This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

On a conjecture of Soundararajan

William Banks Department of Mathematics, University of Missouri, Columbia MO 65211 USA. [email protected]  and  Igor Shparlinski Department of Pure Mathematics, University of New South Wales, Sydney, NSW 2052 Australia [email protected]
Abstract.

Building on recent work of A. Harper (2012), and using various results of M.-C. Chang (2014) and H. Iwaniec (1974) on the zero-free regions of LL-functions L(s,χ)L(s,\chi) for characters χ\chi with a smooth modulus qq, we establish a conjecture of K. Soundararajan (2008) on the distribution of smooth numbers over reduced residue classes for such moduli qq. A crucial ingredient in our argument is that, for such qq, there is at most one “problem character” for which L(s,χ)L(s,\chi) has a smaller zero-free region. Similarly, using the “Deuring-Heilbronn” phenomenon on the repelling nature of zeros of LL-functions close to one, we also show that Soundararajan’s conjecture holds for a family of moduli having Siegel zeros.

Key words and phrases:
Smooth number, arithmetic progression, smooth modulus
2010 Mathematics Subject Classification:
Primary: 11N25, 11N69; Secondary: 11M20

1. Introduction

1.1. Set-up and background

Let P(n)P(n) denote the largest prime factor of the natural number n2n\geqslant 2, and put P(1) . . =1P(1)\mathrel{\vbox{\hbox{\scriptsize.} \hbox{\scriptsize.}}}=1. A number nn is said to be yy-smooth if nn has no prime factor exceeding yy, that is, if P(n)yP(n)\leqslant y.

Let 𝒮(y)\mathcal{S}(y) denote the set of all yy-smooth numbers, and let 𝒮(x,y)\mathcal{S}(x,y) be the set of yy-smooth numbers not exceeding xx:

𝒮(x,y) . . =𝒮(y)[1,x].\mathcal{S}(x,y)\mathrel{\vbox{\hbox{\scriptsize.} \hbox{\scriptsize.}}}=\mathcal{S}(y)\cap[1,x].

As usual, we use Ψ(x,y)\Psi(x,y) to denote the cardinality of S(x,y)S(x,y).

In this note, we study the distribution of smooth numbers over arithmetic progressions amodqa\bmod q with the coprimality condition (a,q)=1(a,q)=1. Defining

Ψ(x,y;q,a) . . =n𝒮(x,y)namodq1andΨq(x,y) . . =n𝒮(x,y)(n,q)=11,\Psi(x,y;q,a)\mathrel{\vbox{\hbox{\scriptsize.} \hbox{\scriptsize.}}}=\sum_{\begin{subarray}{c}n\in\mathcal{S}(x,y)\\ n\equiv a\bmod q\end{subarray}}1\qquad\mbox{and}\qquad\Psi_{q}(x,y)\mathrel{\vbox{\hbox{\scriptsize.} \hbox{\scriptsize.}}}=\sum_{\begin{subarray}{c}n\in\mathcal{S}(x,y)\\ (n,q)=1\end{subarray}}1,

it is expected that the asymptotic relation

Ψ(x,y;q,a)Ψq(x,y)φ(q)\Psi(x,y;q,a)\sim\frac{\Psi_{q}(x,y)}{\varphi(q)} (1.1)

holds (with φ\varphi the Euler function) under the condition (a,q)=1(a,q)=1, over a wide range in the parameters x,y,q,ax,y,q,a.

Soundararajan[22, Conjecture I(A)] has proposed the following conjecture.

Conjecture.

(Soundararajan) For any fixed value of A>0A>0, if qq is sufficiently large ((depending only on A)A) with qyAq\leqslant y^{A} and (a,q)=1(a,q)=1, then (1.1) holds as logx/logq\log x/\log q\to\infty.

Earlier, Granville [6, 7] had established this result for A<1A<1, and he pointed out that the proof for arbitrarily large values of AA must lie fairly deep, for it implies Vinogradov’s conjecture that the least quadratic nonresidue modulo pp is of size po(1)p^{o(1)}. Soundararajan [22] has shown that (1.1) holds for moduli

qy4eεq\leqslant y^{4\sqrt{e}-\varepsilon}

provided that

y(loglogy)4xexp(y1ε).y^{(\log\log y)^{4}}\leqslant x\leqslant\exp(y^{1-\varepsilon}). (1.2)

In [10] Harper demonstrates how to remove the conditions (1.2), thereby settling Soundararajan’s Conjecture for all A<4eA<4\sqrt{e}.

Short of an improvement of the Burgess bound on character sums, one can consider the following variant of Soundararajan’s Conjecture in which the moduli all belong to a prescribed subset 𝒬\mathcal{Q} of the natural numbers \mathbb{N}.


Hypothesis 𝚂𝙲𝒬{\tt SC}\llbracket\hskip 1.0pt\mathcal{Q}\hskip 1.0pt\rrbracket. Let 𝒬\mathcal{Q}\subseteq\mathbb{N}. For every fixed A>0A>0, if qq is sufficiently large ((depending only on A)A) with

qyA,(a,q)=1,q𝒬,q\leqslant y^{A},\qquad(a,q)=1,\qquad q\in\mathcal{Q},

then (1.1) holds as logx/logq\log x/\log q\to\infty.

Note that Soundararajan’s Conjecture is nothing but 𝚂𝙲{\tt SC}\llbracket\hskip 1.0pt\mathbb{N}\hskip 1.0pt\rrbracket, and it is clear that 𝚂𝙲{\tt SC}\llbracket\hskip 1.0pt\mathbb{N}\hskip 1.0pt\rrbracket holds if and only if 𝚂𝙲𝒬{\tt SC}\llbracket\hskip 1.0pt\mathcal{Q}\hskip 1.0pt\rrbracket is true for every set 𝒬\mathcal{Q}\subseteq\mathbb{N}. We say that Soundararajan’s Conjecture holds over 𝒬\mathcal{Q} whenever 𝚂𝙲𝒬{\tt SC}\llbracket\hskip 1.0pt\mathcal{Q}\hskip 1.0pt\rrbracket is true.

1.2. New results

We start by establishing 𝚂𝙲𝒬{\tt SC}\llbracket\hskip 1.0pt\mathcal{Q}\hskip 1.0pt\rrbracket for a class of sufficiently smooth moduli.

Theorem 1.1.

For every fixed value of A>0A>0, there is a number QA>0Q_{A}>0 ((depending only on A)A) for which the following holds. If

P(q)QA<qyAand(a,q)=1,P(q)^{Q_{A}}<q\leqslant y^{A}\qquad\mbox{and}\qquad(a,q)=1, (1.3)

then the asymptotic relation (1.1) holds as logx/logq\log x/\log q\to\infty.

Corollary 1.2.

Let 𝒬\mathcal{Q} be a set of natural numbers qq with the property that

logP(q)=o(logq)(q,q𝒬).\log P(q)=o(\log q)\qquad(q\to\infty,~{}q\in\mathcal{Q}).

Then Soundararajan’s Conjecture holds over 𝒬\mathcal{Q}.

An important special case of Corollary 1.2 is the set 𝒬 . . =p\mathcal{Q}\mathrel{\vbox{\hbox{\scriptsize.} \hbox{\scriptsize.}}}=p^{\mathbb{N}} consisting of all powers of a fixed prime pp. In fact, our work in the present paper has been initially motivated by a series of results on arithmetic problems involving progressions modulo large powers of a fixed prime. Such results include:

  • bounds on the zero-free regions of LL-functions, which leads to results on the distribution of primes in arithmetic progressions (see [1, 2, 5, 14]),

  • asymptotic formulas in the Dirichlet problem on sums with the divisor function over arithmetic progressions modulo pnp^{n} (see [16, 19]),

  • asymptotic formulas for moments of LL-functions (see [20, 21]).

It is clear that, for any given set 𝒬\mathcal{Q}, to establish 𝚂𝙲𝒬{\tt SC}\llbracket\hskip 1.0pt\mathcal{Q}\hskip 1.0pt\rrbracket one must show that the following hypothesis holds for all large AA.


Hypothesis 𝚂𝙲𝒬,A{\tt SC}\llbracket\hskip 1.0pt\mathcal{Q},A\hskip 1.0pt\rrbracket. Fix 𝒬\mathcal{Q}\subseteq\mathbb{N} and A>0A>0. There is a number QA>0Q_{A}>0 such that if

QA<qyA,(a,q)=1,q𝒬,Q_{A}<q\leqslant y^{A},\qquad(a,q)=1,\qquad q\in\mathcal{Q}, (1.4)

then (1.1) holds as logx/logq\log x/\log q\to\infty.

Since the number of moduli qxq\leqslant x with qP(q)QAq\geqslant P(q)^{Q_{A}} is Ψ(x,x1/QA)ρ(QA)x\Psi(x,x^{1/Q_{A}})\sim\rho(Q_{A})x, where ρ\rho is the Dickman function, Theorem 1.1 implies that the following variant of Soundararajan’s Conjecture (with AA arbitrary but fixed) holds over a set of positive asymptotic density.

Corollary 1.3.

For any fixed A>0A>0, there is a set 𝒬\mathcal{Q}\subseteq\mathbb{N} of positive asymptotic density for which 𝚂𝙲𝒬,A{\tt SC}\llbracket\hskip 1.0pt\mathcal{Q},A\hskip 1.0pt\rrbracket holds.

Corollary 1.3 complements certain Bombieri-Vinogradov type results due to Granville and Shao [8] and Harper [11], which imply (1.1) for a set of moduli qq of asymptotic density one, but in more restrictive ranges of yy. For example, none of those results apply to very smooth numbers with (say) yy of size (logx)o(1)(\log x)^{o(1)}.

The next result asserts that the asymptotic relation (1.1) holds as qq varies over a set of exceptional moduli.

