This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Observation of different scenarios in different temperatures in small and large collision systems

Muhammad Waqas1111[email protected], [email protected], Lu-Meng Liu2222[email protected], Guang-Xiong Peng1,3,4333Correspondence: [email protected], Muhammad Ajaz5444Correspondence: [email protected], [email protected] 1 School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
3 Theoretical Physics Center for Science Facilities, Institute of High Energy Physics, Beijing 100049, China
4 Synergetic Innovation Center for Quantum Effects & Applications, Hunan Normal University, Changsha 410081, China
5 Department of Physics, Abdul Wali Khan University Mardan, 23200 Mardan, Pakistan
Abstract

Abstract: We used the modified Hagedron function and analyzed the experimental data measured by the BRAHMS, STAR, PHENIX and ALICE Collaborations in Copper-Copper, Gold-Gold, deuteron-Gold, Lead-Lead, proton-Lead and proton-proton collisions, and extracted the related parameters (kinetic freeze-out temperature, transverse flow velocity, kinetic freeze-out volume, mean transverse momentum and initial temperature) from the transverse momentum spectra of the particles (non-strange and strange particles). We observed that all the above parameters decrease from central to peripheral collisions, except transverse flow velocity which remains unchanged from central to peripheral collisions. The kinetic freeze-out temperature depends on the cross-section interaction of the particle such that larger cross-section of the particle corresponds to smaller T0T_{0}, and reveals the two kinetic freeze-out scenario, while the initial temperature depends on the mass of the particle and it increase with the particle mass. The transverse flow velocity and mean transverse momentum depends on the mass of the particle and the former decrease while the later increase with the particle mass. In addition, the kinetic kinetic freeze-out volume also decrease with particle mass which reveals the volume differential freeze-out scenario and indicates different freeze-out surfaces for different particles. We also extracted the entropy index-parameter nn and the parameter N0N_{0}, and the former remains almost unchanged while the later decrease from central to peripheral collisions. Furthermore, the kinetic freeze-out temperature, transverse flow velocity, kinetic freeze-out volume, initial temperature, mean transverse momentum and the parameter N0N_{0} at LHC are larger than that of RHIC, and they show their dependence on the collision cross-section as well as on collision energy at RHIC and LHC.

Keywords: bulk properties of nuclear matter; transverse momentum spectra; strange and non-strange particles; kinetic freeze-out temperature; initial temperature; kinetic freeze-out volume.

PACS numbers: 12.40.Ee, 13.85.Hd, 24.10.Pa

I Introduction

A suitable tool for the production of the hot and dense matter namely Quark-Gluon Plasma (QGP) in the laboratory 1 ; 2 is the high energy collisions. This state of matter is formed in the initial stages of collision, and it survives for a short period of time (7-10 fm/c) and then rapidly transforms into a hadron gas system. Because of the multi-partonic interactions throughout the evolution of the collision, the information about the initial condition of the system gets lost. In order to obtain the final state behavior of such a colliding system, we need the measurement of number and identity of the produced particles along with their energy and momentum spectra. The final state information are very useful to understand the production mechanism of particles and the nature of produced matter in these high energy collisions.

The chemical and kinetic freeze-out are the two symbolic freeze-out conditions where the space-time evolution of the fireball produced in the collision cease. The colliding medium first reaches chemical equilibrium, where the inelastic scattering stops due to expansion of the system which results in the stabilization of the particle chemistry in the fireball. This stage is called chemical freeze-out stage and the temperature at this stage is known as chemical freeze-out temperature (Tch)(T_{ch}) 4 . The relative fractions of the particles are fixed but they still interact with each other, and then stops until the final state interactions between them are no longer effective. This stage is called thermal/kinetic freeze-out stage and the temperature at this stage is known as kinetic freeze-out temperature 5 ; 6 ; 7 ; 8 . In Standard model of heavy ion collisions, the kinetic freeze-out occurs after the chemical freeze-out due to large mean free path of the later which is also claimed in ref. 9 . Generally, the transverse momentum (pTp_{T}) spectra as well as the yields of the produced hadrons constitute some basic measurements for the extraction of parameters of chemical and kinetic freeze-out.

A multiple chemical freeze-out scenario with the early fixing of chemical composition of strange hadron compared to non-strange light hadrons is advocated in ref. 10 . The early chemical freeze-out of strange hadrons is due to their small inelastic cross-section. A natural question arise in mind whether a similar hierarchy structure also occurs at kinetic decoupling, or the mass dependent hierarchy occurs in case of kinetic freeze-out because the variation in medium induced momentum for heavy hadrons would be smaller than the lighter hadrons and therefore, with the decrease of temperature of the fireball, the earlier kinetic decoupling of heavy hadrons is expected.

In the present article, we will analyze the bulk properties in terms of kinetic freeze-out temperature (T0T_{0}), transverse flow velocity (βT\beta_{T}) and kinetic freeze-out volume (VV). All these mentioned parameters are discussed in detail in various literatures 11 ; 12 ; 13 ; 14 . In the present work, we choose different collision systems such as small and large systems in order to check the dependence of the above parameters on the size of interacting system and different particles are chosen in order to check the differences in different particle emissions.

Before going to the next section, we would like to point out that we also analyse the initial temperature which occurs in the initial stage of collisions and which is also important to study because the phenomenon in the initial stages of collisions and the freeze-out stages is different.

The remainder of the paper consists of formalism and method, results discussions and conclusions.

II Formalism and method

The structure of transverse momentum spectra (pTp_{T}) of the charged particles is very complex, and therefore is distributed into various regions. Especially, when the pTp_{T} range approaches to 100 GeV/c at LHC collisions 1a . There are different pTp_{T}regions according to the model analysis 2a . The first pTp_{T} region include pTp_{T}<<4-6 GeV/c and second region include 4-6 GeV/c<< pTp_{T}<< 17-20 GeV/c, while the third region includes pTp_{T}>>17-20 GeV/c. It is believed that different pTp_{T} regions (soft, hard and very hard pTp_{T} region) signify different interacting mechanisms. There are different explanations due to different models and methods even for the same pTp_{T} region. In the present work, the maximum pTp_{T} range is 7-8 GeV/c, therefore we will be limited to the soft and hard process and will skip the very hard process. There is a very soft region also which will be also skipped and it corresponds to pTp_{T} <<0.5 GeV/c which involves the resonance production that is not described by the model, but one can read ref. 3a ; 4a for more details of very soft and very hard processes. Generally, the soft excitation process is distributed in a narrow pTp_{T} range of less than 2-3 GeV/c or a little more, and mostly light flavor particles are produced in this region. The soft process have many choices of formalisms such as Blast wave model with Boltzmann Gibb’s statistics 5a ; 6a ; 7a ; 8a , Blast wave model with Tsallis statistics 9a ; 10a ; 11a ; 12a ,Tsallis pareto-type function 12aa , Erlang distribution 13a ; 14a ; 15a , Scwinger mechanism 16a ; 17a ; 18a ; 19a , Hagedorn distribution function 20a , Standard distribution 21a etc. The pTp_{T} region above 3 GeV/c is contributed for the hard process and is described by Quantum chromodynamics (QCD) calculus 22a ; 23a ; 24a or inverse power law which is also known as Hagedron function

f0(pT)=\displaystyle f_{0}(p_{T})= 1NdNdpT=ApT(1+pTp0)n,\displaystyle\frac{1}{N}\frac{\mathrm{d}N}{\mathrm{d}p_{\mathrm{T}}}=Ap_{T}\bigg{(}1+\frac{p_{T}}{p_{0}}\bigg{)}^{-n}, (1)

where AA, is the normalization constant, and p0p_{0} and nn are free parameters. This function is revised in different forms in 25a ; 26a ; 27a ; 28a ; 29a ; 30a and each has different significance.

In the present work, we use the Hagedorn function with embeded transverse flow velocity 31a , which can be expressed as

f0(pT)=\displaystyle f_{0}(p_{T})= 1NdNdpT=2πCpT[1+<γt>\displaystyle\frac{1}{N}\frac{\mathrm{d}N}{\mathrm{d}p_{\mathrm{T}}}=2\pi Cp_{T}\bigg{[}1+<\gamma_{t}>
(mTpT<βT>)nT0]n\displaystyle\frac{(m_{T}-p_{T}<\beta_{T}>)}{nT_{0}}\bigg{]}^{-n} (2)

where CC stands for the normalization constant that leads the integral in Eq. (2) to be normalized to 1, mTm_{T} is the transverse mass and is equal to pT2+m02\sqrt{p_{T}^{2}+m_{0}^{2}}, m0m_{0} is the rest mass of the particle, In Eq. 2, CC=gV/(2π)2gV/(2\pi)^{2}. So Eq. 2 becomes as

f0(pT)=\displaystyle f_{0}(p_{T})= 1NdNdpT=gV2πpT[1+<γt>\displaystyle\frac{1}{N}\frac{\mathrm{d}N}{\mathrm{d}p_{\mathrm{T}}}=\frac{gV}{2\pi}p_{T}\bigg{[}1+<\gamma_{t}>
(mTpT<βT>)nT0]n\displaystyle\frac{(m_{T}-p_{T}<\beta_{T}>)}{nT_{0}}\bigg{]}^{-n} (3)

where gg is the degeneracy factor which differs for every particle, depends on their spin based on gng_{n}=2SnS_{n}+1.

[Uncaptioned image]

Fig. 1. The transverse momentum spectra of π+\pi^{+}, π\pi^{-}, K+K^{+}, KK^{-}, pp, p¯\bar{p}, Λ\Lambda and Ξ\Xi in Copper-Copper (Cu-Cu) collisions at 200 GeV in various centrality classes. The experimental data of BRAHMS Collaboration at RHIC for π+\pi^{+}, π\pi^{-}, K+K^{+}, KK^{-}, pp and p¯\bar{p} is taken from ref. 1c at |y|<|y|<0, while for Λ\Lambda and Ξ\Xi is from ref. 2c at |y|<|y|<0.5.

[Uncaptioned image]

Fig. 2. The transverse momentum spectra of π+\pi^{+}, K+K^{+}, pp, Λ\Lambda and Ξ\Xi^{-} in Gold-Gold (Au-Au) collisions at 62.4 GeV in various centrality classes. The experimental data of STAR Collaboration at RHIC for π+\pi^{+}, K+K^{+} and pp are taken from ref. 3c at |y|<|y|<0.1 rapidity, while for Λ\Lambda and Ξ\Xi is taken from ref. 4c at |η|<|\eta|<1.8

[Uncaptioned image]

Fig. 3. The transverse momentum spectra of π+\pi^{+}, π\pi^{-}, ++, KK^{-}, pp and p¯\bar{p} in Deuteron-Gold (d-Au) collisions at 200 GeV in various centrality intervals and the experimental data of PHENIX Collaboration at RHIC are taken from ref. 5c at |η|<|\eta|<0.35.

Table 1. Values of free parameters (TT and qq), normalization constant (σ0\sigma_{0}), χ2\chi^{2}, and ndof corresponding to the curves in Figure 1 for pppp collisions at 200 GeV, where the spectrum form and particle mass are given together. In the last column, “–” for ndof denotes the case which has the number of data points being less than or equal to 0 and the curve is only to guide the eyes. After rounding, the value of χ2\chi^{2} is taken to be an integer. If the integer is 0, we keep one decimal; If the one decimal is 0.0, we keep two decimals, and so on.

