This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.



octonionic planes and real forms of G2\text{G}_{2}, F4\text{F}_{4} and E6\text{E}_{6}

D. Corradetti1, A. Marrani2, D. Chester3 and R. Aschheim3
Abstract

In this work we present a useful way to introduce the octonionic projective and hyperbolic plane 𝕆​P2\mathbb{O}P^{2} through the use of Veronese vectors. Then we focus on their relation with the exceptional Jordan algebra 𝔍3𝕆\mathfrak{J}_{3}^{\mathbb{O}} and show that the Veronese vectors are the rank-1 elements of the algebra. We then study groups of motions over the octonionic plane recovering all real forms of G2\text{G}_{2}, F4\text{F}_{4} and E6\text{E}_{6} groups and finally give a classification of all octonionic and split-octonionic planes as symmetric spaces.
MSC: 17C36, 17C60, 17C90, 22E15, 32M15
Keywords: Exceptional Lie Groups, Jordan Algebra, Octonionic Projective Plane, Real Forms, Veronese embedding.

1 Introduction

The study of the exceptional Jordan algebra and its complexification has been of interest in recent papers of theorethical physics. Todorov, Dubois-Violette[17] and Krasnov[11] characterized the Standard Model gauge group GS​M\text{G}_{SM} as a subgroup of automorphisms of the exceptional Jordan algebra 𝔍3​(𝕆)\mathfrak{J}_{3}\left(\mathbb{O}\right) while Boyle [4, 5] pointed to its complexification 𝔍3ℂ​(𝕆)\mathfrak{J}_{3}^{\mathbb{C}}\left(\mathbb{O}\right). An equivalent well known view of the exceptional Jordan algebra is the one of projective geometry, in which the automorphism group of 𝔍3​(𝕆)\mathfrak{J}_{3}\left(\mathbb{O}\right) is the group of motions of the octonionic projective plane[10]. Making use of Veronese coordinates we will explore these relations and show how all real forms of F4\text{F}_{4} and E6\text{E}_{6} can be recovered as group of motions of projective or hyperbolic planes defined over division Octonions 𝕆\mathbb{O} or split Octonions 𝕆s\mathbb{O}_{s}.

In sec. 2 we introduce the octonionic projective plane through the use of Veronese coordinates, we define the projective lines and relate the construction with the octonionic affine plane. In sec. 3 we show the correspondance with the exceptional Jordan algebra 𝔍3​(𝕆)\mathfrak{J}_{3}\left(\mathbb{O}\right) while in sec. 4 we show how real forms of the exceptional Lie Groups E6\text{E}_{6}, F4\text{F}_{4} and G2\text{G}_{2}, arise as specific groups of collineations of the octonionic projective plane. In the last section we proceed defining in a systematic way all possible octonionic planes as symmetric spaces.

2 The Octonionic Projective Plane

Refer to caption
Figure 1: Multiplication rule of Octonions 𝕆\mathbb{O} as real vector space ℝ8\mathbb{R}^{8} in the basis {i0=1,i1,…,i7}\left\{i_{0}=1,i_{1},...,i_{7}\right\}.

Octonions 𝕆\mathbb{O} are, along with Real numbers ℝ\mathbb{R}, Complex numbers β„‚\mathbb{C} and Quaternions ℍ\mathbb{H}, one of the four Hurwitz algebras, more specifically are the only unital non-associative normed division algebra. A pratical way to work with them is to consider their ℝ8\mathbb{R}^{8} decomposition, i.e.,

x=βˆ‘k=07xk​ikx=\sum\limits_{k=0}^{7}x_{k}\textbf{i}_{k} (1)

where {i0=1,i1,…,i7}\left\{\textbf{i}_{0}=1,\textbf{i}_{1},...,\textbf{i}_{7}\right\} is a basis of ℝ8\mathbb{R}^{8} and the multiplication rules are mnemonically encoded in the Fano plane (Fig. 1) along with ik2=βˆ’1\textbf{i}_{k}^{2}=-1 for k=1,…,7k=1,...,7. We then define the octonionic conjugate of xx as

x¯≔x0​i0βˆ’βˆ‘k=17xk​ik\overline{x}\coloneqq x_{0}\textbf{i}_{0}-\sum\limits_{k=1}^{7}x_{k}\textbf{i}_{k} (2)

with the usual norm

β€–xβ€–2=x¯​x=x02+x12+x22+x32+x42+x52+x62+x72\left\|x\right\|^{2}=\overline{x}x=x_{0}^{2}+x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}+x_{5}^{2}+x_{6}^{2}+x_{7}^{2} (3)

and the inner product given by the polarisation of the norm, i.e.,

⟨x,y⟩=β€–x+yβ€–2βˆ’β€–xβ€–2βˆ’β€–yβ€–2=x¯​y+y¯​x.\left\langle x,y\right\rangle=\left\|x+y\right\|^{2}-\left\|x\right\|^{2}-\left\|y\right\|^{2}=\overline{x}y+\overline{y}x. (4)

In respect to this norm the Octonions are a composition algebra, i.e. β€–x​yβ€–=β€–x‖​‖yβ€–\left\|xy\right\|=\left\|x\right\|\left\|y\right\|, which will be of paramount importance in the following sections. Finally, we denote with 𝕆s\mathbb{O}_{s} the split-octonionic algebra, whose definition can be found in [13, 14].

The Projective Plane

It is a common practice defining a projective plane over an associative division algebra starting from a vector space over the given algebra, e.g. ℝn+1\mathbb{R}^{n+1}, and then define the projective space as the quotient

ℝPn=ℝn+1/∼\mathbb{R}P^{n}=\mathbb{R}^{n+1}/\sim (5)

where x∼yx\sim y if xx and yy are multiple through the scalar field, i.e. λ​x=y\lambda x=y, Ξ»βˆˆβ„\lambda\in\mathbb{R}, Ξ»β‰ 0\lambda\neq 0, x,yβˆˆβ„n+1x,y\in\mathbb{R}^{n+1}. But, since the algebra of Octonions is not associative, we have that x​(λ​μ)β‰ (x​λ)​μx\left(\lambda\mu\right)\neq\left(x\lambda\right)\mu when Ξ»,ΞΌβˆˆπ•†\lambda,\mu\in\mathbb{O}. If we then try to define the equivalence relation as above, we then might have x∼y=x​λx\sim y=x\lambda, and x∼z=x​(λ​μ)x\sim z=x\left(\lambda\mu\right), but zz not related to yy since

z=x​(λ​μ)β‰ (x​λ)​μ=y​μ.z=x\left(\lambda\mu\right)\neq\left(x\lambda\right)\mu=y\mu. (6)

Therefore the previous is not an equivalence relation and the quotient cannot be defined. A method for overcoming such an issue is based on determining an equivalent algebraic definition of the rank-one idempotent of the exceptional Jordan algebra in order define points in the projective plane, but here we want to use a direct and less known way to proceed making use of the Veronese vectors.

Veronese coordinates

Let V≅𝕆3×ℝ3V\cong\mathbb{O}^{3}\times\mathbb{R}^{3} be a real vector space, with elements of the form

(xν;λν)ν=(x1,x2,x3;λ1,λ2,λ3)\left(x_{\nu};\lambda_{\nu}\right)_{\nu}=\left(x_{1},x_{2},x_{3};\lambda_{1},\lambda_{2},\lambda_{3}\right)

where xΞ½βˆˆπ•†x_{\nu}\in\mathbb{O}, Ξ»Ξ½βˆˆβ„\lambda_{\nu}\in\mathbb{R} and Ξ½=1,2,3\nu=1,2,3. A vector w∈Vw\in V is called Veronese if

Ξ»1​xΒ―1\displaystyle\lambda_{1}\overline{x}_{1} =x2​x3,Ξ»2​xΒ―2=x3​x1,Ξ»3​xΒ―3=x1​x2\displaystyle=x_{2}x_{3},\,\,\lambda_{2}\overline{x}_{2}=x_{3}x_{1},\,\,\lambda_{3}\overline{x}_{3}=x_{1}x_{2} (7)
β€–x1β€–2\displaystyle\left\|x_{1}\right\|^{2} =Ξ»2​λ3,β€–x2β€–2=Ξ»3​λ1,β€–x3β€–2=Ξ»1​λ2.\displaystyle=\lambda_{2}\lambda_{3},\,\left\|x_{2}\right\|^{2}=\lambda_{3}\lambda_{1},\left\|x_{3}\right\|^{2}=\lambda_{1}\lambda_{2}. (8)

Let HβŠ‚VH\subset V be the subset of Veronese vectors. If w=(xΞ½;λν)Ξ½w=\left(x_{\nu};\lambda_{\nu}\right)_{\nu} is a Veronese vector then also μ​w=μ​(xΞ½;λν)Ξ½\mu w=\mu\left(x_{\nu};\lambda_{\nu}\right)_{\nu} is a Veronese vector, that is ℝ​wβŠ‚H\mathbb{R}w\subset H. We define the Octonionic plane 𝕆​P2\mathbb{O}P^{2} as the geometry having this one-dimensional subspaces ℝ​w\mathbb{R}w as points, i.e.