Theorem 1.4.

For every fixed value of A>0A>0, there is a number QA>0Q_{A}>0 ((depending only on A)A) for which the following holds. If

QA<qyAand(a,q)=1,Q_{A}<q\leqslant y^{A}\qquad\mbox{and}\qquad(a,q)=1, (1.5)

and there is a character χ\chi modulo qq such that L(s,χ)L(s,\chi) has a zero β+iγ\beta+i\gamma of L(s,χ)L(s,\chi) satisfying

β>1QA1logq(|γ|+3),\beta>1-\frac{Q_{A}^{-1}}{\log q(|\gamma|+3)}, (1.6)

then the asymptotic relation (1.1) holds as logx/logq\log x/\log q\to\infty.

Corollary 1.5.

Let 𝒬\mathcal{Q} be a set of natural numbers such that, for every q𝒬q\in\mathcal{Q}, there is a character χ\chi modulo qq and a real zero βq\beta_{q} of L(s,χ)L(s,\chi) satisfying

(1βq)logq=o(1)(q,q𝒬).(1-\beta_{q})\log q=o(1)\qquad(q\to\infty,~{}q\in\mathcal{Q}).

Then Soundararajan’s Conjecture holds over 𝒬\mathcal{Q}.

In particular, Corollary 1.5 shows that any future work on Soundararajan’s Conjecture (over \mathbb{N}) can assume that Siegel zeros do not exist.

Remark.

It also true that Soundararajan’s Conjecture is true if one assumes the Extended Riemann Hypothesis. This is easily proved using Proposition 2.1 in §2.3 below.

Our proofs of Theorems 1.1 and 1.4 rely on the argument of Harper [10] (which in turn builds upon original ideas of Soundararajan [22]). The treatment of the so-called “problem range” is the primary issue (see §2.2 below), thus a major part of the proof of Theorem 1.1 is devoted to elimination of this range. This is accomplished via a combination of results of Chang [3] and Iwaniec [14], which give bounds on certain character sums and on the zero-free regions of LL-functions modulo highly composite integers. We remark that, for a slightly more restrictive class of moduli, some stronger bounds have been obtained by the authors (see [1, 2]), but these do not lead to better results on Soundararajan’s Conjecture. Concerning Theorem 1.4, our proof exploits the “Deuring-Heilbronn” phenomenon on the repelling nature of zeros of LL-functions close to one.

2. Preliminaries

2.1. Notation

In what follows, given functions FF and G>0G>0 we use the equivalent notations F=O(G)F=O(G) and FGF\ll G to signify that the inequality |F|cG|F|\leqslant c\,G holds with some constant c>0c>0. Throughout the paper, any implied constants may depend on the parameters AA and Φ\Phi but are independent of other variables.

We also write FGF\asymp G or F=Θ(G)F=\Theta(G) whenever F,G>0F,G>0 and we have both F=O(G)F=O(G) and G=O(F)G=O(F).

The notations FGF\sim G and F=o(G)F=o(G) are used to indicate that F/G1F/G\to 1 and F/G0F/G\to 0, respectively, as certain specified parameters tend to infinity.

2.2. Initial discussion

Harper’s theorem [10, Theorem 1] implies 𝚂𝙲𝒬,A{\tt SC}\llbracket\hskip 1.0pt\mathcal{Q},A\hskip 1.0pt\rrbracket for any set 𝒬\mathcal{Q} and any A<4eA<4\sqrt{e}. Thus, in what follows we can assume that A4eA\geqslant 4\sqrt{e} and y4eqyAy^{4\sqrt{e}}\leqslant q\leqslant y^{A}. In particular, the parameters

u . . =logxlogyandv . . =logxlogqu\mathrel{\vbox{\hbox{\scriptsize.} \hbox{\scriptsize.}}}=\frac{\log x}{\log y}\qquad\mbox{and}\qquad v\mathrel{\vbox{\hbox{\scriptsize.} \hbox{\scriptsize.}}}=\frac{\log x}{\log q}

are comparable in size (that is, uvu\asymp v) since Au/v4eA\geqslant u/v\geqslant 4\sqrt{e}, and so uu\to\infty if and only if vv\to\infty.

We remark that, in this section and the next, yy is sometimes required to exceed a large number that might depend on AA. However, in view of (1.4), we can begin by taking QAQ_{A} large enough to guarantee that yy meets these requirements.

For any character χ\chi modulo qq we put

Ψ(x,y;χ) . . =n𝒮(x,y)χ(n).\Psi(x,y;\chi)\mathrel{\vbox{\hbox{\scriptsize.} \hbox{\scriptsize.}}}=\sum_{\begin{subarray}{c}n\in\mathcal{S}(x,y)\end{subarray}}\chi(n).

In particular, Ψq(x,y)=Ψ(x,y;χ0)\Psi_{q}(x,y)=\Psi(x,y;\chi_{0}), where χ0\chi_{0} is the principal character. Using Dirichlet orthogonality we see that (1.1) is equivalent to the assertion that

χχ0χ¯(a)Ψ(x,y;χ)=o(Ψ(x,y;χ0))(u),\sum_{\begin{subarray}{c}\chi\neq\chi_{0}\end{subarray}}\overline{\chi}(a)\Psi(x,y;\chi)=o\bigl{(}\Psi(x,y;\chi_{0})\bigr{)}\qquad(u\to\infty), (2.1)

As in [10, 22] it suffices to establish a smooth variant of (2.1). More precisely, let Φ:[0,)[0,1]\Phi:[0,\infty)\to[0,1] be a function that is supported on [0,2][0,2], equal to one on [0,12][0,\tfrac{1}{2}], and such that ΦC9\Phi\in C^{9}, that is, Φ\Phi is nine times continuously differentiable. For every character χ\chi modulo qq we denote

Ψ(x,y;χ,Φ) . . =n𝒮(y)χ(n)Φ(n/x).\Psi(x,y;\chi,\Phi)\mathrel{\vbox{\hbox{\scriptsize.} \hbox{\scriptsize.}}}=\sum_{\begin{subarray}{c}n\in\mathcal{S}(y)\end{subarray}}\chi(n)\Phi(n/x).

Then, it is enough show that

χχ0χ¯(a)Ψ(x,y;χ,Φ)=o(Ψ(x,y;χ0,Φ))(u)\sum_{\begin{subarray}{c}\chi\neq\chi_{0}\end{subarray}}\overline{\chi}(a)\Psi(x,y;\chi,\Phi)=o\bigl{(}\Psi(x,y;\chi_{0},\Phi)\bigr{)}\qquad(u\to\infty) (2.2)

holds, since the passage from (2.2) back to (2.1) can be accomplished using the unsmoothing method outlined by Harper [10, Appendix A].

As in [10, 22] we start by writing

Ψ(x,y;χ,Φ)=12πiLcic+i(s,χ;y)xsΦ˘(s)ds(c>0)\Psi(x,y;\chi,\Phi)=\frac{1}{2\pi i}\nolimits{}_{c-i\infty}^{c+i\infty}L(s,\chi;y)x^{s}\breve{\Phi}(s)\,ds\qquad(c>0) (2.3)

for any c>0c>0, where

L(s,χ;y) . . =py(1χ(p)ps)1=n𝒮(y)χ(n)nsL(s,\chi;y)\mathrel{\vbox{\hbox{\scriptsize.} \hbox{\scriptsize.}}}=\prod_{p\leqslant y}(1-\chi(p)p^{-s})^{-1}=\sum_{n\in\mathcal{S}(y)}\chi(n)n^{-s}

and

Φ˘(s) . . =Φ0(t)ts1dt.\breve{\Phi}(s)\mathrel{\vbox{\hbox{\scriptsize.} \hbox{\scriptsize.}}}=\nolimits{}_{0}^{\infty}\Phi(t)t^{s-1}\,dt.

Note that the bound

Φ˘(s)|s|1(|s|+1)8\breve{\Phi}(s)\ll|s|^{-1}(|s|+1)^{-8} (2.4)

follows from our smoothness assumption on Φ\Phi (using integration by parts and the continuity of Φ(9)\Phi^{(9)}). We choose cc to be α . . =α(x,y)\alpha\mathrel{\vbox{\hbox{\scriptsize.} \hbox{\scriptsize.}}}=\alpha(x,y), the unique positive solution to the equation

pylogppα1=logx.\sum_{p\leqslant y}\frac{\log p}{p^{\alpha}-1}=\log x.

The quantity α\alpha is introduced in a saddle point argument of Hildebrand and Tenenbaum [12] for Ψ(x,y)\Psi(x,y) (see also [13]), and it has been applied by de la Bretéche and Tenenbaum [4] to Ψq(x,y)\Psi_{q}(x,y) for an arbitrary modulus qq. Using only the trivial bound ω(q)logq\omega(q)\ll\log q on the number of distinct prime factors of qq, from (1.4) it follows immediately that ω(q)y1/2/logy\omega(q)\ll y^{1/2}/\log y (the implied constant is independent of AA if (say) QAA4AQ_{A}\geqslant A^{4A}). Therefore, qq satisfies one of the conditions (C1)(C_{1}) or (C2)(C_{2}) of [4, Corollaire 2.2], and so an application of [4, Théorème 2.1] allows us to conclude that

Ψ(x,y;χ0)Ψ(x,y)pq(1pα)\Psi(x,y;\chi_{0})\asymp\Psi(x,y)\prod_{p\,\mid\,q}(1-p^{-\alpha}) (2.5)

provided both quantities yy and uu exceed a certain absolute constant; note that the implied constants in (2.5) are absolute. Combining (2.5) with [12, Theorem 1] it follows that

Ψ(x,y;χ0)W . . =xαL(α,χ0;y)α(1+logx/y)logxlogy.\Psi(x,y;\chi_{0})\asymp W\mathrel{\vbox{\hbox{\scriptsize.} \hbox{\scriptsize.}}}=\frac{x^{\alpha}L(\alpha,\chi_{0};y)}{\alpha\sqrt{(1+\log x/y)\log x\log y}}. (2.6)

Since 0<α10<\alpha\ll 1 the quantities Ψ(12x,y;χ0)\Psi(\tfrac{1}{2}x,y;\chi_{0}) and Ψ(2x,y;χ0)\Psi(2x,y;\chi_{0}) are comparable in size; thus, as 𝟏[0,12]Φ𝟏[0,2]\mathbf{1}_{[0,\frac{1}{2}]}\leqslant\Phi\leqslant\mathbf{1}_{[0,2]} one finds that

Ψ(x,y;χ0,Φ)W.\Psi(x,y;\chi_{0},\Phi)\asymp W.