Collisions Centrality Particle T0T_{0} (GeV) βT\beta_{T} (c) V(fm3)V(fm^{3}) nn N0N_{0} χ2\chi^{2}/ dof
Fig. 1 0–10% π+\pi^{+} 0.057±0.0060.057\pm 0.006 0.309±0.0120.309\pm 0.012 2200±1502200\pm 150 10±110\pm 1 55±355\pm 3 0.5/8
Cu-Cu 10–30% 0.052±0.0050.052\pm 0.005 0.309±0.0090.309\pm 0.009 2100±1302100\pm 130 10±1.210\pm 1.2 33±233\pm 2 0.6/8
200 GeV 30–50% 0.049±0.0050.049\pm 0.005 0.309±0.0100.309\pm 0.010 2000±1302000\pm 130 10±110\pm 1 14±114\pm 1 1.5/8
50–70% 0.045±0.0040.045\pm 0.004 0.309±0.0100.309\pm 0.010 1874±1141874\pm 114 10±1.210\pm 1.2 5.8±0.85.8\pm 0.8 0.5/8
0–10% π\pi^{-} 0.057±0.0060.057\pm 0.006 0.309±0.0120.309\pm 0.012 2200±1502200\pm 150 10±110\pm 1 55±355\pm 3 0.5/8
10–30% 0.052±0.0050.052\pm 0.005 0.309±0.0090.309\pm 0.009 2100±1302100\pm 130 10±1.210\pm 1.2 33±233\pm 2 0.6/8
30–50% 0.049±0.0050.049\pm 0.005 0.309±0.0100.309\pm 0.010 2000±1302000\pm 130 10±110\pm 1 14±114\pm 1 1.5/8
50–70% 0.045±0.0040.045\pm 0.004 0.309±0.0100.309\pm 0.010 1874±1141874\pm 114 10±1.210\pm 1.2 5.8±0.85.8\pm 0.8 0.5/8
0–10% K+K^{+} 0.076±0.0040.076\pm 0.004 0.289±0.0090.289\pm 0.009 2050±1102050\pm 110 11±1.411\pm 1.4 0.036±0.0050.036\pm 0.005 2/7
10–30% 0.072±0.0040.072\pm 0.004 0.289±0.0080.289\pm 0.008 1938±1061938\pm 106 11±1.311\pm 1.3 0.009±0.00050.009\pm 0.0005 4/7
30–50% 0.064±0.0060.064\pm 0.006 0.289±0.0090.289\pm 0.009 1841±1161841\pm 116 11±1.211\pm 1.2 3.8×103±5×1043.8\times 10^{-3}\pm 5\times 10^{-4} 3/7
50–70% 0.060±0.0040.060\pm 0.004 0.289±0.0100.289\pm 0.010 1741±1111741\pm 111 11±1.211\pm 1.2 3.5×103±5×1043.5\times 10^{-3}\pm 5\times 10^{-4} 8/7
0–10% KK^{-} 0.076±0.0040.076\pm 0.004 0.289±0.0090.289\pm 0.009 2050±1102050\pm 110 11±1.411\pm 1.4 0.036±0.0050.036\pm 0.005 2/7
10–30% 0.072±0.0040.072\pm 0.004 0.289±0.0080.289\pm 0.008 1938±1061938\pm 106 11±1.311\pm 1.3 0.009±0.00050.009\pm 0.0005 4/7
30–50% 0.064±0.0060.064\pm 0.006 0.289±0.0090.289\pm 0.009 1841±1161841\pm 116 11±1.211\pm 1.2 3.8×103±5×1043.8\times 10^{-3}\pm 5\times 10^{-4} 3/7
50–70% 0.060±0.0040.060\pm 0.004 0.289±0.0100.289\pm 0.010 1741±1111741\pm 111 11±1.211\pm 1.2 3.5×103±5×1043.5\times 10^{-3}\pm 5\times 10^{-4} 8/7
0–10% pp 0.058±0.0060.058\pm 0.006 0.267±0.0120.267\pm 0.012 1857±1231857\pm 123 15±1.715\pm 1.7 8×105±6×1068\times 10^{-5}\pm 6\times 10^{-6} 17/8
10–30% 0.053±0.0050.053\pm 0.005 0.267±0.0100.267\pm 0.010 1730±1241730\pm 124 15±215\pm 2 5×105±4×1065\times 10^{-5}\pm 4\times 10^{-6} 22/8
30–50% 0.050±0.0040.050\pm 0.004 0.267±0.0100.267\pm 0.010 1600±1261600\pm 126 15±215\pm 2 2×105±4×1062\times 10^{-5}\pm 4\times 10^{-6} 17/8
50–70% 0.046±0.0050.046\pm 0.005 0.267±0.0100.267\pm 0.010 1500±1301500\pm 130 15±2.115\pm 2.1 7×106±4×1077\times 10^{-6}\pm 4\times 10^{-7} 43/8
0–10% p¯\bar{p} 0.058±0.0060.058\pm 0.006 0.267±0.0120.267\pm 0.012 1857±1231857\pm 123 15±1.715\pm 1.7 8×105±6×1068\times 10^{-5}\pm 6\times 10^{-6} 17/8
10–30% 0.053±0.0050.053\pm 0.005 0.267±0.0100.267\pm 0.010 1730±1241730\pm 124 15±215\pm 2 5×105±4×1065\times 10^{-5}\pm 4\times 10^{-6} 22/8
30–50% 0.050±0.0040.050\pm 0.004 0.267±0.0100.267\pm 0.010 1600±1261600\pm 126 15±215\pm 2 2×105±4×1062\times 10^{-5}\pm 4\times 10^{-6} 17/8
50–70% 0.046±0.0050.046\pm 0.005 0.267±0.0100.267\pm 0.010 1500±1301500\pm 130 15±2.115\pm 2.1 7×106±4×1077\times 10^{-6}\pm 4\times 10^{-7} 43/8
0–10% Λ\Lambda 0.076±0.0050.076\pm 0.005 0.254±0.0100.254\pm 0.010 1713±1081713\pm 108 15.4±1.515.4\pm 1.5 2.4±0.32.4\pm 0.3 22/14
10–20% 0.072±0.0040.072\pm 0.004 0.254±0.0100.254\pm 0.010 1610±1041610\pm 104 15.4±1.815.4\pm 1.8 0.165±0.030.165\pm 0.03 29/14
20–30% 0.068±0.0040.068\pm 0.004 0.254±0.0110.254\pm 0.011 1500±1111500\pm 111 15.4±2.115.4\pm 2.1 0.012±0.0040.012\pm 0.004 20/14
30–40% 0.064±0.0040.064\pm 0.004 0.254±0.0110.254\pm 0.011 1410±1201410\pm 120 15.4±2.215.4\pm 2.2 8×104±5×1058\times 10^{-4}\pm 5\times 10^{-5} 31/14
40–60% 0.060±0.0060.060\pm 0.006 0.254±0.0100.254\pm 0.010 1300±1201300\pm 120 15.4±2.215.4\pm 2.2 4.3×105±4×1064.3\times 10^{-5}\pm 4\times 10^{-6} 14/14
0–10% Ξ\Xi 0.076±0.0040.076\pm 0.004 0.244±0.0090.244\pm 0.009 1500±1151500\pm 115 15.5±1.515.5\pm 1.5 0.24±0.040.24\pm 0.04 25/6
10–20% 0.072±0.0040.072\pm 0.004 0.244±0.0100.244\pm 0.010 1420±1041420\pm 104 15.5±2.215.5\pm 2.2 0.016±0.0050.016\pm 0.005 10/6
20–30% 0.069±0.0040.069\pm 0.004 0.244±0.0120.244\pm 0.012 1290±1261290\pm 126 15.5±2.215.5\pm 2.2 0.001±0.00040.001\pm 0.0004 33/6
30–40% 0.065±0.0050.065\pm 0.005 0.244±0.0110.244\pm 0.011 1200±1001200\pm 100 15.5±2.215.5\pm 2.2 8×105±5×1068\times 10^{-5}\pm 5\times 10^{-6} 17/6
40–60% 0.061±0.0040.061\pm 0.004 0.244±0.0110.244\pm 0.011 1120±1001120\pm 100 15.5±2.215.5\pm 2.2 4×106±6×1074\times 10^{-6}\pm 6\times 10^{-7} 15/6
Fig. 2 0–5% π+\pi^{+} 0.060±0.0050.060\pm 0.005 0.325±0.0120.325\pm 0.012 2357±1702357\pm 170 10.4±1.510.4\pm 1.5 270±32270\pm 32 0.2/5
Au-Au 5–10% 0.056±0.0060.056\pm 0.006 0.325±0.0100.325\pm 0.010 2268±1402268\pm 140 10.4±1.510.4\pm 1.5 210±18210\pm 18 0.8/5
62.4 GeV 10–20% 0.052±0.0040.052\pm 0.004 0.325±0.0100.325\pm 0.010 2150±1302150\pm 130 10.4±110.4\pm 1 170±10170\pm 10 0.5/5
20–30% 0.048±0.0050.048\pm 0.005 0.325±0.0100.325\pm 0.010 2035±1202035\pm 120 10.4±210.4\pm 2 146±8146\pm 8 0.5/5
30–40% 0.045±0.0060.045\pm 0.006 0.325±0.0110.325\pm 0.011 1955±1101955\pm 110 10.4±1.510.4\pm 1.5 106±10106\pm 10 1.3/5
40–50% 0.042±0.0050.042\pm 0.005 0.325±0.0110.325\pm 0.011 1775±1321775\pm 132 10.4±1.210.4\pm 1.2 62±862\pm 8 1.5/5
50–60% 0.040±0.0040.040\pm 0.004 0.325±0.0090.325\pm 0.009 1702±1081702\pm 108 10.4±1.810.4\pm 1.8 38±438\pm 4 2.5/5
60–70% 0.037±0.0040.037\pm 0.004 0.325±0.0110.325\pm 0.011 1620±1101620\pm 110 10.4±1.610.4\pm 1.6 21.7±3.521.7\pm 3.5 5.5/5
70–80% 0.034±0.0040.034\pm 0.004 0.325±0.0110.325\pm 0.011 1530±881530\pm 88 10.8±1.610.8\pm 1.6 11.6±211.6\pm 2 2.5/5
0–5% K+K^{+} 0.076±0.0060.076\pm 0.006 0.312±0.0100.312\pm 0.010 2100±1202100\pm 120 11±1.511\pm 1.5 26.4±3.826.4\pm 3.8 4/5
5–10% 0.073±0.0060.073\pm 0.006 0.312±0.0100.312\pm 0.010 2000±1002000\pm 100 11±1.311\pm 1.3 22.4±1.322.4\pm 1.3 3/5
10–20% 0.070±0.0050.070\pm 0.005 0.312±0.0110.312\pm 0.011 1900±1001900\pm 100 11±1.411\pm 1.4 17.7±217.7\pm 2 5/5
20–30% 0.067±0.0050.067\pm 0.005 0.312±0.0110.312\pm 0.011 1813±1041813\pm 104 11±1.211\pm 1.2 13±213\pm 2 4/5
30–40% 0.064±0.0050.064\pm 0.005 0.312±0.0100.312\pm 0.010 1730±1081730\pm 108 11±1.411\pm 1.4 9.2±1.49.2\pm 1.4 4/5
40–50% 0.061±0.0040.061\pm 0.004 0.312±0.0100.312\pm 0.010 1650±1021650\pm 102 11±1.311\pm 1.3 6.4±1.26.4\pm 1.2 10/5
50–60% 0.057±0.0040.057\pm 0.004 0.312±0.0100.312\pm 0.010 1560±851560\pm 85 11±1.211\pm 1.2 3.8±0.43.8\pm 0.4 2/5
60–70% 0.054±0.0050.054\pm 0.005 0.312±0.0090.312\pm 0.009 1481±701481\pm 70 11±1.111\pm 1.1 2.2±0.42.2\pm 0.4 10/5
70–80% 0.050±0.0060.050\pm 0.006 0.312±0.0090.312\pm 0.009 1400±801400\pm 80 11±1.211\pm 1.2 0.9±0.030.9\pm 0.03 13/5

Table 1. Continue.

