔽p3(G1)V𝔽p3(Q1)(a_{1},a_{2},a_{3})\in V_{\mathbb{F}_{p}^{3}}(G_{1})\setminus V_{\mathbb{F}_{p}^{3}}(Q_{1}) and let y=a1z+a2zq+a3zq2𝔽p3y=a_{1}z+a_{2}z^{q}+a_{3}z^{q^{2}}\in\mathbb{F}_{p^{3}}. Then G(y,yp,yp2)=0G(y,y^{p},y^{p^{2}})=0 but Q(y,yp,yp2)0Q(y,y^{p},y^{p^{2}})\neq 0. The proof is complete. ∎

Lemma 3.2.

The polynomial GG in (3.21) has a cyclic absolutely irreducible factor in 𝔽p[Y1,Y2,Y3]\mathbb{F}_{p}[Y_{1},Y_{2},Y_{3}].

Proof.

Let ρ\rho denote the cyclic shift (Y1,Y2,Y3)(Y2,Y3,Y1)(Y_{1},Y_{2},Y_{3})\mapsto(Y_{2},Y_{3},Y_{1}) and let σAut(𝔽¯p)\sigma\in\text{Aut}(\overline{\mathbb{F}}_{p}) be the Frobenius map ()()p(\ )\mapsto(\ )^{p}. Recall that the homogeneous component of the highest degree of GG is

g18=64t2Y14Y24Y34(Y1Y2)2(Y2Y3)2(Y3Y1)2.g_{18}=-64t^{2}Y_{1}^{4}Y_{2}^{4}Y_{3}^{4}(Y_{1}-Y_{2})^{2}(Y_{2}-Y_{3})^{2}(Y_{3}-Y_{1})^{2}.

All pseudo-cyclic factors of g18g_{18} in 𝔽¯p[Y1,Y2,Y3]\overline{\mathbb{F}}_{p}[Y_{1},Y_{2},Y_{3}] are cyclic; therefore, all pseudo-cyclic factors of GG in 𝔽¯p[Y1,Y2,Y3]\overline{\mathbb{F}}_{p}[Y_{1},Y_{2},Y_{3}] are cyclic.

11^{\circ} We have

G=a8(Y1,Y2)Y38+a7(Y1,Y2)Y37+,G=a_{8}(Y_{1},Y_{2})Y_{3}^{8}+a_{7}(Y_{1},Y_{2})Y_{3}^{7}+\cdots,

where

(3.28) a8(Y1,Y2)=16Y12α(Y1,Y2,t)α(Y1,Y2,t)a_{8}(Y_{1},Y_{2})=16Y_{1}^{2}\alpha(Y_{1},Y_{2},t)\alpha(Y_{1},Y_{2},-t)

and

α(Y1,Y2,T)=4Y1+4TY1Y2+4Y12Y2+T2Y1Y22+2TY12Y224Y232TY1Y23.\alpha(Y_{1},Y_{2},T)=4Y_{1}+4TY_{1}Y_{2}+4Y_{1}^{2}Y_{2}+T^{2}Y_{1}Y_{2}^{2}+2TY_{1}^{2}Y_{2}^{2}-4Y_{2}^{3}-2TY_{1}Y_{2}^{3}.

We claim that α(Y1,Y2,t)\alpha(Y_{1},Y_{2},t) and α(Y1,Y2,t)\alpha(Y_{1},Y_{2},-t) are irreducible in 𝔽¯p[Y1,Y2]\overline{\mathbb{F}}_{p}[Y_{1},Y_{2}]. The discriminant of α(Y1,Y2,t)\alpha(Y_{1},Y_{2},t), as a polynomial in Y1Y_{1}, is

D=16+32tY2+24t2Y2216tY23+8t3Y23+64Y2416t2Y24+t4Y24+32tY254t3Y25+4t2Y26.D=16+32tY_{2}+24t^{2}Y_{2}^{2}-16tY_{2}^{3}+8t^{3}Y_{2}^{3}+64Y_{2}^{4}-16t^{2}Y_{2}^{4}+t^{4}Y_{2}^{4}+32tY_{2}^{5}-4t^{3}Y_{2}^{5}+4t^{2}Y_{2}^{6}.

Assume to the contrary that DD is a square in 𝔽¯p[Y2]\overline{\mathbb{F}}_{p}[Y_{2}]. Then

D(2tY23+aY22+bY2+c)2=0,D-(2tY_{2}^{3}+aY_{2}^{2}+bY_{2}+c)^{2}=0,

where a,b𝔽¯pa,b\in\overline{\mathbb{F}}_{p} and c=±4c=\pm 4.

When c=4c=4,

D(2tY23+aY22+bY2+4)28(b4t)Y2(modY22).D-(2tY_{2}^{3}+aY_{2}^{2}+bY_{2}+4)^{2}\equiv-8(b-4t)Y_{2}\pmod{Y_{2}^{2}}.

Then b=4tb=4t, and it follows that

D(2tY23+aY22+bY2+4)2\displaystyle D-(2tY_{2}^{3}+aY_{2}^{2}+bY_{2}+4)^{2}
=8(at2)Y22+8t(4a+t2)Y23+(64a232t2+t4)Y244t(8+a+t2)Y25\displaystyle=-8(a-t^{2})Y_{2}^{2}+8t(-4-a+t^{2})Y_{2}^{3}+(64-a^{2}-32t^{2}+t^{4})Y_{2}^{4}-4t(-8+a+t^{2})Y_{2}^{5}
0,\displaystyle\neq 0,

which is a contradiction.

When c=4c=-4,

D(2tY23+aY22+bY24)28(b+4t)Y2(modY22).D-(2tY_{2}^{3}+aY_{2}^{2}+bY_{2}-4)^{2}\equiv 8(b+4t)Y_{2}\pmod{Y_{2}^{2}}.

Then b=4tb=-4t, and it follows that

D(2tY23+aY22+bY24)2\displaystyle D-(2tY_{2}^{3}+aY_{2}^{2}+bY_{2}-4)^{2}
=8(a+t2)Y22+8t(a+t2)Y23+(64a2+t4)Y244t(8+a+t2)Y25\displaystyle=8(a+t^{2})Y_{2}^{2}+8t(a+t^{2})Y_{2}^{3}+(64-a^{2}+t^{4})Y_{2}^{4}-4t(-8+a+t^{2})Y_{2}^{5}
0,\displaystyle\neq 0,

which is a contradiction.