Following [10, 22] we now denote

Ξq(k) . . =𝒳q(k)𝒳q(k+1)(0k12logq)\Xi_{q}(k)\mathrel{\vbox{\hbox{\scriptsize.} \hbox{\scriptsize.}}}=\mathcal{X}_{q}(k)\setminus\mathcal{X}_{q}(k+1)\qquad(0\leqslant k\leqslant\tfrac{1}{2}\log q)

with

𝒳q(k) . . ={χmodq:χχ0,L(σ+it,χ)0forσ>1k/logq,|t|q}.\mathcal{X}_{q}(k)\mathrel{\vbox{\hbox{\scriptsize.} \hbox{\scriptsize.}}}=\bigl{\{}\chi\bmod q:\chi\neq\chi_{0},\ L(\sigma+it,\chi)\neq 0\ \text{for}\ \sigma>1-k/\log q,\ |t|\leqslant q\bigr{\}}.

Using (2.3) (with c . . =αc\mathrel{\vbox{\hbox{\scriptsize.} \hbox{\scriptsize.}}}=\alpha), the sum on the left side of (2.2) satisfies the bound

χχ0χ¯(a)Ψ(x,y;χ,Φ)0k12logq|Ξq(k)|maxχΞq(k)|Lαiα+i(s,χ;y)xsΦ˘(s)ds|.\sum_{\begin{subarray}{c}\chi\neq\chi_{0}\end{subarray}}\overline{\chi}(a)\Psi(x,y;\chi,\Phi)\ll\sum_{0\leqslant k\leqslant\frac{1}{2}\log q}|\Xi_{q}(k)|\max\limits_{\chi\in\Xi_{q}(k)}\biggl{|}\nolimits{}_{\alpha-i\infty}^{\alpha+i\infty}L(s,\chi;y)x^{s}\breve{\Phi}(s)\,ds\biggr{|}.

For the specific moduli considered in Theorem 1.1 and in Theorem 1.4, we show that the LL-functions L(s,χ)L(s,\chi) attached to characters χ\chi modulo qq have no zeros close to one, with at most one exceptional “problem character” χ\chi_{\bullet} (in the sense of [22]). More precisely, we need to know (see Proposition 2.1 in §2.3 below):

𝒜 . . =k<k0Ξq(k)= or {χ}withk0 . . =4AlogA+D,\mathcal{A}\mathrel{\vbox{\hbox{\scriptsize.} \hbox{\scriptsize.}}}=\bigcup\limits_{k<k_{0}}\Xi_{q}(k)=\varnothing\text{~{}or~{}}\{\chi_{\bullet}\}\qquad\text{with}\quad k_{0}\mathrel{\vbox{\hbox{\scriptsize.} \hbox{\scriptsize.}}}={\left\lceil 4A\log A+D\right\rceil}, (2.7)

where DD is the absolute constant described in [10, Rodosskiĭ Bound 1]. This means that the “problem range” (in the sense of Harper [10]) can be handled easily (this is definitely not the case in situations where (2.7) fails). It is precisely for this reason that we have been able to remove the obstruction A<4eA<4\sqrt{e} encountered in the previous papers [10, 22] in the case that 𝒬 . . =\mathcal{Q}\mathrel{\vbox{\hbox{\scriptsize.} \hbox{\scriptsize.}}}=\mathbb{N}.

Assume from now on that 𝒬\mathcal{Q} is a set of natural numbers such that (2.7) holds for every q𝒬q\in\mathcal{Q}. Taking the above considerations into account, and introducing the notation

(χ) . . =Lαiα+i(s,χ;y)xsΦ˘(s)ds(χχ0),\mathcal{I}(\chi)\mathrel{\vbox{\hbox{\scriptsize.} \hbox{\scriptsize.}}}=\nolimits{}_{\alpha-i\infty}^{\alpha+i\infty}L(s,\chi;y)x^{s}\breve{\Phi}(s)\,ds\qquad(\chi\neq\chi_{0}),

to verify (2.2) (and establish 𝚂𝙲𝒬,A{\tt SC}\llbracket\hskip 1.0pt\mathcal{Q},A\hskip 1.0pt\rrbracket) it suffices to show that

|(χ)|=o(W)(u)\big{|}\mathcal{I}(\chi_{\bullet})\big{|}=o(W)\qquad(u\to\infty) (2.8)

holds for a problem character χ𝒜\chi_{\bullet}\in\mathcal{A}, and that

kk0|Ξq(k)|maxχΞq(k)|(χ)|=o(W)(u),\sum_{k\geqslant k_{0}}|\Xi_{q}(k)|\max\limits_{\chi\in\Xi_{q}(k)}\big{|}\mathcal{I}(\chi)\big{|}=o(W)\qquad(u\to\infty), (2.9)

where WW is defined by (2.6). For the most part, the results we need are already contained in [10]; these are briefly reviewed in §2.3.

In what follows, we use the terminology (cf. [10, p. 184])

  • yy is “large” if e(logx)0.1<yxe^{(\log x)^{0.1}}<y\leqslant x;

  • yy is “small” if (loglogx)3ye(logx)0.1(\log\log x)^{3}\leqslant y\leqslant e^{(\log x)^{0.1}};

  • yy is “very small” if y<(loglogx)3y<(\log\log x)^{3}.

We also say (cf. [10, p. 186]) that kk lies in

  • the “basic range” if uk12logq\sqrt{u}\leqslant k\leqslant\tfrac{1}{2}\log q;

  • the “Rodosskiĭ range” if k0k<uk_{0}\leqslant k<\sqrt{u},

  • the “problem range” if 0k<k00\leqslant k<k_{0},

where k0 . . =4AlogA+Dk_{0}\mathrel{\vbox{\hbox{\scriptsize.} \hbox{\scriptsize.}}}={\left\lceil 4A\log A+D\right\rceil} as in (2.7). Again, we emphasize that our proofs of Theorems 1.1 and 1.4 essentially amount to showing that the problem range contains at most one character χ\chi_{\bullet} in each case.

2.3. Reduction to characters in the problem range

Both Theorems 1.1 and 1.4 follow from the following general statement (which does not assume anything about the arithmetic structure of the modulus qq).

Proposition 2.1.

Fix 𝒬\mathcal{Q}\subseteq\mathbb{N} and A>0A>0. Suppose that, for every q𝒬q\in\mathcal{Q}, there is at most one nonprincipal character χ\chi_{\bullet} modulo qq for which the LL-function L(s,χ)L(s,\chi_{\bullet}) has a zero β+iγ\beta+i\gamma in the rectangle

β>14AlogA+Dlogq,|γ|q.\beta>1-\frac{{\left\lceil 4A\log A+D\right\rceil}}{\log q},\qquad|\gamma|\leqslant q.

Then 𝚂𝙲𝒬,A{\tt SC}\llbracket\hskip 1.0pt\mathcal{Q},A\hskip 1.0pt\rrbracket is true.

Proof.

We outline what is needed to establish (2.8) and (2.9) for yy lying in various ranges; the proposition follows. The underlying ideas are due to Soundararajan [22], and subsequent refinements are due to Harper [10]. To begin, when yy is not very small, we express (χ)\mathcal{I}(\chi) as a sum

(χ)=(χ)+0(χ)++(χ),\mathcal{I}(\chi)=\mathcal{I}_{-}(\chi)+\mathcal{I}_{0}(\chi)+\mathcal{I}_{+}(\chi),

where the central integral is

0(χ) . . =Lαi(yq)1/4α+i(yq)1/4(s,χ;y)xsΦˇ(s)ds,\mathcal{I}_{0}(\chi)\mathrel{\vbox{\hbox{\scriptsize.} \hbox{\scriptsize.}}}=\nolimits{}_{\alpha-i(yq)^{1/4}}^{\alpha+i(yq)^{1/4}}L(s,\chi;y)x^{s}\check{\Phi}(s)\,ds,

and the integral tails are given by

±(χ) . . =Lα±i(yq)1/4α±i(s,χ;y)xsΦˇ(s)ds\mathcal{I}_{\pm}(\chi)\mathrel{\vbox{\hbox{\scriptsize.} \hbox{\scriptsize.}}}=\nolimits{}_{\alpha\pm i(yq)^{1/4}}^{\alpha\pm i\infty}L(s,\chi;y)x^{s}\check{\Phi}(s)\,ds

for either choice of the sign ±\pm.


Case 1: Integral tails with yy not very small and kk arbitrary.

In view of (2.4), one has (cf. [10, p. 186])

±(χ)xαL(α,χ0;y)y2q2.\mathcal{I}_{\pm}(\chi)\ll\frac{x^{\alpha}L(\alpha,\chi_{0};y)}{y^{2}q^{2}}.