Collisions Centrality Particle T0T_{0} (GeV) βT\beta_{T} (c) V(fm3)V(fm^{3}) nn N0N_{0} χ2\chi^{2}/ dof
0–5% pp 0.060±0.0050.060\pm 0.005 0.280±0.0100.280\pm 0.010 1930±1081930\pm 108 8.4±18.4\pm 1 7±0.87\pm 0.8 9/9
5–10% 0.056±0.0050.056\pm 0.005 0.280±0.0110.280\pm 0.011 1843±1101843\pm 110 9±0.69\pm 0.6 6.1±0.66.1\pm 0.6 2/9
10–20% 0.053±0.0050.053\pm 0.005 0.280±0.0090.280\pm 0.009 1739±1201739\pm 120 9±0.49\pm 0.4 5±0.55\pm 0.5 1/9
20–30% 0.049±0.0040.049\pm 0.004 0.280±0.0100.280\pm 0.010 1627±1091627\pm 109 9±19\pm 1 3.7±0.43.7\pm 0.4 3/9
30–40% 0.045±0.0060.045\pm 0.006 0.280±0.0120.280\pm 0.012 1500±1001500\pm 100 11±111\pm 1 2.8±0.52.8\pm 0.5 2/9
40–50% 0.042±0.0050.042\pm 0.005 0.280±0.0120.280\pm 0.012 1385±1001385\pm 100 11.5±1.511.5\pm 1.5 1.95±0.31.95\pm 0.3 2/9
50–60% 0.040±0.0050.040\pm 0.005 0.280±0.0110.280\pm 0.011 1300±931300\pm 93 13±1.613\pm 1.6 1.3±0.041.3\pm 0.04 1/9
60–70% 0.038±0.0040.038\pm 0.004 0.280±0.0100.280\pm 0.010 1212±801212\pm 80 15±1.415\pm 1.4 0.745±0.040.745\pm 0.04 3/9
70–80% 0.035±0.0050.035\pm 0.005 0.280±0.0100.280\pm 0.010 1100±601100\pm 60 16±1.516\pm 1.5 0.37±0.030.37\pm 0.03 4/9
0–5% Λ\Lambda 0.076±0.0060.076\pm 0.006 0.260±0.0120.260\pm 0.012 1800±1261800\pm 126 15±1.515\pm 1.5 7.6±0.57.6\pm 0.5 5/7
5–10% 0.073±0.0060.073\pm 0.006 0.260±0.0090.260\pm 0.009 1700±1001700\pm 100 15±1.615\pm 1.6 0.61±0.060.61\pm 0.06 11/7
10–20% 0.070±0.0060.070\pm 0.006 0.260±0.0110.260\pm 0.011 1610±1001610\pm 100 15±1.515\pm 1.5 0.058±0.0050.058\pm 0.005 8/7
20–30% 0.067±0.0050.067\pm 0.005 0.260±0.0130.260\pm 0.013 1523±961523\pm 96 15±1.715\pm 1.7 0.0033±0.00040.0033\pm 0.0004 8/7
30–40% 0.064±0.0050.064\pm 0.005 0.260±0.0100.260\pm 0.010 1450±701450\pm 70 15±1.415\pm 1.4 2.5×104±4×1052.5\times 10^{-4}\pm 4\times 10^{-5} 3/7
40–60% 0.060±0.0040.060\pm 0.004 0.260±0.0110.260\pm 0.011 1329±801329\pm 80 15±1.615\pm 1.6 9.4×106±5×1079.4\times 10^{-6}\pm 5\times 10^{-7} 16/7
60–80% 0.055±0.0040.055\pm 0.004 0.260±0.0100.260\pm 0.010 1200±851200\pm 85 15±1.615\pm 1.6 2.9×107±4×1082.9\times 10^{-7}\pm 4\times 10^{-8} 3/7
0–5% Ξ\Xi^{-} 0.076±0.0060.076\pm 0.006 0.249±0.0120.249\pm 0.012 1680±1001680\pm 100 13±1.213\pm 1.2 0.33±0.040.33\pm 0.04 2/5
5–10% 0.073±0.0060.073\pm 0.006 0.249±0.0090.249\pm 0.009 1600±1001600\pm 100 14±1.214\pm 1.2 0.033±0.0040.033\pm 0.004 4/5
10–20% 0.070±0.0060.070\pm 0.006 0.249±0.0110.249\pm 0.011 1500±801500\pm 80 14±1.314\pm 1.3 0.0024±0.00050.0024\pm 0.0005 4/5
20–30% 0.067±0.0050.067\pm 0.005 0.249±0.0130.249\pm 0.013 1400±701400\pm 70 14±1.514\pm 1.5 1.6×104±5×1051.6\times 10^{-4}\pm 5\times 10^{-5} 1.5/5
30–40% 0.064±0.0050.064\pm 0.005 0.249±0.0100.249\pm 0.010 1320±701320\pm 70 15±1.515\pm 1.5 4.4×106±5×1074.4\times 10^{-6}\pm 5\times 10^{-7} 3/5
40–60% 0.060±0.0040.060\pm 0.004 0.249±0.0110.249\pm 0.011 1200±801200\pm 80 15±1.515\pm 1.5 1.4×107±5×1081.4\times 10^{-7}\pm 5\times 10^{-8} 1.5/5
Fig. 3 0–20% π+\pi^{+} 0.058±0.0040.058\pm 0.004 0.315±0.0090.315\pm 0.009 2250±1002250\pm 100 9.8±1.39.8\pm 1.3 0.075±0.0050.075\pm 0.005 2/19
d-Au 20–40% 0.055±0.0040.055\pm 0.004 0.315±0.0090.315\pm 0.009 2170±1042170\pm 104 9.8±1.39.8\pm 1.3 0.006±0.00040.006\pm 0.0004 2/19
200 GeV 40–60% 0.048±0.0050.048\pm 0.005 0.315±0.0110.315\pm 0.011 1954±1101954\pm 110 9.8±1.29.8\pm 1.2 5×105±5×1065\times 10^{-5}\pm 5\times 10^{-6} 0.6/19
60–80% 0.044±0.0040.044\pm 0.004 0.315±0.0090.315\pm 0.009 1843±1231843\pm 123 9.8±1.49.8\pm 1.4 1.8×106±4×1071.8\times 10^{-6}\pm 4\times 10^{-7} 3/19
0–20% π\pi^{-} 0.058±0.0040.058\pm 0.004 0.315±0.0090.315\pm 0.009 2250±1002250\pm 100 9.8±1.39.8\pm 1.3 0.075±0.0050.075\pm 0.005 2/19
20–40% 0.055±0.0040.055\pm 0.004 0.315±0.0090.315\pm 0.009 2170±1042170\pm 104 9.8±1.39.8\pm 1.3 0.006±0.00040.006\pm 0.0004 2/19
40–60% 0.048±0.0050.048\pm 0.005 0.315±0.0110.315\pm 0.011 1954±1101954\pm 110 9.8±1.29.8\pm 1.2 5×105±5×1065\times 10^{-5}\pm 5\times 10^{-6} 0.6/19
60–80% 0.044±0.0040.044\pm 0.004 0.315±0.0090.315\pm 0.009 1843±1231843\pm 123 9.8±1.49.8\pm 1.4 1.8×106±4×1071.8\times 10^{-6}\pm 4\times 10^{-7} 3/19
0–20% K+K^{+} 0.078±0.0050.078\pm 0.005 0.296±0.0100.296\pm 0.010 2119±1102119\pm 110 9.4±1.29.4\pm 1.2 0.0055±0.00050.0055\pm 0.0005 1.4/14
20–40% 0.074±0.0060.074\pm 0.006 0.296±0.0110.296\pm 0.011 2041±1212041\pm 121 9.4±1.49.4\pm 1.4 4.1×104±5×1054.1\times 10^{-4}\pm 5\times 10^{-5} 1/14
40–60% 0.067±0.0060.067\pm 0.006 0.296±0.0130.296\pm 0.013 1817±1161817\pm 116 9.4±1.49.4\pm 1.4 3.6×106±5×1073.6\times 10^{-6}\pm 5\times 10^{-7} 1/14
60–80% 0.062±0.0050.062\pm 0.005 0.296±0.0110.296\pm 0.011 1703±1201703\pm 120 9.8±1.19.8\pm 1.1 1.4×107±6×1081.4\times 10^{-7}\pm 6\times 10^{-8} 3/14
0–20% KK^{-} 0.078±0.0050.078\pm 0.005 0.296±0.0100.296\pm 0.010 2119±1102119\pm 110 9.4±1.29.4\pm 1.2 0.0055±0.00050.0055\pm 0.0005 1.4/14
20–40% 0.074±0.0060.074\pm 0.006 0.296±0.0110.296\pm 0.011 2041±1212041\pm 121 9.4±1.49.4\pm 1.4 4.1×104±5×1054.1\times 10^{-4}\pm 5\times 10^{-5} 1/14
40–60% 0.067±0.0060.067\pm 0.006 0.296±0.0130.296\pm 0.013 1817±1161817\pm 116 9.4±1.49.4\pm 1.4 3.6×106±5×1073.6\times 10^{-6}\pm 5\times 10^{-7} 1/14
60–80% 0.062±0.0050.062\pm 0.005 0.296±0.0110.296\pm 0.011 1703±1201703\pm 120 9.8±1.19.8\pm 1.1 1.4×107±6×1081.4\times 10^{-7}\pm 6\times 10^{-8} 3/14
0–20% pp 0.061±0.0060.061\pm 0.006 0.283±0.0080.283\pm 0.008 1920±1091920\pm 109 11±1.511\pm 1.5 7.3×104±6×1057.3\times 10^{-4}\pm 6\times 10^{-5} 4.5/19
20–40% 0.057±0.0040.057\pm 0.004 0.283±0.0100.283\pm 0.010 1834±1011834\pm 101 11±1.511\pm 1.5 5.5×105±5×1065.5\times 10^{-5}\pm 5\times 10^{-6} 2/19
40–60% 0.048±0.0050.048\pm 0.005 0.283±0.0110.283\pm 0.011 1600±1061600\pm 106 11±1.211\pm 1.2 5.1×107±4×1085.1\times 10^{-7}\pm 4\times 10^{-8} 1/19
60–80% 0.045±0.0040.045\pm 0.004 0.283±0.0100.283\pm 0.010 1500±1021500\pm 102 12±1.412\pm 1.4 2.4×108±5×1092.4\times 10^{-8}\pm 5\times 10^{-9} 2/19
0–20% p¯\bar{p} 0.061±0.0060.061\pm 0.006 0.283±0.0080.283\pm 0.008 1920±1091920\pm 109 11±1.511\pm 1.5 7.3×104±6×1057.3\times 10^{-4}\pm 6\times 10^{-5} 4.5/19
20–40% 0.057±0.0040.057\pm 0.004 0.283±0.0100.283\pm 0.010 1834±1011834\pm 101 11±1.511\pm 1.5 5.5×105±5×1065.5\times 10^{-5}\pm 5\times 10^{-6} 2/19
40–60% 0.048±0.0050.048\pm 0.005 0.283±0.0110.283\pm 0.011 1600±1061600\pm 106 11±1.211\pm 1.2 5.1×107±4×1085.1\times 10^{-7}\pm 4\times 10^{-8} 1/19
60–80% 0.045±0.0040.045\pm 0.004 0.283±0.0100.283\pm 0.010 1500±1021500\pm 102 12±1.412\pm 1.4 2.4×108±5×1092.4\times 10^{-8}\pm 5\times 10^{-9} 2/19

Table 1. Continue.