22^{\circ} Write α1=α(Y1,Y2,t)\alpha_{1}=\alpha(Y_{1},Y_{2},t) and α2=α(Y1,Y2,t)\alpha_{2}=\alpha(Y_{1},Y_{2},-t). Let f,h𝔽¯p[Y1,Y2,Y3]f,h\in\overline{\mathbb{F}}_{p}[Y_{1},Y_{2},Y_{3}] be irreducible factors of GG of the form

f\displaystyle f\, =α1β1Y3i+lower terms inY3,\displaystyle=\alpha_{1}\beta_{1}Y_{3}^{i}+\text{lower terms in}\ Y_{3},
h\displaystyle h\, =α2β2Y3j+lower terms inY3,\displaystyle=\alpha_{2}\beta_{2}Y_{3}^{j}+\text{lower terms in}\ Y_{3},

where β1,β2𝔽¯p[Y1,Y2]\beta_{1},\beta_{2}\in\overline{\mathbb{F}}_{p}[Y_{1},Y_{2}]. We first claim that σ(f)=f\sigma(f)=f. Otherwise, fσ(f)Gf\sigma(f)\mid G. Since σ(α1)=α1\sigma(\alpha_{1})=\alpha_{1}, it follows that α12a8\alpha_{1}^{2}\mid a_{8}, which is a contradiction. In the same way σ(h)=h\sigma(h)=h.

Next, we claim that either ff or hh is cyclic. Otherwise, ffρfρ2Gff^{\rho}f^{\rho^{2}}\mid G and hhρhρ2Ghh^{\rho}h^{\rho^{2}}\mid G. Then degf18/3=6\deg f\leq 18/3=6 and degh6\deg h\leq 6. We must have h{f,fρ,fρ2}h\in\{f,f^{\rho},f^{\rho^{2}}\}. (Otherwise, ffρfρ2hhρhρ2Gff^{\rho}f^{\rho^{2}}hh^{\rho}h^{\rho^{2}}\mid G, whence degG64>18\deg G\geq 6\cdot 4>18, which is a contradiction.) If h=fh=f, then α2β1\alpha_{2}\mid\beta_{1}. Hence degfdeg(α1α2)=8\deg f\geq\deg(\alpha_{1}\alpha_{2})=8, which is a contradiction. If h=fρh=f^{\rho}, then degh4+degY3h=4+degY2f7\deg h\geq 4+\deg_{Y_{3}}h=4+\deg_{Y_{2}}f\geq 7, which is a contradiction. If h=fρ2h=f^{\rho^{2}}, i.e., f=hρf=h^{\rho}, we have degf7\deg f\geq 7, which is also a contradiction. ∎

4. The Case n=4n=4

The proof for the case n=4n=4 is more complicated but is based on the same approach for the case n=3n=3.

Theorem 4.1.

Let p100,018,663p\geq 100,018,663 be a prime and b𝔽p4b\in\mathbb{F}_{p^{4}} be such that Trp4/p(b)0\text{\rm Tr}_{p^{4}/p}(b)\neq 0. Then fbf_{b} is not a PR of 𝔽p4\mathbb{F}_{p^{4}}. (Note: 100,018,663100,018,663 is the 5,762,4585,762,458th prime.)

Proof.

First, by [8, Conjecture 4.1], it suffices to show that f1/2f_{1/2} is not a PR of 𝔽p4\mathbb{F}_{p^{4}}. We have

f1/2(X+Y)f1/2(X)=YF(X,Y)Z(X)Z(X+Y),f_{1/2}(X+Y)-f_{1/2}(X)=\frac{YF(X,Y)}{Z(X)Z(X+Y)},

where

Z(X)=XpX+12Z(X)=X^{p}-X+\frac{1}{2}

and

(4.1) F(X,Y)=Z(X)2+(YpY)Z(X)+1Yp1𝔽p[X,Y].F(X,Y)=Z(X)^{2}+(Y^{p}-Y)Z(X)+1-Y^{p-1}\in\mathbb{F}_{p}[X,Y].

It suffices to show that there exists (x,y)𝔽p42(x,y)\in\mathbb{F}_{p^{4}}^{2} with y0y\neq 0 such that F(x,y)=0F(x,y)=0. To this end, it suffices show that there exist Δ,y𝔽p4\Delta,y\in\mathbb{F}_{p^{4}}, with y0y\neq 0 and Trp4/p(Δ)=2Trp4/p(1/2)=4\text{Tr}_{p^{4}/p}(\Delta)=2\text{Tr}_{p^{4}/p}(1/2)=4, satisfying

(4.2) Δ2=y2p+y22y1+p+4yp14;\Delta^{2}=y^{2p}+y^{2}-2y^{1+p}+4y^{p-1}-4;

see (3.1) – (3.5).

Assume that such Δ\Delta and yy exist, and let yi=ypi1y_{i}=y^{p^{i-1}} and Δi=Δpi1\Delta_{i}=\Delta^{p^{i-1}}, 1i41\leq i\leq 4. Then

(4.3) Δi2=yi2+yi+122yiyi+1+4yi+1yi4,1i4,\Delta_{i}^{2}=y_{i}^{2}+y_{i+1}^{2}-2y_{i}y_{i+1}+4\frac{y_{i+1}}{y_{i}}-4,\quad 1\leq i\leq 4,

where the subscript is taken modulo 4, and

(4.4) Δ1+Δ2+Δ3+Δ4=4.\Delta_{1}+\Delta_{2}+\Delta_{3}+\Delta_{4}=4.

Under the condition (4.4), one can express Δ1\Delta_{1} in terms of Δ12,,Δ42\Delta_{1}^{2},\dots,\Delta_{4}^{2} as follows:

(4Δ1Δ2)2=(Δ3+Δ4)2,\displaystyle(4-\Delta_{1}-\Delta_{2})^{2}=(\Delta_{3}+\Delta_{4})^{2},
(4Δ1)2+Δ222(4Δ1)Δ2=Δ32+Δ42+2Δ3Δ4,\displaystyle(4-\Delta_{1})^{2}+\Delta_{2}^{2}-2(4-\Delta_{1})\Delta_{2}=\Delta_{3}^{2}+\Delta_{4}^{2}+2\Delta_{3}\Delta_{4},
(16+Δ128Δ1+Δ22Δ32Δ42)2=[2(4Δ1)Δ2+2Δ3Δ4]2,\displaystyle(16+\Delta_{1}^{2}-8\Delta_{1}+\Delta_{2}^{2}-\Delta_{3}^{2}-\Delta_{4}^{2})^{2}=\bigl{[}2(4-\Delta_{1})\Delta_{2}+2\Delta_{3}\Delta_{4}\bigr{]}^{2},
(16+Δ12+Δ22Δ32Δ42)2+64Δ1216Δ1(16+Δ12+Δ22Δ32Δ42)\displaystyle(16+\Delta_{1}^{2}+\Delta_{2}^{2}-\Delta_{3}^{2}-\Delta_{4}^{2})^{2}+64\Delta_{1}^{2}-16\Delta_{1}(16+\Delta_{1}^{2}+\Delta_{2}^{2}-\Delta_{3}^{2}-\Delta_{4}^{2})
=4[(4Δ1)2Δ22+Δ32Δ42+2(4Δ1)Δ2Δ3Δ4],\displaystyle=4\bigl{[}(4-\Delta_{1})^{2}\Delta_{2}^{2}+\Delta_{3}^{2}\Delta_{4}^{2}+2(4-\Delta_{1})\Delta_{2}\Delta_{3}\Delta_{4}\bigr{]},
(16+Δ12+Δ22Δ32Δ42)2+64Δ1216Δ1(16+Δ12+Δ22Δ32Δ42)\displaystyle(16+\Delta_{1}^{2}+\Delta_{2}^{2}-\Delta_{3}^{2}-\Delta_{4}^{2})^{2}+64\Delta_{1}^{2}-16\Delta_{1}(16+\Delta_{1}^{2}+\Delta_{2}^{2}-\Delta_{3}^{2}-\Delta_{4}^{2})
4(4Δ1)2Δ224Δ32Δ42=8(4Δ1)Δ2Δ3Δ4.\displaystyle-4(4-\Delta_{1})^{2}\Delta_{2}^{2}-4\Delta_{3}^{2}\Delta_{4}^{2}=8(4-\Delta_{1})\Delta_{2}\Delta_{3}\Delta_{4}.