Since k|Ξq(k)|\sum_{k}|\Xi_{q}(k)| is at most the total number of characters modulo qq, that is,

k0|Ξq(k)|φ(q),\sum_{k\geqslant 0}|\Xi_{q}(k)|\leqslant\varphi(q), (2.10)

and we have (cf. [10, p. 185])

α={Θ(ylogxlogy)if ylogx,1log(ulogu)logy+O(1logy)if y>logx,\alpha=\begin{cases}\Theta\bigl{(}\frac{y}{\log x\log y}\bigr{)}&\quad\hbox{if $y\leqslant\log x$},\\ \\ 1-\frac{\log(u\log u)}{\log y}+O(\frac{1}{\log y})&\quad\hbox{if $y>\log x$},\end{cases}

it is immediate that

k0|Ξq(k)|maxχΞq(k)|±(χ)|Wyq,\sum_{k\geqslant 0}|\Xi_{q}(k)|\max\limits_{\chi\in\Xi_{q}(k)}\big{|}\mathcal{I}_{\pm}(\chi)\big{|}\ll\frac{W}{yq}, (2.11)

where WW is defined in (2.6). Since xux\geqslant u and y(loglogx)3y\geqslant(\log\log x)^{3}, we have yy\to\infty as uu\to\infty; this implies that the sums in (2.11) contribute an amount of size o(W)o(W) to both (2.8) and (2.9).


Case 2: Central integral with yy large and kk in the basic range.

In addition to (2.10), one needs a strong individual bound on |Ξq(k)||\Xi_{q}(k)| for smallish values of kk. The papers [10, 22] use

|Ξq(k)|C1eC2k,|\Xi_{q}(k)|\leqslant C_{1}e^{C_{2}k}, (2.12)

where C1,C2>0C_{1},C_{2}>0 are certain absolute constants, which is a consequence of the log-free density estimate for Dirichlet LL-functions; see, for example, Iwaniec and Kowalski [15, Chapter 18]. In particular, in terms of the same constant C2C_{2}, Harper [10, p. 189] derives the bound

0(χ){1yq1.99+e(C2+1)k}W\mathcal{I}_{0}(\chi)\ll\biggl{\{}\frac{1}{yq^{1.99}}+e^{-(C_{2}+1)k}\biggr{\}}W

for all sufficiently large uu. We multiply this bound by |Ξq(k)||\Xi_{q}(k)| and then sum over all kk in the basic range, taking into account (2.10) and (2.12), we get that

basic k|Ξq(k)|maxχΞq(k)|0(χ)|{1yq0.99+eu}W.\sum_{\text{basic~{}}k}|\Xi_{q}(k)|\max\limits_{\chi\in\Xi_{q}(k)}\big{|}\mathcal{I}_{0}(\chi)\big{|}\ll\biggl{\{}\frac{1}{yq^{0.99}}+e^{-\sqrt{u}}\biggr{\}}W.

As in Case 1, yy\to\infty as uu\to\infty, so the sum in this bound contributes an amount of size o(W)o(W) to the sum in (2.9).


Case 3: Central integral with yy large and kk in the Rodosskiĭ range.

As an application of his Rodosskiĭ Bound 1 (which combines earlier results of Soundararajan [22, Lemmas 4.2 and 4.3]), Harper [10, p. 189] shows that

0(χ)eΘ(ulogu)W\mathcal{I}_{0}(\chi)\ll e^{-\Theta(\sqrt{u\log u}\,)}W

holds in the present case (one requires that y/(A+1)2y/(A+1)^{2} is sufficiently large, which we can assume). Using (2.12) we get that

Rodosskiĭ k|Ξq(k)|maxχΞq(k)|0(χ)|eΘ(ulogu)W=o(W)(u).\sum_{\text{Rodosski\u{\i}~{}}k}|\Xi_{q}(k)|\max\limits_{\chi\in\Xi_{q}(k)}\big{|}\mathcal{I}_{0}(\chi)\big{|}\ll e^{-\Theta(\sqrt{u\log u}\,)}W=o(W)\qquad(u\to\infty).

Case 4: Central integral with yy large and kk in the problem range.

Following Harper [10, p. 191] we define 𝒜\mathcal{A} as in (2.7) and put B . . =|𝒜|1B\mathrel{\vbox{\hbox{\scriptsize.} \hbox{\scriptsize.}}}=|\mathcal{A}|\leqslant 1. When B=0B=0, there is nothing to do. When B=1B=1, using [10, Rodosskiĭ Bound 2] instead of [10, Rodosskiĭ Bound 1], and arguing as in [10, §2.4], we derive the individual bound

0(χ)eΘ(ulogu)W,\mathcal{I}_{0}(\chi_{\bullet})\ll e^{-\Theta(\sqrt{u\log u}\,)}W, (2.13)

which suffices to establish (2.8).

Remark.

It is worth reiterating that our use of [10, Rodosskiĭ Bound 2] to derive (2.13) relies on the fact that the character χ\chi_{\bullet} (if it exists) has order two, which exceeds the cardinality BB of 𝒜\mathcal{A}. In other words, the set \mathcal{B} defined in [10, Section 2.5] is empty.


Case 5: Central integral with yy small and kk arbitrary.

Building on ideas of Soundararajan [22], Harper [10, §2.6] proves that

0(χ)W{2y1/3if (loglogx)3ylogx,2(logy)4if logx<ye(logx)0.1,\mathcal{I}_{0}(\chi)\ll W\begin{cases}2^{-y^{1/3}}&\quad\hbox{if $(\log\log x)^{3}\leqslant y\leqslant\log x$},\\ 2^{-(\log y)^{4}}&\quad\hbox{if $\log x<y\leqslant e^{(\log x)^{0.1}}$},\end{cases} (2.14)

holds for every χχ0\chi\neq\chi_{0} when kk0k\geqslant k_{0}. Again, using [10, Rodosskiĭ Bound 2] in place of [10, Rodosskiĭ Bound 1], it is further shown that the same individual bound holds for χ\chi_{\bullet}. As in Case 1 we have yy\to\infty as uu\to\infty, hence (2.8) follows.

Using (2.10) and (2.14) we also get that

kk0|Ξq(k)|maxχΞq(k)|0(χ)|W{q 2y1/3if (loglogx)3ylogx,q 2(logy)4if logx<ye(logx)0.1.\sum_{k\geqslant k_{0}}|\Xi_{q}(k)|\max\limits_{\chi\in\Xi_{q}(k)}\big{|}\mathcal{I}_{0}(\chi)\big{|}\ll W\begin{cases}q\,2^{-y^{1/3}}&\quad\hbox{if $(\log\log x)^{3}\leqslant y\leqslant\log x$},\\ q\,2^{-(\log y)^{4}}&\quad\hbox{if $\log x<y\leqslant e^{(\log x)^{0.1}}$}.\end{cases}

Since yy\to\infty and qyA=o(2(logy)4)q\leqslant y^{A}=o\bigl{(}2^{(\log y)^{4}}\bigr{)}, the above sum contributes o(W)o(W) to (2.9).


Case 6: Full integral with yy very small and kk arbitrary.

Harper [10, §2.6] shows that 0(χ)W/logx\mathcal{I}_{0}(\chi)\ll W/\log x holds for 1y(loglogx)31\ll y\leqslant(\log\log x)^{3}, and thus

k0|Ξq(k)|maxχΞq(k)|0(χ)|qlogxW.\sum_{k\geqslant 0}|\Xi_{q}(k)|\max\limits_{\chi\in\Xi_{q}(k)}\big{|}\mathcal{I}_{0}(\chi)\big{|}\ll\frac{q}{\log x}\,W.

Since q(loglogx)3Aq\leqslant(\log\log x)^{3A} in this case, the sum here contributes an amount of size o(W)o(W) to the sum in (2.9). In view of (2.11) we complete the proof of (2.8) and (2.9) in this situation provided that yqyq\to\infty as uu\to\infty, e.g., whenever qy>(loglogx)1/3q\sqrt{y}>(\log\log x)^{1/3}.

When qy(loglogx)1/3q\sqrt{y}\leqslant(\log\log x)^{1/3}, we express (χ)\mathcal{I}(\chi) as a sum 𝒥(χ)+𝒥0(χ)\mathcal{J}_{\infty}(\chi)+\mathcal{J}_{0}(\chi) with

𝒥(χ)\displaystyle\mathcal{J}_{\infty}(\chi) . . =L|t|1(α+it,χ;y)xα+itΦ˘(α+it)dt,\displaystyle\mathrel{\vbox{\hbox{\scriptsize.} \hbox{\scriptsize.}}}=\nolimits\limits{}_{|t|\geqslant 1}L(\alpha+it,\chi;y)x^{\alpha+it}\breve{\Phi}(\alpha+it)\,dt,
𝒥0(χ)\displaystyle\mathcal{J}_{0}(\chi) . . =L|t|<1(α+it,χ;y)xα+itΦ˘(α+it)dt,\displaystyle\mathrel{\vbox{\hbox{\scriptsize.} \hbox{\scriptsize.}}}=\nolimits\limits{}_{|t|<1}L(\alpha+it,\chi;y)x^{\alpha+it}\breve{\Phi}(\alpha+it)\,dt,

and we apply the method of Harper in [10, §2.7] with ε . . =1\varepsilon\mathrel{\vbox{\hbox{\scriptsize.} \hbox{\scriptsize.}}}=1 in his notation. Harper shows that

𝒥(χ)y(loglogx)2/5W,\mathcal{J}_{\infty}(\chi)\ll\frac{\sqrt{y}}{(\log\log x)^{2/5}}\,W,

hence by (2.10) one has

k0|Ξq(k)|maxχΞq(k)|𝒥(χ)|qy(loglogx)2/5WW(loglogx)1/15.\sum_{k\geqslant 0}|\Xi_{q}(k)|\max\limits_{\chi\in\Xi_{q}(k)}\big{|}\mathcal{J}_{\infty}(\chi)\big{|}\ll\frac{q\sqrt{y}}{(\log\log x)^{2/5}}\,W\leqslant\frac{W}{(\log\log x)^{1/15}}.