Collisions Centrality Particle T0T_{0} (GeV) βT\beta_{T} (c) V(fm3)V(fm^{3}) nn N0N_{0} χ2\chi^{2}/ dof
Fig. 4 0–5% π+\pi^{+} 0.108±0.0050.108\pm 0.005 0.443±0.0110.443\pm 0.011 3500±1403500\pm 140 9.8±19.8\pm 1 2.3×105±5×1042.3\times 10^{5}\pm 5\times 10^{4} 34/36
Pb-Pb 5–10% 0.104±0.0040.104\pm 0.004 0.443±0.0100.443\pm 0.010 3360±1433360\pm 143 9.8±19.8\pm 1 1.1×105±4×1041.1\times 10^{5}\pm 4\times 10^{4} 40/36
2.76 TeV 10–20% 0.100±0.0050.100\pm 0.005 0.443±0.0100.443\pm 0.010 3237±1363237\pm 136 9.8±1.29.8\pm 1.2 4×104±6×1034\times 10^{4}\pm 6\times 10^{3} 21/36
20–30% 0.096±0.0060.096\pm 0.006 0.443±0.0120.443\pm 0.012 3100±1243100\pm 124 9.8±1.39.8\pm 1.3 1.4×104±4×1031.4\times 10^{4}\pm 4\times 10^{3} 29/36
30–40% 0.092±0.0060.092\pm 0.006 0.443±0.0100.443\pm 0.010 2974±1092974\pm 109 9.8±19.8\pm 1 5×103±5×1025\times 10^{3}\pm 5\times 10^{2} 40/36
40–50% 0.089±0.0040.089\pm 0.004 0.443±0.0120.443\pm 0.012 2854±1082854\pm 108 9.8±19.8\pm 1 1.6×103±3×1021.6\times 10^{3}\pm 3\times 10^{2} 35/36
50–60% 0.086±0.0050.086\pm 0.005 0.443±0.0100.443\pm 0.010 2719±1202719\pm 120 9.8±1.19.8\pm 1.1 450±21450\pm 21 34/36
60–70% 0.082±0.0060.082\pm 0.006 0.443±0.0120.443\pm 0.012 2600±1322600\pm 132 10.3±1.310.3\pm 1.3 150±10150\pm 10 55/36
70–80% 0.078±0.0040.078\pm 0.004 0.443±0.0120.443\pm 0.012 2500±1002500\pm 100 10.3±1.210.3\pm 1.2 34±434\pm 4 71/36
80–90% 0.074±0.0050.074\pm 0.005 0.443±0.0100.443\pm 0.010 2300±1612300\pm 161 10.3±1.410.3\pm 1.4 7.5±0.47.5\pm 0.4 73/36
0–5% π\pi^{-} 0.108±0.0050.108\pm 0.005 0.443±0.0110.443\pm 0.011 3500±1403500\pm 140 9.8±19.8\pm 1 2.3×105±5×1042.3\times 10^{5}\pm 5\times 10^{4} 34/36
5–10% 0.104±0.0040.104\pm 0.004 0.443±0.0100.443\pm 0.010 3360±1433360\pm 143 9.8±19.8\pm 1 1.1×105±4×1041.1\times 10^{5}\pm 4\times 10^{4} 40/36
10–20% 0.100±0.0050.100\pm 0.005 0.443±0.0100.443\pm 0.010 3237±1363237\pm 136 9.8±1.29.8\pm 1.2 4×104±6×1034\times 10^{4}\pm 6\times 10^{3} 21/36
20–30% 0.096±0.0060.096\pm 0.006 0.443±0.0120.443\pm 0.012 3100±1243100\pm 124 9.8±1.39.8\pm 1.3 1.4×104±4×1031.4\times 10^{4}\pm 4\times 10^{3} 29/36
30–40% 0.092±0.0060.092\pm 0.006 0.443±0.0100.443\pm 0.010 2974±1092974\pm 109 9.8±19.8\pm 1 5×103±5×1025\times 10^{3}\pm 5\times 10^{2} 40/36
40–50% 0.089±0.0040.089\pm 0.004 0.443±0.0120.443\pm 0.012 2854±1082854\pm 108 9.8±19.8\pm 1 1.6×103±3×1021.6\times 10^{3}\pm 3\times 10^{2} 35/36
50–60% 0.086±0.0050.086\pm 0.005 0.443±0.0100.443\pm 0.010 2719±1202719\pm 120 9.8±1.19.8\pm 1.1 450±21450\pm 21 34/36
60–70% 0.082±0.0060.082\pm 0.006 0.443±0.0120.443\pm 0.012 2600±1322600\pm 132 10.3±1.310.3\pm 1.3 150±10150\pm 10 55/36
70–80% 0.078±0.0040.078\pm 0.004 0.443±0.0120.443\pm 0.012 2500±1002500\pm 100 10.3±1.210.3\pm 1.2 34±434\pm 4 71/36
80–90% 0.074±0.0050.074\pm 0.005 0.443±0.0100.443\pm 0.010 2300±1612300\pm 161 10.3±1.410.3\pm 1.4 7.5±0.47.5\pm 0.4 73/36
0–5% K+K^{+} 0.129±0.0040.129\pm 0.004 0.421±0.0090.421\pm 0.009 3319±1383319\pm 138 9.3±1.29.3\pm 1.2 1.9×104±4×1031.9\times 10^{4}\pm 4\times 10^{3} 40/31
5–10% 0.126±0.0040.126\pm 0.004 0.421±0.0090.421\pm 0.009 3319±1383319\pm 138 9.3±1.29.3\pm 1.2 8.6×103±5×1028.6\times 10^{3}\pm 5\times 10^{2} 24/31
10–20% 0.122±0.0050.122\pm 0.005 0.421±0.0110.421\pm 0.011 3200±1803200\pm 180 9.3±1.39.3\pm 1.3 3.3×103±5×1023.3\times 10^{3}\pm 5\times 10^{2} 25/31
20–30% 0.119±0.0060.119\pm 0.006 0.421±0.0100.421\pm 0.010 3000±1813000\pm 181 9.3±1.39.3\pm 1.3 1.2×103±4×1021.2\times 10^{3}\pm 4\times 10^{2} 17/31
30–40% 0.115±0.0050.115\pm 0.005 0.421±0.0120.421\pm 0.012 2875±1302875\pm 130 9.3±1.39.3\pm 1.3 400±24400\pm 24 10/31
40–50% 0.110±0.0060.110\pm 0.006 0.421±0.0110.421\pm 0.011 2732±1312732\pm 131 9.3±1.49.3\pm 1.4 130±10130\pm 10 16/31
50–60% 0.107±0.0050.107\pm 0.005 0.421±0.0100.421\pm 0.010 2600±1262600\pm 126 9.3±1.49.3\pm 1.4 36±536\pm 5 20/31
60–70% 0.102±0.0040.102\pm 0.004 0.421±0.0120.421\pm 0.012 2450±1422450\pm 142 9.5±1.39.5\pm 1.3 10±0.410\pm 0.4 12/31
70–80% 0.098±0.0050.098\pm 0.005 0.421±0.0100.421\pm 0.010 2350±1262350\pm 126 9.8±1.39.8\pm 1.3 2.5±0.32.5\pm 0.3 65/31
80–90% 0.094±0.0050.094\pm 0.005 0.421±0.0110.421\pm 0.011 2220±1412220\pm 141 10±1.410\pm 1.4 0.5±0.030.5\pm 0.03 35/31
0–5% KK^{-} 0.129±0.0040.129\pm 0.004 0.421±0.0090.421\pm 0.009 3319±1383319\pm 138 9.3±1.29.3\pm 1.2 1.9×104±4×1031.9\times 10^{4}\pm 4\times 10^{3} 40/31
5–10% 0.126±0.0040.126\pm 0.004 0.421±0.0090.421\pm 0.009 3319±1383319\pm 138 9.3±1.29.3\pm 1.2 8.6×103±5×1028.6\times 10^{3}\pm 5\times 10^{2} 24/31
10–20% 0.122±0.0050.122\pm 0.005 0.421±0.0110.421\pm 0.011 3200±1803200\pm 180 9.3±1.39.3\pm 1.3 3.3×103±5×1023.3\times 10^{3}\pm 5\times 10^{2} 25/31
20–30% 0.119±0.0060.119\pm 0.006 0.421±0.0100.421\pm 0.010 3000±1813000\pm 181 9.3±1.39.3\pm 1.3 1.2×103±4×1021.2\times 10^{3}\pm 4\times 10^{2} 17/31
30–40% 0.115±0.0050.115\pm 0.005 0.421±0.0120.421\pm 0.012 2875±1302875\pm 130 9.3±1.39.3\pm 1.3 400±24400\pm 24 10/31
40–50% 0.110±0.0060.110\pm 0.006 0.421±0.0110.421\pm 0.011 2732±1312732\pm 131 9.3±1.49.3\pm 1.4 130±10130\pm 10 16/31
50–60% 0.107±0.0050.107\pm 0.005 0.421±0.0100.421\pm 0.010 2600±1262600\pm 126 9.3±1.49.3\pm 1.4 36±536\pm 5 20/31
60–70% 0.102±0.0040.102\pm 0.004 0.421±0.0120.421\pm 0.012 2450±1422450\pm 142 9.5±1.39.5\pm 1.3 10±0.410\pm 0.4 12/31
70–80% 0.098±0.0050.098\pm 0.005 0.421±0.0100.421\pm 0.010 2350±1262350\pm 126 9.8±1.39.8\pm 1.3 2.5±0.32.5\pm 0.3 65/31
80–90% 0.094±0.0050.094\pm 0.005 0.421±0.0110.421\pm 0.011 2220±1412220\pm 141 10±1.410\pm 1.4 0.5±0.030.5\pm 0.03 35/31
0–5% pp 0.108±0.0050.108\pm 0.005 0.403±0.0100.403\pm 0.010 3100±1403100\pm 140 9.8±19.8\pm 1 2.3×105±5×1042.3\times 10^{5}\pm 5\times 10^{4} 34/32
5–10% 0.104±0.0060.104\pm 0.006 0.403±0.0110.403\pm 0.011 2900±1422900\pm 142 9±1.29\pm 1.2 1000±1001000\pm 100 151/32
10–20% 0.101±0.0040.101\pm 0.004 0.403±0.0100.403\pm 0.010 2768±1202768\pm 120 9±1.29\pm 1.2 400±20400\pm 20 151/32
20–30% 0.097±0.0050.097\pm 0.005 0.403±0.0100.403\pm 0.010 2550±1362550\pm 136 9±1.29\pm 1.2 150±10150\pm 10 148/32
30–40% 0.094±0.0050.094\pm 0.005 0.403±0.0100.403\pm 0.010 2400±1302400\pm 130 9±1.19\pm 1.1 47±447\pm 4 143/32

Table 1. Continue.

