This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Observation of the decays χcJnKS0Λ¯+c.c.\chi_{cJ}\to nK^{0}_{S}\bar{\Lambda}+c.c.

M. Ablikim1, M. N. Achasov10,b, P. Adlarson67, S.  Ahmed15, M. Albrecht4, R. Aliberti28, A. Amoroso66A,66C, M. R. An32, Q. An63,49, X. H. Bai57, Y. Bai48, O. Bakina29, R. Baldini Ferroli23A, I. Balossino24A, Y. Ban38,i, K. Begzsuren26, N. Berger28, M. Bertani23A, D. Bettoni24A, F. Bianchi66A,66C, J. Bloms60, A. Bortone66A,66C, I. Boyko29, R. A. Briere5, H. Cai68, X. Cai1,49, A. Calcaterra23A, G. F. Cao1,54, N. Cao1,54, S. A. Cetin53A, J. F. Chang1,49, W. L. Chang1,54, G. Chelkov29,a, D. Y. Chen6, G. Chen1, H. S. Chen1,54, M. L. Chen1,49, S. J. Chen35, X. R. Chen25, Y. B. Chen1,49, Z. J Chen20,j, W. S. Cheng66C, G. Cibinetto24A, F. Cossio66C, X. F. Cui36, H. L. Dai1,49, X. C. Dai1,54, A. Dbeyssi15, R.  E. de Boer4, D. Dedovich29, Z. Y. Deng1, A. Denig28, I. Denysenko29, M. Destefanis66A,66C, F. De Mori66A,66C, Y. Ding33, C. Dong36, J. Dong1,49, L. Y. Dong1,54, M. Y. Dong1,49,54, X. Dong68, S. X. Du71, Y. L. Fan68, J. Fang1,49, S. S. Fang1,54, Y. Fang1, R. Farinelli24A, L. Fava66B,66C, F. Feldbauer4, G. Felici23A, C. Q. Feng63,49, J. H. Feng50, M. Fritsch4, C. D. Fu1, Y. Gao64, Y. Gao63,49, Y. Gao38,i, Y. G. Gao6, I. Garzia24A,24B, P. T. Ge68, C. Geng50, E. M. Gersabeck58, A Gilman61, K. Goetzen11, L. Gong33, W. X. Gong1,49, W. Gradl28, M. Greco66A,66C, L. M. Gu35, M. H. Gu1,49, S. Gu2, Y. T. Gu13, C. Y Guan1,54, A. Q. Guo22, L. B. Guo34, R. P. Guo40, Y. P. Guo9,g, A. Guskov29,a, T. T. Han41, W. Y. Han32, X. Q. Hao16, F. A. Harris56, K. L. He1,54, F. H. Heinsius4, C. H. Heinz28, T. Held4, Y. K. Heng1,49,54, C. Herold51, M. Himmelreich11,e, T. Holtmann4, G. Y. Hou1,54, Y. R. Hou54, Z. L. Hou1, H. M. Hu1,54, J. F. Hu47,k, T. Hu1,49,54, Y. Hu1, G. S. Huang63,49, L. Q. Huang64, X. T. Huang41, Y. P. Huang1, Z. Huang38,i, T. Hussain65, N Hüsken22,28, W. Ikegami Andersson67, W. Imoehl22, M. Irshad63,49, S. Jaeger4, S. Janchiv26, Q. Ji1, Q. P. Ji16, X. B. Ji1,54, X. L. Ji1,49, Y. Y. Ji41, H. B. Jiang41, X. S. Jiang1,49,54, J. B. Jiao41, Z. Jiao18, S. Jin35, Y. Jin57, M. Q. Jing1,54, T. Johansson67, N. Kalantar-Nayestanaki55, X. S. Kang33, R. Kappert55, M. Kavatsyuk55, B. C. Ke43,1, I. K. Keshk4, A. Khoukaz60, P.  Kiese28, R. Kiuchi1, R. Kliemt11, L. Koch30, O. B. Kolcu53A,d, B. Kopf4, M. Kuemmel4, M. Kuessner4, A. Kupsc67, M.  G. Kurth1,54, W. Kühn30, J. J. Lane58, J. S. Lange30, P.  Larin15, A. Lavania21, L. Lavezzi66A,66C, Z. H. Lei63,49, H. Leithoff28, M. Lellmann28, T. Lenz28, C. Li39, C. H. Li32, Cheng Li63,49, D. M. Li71, F. Li1,49, G. Li1, H. Li63,49, H. Li43, H. B. Li1,54, H. J. Li16, J. L. Li41, J. Q. Li4, J. S. Li50, Ke Li1, L. K. Li1, Lei Li3, P. R. Li31,l,m, S. Y. Li52, W. D. Li1,54, W. G. Li1, X. H. Li63,49, X. L. Li41, Xiaoyu Li1,54, Z. Y. Li50, H. Liang63,49, H. Liang1,54, H.  Liang27, Y. F. Liang45, Y. T. Liang25, G. R. Liao12, L. Z. Liao1,54, J. Libby21, C. X. Lin50, B. J. Liu1, C. X. Liu1, D.  Liu15,63, F. H. Liu44, Fang Liu1, Feng Liu6, H. B. Liu13, H. M. Liu1,54, Huanhuan Liu1, Huihui Liu17, J. B. Liu63,49, J. L. Liu64, J. Y. Liu1,54, K. Liu1, K. Y. Liu33, L. Liu63,49, M. H. Liu9,g, P. L. Liu1, Q. Liu68, Q. Liu54, S. B. Liu63,49, Shuai Liu46, T. Liu1,54, W. M. Liu63,49, X. Liu31,l,m, Y. Liu31,l,m, Y. B. Liu36, Z. A. Liu1,49,54, Z. Q. Liu41, X. C. Lou1,49,54, F. X. Lu50, H. J. Lu18, J. D. Lu1,54, J. G. Lu1,49, X. L. Lu1, Y. Lu1, Y. P. Lu1,49, C. L. Luo34, M. X. Luo70, P. W. Luo50, T. Luo9,g, X. L. Luo1,49, X. R. Lyu54, F. C. Ma33, H. L. Ma1, L. L.  Ma41, M. M. Ma1,54, Q. M. Ma1, R. Q. Ma1,54, R. T. Ma54, X. X. Ma1,54, X. Y. Ma1,49, F. E. Maas15, M. Maggiora66A,66C, S. Maldaner4, S. Malde61, Q. A. Malik65, A. Mangoni23B, Y. J. Mao38,i, Z. P. Mao1, S. Marcello66A,66C, Z. X. Meng57, J. G. Messchendorp55, G. Mezzadri24A, T. J. Min35, R. E. Mitchell22, X. H. Mo1,49,54, Y. J. Mo6, N. Yu. Muchnoi10,b, H. Muramatsu59, S. Nakhoul11,e, Y. Nefedov29, F. Nerling11,e, I. B. Nikolaev10,b, Z. Ning1,49, S. Nisar8,h, S. L. Olsen54, Q. Ouyang1,49,54, S. Pacetti23B,23C, X. Pan9,g, Y. Pan58, A. Pathak1, A.  Pathak27, P. Patteri23A, M. Pelizaeus4, H. P. Peng63,49, K. Peters11,e, J. Pettersson67, J. L. Ping34, R. G. Ping1,54, S. Pogodin29, R. Poling59, V. Prasad63,49, H. Qi63,49, H. R. Qi52, K. H. Qi25, M. Qi35, T. Y. Qi9, S. Qian1,49, W. B. Qian54, Z. Qian50, C. F. Qiao54, L. Q. Qin12, X. P. Qin9, X. S. Qin41, Z. H. Qin1,49, J. F. Qiu1, S. Q. Qu36, K. H. Rashid65, K. Ravindran21, C. F. Redmer28, A. Rivetti66C, V. Rodin55, M. Rolo66C, G. Rong1,54, Ch. Rosner15, M. Rump60, H. S. Sang63, A. Sarantsev29,c, Y. Schelhaas28, C. Schnier4, K. Schoenning67, M. Scodeggio24A,24B, D. C. Shan46, W. Shan19, X. Y. Shan63,49, J. F. Shangguan46, M. Shao63,49, C. P. Shen9, H. F. Shen1,54, P. X. Shen36, X. Y. Shen1,54, H. C. Shi63,49, R. S. Shi1,54, X. Shi1,49, X. D Shi63,49, J. J. Song41, W. M. Song27,1, Y. X. Song38,i, S. Sosio66A,66C, S. Spataro66A,66C, K. X. Su68, P. P. Su46, F. F.  Sui41, G. X. Sun1, H. K. Sun1, J. F. Sun16, L. Sun68, S. S. Sun1,54, T. Sun1,54, W. Y. Sun27, W. Y. Sun34, X Sun20,j, Y. J. Sun63,49, Y. K. Sun63,49, Y. Z. Sun1, Z. T. Sun1, Y. H. Tan68, Y. X. Tan63,49, C. J. Tang45, G. Y. Tang1, J. Tang50, J. X. Teng63,49, V. Thoren67, W. H. Tian43, Y. T. Tian25, I. Uman53B, B. Wang1, C. W. Wang35, D. Y. Wang38,i, H. J. Wang31,l,m, H. P. Wang1,54, K. Wang1,49, L. L. Wang1, M. Wang41, M. Z. Wang38,i, Meng Wang1,54, W. Wang50, W. H. Wang68, W. P. Wang63,49, X. Wang38,i, X. F. Wang31,l,m, X. L. Wang9,g, Y. Wang63,49, Y. Wang50, Y. D. Wang37, Y. F. Wang1,49,54, Y. Q. Wang1, Y. Y. Wang31,l,m, Z. Wang1,49, Z. Y. Wang1, Ziyi Wang54, Zongyuan Wang1,54, D. H. Wei12, F. Weidner60, S. P. Wen1, D. J. White58, U. Wiedner4, G. Wilkinson61, M. Wolke67, L. Wollenberg4, J. F. Wu1,54, L. H. Wu1, L. J. Wu1,54, X. Wu9,g, Z. Wu1,49, L. Xia63,49, H. Xiao9,g, S. Y. Xiao1, Z. J. Xiao34, X. H. Xie38,i, Y. G. Xie1,49, Y. H. Xie6, T. Y. Xing1,54, G. F. Xu1, Q. J. Xu14, W. Xu1,54, X. P. Xu46, Y. C. Xu54, F. Yan9,g, L. Yan9,g, W. B. Yan63,49, W. C. Yan71, Xu Yan46, H. J. Yang42,f, H. X. Yang1, L. Yang43, S. L. Yang54, Y. X. Yang12, Yifan Yang1,54, Zhi Yang25, M. Ye1,49, M. H. Ye7, J. H. Yin1, Z. Y. You50, B. X. Yu1,49,54, C. X. Yu36, G. Yu1,54, J. S. Yu20,j, T. Yu64, C. Z. Yuan1,54, L. Yuan2, X. Q. Yuan38,i, Y. Yuan1, Z. Y. Yuan50, C. X. Yue32, A. A. Zafar65, X. Zeng Zeng6, Y. Zeng20,j, A. Q. Zhang1, B. X. Zhang1, Guangyi Zhang16, H. Zhang63, H. H. Zhang50, H. H. Zhang27, H. Y. Zhang1,49, J. J. Zhang43, J. L. Zhang69, J. Q. Zhang34, J. W. Zhang1,49,54, J. Y. Zhang1, J. Z. Zhang1,54, Jianyu Zhang1,54, Jiawei Zhang1,54, L. M. Zhang52, L. Q. Zhang50, Lei Zhang35, S. Zhang50, S. F. Zhang35, Shulei Zhang20,j, X. D. Zhang37, X. Y. Zhang41, Y. Zhang61, Y.  T. Zhang71, Y. H. Zhang1,49, Yan Zhang63,49, Yao Zhang1, Z. H. Zhang6, Z. Y. Zhang68, G. Zhao1, J. Zhao32, J. Y. Zhao1,54, J. Z. Zhao1,49, Lei Zhao63,49, Ling Zhao1, M. G. Zhao36, Q. Zhao1, S. J. Zhao71, Y. B. Zhao1,49, Y. X. Zhao25, Z. G. Zhao63,49, A. Zhemchugov29,a, B. Zheng64, J. P. Zheng1,49, Y. Zheng38,i, Y. H. Zheng54, B. Zhong34, C. Zhong64, L. P. Zhou1,54, Q. Zhou1,54, X. Zhou68, X. K. Zhou54, X. R. Zhou63,49, X. Y. Zhou32, A. N. Zhu1,54, J. Zhu36, K. Zhu1, K. J. Zhu1,49,54, S. H. Zhu62, T. J. Zhu69, W. J. Zhu36, W. J. Zhu9,g, Y. C. Zhu63,49, Z. A. Zhu1,54, B. S. Zou1, J. H. Zou1