Thus, this sum contributes an amount of size o(W)o(W) to both (2.8) and (2.9). On the other hand, arguing as in [10, §2.7] and applying [10, Rodosskiĭ Bound 1] or [10, Rodosskiĭ Bound 2] as appropriate, for some small constant c(0,1)c\in(0,1) we have

|L(α+it,χ;y)L(α,χ0;y)|(1+logxy)0.2cy.\biggl{|}\frac{L(\alpha+it,\chi;y)}{L(\alpha,\chi_{0};y)}\biggr{|}\ll\biggl{(}1+\frac{\log x}{y}\biggr{)}^{-0.2c\sqrt{y}}.

Therefore, for 100/c2y<(loglogx)3100/c^{2}\leqslant y<(\log\log x)^{3}, and keeping in mind the definition (2.6), we get that

𝒥0(χ)(loglogx)3/2logxW.\mathcal{J}_{0}(\chi)\ll\frac{(\log\log x)^{3/2}}{\log x}\,W.

Using (2.10) again, it follows that

k>k0|Ξq(k)|maxχΞq(k)|𝒥0(χ)|q(loglogx)3/2logxW.\sum_{k>k_{0}}|\Xi_{q}(k)|\max\limits_{\chi\in\Xi_{q}(k)}\big{|}\mathcal{J}_{0}(\chi)\big{|}\ll\frac{q\,(\log\log x)^{3/2}}{\log x}\,W.

This sum also contributes an amount of size o(W)o(W) to both (2.8) and (2.9), and we are done. ∎

3. Characters in the problem range

3.1. Exceptional zeros

We apply two familiar principles that are commonly used in treatments of Linnik’s Theorem. The first is the zero-free region for Dirichlet LL-functions (see Gronwall [9], Landau [17] and Titchmarsh [23]).

Lemma 3.1.

There is an absolute constant c1>0c_{1}>0 such that, for every qq\in\mathbb{N}, the function

χmodqL(s,χ)\prod_{\chi\bmod q}L(s,\chi) (3.1)

has at most one zero β+iγ\beta+i\gamma satisfying

β>1c1with . . =logq(|γ|+3).\beta>1-\frac{c_{1}}{\ell}\qquad\text{with}\quad\ell\mathrel{\vbox{\hbox{\scriptsize.} \hbox{\scriptsize.}}}=\log q(|\gamma|+3).

Such a zero, if one exists, is simple and real, and corresponds to a nonprincipal real character.

The second principle, which is due to Linnik [18], is often referred to as the “Deuring-Heilbronn” phenomenon.

Lemma 3.2.

There is an absolute constant c2>0c_{2}>0 for which the following holds. Suppose the exceptional zero in Lemma 3.1 exists and is ((say)) β=1ε/logq\beta=1-\varepsilon/\log q. Then the function (3.1) does not vanish in the region

σ>1c2log(ε1)with . . =logq(|γ|+3).\sigma>1-\frac{c_{2}\log(\varepsilon^{-1})}{\ell}\qquad\text{with}\quad\ell\mathrel{\vbox{\hbox{\scriptsize.} \hbox{\scriptsize.}}}=\log q(|\gamma|+3).

3.2. Bounds on character sums

The proof of Theorem 1.1 relies heavily on the following result of Chang [3, Corollary 9], which bounds short character sums over intervals for certain primitive characters with a smooth conductor.

Lemma 3.3.

There are absolute constants c1,c2>0c_{1},c_{2}>0 for which the following holds. Let χ\chi be a primitive character modulo qq, let T1T\geqslant 1, and let \mathcal{I} be an arbitrary interval of length NN, where q>N>P(q)1000q>N>P(q)^{1000} and

logN(logqT)1c1+c2log(2logqlogq)logqloglogqwithq . . =pqp.\log N\geqslant(\log qT)^{1-c_{1}}+c_{2}\log\Bigl{(}\frac{2\log q}{\log q_{\,\sharp}}\Bigr{)}\frac{\log q_{\,\sharp}}{\log\log q}\qquad\text{with}\quad q_{\,\sharp}\mathrel{\vbox{\hbox{\scriptsize.} \hbox{\scriptsize.}}}=\prod_{p\,\mid\,q}p.

Then

|nχ(n)nit|NelogN(|t|T).\biggl{|}\sum_{n\in\mathcal{I}}\chi(n)n^{-it}\biggr{|}\leqslant Ne^{-\sqrt{\log N}}\qquad(|t|\leqslant T). (3.2)

We apply the following corollary of Lemma 3.3, which provides a weaker bound but has the advantage that it can be applied to longer intervals.

Corollary 3.4.

Fix ν,τ>0\nu,\tau>0. There is a constant c3(ν,τ)>0c_{3}(\nu,\tau)>0, which depends only on ν\nu and τ\tau, such that the following holds. Put

q . . =P(q)1000+exp(c3(ν,τ)logqloglogq)andξ . . =min{1,13ν}.q_{\,\flat}\mathrel{\vbox{\hbox{\scriptsize.} \hbox{\scriptsize.}}}=P(q)^{1000}+\exp\Bigl{(}\frac{c_{3}(\nu,\tau)\log q}{\log\log q}\Bigr{)}\qquad\mbox{and}\qquad\xi\mathrel{\vbox{\hbox{\scriptsize.} \hbox{\scriptsize.}}}=\min\{1,\tfrac{1}{3\nu}\}.

For any primitive character χ\chi modulo qq, if q<N<M2Nq_{\,\flat}<N<M\leqslant 2N and NqνN\leqslant q^{\nu}, then

|N<nMχ(n)nσit|4N1σeξlogN(12<σ<1,|t|3qτ).\biggr{|}\sum_{N<n\leqslant M}\chi(n)n^{-\sigma-it}\biggr{|}\leqslant 4N^{1-\sigma}e^{-\xi\sqrt{\log N}}\qquad(\tfrac{1}{2}<\sigma<1,~{}|t|\leqslant 3q^{\tau}). (3.3)
Proof.

By partial summation, it suffices to show that if \mathcal{I} is an arbitrary interval whose length NN lies in (q,qν](q_{\,\flat},q^{\nu}], then

|nχ(n)nit|NeξlogN(|t|3qτ).\biggl{|}\sum_{n\in\mathcal{I}}\chi(n)n^{-it}\biggr{|}\leqslant Ne^{-\xi\sqrt{\log N}}\qquad(|t|\leqslant 3q^{\tau}). (3.4)

We apply Lemma 3.3 with T . . =3qτT\mathrel{\vbox{\hbox{\scriptsize.} \hbox{\scriptsize.}}}=3q^{\tau}. With this choice, the inequality

(logqT)1c1+c2log(2logqlogq)logqloglogqc3(ν,τ)logqloglogq(\log qT)^{1-c_{1}}+c_{2}\log\Bigl{(}\frac{2\log q}{\log q_{\,\sharp}}\Bigr{)}\frac{\log q_{\,\sharp}}{\log\log q}\leqslant\frac{c_{3}(\nu,\tau)\log q}{\log\log q}

clearly holds if c3(ν,τ)c_{3}(\nu,\tau) is large enough. In the case that q<N<12qq_{\,\flat}<N<\tfrac{1}{2}q we obtain (3.2), which clearly implies (3.4). When 12qNqν\tfrac{1}{2}q\leqslant N\leqslant q^{\nu}, we put k . . =2N/qk\mathrel{\vbox{\hbox{\scriptsize.} \hbox{\scriptsize.}}}={\left\lfloor 2N/q\right\rfloor}, L . . =N/kL\mathrel{\vbox{\hbox{\scriptsize.} \hbox{\scriptsize.}}}=N/k, and split \mathcal{I} into a sum of kk disjoint subintervals of length LL. Since q>L12qq>L\geqslant\frac{1}{2}q we can use (3.2) to bound the sum over each subinterval; this gives

|nχ(n)nit|kLelogL.\biggl{|}\sum_{n\in\mathcal{I}}\chi(n)n^{-it}\biggr{|}\leqslant kLe^{-\sqrt{\log L}}.

Since kL=NkL=N and

logLlog(12q)13νlogqν13νlogN,\log L\geqslant\log(\tfrac{1}{2}q)\geqslant\tfrac{1}{3\nu}\log q^{\nu}\geqslant\tfrac{1}{3\nu}\log N,

we obtain (3.4) in this case as well. ∎

3.3. LL-function bounds and zero-free regions

Corollary 3.5.

Fix τ1\tau\geqslant 1. There is a constant c4(τ)>0c_{4}(\tau)>0, which depends only on τ\tau, such that the following holds. Put ν . . =8τ\nu\mathrel{\vbox{\hbox{\scriptsize.} \hbox{\scriptsize.}}}=8\tau, and let c3(ν,τ)>0c_{3}(\nu,\tau)>0 have the property described in Corollary 3.4. For every primitive character χ\chi of modulus q>c4(τ)q>c_{4}(\tau) we have

|L(s,χ)|η1qη(σ>1η,|t|3qτ),\big{|}L(s,\chi)\big{|}\leqslant\eta^{-1}q_{\,\flat}^{\eta}\qquad(\sigma>1-\eta,~{}|t|\leqslant 3q^{\tau}),

where

η . . =1/2(log2)3/4,with . . =logq(|t|+3),\eta\mathrel{\vbox{\hbox{\scriptsize.} \hbox{\scriptsize.}}}=\ell^{-1/2}(\log 2\ell)^{-3/4},\quad\text{with}\ \ell\mathrel{\vbox{\hbox{\scriptsize.} \hbox{\scriptsize.}}}=\log q(|t|+3),

and

q . . =P(q)1000+exp(c3(ν,τ)logqloglogq).q_{\,\flat}\mathrel{\vbox{\hbox{\scriptsize.} \hbox{\scriptsize.}}}=P(q)^{1000}+\exp\Bigl{(}\frac{c_{3}(\nu,\tau)\log q}{\log\log q}\Bigr{)}.
Proof.