Collisions Centrality Particle T0T_{0} (GeV) βT\beta_{T} (c) V(fm3)V(fm^{3}) nn N0N_{0} χ2\chi^{2}/ dof
40–50% 0.090±0.0050.090\pm 0.005 0.403±0.0110.403\pm 0.011 2300±1402300\pm 140 9.8±1.39.8\pm 1.3 17±217\pm 2 43/32
50–60% 0.086±0.0040.086\pm 0.004 0.403±0.0120.403\pm 0.012 2200±1002200\pm 100 10.3±1.110.3\pm 1.1 5.5±0.55.5\pm 0.5 17/32
60–70% 0.083±0.0050.083\pm 0.005 0.403±0.0120.403\pm 0.012 2050±1102050\pm 110 10.3±1.110.3\pm 1.1 1.6±0.31.6\pm 0.3 35/32
70–80% 0.080±0.0060.080\pm 0.006 0.403±0.0120.403\pm 0.012 1910±1201910\pm 120 10.7±1.410.7\pm 1.4 0.38±0.020.38\pm 0.02 54/32
80–90% 0.077±0.0040.077\pm 0.004 0.403±0.0100.403\pm 0.010 1800±1001800\pm 100 11.7±1.211.7\pm 1.2 0.08±0.0030.08\pm 0.003 61/32
0–5% p¯\bar{p} 0.108±0.0050.108\pm 0.005 0.403±0.0100.403\pm 0.010 3100±1403100\pm 140 9.8±19.8\pm 1 2.3×105±5×1042.3\times 10^{5}\pm 5\times 10^{4} 34/32
5–10% 0.104±0.0060.104\pm 0.006 0.403±0.0110.403\pm 0.011 2900±1422900\pm 142 9±1.29\pm 1.2 1000±1001000\pm 100 151/32
10–20% 0.101±0.0040.101\pm 0.004 0.403±0.0100.403\pm 0.010 2768±1202768\pm 120 9±1.29\pm 1.2 400±20400\pm 20 151/32
20–30% 0.097±0.0050.097\pm 0.005 0.403±0.0100.403\pm 0.010 2550±1362550\pm 136 9±1.29\pm 1.2 150±10150\pm 10 148/32
30–40% 0.094±0.0050.094\pm 0.005 0.403±0.0100.403\pm 0.010 2400±1302400\pm 130 9±1.19\pm 1.1 47±447\pm 4 143/32
40–50% 0.090±0.0050.090\pm 0.005 0.403±0.0110.403\pm 0.011 2300±1402300\pm 140 9.8±1.39.8\pm 1.3 17±217\pm 2 43/32
50–60% 0.086±0.0040.086\pm 0.004 0.403±0.0120.403\pm 0.012 2200±1002200\pm 100 10.3±1.110.3\pm 1.1 5.5±0.55.5\pm 0.5 17/32
60–70% 0.083±0.0050.083\pm 0.005 0.403±0.0120.403\pm 0.012 2050±1102050\pm 110 10.3±1.110.3\pm 1.1 1.6±0.31.6\pm 0.3 35/32
70–80% 0.080±0.0060.080\pm 0.006 0.403±0.0120.403\pm 0.012 1910±1201910\pm 120 10.7±1.410.7\pm 1.4 0.38±0.020.38\pm 0.02 54/32
80–90% 0.077±0.0040.077\pm 0.004 0.403±0.0100.403\pm 0.010 1800±1001800\pm 100 11.7±1.211.7\pm 1.2 0.08±0.0030.08\pm 0.003 61/32
0–10% Λ\Lambda 0.128±0.0050.128\pm 0.005 0.381±0.0100.381\pm 0.010 2900±1502900\pm 150 7±0.77\pm 0.7 17±217\pm 2 130/14
10–20% 0.126±0.0060.126\pm 0.006 0.381±0.0100.381\pm 0.010 2750±1002750\pm 100 7±17\pm 1 13±0.413\pm 0.4 74/14
20–40% 0.120±0.0050.120\pm 0.005 0.381±0.0110.381\pm 0.011 2623±1102623\pm 110 7.3±1.17.3\pm 1.1 7.9±0.27.9\pm 0.2 105/14
40–60% 0.111±0.0060.111\pm 0.006 0.381±0.0120.381\pm 0.012 2500±1302500\pm 130 9.4±1.29.4\pm 1.2 3.5±0.23.5\pm 0.2 22/14
60–80% 0.105±0.0050.105\pm 0.005 0.381±0.0120.381\pm 0.012 2400±1522400\pm 152 10.5±1.310.5\pm 1.3 1±0.021\pm 0.02 20/14
0–10% Ξ\Xi 0.128±0.0060.128\pm 0.006 0.287±0.0120.287\pm 0.012 2600±1802600\pm 180 7±0.67\pm 0.6 5.5±0.35.5\pm 0.3 39/7
10–20% 0.125±0.0040.125\pm 0.004 0.287±0.0120.287\pm 0.012 2477±1502477\pm 150 7±0.57\pm 0.5 4.2±0.44.2\pm 0.4 25/7
20–40% 0.120±0.0040.120\pm 0.004 0.287±0.0100.287\pm 0.010 2356±1442356\pm 144 7.6±0.47.6\pm 0.4 2.7±0.22.7\pm 0.2 13/7
40–60% 0.112±0.0050.112\pm 0.005 0.287±0.0110.287\pm 0.011 2207±1082207\pm 108 8±0.48\pm 0.4 1±0.21\pm 0.2 32/7
60–80% 0.105±0.0040.105\pm 0.004 0.287±0.0100.287\pm 0.010 2100±1202100\pm 120 10±0.810\pm 0.8 0.3±0.030.3\pm 0.03 57/7
Fig. 5 0–5% π++π\pi^{+}+\pi^{-} 0.100±0.0060.100\pm 0.006 0.430±0.0100.430\pm 0.010 3300±1503300\pm 150 9±19\pm 1 1700±1131700\pm 113 67/36
p-Pb 5–10% 0.096±0.0050.096\pm 0.005 0.430±0.0110.430\pm 0.011 3200±1363200\pm 136 9±19\pm 1 700±100700\pm 100 51/36
5.02 TeV 10–20% 0.092±0.0040.092\pm 0.004 0.430±0.0120.430\pm 0.012 3100±1243100\pm 124 9±1.29\pm 1.2 300±13300\pm 13 44/36
20–40% 0.088±0.0050.088\pm 0.005 0.430±0.0110.430\pm 0.011 2942±1562942\pm 156 9±1.19\pm 1.1 130±16130\pm 16 49/36
40–60% 0.083±0.0060.083\pm 0.006 0.430±0.0090.430\pm 0.009 2800±1402800\pm 140 9±1.29\pm 1.2 37±737\pm 7 42/36
60–80% 0.079±0.0050.079\pm 0.005 0.430±0.0110.430\pm 0.011 2647±1372647\pm 137 9.7±1.39.7\pm 1.3 17±317\pm 3 82/36
80–100% 0.075±0.0050.075\pm 0.005 0.430±0.0110.430\pm 0.011 2500±1412500\pm 141 10±1.210\pm 1.2 3.6±0.53.6\pm 0.5 67/36
0–5% K++KK^{+}+K^{-} 0.120±0.0050.120\pm 0.005 0.400±0.0110.400\pm 0.011 3100±1453100\pm 145 8±0.78\pm 0.7 128±13128\pm 13 5/26
5–10% 0.116±0.0060.116\pm 0.006 0.400±0.0120.400\pm 0.012 2974±1302974\pm 130 8±0.58\pm 0.5 52±452\pm 4 8/26
10–20% 0.112±0.0050.112\pm 0.005 0.400±0.0120.400\pm 0.012 2851±1402851\pm 140 8.2±0.68.2\pm 0.6 23±323\pm 3 45/26
20–40% 0.108±0.0050.108\pm 0.005 0.400±0.0110.400\pm 0.011 2714±1242714\pm 124 8.2±0.58.2\pm 0.5 10±0.410\pm 0.4 10/26
40–60% 0.104±0.0050.104\pm 0.005 0.400±0.0100.400\pm 0.010 2600±1082600\pm 108 8.6±0.68.6\pm 0.6 5.2±0.45.2\pm 0.4 21/26
60–80% 0.100±0.0050.100\pm 0.005 0.400±0.0100.400\pm 0.010 2500±1002500\pm 100 9±0.79\pm 0.7 1.2±0.041.2\pm 0.04 45/26
80–100% 0.096±0.0040.096\pm 0.004 0.400±0.0110.400\pm 0.011 2400±1002400\pm 100 10.6±110.6\pm 1 0.3±0.030.3\pm 0.03 90/26
0–5% p+p¯p+\bar{p} 0.100±0.0040.100\pm 0.004 0.380±0.0120.380\pm 0.012 2928±1402928\pm 140 8.4±0.88.4\pm 0.8 20±220\pm 2 9/34
5–10% 0.096±0.0050.096\pm 0.005 0.380±0.0100.380\pm 0.010 2800±1202800\pm 120 8.4±0.68.4\pm 0.6 8.7±0.68.7\pm 0.6 14/34
10–20% 0.092±0.0050.092\pm 0.005 0.380±0.0100.380\pm 0.010 2700±1302700\pm 130 8.4±0.68.4\pm 0.6 3.5±0.23.5\pm 0.2 50/34
20–40% 0.088±0.0060.088\pm 0.006 0.380±0.0100.380\pm 0.010 2570±1102570\pm 110 8.9±0.88.9\pm 0.8 1.8±0.031.8\pm 0.03 86/34
40–60% 0.084±0.0050.084\pm 0.005 0.380±0.0110.380\pm 0.011 2450±1092450\pm 109 9.5±0.59.5\pm 0.5 0.6±0.020.6\pm 0.02 6/34
60–80% 0.080±0.0050.080\pm 0.005 0.380±0.0110.380\pm 0.011 2323±1082323\pm 108 10.5±0.610.5\pm 0.6 0.24±0.020.24\pm 0.02 28/34
80–100% 0.078±0.0050.078\pm 0.005 0.380±0.0100.380\pm 0.010 2200±1002200\pm 100 12±112\pm 1 0.059±0.0030.059\pm 0.003 91/34
0–5% Λ+Λ¯\Lambda+\bar{\Lambda} 0.120±0.0060.120\pm 0.006 0.330±0.0090.330\pm 0.009 2500±1802500\pm 180 8.8±0.48.8\pm 0.4 15±215\pm 2 159/13
5–10% 0.115±0.0060.115\pm 0.006 0.330±0.0110.330\pm 0.011 2350±1352350\pm 135 8.8±0.38.8\pm 0.3 7±0.47\pm 0.4 96/13
10–20% 0.114±0.0040.114\pm 0.004 0.330±0.0120.330\pm 0.012 2220±1462220\pm 146 8.8±0.48.8\pm 0.4 3±0.23\pm 0.2 110/13
20–40% 0.110±0.0050.110\pm 0.005 0.330±0.0120.330\pm 0.012 2220±1422220\pm 142 9±0.359\pm 0.35 1.15±0.051.15\pm 0.05 32/13
40–60% 0.105±0.0040.105\pm 0.004 0.330±0.0100.330\pm 0.010 2100±1362100\pm 136 9±0.59\pm 0.5 0.4±0.020.4\pm 0.02 73/13
60–80% 0.101±0.0050.101\pm 0.005 0.330±0.0120.330\pm 0.012 2000±1502000\pm 150 9.9±0.79.9\pm 0.7 0.14±0.020.14\pm 0.02 136/13
80–100% 0.096±0.0050.096\pm 0.005 0.330±0.0100.330\pm 0.010 1870±1081870\pm 108 10.4±0.810.4\pm 0.8 0.27±0.050.27\pm 0.05 376/13

Table 1. Continue.

Collisions Centrality Particle T0T_{0} (GeV) βT\beta_{T} (c) V(fm3)V(fm^{3}) nn N0N_{0} χ2\chi^{2}/ dof
p-p 200 GeV π+\pi^{+} 0.042±0.0060.042\pm 0.006 0.256±0.0080.256\pm 0.008 532±30532\pm 30 8±0.48\pm 0.4 63±363\pm 3 9/22
π\pi^{-} 0.042±0.0060.042\pm 0.006 0.256±0.0080.256\pm 0.008 532±30532\pm 30 8±0.48\pm 0.4 63±363\pm 3 9/22
K+K^{+} 0.050±0.0040.050\pm 0.004 0.230±0.0090.230\pm 0.009 434±30434\pm 30 8±0.48\pm 0.4 10±0.310\pm 0.3 8/11
KK^{-} 0.050±0.0040.050\pm 0.004 0.230±0.0090.230\pm 0.009 434±30434\pm 30 8±0.48\pm 0.4 10±0.310\pm 0.3 8/11
pp 0.042±0.0050.042\pm 0.005 0.214±0.0100.214\pm 0.010 390±31390\pm 31 9.8±0.59.8\pm 0.5 2±0.22\pm 0.2 9/28
p¯\bar{p} 0.042±0.0050.042\pm 0.005 0.214±0.0100.214\pm 0.010 390±23390\pm 23 9.8±0.59.8\pm 0.5 2±0.22\pm 0.2 9/28
ϕ\phi 0.050±0.0060.050\pm 0.006 0.200±0.0110.200\pm 0.011 312±21312\pm 21 8±0.28\pm 0.2 0.007±0.00020.007\pm 0.0002 14/8
Ξ\Xi^{-} 0.050±0.0050.050\pm 0.005 0.187±0.0100.187\pm 0.010 287±21287\pm 21 8±0.38\pm 0.3 0.004±0.00020.004\pm 0.0002 15/6
[Uncaptioned image]

Fig. 4. The transverse momentum spectra of π+\pi^{+}, π\pi^{-}, K+K^{+}, KK^{-}, pp, p¯\bar{p}, Λ\Lambda and Ξ\Xi^{-} in Lead-Lead (Pb-Pb) collisions at 2.76 TeV in various centrality classes. The experimental data of ALICE Collaboration at LHC for π+\pi^{+}, π\pi^{-}, K+K^{+}, KK^{-}, pp and p¯\bar{p} are from ref. 6c at |y|<|y|<0.5 and for Λ\Lambda and Ξ\Xi^{-} is taken from ref. 7c at |y|<|y|<0.5 mid-rapidity.

[Uncaptioned image]

Fig. 5. Panel (a)-(d) show the transverse momentum spectra of π++π\pi^{+}+\pi^{-}, K++KK^{+}+K^{-}, p+p¯p+\bar{p} and Λ+Λ¯\Lambda+\bar{\Lambda} in Lead-Lead (Pb-Pb) collisions at 5.02 TeV in various centrality classes in p-Pb collisions,and panel (e) shows the transverse momentum spectra of π+\pi^{+}, π\pi^{-}, K+K^{+}, KK^{-}, pp, p¯\bar{p}, ϕ\phi and Ξ\Xi^{-} in pppp collisions at 200 GeV. The experimental data of BRAHMS Collaboration at LHC for π++π\pi^{+}+\pi^{-}, K++KK^{+}+K^{-}, p+p¯p+\bar{p} and Λ+Λ¯\Lambda+\bar{\Lambda} in panels (a-e) are taken from ref. 8c at mid-rapidity at |y|<|y|<0.5, while the data for π+\pi^{+}, π\pi^{-}, K+K^{+}, KK^{-}, pp, p¯\bar{p}, and the data for ϕ\phi and Ξ\Xi^{-} measured at STAR Collaboration are taken from ref. [9c; 10c ; 11c respectively at |η|<|\eta|<0.35 rapidity intervals for π+\pi^{+}, π\pi^{-}, K+K^{+}, KK^{-}, pp, p¯\bar{p}, and at |y|<|y|<0.5 for ϕ\phi and Ξ\Xi^{-}.

III Results and discussion

III.1 Comparison with data

Figure 1 shows the pTp_{T} spectra (1/Nev1/N_{ev}[(1/2π\pimTm_{T}) d2d^{2}NN/dyddydmTm_{T}] or (1/2π\pipTp_{T}) d2d^{2}NN/dyddydpTp_{T}) of π+\pi^{+}, π\pi^{-}, K+K^{+}, KK^{-}, pp, p¯\bar{p}, Λ\Lambda and Ξ\Xi in Copper-Copper (Cu-Cu) collisions at 200 GeV in different centrality bins. The centrality intervals for π+\pi^{+}, π\pi^{-}, K+K^{+}, K+K^{+}, pp and p¯\bar{p} are 010%0-10\%, 1030%10-30\%, 3050%30-50\% and 5070%50-70\%. The centrality intervals for π+\pi^{+} and π\pi^{-} 1030%10-30\%, 3050%30-50\% and 5070%50-70\% are scaled by 1/2, 1/4 and 1/6 respectively, while for K+K^{+} and KK^{-} 3050%30-50\% and 5070%50-70\% are scaled by 0.3. For pp and p¯\bar{p} the centrality bins 1030%10-30\%, 3050%30-50\% and 5070%50-70\% are scaled by 0.4, 0.3 and 0.2 respectively. The centrality intervals for Λ\Lambda and Ξ\Xi are 010%0-10\%, 1020%10-20\%, 2030%20-30\%, 3040%30-40\% and 4060%40-60\%. π+\pi^{+}, π\pi^{-}, K+K^{+}, KK^{-}, pp and p¯\bar{p} are measured at y=0y=0, while for Λ\Lambda and Ξ\Xi |y|<|y|<0.5. The symbols are used to represent the experimental data of RHIC measured by the BRAHMS Collaboration, while the curves are our fit results by using the Modified Hageodorn function with embeded transverse flow i:e Eq. (3). The data/fit ratio is given in the figure followed by each panel. It can be seen that Eq. (3) fits the data approximately well. In some cases the fit in the pTp_{T} range up to 0.5 GeV/c is not good due to the resonance effect. The data for π+\pi^{+}, π\pi^{-}, K+K^{+}, KK^{-}, pp, p¯\bar{p} are taken from ref. 1c , while for Λ\Lambda and Ξ\Xi is from ref. 2c .