1 Institute of High Energy Physics, Beijing 100049, People’s Republic of China
2 Beihang University, Beijing 100191, People’s Republic of China
3 Beijing Institute of Petrochemical Technology, Beijing 102617, People’s Republic of China
4 Bochum Ruhr-University, D-44780 Bochum, Germany
5 Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
6 Central China Normal University, Wuhan 430079, People’s Republic of China
7 China Center of Advanced Science and Technology, Beijing 100190, People’s Republic of China
8 COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, 54000 Lahore, Pakistan
9 Fudan University, Shanghai 200443, People’s Republic of China
10 G.I. Budker Institute of Nuclear Physics SB RAS (BINP), Novosibirsk 630090, Russia
11 GSI Helmholtzcentre for Heavy Ion Research GmbH, D-64291 Darmstadt, Germany
12 Guangxi Normal University, Guilin 541004, People’s Republic of China
13 Guangxi University, Nanning 530004, People’s Republic of China
14 Hangzhou Normal University, Hangzhou 310036, People’s Republic of China
15 Helmholtz Institute Mainz, Staudinger Weg 18, D-55099 Mainz, Germany
16 Henan Normal University, Xinxiang 453007, People’s Republic of China
17 Henan University of Science and Technology, Luoyang 471003, People’s Republic of China
18 Huangshan College, Huangshan 245000, People’s Republic of China
19 Hunan Normal University, Changsha 410081, People’s Republic of China
20 Hunan University, Changsha 410082, People’s Republic of China
21 Indian Institute of Technology Madras, Chennai 600036, India
22 Indiana University, Bloomington, Indiana 47405, USA
23 INFN Laboratori Nazionali di Frascati , (A)INFN Laboratori Nazionali di Frascati, I-00044, Frascati, Italy; (B)INFN Sezione di Perugia, I-06100, Perugia, Italy; (C)University of Perugia, I-06100, Perugia, Italy
24 INFN Sezione di Ferrara, (A)INFN Sezione di Ferrara, I-44122, Ferrara, Italy; (B)University of Ferrara, I-44122, Ferrara, Italy
25 Institute of Modern Physics, Lanzhou 730000, People’s Republic of China
26 Institute of Physics and Technology, Peace Ave. 54B, Ulaanbaatar 13330, Mongolia
27 Jilin University, Changchun 130012, People’s Republic of China
28 Johannes Gutenberg University of Mainz, Johann-Joachim-Becher-Weg 45, D-55099 Mainz, Germany
29 Joint Institute for Nuclear Research, 141980 Dubna, Moscow region, Russia
30 Justus-Liebig-Universitaet Giessen, II. Physikalisches Institut, Heinrich-Buff-Ring 16, D-35392 Giessen, Germany
31 Lanzhou University, Lanzhou 730000, People’s Republic of China
32 Liaoning Normal University, Dalian 116029, People’s Republic of China
33 Liaoning University, Shenyang 110036, People’s Republic of China
34 Nanjing Normal University, Nanjing 210023, People’s Republic of China
35 Nanjing University, Nanjing 210093, People’s Republic of China
36 Nankai University, Tianjin 300071, People’s Republic of China
37 North China Electric Power University, Beijing 102206, People’s Republic of China
38 Peking University, Beijing 100871, People’s Republic of China
39 Qufu Normal University, Qufu 273165, People’s Republic of China
40 Shandong Normal University, Jinan 250014, People’s Republic of China
41 Shandong University, Jinan 250100, People’s Republic of China
42 Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
43 Shanxi Normal University, Linfen 041004, People’s Republic of China
44 Shanxi University, Taiyuan 030006, People’s Republic of China
45 Sichuan University, Chengdu 610064, People’s Republic of China
46 Soochow University, Suzhou 215006, People’s Republic of China
47 South China Normal University, Guangzhou 510006, People’s Republic of China
48 Southeast University, Nanjing 211100, People’s Republic of China
49 State Key Laboratory of Particle Detection and Electronics, Beijing 100049, Hefei 230026, People’s Republic of China
50 Sun Yat-Sen University, Guangzhou 510275, People’s Republic of China
51 Suranaree University of Technology, University Avenue 111, Nakhon Ratchasima 30000, Thailand
52 Tsinghua University, Beijing 100084, People’s Republic of China
53 Turkish Accelerator Center Particle Factory Group, (A)Istanbul Bilgi University, HEP Res. Cent., 34060 Eyup, Istanbul, Turkey; (B)Near East University, Nicosia, North Cyprus, Mersin 10, Turkey
54 University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
55 University of Groningen, NL-9747 AA Groningen, The Netherlands
56 University of Hawaii, Honolulu, Hawaii 96822, USA
57 University of Jinan, Jinan 250022, People’s Republic of China
58 University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
59 University of Minnesota, Minneapolis, Minnesota 55455, USA
60 University of Muenster, Wilhelm-Klemm-Str. 9, 48149 Muenster, Germany
61 University of Oxford, Keble Rd, Oxford, UK OX13RH
62 University of Science and Technology Liaoning, Anshan 114051, People’s Republic of China
63 University of Science and Technology of China, Hefei 230026, People’s Republic of China
64 University of South China, Hengyang 421001, People’s Republic of China
65 University of the Punjab, Lahore-54590, Pakistan
66 University of Turin and INFN, (A)University of Turin, I-10125, Turin, Italy; (B)University of Eastern Piedmont, I-15121, Alessandria, Italy; (C)INFN, I-10125, Turin, Italy
67 Uppsala University, Box 516, SE-75120 Uppsala, Sweden
68 Wuhan University, Wuhan 430072, People’s Republic of China
69 Xinyang Normal University, Xinyang 464000, People’s Republic of China
70 Zhejiang University, Hangzhou 310027, People’s Republic of China
71 Zhengzhou University, Zhengzhou 450001, People’s Republic of China
a Also at the Moscow Institute of Physics and Technology, Moscow 141700, Russia
b Also at the Novosibirsk State University, Novosibirsk, 630090, Russia
c Also at the NRC “Kurchatov Institute”, PNPI, 188300, Gatchina, Russia
d Currently at Istanbul Arel University, 34295 Istanbul, Turkey
e Also at Goethe University Frankfurt, 60323 Frankfurt am Main, Germany
f Also at Key Laboratory for Particle Physics, Astrophysics and Cosmology, Ministry of Education; Shanghai Key Laboratory for Particle Physics and Cosmology; Institute of Nuclear and Particle Physics, Shanghai 200240, People’s Republic of China
g Also at Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) and Institute of Modern Physics, Fudan University, Shanghai 200443, People’s Republic of China
h Also at Harvard University, Department of Physics, Cambridge, MA, 02138, USA
i Also at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, People’s Republic of China
j Also at School of Physics and Electronics, Hunan University, Changsha 410082, China
k Also at Guangdong Provincial Key Laboratory of Nuclear Science, Institute of Quantum Matter, South China Normal University, Guangzhou 510006, China
l Also at Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, People’s Republic of China
m Also at Lanzhou Center for Theoretical Physics, Lanzhou University, Lanzhou 730000, People’s Republic of China
Abstract