Squaring both sides leads to

(4.5) Δ1=A(Δ12,Δ22,Δ32,Δ42)32B(Δ12,Δ22,Δ32,Δ42),\Delta_{1}=\frac{A(\Delta_{1}^{2},\Delta_{2}^{2},\Delta_{3}^{2},\Delta_{4}^{2})}{32B(\Delta_{1}^{2},\Delta_{2}^{2},\Delta_{3}^{2},\Delta_{4}^{2})},

provided B(Δ12,Δ22,Δ32,Δ42)0B(\Delta_{1}^{2},\Delta_{2}^{2},\Delta_{3}^{2},\Delta_{4}^{2})\neq 0, where

A(X1,X2,X3,X4)\displaystyle A(X_{1},X_{2},X_{3},X_{4}) =65536+114688X1++X44,\displaystyle=65536+114688X_{1}+\cdots+X_{4}^{4},
B(X1,X2,X3,X4)\displaystyle B(X_{1},X_{2},X_{3},X_{4}) =4096+1792X1+X43.\displaystyle=4096+1792X_{1}+\cdots-X_{4}^{3}.

In the same way,

(4.6) Δi=A(Δi2,Δi+12,Δi+22,Δi+32)32B(Δi2,Δi+12,Δi+22,Δi+32),1i4.\Delta_{i}=\frac{A(\Delta_{i}^{2},\Delta_{i+1}^{2},\Delta_{i+2}^{2},\Delta_{i+3}^{2})}{32B(\Delta_{i}^{2},\Delta_{i+1}^{2},\Delta_{i+2}^{2},\Delta_{i+3}^{2})},\quad 1\leq i\leq 4.

The equation

(4.7) [A(Δ12,Δ22,Δ32,Δ42)32B(Δ12,Δ22,Δ32,Δ42)]2=Δ12\Bigl{[}\frac{A(\Delta_{1}^{2},\Delta_{2}^{2},\Delta_{3}^{2},\Delta_{4}^{2})}{32B(\Delta_{1}^{2},\Delta_{2}^{2},\Delta_{3}^{2},\Delta_{4}^{2})}\Bigr{]}^{2}=\Delta_{1}^{2}

can be written as

(4.8) P(Δ12,Δ22,Δ32,Δ42)1024B(Δ12,Δ22,Δ32,Δ42)2=0,\frac{P(\Delta_{1}^{2},\Delta_{2}^{2},\Delta_{3}^{2},\Delta_{4}^{2})}{1024B(\Delta_{1}^{2},\Delta_{2}^{2},\Delta_{3}^{2},\Delta_{4}^{2})^{2}}=0,

where

P(X1,X2,X3,X4)=42949672962147483648X1++X48.P(X_{1},X_{2},X_{3},X_{4})=4294967296-2147483648X_{1}+\cdots+X_{4}^{8}.

Using (4.6), equation (4.4) becomes

(4.9) P(Δ12,Δ22,Δ32,Δ42)Q(Δ12,Δ22,Δ32,Δ42)16i=14B(Δi2,Δi+12,Δi+22,Δi+32)2=0,\frac{P(\Delta_{1}^{2},\Delta_{2}^{2},\Delta_{3}^{2},\Delta_{4}^{2})Q(\Delta_{1}^{2},\Delta_{2}^{2},\Delta_{3}^{2},\Delta_{4}^{2})}{16\prod_{i=1}^{4}B(\Delta_{i}^{2},\Delta_{i+1}^{2},\Delta_{i+2}^{2},\Delta_{i+3}^{2})^{2}}=0,

where

Q(X1,X2,X3,X4)=209715196608Δ12++Δ45.Q(X_{1},X_{2},X_{3},X_{4})=-209715-196608\Delta_{1}^{2}+\cdots+\Delta_{4}^{5}.

Using (4.3), we can write

P(Δ12,Δ22,Δ32,Δ42)=\displaystyle P(\Delta_{1}^{2},\Delta_{2}^{2},\Delta_{3}^{2},\Delta_{4}^{2})=\, 216(y1y2y3y4)8G(y1,y2,y3,y4),\displaystyle-\frac{2^{16}}{(y_{1}y_{2}y_{3}y_{4})^{8}}G(y_{1},y_{2},y_{3},y_{4}),
B(Δ12,Δ22,Δ32,Δ42)=\displaystyle B(\Delta_{1}^{2},\Delta_{2}^{2},\Delta_{3}^{2},\Delta_{4}^{2})=\, 24(y1y2y3y4)3L(y1,y2,y3,y4),\displaystyle-\frac{2^{4}}{(y_{1}y_{2}y_{3}y_{4})^{3}}L(y_{1},y_{2},y_{3},y_{4}),

where

G(Y1,Y2,Y3,Y4)=Y116Y28Y38+16Y115Y28Y38Y4++4Y18Y210Y312Y416G(Y_{1},Y_{2},Y_{3},Y_{4})=-Y_{1}^{16}Y_{2}^{8}Y_{3}^{8}+16Y_{1}^{15}Y_{2}^{8}Y_{3}^{8}Y_{4}+\cdots+4Y_{1}^{8}Y_{2}^{10}Y_{3}^{12}Y_{4}^{16}

and

L(Y1,Y2,Y3,Y4)=4Y16Y23Y3310Y14Y23Y33Y4+Y13Y23Y35Y47L(Y_{1},Y_{2},Y_{3},Y_{4})=4Y_{1}^{6}Y_{2}^{3}Y_{3}^{3}-10Y_{1}^{4}Y_{2}^{3}Y_{3}^{3}Y_{4}-\cdots+Y_{1}^{3}Y_{2}^{3}Y_{3}^{5}Y_{4}^{7}

are cyclic polynomials over 𝔽p\mathbb{F}_{p} of degree 46 and 18, respectively, and degYiG=16\deg_{Y_{i}}G=16, 1i41\leq i\leq 4. More precisely,

(4.10) G=g46+g44+g42+g40+g38+g36+g34+g32,G=g_{46}+g_{44}+g_{42}+g_{40}+g_{38}+g_{36}+g_{34}+g_{32},

where gi𝔽p[Y1,Y2,Y3,Y4]g_{i}\in\mathbb{F}_{p}[Y_{1},Y_{2},Y_{3},Y_{4}] is homogeneous of degree ii:

(4.11) g46=\displaystyle g_{46}=\, 4(Y1Y2Y3Y4)8[(Y1Y2)(Y2Y3)(Y3Y4)(Y4Y1)]2\displaystyle-4(Y_{1}Y_{2}Y_{3}Y_{4})^{8}\bigl{[}(Y_{1}-Y_{2})(Y_{2}-Y_{3})(Y_{3}-Y_{4})(Y_{4}-Y_{1})\bigr{]}^{2}
(4.12) [(Y1Y3)(Y2Y4)]2(Y1Y2+Y3Y4)2,\displaystyle\cdot\bigl{[}(Y_{1}-Y_{3})(Y_{2}-Y_{4})\bigr{]}^{2}(Y_{1}-Y_{2}+Y_{3}-Y_{4})^{2},
(4.13) g44=\displaystyle g_{44}=\, (Y1Y2Y3Y4)6(Y110Y26Y344Y19Y27Y34++Y24Y36Y410),\displaystyle(Y_{1}Y_{2}Y_{3}Y_{4})^{6}(Y_{1}^{10}Y_{2}^{6}Y_{3}^{4}-4Y_{1}^{9}Y_{2}^{7}Y_{3}^{4}+\cdots+Y_{2}^{4}Y_{3}^{6}Y_{4}^{10}),
(4.14) g42=\displaystyle g_{42}=\, 2(Y1Y2Y3Y4)5(Y111Y27Y344Y110Y28Y34+Y12Y22Y37Y411),\displaystyle 2(Y_{1}Y_{2}Y_{3}Y_{4})^{5}(Y_{1}^{11}Y_{2}^{7}Y_{3}^{4}-4Y_{1}^{10}Y_{2}^{8}Y_{3}^{4}+\cdots-Y_{1}^{2}Y_{2}^{2}Y_{3}^{7}Y_{4}^{11}),
(4.15) g40=\displaystyle g_{40}=\, (Y1Y2Y3Y4)4(Y112Y28Y344Y111Y29Y34++Y14Y38Y412),\displaystyle(Y_{1}Y_{2}Y_{3}Y_{4})^{4}(Y_{1}^{12}Y_{2}^{8}Y_{3}^{4}-4Y_{1}^{11}Y_{2}^{9}Y_{3}^{4}+\cdots+Y_{1}^{4}Y_{3}^{8}Y_{4}^{12}),
(4.16) g38=\displaystyle g_{38}=\, 2(Y1Y2Y3Y4)3(2Y113Y28Y356Y112Y29Y35+2Y15Y22Y36Y413),\displaystyle 2(Y_{1}Y_{2}Y_{3}Y_{4})^{3}(2Y_{1}^{13}Y_{2}^{8}Y_{3}^{5}-6Y_{1}^{12}Y_{2}^{9}Y_{3}^{5}+\cdots-2Y_{1}^{5}Y_{2}^{2}Y_{3}^{6}Y_{4}^{13}),
(4.17) g36=\displaystyle g_{36}=\, 2(Y1Y2Y3Y4)2(3Y114Y28Y366Y113Y29Y36++3Y16Y24Y34Y414),\displaystyle 2(Y_{1}Y_{2}Y_{3}Y_{4})^{2}(3Y_{1}^{14}Y_{2}^{8}Y_{3}^{6}-6Y_{1}^{13}Y_{2}^{9}Y_{3}^{6}+\cdots+3Y_{1}^{6}Y_{2}^{4}Y_{3}^{4}Y_{4}^{14}),
(4.18) g34=\displaystyle g_{34}=\, 4Y1Y2Y3Y4(Y115Y28Y37Y114Y29Y37+Y17Y26Y32Y415),\displaystyle 4Y_{1}Y_{2}Y_{3}Y_{4}(Y_{1}^{15}Y_{2}^{8}Y_{3}^{7}-Y_{1}^{14}Y_{2}^{9}Y_{3}^{7}+\cdots-Y_{1}^{7}Y_{2}^{6}Y_{3}^{2}Y_{4}^{15}),
(4.19) g32=\displaystyle g_{32}=\, Y116Y28Y3816Y115Y28Y38Y4+Y18Y28Y416.\displaystyle Y_{1}^{16}Y_{2}^{8}Y_{3}^{8}-16Y_{1}^{15}Y_{2}^{8}Y_{3}^{8}Y_{4}-\cdots+Y_{1}^{8}Y_{2}^{8}Y_{4}^{16}.

Later, we will use the fact that

(4.20) gcd(G,L)=1.\text{gcd}(G,L)=1.

This fact follows from the computation that

Res(G(1,1,Y3,Y4),L(1,1,Y3,Y4);Y4)\displaystyle\text{Res}(G(1,1,Y_{3},Y_{4}),L(1,1,Y_{3},Y_{4});Y_{4})
=2112(1+Y3)8Y356(3+Y3)8(19+2Y3+Y32)8(1+8Y326Y32+3Y34)4\displaystyle=2^{112}(-1+Y_{3})^{8}Y_{3}^{56}(3+Y_{3})^{8}(-19+2Y_{3}+Y_{3}^{2})^{8}(-1+8Y_{3}-26Y_{3}^{2}+3Y_{3}^{4})^{4}
(16+11Y3+88Y3216Y3398Y34+5Y35+10Y36)4\displaystyle\kern 10.00002pt\cdot(-16+11Y_{3}+88Y_{3}^{2}-16Y_{3}^{3}-98Y_{3}^{4}+5Y_{3}^{5}+10Y_{3}^{6})^{4}
(16+8Y3204Y32+369Y33+30Y3476Y352Y36+3Y37)4\displaystyle\kern 10.00002pt\cdot(16+8Y_{3}-204Y_{3}^{2}+369Y_{3}^{3}+30Y_{3}^{4}-76Y_{3}^{5}-2Y_{3}^{6}+3Y_{3}^{7})^{4}
(256+672Y3+505Y324456Y33+5718Y34364Y351139Y36\displaystyle\kern 10.00002pt\cdot(256+672Y_{3}+505Y_{3}^{2}-4456Y_{3}^{3}+5718Y_{3}^{4}-364Y_{3}^{5}-1139Y_{3}^{6}
+52Y37+52Y38)2(256256Y3+832Y32+672Y331056Y34\displaystyle\kern 16.99998pt+52Y_{3}^{7}+52Y_{3}^{8})^{2}(-256-256Y_{3}+832Y_{3}^{2}+672Y_{3}^{3}-1056Y_{3}^{4}
392Y35+431Y36+76Y3766Y384Y39+3Y310)2\displaystyle\kern 16.99998pt-392Y_{3}^{5}+431Y_{3}^{6}+76Y_{3}^{7}-66Y_{3}^{8}-4Y_{3}^{9}+3Y_{3}^{10})^{2}
0.\displaystyle\neq 0.