Since |t|3qτ|t|\leqslant 3q^{\tau} and τ1\tau\geqslant 1, it is easy to check that

2=2logq(|t|+3)8τ=ν,2\ell=2\log q(|t|+3)\leqslant 8\tau=\nu,

and thus qνe2q^{\nu}\geqslant e^{2\ell} holds throughout the region {σ>1η,|t|3qτ}\{\sigma>1-\eta,~{}|t|\leqslant 3q^{\tau}\}. As in the proof of [14, Lemma 8] we get that

|nqχ(n)ns|<η1(qη1)+1and|n>Zχ(n)ns|<1(Zqν).\biggl{|}\sum_{n\leqslant q_{\,\flat}}\chi(n)n^{-s}\biggr{|}<\eta^{-1}(q_{\,\flat}^{\eta}-1)+1\qquad\mbox{and}\qquad\biggl{|}\sum_{n>Z}\chi(n)n^{-s}\biggr{|}<1\qquad(Z\geqslant q^{\nu}).

If qνqq^{\nu}\leqslant q_{\,\flat} then we are done. Otherwise, we split the interval (q,qν](q_{\,\flat},q^{\nu}] into dyadic subintervals and apply Corollary 3.4 to bound the sum over each subinterval. For q<N<M2Nq_{\,\flat}<N<M\leqslant 2N and NqνN\leqslant q^{\nu}, we have by (3.3):

|N<nMχ(n)ns|b(N) . . =4NηeξlogN.\biggl{|}\sum_{N<n\leqslant M}\chi(n)n^{-s}\biggr{|}\leqslant b(N)\mathrel{\vbox{\hbox{\scriptsize.} \hbox{\scriptsize.}}}=4N^{\eta}e^{-\xi\sqrt{\log N}}.

By calculus, b(N)b(N) is decreasing for

N<Ω . . =exp(2η2ξ2)=exp(14ξ2(log2)3/2),N<\Omega\mathrel{\vbox{\hbox{\scriptsize.} \hbox{\scriptsize.}}}=\exp(2\eta^{-2}\xi^{2})=\exp\bigl{(}\tfrac{1}{4}\xi^{2}\ell(\log 2\ell)^{3/2}\bigr{)},

hence at all points N(q,qν]N\in(q_{\,\flat},q^{\nu}] provided that c4(τ)c_{4}(\tau) is large enough. For any such NN we have

logb(N)logb(q)=log4+ηlogqξlogq<log412ξlogq,\log b(N)\leqslant\log b(q_{\,\flat})=\log 4+\eta\log q_{\,\flat}-\xi\sqrt{\log q_{\,\flat}}<\log 4-\tfrac{1}{2}\xi\sqrt{\log q_{\,\flat}},

where the last inequality follows from q<Ωq_{\,\flat}<\Omega, and we conclude that

b(N)110νlogq(N(q,qν])b(N)\leqslant\frac{1}{10\nu\log q}\qquad\bigl{(}N\in(q_{\,\flat},q^{\nu}]\bigr{)}

holds provided that

log(40νlogq)12ξlogq.\log(40\nu\log q)\leqslant\tfrac{1}{2}\xi\sqrt{\log q_{\,\flat}}.

Since by definition

logq>c3(ν,τ)logqloglogq,\log q_{\,\flat}>\frac{c_{3}(\nu,\tau)\log q}{\log\log q},

the latter condition is verified if c4(τ)c_{4}(\tau) is large enough. Finally, summing the contributions from all subintervals, we find that

|q<nqνχ(n)ns|νlogqlog2110νlogq<1,\biggl{|}\sum_{q_{\,\flat}<n\leqslant q^{\nu}}\chi(n)n^{-s}\biggr{|}\leqslant\frac{\nu\log q}{\log 2}\cdot\frac{1}{10\nu\log q}<1,

and the result follows. ∎

Lemma 3.6.

Let η(0,13)\eta\in(0,\tfrac{1}{3}), MeM\geqslant e, and put

Θ . . =η1logM,ϑ . . =1400Θ.\Theta\mathrel{\vbox{\hbox{\scriptsize.} \hbox{\scriptsize.}}}=\eta^{-1}\log M,\qquad\vartheta\mathrel{\vbox{\hbox{\scriptsize.} \hbox{\scriptsize.}}}=\frac{1}{400\Theta}.

Let q3q\geqslant 3, and suppose that

8log(5log3q)+24η1log(160Θ)83Θ.8\log(5\log 3q)+24\eta^{-1}\log(160\Theta)\leqslant\tfrac{8}{3}\Theta. (3.5)

There is at most one nonprincipal character χ\chi modulo qq such that simultaneously

  • (i)(i)

    |L(s,χ)|M|L(s,\chi)|\leqslant M holds for all s=σ+its=\sigma+it with σ>1η\sigma>1-\eta and |t|3T|t|\leqslant 3T;

  • (ii)(ii)

    L(s,χ)L(s,\chi) has a zero β+iγ\beta+i\gamma with β>1ϑ\beta>1-\vartheta and |γ|T|\gamma|\leqslant T.

Such a zero, if it exists, is unique, simple and real.

Proof.

The inequality (3.5) is equivalent to

8log(5log3q)+24ηlog(2M/5ϑ)115ϑ.8\log(5\log 3q)+\frac{24}{\eta}\log(2M/5\vartheta)\leqslant\frac{1}{15\vartheta}. (3.6)

The first part of the proof of [14, Lemma 11] shows that L(s,χ)0L(s,\chi)\neq 0 throughout the region

Γ . . ={{σ+it:σ>1ϑ,|t|T}if χ2χ0,{σ+it:σ>1ϑ,η/4<|t|T}if χ2=χ0,\Gamma\mathrel{\vbox{\hbox{\scriptsize.} \hbox{\scriptsize.}}}=\begin{cases}\{\sigma+it:\sigma>1-\vartheta,~{}|t|\leqslant T\}&\quad\hbox{if $\chi^{2}\neq\chi_{0}$},\\ \{\sigma+it:\sigma>1-\vartheta,~{}\eta/4<|t|\leqslant T\}&\quad\hbox{if $\chi^{2}=\chi_{0}$},\\ \end{cases}

provided that

6log(5log3q)+16ηlog(M/5ϑ)+8ηlog(2M/5ϑ)115ϑ.6\log(5\log 3q)+\frac{16}{\eta}\log(M/5\vartheta)+\frac{8}{\eta}\log(2M/5\vartheta)\leqslant\frac{1}{15\vartheta}.

The second part of the proof of [14, Lemma 11] shows that L(s,χ)L(s,\chi) has at most one zero in the region

Δ . . ={σ+it:σ>1ϑ,|t|η/4},\Delta\mathrel{\vbox{\hbox{\scriptsize.} \hbox{\scriptsize.}}}=\{\sigma+it:\sigma>1-\vartheta,~{}|t|\leqslant\eta/4\},

and any such zero is simple and real provided that

8log(5log3q)+16ηlog(M/5ϑ)115ϑ.8\log(5\log 3q)+\frac{16}{\eta}\log(M/5\vartheta)\leqslant\frac{1}{15\vartheta}.

Finally, [14, Lemma 12] asserts that there is at most one character χχ0\chi\neq\chi_{0} such that L(s,χ)L(s,\chi) has a real zero β>1ϑ\beta>1-\vartheta provided that

2log(5log3q)+12ηlog(M/5ϑ)215ϑ.2\log(5\log 3q)+\frac{12}{\eta}\log(M/5\vartheta)\leqslant\frac{2}{15\vartheta}.

In view of (3.6) the above three inequalities hold, and since for any χχ0\chi\neq\chi_{0} we have

ΓΔ={σ+it:σ>1ϑ,|t|T},\Gamma\cup\Delta=\{\sigma+it:\sigma>1-\vartheta,~{}|t|\leqslant T\},

the result follows. ∎

Finally, we use the following statement, which is an immediate consequence of a result of Iwaniec [14, Theorem 2].

Lemma 3.7.

For any q3q\geqslant 3, there is no primitive character χ\chi modulo qq for which L(s,χ)L(s,\chi) has a zero β+iγ\beta+i\gamma satisfying

β>1140000(logq+(log2)3/4)andγ0,\beta>1-\frac{1}{40000(\log q+(\ell\log 2\ell)^{3/4})}\qquad\mbox{and}\qquad\gamma\neq 0,

where . . =logq(|γ|+3)\ell\mathrel{\vbox{\hbox{\scriptsize.} \hbox{\scriptsize.}}}=\log q(|\gamma|+3).

4. Proofs of the main results

4.1. Proof of Theorem 1.1

Let 𝒬\mathcal{Q} be the set of numbers that satisfy the conditions of Theorem 1.1 with some large QA>0Q_{A}>0. Let q𝒬q\in\mathcal{Q} with q>QAq>Q_{A}, and observe that the condition (1.3) of Theorem 1.1 implies the condition (1.4) of Hypothesis 𝚂𝙲𝒬,A{\tt SC}\llbracket\hskip 1.0pt\mathcal{Q},A\hskip 1.0pt\rrbracket. Thus, by Proposition 2.1, to prove the desired result it suffices to establish (2.7); that is, we need to show that

𝒜 . . ={χχ0:L(s,χ)=0 has a zero in {σ>1k0/logq,|t|q}}.\mathcal{A}\mathrel{\vbox{\hbox{\scriptsize.} \hbox{\scriptsize.}}}=\Bigl{\{}\chi\neq\chi_{0}:L(s,\chi)=0\text{~{}has a zero in~{}}\{\sigma>1-k_{0}/\log q,~{}|t|\leqslant q\}\Bigr{\}}.

has cardinality at most one.