𝕆​P2={ℝ​w:w∈Hβˆ–{0}}.\mathbb{O}P^{2}=\left\{\mathbb{R}w:w\in H\smallsetminus\left\{0\right\}\right\}. (9)
Remark 2.1.

The point in the projective plane is defined as the equivalence class ℝ​w\mathbb{R}w of the Veronese vector ww, but, in order to determine an explicit relation between points in the projective plane and rank-one idempotent elements of the Jordan algebra 𝔍3𝕆\mathfrak{J}_{3}^{\mathbb{O}}, we will choose when as representative of the class the vector v=(yΞ½;ΞΎΞ½)Ξ½βˆˆβ„β€‹wv=\left(y_{\nu};\xi_{\nu}\right)_{\nu}\in\mathbb{R}w such that ΞΎ1+ΞΎ2+ΞΎ3=1\xi_{1}+\xi_{2}+\xi_{3}=1. Then (yΞ½;ΞΎΞ½)Ξ½\left(y_{\nu};\xi_{\nu}\right)_{\nu} are called Veronese coordinates of the projective point.

Projective lines

We then define projective lines of 𝕆​P2\mathbb{O}P^{2} as the vectors orthogonal to the points ℝ​w\mathbb{R}w. Let Ξ²\beta be the bilinear form over 𝕆3×ℝ3\mathbb{O}^{3}\times\mathbb{R}^{3} defined as

β​(w1,w2)=βˆ‘Ξ½=13(⟨xΞ½1,xΞ½2⟩+λν1​λν2)\beta\left(w_{1},w_{2}\right)=\sum\limits_{\nu=1}^{3}\left(\left\langle x_{\nu}^{1},x_{\nu}^{2}\right\rangle+\lambda_{\nu}^{1}\lambda_{\nu}^{2}\right) (10)

where w1=(xΞ½1;λν1)Ξ½w_{1}=\left(x_{\nu}^{1};\lambda_{\nu}^{1}\right)_{\nu},w2=(xΞ½2;λν2)Ξ½βˆˆπ•†3×ℝ3w_{2}=\left(x_{\nu}^{2};\lambda_{\nu}^{2}\right)_{\nu}\in\mathbb{O}^{3}\times\mathbb{R}^{3}. Then, for every Veronese vector ww, corresponding to the point ℝ​w\mathbb{R}w in 𝕆​P2\mathbb{O}P^{2}, we define a line β„“\ell in 𝕆​P2\mathbb{O}P^{2} as the orthogonal space

ℓ≔wβŸ‚={zβˆˆπ•†3×ℝ3:β​(z,w)=0}.\ell\coloneqq w^{\perp}=\left\{z\in\mathbb{O}^{3}\times\mathbb{R}^{3}:\beta\left(z,w\right)=0\right\}. (11)

The bilinear form Ξ²\beta also defines the elliptic polarity, i.e. the map Ο€+\pi^{+} that corresponds points to lines and lines to points, i.e.

Ο€+​(w)=wβŸ‚,Ο€+​(wβŸ‚)=w\pi^{+}\left(w\right)=w^{\perp},\pi^{+}\left(w^{\perp}\right)=w (12)

where the orthogonal space to a vector is defined by the bilinear form β​(β‹…,β‹…)\beta\left(\cdot,\cdot\right), so that

Ο€+:\displaystyle\pi^{+}: w⟢{β​(β‹…,w)=0}\displaystyle w\longrightarrow\left\{\beta\left(\cdot,w\right)=0\right\} (13)
β„“βŸΆw\displaystyle\ell\longrightarrow w (14)

when β„“\ell is given by {β​(β‹…,w)=0}\left\{\beta\left(\cdot,w\right)=0\right\}. Explicitly, β​(w1,w2)=0\beta\left(w_{1},w_{2}\right)=0 when

2​xΒ―11​x12+2​xΒ―21​x22+2​xΒ―31​x32+Ξ»11​λ12+Ξ»21​λ22+Ξ»31​λ32=0.2\overline{x}_{1}^{1}x_{1}^{2}+2\overline{x}_{2}^{1}x_{2}^{2}+2\overline{x}_{3}^{1}x_{3}^{2}+\lambda_{1}^{1}\lambda_{1}^{2}+\lambda_{2}^{1}\lambda_{2}^{2}+\lambda_{3}^{1}\lambda_{3}^{2}=0. (15)

In addition to the elliptic polarity defined above, we then define the hyperbolic polarity Ο€βˆ’\pi^{-}, which still has

Ο€βˆ’β€‹(w)=wβŸ‚,Ο€βˆ’β€‹(wβŸ‚)=w\pi^{-}\left(w\right)=w^{\perp},\pi^{-}\left(w^{\perp}\right)=w (16)

but through the use of the bilinear form Ξ²βˆ’\beta_{-} that has a change of sign in the last coordinate, i.e. Ξ²βˆ’β€‹(w1,w2)=0\beta_{-}\left(w_{1},w_{2}\right)=0 is given by

2​xΒ―11​x12+2​xΒ―21​x22βˆ’2​xΒ―31​x32+Ξ»11​λ12+Ξ»21​λ22βˆ’Ξ»31​λ32=0.2\overline{x}_{1}^{1}x_{1}^{2}+2\overline{x}_{2}^{1}x_{2}^{2}-2\overline{x}_{3}^{1}x_{3}^{2}+\lambda_{1}^{1}\lambda_{1}^{2}+\lambda_{2}^{1}\lambda_{2}^{2}-\lambda_{3}^{1}\lambda_{3}^{2}=0. (17)

A projective plane equipped with the hyperbolic polarity will be called hyperbolic plane and denoted as 𝕆​H2\mathbb{O}H^{2}.

Refer to caption
Figure 2: Representation of the affine plane: (0,0)\left(0,0\right) represents the origin, (0)\left(0\right) the point at the infinity on the xx-axis, (s)\left(s\right) is the point at infinity of the line [s,t]\left[s,t\right] of slope ss while (∞)\left(\infty\right) is the point at the infinity on the yy-axis and of vertical lines [c]\left[c\right].

The Affine Plane

The octonionic projective plane is also the completion of the octonionic affine plane. The embedding of the affine plane can be explicited through the use of Veronese coordinates defining the map that sends a point (x,y)\left(x,y\right) of the affine plane to the projective point ℝ​(x,yΒ―,y​xΒ―;β€–yβ€–2,β€–xβ€–2,1)\mathbb{R}\left(x,\overline{y},y\overline{x};\left\|y\right\|^{2},\left\|x\right\|^{2},1\right), i.e.

(x,y)↦ℝ​(x,yΒ―,y​xΒ―;β€–yβ€–2,β€–xβ€–2,1)\left(x,y\right)\mapsto\mathbb{R}\left(x,\overline{y},y\overline{x};\left\|y\right\|^{2},\left\|x\right\|^{2},1\right) (18)

which is an homeomorphism. To complete the affine plane, we then have to extend the map to another set of coordinates, i.e.

(x)\displaystyle\left(x\right) ↦ℝ​(0,0,x;β€–xβ€–2,1,0)\displaystyle\mapsto\mathbb{R}\left(0,0,x;\left\|x\right\|^{2},1,0\right) (19)
(∞)\displaystyle\left(\infty\right) ↦ℝ​(0,0,0;1,0,0).\displaystyle\mapsto\mathbb{R}\left(0,0,0;1,0,0\right). (20)
Remark 2.2.

To show that the above is a Veronese vector and therefore that the map is well defined, we made essential use of alternativity of the Octonions and fact that Octonions are a composition algebra. In case of non-composition algebra, though the definition of the projective and hyperbolic planes would still be valid using Veronese coordinates, the geometry of these planes will not satisfy the basic axioms of projective and affine geometry and therefore they would have to be considered as "generalised" projective or hyperbolic planes.

Moreover, let [s,t]\left[s,t\right] be a line in the affine plane 𝕆​A2\mathbb{O}A^{2} of the form

[s,t]={(x,s​x+t):xβˆˆπ•†}\left[s,t\right]=\left\{\left(x,sx+t\right):x\in\mathbb{O}\right\} (21)

where ss is the slope of the line. Then [s,t]\left[s,t\right] is mapped into the projective line orthogonal to the vector (s¯​t,βˆ’tΒ―,βˆ’s;1,β€–sβ€–2,β€–tβ€–2)\left(\overline{s}t,-\overline{t},-s;1,\left\|s\right\|^{2},\left\|t\right\|^{2}\right), i.e.