By analyzing 4.48×1084.48\times 10^{8} ψ(3686)\psi(3686) events collected with the BESIII detector, we observe the decays χcJnKS0Λ¯+c.c.\chi_{cJ}\to nK^{0}_{S}\bar{\Lambda}+c.c. (J=0J=0, 1, 2) for the first time, via the radiative transition ψ(3686)γχcJ\psi(3686)\to\gamma\chi_{cJ}. The branching fractions are determined to be (6.67±0.26stat±0.41syst)×104(6.67\pm 0.26_{\rm stat}\pm 0.41_{\rm syst})\times 10^{-4}, (1.71±0.12stat±0.12syst)×104(1.71\pm 0.12_{\rm stat}\pm 0.12_{\rm syst})\times 10^{-4}, and (3.66±0.17stat±0.23syst)×104(3.66\pm 0.17_{\rm stat}\pm 0.23_{\rm syst})\times 10^{-4} for J=0J=0, 1, and 2, respectively.

arxiv:

1 Introduction

Studying the hadronic decays of the cc¯c\bar{c} states J/ψJ/\psi, ψ(3686)\psi(3686), and χcJ\chi_{cJ} (J=0J=0, 1, 2) provides valuable information on perturbative QCD in the charmonium-mass regime and on the structure of charmonia. The color-octet mechanism, which successfully describes several decay patterns of P-wave χcJ\chi_{cJ} states ref::Wong , may be applicable to further χcJ\chi_{cJ} decays. Measurements of χcJ\chi_{cJ} hadronic decays can provide new input on the color-octet mechanism and further assist in understanding χcJ\chi_{cJ} decay mechanisms.