Fig. 2 is similar to fig.1, but it shows the pTp_{T} spectra of π+\pi^{+}, K+K^{+}, pp, Λ\Lambda and Ξ\Xi^{-} in Au-Au collisions at 62.4 GeV. The centrality is distributed in 05%0-5\%, 010%0-10\%, 1020%10-20\%, 2030%20-30\%, 3040%30-40\%, 4050%40-50\%, 5060%50-60\%, 6070%60-70\% and 7080%70-80\% intervals for π+\pi^{+}, K+K^{+} and pp and the centrality bins 010%0-10\%, 1020%10-20\%, 2030%20-30\%, 3040%30-40\%, 4050%40-50\%, 5060%50-60\%, 6070%60-70\% and 7080%70-80\% are scaled by 1/4, 1/15, 1/50, 1/80, 1/500, 1/1300, 1/2700 and 1/5400 respectively. Λ\Lambda is distributed into 05%0-5\%, 010%0-10\%, 1020%10-20\%, 2030%20-30\%, 3040%30-40\%, 4060%40-60\% and 6080%60-80\% centrality intervals, while the centrality distribution for Ξ\Xi^{-} is 05%0-5\%, 010%0-10\%, 1020%10-20\%, 2030%20-30\%, 3040%30-40\% and 4060%40-60\%. One can see that the measurement of the STAR Collaboration is well fitted by the modified Hagedorn function. The data/fit ratio is followed in each panel in the figure. The data for π+\pi^{+}, K+K^{+} and pp are taken from ref. 3c , while for Λ\Lambda and Ξ\Xi is taken from ref. 4c .

The pTp_{T} spectra of the given particles are demonstrated in fig.3 and 4 in Deuteron-Gold (d-Au) collisions at 200 GeV and in Lead-Lead (Pb-Pb) collisions at 2.76 TeV respectively. In d-Au collisions π+\pi^{+}, π\pi^{-}, K+K^{+}, KK^{-}, pp and p¯\bar{p}, and in Pb-Pb collisions π+\pi^{+}, K+K^{+}, pp, Λ\Lambda and Ξ\Xi are analyzed. The centrality in d-Au is distributed in various centrality classes such that 020%0-20\%, 2040%20-40\%, 4060%40-60\% and 6088%60-88\%. However the centrality for π+\pi^{+}, π\pi^{-}, K+K^{+}, KK^{-}, pp and p¯\bar{p} in Pb-Pb collisions is distributed in 05%0-5\%, 010%0-10\%, 1020%10-20\%, 2030%20-30\%, 3040%30-40\%, 4050%40-50\%, 5060%50-60\%, 6070%60-70\%, 7080%70-80\% and 8090%80-90\%, and except 05%0-5\%, the other centrality bins are scaled by 1/2, 1/5, 1/10, 1/19, 1/36, 1/50, 1/70, 1/78 and 1/88 respectively. The centrality bins for Λ\Lambda and Ξ\Xi are 010%0-10\%, 1020%10-20\%, 2040%20-40\%, 4060%40-60\% and 6080%60-80\% and except 010%0-10\%, the remaining centrality class are scaled by 1/2, 1/4, 1/6 and 1/8 respectively. The well fitting results of the model to the experimental data of ALICE collaboration can be seen, and the data/fit ratio are followed in each panel. The data in fig. 3 are taken from ref. 5c , while in fig.4 for π+\pi^{+}, π\pi^{-}, K+K^{+}, KK^{-}, pp and p¯\bar{p} is taken from ref. 6c , and Λ\Lambda and Ξ\Xi^{-} are taken from ref. 7c .

Fig.5 shows the pTp_{T} of the given particles in proton-Lead (p-Pb) and proton-proton (pppp) collisions. Panel (a)-(d) shows the pTp_{T} spectra of the particles in p-Pb collisions in different centrality intervals at 5.02 TeV, and panel (e) represent the pTp_{T} spectra of the particles in pppp collisions at 200 GeV. Various centrality bins for π++π\pi^{+}+\pi^{-}, K++KK^{+}+K^{-}, p+p¯p+\bar{p} and Λ+Λ¯\Lambda+\bar{\Lambda} are 05%0-5\%, 010%0-10\%, 1020%10-20\%, 2040%20-40\%, 4060%40-60\%, 6080%60-80\%, and 80100%80-100\%, and 010%0-10\%, 1020%10-20\%, 2040%20-40\%, 4060%40-60\%, 6080%60-80\%, and 80100%80-100\% in panel (a)-(c) are scaled by 1/2, 1/4, 1/7, 1/10, 1/13 and 1/16 respectively. Panel (e) represents the pTp_{T} spectra of π+\pi^{+}, π\pi^{-}, K+K^{+}, KK^{-}, pp, p¯\bar{p}, ϕ\phi and Ξ\Xi^{-}, and the spectra of pp and p¯\bar{p}, ϕ\phi and Ξ\Xi^{-} are scaled by 2, 50 and 10 respectively. One can see that the modified Hagedorn function fits the experimental data well. The results of the data/fit ratio are given in figure followed by each panel. The data for π++π\pi^{+}+\pi^{-}, K++KK^{+}+K^{-}, p+p¯p+\bar{p} and Λ+Λ¯\Lambda+\bar{\Lambda} in panels (a-e) is taken from ref. 8c , while the data for π+\pi^{+}, π\pi^{-}, K+K^{+}, KK^{-}, pp, p¯\bar{p}, and ϕ\phi and Ξ\Xi^{-} are taken from ref. 9c ; 10c ; 11c respectively.

III.2 Tendencies of parameters

In order to study the tendency of parameters, the dependences of T0T_{0} on centrality in (a)-(e) and T0T_{0} on m0m_{0} in (f) with different symbols are displayed in Figure 6. The values of the two parameters are cited from Table 1. Each panel represent the results from different collisions. The symbols in the figure are used in order to represent different particles. The parameters trend from left to right shows the behavior of T0T_{0} from central to peripheral collisions from panel (a)-(e) while panel (f) shows its behavior with increasing mass of the particle. In panels (a)-(e) one can see that T0T_{0} for all the particles is larger in central collisions and it decrease as the centrality decrease due the reason that more energy is deposited to the system in central collisions due to the involvement of large number of participants which decrease towards periphery. In addition, from panel (a)-(f), T0T_{0} is larger for the strange particles and the separate decoupling of the strange and non-strange particles is observed. The larger T0T_{0} for the strange particles is due to their smaller cross-section interaction, and according to kinematics, the reactions with lower cross-section is expected to be switched-off at higher temperatures/densities or early in time than the reactions with higher cross-sections. We also believe that the charm particles may decouple earlier than the strange particles and it is possible that a series of freeze-outs correspond to particular reaction channels 12c , but it is a regret that we don’t have the data for charm particles. Furthermore, one can see that T0T_{0} is larger at LHC than that of RHIC, and even at RHIC pppp is the smallest collisions system and the observed T0T_{0} in it is very smaller than the rest which is a clear evidence of T0T_{0} on the size of the interacting system. From the above observation, one thing is clear that there is a strong dependence of T0T_{0} on the collision energy because Pb-Pb and p-Pb collisions are the largest systems and they have larger T0T_{0}, and pppp is the smallest collision system among them and has smaller vale for T0T_{0}. However Cu-Cu, Au-Au and d-Au at RHIC, and p-Pb and Pb-Pb at LHC are different systems and have almost the same values for T0T_{0} respectively, and this is due to the effect of collision energy. So we can conclude that T0T_{0} is dependent on the size of the collision system as well as the collision energy.

We would like to point out that we have observed two kinetic freeze-out scenarios which is agreement with 13c , but in contrast with our recent work 13ca . In fact, there are different freeze-out scenarios in literature which include one, two, three or multiple kinetic freeze-out scenarios. No doubt, the process of high energy collisions is complex and it is very interesting to see whether one, two, or multiple kinetic freeze-out scenarios exist in it. Due to the fact that different scenarios are reported in different literature, it is an open question up to now.

[Uncaptioned image]

Fig. 6. Dependence of T0T_{0} on centrality in panel (a)-(e), and dependence of T0T_{0} on m0m_{0} in panel (f).

Fig. 7 shows similar to the fig. 6, but it shows the dependence of βT\beta_{T} on centrality from panel (a)-(e), while panel (f) shows the dependence of βT\beta_{T} on m0m_{0}. One can see that βT\beta_{T} remains invariant as we go from central to peripheral collision due to the reason that collective behavior from central to peripheral collisions does not change. In addition, βT\beta_{T} from panel (a)-(f)is larger for the lighter particles and it decrease for the heavier particles and it is a natural hydrodynamical behavior because heavier particles are left behind in the system. We also noticed that like T0T_{0}, βT\beta_{T} in Cu-Cu, Au-Au and d-Au at RHIC, and Pb-Pb and p-Pb at LHC are close to each other due to the effect of their dependence on both the collision cross-section and collision energy.

[Uncaptioned image]

Fig. 7. Dependence of βT\beta_{T} on centrality in panel (a)-(e), and dependence of βT\beta_{T} on m0m_{0} in panel (f).

To check the dependence of VV on centrality (mass), fig. 8 is represented. It is similar to that of fig. 6 and fig. 7. One can see that VV decreases from central to peripheral collisions in panels (a)-(e) due to fact that the participant nucleons decreases as we go from central to peripheral collisions depending on the interaction volume. The system which contains more participants reaches to equilibrium quickly because there are large number of secondary collisions by the re-scattering of partons in central collisions, and the system goes away from equilibrium states as it goes from central to peripheral collision due to reason that the number of participants in the system decreases. Furthermore, we observed that VV from panel (a)-(f) is dependent of m0m_{0}. Heavier the particle is, smaller is the value of VV, which reveals a volume differential freeze-out scenario, and may indicate that there are different freeze-out surfaces for different particles. Like T0T_{0} and βT\beta_{T}, VV at LHC is larger than at RHIC and in pppp collisions VV is the smallest among all these systems, nucleus-nucleus collision systems at RHIC and LHC have nearly same VV respectively and this is due to their energy difference.

[Uncaptioned image]

Fig. 8. Dependence of VV on centrality in panel (a)-(e), and dependence of VV on m0m_{0} in panel (f).

Fig. 9 represents the behavior of the parameter nn. nn=1/(q-1), and q is the entropy index, which is referred to equilibrium degree. In general, qq=1 corresponds to equilibrium state, where qq>>1 corresponds to non-equilibrium state. Smaller qq corresponds to large nn. One can see that the parameter nn is larger in almost all the cases which means that the system is in equilibrium state, and also it remains constant in most cases from central to peripheral collision except for proton that increases from central to peripheral collisions which is not understood by us.

[Uncaptioned image]

Fig. 9. Dependence of nn on centrality in panel (a)-(e), and dependence of nn on m0m_{0} in panel (f).

[Uncaptioned image]

Fig. 10. Dependence of N0N_{0} on centrality in panel (a)-(e), and dependence of N0N_{0} on m0m_{0} in panel (f).

The dependence of the parameter N0N_{0} on centrality (m0m_{0}). N0N_{0} is a normalization constant but it has its significance too. It reflects the multiplicity. One can see that the parameter N0N_{0} decreases from central to peripheral collisions which indicates that the multiplicity decreases as the system goes from central to peripheral collisions. It can also be seen that N0N_{0} is dependent on the size of the interacting system. As we can see that in Au-Au collisions it is larger than Cu-Cu and d-Au collisions, and in Pb-Pb collisions it has the highest value followed by p-Pb collisions. In pppp collisions N0N_{0} is the smallest due to being it is the smallest system among them. This shows that the multiplicity depends on the size of the interacting system and also have the collision energy dependence as the collision energy of the AA collisions at RHIC and LHC are different.

[Uncaptioned image]

Fig. 11. Dependence of <pT><p_{T}> on centrality in panel (a)-(e), and dependence of <pT><p_{T}> on m0m_{0} in panel (f).

[Uncaptioned image]

Fig. 12. Dependence of TiT_{i} on centrality in panel (a)-(e), and dependence of TiT_{i} on m0m_{0} in panel (f).