First, we claim that there is a sufficiently large constant τA>0\tau_{A}>0 (depending only on AA) with the following property. For every character χ\chi modulo qq, let qˇ\check{q} be the conductor of χ\chi, and let χˇ\check{\chi} be the character modulo qˇ\check{q} that induces χ\chi. Put

χ . . ={σ+it:σ>1k0/logq,|t|min{q,qˇτA}}.\mathcal{R}_{\chi}\mathrel{\vbox{\hbox{\scriptsize.} \hbox{\scriptsize.}}}=\bigl{\{}\sigma+it:\sigma>1-k_{0}/\log q,~{}|t|\leqslant\min\{q,\check{q}^{\tau_{A}}\}\bigr{\}}.

Then

𝒜={χχ0:L(s,χ)=0 has a zero in χ}.\mathcal{A}=\{\chi\neq\chi_{0}:L(s,\chi)=0\text{~{}has a zero in~{}}\mathcal{R}_{\chi}\}. (4.1)

To prove the claim, suppose on the contrary that there is a character χχ0\chi\neq\chi_{0} such that L(s,χ)L(s,\chi) has a zero β+iγ\beta+i\gamma satisfying

β>1k0logq,min{q,qˇτA}<|γ|q.\beta>1-\frac{k_{0}}{\log q},\qquad\min\{q,\check{q}^{\tau_{A}}\}<|\gamma|\leqslant q. (4.2)

Clearly, this is not possible unless qˇτA<q\check{q}^{\tau_{A}}<q, which we assume. Put . . =q(|γ|+3)\ell\mathrel{\vbox{\hbox{\scriptsize.} \hbox{\scriptsize.}}}=q(|\gamma|+3) and ˇ . . =qˇ(|γ|+3)\check{\ell}\mathrel{\vbox{\hbox{\scriptsize.} \hbox{\scriptsize.}}}=\check{q}(|\gamma|+3), and note that

40000(logqˇ+(ˇlog2ˇ)3/4)40000(τA1logq+(log2)3/4)k01logq40000(\log\check{q}+(\check{\ell}\log 2\check{\ell})^{3/4})\leqslant 40000(\tau_{A}^{-1}\log q+(\ell\log 2\ell)^{3/4})\leqslant k_{0}^{-1}\log q

if τA\tau_{A} is large enough, since logq\ell\ll\log q and q>qˇτA>2τAq>\check{q}^{\tau_{A}}>2^{\tau_{A}} (we remind the reader that, in the definition (2.7) of k0k_{0}, the constant DD is absolute). Therefore, (4.2) implies

β>1140000(logqˇ+(ˇlog2ˇ)3/4)andγ0.\beta>1-\frac{1}{40000(\log\check{q}+(\check{\ell}\log 2\check{\ell})^{3/4})}\qquad\mbox{and}\qquad\gamma\neq 0.

As this contradicts Lemma 3.7 (with χˇ,ˇ,qˇ\check{\chi},\check{\ell},\check{q} replacing χ,,q\chi,\ell,q respectively), we conclude that (4.1) is a correct description of the set 𝒜\mathcal{A}.

Next, we eliminate from 𝒜\mathcal{A} certain characters with a bounded conductor. Let c4(τA)>0c_{4}(\tau_{A})>0 be the constant described in Corollary 3.5 for τ . . =τA\tau\mathrel{\vbox{\hbox{\scriptsize.} \hbox{\scriptsize.}}}=\tau_{A}. Let χ𝒜\chi\in\mathcal{A}, and suppose that qˇc4(τA)\check{q}\leqslant c_{4}(\tau_{A}). Since L(s,χ)L(s,\chi) has a zero β+iγχ\beta+i\gamma\in\mathcal{R}_{\chi}, using the inequalities

logqlogQA\log q\geqslant\log Q_{A}

and

logqˇ(|γ|+3)logqˇ(qˇτA+3)log(6qˇτA+1)<(τA+3)logqˇ(τA+3)logc4(τA),\log\check{q}(|\gamma|+3)\leqslant\log\check{q}(\check{q}^{\tau_{A}}+3)\leqslant\log(6\check{q}^{\tau_{A}+1})<(\tau_{A}+3)\log\check{q}\leqslant(\tau_{A}+3)\log c_{4}(\tau_{A}),

we derive that

β\displaystyle\beta >1k0logq1k0logQA\displaystyle>1-\frac{k_{0}}{\log q}\geqslant 1-\frac{k_{0}}{\log Q_{A}}
1k0logQA(τA+3)logc4(τA)logqˇ(|γ|+3)>1k0(τA+3)logc4(τA)/logQAlogqˇ(|γ|+3).\displaystyle\geqslant 1-\frac{k_{0}}{\log Q_{A}}\frac{(\tau_{A}+3)\log c_{4}(\tau_{A})}{\log\check{q}(|\gamma|+3)}>1-\frac{k_{0}(\tau_{A}+3)\log c_{4}(\tau_{A})/\log Q_{A}}{\log\check{q}(|\gamma|+3)}.

Since QAQ_{A} can be chosen after both τA\tau_{A} and c4(τA)c_{4}(\tau_{A}) are defined, and β+iγ\beta+i\gamma is a zero of L(s,χˇ)L(s,\check{\chi}), taking QAQ_{A} large enough and applying Lemma 3.1 we deduce that γ=0\gamma=0. Consequently, the real zero β\beta of L(s,χ)L(s,\chi) satisfies

β>1k0(τA+3)logc4(τA)/logQAlog9.\beta>1-\frac{k_{0}(\tau_{A}+3)\log c_{4}(\tau_{A})/\log Q_{A}}{\log 9}.

However, this situation is untenable if QAQ_{A} is sufficiently large, for there are only finitely many characters χ\chi modulo qq with a conductor qˇc4(τA)\check{q}\leqslant c_{4}(\tau_{A}), and the LL-function attached to any one of these characters has at most finitely many zeros in the real interval [0,1][0,1]; such zeros must lie in (0,1)(0,1), hence they are bounded away from one by a constant that depends only on τ\tau. In summary, if QAQ_{A} is large enough, then every χ𝒜\chi\in\mathcal{A} has qˇ>c4(τA)\check{q}>c_{4}(\tau_{A}), and so (4.1) transforms to

𝒜={χχ0:qˇ>c4(τA) and L(s,χ)=0 has a zero in χ}.\mathcal{A}=\{\chi\neq\chi_{0}:\check{q}>c_{4}(\tau_{A})\text{~{}and~{}}L(s,\chi)=0\text{~{}has a zero in~{}}\mathcal{R}_{\chi}\}. (4.3)

It remains to show that 𝒜\mathcal{A} defined by (4.3) has cardinality at most one:

|𝒜|1.|\mathcal{A}|\leqslant 1. (4.4)

To this end, let χ𝒜\chi\in\mathcal{A}. Applying Corollary 3.5 with τ . . =τA\tau\mathrel{\vbox{\hbox{\scriptsize.} \hbox{\scriptsize.}}}=\tau_{A} we have

|L(s,χˇ)|ηˇ1qˇηˇ(σ>1ηˇ,|t|3qˇτA),\big{|}L(s,\check{\chi})\big{|}\leqslant\check{\eta}^{-1}\check{q}_{\,\flat}^{\check{\eta}}\qquad(\sigma>1-\check{\eta},~{}|t|\leqslant 3\check{q}^{\tau_{A}}),

where

ηˇ . . =ˇ1/2(log2ˇ)3/4withˇ . . =logqˇ(|t|+3),\check{\eta}\mathrel{\vbox{\hbox{\scriptsize.} \hbox{\scriptsize.}}}=\check{\ell}^{-1/2}(\log 2\check{\ell})^{-3/4}\qquad\text{with}\quad\check{\ell}\mathrel{\vbox{\hbox{\scriptsize.} \hbox{\scriptsize.}}}=\log\check{q}(|t|+3),

and

qˇ . . =P(qˇ)1000+exp(c3(ν,τ)logqˇloglogqˇ).\check{q}_{\,\flat}\mathrel{\vbox{\hbox{\scriptsize.} \hbox{\scriptsize.}}}=P(\check{q})^{1000}+\exp\Bigl{(}\frac{c_{3}(\nu,\tau)\log\check{q}}{\log\log\check{q}}\Bigr{)}. (4.5)

We apply Lemma 3.6 with

M . . =ηˇ1qˇηˇ,Θ . . =ηˇ1logM,T . . =qˇτA.M\mathrel{\vbox{\hbox{\scriptsize.} \hbox{\scriptsize.}}}=\check{\eta}^{-1}\check{q}_{\,\flat}^{\check{\eta}},\qquad\Theta\mathrel{\vbox{\hbox{\scriptsize.} \hbox{\scriptsize.}}}=\check{\eta}^{-1}\log M,\qquad T\mathrel{\vbox{\hbox{\scriptsize.} \hbox{\scriptsize.}}}=\check{q}^{\tau_{A}}.

To establish (the analogue of) the bound (3.5), it suffices to show

log(5log3qˇ)16Θand3ηˇ1log(160Θ)16Θ,\log(5\log 3\check{q})\leqslant\tfrac{1}{6}\Theta\qquad\mbox{and}\qquad 3\check{\eta}^{-1}\log(160\Theta)\leqslant\tfrac{1}{6}\Theta, (4.6)

where

Θ . . =ηˇ1logM=logqˇηˇ1logηˇ.\Theta\mathrel{\vbox{\hbox{\scriptsize.} \hbox{\scriptsize.}}}=\check{\eta}^{-1}\log M=\log\check{q}_{\,\flat}-\check{\eta}^{-1}\log\check{\eta}.