The BES Collaboration observed near-threshold structures in baryon-antibaryon invariant mass distributions in the radiative decay J/ψγpp¯J/\psi\to\gamma p\bar{p} ref::prl-91-022001 and the purely hadronic decay J/ψpKΛ¯J/\psi\to pK^{-}\bar{\Lambda} ref::prl-93-112002 . It was suggested theoretically that these near-threshold structures might be observation of baryonium ref::Datta1 ; ref::Datta2 ; ref::Datta3 or caused by final state interactions ref::Kerbikov1 ; ref::Kerbikov2 ; ref::Kerbikov3 . Excited Λ\Lambda and NN resonances were observed in the study of the decay J/ψnKS0Λ¯J/\psi\to nK_{S}^{0}\bar{\Lambda} ref::plb-659-789 . Studying the same decay modes in other charmonia can provide complementary information on these structures.

Anomalous enhancements near the threshold of pΛ¯+c.c.p\bar{\Lambda}+c.c. have been also observed in the decays of χcJpKΛ¯+c.c.\chi_{cJ}\to pK^{-}\bar{\Lambda}+c.c. by the BESIII Collaboration ref::paper-pkl . If isospin symmetry is conserved, the decay branching fraction (BF) ratio (χcJpKΛ¯+c.c.)/(χcJnKS0Λ¯+c.c.)2\mathcal{B}(\chi_{cJ}\to pK^{-}\bar{\Lambda}+c.c.)/\mathcal{B}(\chi_{cJ}\to nK^{0}_{S}\bar{\Lambda}+c.c.)\sim 2 should be satisfied, thereby implying the existence of the isospin conjugate decays χcJnKS0Λ¯+c.c.\chi_{cJ}\to nK^{0}_{S}\bar{\Lambda}+c.c..

In this analysis, we present the study of χcJnKS0Λ¯+c.c.\chi_{cJ}\to nK^{0}_{S}\bar{\Lambda}+c.c. using the ψ(3686)\psi(3686) data sample containing (4.48±0.03)×108(4.48\pm 0.03)\times 10^{8} events collected at BESIII ref::CPC42_023001 . The radiative decays ψ(3686)γχcJ\psi(3686)\to\gamma\chi_{cJ}, which have a BF of approximately 10% for each χcJ\chi_{cJ} ref::pdg2014 , offer an ideal environment to investigate χcJ\chi_{cJ} decays. Throughout this paper, charge conjugate modes are implied unless otherwise stated.

2 Detector and data sets

The BESIII detector is a magnetic spectrometer Ablikim:2009aa ; Ablikim:2019hff located at the Beijing Electron Positron Collider (BEPCII) Yu:IPAC2016-TUYA01 . The cylindrical core of the BESIII detector consists of a helium-based multilayer drift chamber (MDC), a plastic scintillator time-of-flight system (TOF), and a CsI(Tl) electromagnetic calorimeter (EMC), which are all enclosed in a superconducting solenoidal magnet providing a 1.0 T magnetic field. The solenoid is supported by an octagonal flux-return yoke with resistive plate counter muon identifier modules interleaved with steel. The acceptance of charged particles and photons is 93% over 4π4\pi solid angle. The charged-particle momentum resolution at 1.0 GeV/cc is 0.5%0.5\%, and the specific energy loss (dE/dxdE/dx) resolution is 6%6\% for the electrons from Bhabha scattering. The EMC measures photon energies with a resolution of 2.5%2.5\% (5%5\%) at 11 GeV in the barrel (end cap) region. The time resolution of the TOF barrel part is 68 ps, while that of the end cap part is 110 ps.

Simulated samples produced with the geant4-based GEANT4 Monte-Carlo (MC) software, which includes the geometric description of the BESIII detector and the detector response, are used to determine the detection efficiencies and to estimate the background levels. The simulation takes into account the beam energy spread and initial state radiation (ISR) in the e+ee^{+}e^{-} annihilation modeled with the generator kkmc KKMC . The inclusive MC samples consist of 5.06×1085.06\times 10^{8} ψ(3686)\psi(3686) events, the ISR production of the J/ψJ/\psi state, and the continuum processes incorporated in kkmc. The known decay modes are modeled with eventgen EVTGEN1 using the BFs taken from the Particle Data Group (PDG) ref::pdg2014 , and the remaining unknown decays from the charmonium states with lundcharm LUNDCHARM1 . Radiation from charged final state particles is incorporated with the photos PHOTOS package.

The signal detection efficiencies are estimated with signal MC samples. The decays of ψ(3686)γχcJ\psi(3686)\to\gamma\chi_{cJ} (J=0J=0, 1, 2) are simulated following Ref. ref::paper-ggJp , in which the magnetic-quadrupole (M2) transition for ψ(3686)γχc1,2\psi(3686)\to\gamma\chi_{c1,2} and the electricoctupole (E3) transition for ψ(3686)γχc2\psi(3686)\to\gamma\chi_{c2} are considered in addition to the dominant electric-dipole (E1) transition. For the decay χcJnKS0Λ¯+c.c.\chi_{cJ}\to nK^{0}_{S}\bar{\Lambda}+c.c., a special generator based on results of Helicity Partial Wave Analysis (HelPWA) SM ; ref::chung ; ref::blatt ; ref::helb3 is used. The background MC samples are obtained from inclusive MC samples, in which the signal channels are removed with TopoAna TopoAna , and the samples are normalized to the data sample based on luminosity.

3 Event selection and background analysis

The signal process ψ(3686)γχcJ,χcJnKS0Λ¯\psi(3686)\to\gamma\chi_{cJ},\chi_{cJ}\to nK^{0}_{S}\bar{\Lambda} with KS0π+πK^{0}_{S}\to\pi^{+}\pi^{-} and Λ¯p¯π+\bar{\Lambda}\to\bar{p}\pi^{+} consists of the final state particles γnp¯π+π+π\gamma n\bar{p}\pi^{+}\pi^{+}\pi^{-}. Charged track candidates from the MDC must satisfy |cosθ|<0.93|\!\cos\theta|<0.93, where θ\theta is the polar angle with respect to the zz axis, which is the axis of the MDC. The closest approach to the interaction point is required to be less than 20 cm along the zz direction and less than 10 cm in the plane perpendicular to zz. The TOF and dE/dxdE/dx information are combined to calculate the particle identification probabilities (PP) for the hypotheses that a track is a pion, kaon, or proton. Proton candidates are required to satisfy P(p)>P(K)P(p)>P(K) and P(p)>P(π)P(p)>P(\pi). Exactly four charged tracks are required in each candidate event.

Since KS0K_{S}^{0} and Λ¯\bar{\Lambda} have relatively long lifetimes, they are reconstructed by constraining the π+π\pi^{+}\pi^{-} pair and the p¯π+\bar{p}\pi^{+} pair to originate from secondary vertices, respectively. Charged track candidates, except the one used as a p¯\bar{p} in the Λ¯\bar{\Lambda} reconstruction, are assumed to be pions without applying particle identification. The decay lengths from the secondary vertex fits of KS0K_{S}^{0} and Λ¯\bar{\Lambda} divided by their corresponding uncertainties are required to be larger than two. The mass distributions of the reconstructed KS0K_{S}^{0} (denoted as MππM_{\pi\pi}) and Λ¯\bar{\Lambda} (denoted as Mp¯π+M_{\bar{p}\pi^{+}}) candidates are shown in Figs. 1(a) and 1(b), respectively, where the signal regions are defined as [0.480,0.516][0.480,0.516] GeV/c2c^{2} for KS0K_{S}^{0} and [1.112,1.120][1.112,1.120] GeV/c2c^{2} for Λ¯\bar{\Lambda}.