To prove the theorem, it suffice to show that there exists y𝔽p4y\in\mathbb{F}_{p^{4}} such that G(y,yp,yp2,yp3)=0G(y,y^{p},y^{p^{2}},y^{p^{3}})=0 but L(y,yp,yp2,yp3)0L(y,y^{p},y^{p^{2}},y^{p^{3}})\neq 0. Once this is done, the proof of the theorem is completed as follows: Clearly, y0y\neq 0. Let yi=ypi1y_{i}=y^{p^{i-1}}, 1i41\leq i\leq 4. Let Δi\Delta_{i} (1i41\leq i\leq 4) be given by (4.6) and in (4.6) let Δi2\Delta_{i}^{2} be given by (4.3), whence Δi\Delta_{i} is defined in terms of y1,,y4y_{1},\dots,y_{4}. For Δi\Delta_{i} so defined, (4.8) and (4.9) are satisfied. Let Δ=Δ1\Delta=\Delta_{1}. From (4.8) we have (4.7) and hence (4.2); from (4.9) we have (4.4), i.e., Trp4/p(Δ)=4\text{Tr}_{p^{4}/p}(\Delta)=4.

Choose z𝔽p4z\in\mathbb{F}_{p^{4}} such that M(z)M(z) is invertible and let

G1=G((Y1,Y2,Y3,Y4)M(z)).G_{1}=G((Y_{1},Y_{2},Y_{3},Y_{4})M(z)).

By Lemma 4.2 below, GG has a cyclic absolutely irreducible factor d𝔽p[Y1,Y2,Y3,Y4]d\in\mathbb{F}_{p}[Y_{1},Y_{2},Y_{3},Y_{4}]. Then d1=d((Y1,Y2,Y3,Y4)M(z))𝔽p[Y1,Y2,Y3,Y4]d_{1}=d((Y_{1},Y_{2},Y_{3},Y_{4})M(z))\in\mathbb{F}_{p}[Y_{1},Y_{2},Y_{3},Y_{4}] is a cyclic absolutely irreducible factor of G1G_{1}. By [4, Theorem 5.2],

|V𝔽p4(d1)|\displaystyle|V_{\mathbb{F}_{p}^{4}}(d_{1})|\, p2(461)(462)p3/254613/3p\displaystyle\geq p^{2}-(46-1)(46-2)p^{3/2}-5\cdot 46^{13/3}p
=p21980p3/254613/3p.\displaystyle=p^{2}-1980p^{3/2}-5\cdot 46^{13/3}p.

Let L1=L((Y1,Y2,Y3,Y4)M(z))L_{1}=L((Y_{1},Y_{2},Y_{3},Y_{4})M(z)). By (4.20), gcd(G1,L1)=1\text{gcd}(G_{1},L_{1})=1. Then by [4, Lemma 2.2],

|V𝔽p4(G1)V𝔽p4(L1)|462p.|V_{\mathbb{F}_{p}^{4}}(G_{1})\cap V_{\mathbb{F}_{p}^{4}}(L_{1})|\leq 46^{2}p.

Hence

|V𝔽p4(G1)V𝔽p4(L1)|\displaystyle|V_{\mathbb{F}_{p}^{4}}(G_{1})\setminus V_{\mathbb{F}_{p}^{4}}(L_{1})|\, |V𝔽p4(d1)||V𝔽p4(G1)V𝔽p4(L1)|\displaystyle\geq|V_{\mathbb{F}_{p}^{4}}(d_{1})|-|V_{\mathbb{F}_{p}^{4}}(G_{1})\cap V_{\mathbb{F}_{p}^{4}}(L_{1})|
p21980p3/2(54613/3+462)p\displaystyle\geq p^{2}-1980p^{3/2}-(5\cdot 46^{13/3}+46^{2})p
=p(p1980p1/2(54613/3+462))\displaystyle=p(p-1980p^{1/2}-(5\cdot 46^{13/3}+46^{2}))
>0\displaystyle>0

since

p100,018,663>100,018,65914[1980+(19802+4(54613/3+462))1/2]2.p\geq 100,018,663>100,018,659\approx\frac{1}{4}\bigl{[}1980+(1980^{2}+4(5\cdot 46^{13/3}+46^{2}))^{1/2}\bigr{]}^{2}.

Let (a1,a2,a3,a4)V𝔽p4(G1)V𝔽p4(L1)(a_{1},a_{2},a_{3},a_{4})\in V_{\mathbb{F}_{p}^{4}}(G_{1})\setminus V_{\mathbb{F}_{p}^{4}}(L_{1}) and let y=a1z+a2zp+a3zp2+a4zp3𝔽p4y=a_{1}z+a_{2}z^{p}+a_{3}z^{p^{2}}+a_{4}z^{p^{3}}\in\mathbb{F}_{p^{4}}. Then G(y,yp,yp2,yp3)=0G(y,y^{p},y^{p^{2}},y^{p^{3}})=0 but L(y,yp,yp2,yp3)0L(y,y^{p},y^{p^{2}},y^{p^{3}})\neq 0. ∎

Lemma 4.2.

The polynomial GG in (4.10) has a cyclic absolutely irreducible factor in 𝔽p[Y1,Y2,Y3,Y4]\mathbb{F}_{p}[Y_{1},Y_{2},Y_{3},Y_{4}].

Proof.

Throughout this proof, ρ\rho denotes the cyclic shift (Y1,Y2,Y3,Y4)(Y2,Y3,Y4,Y1)(Y_{1},Y_{2},Y_{3},Y_{4})\mapsto(Y_{2},Y_{3},Y_{4},Y_{1}) and σAut(𝔽¯p)\sigma\in\text{Aut}(\overline{\mathbb{F}}_{p}) is the Frobenius map ()()p(\ )\mapsto(\ )^{p}. For any f𝔽¯p[Y1,Y2,Y3,Y4]f\in\overline{\mathbb{F}}_{p}[Y_{1},Y_{2},Y_{3},Y_{4}], fif_{i} denotes the homogenous component of degree ii in ff. For f=fi+fi1+f=f_{i}+f_{i-1}+\cdots with fi0f_{i}\neq 0, let f¯=fi+fi1X+𝔽¯p[Y1,Y2,Y3,Y4,X]\bar{f}=f_{i}+f_{i-1}X+\cdots\in\overline{\mathbb{F}}_{p}[Y_{1},Y_{2},Y_{3},Y_{4},X] be the homogenization of ff and let f~=f¯(Y1,Y2,Y3,Y4,1)=fifi1+fi2\tilde{f}=\bar{f}(Y_{1},Y_{2},Y_{3},Y_{4},-1)=f_{i}-f_{i-1}+f_{i-2}-\cdots. Since G¯=g46+g44X2++g32X14\overline{G}=g_{46}+g_{44}X^{2}+\cdots+g_{32}X^{14}, we have G~=G\widetilde{G}=G. Therefore, if fGf\mid G, then f¯G¯\bar{f}\mid\overline{G}, whence f~G~\tilde{f}\mid\widetilde{G}, i.e., f~G\tilde{f}\mid G.