[s,t]↦ℝ​(s¯​t,βˆ’tΒ―,βˆ’s;1,β€–sβ€–2,β€–tβ€–2)βŸ‚.\left[s,t\right]\mapsto\mathbb{R}\left(\overline{s}t,-\overline{t},-s;1,\left\|s\right\|^{2},\left\|t\right\|^{2}\right)^{\perp}. (22)

Vertical lines [c]\left[c\right] that are of the form {c}Γ—(𝕆),\left\{c\right\}\times\left(\mathbb{O}\right), are mapped into lines of 𝕆​P2\mathbb{O}P^{2} given by

[c]↦ℝ​(βˆ’c,0,0;0,1,β€–cβ€–2)βŸ‚.\left[c\right]\mapsto\mathbb{R}\left(-c,0,0;0,1,\left\|c\right\|^{2}\right)^{\perp}. (23)

Finally the line at infinity [∞]\left[\infty\right] is mapped to the orthogonal space of the vector

[∞]↦ℝ​(0,0,0;0,0,1)βŸ‚.\left[\infty\right]\mapsto\mathbb{R}\left(0,0,0;0,0,1\right)^{\perp}. (24)

3 The Exceptional Jordan Algebra 𝔍3​(𝕆)\mathfrak{J}_{3}\left(\mathbb{O}\right)

The exceptional Jordan algebra 𝔍3​(𝕆)\mathfrak{J}_{3}\left(\mathbb{O}\right) is the algebra of Hermitian three by three octonionic matrices with the Jordan product

X∘Y=12​(X​Y+Y​X).X\circ Y=\frac{1}{2}\left(XY+YX\right). (25)

It is easy to see that 𝔍3​(𝕆)\mathfrak{J}_{3}\left(\mathbb{O}\right) is commutative, i.e. X∘Y=Y∘XX\circ Y=Y\circ X and satisfies the Jordan identity

(X2∘Y)∘X=X2∘(Y∘X).\left(X^{2}\circ Y\right)\circ X=X^{2}\circ\left(Y\circ X\right). (26)

We then define the bilinear form

(X,Y)=12​tr(X∘Y)\left(X,Y\right)=\frac{1}{2}\text{tr$\left(X\circ Y\right)$} (27)

the quadratic form whose the previous bilinear form is a polarisation

Q​(X)=12​tr(X2)Q\left(X\right)=\frac{1}{2}\text{tr$\left(X^{2}\right)$} (28)

and the Freudenthal product, i.e.

Xβˆ—Y=X∘Yβˆ’14​(X​tr(Y)+Y​tr(X))+14​(tr(X)tr(Y)βˆ’tr(X∘Y))​I3X*Y=X\circ Y-\frac{1}{4}\left(X\text{tr$\left(Y\right)$}+Y\text{tr$\left(X\right)$}\right)+\frac{1}{4}\left(\text{tr$\left(X\right)$}\text{tr$\left(Y\right)$}-\text{tr$\left(X\circ Y\right)$}\right)I_{3} (29)

where I3=d​i​a​g​(+,+,+)I_{3}=diag(+,+,+), along with the symmetric trilinear form

(X,Y,Z)=13​(X,Yβˆ—Z)\left(X,Y,Z\right)=\frac{1}{3}\left(X,Y*Z\right) (30)

and the determinant

det​(X)=13​(X,X,X).\text{det}\left(X\right)=\frac{1}{3}\left(X,X,X\right). (31)

Now, let ℝ​w\mathbb{R}w be a point in the projective plane 𝕆​P2\mathbb{O}P^{2}, related to a vector in 𝕆3×ℝ3\mathbb{O}^{3}\times\mathbb{R}^{3} with Veronese coordinates w=(xΞ½;λν)Ξ½w=\left(x_{\nu};\lambda_{\nu}\right)_{\nu} and consider the map from V≅𝕆3×ℝ3V\cong\mathbb{O}^{3}\times\mathbb{R}^{3} into the space of three by three Hermitian matrices with octonionic coefficients, defined as

(xΞ½;λν)ν↦(Ξ»1x3xΒ―2xΒ―3Ξ»2x1x2xΒ―1Ξ»3).\left(x_{\nu};\lambda_{\nu}\right)_{\nu}\mapsto\left(\begin{array}[]{ccc}\lambda_{1}&x_{3}&\overline{x}_{2}\\ \overline{x}_{3}&\lambda_{2}&x_{1}\\ x_{2}&\overline{x}_{1}&\lambda_{3}\end{array}\right). (32)

We then have that

det​(X)=Ξ»1​λ2​λ3βˆ’Ξ»1​‖x1β€–2βˆ’Ξ»2​‖x2β€–2βˆ’Ξ»3​‖x3β€–2+2​Re​((x1​x2)​x3)\text{det}\left(X\right)=\lambda_{1}\lambda_{2}\lambda_{3}-\lambda_{1}\left\|x_{1}\right\|^{2}-\lambda_{2}\left\|x_{2}\right\|^{2}-\lambda_{3}\left\|x_{3}\right\|^{2}+2\text{Re}\left(\left(x_{1}x_{2}\right)x_{3}\right) (33)

that, imposing the Veronese conditions translates to det​(X)=0\text{det}\left(X\right)=0.

Moreover, let Xβ™―X^{\sharp} be the image of a non-zero element XX under the adjoint (β™―\sharp-)map of 𝔍3𝕆\mathfrak{J}_{3}^{\mathbb{O}}, which is given by (cf. Example 5 of [12])

Xβ™―:=(Ξ»2​λ3βˆ’β€–x1β€–2x2¯​x1Β―βˆ’Ξ»3​x3x3​x1βˆ’Ξ»2​x2Β―x1​x2βˆ’Ξ»3​x3Β―Ξ»1​λ3βˆ’β€–x2β€–2x3¯​x2Β―βˆ’Ξ»1​x1x1¯​x3Β―βˆ’Ξ»2​x2x2​x3βˆ’Ξ»1​x1Β―Ξ»1​λ2βˆ’β€–x3β€–2).X^{\sharp}:=\left(\begin{array}[]{ccc}\lambda_{2}\lambda_{3}-\left\|x_{1}\right\|^{2}&\overline{x_{2}}\overline{x_{1}}-\lambda_{3}x_{3}&x_{3}x_{1}-\lambda_{2}\overline{x_{2}}\\ x_{1}x_{2}-\lambda_{3}\overline{x_{3}}&\lambda_{1}\lambda_{3}-\left\|x_{2}\right\|^{2}&\overline{x_{3}}\overline{x_{2}}-\lambda_{1}x_{1}\\ \overline{x_{1}}\overline{x_{3}}-\lambda_{2}x_{2}&x_{2}x_{3}-\lambda_{1}\overline{x_{1}}&\lambda_{1}\lambda_{2}-\left\|x_{3}\right\|^{2}\end{array}\right). (34)

From this explicit expression, it is immediate to realize that the Veronese conditions are equivalent to the vanishing of Xβ™―X^{\sharp}. Then, by the Str(𝔍3​(𝕆))\left(\mathfrak{J}_{3}\left(\mathbb{O}\right)\right)-invariant definition of the rank of an element of 𝔍3​(𝕆)\mathfrak{J}_{3}\left(\mathbb{O}\right) [9], one obtains that the Veronese conditions are equivalent to the rank-1 condition for an element of 𝔍3​(𝕆)\mathfrak{J}_{3}\left(\mathbb{O}\right).

Thus, from the knowledge of the orbit stratification of 𝔍3𝕆\mathfrak{J}_{3}^{\mathbb{O}} under the non-transitive action of its reduced structure group Str(𝔍3(𝕆))0≃E6​(βˆ’26){}_{0}\left(\mathfrak{J}_{3}\left(\mathbb{O}\right)\right)\simeq\text{E}_{6(-26)}, it follows that the Veronese conditions for a non-zero element of 𝔍3​(𝕆)\mathfrak{J}_{3}\left(\mathbb{O}\right) are equivalent to imposing that such an element belongs to the (unique) rank-1 orbit of E6​(βˆ’26)\text{E}_{6(-26)} in 𝔍3​(𝕆)\mathfrak{J}_{3}\left(\mathbb{O}\right) (cf. [small], and Refs. therein).