Photons are reconstructed as energy clusters in the EMC. The shower time is required to be within [0,700][0,700] ns from the event start time. Photon candidates within |cosθ|<0.80|\!\cos\theta|<0.80 (barrel) are required to have deposited energies larger than 2525 MeV and those with 0.86<|cosθ|<0.920.86<|\!\cos\theta|<0.92 (end cap) must have deposited energies larger than 5050 MeV. The photon candidates must be at least 10°10\degree away from any charged track to suppress Bremsstrahlung photons or splitoffs. We require there is at least one photon candidate satisfying the above criteria.

Refer to caption
Refer to caption
Refer to caption
Figure 1: Distributions of (a) MππM_{\pi\pi} of the KS0K^{0}_{S} candidates, (b) Mp¯π+M_{\bar{p}\pi^{+}} of the Λ¯\bar{\Lambda} candidates, and (c) MmissM_{\rm miss} before the 1-C kinematic fit. Dots with error bars are data. Red solid (blue dashed) lines refer to the inclusive MC samples with (without) the signal processes. The pairs of pink solid (blue dashed) arrows indicate the signal (sideband) regions.

To select the best combination and to improve the resolution, a 1-C kinematic fit is applied under the hypothesis of ψ(3686)γnKS0Λ¯\psi(3686)\to\gamma nK^{0}_{S}\bar{\Lambda}, where the neutron is treated as a missing particle. The value of χ1C2\chi^{2}_{\rm 1C} is required to be less than 200. If more than one combination survives in an event, the one with the smallest χ1C2\chi^{2}_{\rm 1C} is retained.

MmissM_{\rm miss} is defined as the invariant mass of the four momentum of the missing particle pmiss=pCMpγpKS0pΛp_{\rm miss}=p_{\rm CM}-p_{\gamma}-p_{K^{0}_{S}}-p_{\Lambda}, where pip_{i} is the four momentum of the particle ii and pCMp_{\rm CM} is the four momentum of the initial e+ee^{+}e^{-} system. To further improve the purity, MmissM_{\rm miss} before the 1-C kinematic fit is required to satisfy 0.90<Mmiss<0.980.90<M_{\rm miss}<0.98 GeV/c2c^{2}. The distribution of MmissM_{\rm miss} before the 1-C kinematic fit is shown in Fig. 1(c).

By analyzing the ψ(3686)\psi(3686) inclusive MC samples with TopoAna TopoAna , the only significant peaking background is found to be caused by the decays χcJΣ±Λ¯π+c.c.\chi_{cJ}\to\Sigma^{\pm}\bar{\Lambda}\pi^{\mp}+c.c. with Σ±nπ±\Sigma^{\pm}\to n\pi^{\pm}. The two pions in this decay may accidentally fall into the KS0K_{S}^{0} mass window and fulfill the constraint for the secondary vertex fit, thus faking the KS0K_{S}^{0}. This Σ±\Sigma^{\pm} background peaks in the invariant mass spectrum of nKS0Λ¯nK^{0}_{S}\bar{\Lambda} (denoted as MnKS0Λ¯M_{nK^{0}_{S}\bar{\Lambda}}) but distributes uniformly in the MππM_{\pi\pi} spectrum. Other backgrounds are smoothly distributed underneath the χcJ\chi_{cJ} signal.

4 Branching fraction measurement

A simultaneous unbinned maximum-likelihood fit to the MnKS0Λ¯M_{nK^{0}_{S}\bar{\Lambda}} spectra in both the MππM_{\pi\pi} signal and sideband regions, as shown in Fig. 2, is performed to determine the signal yields and peaking backgrounds. The lower and upper sideband regions are defined as [0.430,0.466][0.430,0.466] and [0.530,0.566][0.530,0.566] GeV/c2c^{2}, respectively. The fit model for the signal region is

J(N1,JfsignalJ+N2,JfpeakbkgJ)+N3fflatbkg(J=0,1,2),\sum_{J}(N_{1,J}\cdot f^{J}_{\rm signal}+N_{2,J}\cdot f^{J}_{\rm peakbkg})+N_{3}\cdot f_{\rm flatbkg}\,\,(J=0,1,2)\,, (1)

and that for the sideband region is

J(N2,JfpeakbkgJ)+N3fflatbkg(J=0,1,2).\sum_{J}(N^{\prime}_{2,J}\cdot f^{J}_{\rm peakbkg})+N^{\prime}_{3}\cdot f^{\prime}_{\rm flatbkg}\,\,(J=0,1,2)\,. (2)

The signal shape fsignalJf^{J}_{\rm signal} for each χcJ\chi_{cJ} resonance is described by its line shape convolved with a double-Gaussian function to account for the mass resolution. Each signal line shape is modeled with BW(MnKS0Λ¯)×Eγ3×D(Eγ)BW(M_{nK^{0}_{S}\bar{\Lambda}})\times E_{\gamma}^{3}\times D(E_{\gamma}), where BW(MnKS0Λ¯)=((MnKS0Λ¯mχcJ)2+0.25ΓχcJ2)1BW(M_{nK^{0}_{S}\bar{\Lambda}})=((M_{nK^{0}_{S}\bar{\Lambda}}-m_{\chi_{cJ}})^{2}+0.25\Gamma^{2}_{\chi_{cJ}})^{-1} is the nonrelativistic Breit-Wigner function with the width ΓχcJ\Gamma_{\chi_{cJ}} and the mass mχcJm_{\chi_{cJ}} of the corresponding χcJ\chi_{cJ} fixed to the PDG values ref::pdg2014 , Eγ=(mψ(3686)2MnKS0Λ¯2)/2mψ(3686)E_{\gamma}=(m_{\psi(3686)}^{2}-M_{nK^{0}_{S}\bar{\Lambda}}^{2})/2m_{\psi(3686)} is the energy of the transition photon in the rest frame of ψ(3686)\psi(3686), and D(Eγ)D(E_{\gamma}) is a damping factor that suppresses the divergent tail due to Eγ3E_{\gamma}^{3}. This damping factor is described by D(Eγ)=exp(Eγ2/8β2)D(E_{\gamma})={\rm exp}(-E_{\gamma}^{2}/8\beta^{2}), where β=(65.0±2.5)\beta=(65.0\pm 2.5) MeV is measured by the CLEO collaboration ref::beta . The two Gaussian functions in the convolution share the same mean value which is then floated in the fit. The relative width and size of the second Gaussian to the first Gaussian function are fixed to the results of MC studies, while the width of the first Gaussian function is floated. The peaking background shapes fpeakbkgJf^{J}_{\rm peakbkg} are parameterized the same as the signal shapes. The yields N2,JN_{2,J} in the signal region are normalized to N2,JN^{\prime}_{2,J} in the MππM_{\pi\pi} sideband regions according to the sizes of these two regions. The background shapes fflatbkg()f^{(\prime)}_{\rm flatbkg} in both regions are modeled as second-order Chebyshev polynomial functions. The numbers of fitted χcJ\chi_{cJ} signal events, N1,JN_{1,J}, are listed in Table 1.