11^{\circ} Let y1,y2,y3y_{1},y_{2},y_{3} be independent indeterminates and let y4y_{4} be a root of G(y1,y2,y3,Y4)G(y_{1},y_{2},y_{3},Y_{4}). We claim that 4[𝔽¯p(y1,y2,y3,y4):𝔽¯p(y1,y2,y3)]4\mid[\overline{\mathbb{F}}_{p}(y_{1},y_{2},y_{3},y_{4}):\overline{\mathbb{F}}_{p}(y_{1},y_{2},y_{3})]. Let Δi\Delta_{i}, in terms of y1,,y4y_{1},\dots,y_{4}, be given by (4.6) and (4.3). Then (4.3) is satisfied. By (4.3), Δ12,Δ22𝔽p(y1,y2,y3)\Delta_{1}^{2},\Delta_{2}^{2}\in\mathbb{F}_{p}(y_{1},y_{2},y_{3}) and it is easy to see that Δ12\Delta_{1}^{2}, Δ22\Delta_{2}^{2} and Δ12Δ22\Delta_{1}^{2}\Delta_{2}^{2} are all nonsquares in 𝔽¯p(y1,y2,y3)\overline{\mathbb{F}}_{p}(y_{1},y_{2},y_{3}). It follows that

[𝔽¯p(y1,y2,Δ1,Δ2):𝔽¯p(y1,y2,y3)]=4.[\overline{\mathbb{F}}_{p}(y_{1},y_{2},\Delta_{1},\Delta_{2}):\overline{\mathbb{F}}_{p}(y_{1},y_{2},y_{3})]=4.

Hence the claim. (A more general fact which is easily proved by induction: If FF is a field with charF2\text{char}\,F\neq 2 and u1,,unFu_{1},\dots,u_{n}\in F are such that for every I{1,,n}\emptyset\neq I\subset\{1,\dots,n\}, iIui\prod_{i\in I}u_{i} is a nonsquare in FF, then [F(u1,,un):F]=2n[F(\sqrt{u_{1}},\dots,\sqrt{u_{n}}):F]=2^{n} and Aut(F(u1,,un)/F)(/2)n\text{Aut}(F(\sqrt{u_{1}},\dots,\sqrt{u_{n}})/F)\cong(\mathbb{Z}/2\mathbb{Z})^{n}.)

..................................................................................................................𝔽¯p(y1,y2,y3)\overline{\mathbb{F}}_{p}(y_{1},y_{2},y_{3})𝔽¯p(y1,y2,y3,Δ1,Δ2)\overline{\mathbb{F}}_{p}(y_{1},y_{2},y_{3},\Delta_{1},\Delta_{2})𝔽¯p(y1,y2,y3,y4)\overline{\mathbb{F}}_{p}(y_{1},y_{2},y_{3},y_{4})4\scriptstyle 4

22^{\circ} We claim that g32g_{32} has no factors with multiplicity >1>1. This claim follows from the following computation:

Res(g32(1,1,Y3,Y4),Y4g32(1,1,Y3,Y4);Y4)\displaystyle\text{Res}\Bigl{(}g_{32}(1,-1,Y_{3},Y_{4}),\,\frac{\partial}{\partial Y_{4}}g_{32}(1,-1,Y_{3},Y_{4});\,Y_{4}\Bigr{)}
=225638Y3148(1Y3)8(1+Y3)8(65536+245760Y3+Y312)\displaystyle=2^{256}\cdot 3^{8}\,Y_{3}^{148}(1-Y_{3})^{8}(1+Y_{3})^{8}\cdots(65536+245760Y_{3}-\cdots+Y_{3}^{12})
0.\displaystyle\neq 0.

33^{\circ} We claim that if f𝔽¯p[Y1,Y2,Y3,Y4]f\in\overline{\mathbb{F}}_{p}[Y_{1},Y_{2},Y_{3},Y_{4}] is an irreducible factor of GG, then f~=f\tilde{f}=f. Assume the contrary. Then ff~Gf\tilde{f}\mid G. Write f=fi+fi1++fisf=f_{i}+f_{i-1}+\cdots+f_{i-s}, where fifis0f_{i}f_{i-s}\neq 0. By 11^{\circ}, i4i\geq 4. Note that f~=fifi1++(1)sfis\tilde{f}=f_{i}-f_{i-1}+\cdots+(-1)^{s}f_{i-s}. It follows that fis2g32f_{i-s}^{2}\mid g_{32}. By 22^{\circ}, we have is=0i-s=0, that is, f=1+f1++fif=1+f_{1}+\cdots+f_{i}. We have

G(Y1,Y2,Y1,Y2)=28(Y1Y2)12α(Y1,Y2)α(Y2,Y1)β(Y1,Y2)2β(Y2,Y1)2,G(Y_{1},Y_{2},Y_{1},Y_{2})=-2^{8}(Y_{1}Y_{2})^{12}\alpha(Y_{1},Y_{2})\alpha(Y_{2},Y_{1})\beta(Y_{1},Y_{2})^{2}\beta(Y_{2},Y_{1})^{2},

where

α(Y1,Y2)\displaystyle\alpha(Y_{1},Y_{2})\, =Y12Y1Y2+Y12Y2+Y22Y1Y22,\displaystyle=Y_{1}^{2}-Y_{1}Y_{2}+Y_{1}^{2}Y_{2}+Y_{2}^{2}-Y_{1}Y_{2}^{2},
β(Y1,Y2)\displaystyle\beta(Y_{1},Y_{2})\, =4Y18Y2+Y12Y22Y1Y22+Y23.\displaystyle=4Y_{1}-8Y_{2}+Y_{1}^{2}Y_{2}-2Y_{1}Y_{2}^{2}+Y_{2}^{3}.

It is easy to see see that α\alpha and β\beta are irreducible in 𝔽¯p[Y1,Y2]\overline{\mathbb{F}}_{p}[Y_{1},Y_{2}]. (The discriminants of α\alpha and β\beta, as polynomials in Y1Y_{1}, are Y22(3+Y2)(1+Y2)Y_{2}^{2}(-3+Y_{2})(1+Y_{2}) and 16(1+Y22)16(1+Y_{2}^{2}), respectively. These are nonsquares in 𝔽¯p(Y2)\overline{\mathbb{F}}_{p}(Y_{2}).) Therefore G(Y1,Y2,Y1,Y2)G(Y_{1},Y_{2},Y_{1},Y_{2}) does not have any nonconstant factor with nonzero constant term. It follows that f(Y1,Y2,Y1,Y2)=1f(Y_{1},Y_{2},Y_{1},Y_{2})=1. Then

42=degG(Y1,Y2,Y1,Y2)deg(G/ff~)462i468=38,42=\deg G(Y_{1},Y_{2},Y_{1},Y_{2})\leq\deg(G/f\tilde{f})\leq 46-2i\leq 46-8=38,

which is a contradiction.