Now we want to show that in the rank-1 (unique) orbit of 𝔍3​(𝕆)\mathfrak{J}_{3}\left(\mathbb{O}\right), idempotency is equivalent to the condition of unitary trace. In order to do that, let us consider the element X2X^{2} and let us impose the condition of XX being of rank=1=1. Since this condition is equivalent to the Veronese conditions, one obtains

X2=(Ξ»12+Ξ»1​λ2+Ξ»1​λ3(Ξ»1+Ξ»2+Ξ»3)​x3(Ξ»1+Ξ»2+Ξ»3)​x2Β―(Ξ»1+Ξ»2+Ξ»3)​x3Β―Ξ»22+Ξ»1​λ2+Ξ»2​λ3(Ξ»1+Ξ»2+Ξ»3)​x1(Ξ»1+Ξ»2+Ξ»3)​x2(Ξ»1+Ξ»2+Ξ»3)​x1Β―Ξ»32+Ξ»1​λ3+Ξ»2​λ3)X^{2}={\scriptstyle\left(\begin{array}[]{ccc}\lambda_{1}^{2}+\lambda_{1}\lambda_{2}+\lambda_{1}\lambda_{3}&\left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right)x_{3}&\left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right)\overline{x_{2}}\\ \left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right)\overline{x_{3}}&\lambda_{2}^{2}+\lambda_{1}\lambda_{2}+\lambda_{2}\lambda_{3}&\left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right)x_{1}\\ \left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right)x_{2}&\left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right)\overline{x_{1}}&\lambda_{3}^{2}+\lambda_{1}\lambda_{3}+\lambda_{2}\lambda_{3}\end{array}\right)} (35)

from which it follows that X2=XX^{2}=X if and only if

Ξ»1+Ξ»2+Ξ»3=1\lambda_{1}+\lambda_{2}+\lambda_{3}=1 (36)

i.e. if and only if tr​(X)=1\text{tr}\left(X\right)=1. Thus, the idempotency condition for rank-1 elements of 𝔍3𝕆\mathfrak{J}_{3}^{\mathbb{O}} is equivalent to the condition of unitary trace.

4 Lie Groups of Type G2\text{G}_{2}, F4\text{F}_{4} and E6\text{E}_{6} as Groups of Collineations

We are now interested in the motions and symmetries of the octonionic projective plane. More specifically we are interested in collineations that are transformations of the projective plane that send lines into lines. If the collineation preserves the elliptic polarity or the hyperbolic polarity is then called elliptic or hyperbolic motion. Elliptic and hyperbolic motions are an equivalent characterization of the isometries of the projective or hyperbolic plane respectively, thus the elliptic motion group of the projective plane will be indicated as Iso​(𝕆​P2)\text{Iso}\left(\mathbb{O}P^{2}\right) and the hyperbolic motion group as Iso​(𝕆​H2)\text{Iso}\left(\mathbb{O}H^{2}\right).

Collineations of the Octonionic Projective Plane

A collineation is a bijection Ο†\varphi of the set of points of the plane onto itself, mapping lines onto lines. It is straightforward to see that the identity map is a collineation, as the inverse Ο†βˆ’1\varphi^{-1} and the composition Ο†βˆ˜Ο†β€²\varphi\circ\varphi^{\prime} are if Ο†,Ο†β€²\varphi,\varphi^{\prime} are both collineation. Therefore the set Coll​(𝕆​P2)\text{Coll}\left(\mathbb{O}P^{2}\right) of collineations is a group under composition of maps. It also has a proper subgroup of order three generated by the triality collineation that permutes three special points of the affine/projective octonionic plane, i.e. the origin of coordinate (0,0)\left(0,0\right), the point at the origin of the line at infinity which has coordinate (0)\left(0\right) and the point at infinity of the line at the infinity which has affine coordinate (∞)\left(\infty\right). In Veronese coordinates these three points are images of the following vectors

(0,0)\displaystyle\left(0,0\right) βŸΆβ„β€‹(0,0,0;0,0,1)\displaystyle\longrightarrow\mathbb{R}\left(0,0,0;0,0,1\right) (37)
(0)\displaystyle\left(0\right) βŸΆβ„β€‹(0,0,0;0,1,0)\displaystyle\longrightarrow\mathbb{R}\left(0,0,0;0,1,0\right) (38)
(∞)\displaystyle\left(\infty\right) βŸΆβ„β€‹(0,0,0;1,0,0)\displaystyle\longrightarrow\mathbb{R}\left(0,0,0;1,0,0\right) (39)

and the triality collineation Ο„\tau is given by

(x1,x2,x3;Ξ»1,Ξ»2,Ξ»3)↦(x2,x3,x1;Ξ»2,Ξ»3,Ξ»1)\left(x_{1},x_{2},x_{3};\lambda_{1},\lambda_{2},\lambda_{3}\right)\mapsto\left(x_{2},x_{3},x_{1};\lambda_{2},\lambda_{3},\lambda_{1}\right) (40)

that is a cyclic permutation of order three that leaves invariant the Veronese vectors. This means that it induces a bijection Ο„\tau on 𝕆​P2\mathbb{O}P^{2} that is unseen by the bilinear form Ξ²\beta and therefore maps lines into lines, since lines are constructed as the ortogonal space of a vector through the bilinear form Ξ²\beta.

Let us now consider the transformations Ta,bT_{a,b} of 𝕆3×ℝ3\mathbb{O}^{3}\times\mathbb{R}^{3} into itself defined on the Veronese coordinates as

x1⟢\displaystyle x_{1}\longrightarrow x1+Ξ»3​a\displaystyle x_{1}+\lambda_{3}a
x2⟢\displaystyle x_{2}\longrightarrow x2+Ξ»3​bΒ―\displaystyle x_{2}+\lambda_{3}\overline{b}
x3⟢\displaystyle x_{3}\longrightarrow x3+b​x1Β―+x2¯​aΒ―+Ξ»3​b​aΒ―\displaystyle x_{3}+b\overline{x_{1}}+\overline{x_{2}}\overline{a}+\lambda_{3}b\overline{a}
Ξ»1⟢\displaystyle\lambda_{1}\longrightarrow Ξ»1+⟨xΒ―2,a⟩+Ξ»3​‖bβ€–2\displaystyle\lambda_{1}+\left\langle\overline{x}_{2},a\right\rangle+\lambda_{3}\left\|b\right\|^{2} (41)
Ξ»2⟢\displaystyle\lambda_{2}\longrightarrow Ξ»2+⟨xΒ―1,a⟩+Ξ»3​‖aβ€–2\displaystyle\lambda_{2}+\left\langle\overline{x}_{1},a\right\rangle+\lambda_{3}\left\|a\right\|^{2}
λ3⟢\displaystyle\lambda_{3}\longrightarrow λ3.\displaystyle\lambda_{3}.

Those are in fact translations on the affine plane corresponding to the transformation (x1,x2)⟢(x1+a,x2+b)\left(x_{1},x_{2}\right)\longrightarrow\left(x_{1}+a,x_{2}+b\right) and they all induce collineations Ta,bT_{a,b} on 𝕆​P2\mathbb{O}P^{2}.

It can be shown that all collineations are generated by the interplay between a translation and the conjugation of a power of the triality collineation, i.e. are of the form

Ta,b,τ​Ta,bβ€‹Ο„βˆ’1,Ο„2​Ta,bβ€‹Ο„βˆ’2.T_{a,b},\,\,\,\tau T_{a,b}\tau^{-1},\,\,\,\tau^{2}T_{a,b}\tau^{-2}. (42)

From another perspective, collineations transform lines of 𝕆​P2\mathbb{O}P^{2} in lines of 𝕆​P2\mathbb{O}P^{2}. This is equivalent to find all the linear transformations AA of VV in itself such that the image of Veronese vectors is still a Veronese vector A​(H)βŠ‚HA\left(H\right)\subset H. If this condition is fulfilled, the linear transformation AA in End​(V)\text{End}\left(V\right) will induce a collineation Ο†\varphi on 𝕆​P2\mathbb{O}P^{2}, i.e.

𝕆3×ℝ3βŸΆπ΄π•†3×ℝ3↑↑𝕆​P2βŸΆπœ‘π•†β€‹P2\begin{array}[]{ccc}\mathbb{O}^{3}\times\mathbb{R}^{3}&\overset{A}{\longrightarrow}&\mathbb{O}^{3}\times\mathbb{R}^{3}\\ \uparrow&&\uparrow\\ \mathbb{O}P^{2}&\overset{\varphi}{\longrightarrow}&\mathbb{O}P^{2}\end{array} (43)

Since all linear multiple of the transformation AA will produce the same collineation Ο†\varphi, to have a bijection between linear transformations and collineations we have to impose also det​(A)=1\text{det}\left(A\right)=1. That is that the group of collineation Coll​(𝕆​P2)\text{Coll}\left(\mathbb{O}P^{2}\right) is

SL​(V,H)≔{A∈End​(V);A​(H)βŠ†H;det​(A)=1}.\text{SL}\left(V,H\right)\coloneqq\left\{A\in\text{End}\left(V\right);A\left(H\right)\subseteq H;\text{det}\left(A\right)=1\right\}. (44)

If we also impose the preservation of the elliptic polarity, i.e. of the bilinear form Ξ²\beta, we will then have the group of elliptic motion Iso​(𝕆​P2)\text{Iso}\left(\mathbb{O}P^{2}\right) that is

SU​(V,H)={A∈End​(V);A​(H)βŠ†H;det​(A)=1;tr​(A)=1}.\text{SU}\left(V,H\right)=\left\{A\in\text{End}\left(V\right);A\left(H\right)\subseteq H;\text{det}\left(A\right)=1;\text{tr}\left(A\right)=1\right\}. (45)

Those two groups are in fact two exceptional Lie Groups, i.e.