The mean transverse momentum (<pT><p_{T}>) dependence on centrality (m0m_{0}) is demonstrated in fig. 11. One can see that <pT><p_{T}> decrease as the system goes from central to peripheral collisions and this is due to the fact that the system gains large momentum (energy) in central collisions where further multiple scattering happens, which decrease when the system goes towards periphery. Like T0T_{0} and βT\beta_{T}, <pT><p_{T}> also depends on the size of the interacting system and also there is an effect on the behavior of collision energy. We also analyze root-mean-square pTp_{T} (<pT2>\sqrt{<p^{2}_{T}>}) over 2\sqrt{2} (<pT2>\sqrt{<p^{2}_{T}>}/2\sqrt{2}) in fig. 12. and showed its behavior with changing the centrality (m0m_{0}). (<pT2>\sqrt{<p^{2}_{T}>}/2\sqrt{2}) represents the initial temperature (TiT_{i}) of the interacting system according to the string percolation model 14c ; 15c ; 16c . It can be obviously seen that the initial temperature is larger in central collisions, however it decrease from central to peripheral collision systems, and similar to T0T_{0} it depends on the size of the interacting system and is also effected by the collision energy. Moreover, we have observed that the initial temperature depends on mass of the particle. The more massive the particle is, the larger is the initial temperature.

We would like to point out that the initial temperature depends on mass of the particle, and the more heavier the particle is, the larger the initial temperature, however the kinetic freeze-out temperature depends on the cross-section interaction of the particles. The larger the cross-section of the particle is, the smaller the value of kinetic freeze-out temperature. The difference in the two temperatures is due to the reason that they occur at two different process in the system evolution. Furthermore, it is also possible that the centrality dependence of the two types of temperatures is also different if one gets the increasing trend from central to peripheral for T0T_{0} which is observed in our recent work 17c ; 18c . In fact the trend dependence of T0T_{0} is also an open question in high energy collisions because different literature give different trend.

Before going to the summary and conclusions, we would like to point out that the initial temperature is observed to be larger than the kinetic freeze-out temperature. The former is followed by the chemical freeze-out temperature which can be expresses as

Tch=Tlim1+exp[2.60ln(sNN)/0.45]\displaystyle T_{ch}=\frac{T_{\lim}}{1+\exp[2.60-\ln(\sqrt{s_{NN}})/0.45]} (4)

where TlimT_{lim}=0.1584 GeV. The chemical freeze-out temperature is followed by the effective temperature and then the kinetic freeze-out temperature and this order is in agreement with the order of time evolution of the interacting system.

IV Summary and Conclusions

We summarize here our main observations and conclusions.

(a) The transverse momentum spectra of strange and non-strange hadrons produced in Cu-Cu, Au-Au, d-Au, Pb-Pb, p-Pb and pppp collisions have been studied by the modified Hagedorn model. The results are well in agreement with the experimental data BRAHM, STAR, PHENIX and ALICE Collaborations at RHIC and LHC.

(b) T0T_{0} and TiT_{i} are larger in central collisions and they decrease from central to peripheral collisions due to the decrease in the participant nucleons towards periphery which results in lower degree of excitation of the system in the peripheral collisions. <pT><p_{T}> also decrease towards periphery due to the reason that the energy (momentum) transfer becomes lower in the system from central to peripheral collisions. In addition VV is larger in central collisions and it decrease towards periphery due to the reason of decreasing of partons re-scattering towards periphery.

(c) βT\beta_{T} depends on the mass of the particle. Heavier the particle is, smaller is the value of βT\beta_{T} is. βT\beta_{T} remains unchanged from central to peripheral collisions because the collective flow from central to peripheral collisions does not change.

(d) The parameter N0N_{0} represents the multiplicity and it decrease from central to peripheral collisions.

(e) T0T_{0} depends on the cross-section interaction of the particle and therefore the strange and non-strange particles have separate freeze-out and it reveals the scenario of two kinetic freeze-out temperature, while the initial temperature depends on the mass of the particle and this is due to the reason that both of them occurs at different stages in the evolution system.

(f) VV depends on the mass of the particle. The heavier particle has smaller VV which reveals the volume differential freeze-out scenario and indicates a separate freeze-out surface for each particle.

(g) T0T_{0}, TiT_{i}, βT\beta_{T}, VV, <pT><p_{T}> and N0N_{0} are dependent on the size of the interacting system because all these parameters have larger values at LHC collision systems than at RHIC collision systems and in pppp collisions it has the lowest values. The mentioned parameters in Cu-Cu, d-Au, and Au-Au are different collision systems with different energies (200 GeV, 62.4 GeV and 200 GeV for Cu-Cu, Au-Au and d-Au respectively), but the values of the parameters obsered in these systems are nearly equal, due to their dependence on both the collision energy and collision cross-section. Similar behavior is observed in p-Pb and Pb-Pb collisions.


Acknowledgments

This research was funded by the National Natural Science Foundation of China grant number 11875052, 11575190, and 11135011.

Author Contributions All authors listed have made a substantial, direct, and intellectual contribution to the work and approved it for publication.

Data Availability Statement This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The data used to support the findings of this study are included within the article and are cited at relevant places within the text as references.]

Compliance with Ethical Standards

Ethical Approval The authors declare that they are in compliance with ethical standards regarding the content of this paper.

Disclosure The funding agencies have no role in the design of the study; in the collection, analysis, or interpretation of the data; in the writing of the manuscript, or in the decision to publish the results.

Conflict of Interest The authors declare that there are no conflicts of interest regarding the publication of this paper.