44^{\circ} We claim that if ff is a pseudo-cyclic absolutely irreducible factor of GG, then ff is cyclic. We have fρ=cff^{\rho}=cf, where c𝔽¯pc\in\overline{\mathbb{F}}_{p}^{*}. Let h=G/fh=G/f. By 33^{\circ}, f=fi+fi2+f=f_{i}+f_{i-2}+\cdots (fi0f_{i}\neq 0) and hence h=hj+hj2+h=h_{j}+h_{j-2}+\cdots (hj0h_{j}\neq 0). Then fihj=g46f_{i}h_{j}=g_{46}. Since fig46f_{i}\mid g_{46} and fiρ=cfif_{i}^{\rho}=cf_{i}, it follows from (4.11) that

fi=\displaystyle f_{i}=\, d(Y1Y2Y3Y4)i1[(Y1Y2)(Y2Y3)(Y3Y4)(Y4Y1)]i2\displaystyle d(Y_{1}Y_{2}Y_{3}Y_{4})^{i_{1}}\bigl{[}(Y_{1}-Y_{2})(Y_{2}-Y_{3})(Y_{3}-Y_{4})(Y_{4}-Y_{1})\bigr{]}^{i_{2}}
[(Y1Y3)(Y2Y4)]i3(Y1Y2+Y3Y4)i4,\displaystyle\cdot\bigl{[}(Y_{1}-Y_{3})(Y_{2}-Y_{4})\bigr{]}^{i_{3}}(Y_{1}-Y_{2}+Y_{3}-Y_{4})^{i_{4}},

where d𝔽¯pd\in\overline{\mathbb{F}}_{p}^{*}, 0i180\leq i_{1}\leq 8, 0i2,i3,i420\leq i_{2},i_{3},i_{4}\leq 2. Thus fiρ=±fif_{i}^{\rho}=\pm f_{i}. If fiρ=fif_{i}^{\rho}=-f_{i}, it follows from fihj=g46f_{i}h_{j}=g_{46} that either (Y1Y3)(Y2Y4)(Y_{1}-Y_{3})(Y_{2}-Y_{4}) or Y1Y2+Y3Y4Y_{1}-Y_{2}+Y_{3}-Y_{4} divides both fif_{i} and hjh_{j}. Then g44=fihj2+fi2hjg_{44}=f_{i}h_{j-2}+f_{i-2}h_{j} is divisible by (Y1Y3)(Y2Y4)(Y_{1}-Y_{3})(Y_{2}-Y_{4}) or Y1Y2+Y3Y4Y_{1}-Y_{2}+Y_{3}-Y_{4} , which is a contradiction.

55^{\circ} We claim that GG cannot be written as G=cffhhG=cff^{\prime}hh^{\prime}, where c𝔽¯pc\in\overline{\mathbb{F}}_{p}^{*}, f,g𝔽¯p[Y1,Y2,Y3,Y4]f,g\in\overline{\mathbb{F}}_{p}[Y_{1},Y_{2},Y_{3},Y_{4}] are irreducible or equal to 11. f=fρf^{\prime}=f^{\rho} or σ(f)\sigma(f), and h=hρh^{\prime}=h^{\rho} or σ(h)\sigma(h). Otherwise, by 33^{\circ}, f=fi+fi2++fi2sf=f_{i}+f_{i-2}+\cdots+f_{i-2s} and h=hj+hj2++hj2th=h_{j}+h_{j-2}+\cdots+h_{j-2t}, where fifi2shjhj2t0f_{i}f_{i-2s}h_{j}h_{j-2t}\neq 0. Since G=g46++g32G=g_{46}+\cdots+g_{32}, we have 2(i+j)=462(i+j)=46 and 2(i2s+j2t)=322(i-2s+j-2t)=32, which is impossible.

66^{\circ} Let

k=min{degYif:f𝔽¯p[Y1,Y2,Y3,Y4]is irreducible,fG, 1i4}.k=\min\bigl{\{}\deg_{Y_{i}}f:f\in\overline{\mathbb{F}}_{p}[Y_{1},Y_{2},Y_{3},Y_{4}]\ \text{is irreducible},\ f\mid G,\ 1\leq i\leq 4\Bigr{\}}.

We may assume that k=degY4fk=\deg_{Y_{4}}f for some irreducible factor ff of GG in 𝔽¯p[Y1,Y2,Y3,Y4]\overline{\mathbb{F}}_{p}[Y_{1},Y_{2},Y_{3},Y_{4}]. Clearly, GG does not have any nontrivial factor in 𝔽¯p[Y1,Y2,Y3]\overline{\mathbb{F}}_{p}^{[}Y_{1},Y_{2},Y_{3}], so k>0k>0. By 11^{\circ}, we have k{4,8,16}k\in\{4,8,16\}. Let ll be the smallest integer such that f𝔽pl[Y1,Y2,Y3,Y4]f\in\mathbb{F}_{p^{l}}[Y_{1},Y_{2},Y_{3},Y_{4}].

Case 1. Assume that k=16k=16. Then G=fG=f and we are done.

Case 2. Assume that k=8k=8. We claim that ff cyclic. Otherwise, by 44^{\circ}, ff is not pseudo-cyclic. Then ffρGff^{\rho}\mid G. Since degY4(ffρ)8+8=16\deg_{Y_{4}}(ff^{\rho})\geq 8+8=16, we have G=cffρG=cff^{\rho} for some c𝔽¯pc\in\overline{\mathbb{F}}_{p}^{*}, which is impossible by 55^{\circ}. Hence the claim is proved.

If l>1l>1, then G=dfσ(f)G=d\,f\sigma(f) for some d𝔽¯pd\in\overline{\mathbb{F}}_{p}^{*}, which is impossible by 55^{\circ}. Hence l=1l=1, i.e., f𝔽p[Y1,Y2,Y3,Y4]f\in\mathbb{F}_{p}[Y_{1},Y_{2},Y_{3},Y_{4}].

Case 3. Assume that k=4k=4. We first claim that fρ2=cff^{\rho^{2}}=cf for some c𝔽¯pc\in\overline{\mathbb{F}}_{p}^{*}. Otherwise, ffρfρ2fρ3Gff^{\rho}f^{\rho^{2}}f^{\rho^{3}}\mid G. Since degY4(ffρfρ2fρ3)44=degY4G\deg_{Y_{4}}(ff^{\rho}f^{\rho^{2}}f^{\rho^{3}})\geq 4\cdot 4=\deg_{Y_{4}}G, we have G=dffρfρ2fρ3G=d\,ff^{\rho}f^{\rho^{2}}f^{\rho^{3}} for some d𝔽¯pd\in\overline{\mathbb{F}}_{p}^{*}, which is impossible by 55^{\circ}. So the claim is proved. Write f=fi+fi2+f=f_{i}+f_{i-2}+\cdots, where fi0f_{i}\neq 0. Since fig46f_{i}\mid g_{46} and fiρ2=cfif_{i}^{\rho^{2}}=cf_{i}, we have c=1c=1, so fρ2=ff^{\rho^{2}}=f.

Case 3.1. Assume that ff is cyclic. Since fσ(f)σl1(f)Gf\sigma(f)\cdots\sigma^{l-1}(f)\mid G, we have 4ldegY4G=164l\leq\deg_{Y_{4}}G=16, i.e., l4l\leq 4.

If l=1l=1, then ff is a cyclic absolutely irreducible factor of GG in 𝔽p[Y1,Y2,Y3,Y4]\mathbb{F}_{p}[Y_{1},Y_{2},Y_{3},Y_{4}], and we are done.