Coll​(𝕆​P2)β‰…SL​(V,H)\displaystyle\text{Coll}\left(\mathbb{O}P^{2}\right)\cong\text{SL}\left(V,H\right) β‰…E6\displaystyle\cong E_{6} (46)
Iso​(𝕆​P2)β‰…SU​(V,H)\displaystyle\text{Iso}\left(\mathbb{O}P^{2}\right)\cong\text{SU}\left(V,H\right) β‰…F4.\displaystyle\cong F_{4}. (47)

The identification of this two group is done through a direct determination of the generators as in [13]; instead, we will here follow Rosenfeld in [4] focusing on the Lie algebra of the group of collineations on 𝕆​P2\mathbb{O}P^{2}, i.e. 𝔠​𝔬​𝔩​𝔩​(𝕆​P2)\mathfrak{coll}\left(\mathbb{O}P^{2}\right), which is given by

𝔠​𝔬​𝔩​𝔩​(𝕆​P2)=𝔀2βŠ•π”ž3​(𝕆)\mathfrak{coll}\left(\mathbb{O}P^{2}\right)=\mathfrak{g}_{2}\oplus\mathfrak{a}_{3}\left(\mathbb{O}\right) (48)

where 𝔀2≅𝔑​𝔒​𝔯​(𝕆)\mathfrak{g}_{2}\cong\mathfrak{der}\left(\mathbb{O}\right) and π”ž3\mathfrak{a}_{3} are the three by three matrices on 𝕆\mathbb{O} with null trace, i.e. tr​(A)=0\text{tr}\left(A\right)=0. The dimension count on the possible generators of this algebra, since the only condition you have is to have null trace, i.e. tr​(A)=0\text{tr}\left(A\right)=0, gives as only condition on

A=(a11a21a31a12a22a32a13a23a33)A=\left(\begin{array}[]{ccc}a_{1}^{1}&a_{2}^{1}&a_{3}^{1}\\ a_{1}^{2}&a_{2}^{2}&a_{3}^{2}\\ a_{1}^{3}&a_{2}^{3}&a_{3}^{3}\end{array}\right) (49)

the condition on the trace, i.e. a33=βˆ’(a11+a22)a_{3}^{3}=-\left(a_{1}^{1}+a_{2}^{2}\right), and therefore we have 88 entries of dimension 88 and dimβ€‹π”ž3ℝ=64\text{dim}{}_{\mathbb{R}}\mathfrak{a}_{3}=64. We therefore have

dimℝ​𝔠​𝔬​𝔩​𝔩​(𝕆​P2)β‰…78=64+14.\text{dim}_{\mathbb{R}}\mathfrak{coll}\left(\mathbb{O}P^{2}\right)\cong 78=64+14. (50)

Since 𝔠​𝔬​𝔩​𝔩​(𝕆​P2)\mathfrak{coll}\left(\mathbb{O}P^{2}\right) is a Lie group, simple and of dimension 78, then it must be of E6E_{6} type.

Isometries of the Plane

Again, following Rosenfeld [4] we look at the elliptic motions of 𝕆​P2\mathbb{O}P^{2}, which are the collineations that preserve also the polarity Ο€+\pi^{+} or equivalently the form Ξ²\beta; they are given by

𝔦​𝔰​𝔬​(𝕆​P2)=𝔀2βŠ•π”°β€‹π”žβ€‹(3)\mathfrak{iso}\left(\mathbb{O}P^{2}\right)=\mathfrak{g}_{2}\oplus\mathfrak{sa}\left(3\right) (51)

where we notated π”°β€‹π”žβ€‹(3)\mathfrak{sa}\left(3\right) the skew-Hermitian matrices with null trace. Here the elements of π”°β€‹π”žβ€‹(3)\mathfrak{sa}\left(3\right) are of the form

A=(a11a21βˆ’aΒ―31βˆ’aΒ―21a22a32a31βˆ’aΒ―32a33)A=\left(\begin{array}[]{ccc}a_{1}^{1}&a_{2}^{1}&-\overline{a}_{3}^{1}\\ -\overline{a}_{2}^{1}&a_{2}^{2}&a_{3}^{2}\\ a_{3}^{1}&-\overline{a}_{3}^{2}&a_{3}^{3}\end{array}\right) (52)

with ai​j=aΒ―j​ia_{ij}=\overline{a}_{ji}, a33=βˆ’(a11+a22)a_{3}^{3}=-\left(a_{1}^{1}+a_{2}^{2}\right) and Re​(a11)=Re​(a22)=0\text{Re}\left(a_{1}^{1}\right)=\text{Re}\left(a_{2}^{2}\right)=0. We therefore have 3 coefficient of dimension 88, 22 entries of dimension 77 and therefore dimβ„β€‹π”°β€‹π”žβ€‹(3)=38\text{dim}_{\mathbb{R}}\mathfrak{sa}\left(3\right)=38 so that

dimℝ​𝔦​𝔰​𝔬​(𝕆​P2)β‰…52=38+14\mathfrak{\text{dim}_{\mathbb{R}}\mathfrak{iso}}\left(\mathbb{O}P^{2}\right)\cong 52=38+14 (53)

and the group of elliptic motion Iso​(𝕆​P2)\text{Iso}\left(\mathbb{O}P^{2}\right), being simple and of dimension 52, is of the F4F_{4} type.

Moreover we can proceed as in [4] to find the collineations that preserve the hyperbolic polarity Ο€βˆ’\pi^{-} or equivalently the form Ξ²βˆ’\beta_{-} we previously defined. Here the element of the Lie algebra are of the form

A=(a11a21aΒ―31aΒ―21a22a32a31βˆ’aΒ―32a33)A=\left(\begin{array}[]{ccc}a_{1}^{1}&a_{2}^{1}&\overline{a}_{3}^{1}\\ \overline{a}_{2}^{1}&a_{2}^{2}&a_{3}^{2}\\ a_{3}^{1}&-\overline{a}_{3}^{2}&a_{3}^{3}\end{array}\right) (54)

with a11=(a22+a33)a_{1}^{1}=\left(a_{2}^{2}+a_{3}^{3}\right) and Re​(a11)=Re​(a22)=0\text{Re}\left(a_{1}^{1}\right)=\text{Re}\left(a_{2}^{2}\right)=0, therefore leading to the same count of the dimension of

dimℝ​𝔦​𝔰​𝔬​(𝕆​H2)β‰…52=38+14\mathfrak{\text{dim}_{\mathbb{R}}\mathfrak{iso}}\left(\mathbb{O}H^{2}\right)\cong 52=38+14 (55)

deducing that Iso​(𝕆​H2)\text{Iso}\left(\mathbb{O}H^{2}\right) is again an F4\text{F}_{4} type group.

Collineations with a Fixed Triangle or Quadrangle

We are now interested in studying the collineations Ο†\varphi on the affine plane that fix every point of β–³\triangle, i.e. φ​((0,0))=(0,0)\varphi\left(\left(0,0\right)\right)=\left(0,0\right), φ​((0))=(0)\varphi\left(\left(0\right)\right)=\left(0\right) and φ​((∞))=(∞)\varphi\left(\left(\infty\right)\right)=\left(\infty\right).

Proposition 1.

The group Γ​(β–³,𝕆)\Gamma\left(\triangle,\mathbb{O}\right) of collineations that fix every point of β–³\triangle are transformations of this form

(x,y)\displaystyle\left(x,y\right) ↦(A​(x),B​(y))\displaystyle\mapsto\left(A\left(x\right),B\left(y\right)\right) (56)
(s)\displaystyle\left(s\right) ↦(C​(s))\displaystyle\mapsto\left(C\left(s\right)\right) (57)
(∞)\displaystyle\left(\infty\right) ↦(∞)\displaystyle\mapsto\left(\infty\right) (58)

where A,BA,B and CC are automorphisms with respect to the sum over 𝕆\mathbb{O} and that satisfy

B​(s​x)=C​(s)​A​(x).B\left(sx\right)=C\left(s\right)A\left(x\right). (59)
Proof.