References

  • (1) U. W. Heinz, “Concepts of heavy ion physics,” [arXiv:hep-ph/0407360 [hep-ph]].
  • (2) P. Braun-Munzinger and J. Wambach, “The Phase Diagram of Strongly-Interacting Matter,” Rev. Mod. Phys. 81, 1031-1050 (2009) doi:10.1103/RevModPhys.81.1031 [arXiv:0801.4256 [hep-ph]].
  • (3) W. Florkowski, “Basic phenomenology for relativistic heavy-ion collisions,” Acta Phys. Polon. B 45, no.12, 2329-2354 (2014) doi:10.5506/APhysPolB.45.2329 [arXiv:1410.7904 [nucl-th]].
  • (4) F. A. Flor, G. Olinger and R. Bellwied, “System Size and Flavour Dependence of Chemical Freeze-out Temperatures in ALICE pppp, pPb and PbPb Collisions at LHC Energies,” [arXiv:2109.09843 [nucl-ex]].
  • (5) H. Liu [STAR], “Light Nuclei Production in Au+Au Collisions at sNN\sqrt{s_{\mathrm{NN}}} = 3 GeV from the STAR experiment,” [arXiv:2110.10929 [nucl-ex]].
  • (6) A. A. Akhoundov, Y. Ali, M. Q. Haseeb and M. K. Suleymanov, “Study of Strange Particle Production in Central Pb-Pb Collisions at s\sqrt{s} = 2.76 TeV,” Journal of Physics & Optics Sciences 2, no.4, 1-6 (2021)
  • (7) R. N. Patra, B. Mohanty and T. K. Nayak, “Centrality, transverse momentum and collision energy dependence of the Tsallis parameters in relativistic heavy-ion collisions,” Eur. Phys. J. Plus 136, no.6, 702 (2021) doi:10.1140/epjp/s13360-021-01660-0 [arXiv:2008.02559 [hep-ph]].
  • (8) J. Adam et al. [STAR], “Centrality and transverse momentum dependence of D0D^{0}-meson production at mid-rapidity in Au+Au collisions at sNN=200GeV{\sqrt{s_{\rm NN}}=\rm{200\,GeV}},” Phys. Rev. C 99, no.3, 034908 (2019) doi:10.1103/PhysRevC.99.034908 [arXiv:1812.10224 [nucl-ex]].
  • (9) U. W. Heinz, “Strange messages: Chemical and thermal freezeout in nuclear collisions,” J. Phys. G 25, 263-274 (1999) doi:10.1088/0954-3899/25/2/014 [arXiv:nucl-th/9810056 [nucl-th]].
  • (10) S. Chatterjee, R. M. Godbole and S. Gupta, “Strange freezeout,” Phys. Lett. B 727, 554-557 (2013) doi:10.1016/j.physletb.2013.11.008 [arXiv:1306.2006 [nucl-th]].
  • (11) M. Waqas, G. X. Peng, F. H. Liu and Z. Wazir, “Effects of coalescence and isospin symmetry on the freezeout of light nuclei and their anti-particles,” Sci. Rep. 11, no.1, 20252 (2021) doi:10.1038/s41598-021-99455-x [arXiv:2105.01300 [hep-ph]].
  • (12) M. Waqas, G. X. Peng and F. H. Liu, “An evidence of triple kinetic freezeout scenario observed in all centrality intervals in Cu–Cu, Au–Au and Pb–Pb collisions at high energies,” J. Phys. G 48, no.7, 075108 (2021) doi:10.1088/1361-6471/abdd8d [arXiv:2101.07971 [hep-ph]].
  • (13) M. Waqas, F. H. Liu and Z. Wazir, “Dependence of temperatures and kinetic freeze-out volume on centrality in Au-Au and Pb-Pb collisions at high energy,” Adv. High Energy Phys. 2020, 8198126 (2020) doi:10.1155/2020/8198126 [arXiv:2004.03773 [hep-ph]].
  • (14) M. Waqas and F. H. Liu, “Initial, effective, and kinetic freeze-out temperatures from transverse momentum spectra in high-energy proton(deuteron)–nucleus and nucleus–nucleus collisions,” Eur. Phys. J. Plus 135, no.2, 147 (2020) doi:10.1140/epjp/s13360-020-00213-1 [arXiv:1911.01709 [hep-ph]].
  • (15) S. Chatrchyan et al. [CMS], “Study of high-pTp_{T} charged particle suppression in PbPb compared to pppp collisions at sNN=2.76\sqrt{s_{NN}}=2.76 TeV,” Eur. Phys. J. C 72, 1945 (2012) doi:10.1140/epjc/s10052-012-1945-x [arXiv:1202.2554 [nucl-ex]].
  • (16) M. Suleymanov, “The meaning behind observed pTp_{T} regions at the LHC energies,” Int. J. Mod. Phys. E 27, no.01, 1850008 (2018) doi:10.1142/S0218301318500088 [arXiv:1707.03420 [nucl-ex]].
  • (17) M. Waqas and F. H. Liu, “Centrality dependence of kinetic freeze-out temperature and transverse flow velocity in high energy nuclear collisions,” doi:10.1007/s12648-021-02058-5 [arXiv:1806.05863 [hep-ph]].
  • (18) M. Waqas and G. X. Peng, “Study of Dependence of Kinetic Freezeout Temperature on the Production Cross-Section of Particles in Various Centrality Intervals in Au–Au and Pb–Pb Collisions at High Energies,” Entropy 23, 488 (2021) doi:10.3390/e23040488 [arXiv:2104.12067 [hep-ph]].
  • (19) E. Schnedermann, J. Sollfrank and U. W. Heinz, “Thermal phenomenology of hadrons from 200-A/GeV S+S collisions,” Phys. Rev. C 48, 2462-2475 (1993) doi:10.1103/PhysRevC.48.2462 [arXiv:nucl-th/9307020 [nucl-th]].
  • (20) B. I. Abelev et al. [STAR], “Systematic Measurements of Identified Particle Spectra in pp,d+pp,d^{+} Au and Au+Au Collisions from STAR,” Phys. Rev. C 79, 034909 (2009) doi:10.1103/PhysRevC.79.034909 [arXiv:0808.2041 [nucl-ex]].
  • (21) K. Jiang, Y. Zhu, W. Liu, H. Chen, C. Li, L. Ruan, Z. Tang, Z. Xu and Z. Xu, “Onset of radial flow in p+p collisions,” Phys. Rev. C 91, no.2, 024910 (2015) doi:10.1103/PhysRevC.91.024910 [arXiv:1312.4230 [nucl-ex]].
  • (22) J. Chen, J. Deng, Z. Tang, Z. Xu and L. Yi, “Nonequilibrium kinetic freeze-out properties in relativistic heavy ion collisions from energies employed at the RHIC beam energy scan to those available at the LHC,” Phys. Rev. C 104, no.3, 034901 (2021) doi:10.1103/PhysRevC.104.034901 [arXiv:2012.02986 [nucl-th]].
  • (23) Z. Tang, Y. Xu, L. Ruan, G. van Buren, F. Wang and Z. Xu, “Spectra and radial flow at RHIC with Tsallis statistics in a Blast-Wave description,” Phys. Rev. C 79, 051901 (2009) doi:10.1103/PhysRevC.79.051901 [arXiv:0812.1609 [nucl-ex]].
  • (24) M. Waqas, F. H. Liu, R. Q. Wang and I. Siddique, Eur. Phys. J. A 56, no.7, 188 (2020) doi:10.1140/epja/s10050-020-00192-y [arXiv:2007.00825 [hep-ph]].
  • (25) J. Q. Tao, M. Wang, H. Zheng, W. C. Zhang, L. L. Zhu and A. Bonasera, “Pseudorapidity distributions of charged particles in pppp, p(d)A and AA collisions using Tsallis thermodynamics,” J. Phys. G 48, no.10, 105102 (2021) doi:10.1088/1361-6471/ac1393 [arXiv:2011.05026 [nucl-th]].
  • (26) G. R. Che, J. B. Gu, W. C. Zhang and H. Zheng, J. Phys. G 48, 095103 (2021) doi:10.1088/1361-6471/ac09dc [arXiv:2010.14880 [nucl-th]].
  • (27) M. Ajaz, A. A. K. H. Ismail, A. Ahmed, Z. Wazir, R. Shehzadi, H. Younis, G. Khan, R. Khan, S. Ali and M. Waqas, et al. Results Phys. 30, 104790 (2021) doi:10.1016/j.rinp.2021.104790
  • (28) W. J. Xie, “Transverse momentum spectra in high-energy nucleus-nucleus, proton-nucleus and proton-proton collisions,” Chin. Phys. C 35, 1111-1119 (2011) doi:10.1088/1674-1137/35/12/006
  • (29) L. N. Gao, F. H. Liu and R. A. Lacey, “Excitation functions of parameters in Erlang distribution, Schwinger mechanism, and Tsallis statistics in RHIC BES program,” Eur. Phys. J. A 52, no.5, 137 (2016) doi:10.1140/epja/i2016-16137-7 [arXiv:1604.07218 [hep-ph]].
  • (30) L. N. Gao and F. H. Liu, “Comparing Erlang distribution and Schwinger mechanism on transverse momentum spectra in high energy collisions,” Adv. High Energy Phys. 2016, 1505823 (2016) doi:10.1155/2016/1505823 [arXiv:1510.03520 [hep-ph]].
  • (31) S. Tahery, X. Chen and L. Zou, “A comparison of condensate mass of QCD vacuum between Wilson line approach and Schwinger effect,” Chin. Phys. C 45, no.4, 043107 (2021) doi:10.1088/1674-1137/abe03b [arXiv:2007.01559 [hep-th]].
  • (32) R. C. Wang and C. Y. Wong, “Finite Size Effect in the Schwinger Particle Production Mechanism,” Phys. Rev. D 38, 348-359 (1988) doi:10.1103/PhysRevD.38.348
  • (33) H. Taya, “Dynamically assisted Schwinger mechanism and chirality production in parallel electromagnetic field,” Phys. Rev. Res. 2, no.2, 023257 (2020) doi:10.1103/PhysRevResearch.2.023257 [arXiv:2003.08948 [hep-ph]].
  • (34) H. Taya, “Mutual assistance between the Schwinger mechanism and the dynamical Casimir effect,” Phys. Rev. Res. 2, no.2, 023346 (2020) doi:10.1103/PhysRevResearch.2.023346 [arXiv:2003.12061 [hep-ph]].
  • (35) R. Hagedorn, “Multiplicities,pTp_{T} distributions and the expected hadron to quark-gluon phase transition,” Riv. Nuovo Cimento 6(10), 1 (1983).
  • (36) L. L. Li, F. H. Liu, M. Waqas, R. Al-Yusufi and A. Mujear, Adv. High Energy Phys. 2020, 5356705 (2020) doi:10.1155/2020/5356705 [arXiv:1911.07419 [hep-ph]].
  • (37) J. Mashford, “Quantum chromodynamics through the geometry of Möbius structures,” [arXiv:1809.04457 [physics.gen-ph]].
  • (38) N. A. Abdulov, A. V. Lipatov and M. A. Malyshev, “Inclusive Higgs Boson Production at the LHC within the QCD ktk_{t}-Factorization Approach,” Phys. Atom. Nucl. 82, no.12, 1602-1606 (2020) doi:10.1134/S1063778819120019
  • (39) M. Mieskolainen, “Combinatorial Superstatistics for Soft QCD,” [arXiv:1910.06279 [hep-ph]].
  • (40) K. Aamodt et al. [ALICE], “Transverse momentum spectra of charged particles in proton-proton collisions at s=900\sqrt{s}=900~GeV with ALICE at the LHC,” Phys. Lett. B 693, 53-68 (2010) doi:10.1016/j.physletb.2010.08.026 [arXiv:1007.0719 [hep-ex]].
  • (41) B. Abelev et al. [ALICE], “Inclusive J/ψJ/\psi production in pppp collisions at s=2.76\sqrt{s}=2.76 TeV,” Phys. Lett. B 718, 295-306 (2012) [erratum: Phys. Lett. B 748, 472-473 (2015)] doi:10.1016/j.physletb.2012.10.078 [arXiv:1203.3641 [hep-ex]]
  • (42) I. Lakomov [ALICE], “Event activity dependence of inclusive J/ψJ/{\psi} production in p-Pb collisions at sNN=5.02\sqrt{s_{NN}}=5.02 TeV with ALICE at the LHC,” Nucl. Phys. A 931, 1179-1183 (2014) doi:10.1016/j.nuclphysa.2014.08.062 [arXiv:1408.0702 [hep-ex]].
  • (43) B. Abelev et al. [ALICE], “Light vector meson production in pppp collisions at s=7\sqrt{s}=7 TeV,” Phys. Lett. B 710, 557-568 (2012) doi:10.1016/j.physletb.2012.03.038 [arXiv:1112.2222 [nucl-ex]]
  • (44) A. De Falco [ALICE], “Vector meson production in pppp collisions at s=7TeV\sqrt{s}=7\rm{~{}TeV}, measured with the ALICE detector,” J. Phys. G 38, 124083 (2011) doi:10.1088/0954-3899/38/12/124083 [arXiv:1106.4140 [nucl-ex]].
  • (45) I. Abt et al. [HERA-B], “K*0 and phi meson production in proton-nucleus interactions at s**(1/2) = 41.6-GeV,” Eur. Phys. J. C 50, 315-328 (2007) doi:10.1140/epjc/s10052-007-0237-3 [arXiv:hep-ex/0606049 [hep-ex]]
  • (46) K. K. Olimov, F. H. Liu, K. A. Musaev and M. Z. Shodmonov, “Analysis of multiplicity dependencies of midrapidity pTp_{T} distributions of identified charged particles in p+p collisions at s\sqrt{s}=7 TeV at the LHC,” [arXiv:2109.00203 [hep-ph]].
  • (47) I. C. Arsene et al. [BRAHMS], “Rapidity and centrality dependence of particle production for identified hadrons in Cu+Cu collisions at sNN=200\sqrt{s_{NN}}=200 GeV,” Phys. Rev. C 94, no.1, 014907 (2016) doi:10.1103/PhysRevC.94.014907 [arXiv:1602.01183 [nucl-ex]]
  • (48) G. Agakishiev et al. [STAR], “Strangeness Enhancement in Cu+Cu and Au+Au Collisions at sNN=200\sqrt{s_{NN}}=200 GeV,” Phys. Rev. Lett. 108, 072301 (2012) doi:10.1103/PhysRevLett.108.072301 [arXiv:1107.2955 [nucl-ex]]
  • (49) B. I. Abelev et al. [STAR], “Systematic Measurements of Identified Particle Spectra in pp,d+pp,d^{+} Au and Au+Au Collisions from STAR,” Phys. Rev. C 79, 034909 (2009) doi:10.1103/PhysRevC.79.034909 [arXiv:0808.2041 [nucl-ex]].
  • (50) M. M. Aggarwal et al. [STAR], “Strange and Multi-strange Particle Production in Au+Au Collisions at sNN\sqrt{s_{NN}} = 62.4 GeV,” Phys. Rev. C 83, 024901 (2011) doi:10.1103/PhysRevC.83.024901 [arXiv:1010.0142 [nucl-ex]].
  • (51) A. Adare et al. [PHENIX], “Spectra and ratios of identified particles in Au+Au and dd+Au collisions at sNN=200\sqrt{s_{NN}}=200 GeV,” Phys. Rev. C 88, no.2, 024906 (2013) doi:10.1103/PhysRevC.88.024906 [arXiv:1304.3410 [nucl-ex]].
  • (52) B. Abelev et al. [ALICE], “Centrality dependence of π\pi, K, p production in Pb-Pb collisions at sNN\sqrt{s_{NN}} = 2.76 TeV,” Phys. Rev. C 88, 044910 (2013) doi:10.1103/PhysRevC.88.044910 [arXiv:1303.0737 [hep-ex]].
  • (53) V. Begun, W. Florkowski and M. Rybczynski, “Transverse-momentum spectra of strange particles produced in Pb+Pb collisions at sNN=2.76\sqrt{s_{\rm NN}}=2.76 TeV in the chemical non-equilibrium model,” Phys. Rev. C 90, no.5, 054912 (2014) doi:10.1103/PhysRevC.90.054912 [arXiv:1405.7252 [hep-ph]].
  • (54) B. B. Abelev et al. [ALICE], “Multiplicity Dependence of Pion, Kaon, Proton and Lambda Production in p-Pb Collisions at sNN\sqrt{s_{NN}} = 5.02 TeV,” Phys. Lett. B 728, 25-38 (2014) doi:10.1016/j.physletb.2013.11.020 [arXiv:1307.6796 [nucl-ex]].
  • (55) A. Adare et al. [PHENIX], “Identified charged hadron production in p+pp+p collisions at s=200\sqrt{s}=200 and 62.4 GeV,” Phys. Rev. C 83, 064903 (2011) doi:10.1103/PhysRevC.83.064903 [arXiv:1102.0753 [nucl-ex]].
  • (56) J. Adams et al. [STAR], “phi meson production in Au + Au and p+p collisions at s(NN)**(1/2) = 200-GeV,” Phys. Lett. B 612, 181-189 (2005) doi:10.1016/j.physletb.2004.12.082 [arXiv:nucl-ex/0406003 [nucl-ex]]
  • (57) B. I. Abelev et al. [STAR], “Strange particle production in p+p collisions at s**(1/2) = 200-GeV,” Phys. Rev. C 75, 064901 (2007) doi:10.1103/PhysRevC.75.064901 [arXiv:nucl-ex/0607033 [nucl-ex]].
  • (58) A. Baran, W. Broniowski and W. Florkowski, “Description of the particle ratios and transverse momentum spectra for various centralities at RHIC in a single freezeout model,” Acta Phys. Polon. B 35, 779-798 (2004) [arXiv:nucl-th/0305075 [nucl-th]].
  • (59) M. Shao, L. Yi, Z. Tang, H. Chen, C. Li and Z. Xu, “Examine the species and beam-energy dependence of particle spectra using Tsallis Statistics,” J. Phys. G 37, 085104 (2010) doi:10.1088/0954-3899/37/8/085104 [arXiv:0912.0993 [nucl-ex]]
  • (60) Waqas, M.; Chen, H.M.; Peng, G.X.; Haj Ismail, A.; Ajaz, M.; Wazir, Z.; Shehzadi, R.; Jamal, S.; AbdelKader, A. ”Study of Kinetic Freeze-Out Parameters as a Function of Rapidity in pp Collisions at CERN SPS Energies.” Entropy 23, 1363 (2021). doi: 10.3390/e23101363
  • (61) L. J. Gutay, A. S. Hirsch, C. Pajares, R. P. Scharenberg and B. K. Srivastava, “De-Confinement in small systems: Clustering of color sources in high multiplicity p¯\bar{p}p collisions at s\sqrt{s}= 1.8 TeV,” Int. J. Mod. Phys. E 24, no.12, 1550101 (2015) doi:10.1142/S0218301315501013 [arXiv:1504.08270 [nucl-ex]].
  • (62) P. Sahoo, S. De, S. K. Tiwari and R. Sahoo, “Energy and Centrality Dependent Study of Deconfinement Phase Transition in a Color String Percolation Approach at RHIC Energies,” Eur. Phys. J. A 54, no.8, 136 (2018) doi:10.1140/epja/i2018-12571-9 [arXiv:1803.08280 [hep-ph]].
  • (63) R. P. Scharenberg, B. K. Srivastava and C. Pajares, “Exploring the initial stage of high multiplicity proton-proton collisions by determining the initial temperature of the quark-gluon plasma,” Phys. Rev. D 100, no.11, 114040 (2019) doi:10.1103/PhysRevD.100.114040 [arXiv:1803.02301 [hep-ph]].
  • (64) M.  Ajaz, et al., ”Centrality dependence of PTP_{T} distributions and nuclear modification factor of charged particles in Pb-Pb interactions at SNN\sqrt{S_{NN}} = 2.76 TeV.” Results Phys. 30, 104790 (2021). doi:10.1016/j.rinp.2021.104790
  • (65) M. Waqas and G. X. Peng, “Study of Proton, Deuteron, and Triton at 54.4 GeV,” Adv. High Energy Phys. 2021, 6674470 (2021) doi:10.1155/2021/6674470 [arXiv:2103.07852 [hep-ph]].