In χ\mathcal{R}_{\chi} we have |t|3qˇτA|t|\leqslant 3\check{q}^{\tau_{A}}, so that

ˇlogqˇandηˇ(logqˇ)1/2(loglogqˇ)3/4,\check{\ell}\asymp\log\check{q}\qquad\mbox{and}\qquad\check{\eta}\asymp(\log\check{q})^{-1/2}(\log\log\check{q})^{-3/4}, (4.7)

where the implied constants can be made explicit and depend only on AA. In view of (4.5) we deduce that

Θ=logqˇ+O((logqˇ)1/2(loglogqˇ)7/4)=logqˇ+O((logqˇ)2/3).\Theta=\log\check{q}_{\,\flat}+O((\log\check{q})^{1/2}(\log\log\check{q})^{7/4})=\log\check{q}_{\,\flat}+O((\log\check{q}_{\,\flat})^{2/3}).

Increasing the value of c4(τA)c_{4}(\tau_{A}) if necessary, the first inequality in (4.6) follows from

log(5log3qˇ)110logqˇ,\log(5\log 3\check{q})\leqslant\tfrac{1}{10}\log\check{q}_{\,\flat},

which is clear if c4(τA)c_{4}(\tau_{A}) is large enough in view of (4.5). Indeed, it suffices that c3(ν,τ)1c_{3}(\nu,\tau)\geqslant 1 and that c4(τA)c_{4}(\tau_{A}) exceeds a certain absolute constant, and this can all be arranged before the value of QAQ_{A} is chosen. Next, taking into account the second estimate of (4.7), we see that there is a constant CA>0C_{A}>0 (depending only on AA) such that the second inequality in (4.6) follows from

(logqˇ)1/2(loglogqˇ)7/4CAlogqˇ(qˇ>c4(τA)),(\log\check{q})^{1/2}(\log\log\check{q})^{7/4}\leqslant C_{A}\log\check{q}_{\,\flat}\qquad(\check{q}>c_{4}(\tau_{A})),

and this inequality is also clear (for large c4(τ)c_{4}(\tau)) by (4.5).

The preceding argument shows that every character χ𝒜\chi\in\mathcal{A} satisfies (3.5) and the condition (i)(i) of Lemma 3.6.

We claim that the condition (ii)(ii) also holds when

P(q)QA<qP(q)^{Q_{A}}<q (4.8)

holds with some suitably large number QA>0Q_{A}>0. To prove the claim, suppose that (4.8) holds. Since χ𝒜\chi\in\mathcal{A} we see that L(s,χ)L(s,\chi) has a zero β+iγ\beta+i\gamma satisfying

β>1k0logq,|γ|min{q,qˇτA}.\beta>1-\frac{k_{0}}{\log q},\qquad|\gamma|\leqslant\min\{q,\check{q}^{\tau_{A}}\}.

Since T . . =qˇτAT\mathrel{\vbox{\hbox{\scriptsize.} \hbox{\scriptsize.}}}=\check{q}^{\tau_{A}}, it follows that

β>1ϑ,|γ|T,\beta>1-\vartheta,\qquad|\gamma|\leqslant T,

and so the condition (ii)(ii) is satisfied, provided that

k0ϑlogq=logq400Θ=(1+o(1))logq400logqˇ(c4(τA)).k_{0}\leqslant\vartheta\log q=\frac{\log q}{400\Theta}=(1+o(1))\frac{\log q}{400\log\check{q}_{\,\flat}}\qquad(c_{4}(\tau_{A})\to\infty).

Since qˇq\check{q}_{\,\flat}\leqslant q_{\,\flat}, for large enough c4(τA)c_{4}(\tau_{A}) it suffices to have q>q500k0q>q_{\,\flat}^{500k_{0}}. Recalling the definition of qq_{\,\flat}, we see that a value

QA500000k0=500000(4AlogA+D)Q_{A}\geqslant 500000k_{0}=500000(4A\log A+D)

in (4.8) ensures that the condition (ii)(ii) of Lemma 3.6 holds.

Above, we have shown that any characters in 𝒜\mathcal{A} satisfy all of the conditions of Lemma 3.6. By the lemma, there is at most one nonprincipal character meeting these conditions, thus we obtain (4.4). This completes the proof of Theorem 1.1.

4.2. Proof of Theorem 1.4

Let 𝒬\mathcal{Q} be the set of numbers that satisfy the conditions of Theorem 1.4 with some large QA>0Q_{A}>0. Let q𝒬q\in\mathcal{Q} with q>QAq>Q_{A}, and observe that the condition (1.5) of Theorem 1.4 agrees with the condition (1.4) of Hypothesis 𝚂𝙲𝒬,A{\tt SC}\llbracket\hskip 1.0pt\mathcal{Q},A\hskip 1.0pt\rrbracket.

If QA1c1Q_{A}^{-1}\leqslant c_{1}, then Lemma 3.1 asserts that there is at most one nonprincipal character χ\chi modulo qq such that L(s,χ)L(s,\chi) has a zero β+iγ\beta+i\gamma satisfying (1.6), and in this case β>1QA1/logq\beta>1-Q_{A}^{-1}/\log q and γ=0\gamma=0. Let χ\chi_{\bullet} be such a character. Taking ε . . =QA1\varepsilon\mathrel{\vbox{\hbox{\scriptsize.} \hbox{\scriptsize.}}}=Q_{A}^{-1}, Lemma 3.2 asserts that for any nonprincipal character χχ\chi\neq\chi_{\bullet} the LL-function L(s,χ)L(s,\chi) does not vanish in the region defined by

σ>1c2logQAlogq(|t|+3).\sigma>1-\frac{c_{2}\log Q_{A}}{\log q(|t|+3)}.

In particular, if QAQ_{A} is large enough, then L(s,χ)L(s,\chi) cannot have a zero β+iγ\beta+i\gamma with

β>14AlogA+Dlogq,|γ|q;\beta>1-\frac{{\left\lceil 4A\log A+D\right\rceil}}{\log q},\qquad|\gamma|\leqslant q;

therefore 𝚂𝙲𝒬,A{\tt SC}\llbracket\hskip 1.0pt\mathcal{Q},A\hskip 1.0pt\rrbracket is true by Proposition 2.1.

References

  • [1] W. D. Banks and I. E. Shparlinski, Bounds on short character sums and LL-functions for characters with a smooth modulus. J. d’Anal. Math. 139 (2019), 239–263.
  • [2] W. D. Banks and I. E. Shparlinski, Sums with the Mobius function twisted by characters with powerful moduli. Trans. Amer. Math. Soc. 373 (2020), 249–272.
  • [3] M.-C. Chang, Short character sums for composite moduli. J. Anal. Math. 123 (2014), 1–33.
  • [4] R. de la Bretèche and G. Tenenbaum, Propriétés statistiques des entiers friables. Ramanujan J. 9 (2005), 139–202.
  • [5] P. X. Gallagher, Primes in progressions to prime-power modulus. Invent. Math. 16 (1972), 191–201.
  • [6] A. Granville, Integers, without large prime factors, in arithmetic progressions. I. Acta Math. 170 (1993), 255–273.
  • [7] A. Granville, Integers, without large prime factors, in arithmetic progressions. II. Philos. Trans. Roy. Soc. London Ser. A 345 (1993), 349–362.
  • [8] A. Granville and X. Shao, Bombieri-Vinogradov for multiplicative functions, and beyond the x1/2x^{1/2}-barrier. Adv.  Math. 345 (1993), 350 (2019), 304–358.
  • [9] T. H. Gronwall, Sur les séries de Dirichlet correspondant á des charactéres complexes. Rendiconti di Palermo 35 (1913), 145–159.
  • [10] A. J. Harper, On a paper of K. Soundararajan on smooth numbers in arithmetic progressions. J. Number Theory 132 (2012), 182–199.
  • [11] A. J. Harper, Bombieri-Vinogradov and Barban-Davenport-Halberstam type theorems for smooth numbers. Preprint, 2012 (available from http://arxiv.org/abs/:1208.5992).
  • [12] A. Hildebrand and G. Tenenbaum, On integers free of large prime factors. Trans. Amer. Math. Soc. 296 (1986), 265–290.
  • [13] A. Hildebrand and G. Tenenbaum, Integers without large prime factors. J. Théorie des Nombres de Bordeaux 5 (1993), 411–484.
  • [14] H. Iwaniec, On zeros of Dirichlet’s LL series. Invent. Math. 23 (1974), 97–104.
  • [15] H. Iwaniec and E. Kowalski, Analytic number theory. Amer. Math. Soc., Providence, RI, 2004.
  • [16] R. Khan, The divisor function in arithmetic progressions modulo prime powers. Mathemat. 62 (2016), 898–908.
  • [17] E. Landau, Über die Klassenzahl imaginär-quadratischer Zahlkörper. Göttinger Nachrichten (1918), 285–295.
  • [18] Yu. V. Linnik, On the least prime in an arithmetic progression. I. The basic theorem. Rec. Math. (Mat. Sbornik) N.S. 15(57) (1944), 347–368.
  • [19] K. Liu, I. E. Shparlinski and T. P. Zhang, Divisor problem in arithmetic progressions modulo a prime power. Adv. Math. 325 (2018), 459–481.
  • [20] D. Milićević, Sub-Weyl subconvexity for Dirichlet LL-functions to powerful moduli. Compos. Math. 152 (2016), 825–875.
  • [21] D. Milićević and D. White, Twelfth moment of Dirichlet LL-functions to prime power moduli. Preprint, 2019 (available from http://arxiv.org/abs/:1908.04833).
  • [22] K. Soundararajan, The distribution of smooth numbers in arithmetic progressions. Anatomy of Integers, 115–128. CRM Proc. Lect. Notes, vol. 46, Amer. Math. Soc., Providence, RI, 2008.
  • [23] E. C. Titchmarsh, A divisor problem. Rendiconti Palermo 54 (1930), 414–429.