A collineation Ο†\varphi that fixes (0,0)\left(0,0\right), (0)\left(0\right) and (∞)\left(\infty\right), also fixes the xx-axis and yy-axis and all lines that are parallel to them. This means that the first coordinate is the image of a function that does not depend on yy and the second coordinate is image of a fuction that does not depend of xx, i.e. (x,y)↦(A​(x),B​(y))\left(x,y\right)\mapsto\left(A\left(x\right),B\left(y\right)\right) and (s)↦(C​(s))\left(s\right)\mapsto\left(C\left(s\right)\right). Now consider the image of a point on the line [s,t]\left[s,t\right]. The point is of the form (x,s​x+t)\left(x,sx+t\right) and its image goes to

(x,s​x+t)↦(A​(x),B​(s​x+t)).\left(x,sx+t\right)\mapsto\left(A\left(x\right),B\left(sx+t\right)\right). (60)

If we want this to be a collineation, the points of the line [s,t]\left[s,t\right] must all belong to the same line which can be easily identified setting x=0x=0, i.e. the image of [s,t]\left[s,t\right] is the line that joins the points (0,B​(t))\left(0,B\left(t\right)\right) and (C​(s))\left(C\left(s\right)\right). We now have that the condition for (A​(x),B​(s​x+t))\left(A\left(x\right),B\left(sx+t\right)\right) to be in the image of [s,t]\left[s,t\right] is

B​(s​x+t)=C​(s)​A​(x)+B​(t).B\left(sx+t\right)=C\left(s\right)A\left(x\right)+B\left(t\right). (61)

Now, if BB is an automorphism with respect to the sum over 𝕆\mathbb{O}, we then have the condition B​(s​x)=C​(s)​A​(x)B\left(sx\right)=C\left(s\right)A\left(x\right). Conversely if B​(s​x)=C​(s)​A​(x)B\left(sx\right)=C\left(s\right)A\left(x\right) is true that B​(s​x+t)=B​(s​x)+B​(t)B\left(sx+t\right)=B\left(sx\right)+B\left(t\right), and BB is an automorphism with respect to the sum. ∎

Let us consider the quadrangle β–‘\square given by the points (0,0)\left(0,0\right), (1,1)\left(1,1\right), (0)\left(0\right) and (∞)\left(\infty\right), that is β–‘=β–³βˆͺ{(1,1)}\square=\triangle\cup\left\{\left(1,1\right)\right\}, and consider the collineations that fix the β–‘\square. Since in addition to the previous case we also have to impose

(1,1)↦(A​(1),B​(1))=(1,1)\left(1,1\right)\mapsto\left(A\left(1\right),B\left(1\right)\right)=\left(1,1\right) (62)

then C​(1)=1C\left(1\right)=1 and, therefore A=B=CA=B=C and therefore AA is an automorphism of 𝕆\mathbb{O}. We then have the following

Proposition 2.

The collineations that fix every point of β–‘\square are transformations of the type

(x,y)\displaystyle\left(x,y\right) ↦(A​(x),A​(y))\displaystyle\mapsto\left(A\left(x\right),A\left(y\right)\right) (63)
(s)\displaystyle\left(s\right) ↦(A​(s))\displaystyle\mapsto\left(A\left(s\right)\right) (64)
(∞)\displaystyle\left(\infty\right) ↦(∞)\displaystyle\mapsto\left(\infty\right) (65)

where AA is an automorphism of 𝕆\mathbb{O}.

Moreover, since Aut​(𝕆)=G2​(βˆ’14)\text{Aut}\left(\mathbb{O}\right)=\text{G}_{2\left(-14\right)} and Aut​(𝕆s)=G2​(2)\text{Aut}\left(\mathbb{O}_{s}\right)=\text{G}_{2\left(2\right)} [18], we have the following

Corollary 1.

The group of collineations Γ​(β–‘,𝕆)\Gamma\left(\square,\mathbb{O}\right) that fix (0,0)\left(0,0\right), (1,1)\left(1,1\right), (0)\left(0\right) and (∞)\left(\infty\right) is isomorphic to Aut​(𝕆)\text{Aut}\left(\mathbb{O}\right). Therefore Γ​(β–‘,𝕆)\Gamma\left(\square,\mathbb{O}\right) is isomorphic to G2​(βˆ’14)\text{G}_{2\left(-14\right)}, while in the case of split octonions 𝕆s\mathbb{O}_{s} is isomorphic to G2​(2)\text{G}_{2\left(2\right)}.

It can be shown that the group of collineations Γ​(β–³,𝕆)\Gamma\left(\triangle,\mathbb{O}\right) is in fact the double cover of S​O8​(ℝ)SO_{8}\left(\mathbb{R}\right), i.e. Spin8​(ℝ)\text{Spin}_{8}\left(\mathbb{R}\right), that we define here as

Spin​(𝕆)={(A,B,C)∈O+​(𝕆)3:A​(x​y)=B​(x)​C​(y)β€‹βˆ€x,yβˆˆπ•†}\text{Spin}\left(\mathbb{O}\right)=\left\{\left(A,B,C\right)\in O^{+}\left(\mathbb{O}\right)^{3}:A\left(xy\right)=B\left(x\right)C\left(y\right)\,\,\,\forall x,y\in\mathcal{\mathbb{O}}\right\} (66)

where O+O^{+} is the connected component of the orthogonal group with the identity.

Proposition 3.

The Lie algebra L​i​e​(Γ​(β–³,𝕆))Lie\left(\Gamma\left(\triangle,\mathbb{O}\right)\right) of the group of collineation that fixes (0,0),(0)\left(0,0\right),\left(0\right) and (∞)\left(\infty\right)

𝔱​𝔯​𝔦​(𝕆)={(T1,T2,T3)βˆˆπ”°β€‹π”¬β€‹(𝕆)3:T1​(x​y)=T2​(x)​y+x​T3​(y)}\mathfrak{tri}\left(\mathbb{O}\right)=\left\{\left(T_{1},T_{2},T_{3}\right)\in\mathfrak{so}\left(\mathbb{\mathbb{O}}\right)^{3}:T_{1}\left(xy\right)=T_{2}\left(x\right)y+xT_{3}\left(y\right)\right\} (67)

while the Lie algebra L​i​e​(Γ​(β–‘,𝕆))Lie\left(\Gamma\left(\square,\mathbb{O}\right)\right) of the group of collineation that fixes (0,0)\left(0,0\right), (1,1)\left(1,1\right), (0)\left(0\right) and (∞)\left(\infty\right) is

𝔑​𝔒​𝔯​(𝕆)={Tβˆˆπ”°β€‹π”¬β€‹(𝕆):T​(x​y)=T​(x)​y+x​T​(y)}.\mathfrak{der}\left(\mathbb{O}\right)=\left\{T\in\mathfrak{so}\left(\mathbb{O}\right):T\left(xy\right)=T\left(x\right)y+xT\left(y\right)\right\}. (68)
Proof.

Γ​(β–³,𝕆)\Gamma\left(\triangle,\mathbb{O}\right) is a Lie group since it is a closed subgroup of the Lie group of collineations. We will find directly its Lie algebra considering the elements A,B,CβˆˆΞ“β€‹(β–³,𝕆)A,B,C\in\Gamma\left(\triangle,\mathbb{O}\right) in a neighbourhood of the identity and writing them as

(A,B,C)⟢(Id+ϡ​T1,Id+ϡ​T2,Id+ϡ​T3)\left(A,B,C\right)\longrightarrow\left(\text{Id}+\epsilon T_{1},\text{Id}+\epsilon T_{2},\text{Id}+\epsilon T_{3}\right)

where T1,T2,T3βˆˆπ”°β€‹π”¬β€‹(𝕆)T_{1},T_{2},T_{3}\in\mathfrak{so}\left(\mathbb{\mathbb{O}}\right). Imposing the condition A​(x​y)=B​(x)​C​(y)A\left(xy\right)=B\left(x\right)C\left(y\right) and then we obtain

(Id+ϡ​T1)​(x​y)\displaystyle\left(\text{Id}+\epsilon T_{1}\right)\left(xy\right) =(Id+ϡ​T2)​(x)​(Id+ϡ​T3)​(x)\displaystyle=\left(\text{Id}+\epsilon T_{2}\right)\left(x\right)\left(\text{Id}+\epsilon T_{3}\right)\left(x\right) (69)

which, considering Ο΅2=0\epsilon^{2}=0, yields to

T1​(x​y)=T2​(x)​y+x​T3​(y).T_{1}\left(xy\right)=T_{2}\left(x\right)y+xT_{3}\left(y\right). (70)

The second part of the proposition is obtained imposing T1=T2=T3=TT_{1}=T_{2}=T_{3}=T. ∎