Refer to caption
Refer to caption
Figure 2: Simultaneous fit to the MnKS0Λ¯M_{nK_{S}^{0}\bar{\Lambda}} spectra in the (a) signal and (b) sideband regions. The points with error bars are data. The black solid lines represent the total fit. The red, green, and blue dashed lines represent the signals of χc0\chi_{c0}, χc1\chi_{c1}, and χc2\chi_{c2}, respectively, and the corresponding dotted lines illustrate the peaking backgrounds. The purple dotted-dashed lines show the fitted backgrounds.

A special generator based on results of HelPWA ref::chung ; ref::blatt ; ref::helb3 for the decay χcJnK0Λ¯+c.c.\chi_{cJ}\to nK^{0}\bar{\Lambda}+c.c. is developed to estimate the detection efficiencies. The description of HelPWA can be found in the supplemental material SM . For the χcJ\chi_{cJ} data events used in HelPWA, the signal regions of MnKS0Λ¯M_{nK_{S}^{0}\bar{\Lambda}} for χc0\chi_{c0}, χc1\chi_{c1}, and χc2\chi_{c2} are [3.39,3.45][3.39,3.45], [3.50,3.53][3.50,3.53], and [3.54,3.57][3.54,3.57] GeV/c2c^{2}, respectively; the masses of K0K^{0}, Λ¯\bar{\Lambda}, and χcJ\chi_{cJ} are constrained to their known masses ref::pdg2014 . The inclusive background MC sample is used to calculate the background likelihood with negative weight.

The signal MC events are generated with the HelPWA model, in which the parameters of coupling constants are determined by fitting the model to the χcJ\chi_{cJ} data events. The Dalitz plots and the two-body invariant mass MijM_{ij} distributions of the data sample are shown in Figs. 3 and 4, respectively, where ii and jj denote the final particles. The generated signal MC events based on HelPWA along with the simulated background events from the inclusive MC sample are represented as the solid lines in Fig. 4. The signal MC samples are generated with χcJnKS0Λ¯\chi_{cJ}\to nK_{S}^{0}\bar{\Lambda} and χcJn¯KS0Λ\chi_{cJ}\to\bar{n}K_{S}^{0}\Lambda separately. After applying the same event selection criteria to the signal MC samples, we fit the invariant mass spectra with the same methods used for the experimental data. The detection efficiencies of χcJ\chi_{cJ}, ϵJ\epsilon_{J}, are averaged over both charge conjugate channels and listed in Table 1. The efficiency differences between the two charged conjugated modes are less than 0.5% for all three χcJ\chi_{cJ} channels and are consistent within the statistical uncertainties.

Refer to caption
Refer to caption
Refer to caption
Figure 3: Dalitz plots of MnKS02M^{2}_{nK^{0}_{S}} versus MKS0Λ¯2M^{2}_{K^{0}_{S}\bar{\Lambda}} for the (a) χc0\chi_{c0}, (b) χc1\chi_{c1}, and (c) χc2\chi_{c2} candidates in the data sample. The signal regions of MnKS0Λ¯M_{nK_{S}^{0}\bar{\Lambda}} for χc0\chi_{c0}, χc1\chi_{c1}, and χc2\chi_{c2} are [3.39,3.45][3.39,3.45], [3.50,3.53][3.50,3.53], and [3.54,3.57][3.54,3.57] GeV/c2c^{2}, respectively.
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 4: Distributions of MnΛ¯M_{n\bar{\Lambda}}, MnKS0M_{nK^{0}_{S}}, and MKS0Λ¯M_{K^{0}_{S}\bar{\Lambda}} for χcJnKS0Λ¯+c.c.\chi_{cJ}\to nK^{0}_{S}\bar{\Lambda}+c.c. (J=0J=0, 1, 2). The left column is for χc0\chi_{c0}, the middle column is for χc1\chi_{c1}, and the right column is for χc2\chi_{c2}. The data are represented by black points with error bars and the MC events are represented by red lines. The signal regions of MnKS0Λ¯M_{nK_{S}^{0}\bar{\Lambda}} for χc0\chi_{c0}, χc1\chi_{c1}, and χc2\chi_{c2} are [3.39,3.45][3.39,3.45], [3.50,3.53][3.50,3.53], and [3.54,3.57][3.54,3.57] GeV/c2c^{2}, respectively.

The BFs for χcJnKS0Λ¯\chi_{cJ}\to nK^{0}_{S}\bar{\Lambda} are calculated using

(χcJnKS0Λ¯)=N1,JNψ(3686)ϵJii,\mathcal{B}(\chi_{cJ}\to nK^{0}_{S}\bar{\Lambda})=\frac{N_{1,J}}{N_{\psi(3686)}\cdot\epsilon_{J}\cdot\prod_{i}\mathcal{B}_{i}}\,, (3)

where Nψ(3686)N_{\psi(3686)} is the number of ψ(3686)\psi(3686) events ref::CPC42_023001 ; ϵJ\epsilon_{J} is the detection efficiency as listed in Table 1; ii=(ψ(3686)γχcJ)(KS0π+π)(Λ¯p¯π+)\prod_{i}\mathcal{B}_{i}=\mathcal{B}(\psi(3686)\to\gamma\chi_{cJ})\cdot\mathcal{B}(K^{0}_{S}\to\pi^{+}\pi^{-})\cdot\mathcal{B}(\bar{\Lambda}\to\bar{p}\pi^{+}), where the BFs are taken from the PDG ref::pdg2014 . The results are summarized in Table 1.

Table 1: The number of fitted signal events (N1,JN_{1,J}), detection efficiency (ϵJ\epsilon_{J}), and (χcJnKS0Λ¯+c.c.)\mathcal{B}(\chi_{cJ}\to nK^{0}_{S}\bar{\Lambda}+c.c.), where the first uncertainty is statistical and the second one is systematic.
Mode N1,JN_{1,J} ϵJ\epsilon_{J} (%) BF (10410^{-4})
χc0\chi_{c0} 1288±501288\pm 50 9.95 6.67±0.26±0.416.67\pm 0.26\pm 0.41
χc1\chi_{c1} 410±30410\pm 30 12.44 1.71±0.12±0.121.71\pm 0.12\pm 0.12
χc2\chi_{c2} 900±41900\pm 41 13.03 3.66±0.17±0.233.66\pm 0.17\pm 0.23