If l=4l=4, then G=efσ(f)σ2(f)σ3(f)G=ef\sigma(f)\sigma^{2}(f)\sigma^{3}(f) for some e𝔽¯pe\in\overline{\mathbb{F}}_{p}^{*}, which is impossible by 55^{\circ}.

If l=3l=3, G/fσ(f)σ2(f)G/f\sigma(f)\sigma^{2}(f) is a cyclic absolutely irreducible factor of GG in 𝔽p[Y1,Y2,Y3,Y4]\mathbb{F}_{p}[Y_{1},Y_{2},Y_{3},Y_{4}], and we are done.

If l=2l=2, then H:=G/fσ(f)H:=G/f\sigma(f) is cyclic and belongs to 𝔽p[Y1,Y2,Y3,Y4]\mathbb{F}_{p}[Y_{1},Y_{2},Y_{3},Y_{4}]. If HH is absolutely irreducible, we are done. So assume that HH has a proper absolutely irreducible factor hh. By the minimality of kk, we have degY4h=4\deg_{Y_{4}}h=4. If hh is not pseudo-cyclic, then hhρHhh^{\rho}\mid H, whence G=ϵfσ(f)hhρG=\epsilon f\sigma(f)hh^{\rho} for some ϵ𝔽¯p\epsilon\in\overline{\mathbb{F}}_{p}^{*}, which is impossible by 55^{\circ}. Therefore hh is pseudo-cyclic and hence cyclic (by 44^{\circ}). If σ(h)/h\sigma(h)/h is not a constant, we have hσ(h)Hh\sigma(h)\mid H, which leads to the same contradiction. Thus σ(h)/h\sigma(h)/h is a constant. We may assume that σ(h)=h\sigma(h)=h. Now hh is a cyclic absolutely irreducible factor of GG in 𝔽p[Y1,Y2,Y3,Y4]\mathbb{F}_{p}[Y_{1},Y_{2},Y_{3},Y_{4}].

Case 3.2. Assume that ff is not cyclic. By 44^{\circ}, ff is not pseudo-cyclic. Then ffρff^{\rho} is a cyclic factor of GG. We claim that σ(ffρ)/ffρ\sigma(ff^{\rho})/ff^{\rho} is a constant. (Otherwise, ff, fρf^{\rho}, σ(f)\sigma(f) and σ(fρ)\sigma(f^{\rho}) are different factors of GG. Then G=effρσ(f)σ(fρ)G=eff^{\rho}\sigma(f)\sigma(f^{\rho}) for some e𝔽¯pe\in\overline{\mathbb{F}}_{p}^{*}, which is impossible by 55^{\circ}.) We may assume that ffρ𝔽p[Y1,Y2,Y3,Y4]ff^{\rho}\in\mathbb{F}_{p}[Y_{1},Y_{2},Y_{3},Y_{4}]. Let H=G/ffρH=G/ff^{\rho}, which is cyclic and belongs to 𝔽p[Y1,Y2,Y3,Y4]\mathbb{F}_{p}[Y_{1},Y_{2},Y_{3},Y_{4}]. By 55^{\circ}, HH is not a constant. Let hh be an absolutely irreducible factor of HH. By the minimality of kk, degY4h4\deg_{Y_{4}}h\geq 4. If hh is not cyclic, then hhρHhh^{\rho}\mid H. Thus G=ϵffρhhρG=\epsilon ff^{\rho}hh^{\rho} for some ϵ𝔽¯p\epsilon\in\overline{\mathbb{F}}_{p}^{*}, which is impossible by 55^{\circ}. So hh is cyclic. If σ(h)/h\sigma(h)/h is not a constant, then hσ(h)Hh\sigma(h)\mid H, which leads to the same contradiction. So σ(h)/h\sigma(h)/h is a constant, and we may assume that σ(h)=h\sigma(h)=h. Now hh is a cyclic absolutely irreducible factor of GG in 𝔽p[Y1,Y2,Y3,Y4]\mathbb{F}_{p}[Y_{1},Y_{2},Y_{3},Y_{4}].

The proof of the lemma is now complete. ∎

Acknowledgment

The research of D. Bartoli was supported by the Italian National Group for Algebraic and Geometric Structures and their Applications (GNSAGA - INdAM).

References

  • [1] D. Bartoli, On a conjecture about a class of permutation trinomials, Finite Fields Appl. 52 (2018), 30 – 50.
  • [2] D. Bartoli, Permutation trinomials over 𝔽q3\mathbb{F}_{q^{3}}, Finite Fields Appl. 61 (2020), Article 101597.
  • [3] D. Bartoli and M. Giulietti, Permutation polynomials, fractional polynomials, and algebraic curves, Finite Fields Appl. 51 (2018), 1 – 16.
  • [4] A. Cafure and G. Matera, Improved explicit estimates on the number of solutions of equations over a finite field, Finite Fields Appl. 12 (2006), 155 – 185.
  • [5] X. Cao, X. Hou, J. Mi, S. Xu, More permutation polynomials with Niho exponents which permute 𝔽p2\mathbb{F}_{p^{2}}, Finite Fields Appl. 62 (2020), Article 101626.
  • [6] X. Hou, On a class of permutation trinomials in characteristic 2, Cryptography and Communications, 11 (2019), 1199 – 1210.
  • [7] X. Hou, On the Tu-Zeng Permutation Trinomial of Type (1/4,3/4)(1/4,3/4), arXiv:1906.07240.
  • [8] X. Hou and Sze, On a type of permutation rational functions over finite fields, arXiv:1910.11989.
  • [9] X. Hou, Z. Tu, X. Zeng, Determination of a class of permutation trinomials in characteristic three, Finite Fields Appl. 61 (2020), Article 101596.
  • [10] S. Lang and A. Weil, Number of points of varieties in finite fields, Amer. J. Math. 76 (1954), 819 – 827.
  • [11] K. Li, L. Qu, C. Li, S. Fu, New permutation trinomials constructed from fractional polynomials, Acta Arith. 183 (2018), 101 – 116.
  • [12] Z. Tu and X. Zeng, Two classes of permutation trinomials with Niho exponents, Finite Fields Appl. 53 (2018), 99 – 112.
  • [13] Z. Tu, X. Zeng, C. Li, T. Helleseth, A class of new permutation trinomials, Finite Fields Appl. 50 (2018), 178 – 195.
  • [14] Q. Wang, Polynomials over finite fields: an index approach, In: Combinatorics and Finite Fields, Editors: K-U. Schmidt and A. Winterhof, De Gruyter, 2019, pp. 319 – 348.
  • [15] J. Yuan, C. Ding, H. Wang, J. Pieprzyk, Permutation polynomials of the form (xpx+δ)s+L(x)(x^{p}-x+\delta)^{s}+L(x), Finite Fields Appl. 14 (2008), 482 – 493.
  • [16] M. E. Zieve, On some permutation polynomials over 𝔽q\mathbb{F}_{q} of the form xrh(x(q1)/d)x^{r}h(x^{(q-1)/d}), Proc. Amer. Math. Soc. 137 (2009), 2209 – 2216.