We then have the following

Γ​(β–³,𝕆)β‰…\displaystyle\Gamma\left(\triangle,\mathbb{O}\right)\cong Spin​(𝕆)β‰…Spin8​(ℝ)\displaystyle\text{Spin}\left(\mathbb{O}\right)\cong\text{Spin}_{8}\left(\mathbb{R}\right) (71)
Γ​(β–‘,𝕆)β‰…\displaystyle\Gamma\left(\square,\mathbb{O}\right)\cong Aut​(𝕆)β‰…G2​(βˆ’14)\displaystyle\text{Aut}\left(\mathbb{O}\right)\cong\text{G}_{2\left(-14\right)} (72)

and, passing to Lie algebras, we obtain

L​i​e​(Γ​(β–³,𝕆))β‰…\displaystyle Lie\left(\Gamma\left(\triangle,\mathbb{O}\right)\right)\cong 𝔱​𝔯​𝔦​(𝕆)≅𝔰​𝔬​(𝕆)\displaystyle\mathfrak{tri}\left(\mathbb{O}\right)\cong\mathfrak{so}\left(\mathbb{\mathbb{O}}\right) (73)
L​i​e​(Γ​(β–‘,𝕆))β‰…\displaystyle Lie\left(\Gamma\left(\square,\mathbb{O}\right)\right)\cong 𝔑​𝔒​𝔯​(𝕆)≅𝔀2​(βˆ’14).\displaystyle\mathfrak{der}\left(\mathbb{O}\right)\cong\mathfrak{g}_{2(-14)}. (74)

By considering the split Octonions 𝕆s\mathbb{O}_{s}, previous formulas yield to

Γ​(β–³,𝕆s)β‰…\displaystyle\Gamma\left(\triangle,\mathbb{O}_{s}\right)\cong Spin​(𝕆s)β‰…Spin(4,4)​(ℝ)\displaystyle\text{Spin}\left(\mathbb{O}_{s}\right)\cong\text{Spin}_{(4,4)}\left(\mathbb{R}\right) (75)
Γ​(β–‘,𝕆)β‰…\displaystyle\Gamma\left(\square,\mathbb{O}\right)\cong Aut​(𝕆)β‰…G2​(2)\displaystyle\text{Aut}\left(\mathbb{O}\right)\cong\text{G}_{2\left(2\right)} (76)

and, passing to Lie algebras, we obtain

L​i​e​(Γ​(β–³,𝕆s))β‰…\displaystyle Lie\left(\Gamma\left(\triangle,\mathbb{O}_{s}\right)\right)\cong 𝔱​𝔯​𝔦​(𝕆s)≅𝔰​𝔬​(𝕆𝕀)≅𝔰​𝔬4,4\displaystyle\mathfrak{tri}\left(\mathbb{O}_{s}\right)\cong\mathfrak{so}\left(\mathbb{\mathbb{O}_{s}}\right)\cong\mathfrak{so}_{4,4} (77)
L​i​e​(Γ​(β–‘,𝕆))β‰…\displaystyle Lie\left(\Gamma\left(\square,\mathbb{O}\right)\right)\cong 𝔑​𝔒​𝔯​(𝕆)≅𝔀2​(2).\displaystyle\mathfrak{der}\left(\mathbb{O}\right)\cong\mathfrak{g}_{2(2)}. (78)

Resuming all the findings, following Yokota [18, p.105] in the definition of real forms of E6\text{E}_{6}, we then have the following motion groups arising from the octonionic and split-octonionic projective and hyperbolic plane, i.e.

Proj. Space Collineation group Isometry group Γ​(β–‘)\Gamma\left(\square\right)
𝕆​Pβ„‚2\mathbb{O}P_{\mathbb{C}}^{2} E6β„‚\text{E}_{6}^{\mathbb{C}} F4β„‚\text{F}_{4}^{\mathbb{C}} G2β„‚G_{2}^{\mathbb{C}}
𝕆​P2\mathbb{O}P^{2} E6​(βˆ’26)\text{E}_{6\left(-26\right)} F4​(βˆ’52)\text{F}_{4\left(-52\right)} G2​(βˆ’14)G_{2(-14)}
𝕆s​P2\mathbb{O}_{s}P^{2} E6​(6)\text{E}_{6\left(6\right)} F4​(4)\text{F}_{4\left(4\right)} G2​(2)G_{2(2)}
𝕆s​H2\mathbb{O}_{s}H^{2} E6​(2)\text{E}_{6\left(2\right)} F4​(4)\text{F}_{4\left(4\right)} G2​(2)G_{2(2)}
𝕆​H2\mathbb{O}H^{2} E6​(βˆ’14)\text{E}_{6\left(-14\right)} F4​(βˆ’20)\text{F}_{4\left(-20\right)} G2​(βˆ’14)G_{2(-14)}

5 Classification of the Octonionic Projective Planes

Thus, the space of rank-1 idempotent elements of 𝔍3​(𝕆)\mathfrak{J}_{3}\left(\mathbb{O}\right) enjoys the following expression as an homogeneous space

F4​(βˆ’52)Spin9,\frac{\text{F}_{4(-52)}}{\text{Spin}_{9}}, (79)

which is a compact Riemannian symmetric space, of (geodesic) rank =1=1 and of real dimension

dimℝ​(F4​(βˆ’52)S​p​i​n9)=dimℝ​(F4​(βˆ’52))βˆ’dimℝ​(Spin9)=52βˆ’36=16,\text{dim}_{\mathbb{R}}\left(\frac{\text{F}_{4(-52)}}{Spin_{9}}\right)=\text{dim}_{\mathbb{R}}\left(\text{F}_{4(-52)}\right)-\text{dim}_{\mathbb{R}}\left(\text{Spin}_{9}\right)=52-36=16, (80)

as expected from the number of degrees of freedom characterizing rank-1 idempotents of 𝔍3​(𝕆)\mathfrak{J}_{3}\left(\mathbb{O}\right) itself. Since the unitary trace condition is imposed on top of Veronese conditions, the coset (79) is a (proper) submanifold of π’ͺrank​ 1​(𝔍3​(𝕆))\mathcal{O}_{\text{rank}\leavevmode\nobreak\ 1}\left(\mathfrak{J}_{3}\left(\mathbb{O}\right)\right), i.e.

F4​(βˆ’52)Spin9βŠ‚E6​(βˆ’26)Spin9,1⋉ℝ16​.\frac{\text{F}_{4(-52)}}{\text{Spin}_{9}}\subset\frac{\text{E}_{6(-26)}}{\text{Spin}_{9,1}\ltimes\mathbb{R}^{16}}\text{.} (81)

The space (79) of rank-1 idempotent (or, equivalently, trace-1) elements of 𝔍3​(𝕆)\mathfrak{J}_{3}\left(\mathbb{O}\right) can be identified with the (compact real form of the) octonionic projective plane 𝕆​P2\mathbb{O}P^{2}, which is the largest octonionic (projective) geometry; this can also be hinted from the fact that the tangent space to the coset F4​(βˆ’52)/Spin9\text{F}_{4(-52)}/\text{Spin}_{9} transforms under the isotropy group Spin9\text{Spin}_{9} as its spinor irreducible representation πŸπŸ”\boldsymbol{16}, which can indeed be realized as a pair of octonions [16] :

𝔣4​(βˆ’52)=𝔰​𝔬9βŠ•πŸπŸ”β‡’T​(F4​(βˆ’52)Spin9)β‰ƒπŸπŸ”β€‹(ofΒ Spin9​)β‰ƒπ•†βŠ•π•†.\mathfrak{f}_{4(-52)}=\mathfrak{so}_{9}\oplus\mathbf{16}\Rightarrow T\left(\frac{\text{F}_{4(-52)}}{\text{Spin}_{9}}\right)\simeq\mathbf{16\leavevmode\nobreak\ }\text{(of\leavevmode\nobreak\ }\text{Spin}_{9}\text{)}\simeq\mathbb{O\oplus O}. (82)

Thus, one obtains that

π’ͺrank​ 1​(𝔍3​(𝕆))β‰…E6​(βˆ’26)Spin9,1⋉ℝ16βˆͺβˆͺ𝕆​P2β‰…F4​(βˆ’52)Spin9{\textstyle\begin{array}[]{ccc}\mathcal{O}_{\text{rank}\leavevmode\nobreak\ 1}\left(\mathfrak{J}_{3}\left(\mathbb{O}\right)\right)&\cong&\frac{\text{E}_{6(-26)}}{\text{Spin}_{9,1}\ltimes\mathbb{R}^{16}}\\ \cup&&\cup\\ \mathbb{O}P^{2}&\cong&\frac{\text{F}_{4(-52)}}{\text{Spin}_{9}}\end{array}} (83)

which gives an alternative definition of the octonionic projective plane.

Refer to caption
Figure 3: Satake diagrams of the real forms of F4\text{F}_{4}, their character Ο‡\chi and the corresponding octonionic plane whose they are the isometry group.