5 Systematic uncertainty

The number of ψ(3686)\psi(3686) events is measured to be (4.48±0.03)×108(4.48\pm 0.03)\times 10^{8} based on inclusive hadronic events, as described in Ref. ref::CPC42_023001 , so the uncertainty is 0.6%. The systematic uncertainty due to the detection of γ\gamma is studied with the well understood channel J/ψρ0π0J/\psi\to\rho^{0}\pi^{0} ref::gamma-recon . The efficiency difference between data and MC simulation is about 1% per photon. To estimate the uncertainties associated with KS0K^{0}_{S} and Λ\Lambda reconstruction, the decays J/ψK±(892)KJ/\psi\to K^{*\pm}(892)K^{\mp}, K±(892)KS0π±K^{*\pm}(892)\to K^{0}_{S}\pi^{\pm} and J/ψΛΛ¯J/\psi\to\Lambda\bar{\Lambda} are selected as the control samples. The uncertainties are determined to be 1.5%1.5\% per KS0K^{0}_{S} and 2.0%2.0\% per Λ\Lambda. The systematic uncertainty caused by the 1-C kinematic fit is studied with the control sample ψ(3686)π0nKS0Λ¯\psi(3686)\to\pi^{0}nK^{0}_{S}\bar{\Lambda} with purity about 98.5%, where nn, KS0K^{0}_{S}, and Λ¯\bar{\Lambda} are selected using the same criteria as the nominal analysis but the number of good photons is required to be at least two. The difference of the selection efficiencies between data and MC simulation is determined to be 4.1%4.1\% and assigned as the corresponding systematic uncertainty. The uncertainties associated with the mass windows of KS0K_{S}^{0}, Λ\Lambda, and MmissM_{\rm miss} are estimated by repeating the analysis with alternative mass window requirements. We change the mass window of KS0K_{S}^{0} to [0.473,0.521][0.473,0.521] and [0.487,0.511][0.487,0.511] GeV/c2c^{2}, that of Λ\Lambda to [1.110,1,123][1.110,1,123] and [1.113,1.119][1.113,1.119] GeV/c2c^{2}, and that of MmissM_{\rm miss} to [0.880, 1.000] and [0.910, 0.970] GeV/c2c^{2}. The largest differences from the nominal BFs are assigned as the corresponding systematic uncertainties.

The systematic uncertainty related to the fitting procedure includes multiple sources. For the signal line shape, the parameterization of the damping factor may introduce a systematic uncertainty. The nominal damping factor is changed to another popular form used by KEDR ref::damping , given by D(Eγ)=Eγ02EγEγ0+(EγEγ0)2D(E_{\gamma})=\frac{E_{\gamma 0}^{2}}{E_{\gamma}E_{\gamma 0}+(E_{\gamma}-E_{\gamma 0})^{2}}, where Eγ0=(mψ(3686)2MχcJ2)/2mψ(3686)E_{\gamma 0}=(m_{\psi(3686)}^{2}-M_{\chi_{cJ}}^{2})/2m_{\psi(3686)}. The resulting differences in the fit are assigned as the related systematic uncertainties. In addition, the background function is changed from a second to a third order Chebyshev function, and the differences in signal yields are taken as the systematic uncertainties. The systematic uncertainty due to the fit range is evaluated by changing the fit range from [3.35,3.60][3.35,3.60] to [3.35,3.65][3.35,3.65] and [3.30,3.65][3.30,3.65] GeV/c2c^{2}, and the maximum differences in the fitted yields are considered as the associated systematic uncertainties. The total uncertainties of the fitting procedure are estimated to be 2.8%, 4.1%, and 2.3% for χc0\chi_{c0}, χc1\chi_{c1}, and χc2\chi_{c2}, respectively.

The systematic uncertainties arising from MC modeling are estimated by using different model parameters and some unimportant intermediate processes in HelPWA. The differences of efficiencies based on the new HelPWA results and the nominal ones are taken as the uncertainties. The systematic uncertainties due to the input BFs of ψ(3686)γχc0\psi(3686)\to\gamma\chi_{c0} (χc1\chi_{c1}, χc2\chi_{c2}), KS0π+πK^{0}_{S}\to\pi^{+}\pi^{-}, and Λpπ\Lambda\to p\pi^{-} are 2.0% (2.5%, 2.1%), 0.1%, and 0.8%, respectively, according to the PDG ref::pdg2014 .

All systematic uncertainty contributions are summarized in Table 2. The total systematic uncertainty for each χcJ\chi_{cJ} decay is obtained by adding all contributions in quadrature.

Table 2: Systematic uncertainty sources and their contributions (in %).
Sources (χc0)\mathcal{B}(\chi_{c0}) (χc1)\mathcal{B}(\chi_{c1}) (χc2)\mathcal{B}(\chi_{c2})
Nψ(3686)N_{\psi(3686)} 0.6 0.6 0.6
γ\gamma detection 1.0 1.0 1.0
KS0K^{0}_{S} reconstruction 1.5 1.5 1.5
Λ\Lambda reconstruction 2.0 2.0 2.0
Kinematic fit 4.1 4.1 4.1
Mass windows 0.4 0.7 0.5
Fitting procedure 2.8 4.1 2.3
MC modeling 1.3 1.3 2.3
Input BFs 2.2 2.6 2.2
Total 6.2 7.1 6.3

6 Summary

The decays of χcJnKS0Λ¯+c.c.\chi_{cJ}\to nK^{0}_{S}\bar{\Lambda}+c.c. (J=0J=0, 1, 2) are observed for the first time using (4.48±0.03)×108(4.48\pm 0.03)\times 10^{8} ψ(3686)\psi(3686) events accumulated with the BESIII detector at the BEPCII collider. The BFs of χcJnKS0Λ¯+c.c.\chi_{cJ}\to nK^{0}_{S}\bar{\Lambda}+c.c. are determined to be (6.67±0.26stat±0.41syst)×104(6.67\pm 0.26_{\rm stat}\pm 0.41_{\rm syst})\times 10^{-4}, (1.71±0.12stat±0.12syst)×104(1.71\pm 0.12_{\rm stat}\pm 0.12_{\rm syst})\times 10^{-4}, and (3.66±0.17stat±0.23syst)×104(3.66\pm 0.17_{\rm stat}\pm 0.23_{\rm syst})\times 10^{-4} for J=0J=0, 1, and 2, respectively. Isospin symmetry is examined by comparing our results with the isospin conjugate decays of χcJpKΛ¯+c.c.\chi_{cJ}\to pK^{-}\bar{\Lambda}+c.c. ref::paper-pkl . The ratios (χcJpKΛ¯+c.c.)/(χcJnKS0Λ¯+c.c.)\mathcal{B}(\chi_{cJ}\to pK^{-}\bar{\Lambda}+c.c.)/\mathcal{B}(\chi_{cJ}\to nK^{0}_{S}\bar{\Lambda}+c.c.) are measured to be 1.98±0.09stat±0.14syst1.98\pm 0.09_{\rm stat}\pm 0.14_{\rm syst}, 2.64±0.23stat±0.20syst2.64\pm 0.23_{\rm stat}\pm 0.20_{\rm syst}, and 2.29±0.13stat±0.16syst2.29\pm 0.13_{\rm stat}\pm 0.16_{\rm syst} for J=0J=0, 1, and 2, respectively, where common sources of systematic uncertainties are canceled. No obvious isospin violation is observed.

Enhancements are observed in the Dalitz plots shown in Fig. 3 and the mass distributions of two-body nΛ¯n\bar{\Lambda} subsystems shown in Fig. 4. We perform a HelPWA with the main goal to produce MC samples that describe the data well enough to obtain a good estimate of the efficiency. While the HelPWA does describe the data nicely, the complexity of the model we used here does not allow to draw any firm conclusions on the relative contributions of individual resonances.

Acknowledgements.
The BESIII collaboration thanks the staff of BEPCII and the IHEP computing center for their strong support. This work is supported in part by National Key Research and Development Program of China under Contracts Nos. 2020YFA0406300, 2020YFA0406400; National Natural Science Foundation of China (NSFC) under Contracts Nos. 11875170,  11875115,  11475090,  11625523, 11635010,  11735014,  11822506,  11835012,  11875054,  11875262,  11935015,  11935016,  11935018,  11961141012,  12022510,  12035009,  12035013,  12061131003; the Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program; Joint Large-Scale Scientific Facility Funds of the NSFC and CAS under Contracts Nos. U2032110, U1732263, U1832207, U2032104, U2032110; CAS Key Research Program of Frontier Sciences under Contract No. QYZDJ-SSW-SLH040; 100 Talents Program of CAS; INPAC and Shanghai Key Laboratory for Particle Physics and Cosmology; ERC under Contract No. 758462; European Union Horizon 2020 research and innovation programme under Contract No. Marie Sklodowska-Curie grant agreement No 894790; German Research Foundation DFG under Contracts No. 443159800, Collaborative Research Center CRC 1044, FOR 2359, FOR 2359, GRK 214; Istituto Nazionale di Fisica Nucleare, Italy; Ministry of Development of Turkey under Contract No. DPT2006K-120470; National Science and Technology fund; Olle Engkvist Foundation under Contract No. 200-0605; STFC (United Kingdom); The Knut and Alice Wallenberg Foundation (Sweden) under Contract No. 2016.0157; The Royal Society, UK under Contracts No. DH140054, DH160214; The Swedish Research Council; U. S. Department of Energy under Contracts Nos. DE-FG02-05ER41374, DE-SC-0012069.

References

  • (1) S. Wong, Color octet contribution in exclusive p-wave charmonium decay into octet and decuplet baryons, Eur. Phys. J. C 14 (2000) 643.
  • (2) BESIII collaboration, Spin-parity analysis of pp¯p\overline{p} mass threshold structure in J/ψJ/\psi and ψ(3686)\psi(3686) radiative decays, Phys. Rev. Lett. 108 (2012) 112003.
  • (3) BES collaboration, Observation of a threshold enhancement in the pΛ¯p\overline{\Lambda} invariant-mass spectrum, Phys. Rev. Lett. 93 (2004) 112002.
  • (4) A. Datta and P. J. O’Donnell, A new state of baryonium, Phys. Lett. B 567 (2003) 273.
  • (5) B. Loiseau and S. Wycech, Antiproton-proton channels in J/ψJ/\psi decays, Phys. Rev. C 72 (2005) 011001.
  • (6) M. L. Yan, S. Li, B. Wu and B. Q. Ma, Baryonium with a phenomenological skyrmion-type potential, Phys. Rev. D 72 (2005) 034027.
  • (7) B. Kerbikov, A. Stavinsky and V. Fedotov, Model-independent view on the low-mass proton-antiproton enhancement, Phys. Rev. C 69 (2004) 055205.
  • (8) J. Haidenbauer, U.-G. Meißner and A. Sibirtsev, Near threshold pp¯p\overline{p} enhancement in BB and J/ψJ/\psi decay, Phys. Rev. D 74 (2006) 017501.
  • (9) D. R. Entem and F. Fernández, Final state interaction effects in near threshold enhancement of the pp¯p\overline{p} mass spectrum in BB and J/ψJ/\psi decays, Phys. Rev. D 75 (2007) 014004.
  • (10) BES collaboration, First observation of J/ψJ/\psi and ψ(2S)\psi(2S) decaying to nKS0Λ+c.c.nK_{S}^{0}\Lambda+c.c., Phys. Lett. B 659 (2008) 789.
  • (11) BESIII collaboration, Measurements of ψp¯K+Σ0{\psi}^{{}^{\prime}}\rightarrow\overline{p}{K}^{+}{\Sigma}^{0} and χcJp¯K+Λ{\chi}_{cJ}\rightarrow\overline{p}{K}^{+}\Lambda, Phys. Rev. D 87 (2013) 012007.
  • (12) BESIII collaboration, Determination of the number of ψ(3686)\psi(3686) events at BESIII, Chin. Phys. C 42 (2018) 023001.
  • (13) Particle Data Group collaboration, Review of Particle Physics, PTEP 2020 (2020) 083C01.
  • (14) M. Ablikim, Z. An, J. Bai, N. Berger, J. Bian, X. Cai et al., Design and construction of the BESIII detector, Nucl. Instrum. Meth. A 614 (2010) 345.
  • (15) BESIII collaboration, Future physics programme of BESIII, Chin. Phys. C 44 (2020) 040001.
  • (16) C. Yu et al., BEPCII Performance and Beam Dynamics Studies on Luminosity, in Proc. of International Particle Accelerator Conference (IPAC’16), Busan, Korea, May 8-13, 2016, no. 7 in International Particle Accelerator Conference, (Geneva, Switzerland), pp. 1014–1018, JACoW, June, 2016, DOI.
  • (17) GEANT4 collaboration, GEANT4 – a simulation toolkit, Nucl. Instrum. Meth. A 506 (2003) 250.
  • (18) S. Jadach, B. F. L. Ward and Z. Wa¸s, Coherent exclusive exponentiation for precision monte carlo calculations, Phys. Rev. D 63 (2001) 113009.
  • (19) D. Lange, The EvtGen particle decay simulation package, Nucl. Instrum. Meth. A 462 (2001) 152.
  • (20) J. C. Chen, G. S. Huang, X. R. Qi, D. H. Zhang and Y. S. Zhu, Event generator for J/ψJ/\psi and ψ(2S)\psi(2S) decay, Phys. Rev. D 62 (2000) 034003.
  • (21) E. Richter-Was, QED bremsstrahlung in semileptonic B and leptonic τ\tau decays, Phys. Lett. B 303 (1993) 163 .
  • (22) BESIII collaboration, Measurement of higher-order multipole amplitudes in ψ(3686)γχc1,2\psi(3686)\rightarrow\gamma{\chi}_{c1,2} with χc1,2γJ/ψ{\chi}_{c1,2}\rightarrow\gamma J/\psi and search for the transition ηc(2S)γJ/ψ{\eta}_{c}(2S)\rightarrow\gamma J/\psi, Phys. Rev. D 95 (2017) 072004.
  • (23) Supplemental Material.
  • (24) S. U. Chung, General formulation of covariant helicity-coupling amplitudes, Phys. Rev. D 57 (1998) 431.
  • (25) B. S. Zou and D. V. Bugg, Covariant tensor formalism for partial-wave analyses of ψ\psi decay to mesons, Eur. Phys. 16 (2003) 537.
  • (26) S. M. Berman and M. Jacobi, Systematics of angular and polarization distribution in three-body decays, Phys. Rev. 139 (1965) B1023.
  • (27) X. Zhou, S. Du, G. Li and C. Shen, TopoAna: A generic tool for the event type analysis of inclusive Monte-Carlo samples in high energy physics experiments, Comput. Phys. Commun. 258 (2021) 107540.
  • (28) CLEO collaboration, J/ψJ/\psi and ψ(2S)\psi(2S) radiative transitions to ηc{\eta}_{c}, Phys. Rev. Lett. 102 (2009) 011801.
  • (29) BESIII collaboration, Measurement of χcj{\chi}_{cj} decaying into pn¯πp\overline{n}{\pi}^{-} and pn¯ππ0p\overline{n}{\pi}^{-}{\pi}^{0}, Phys. Rev. D 86 (2012) 052011.
  • (30) V. M. Malyshev, Measurement of (J/ψηcγ)\mathcal{B}(J/\psi\to\eta_{{\rm c}}\gamma) at KEDR, Int. J. Mod. Phys. Conf. Ser. 02 (2011) 188.