From the table in the previous section, we can then classify all possible octonionic planes. We start from the complexification of the Cayley plane

𝕆​P2​(β„‚)\displaystyle\mathbb{O}P^{2}\left(\mathbb{C}\right) ≃\displaystyle\simeq F4​(β„‚)S​p​i​n9​(β„‚)\displaystyle\frac{\text{F}_{4}\left(\mathbb{C}\right)}{Spin_{9}\left(\mathbb{C}\right)} (84)

and define three different real forms of the plane: a totally compact real coset, that identifies with 𝕆​P2\mathbb{O}P^{2}; a totally non compact which is 𝕆​H2\mathbb{O}H^{2}; a pseudo-Riemannian real coset that we will define as 𝕆​H~2\mathbb{O}\widetilde{H}^{2}. Those octonionic planes will be defined taking as isometry group F4​(βˆ’52)\text{F}_{4\left(-52\right)} and F4​(βˆ’20)\text{F}_{4\left(-20\right)}, while the last real form F4​(4)\text{F}_{4\left(4\right)} will yield to projective planes on the split-octonionic algebra 𝕆s\mathbb{O}_{s}, i.e.

𝕆​P2\displaystyle\mathbb{O}P^{2} ≃F4​(βˆ’52)S​p​i​n9\displaystyle\simeq\frac{\text{F}_{4(-52)}}{Spin_{9}} (85)
𝕆​H2\displaystyle\mathbb{O}H^{2} ≃F4​(βˆ’20)S​p​i​n9\displaystyle\simeq\frac{\text{F}_{4(-20)}}{Spin_{9}} (86)
𝕆​H~2\displaystyle\mathbb{O}\widetilde{H}^{2} ≃F4​(βˆ’20)S​p​i​n8,1\displaystyle\simeq\frac{\text{F}_{4(-20)}}{Spin_{8,1}} (87)
𝕆s​H~2\displaystyle\mathbb{O}_{s}\widetilde{H}^{2} ≃𝕆s​P2≃𝕆s​H2≃F4​(4)S​p​i​n5,4.\displaystyle\simeq\mathbb{O}_{s}P^{2}\simeq\mathbb{O}_{s}H^{2}\simeq\frac{\text{F}_{4(4)}}{Spin_{5,4}}. (88)

Moreover, if we consider the type of the plane, i.e. the cardinality of non-compact and compact generators (#n​c,#c)\left(\#_{nc},\#_{c}\right), and the character Ο‡\chi, i.e. the difference between the two, Ο‡=#n​cβˆ’#c\chi=\#_{nc}-\#_{c}, we then note that: the totally compact plane, i.e. the classical Cayley plane or the octonionic projective plane 𝕆​P2\mathbb{O}P^{2}, is of type (0,16)(0,16) and character Ο‡=16\chi=16; the totally non-compact one, i.e. hyperbolic octonionic plane 𝕆​H2\mathbb{O}H^{2}, is of type (16,0)\left(16,0\right) and character Ο‡=βˆ’16\chi=-16; while the other two planes named 𝕆​H~2\mathbb{O}\widetilde{H}^{2} and 𝕆s​H~2\mathbb{O}_{s}\widetilde{H}^{2} are of type (8,8)\left(8,8\right) and character Ο‡=0\chi=0.

6 Conclusions

We have presented an explicit construction of the octonionic projective and hyperbolic planes and showed how Lie groups of type G2\text{G}_{2}, F4\text{F}_{4} and E6\text{E}_{6} arise naturally as groups of motion of such planes. The fact that all different real forms of E6\text{E}_{6}, F4\text{F}_{4} and G2\text{G}_{2} can be recovered from similar constructions is of the uttermost physical importance since different physical theories require different real forms of Lie groups. Compact and non-compact forms of G2\text{G}_{2} are notoriously known to be isomorphic to automorphisms of Octonions and split Octonions. In this paper we show how they can be thought as the subgroup of collineations that fix a quadrangle of the Projective plane over Octonions and Split-Octonions. Different compact and non compact real forms of E6\text{E}_{6} and F4\text{F}_{4} are related to different but analogue geometric frameworks such as projective planes or hyperbolic planes over the algebra of Octonions and split Octonions. Indeed while we recover E6​(βˆ’26)\text{E}_{6\left(-26\right)} and F4​(βˆ’52)\text{F}_{4\left(-52\right)} as collineation and isometry group of the octonionic projective plane 𝕆​P2\mathbb{O}P^{2}, we have E6​(6)\text{E}_{6\left(6\right)} and F4​(4)\text{F}_{4\left(4\right)} for the split case 𝕆s​P2\mathbb{O}_{s}P^{2}. The hyperbolic plane over Octonions and split-Octonions lead to E6​(βˆ’14)\text{E}_{6\left(-14\right)} and F4​(βˆ’20)\text{F}_{4\left(-20\right)} in the octonionic case 𝕆​H2\mathbb{O}H^{2} or to E6​(2)\text{E}_{6\left(2\right)} and F4​(4)\text{F}_{4\left(4\right)} in the split case 𝕆s​H2\mathbb{O}_{s}H^{2}. The only real form left out is the compact E6​(βˆ’78)\text{E}_{6\left(-78\right)} which is obtained as isometry group of the complex Cayley plane or projective Rosenfeld plane over Bioctonions (β„‚βŠ—π•†)​P2\left(\mathbb{C}\otimes\mathbb{O}\right)P^{2} [6]. Moreover, we have classified all octonionic and split-octonionic projective planes as symmetric spaces.

7 Acknowledgments

The work of D.Corradetti is supported by a grant of the Quantum Gravity Research Institute. The work of AM is supported by a β€œMaria Zambrano" distinguished researcher fellowship, financed by the European Union within the NextGenerationEU program.

References

  • [1] Baez J., The Octonions, Bull. Amer. Math. Soc. 39 (2002) 145-205.
  • [2] Borsten L., Marrani A., A Kind of Magic, Class. Quant. Grav. 34 (2017) 23.
  • [3] Borsten L., Duff M.J., Ferrara S., Marrani A., Rubens W., Small Orbits, Phys. Rev. D85 (2012) 086002.
  • [4] Boyle L., The Standard Model, The Exceptional Jordan Algebra, and Triality arXiv:2006.16265 (2020).
  • [5] Corradetti D., Complexification of the Exceptional Jordan algebra and its relation with particle Physics, J. Geom. Symmetry Phys.61 (2021) 1-16.
  • [6] Corradetti D., Marrani A., Chester D. and Aschheim R., Conjugation Matters. Bioctonionic Veronese Vectors and Cayley-Rosenfeld Planes, ArXiv (2022) 2202.02050.
  • [7] Freudenthal H., Beziehungen der E7 und E8 zur Oktavenebene. I-XI, Indag. Math.16 (1954) 218-230.
  • [8] Hurwitz A., Uber die Composition der quadratischen Formen von beliebig vielen Variabeln, Nachr. Ges. Wiss. Gottingen, 1898.
  • [9] Jacobson N., Some groups of transformations defined by Jordan algebras. III, J. Reine Angew. Math. 207 (1961) 61–85.
  • [10] Jordan P., von Neumann J. and Wigner E., On an Algebraic Generalization of the Quantum Mechanical Formalism, Ann. Math. 35 (1934) 29-64.
  • [11] Krasnov, K., SO(9) characterisation of the Standard Model gauge group, Journal of Mathematical Physics 62 (2021) 021703.
  • [12] Krutelevich S., Jordan algebras, exceptional groups, and higher composition laws, J. Algebra 314 (2007) 924.
  • [13] Manogue C.A. and Dray T., The Geometry of Octonions, World Scientific 2015.
  • [14] Rosenfeld B., Geometry of Lie Groups, Kluwer 1997.
  • [16] Rosenfeld B., Geometry of Planes over Nonassociative Algebras, Acta Appl. Math. 50 (1998) 103-110.
  • [15] Salzmann H., Betten D., GrundhΓΆfer T., HΓ€hl H., LΓΆwen R. and Stroppel M., Compact Projective Planes: With an Introduction to Octonion Geometry, New York: De Gruyter, 2011.
  • [16] Sudbery A., Division algebras,(pseudo) orthogonal groups and spinors, J. Phys. A17 5 (1984) 939.
  • [17] Todorov I. and Dubois-Violette M., Deducing the Symmetry of the Standard Model from the Automorphism and Structure Groups of the Exceptional Jordan Algebra, Int. J. Mod. Phys. A 33 (2018) 1850118.
  • [18] Yokota I., Exceptional Lie Groups, arXiv:0902.0431 (2009).

1Departamento de MatemΓ‘tica
Universidade do Algarve
Campus de Gambelas
8005-139 Faro, Portugal
email: [email protected]

2Instituto de FΓ­sica Teorica, Dep.to de FΓ­sica,
Universidad de Murcia, Campus de Espinardo, E-30100, Spain
email:[email protected]
Β Β Β Β Β Β Β Β Β Β Β Β Β Β Β Β Β Β Β Β Β Β Β 
3 Quantum Gravity Research,
Los Angeles, California, CA 90290, USA
[email protected]
[email protected]